]> Pileus Git - ~andy/linux/blob - tools/perf/bench/numa.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[~andy/linux] / tools / perf / bench / numa.c
1 /*
2  * numa.c
3  *
4  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5  */
6
7 #include "../perf.h"
8 #include "../builtin.h"
9 #include "../util/util.h"
10 #include "../util/parse-options.h"
11
12 #include "bench.h"
13
14 #include <errno.h>
15 #include <sched.h>
16 #include <stdio.h>
17 #include <assert.h>
18 #include <malloc.h>
19 #include <signal.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <unistd.h>
23 #include <pthread.h>
24 #include <sys/mman.h>
25 #include <sys/time.h>
26 #include <sys/wait.h>
27 #include <sys/prctl.h>
28 #include <sys/types.h>
29
30 #include <numa.h>
31 #include <numaif.h>
32
33 /*
34  * Regular printout to the terminal, supressed if -q is specified:
35  */
36 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
37
38 /*
39  * Debug printf:
40  */
41 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
42
43 struct thread_data {
44         int                     curr_cpu;
45         cpu_set_t               bind_cpumask;
46         int                     bind_node;
47         u8                      *process_data;
48         int                     process_nr;
49         int                     thread_nr;
50         int                     task_nr;
51         unsigned int            loops_done;
52         u64                     val;
53         u64                     runtime_ns;
54         pthread_mutex_t         *process_lock;
55 };
56
57 /* Parameters set by options: */
58
59 struct params {
60         /* Startup synchronization: */
61         bool                    serialize_startup;
62
63         /* Task hierarchy: */
64         int                     nr_proc;
65         int                     nr_threads;
66
67         /* Working set sizes: */
68         const char              *mb_global_str;
69         const char              *mb_proc_str;
70         const char              *mb_proc_locked_str;
71         const char              *mb_thread_str;
72
73         double                  mb_global;
74         double                  mb_proc;
75         double                  mb_proc_locked;
76         double                  mb_thread;
77
78         /* Access patterns to the working set: */
79         bool                    data_reads;
80         bool                    data_writes;
81         bool                    data_backwards;
82         bool                    data_zero_memset;
83         bool                    data_rand_walk;
84         u32                     nr_loops;
85         u32                     nr_secs;
86         u32                     sleep_usecs;
87
88         /* Working set initialization: */
89         bool                    init_zero;
90         bool                    init_random;
91         bool                    init_cpu0;
92
93         /* Misc options: */
94         int                     show_details;
95         int                     run_all;
96         int                     thp;
97
98         long                    bytes_global;
99         long                    bytes_process;
100         long                    bytes_process_locked;
101         long                    bytes_thread;
102
103         int                     nr_tasks;
104         bool                    show_quiet;
105
106         bool                    show_convergence;
107         bool                    measure_convergence;
108
109         int                     perturb_secs;
110         int                     nr_cpus;
111         int                     nr_nodes;
112
113         /* Affinity options -C and -N: */
114         char                    *cpu_list_str;
115         char                    *node_list_str;
116 };
117
118
119 /* Global, read-writable area, accessible to all processes and threads: */
120
121 struct global_info {
122         u8                      *data;
123
124         pthread_mutex_t         startup_mutex;
125         int                     nr_tasks_started;
126
127         pthread_mutex_t         startup_done_mutex;
128
129         pthread_mutex_t         start_work_mutex;
130         int                     nr_tasks_working;
131
132         pthread_mutex_t         stop_work_mutex;
133         u64                     bytes_done;
134
135         struct thread_data      *threads;
136
137         /* Convergence latency measurement: */
138         bool                    all_converged;
139         bool                    stop_work;
140
141         int                     print_once;
142
143         struct params           p;
144 };
145
146 static struct global_info       *g = NULL;
147
148 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
149 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
150
151 struct params p0;
152
153 static const struct option options[] = {
154         OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
155         OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
156
157         OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
158         OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
159         OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
160         OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
161
162         OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run"),
163         OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run"),
164         OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
165
166         OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via writes (can be mixed with -W)"),
167         OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
168         OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
169         OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
170         OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
171
172
173         OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
174         OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
175         OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
176         OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
177
178         OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
179         OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
180         OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
181         OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
182         OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
183         OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "bzero the initial allocations"),
184         OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
185
186         /* Special option string parsing callbacks: */
187         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
188                         "bind the first N tasks to these specific cpus (the rest is unbound)",
189                         parse_cpus_opt),
190         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
191                         "bind the first N tasks to these specific memory nodes (the rest is unbound)",
192                         parse_nodes_opt),
193         OPT_END()
194 };
195
196 static const char * const bench_numa_usage[] = {
197         "perf bench numa <options>",
198         NULL
199 };
200
201 static const char * const numa_usage[] = {
202         "perf bench numa mem [<options>]",
203         NULL
204 };
205
206 static cpu_set_t bind_to_cpu(int target_cpu)
207 {
208         cpu_set_t orig_mask, mask;
209         int ret;
210
211         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
212         BUG_ON(ret);
213
214         CPU_ZERO(&mask);
215
216         if (target_cpu == -1) {
217                 int cpu;
218
219                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
220                         CPU_SET(cpu, &mask);
221         } else {
222                 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
223                 CPU_SET(target_cpu, &mask);
224         }
225
226         ret = sched_setaffinity(0, sizeof(mask), &mask);
227         BUG_ON(ret);
228
229         return orig_mask;
230 }
231
232 static cpu_set_t bind_to_node(int target_node)
233 {
234         int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
235         cpu_set_t orig_mask, mask;
236         int cpu;
237         int ret;
238
239         BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
240         BUG_ON(!cpus_per_node);
241
242         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
243         BUG_ON(ret);
244
245         CPU_ZERO(&mask);
246
247         if (target_node == -1) {
248                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
249                         CPU_SET(cpu, &mask);
250         } else {
251                 int cpu_start = (target_node + 0) * cpus_per_node;
252                 int cpu_stop  = (target_node + 1) * cpus_per_node;
253
254                 BUG_ON(cpu_stop > g->p.nr_cpus);
255
256                 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
257                         CPU_SET(cpu, &mask);
258         }
259
260         ret = sched_setaffinity(0, sizeof(mask), &mask);
261         BUG_ON(ret);
262
263         return orig_mask;
264 }
265
266 static void bind_to_cpumask(cpu_set_t mask)
267 {
268         int ret;
269
270         ret = sched_setaffinity(0, sizeof(mask), &mask);
271         BUG_ON(ret);
272 }
273
274 static void mempol_restore(void)
275 {
276         int ret;
277
278         ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
279
280         BUG_ON(ret);
281 }
282
283 static void bind_to_memnode(int node)
284 {
285         unsigned long nodemask;
286         int ret;
287
288         if (node == -1)
289                 return;
290
291         BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
292         nodemask = 1L << node;
293
294         ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
295         dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
296
297         BUG_ON(ret);
298 }
299
300 #define HPSIZE (2*1024*1024)
301
302 #define set_taskname(fmt...)                            \
303 do {                                                    \
304         char name[20];                                  \
305                                                         \
306         snprintf(name, 20, fmt);                        \
307         prctl(PR_SET_NAME, name);                       \
308 } while (0)
309
310 static u8 *alloc_data(ssize_t bytes0, int map_flags,
311                       int init_zero, int init_cpu0, int thp, int init_random)
312 {
313         cpu_set_t orig_mask;
314         ssize_t bytes;
315         u8 *buf;
316         int ret;
317
318         if (!bytes0)
319                 return NULL;
320
321         /* Allocate and initialize all memory on CPU#0: */
322         if (init_cpu0) {
323                 orig_mask = bind_to_node(0);
324                 bind_to_memnode(0);
325         }
326
327         bytes = bytes0 + HPSIZE;
328
329         buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
330         BUG_ON(buf == (void *)-1);
331
332         if (map_flags == MAP_PRIVATE) {
333                 if (thp > 0) {
334                         ret = madvise(buf, bytes, MADV_HUGEPAGE);
335                         if (ret && !g->print_once) {
336                                 g->print_once = 1;
337                                 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
338                         }
339                 }
340                 if (thp < 0) {
341                         ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
342                         if (ret && !g->print_once) {
343                                 g->print_once = 1;
344                                 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
345                         }
346                 }
347         }
348
349         if (init_zero) {
350                 bzero(buf, bytes);
351         } else {
352                 /* Initialize random contents, different in each word: */
353                 if (init_random) {
354                         u64 *wbuf = (void *)buf;
355                         long off = rand();
356                         long i;
357
358                         for (i = 0; i < bytes/8; i++)
359                                 wbuf[i] = i + off;
360                 }
361         }
362
363         /* Align to 2MB boundary: */
364         buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
365
366         /* Restore affinity: */
367         if (init_cpu0) {
368                 bind_to_cpumask(orig_mask);
369                 mempol_restore();
370         }
371
372         return buf;
373 }
374
375 static void free_data(void *data, ssize_t bytes)
376 {
377         int ret;
378
379         if (!data)
380                 return;
381
382         ret = munmap(data, bytes);
383         BUG_ON(ret);
384 }
385
386 /*
387  * Create a shared memory buffer that can be shared between processes, zeroed:
388  */
389 static void * zalloc_shared_data(ssize_t bytes)
390 {
391         return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
392 }
393
394 /*
395  * Create a shared memory buffer that can be shared between processes:
396  */
397 static void * setup_shared_data(ssize_t bytes)
398 {
399         return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
400 }
401
402 /*
403  * Allocate process-local memory - this will either be shared between
404  * threads of this process, or only be accessed by this thread:
405  */
406 static void * setup_private_data(ssize_t bytes)
407 {
408         return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
409 }
410
411 /*
412  * Return a process-shared (global) mutex:
413  */
414 static void init_global_mutex(pthread_mutex_t *mutex)
415 {
416         pthread_mutexattr_t attr;
417
418         pthread_mutexattr_init(&attr);
419         pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
420         pthread_mutex_init(mutex, &attr);
421 }
422
423 static int parse_cpu_list(const char *arg)
424 {
425         p0.cpu_list_str = strdup(arg);
426
427         dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
428
429         return 0;
430 }
431
432 static int parse_setup_cpu_list(void)
433 {
434         struct thread_data *td;
435         char *str0, *str;
436         int t;
437
438         if (!g->p.cpu_list_str)
439                 return 0;
440
441         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
442
443         str0 = str = strdup(g->p.cpu_list_str);
444         t = 0;
445
446         BUG_ON(!str);
447
448         tprintf("# binding tasks to CPUs:\n");
449         tprintf("#  ");
450
451         while (true) {
452                 int bind_cpu, bind_cpu_0, bind_cpu_1;
453                 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
454                 int bind_len;
455                 int step;
456                 int mul;
457
458                 tok = strsep(&str, ",");
459                 if (!tok)
460                         break;
461
462                 tok_end = strstr(tok, "-");
463
464                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
465                 if (!tok_end) {
466                         /* Single CPU specified: */
467                         bind_cpu_0 = bind_cpu_1 = atol(tok);
468                 } else {
469                         /* CPU range specified (for example: "5-11"): */
470                         bind_cpu_0 = atol(tok);
471                         bind_cpu_1 = atol(tok_end + 1);
472                 }
473
474                 step = 1;
475                 tok_step = strstr(tok, "#");
476                 if (tok_step) {
477                         step = atol(tok_step + 1);
478                         BUG_ON(step <= 0 || step >= g->p.nr_cpus);
479                 }
480
481                 /*
482                  * Mask length.
483                  * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
484                  * where the _4 means the next 4 CPUs are allowed.
485                  */
486                 bind_len = 1;
487                 tok_len = strstr(tok, "_");
488                 if (tok_len) {
489                         bind_len = atol(tok_len + 1);
490                         BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
491                 }
492
493                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
494                 mul = 1;
495                 tok_mul = strstr(tok, "x");
496                 if (tok_mul) {
497                         mul = atol(tok_mul + 1);
498                         BUG_ON(mul <= 0);
499                 }
500
501                 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
502
503                 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
504                         printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
505                         return -1;
506                 }
507
508                 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
509                 BUG_ON(bind_cpu_0 > bind_cpu_1);
510
511                 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
512                         int i;
513
514                         for (i = 0; i < mul; i++) {
515                                 int cpu;
516
517                                 if (t >= g->p.nr_tasks) {
518                                         printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
519                                         goto out;
520                                 }
521                                 td = g->threads + t;
522
523                                 if (t)
524                                         tprintf(",");
525                                 if (bind_len > 1) {
526                                         tprintf("%2d/%d", bind_cpu, bind_len);
527                                 } else {
528                                         tprintf("%2d", bind_cpu);
529                                 }
530
531                                 CPU_ZERO(&td->bind_cpumask);
532                                 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
533                                         BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
534                                         CPU_SET(cpu, &td->bind_cpumask);
535                                 }
536                                 t++;
537                         }
538                 }
539         }
540 out:
541
542         tprintf("\n");
543
544         if (t < g->p.nr_tasks)
545                 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
546
547         free(str0);
548         return 0;
549 }
550
551 static int parse_cpus_opt(const struct option *opt __maybe_unused,
552                           const char *arg, int unset __maybe_unused)
553 {
554         if (!arg)
555                 return -1;
556
557         return parse_cpu_list(arg);
558 }
559
560 static int parse_node_list(const char *arg)
561 {
562         p0.node_list_str = strdup(arg);
563
564         dprintf("got NODE list: {%s}\n", p0.node_list_str);
565
566         return 0;
567 }
568
569 static int parse_setup_node_list(void)
570 {
571         struct thread_data *td;
572         char *str0, *str;
573         int t;
574
575         if (!g->p.node_list_str)
576                 return 0;
577
578         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
579
580         str0 = str = strdup(g->p.node_list_str);
581         t = 0;
582
583         BUG_ON(!str);
584
585         tprintf("# binding tasks to NODEs:\n");
586         tprintf("# ");
587
588         while (true) {
589                 int bind_node, bind_node_0, bind_node_1;
590                 char *tok, *tok_end, *tok_step, *tok_mul;
591                 int step;
592                 int mul;
593
594                 tok = strsep(&str, ",");
595                 if (!tok)
596                         break;
597
598                 tok_end = strstr(tok, "-");
599
600                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
601                 if (!tok_end) {
602                         /* Single NODE specified: */
603                         bind_node_0 = bind_node_1 = atol(tok);
604                 } else {
605                         /* NODE range specified (for example: "5-11"): */
606                         bind_node_0 = atol(tok);
607                         bind_node_1 = atol(tok_end + 1);
608                 }
609
610                 step = 1;
611                 tok_step = strstr(tok, "#");
612                 if (tok_step) {
613                         step = atol(tok_step + 1);
614                         BUG_ON(step <= 0 || step >= g->p.nr_nodes);
615                 }
616
617                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
618                 mul = 1;
619                 tok_mul = strstr(tok, "x");
620                 if (tok_mul) {
621                         mul = atol(tok_mul + 1);
622                         BUG_ON(mul <= 0);
623                 }
624
625                 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
626
627                 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
628                         printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
629                         return -1;
630                 }
631
632                 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
633                 BUG_ON(bind_node_0 > bind_node_1);
634
635                 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
636                         int i;
637
638                         for (i = 0; i < mul; i++) {
639                                 if (t >= g->p.nr_tasks) {
640                                         printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
641                                         goto out;
642                                 }
643                                 td = g->threads + t;
644
645                                 if (!t)
646                                         tprintf(" %2d", bind_node);
647                                 else
648                                         tprintf(",%2d", bind_node);
649
650                                 td->bind_node = bind_node;
651                                 t++;
652                         }
653                 }
654         }
655 out:
656
657         tprintf("\n");
658
659         if (t < g->p.nr_tasks)
660                 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
661
662         free(str0);
663         return 0;
664 }
665
666 static int parse_nodes_opt(const struct option *opt __maybe_unused,
667                           const char *arg, int unset __maybe_unused)
668 {
669         if (!arg)
670                 return -1;
671
672         return parse_node_list(arg);
673
674         return 0;
675 }
676
677 #define BIT(x) (1ul << x)
678
679 static inline uint32_t lfsr_32(uint32_t lfsr)
680 {
681         const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
682         return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
683 }
684
685 /*
686  * Make sure there's real data dependency to RAM (when read
687  * accesses are enabled), so the compiler, the CPU and the
688  * kernel (KSM, zero page, etc.) cannot optimize away RAM
689  * accesses:
690  */
691 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
692 {
693         if (g->p.data_reads)
694                 val += *data;
695         if (g->p.data_writes)
696                 *data = val + 1;
697         return val;
698 }
699
700 /*
701  * The worker process does two types of work, a forwards going
702  * loop and a backwards going loop.
703  *
704  * We do this so that on multiprocessor systems we do not create
705  * a 'train' of processing, with highly synchronized processes,
706  * skewing the whole benchmark.
707  */
708 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
709 {
710         long words = bytes/sizeof(u64);
711         u64 *data = (void *)__data;
712         long chunk_0, chunk_1;
713         u64 *d0, *d, *d1;
714         long off;
715         long i;
716
717         BUG_ON(!data && words);
718         BUG_ON(data && !words);
719
720         if (!data)
721                 return val;
722
723         /* Very simple memset() work variant: */
724         if (g->p.data_zero_memset && !g->p.data_rand_walk) {
725                 bzero(data, bytes);
726                 return val;
727         }
728
729         /* Spread out by PID/TID nr and by loop nr: */
730         chunk_0 = words/nr_max;
731         chunk_1 = words/g->p.nr_loops;
732         off = nr*chunk_0 + loop*chunk_1;
733
734         while (off >= words)
735                 off -= words;
736
737         if (g->p.data_rand_walk) {
738                 u32 lfsr = nr + loop + val;
739                 int j;
740
741                 for (i = 0; i < words/1024; i++) {
742                         long start, end;
743
744                         lfsr = lfsr_32(lfsr);
745
746                         start = lfsr % words;
747                         end = min(start + 1024, words-1);
748
749                         if (g->p.data_zero_memset) {
750                                 bzero(data + start, (end-start) * sizeof(u64));
751                         } else {
752                                 for (j = start; j < end; j++)
753                                         val = access_data(data + j, val);
754                         }
755                 }
756         } else if (!g->p.data_backwards || (nr + loop) & 1) {
757
758                 d0 = data + off;
759                 d  = data + off + 1;
760                 d1 = data + words;
761
762                 /* Process data forwards: */
763                 for (;;) {
764                         if (unlikely(d >= d1))
765                                 d = data;
766                         if (unlikely(d == d0))
767                                 break;
768
769                         val = access_data(d, val);
770
771                         d++;
772                 }
773         } else {
774                 /* Process data backwards: */
775
776                 d0 = data + off;
777                 d  = data + off - 1;
778                 d1 = data + words;
779
780                 /* Process data forwards: */
781                 for (;;) {
782                         if (unlikely(d < data))
783                                 d = data + words-1;
784                         if (unlikely(d == d0))
785                                 break;
786
787                         val = access_data(d, val);
788
789                         d--;
790                 }
791         }
792
793         return val;
794 }
795
796 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
797 {
798         unsigned int cpu;
799
800         cpu = sched_getcpu();
801
802         g->threads[task_nr].curr_cpu = cpu;
803         prctl(0, bytes_worked);
804 }
805
806 #define MAX_NR_NODES    64
807
808 /*
809  * Count the number of nodes a process's threads
810  * are spread out on.
811  *
812  * A count of 1 means that the process is compressed
813  * to a single node. A count of g->p.nr_nodes means it's
814  * spread out on the whole system.
815  */
816 static int count_process_nodes(int process_nr)
817 {
818         char node_present[MAX_NR_NODES] = { 0, };
819         int nodes;
820         int n, t;
821
822         for (t = 0; t < g->p.nr_threads; t++) {
823                 struct thread_data *td;
824                 int task_nr;
825                 int node;
826
827                 task_nr = process_nr*g->p.nr_threads + t;
828                 td = g->threads + task_nr;
829
830                 node = numa_node_of_cpu(td->curr_cpu);
831                 node_present[node] = 1;
832         }
833
834         nodes = 0;
835
836         for (n = 0; n < MAX_NR_NODES; n++)
837                 nodes += node_present[n];
838
839         return nodes;
840 }
841
842 /*
843  * Count the number of distinct process-threads a node contains.
844  *
845  * A count of 1 means that the node contains only a single
846  * process. If all nodes on the system contain at most one
847  * process then we are well-converged.
848  */
849 static int count_node_processes(int node)
850 {
851         int processes = 0;
852         int t, p;
853
854         for (p = 0; p < g->p.nr_proc; p++) {
855                 for (t = 0; t < g->p.nr_threads; t++) {
856                         struct thread_data *td;
857                         int task_nr;
858                         int n;
859
860                         task_nr = p*g->p.nr_threads + t;
861                         td = g->threads + task_nr;
862
863                         n = numa_node_of_cpu(td->curr_cpu);
864                         if (n == node) {
865                                 processes++;
866                                 break;
867                         }
868                 }
869         }
870
871         return processes;
872 }
873
874 static void calc_convergence_compression(int *strong)
875 {
876         unsigned int nodes_min, nodes_max;
877         int p;
878
879         nodes_min = -1;
880         nodes_max =  0;
881
882         for (p = 0; p < g->p.nr_proc; p++) {
883                 unsigned int nodes = count_process_nodes(p);
884
885                 nodes_min = min(nodes, nodes_min);
886                 nodes_max = max(nodes, nodes_max);
887         }
888
889         /* Strong convergence: all threads compress on a single node: */
890         if (nodes_min == 1 && nodes_max == 1) {
891                 *strong = 1;
892         } else {
893                 *strong = 0;
894                 tprintf(" {%d-%d}", nodes_min, nodes_max);
895         }
896 }
897
898 static void calc_convergence(double runtime_ns_max, double *convergence)
899 {
900         unsigned int loops_done_min, loops_done_max;
901         int process_groups;
902         int nodes[MAX_NR_NODES];
903         int distance;
904         int nr_min;
905         int nr_max;
906         int strong;
907         int sum;
908         int nr;
909         int node;
910         int cpu;
911         int t;
912
913         if (!g->p.show_convergence && !g->p.measure_convergence)
914                 return;
915
916         for (node = 0; node < g->p.nr_nodes; node++)
917                 nodes[node] = 0;
918
919         loops_done_min = -1;
920         loops_done_max = 0;
921
922         for (t = 0; t < g->p.nr_tasks; t++) {
923                 struct thread_data *td = g->threads + t;
924                 unsigned int loops_done;
925
926                 cpu = td->curr_cpu;
927
928                 /* Not all threads have written it yet: */
929                 if (cpu < 0)
930                         continue;
931
932                 node = numa_node_of_cpu(cpu);
933
934                 nodes[node]++;
935
936                 loops_done = td->loops_done;
937                 loops_done_min = min(loops_done, loops_done_min);
938                 loops_done_max = max(loops_done, loops_done_max);
939         }
940
941         nr_max = 0;
942         nr_min = g->p.nr_tasks;
943         sum = 0;
944
945         for (node = 0; node < g->p.nr_nodes; node++) {
946                 nr = nodes[node];
947                 nr_min = min(nr, nr_min);
948                 nr_max = max(nr, nr_max);
949                 sum += nr;
950         }
951         BUG_ON(nr_min > nr_max);
952
953         BUG_ON(sum > g->p.nr_tasks);
954
955         if (0 && (sum < g->p.nr_tasks))
956                 return;
957
958         /*
959          * Count the number of distinct process groups present
960          * on nodes - when we are converged this will decrease
961          * to g->p.nr_proc:
962          */
963         process_groups = 0;
964
965         for (node = 0; node < g->p.nr_nodes; node++) {
966                 int processes = count_node_processes(node);
967
968                 nr = nodes[node];
969                 tprintf(" %2d/%-2d", nr, processes);
970
971                 process_groups += processes;
972         }
973
974         distance = nr_max - nr_min;
975
976         tprintf(" [%2d/%-2d]", distance, process_groups);
977
978         tprintf(" l:%3d-%-3d (%3d)",
979                 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
980
981         if (loops_done_min && loops_done_max) {
982                 double skew = 1.0 - (double)loops_done_min/loops_done_max;
983
984                 tprintf(" [%4.1f%%]", skew * 100.0);
985         }
986
987         calc_convergence_compression(&strong);
988
989         if (strong && process_groups == g->p.nr_proc) {
990                 if (!*convergence) {
991                         *convergence = runtime_ns_max;
992                         tprintf(" (%6.1fs converged)\n", *convergence/1e9);
993                         if (g->p.measure_convergence) {
994                                 g->all_converged = true;
995                                 g->stop_work = true;
996                         }
997                 }
998         } else {
999                 if (*convergence) {
1000                         tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1001                         *convergence = 0;
1002                 }
1003                 tprintf("\n");
1004         }
1005 }
1006
1007 static void show_summary(double runtime_ns_max, int l, double *convergence)
1008 {
1009         tprintf("\r #  %5.1f%%  [%.1f mins]",
1010                 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1011
1012         calc_convergence(runtime_ns_max, convergence);
1013
1014         if (g->p.show_details >= 0)
1015                 fflush(stdout);
1016 }
1017
1018 static void *worker_thread(void *__tdata)
1019 {
1020         struct thread_data *td = __tdata;
1021         struct timeval start0, start, stop, diff;
1022         int process_nr = td->process_nr;
1023         int thread_nr = td->thread_nr;
1024         unsigned long last_perturbance;
1025         int task_nr = td->task_nr;
1026         int details = g->p.show_details;
1027         int first_task, last_task;
1028         double convergence = 0;
1029         u64 val = td->val;
1030         double runtime_ns_max;
1031         u8 *global_data;
1032         u8 *process_data;
1033         u8 *thread_data;
1034         u64 bytes_done;
1035         long work_done;
1036         u32 l;
1037
1038         bind_to_cpumask(td->bind_cpumask);
1039         bind_to_memnode(td->bind_node);
1040
1041         set_taskname("thread %d/%d", process_nr, thread_nr);
1042
1043         global_data = g->data;
1044         process_data = td->process_data;
1045         thread_data = setup_private_data(g->p.bytes_thread);
1046
1047         bytes_done = 0;
1048
1049         last_task = 0;
1050         if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1051                 last_task = 1;
1052
1053         first_task = 0;
1054         if (process_nr == 0 && thread_nr == 0)
1055                 first_task = 1;
1056
1057         if (details >= 2) {
1058                 printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1059                         process_nr, thread_nr, global_data, process_data, thread_data);
1060         }
1061
1062         if (g->p.serialize_startup) {
1063                 pthread_mutex_lock(&g->startup_mutex);
1064                 g->nr_tasks_started++;
1065                 pthread_mutex_unlock(&g->startup_mutex);
1066
1067                 /* Here we will wait for the main process to start us all at once: */
1068                 pthread_mutex_lock(&g->start_work_mutex);
1069                 g->nr_tasks_working++;
1070
1071                 /* Last one wake the main process: */
1072                 if (g->nr_tasks_working == g->p.nr_tasks)
1073                         pthread_mutex_unlock(&g->startup_done_mutex);
1074
1075                 pthread_mutex_unlock(&g->start_work_mutex);
1076         }
1077
1078         gettimeofday(&start0, NULL);
1079
1080         start = stop = start0;
1081         last_perturbance = start.tv_sec;
1082
1083         for (l = 0; l < g->p.nr_loops; l++) {
1084                 start = stop;
1085
1086                 if (g->stop_work)
1087                         break;
1088
1089                 val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1090                 val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1091                 val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1092
1093                 if (g->p.sleep_usecs) {
1094                         pthread_mutex_lock(td->process_lock);
1095                         usleep(g->p.sleep_usecs);
1096                         pthread_mutex_unlock(td->process_lock);
1097                 }
1098                 /*
1099                  * Amount of work to be done under a process-global lock:
1100                  */
1101                 if (g->p.bytes_process_locked) {
1102                         pthread_mutex_lock(td->process_lock);
1103                         val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1104                         pthread_mutex_unlock(td->process_lock);
1105                 }
1106
1107                 work_done = g->p.bytes_global + g->p.bytes_process +
1108                             g->p.bytes_process_locked + g->p.bytes_thread;
1109
1110                 update_curr_cpu(task_nr, work_done);
1111                 bytes_done += work_done;
1112
1113                 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1114                         continue;
1115
1116                 td->loops_done = l;
1117
1118                 gettimeofday(&stop, NULL);
1119
1120                 /* Check whether our max runtime timed out: */
1121                 if (g->p.nr_secs) {
1122                         timersub(&stop, &start0, &diff);
1123                         if ((u32)diff.tv_sec >= g->p.nr_secs) {
1124                                 g->stop_work = true;
1125                                 break;
1126                         }
1127                 }
1128
1129                 /* Update the summary at most once per second: */
1130                 if (start.tv_sec == stop.tv_sec)
1131                         continue;
1132
1133                 /*
1134                  * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1135                  * by migrating to CPU#0:
1136                  */
1137                 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1138                         cpu_set_t orig_mask;
1139                         int target_cpu;
1140                         int this_cpu;
1141
1142                         last_perturbance = stop.tv_sec;
1143
1144                         /*
1145                          * Depending on where we are running, move into
1146                          * the other half of the system, to create some
1147                          * real disturbance:
1148                          */
1149                         this_cpu = g->threads[task_nr].curr_cpu;
1150                         if (this_cpu < g->p.nr_cpus/2)
1151                                 target_cpu = g->p.nr_cpus-1;
1152                         else
1153                                 target_cpu = 0;
1154
1155                         orig_mask = bind_to_cpu(target_cpu);
1156
1157                         /* Here we are running on the target CPU already */
1158                         if (details >= 1)
1159                                 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1160
1161                         bind_to_cpumask(orig_mask);
1162                 }
1163
1164                 if (details >= 3) {
1165                         timersub(&stop, &start, &diff);
1166                         runtime_ns_max = diff.tv_sec * 1000000000;
1167                         runtime_ns_max += diff.tv_usec * 1000;
1168
1169                         if (details >= 0) {
1170                                 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1171                                         process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1172                         }
1173                         fflush(stdout);
1174                 }
1175                 if (!last_task)
1176                         continue;
1177
1178                 timersub(&stop, &start0, &diff);
1179                 runtime_ns_max = diff.tv_sec * 1000000000ULL;
1180                 runtime_ns_max += diff.tv_usec * 1000ULL;
1181
1182                 show_summary(runtime_ns_max, l, &convergence);
1183         }
1184
1185         gettimeofday(&stop, NULL);
1186         timersub(&stop, &start0, &diff);
1187         td->runtime_ns = diff.tv_sec * 1000000000ULL;
1188         td->runtime_ns += diff.tv_usec * 1000ULL;
1189
1190         free_data(thread_data, g->p.bytes_thread);
1191
1192         pthread_mutex_lock(&g->stop_work_mutex);
1193         g->bytes_done += bytes_done;
1194         pthread_mutex_unlock(&g->stop_work_mutex);
1195
1196         return NULL;
1197 }
1198
1199 /*
1200  * A worker process starts a couple of threads:
1201  */
1202 static void worker_process(int process_nr)
1203 {
1204         pthread_mutex_t process_lock;
1205         struct thread_data *td;
1206         pthread_t *pthreads;
1207         u8 *process_data;
1208         int task_nr;
1209         int ret;
1210         int t;
1211
1212         pthread_mutex_init(&process_lock, NULL);
1213         set_taskname("process %d", process_nr);
1214
1215         /*
1216          * Pick up the memory policy and the CPU binding of our first thread,
1217          * so that we initialize memory accordingly:
1218          */
1219         task_nr = process_nr*g->p.nr_threads;
1220         td = g->threads + task_nr;
1221
1222         bind_to_memnode(td->bind_node);
1223         bind_to_cpumask(td->bind_cpumask);
1224
1225         pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1226         process_data = setup_private_data(g->p.bytes_process);
1227
1228         if (g->p.show_details >= 3) {
1229                 printf(" # process %2d global mem: %p, process mem: %p\n",
1230                         process_nr, g->data, process_data);
1231         }
1232
1233         for (t = 0; t < g->p.nr_threads; t++) {
1234                 task_nr = process_nr*g->p.nr_threads + t;
1235                 td = g->threads + task_nr;
1236
1237                 td->process_data = process_data;
1238                 td->process_nr   = process_nr;
1239                 td->thread_nr    = t;
1240                 td->task_nr      = task_nr;
1241                 td->val          = rand();
1242                 td->curr_cpu     = -1;
1243                 td->process_lock = &process_lock;
1244
1245                 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1246                 BUG_ON(ret);
1247         }
1248
1249         for (t = 0; t < g->p.nr_threads; t++) {
1250                 ret = pthread_join(pthreads[t], NULL);
1251                 BUG_ON(ret);
1252         }
1253
1254         free_data(process_data, g->p.bytes_process);
1255         free(pthreads);
1256 }
1257
1258 static void print_summary(void)
1259 {
1260         if (g->p.show_details < 0)
1261                 return;
1262
1263         printf("\n ###\n");
1264         printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1265                 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1266         printf(" #      %5dx %5ldMB global  shared mem operations\n",
1267                         g->p.nr_loops, g->p.bytes_global/1024/1024);
1268         printf(" #      %5dx %5ldMB process shared mem operations\n",
1269                         g->p.nr_loops, g->p.bytes_process/1024/1024);
1270         printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1271                         g->p.nr_loops, g->p.bytes_thread/1024/1024);
1272
1273         printf(" ###\n");
1274
1275         printf("\n ###\n"); fflush(stdout);
1276 }
1277
1278 static void init_thread_data(void)
1279 {
1280         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1281         int t;
1282
1283         g->threads = zalloc_shared_data(size);
1284
1285         for (t = 0; t < g->p.nr_tasks; t++) {
1286                 struct thread_data *td = g->threads + t;
1287                 int cpu;
1288
1289                 /* Allow all nodes by default: */
1290                 td->bind_node = -1;
1291
1292                 /* Allow all CPUs by default: */
1293                 CPU_ZERO(&td->bind_cpumask);
1294                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1295                         CPU_SET(cpu, &td->bind_cpumask);
1296         }
1297 }
1298
1299 static void deinit_thread_data(void)
1300 {
1301         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1302
1303         free_data(g->threads, size);
1304 }
1305
1306 static int init(void)
1307 {
1308         g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1309
1310         /* Copy over options: */
1311         g->p = p0;
1312
1313         g->p.nr_cpus = numa_num_configured_cpus();
1314
1315         g->p.nr_nodes = numa_max_node() + 1;
1316
1317         /* char array in count_process_nodes(): */
1318         BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1319
1320         if (g->p.show_quiet && !g->p.show_details)
1321                 g->p.show_details = -1;
1322
1323         /* Some memory should be specified: */
1324         if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1325                 return -1;
1326
1327         if (g->p.mb_global_str) {
1328                 g->p.mb_global = atof(g->p.mb_global_str);
1329                 BUG_ON(g->p.mb_global < 0);
1330         }
1331
1332         if (g->p.mb_proc_str) {
1333                 g->p.mb_proc = atof(g->p.mb_proc_str);
1334                 BUG_ON(g->p.mb_proc < 0);
1335         }
1336
1337         if (g->p.mb_proc_locked_str) {
1338                 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1339                 BUG_ON(g->p.mb_proc_locked < 0);
1340                 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1341         }
1342
1343         if (g->p.mb_thread_str) {
1344                 g->p.mb_thread = atof(g->p.mb_thread_str);
1345                 BUG_ON(g->p.mb_thread < 0);
1346         }
1347
1348         BUG_ON(g->p.nr_threads <= 0);
1349         BUG_ON(g->p.nr_proc <= 0);
1350
1351         g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1352
1353         g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1354         g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1355         g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1356         g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1357
1358         g->data = setup_shared_data(g->p.bytes_global);
1359
1360         /* Startup serialization: */
1361         init_global_mutex(&g->start_work_mutex);
1362         init_global_mutex(&g->startup_mutex);
1363         init_global_mutex(&g->startup_done_mutex);
1364         init_global_mutex(&g->stop_work_mutex);
1365
1366         init_thread_data();
1367
1368         tprintf("#\n");
1369         if (parse_setup_cpu_list() || parse_setup_node_list())
1370                 return -1;
1371         tprintf("#\n");
1372
1373         print_summary();
1374
1375         return 0;
1376 }
1377
1378 static void deinit(void)
1379 {
1380         free_data(g->data, g->p.bytes_global);
1381         g->data = NULL;
1382
1383         deinit_thread_data();
1384
1385         free_data(g, sizeof(*g));
1386         g = NULL;
1387 }
1388
1389 /*
1390  * Print a short or long result, depending on the verbosity setting:
1391  */
1392 static void print_res(const char *name, double val,
1393                       const char *txt_unit, const char *txt_short, const char *txt_long)
1394 {
1395         if (!name)
1396                 name = "main,";
1397
1398         if (g->p.show_quiet)
1399                 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1400         else
1401                 printf(" %14.3f %s\n", val, txt_long);
1402 }
1403
1404 static int __bench_numa(const char *name)
1405 {
1406         struct timeval start, stop, diff;
1407         u64 runtime_ns_min, runtime_ns_sum;
1408         pid_t *pids, pid, wpid;
1409         double delta_runtime;
1410         double runtime_avg;
1411         double runtime_sec_max;
1412         double runtime_sec_min;
1413         int wait_stat;
1414         double bytes;
1415         int i, t;
1416
1417         if (init())
1418                 return -1;
1419
1420         pids = zalloc(g->p.nr_proc * sizeof(*pids));
1421         pid = -1;
1422
1423         /* All threads try to acquire it, this way we can wait for them to start up: */
1424         pthread_mutex_lock(&g->start_work_mutex);
1425
1426         if (g->p.serialize_startup) {
1427                 tprintf(" #\n");
1428                 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1429         }
1430
1431         gettimeofday(&start, NULL);
1432
1433         for (i = 0; i < g->p.nr_proc; i++) {
1434                 pid = fork();
1435                 dprintf(" # process %2d: PID %d\n", i, pid);
1436
1437                 BUG_ON(pid < 0);
1438                 if (!pid) {
1439                         /* Child process: */
1440                         worker_process(i);
1441
1442                         exit(0);
1443                 }
1444                 pids[i] = pid;
1445
1446         }
1447         /* Wait for all the threads to start up: */
1448         while (g->nr_tasks_started != g->p.nr_tasks)
1449                 usleep(1000);
1450
1451         BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1452
1453         if (g->p.serialize_startup) {
1454                 double startup_sec;
1455
1456                 pthread_mutex_lock(&g->startup_done_mutex);
1457
1458                 /* This will start all threads: */
1459                 pthread_mutex_unlock(&g->start_work_mutex);
1460
1461                 /* This mutex is locked - the last started thread will wake us: */
1462                 pthread_mutex_lock(&g->startup_done_mutex);
1463
1464                 gettimeofday(&stop, NULL);
1465
1466                 timersub(&stop, &start, &diff);
1467
1468                 startup_sec = diff.tv_sec * 1000000000.0;
1469                 startup_sec += diff.tv_usec * 1000.0;
1470                 startup_sec /= 1e9;
1471
1472                 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1473                 tprintf(" #\n");
1474
1475                 start = stop;
1476                 pthread_mutex_unlock(&g->startup_done_mutex);
1477         } else {
1478                 gettimeofday(&start, NULL);
1479         }
1480
1481         /* Parent process: */
1482
1483
1484         for (i = 0; i < g->p.nr_proc; i++) {
1485                 wpid = waitpid(pids[i], &wait_stat, 0);
1486                 BUG_ON(wpid < 0);
1487                 BUG_ON(!WIFEXITED(wait_stat));
1488
1489         }
1490
1491         runtime_ns_sum = 0;
1492         runtime_ns_min = -1LL;
1493
1494         for (t = 0; t < g->p.nr_tasks; t++) {
1495                 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1496
1497                 runtime_ns_sum += thread_runtime_ns;
1498                 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1499         }
1500
1501         gettimeofday(&stop, NULL);
1502         timersub(&stop, &start, &diff);
1503
1504         BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1505
1506         tprintf("\n ###\n");
1507         tprintf("\n");
1508
1509         runtime_sec_max = diff.tv_sec * 1000000000.0;
1510         runtime_sec_max += diff.tv_usec * 1000.0;
1511         runtime_sec_max /= 1e9;
1512
1513         runtime_sec_min = runtime_ns_min/1e9;
1514
1515         bytes = g->bytes_done;
1516         runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1517
1518         if (g->p.measure_convergence) {
1519                 print_res(name, runtime_sec_max,
1520                         "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1521         }
1522
1523         print_res(name, runtime_sec_max,
1524                 "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1525
1526         print_res(name, runtime_sec_min,
1527                 "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1528
1529         print_res(name, runtime_avg,
1530                 "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1531
1532         delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1533         print_res(name, delta_runtime / runtime_sec_max * 100.0,
1534                 "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1535
1536         print_res(name, bytes / g->p.nr_tasks / 1e9,
1537                 "GB,", "data/thread",           "GB data processed, per thread");
1538
1539         print_res(name, bytes / 1e9,
1540                 "GB,", "data-total",            "GB data processed, total");
1541
1542         print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1543                 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1544
1545         print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1546                 "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1547
1548         print_res(name, bytes / runtime_sec_max / 1e9,
1549                 "GB/sec,", "total-speed",       "GB/sec total speed");
1550
1551         free(pids);
1552
1553         deinit();
1554
1555         return 0;
1556 }
1557
1558 #define MAX_ARGS 50
1559
1560 static int command_size(const char **argv)
1561 {
1562         int size = 0;
1563
1564         while (*argv) {
1565                 size++;
1566                 argv++;
1567         }
1568
1569         BUG_ON(size >= MAX_ARGS);
1570
1571         return size;
1572 }
1573
1574 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1575 {
1576         int i;
1577
1578         printf("\n # Running %s \"perf bench numa", name);
1579
1580         for (i = 0; i < argc; i++)
1581                 printf(" %s", argv[i]);
1582
1583         printf("\"\n");
1584
1585         memset(p, 0, sizeof(*p));
1586
1587         /* Initialize nonzero defaults: */
1588
1589         p->serialize_startup            = 1;
1590         p->data_reads                   = true;
1591         p->data_writes                  = true;
1592         p->data_backwards               = true;
1593         p->data_rand_walk               = true;
1594         p->nr_loops                     = -1;
1595         p->init_random                  = true;
1596         p->run_all                      = argc == 1;
1597 }
1598
1599 static int run_bench_numa(const char *name, const char **argv)
1600 {
1601         int argc = command_size(argv);
1602
1603         init_params(&p0, name, argc, argv);
1604         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1605         if (argc)
1606                 goto err;
1607
1608         if (__bench_numa(name))
1609                 goto err;
1610
1611         return 0;
1612
1613 err:
1614         return -1;
1615 }
1616
1617 #define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1618 #define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1619
1620 #define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1621 #define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1622
1623 #define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1624 #define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1625
1626 /*
1627  * The built-in test-suite executed by "perf bench numa -a".
1628  *
1629  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1630  */
1631 static const char *tests[][MAX_ARGS] = {
1632    /* Basic single-stream NUMA bandwidth measurements: */
1633    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1634                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1635    { "RAM-bw-local-NOTHP,",
1636                           "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1637                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1638    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1639                           "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1640
1641    /* 2-stream NUMA bandwidth measurements: */
1642    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1643                            "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1644    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1645                            "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1646
1647    /* Cross-stream NUMA bandwidth measurement: */
1648    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1649                            "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1650
1651    /* Convergence latency measurements: */
1652    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1653    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1654    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1655    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1656    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1657    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1658    { " 4x4-convergence-NOTHP,",
1659                           "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1660    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1661    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1662    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1663    { " 8x4-convergence-NOTHP,",
1664                           "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1665    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1666    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1667    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1668    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1669    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1670
1671    /* Various NUMA process/thread layout bandwidth measurements: */
1672    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1673    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1674    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1675    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1676    { " 8x1-bw-process-NOTHP,",
1677                           "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1678    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1679
1680    { " 4x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1681    { " 8x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1682    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1683    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1684
1685    { " 2x3-bw-thread,",   "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1686    { " 4x4-bw-thread,",   "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1687    { " 4x6-bw-thread,",   "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1688    { " 4x8-bw-thread,",   "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1689    { " 4x8-bw-thread-NOTHP,",
1690                           "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1691    { " 3x3-bw-thread,",   "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1692    { " 5x5-bw-thread,",   "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1693
1694    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1695    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1696
1697    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1698    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1699    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1700    { "numa01-bw-thread-NOTHP,",
1701                           "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1702 };
1703
1704 static int bench_all(void)
1705 {
1706         int nr = ARRAY_SIZE(tests);
1707         int ret;
1708         int i;
1709
1710         ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1711         BUG_ON(ret < 0);
1712
1713         for (i = 0; i < nr; i++) {
1714                 run_bench_numa(tests[i][0], tests[i] + 1);
1715         }
1716
1717         printf("\n");
1718
1719         return 0;
1720 }
1721
1722 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1723 {
1724         init_params(&p0, "main,", argc, argv);
1725         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1726         if (argc)
1727                 goto err;
1728
1729         if (p0.run_all)
1730                 return bench_all();
1731
1732         if (__bench_numa(NULL))
1733                 goto err;
1734
1735         return 0;
1736
1737 err:
1738         usage_with_options(numa_usage, options);
1739         return -1;
1740 }