]> Pileus Git - ~andy/linux/blob - security/selinux/ss/services.c
Merge tag 'clk-for-linus-3.14-part2' of git://git.linaro.org/people/mike.turquette...
[~andy/linux] / security / selinux / ss / services.c
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *      Support for enhanced MLS infrastructure.
10  *      Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *      This program is free software; you can redistribute it and/or modify
39  *      it under the terms of the GNU General Public License as published by
40  *      the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72
73 int selinux_policycap_netpeer;
74 int selinux_policycap_openperm;
75 int selinux_policycap_alwaysnetwork;
76
77 static DEFINE_RWLOCK(policy_rwlock);
78
79 static struct sidtab sidtab;
80 struct policydb policydb;
81 int ss_initialized;
82
83 /*
84  * The largest sequence number that has been used when
85  * providing an access decision to the access vector cache.
86  * The sequence number only changes when a policy change
87  * occurs.
88  */
89 static u32 latest_granting;
90
91 /* Forward declaration. */
92 static int context_struct_to_string(struct context *context, char **scontext,
93                                     u32 *scontext_len);
94
95 static void context_struct_compute_av(struct context *scontext,
96                                       struct context *tcontext,
97                                       u16 tclass,
98                                       struct av_decision *avd);
99
100 struct selinux_mapping {
101         u16 value; /* policy value */
102         unsigned num_perms;
103         u32 perms[sizeof(u32) * 8];
104 };
105
106 static struct selinux_mapping *current_mapping;
107 static u16 current_mapping_size;
108
109 static int selinux_set_mapping(struct policydb *pol,
110                                struct security_class_mapping *map,
111                                struct selinux_mapping **out_map_p,
112                                u16 *out_map_size)
113 {
114         struct selinux_mapping *out_map = NULL;
115         size_t size = sizeof(struct selinux_mapping);
116         u16 i, j;
117         unsigned k;
118         bool print_unknown_handle = false;
119
120         /* Find number of classes in the input mapping */
121         if (!map)
122                 return -EINVAL;
123         i = 0;
124         while (map[i].name)
125                 i++;
126
127         /* Allocate space for the class records, plus one for class zero */
128         out_map = kcalloc(++i, size, GFP_ATOMIC);
129         if (!out_map)
130                 return -ENOMEM;
131
132         /* Store the raw class and permission values */
133         j = 0;
134         while (map[j].name) {
135                 struct security_class_mapping *p_in = map + (j++);
136                 struct selinux_mapping *p_out = out_map + j;
137
138                 /* An empty class string skips ahead */
139                 if (!strcmp(p_in->name, "")) {
140                         p_out->num_perms = 0;
141                         continue;
142                 }
143
144                 p_out->value = string_to_security_class(pol, p_in->name);
145                 if (!p_out->value) {
146                         printk(KERN_INFO
147                                "SELinux:  Class %s not defined in policy.\n",
148                                p_in->name);
149                         if (pol->reject_unknown)
150                                 goto err;
151                         p_out->num_perms = 0;
152                         print_unknown_handle = true;
153                         continue;
154                 }
155
156                 k = 0;
157                 while (p_in->perms && p_in->perms[k]) {
158                         /* An empty permission string skips ahead */
159                         if (!*p_in->perms[k]) {
160                                 k++;
161                                 continue;
162                         }
163                         p_out->perms[k] = string_to_av_perm(pol, p_out->value,
164                                                             p_in->perms[k]);
165                         if (!p_out->perms[k]) {
166                                 printk(KERN_INFO
167                                        "SELinux:  Permission %s in class %s not defined in policy.\n",
168                                        p_in->perms[k], p_in->name);
169                                 if (pol->reject_unknown)
170                                         goto err;
171                                 print_unknown_handle = true;
172                         }
173
174                         k++;
175                 }
176                 p_out->num_perms = k;
177         }
178
179         if (print_unknown_handle)
180                 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
181                        pol->allow_unknown ? "allowed" : "denied");
182
183         *out_map_p = out_map;
184         *out_map_size = i;
185         return 0;
186 err:
187         kfree(out_map);
188         return -EINVAL;
189 }
190
191 /*
192  * Get real, policy values from mapped values
193  */
194
195 static u16 unmap_class(u16 tclass)
196 {
197         if (tclass < current_mapping_size)
198                 return current_mapping[tclass].value;
199
200         return tclass;
201 }
202
203 /*
204  * Get kernel value for class from its policy value
205  */
206 static u16 map_class(u16 pol_value)
207 {
208         u16 i;
209
210         for (i = 1; i < current_mapping_size; i++) {
211                 if (current_mapping[i].value == pol_value)
212                         return i;
213         }
214
215         return SECCLASS_NULL;
216 }
217
218 static void map_decision(u16 tclass, struct av_decision *avd,
219                          int allow_unknown)
220 {
221         if (tclass < current_mapping_size) {
222                 unsigned i, n = current_mapping[tclass].num_perms;
223                 u32 result;
224
225                 for (i = 0, result = 0; i < n; i++) {
226                         if (avd->allowed & current_mapping[tclass].perms[i])
227                                 result |= 1<<i;
228                         if (allow_unknown && !current_mapping[tclass].perms[i])
229                                 result |= 1<<i;
230                 }
231                 avd->allowed = result;
232
233                 for (i = 0, result = 0; i < n; i++)
234                         if (avd->auditallow & current_mapping[tclass].perms[i])
235                                 result |= 1<<i;
236                 avd->auditallow = result;
237
238                 for (i = 0, result = 0; i < n; i++) {
239                         if (avd->auditdeny & current_mapping[tclass].perms[i])
240                                 result |= 1<<i;
241                         if (!allow_unknown && !current_mapping[tclass].perms[i])
242                                 result |= 1<<i;
243                 }
244                 /*
245                  * In case the kernel has a bug and requests a permission
246                  * between num_perms and the maximum permission number, we
247                  * should audit that denial
248                  */
249                 for (; i < (sizeof(u32)*8); i++)
250                         result |= 1<<i;
251                 avd->auditdeny = result;
252         }
253 }
254
255 int security_mls_enabled(void)
256 {
257         return policydb.mls_enabled;
258 }
259
260 /*
261  * Return the boolean value of a constraint expression
262  * when it is applied to the specified source and target
263  * security contexts.
264  *
265  * xcontext is a special beast...  It is used by the validatetrans rules
266  * only.  For these rules, scontext is the context before the transition,
267  * tcontext is the context after the transition, and xcontext is the context
268  * of the process performing the transition.  All other callers of
269  * constraint_expr_eval should pass in NULL for xcontext.
270  */
271 static int constraint_expr_eval(struct context *scontext,
272                                 struct context *tcontext,
273                                 struct context *xcontext,
274                                 struct constraint_expr *cexpr)
275 {
276         u32 val1, val2;
277         struct context *c;
278         struct role_datum *r1, *r2;
279         struct mls_level *l1, *l2;
280         struct constraint_expr *e;
281         int s[CEXPR_MAXDEPTH];
282         int sp = -1;
283
284         for (e = cexpr; e; e = e->next) {
285                 switch (e->expr_type) {
286                 case CEXPR_NOT:
287                         BUG_ON(sp < 0);
288                         s[sp] = !s[sp];
289                         break;
290                 case CEXPR_AND:
291                         BUG_ON(sp < 1);
292                         sp--;
293                         s[sp] &= s[sp + 1];
294                         break;
295                 case CEXPR_OR:
296                         BUG_ON(sp < 1);
297                         sp--;
298                         s[sp] |= s[sp + 1];
299                         break;
300                 case CEXPR_ATTR:
301                         if (sp == (CEXPR_MAXDEPTH - 1))
302                                 return 0;
303                         switch (e->attr) {
304                         case CEXPR_USER:
305                                 val1 = scontext->user;
306                                 val2 = tcontext->user;
307                                 break;
308                         case CEXPR_TYPE:
309                                 val1 = scontext->type;
310                                 val2 = tcontext->type;
311                                 break;
312                         case CEXPR_ROLE:
313                                 val1 = scontext->role;
314                                 val2 = tcontext->role;
315                                 r1 = policydb.role_val_to_struct[val1 - 1];
316                                 r2 = policydb.role_val_to_struct[val2 - 1];
317                                 switch (e->op) {
318                                 case CEXPR_DOM:
319                                         s[++sp] = ebitmap_get_bit(&r1->dominates,
320                                                                   val2 - 1);
321                                         continue;
322                                 case CEXPR_DOMBY:
323                                         s[++sp] = ebitmap_get_bit(&r2->dominates,
324                                                                   val1 - 1);
325                                         continue;
326                                 case CEXPR_INCOMP:
327                                         s[++sp] = (!ebitmap_get_bit(&r1->dominates,
328                                                                     val2 - 1) &&
329                                                    !ebitmap_get_bit(&r2->dominates,
330                                                                     val1 - 1));
331                                         continue;
332                                 default:
333                                         break;
334                                 }
335                                 break;
336                         case CEXPR_L1L2:
337                                 l1 = &(scontext->range.level[0]);
338                                 l2 = &(tcontext->range.level[0]);
339                                 goto mls_ops;
340                         case CEXPR_L1H2:
341                                 l1 = &(scontext->range.level[0]);
342                                 l2 = &(tcontext->range.level[1]);
343                                 goto mls_ops;
344                         case CEXPR_H1L2:
345                                 l1 = &(scontext->range.level[1]);
346                                 l2 = &(tcontext->range.level[0]);
347                                 goto mls_ops;
348                         case CEXPR_H1H2:
349                                 l1 = &(scontext->range.level[1]);
350                                 l2 = &(tcontext->range.level[1]);
351                                 goto mls_ops;
352                         case CEXPR_L1H1:
353                                 l1 = &(scontext->range.level[0]);
354                                 l2 = &(scontext->range.level[1]);
355                                 goto mls_ops;
356                         case CEXPR_L2H2:
357                                 l1 = &(tcontext->range.level[0]);
358                                 l2 = &(tcontext->range.level[1]);
359                                 goto mls_ops;
360 mls_ops:
361                         switch (e->op) {
362                         case CEXPR_EQ:
363                                 s[++sp] = mls_level_eq(l1, l2);
364                                 continue;
365                         case CEXPR_NEQ:
366                                 s[++sp] = !mls_level_eq(l1, l2);
367                                 continue;
368                         case CEXPR_DOM:
369                                 s[++sp] = mls_level_dom(l1, l2);
370                                 continue;
371                         case CEXPR_DOMBY:
372                                 s[++sp] = mls_level_dom(l2, l1);
373                                 continue;
374                         case CEXPR_INCOMP:
375                                 s[++sp] = mls_level_incomp(l2, l1);
376                                 continue;
377                         default:
378                                 BUG();
379                                 return 0;
380                         }
381                         break;
382                         default:
383                                 BUG();
384                                 return 0;
385                         }
386
387                         switch (e->op) {
388                         case CEXPR_EQ:
389                                 s[++sp] = (val1 == val2);
390                                 break;
391                         case CEXPR_NEQ:
392                                 s[++sp] = (val1 != val2);
393                                 break;
394                         default:
395                                 BUG();
396                                 return 0;
397                         }
398                         break;
399                 case CEXPR_NAMES:
400                         if (sp == (CEXPR_MAXDEPTH-1))
401                                 return 0;
402                         c = scontext;
403                         if (e->attr & CEXPR_TARGET)
404                                 c = tcontext;
405                         else if (e->attr & CEXPR_XTARGET) {
406                                 c = xcontext;
407                                 if (!c) {
408                                         BUG();
409                                         return 0;
410                                 }
411                         }
412                         if (e->attr & CEXPR_USER)
413                                 val1 = c->user;
414                         else if (e->attr & CEXPR_ROLE)
415                                 val1 = c->role;
416                         else if (e->attr & CEXPR_TYPE)
417                                 val1 = c->type;
418                         else {
419                                 BUG();
420                                 return 0;
421                         }
422
423                         switch (e->op) {
424                         case CEXPR_EQ:
425                                 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
426                                 break;
427                         case CEXPR_NEQ:
428                                 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
429                                 break;
430                         default:
431                                 BUG();
432                                 return 0;
433                         }
434                         break;
435                 default:
436                         BUG();
437                         return 0;
438                 }
439         }
440
441         BUG_ON(sp != 0);
442         return s[0];
443 }
444
445 /*
446  * security_dump_masked_av - dumps masked permissions during
447  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
448  */
449 static int dump_masked_av_helper(void *k, void *d, void *args)
450 {
451         struct perm_datum *pdatum = d;
452         char **permission_names = args;
453
454         BUG_ON(pdatum->value < 1 || pdatum->value > 32);
455
456         permission_names[pdatum->value - 1] = (char *)k;
457
458         return 0;
459 }
460
461 static void security_dump_masked_av(struct context *scontext,
462                                     struct context *tcontext,
463                                     u16 tclass,
464                                     u32 permissions,
465                                     const char *reason)
466 {
467         struct common_datum *common_dat;
468         struct class_datum *tclass_dat;
469         struct audit_buffer *ab;
470         char *tclass_name;
471         char *scontext_name = NULL;
472         char *tcontext_name = NULL;
473         char *permission_names[32];
474         int index;
475         u32 length;
476         bool need_comma = false;
477
478         if (!permissions)
479                 return;
480
481         tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
482         tclass_dat = policydb.class_val_to_struct[tclass - 1];
483         common_dat = tclass_dat->comdatum;
484
485         /* init permission_names */
486         if (common_dat &&
487             hashtab_map(common_dat->permissions.table,
488                         dump_masked_av_helper, permission_names) < 0)
489                 goto out;
490
491         if (hashtab_map(tclass_dat->permissions.table,
492                         dump_masked_av_helper, permission_names) < 0)
493                 goto out;
494
495         /* get scontext/tcontext in text form */
496         if (context_struct_to_string(scontext,
497                                      &scontext_name, &length) < 0)
498                 goto out;
499
500         if (context_struct_to_string(tcontext,
501                                      &tcontext_name, &length) < 0)
502                 goto out;
503
504         /* audit a message */
505         ab = audit_log_start(current->audit_context,
506                              GFP_ATOMIC, AUDIT_SELINUX_ERR);
507         if (!ab)
508                 goto out;
509
510         audit_log_format(ab, "op=security_compute_av reason=%s "
511                          "scontext=%s tcontext=%s tclass=%s perms=",
512                          reason, scontext_name, tcontext_name, tclass_name);
513
514         for (index = 0; index < 32; index++) {
515                 u32 mask = (1 << index);
516
517                 if ((mask & permissions) == 0)
518                         continue;
519
520                 audit_log_format(ab, "%s%s",
521                                  need_comma ? "," : "",
522                                  permission_names[index]
523                                  ? permission_names[index] : "????");
524                 need_comma = true;
525         }
526         audit_log_end(ab);
527 out:
528         /* release scontext/tcontext */
529         kfree(tcontext_name);
530         kfree(scontext_name);
531
532         return;
533 }
534
535 /*
536  * security_boundary_permission - drops violated permissions
537  * on boundary constraint.
538  */
539 static void type_attribute_bounds_av(struct context *scontext,
540                                      struct context *tcontext,
541                                      u16 tclass,
542                                      struct av_decision *avd)
543 {
544         struct context lo_scontext;
545         struct context lo_tcontext;
546         struct av_decision lo_avd;
547         struct type_datum *source;
548         struct type_datum *target;
549         u32 masked = 0;
550
551         source = flex_array_get_ptr(policydb.type_val_to_struct_array,
552                                     scontext->type - 1);
553         BUG_ON(!source);
554
555         target = flex_array_get_ptr(policydb.type_val_to_struct_array,
556                                     tcontext->type - 1);
557         BUG_ON(!target);
558
559         if (source->bounds) {
560                 memset(&lo_avd, 0, sizeof(lo_avd));
561
562                 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
563                 lo_scontext.type = source->bounds;
564
565                 context_struct_compute_av(&lo_scontext,
566                                           tcontext,
567                                           tclass,
568                                           &lo_avd);
569                 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
570                         return;         /* no masked permission */
571                 masked = ~lo_avd.allowed & avd->allowed;
572         }
573
574         if (target->bounds) {
575                 memset(&lo_avd, 0, sizeof(lo_avd));
576
577                 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
578                 lo_tcontext.type = target->bounds;
579
580                 context_struct_compute_av(scontext,
581                                           &lo_tcontext,
582                                           tclass,
583                                           &lo_avd);
584                 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
585                         return;         /* no masked permission */
586                 masked = ~lo_avd.allowed & avd->allowed;
587         }
588
589         if (source->bounds && target->bounds) {
590                 memset(&lo_avd, 0, sizeof(lo_avd));
591                 /*
592                  * lo_scontext and lo_tcontext are already
593                  * set up.
594                  */
595
596                 context_struct_compute_av(&lo_scontext,
597                                           &lo_tcontext,
598                                           tclass,
599                                           &lo_avd);
600                 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
601                         return;         /* no masked permission */
602                 masked = ~lo_avd.allowed & avd->allowed;
603         }
604
605         if (masked) {
606                 /* mask violated permissions */
607                 avd->allowed &= ~masked;
608
609                 /* audit masked permissions */
610                 security_dump_masked_av(scontext, tcontext,
611                                         tclass, masked, "bounds");
612         }
613 }
614
615 /*
616  * Compute access vectors based on a context structure pair for
617  * the permissions in a particular class.
618  */
619 static void context_struct_compute_av(struct context *scontext,
620                                       struct context *tcontext,
621                                       u16 tclass,
622                                       struct av_decision *avd)
623 {
624         struct constraint_node *constraint;
625         struct role_allow *ra;
626         struct avtab_key avkey;
627         struct avtab_node *node;
628         struct class_datum *tclass_datum;
629         struct ebitmap *sattr, *tattr;
630         struct ebitmap_node *snode, *tnode;
631         unsigned int i, j;
632
633         avd->allowed = 0;
634         avd->auditallow = 0;
635         avd->auditdeny = 0xffffffff;
636
637         if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
638                 if (printk_ratelimit())
639                         printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
640                 return;
641         }
642
643         tclass_datum = policydb.class_val_to_struct[tclass - 1];
644
645         /*
646          * If a specific type enforcement rule was defined for
647          * this permission check, then use it.
648          */
649         avkey.target_class = tclass;
650         avkey.specified = AVTAB_AV;
651         sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
652         BUG_ON(!sattr);
653         tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
654         BUG_ON(!tattr);
655         ebitmap_for_each_positive_bit(sattr, snode, i) {
656                 ebitmap_for_each_positive_bit(tattr, tnode, j) {
657                         avkey.source_type = i + 1;
658                         avkey.target_type = j + 1;
659                         for (node = avtab_search_node(&policydb.te_avtab, &avkey);
660                              node;
661                              node = avtab_search_node_next(node, avkey.specified)) {
662                                 if (node->key.specified == AVTAB_ALLOWED)
663                                         avd->allowed |= node->datum.data;
664                                 else if (node->key.specified == AVTAB_AUDITALLOW)
665                                         avd->auditallow |= node->datum.data;
666                                 else if (node->key.specified == AVTAB_AUDITDENY)
667                                         avd->auditdeny &= node->datum.data;
668                         }
669
670                         /* Check conditional av table for additional permissions */
671                         cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
672
673                 }
674         }
675
676         /*
677          * Remove any permissions prohibited by a constraint (this includes
678          * the MLS policy).
679          */
680         constraint = tclass_datum->constraints;
681         while (constraint) {
682                 if ((constraint->permissions & (avd->allowed)) &&
683                     !constraint_expr_eval(scontext, tcontext, NULL,
684                                           constraint->expr)) {
685                         avd->allowed &= ~(constraint->permissions);
686                 }
687                 constraint = constraint->next;
688         }
689
690         /*
691          * If checking process transition permission and the
692          * role is changing, then check the (current_role, new_role)
693          * pair.
694          */
695         if (tclass == policydb.process_class &&
696             (avd->allowed & policydb.process_trans_perms) &&
697             scontext->role != tcontext->role) {
698                 for (ra = policydb.role_allow; ra; ra = ra->next) {
699                         if (scontext->role == ra->role &&
700                             tcontext->role == ra->new_role)
701                                 break;
702                 }
703                 if (!ra)
704                         avd->allowed &= ~policydb.process_trans_perms;
705         }
706
707         /*
708          * If the given source and target types have boundary
709          * constraint, lazy checks have to mask any violated
710          * permission and notice it to userspace via audit.
711          */
712         type_attribute_bounds_av(scontext, tcontext,
713                                  tclass, avd);
714 }
715
716 static int security_validtrans_handle_fail(struct context *ocontext,
717                                            struct context *ncontext,
718                                            struct context *tcontext,
719                                            u16 tclass)
720 {
721         char *o = NULL, *n = NULL, *t = NULL;
722         u32 olen, nlen, tlen;
723
724         if (context_struct_to_string(ocontext, &o, &olen))
725                 goto out;
726         if (context_struct_to_string(ncontext, &n, &nlen))
727                 goto out;
728         if (context_struct_to_string(tcontext, &t, &tlen))
729                 goto out;
730         audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
731                   "security_validate_transition:  denied for"
732                   " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
733                   o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
734 out:
735         kfree(o);
736         kfree(n);
737         kfree(t);
738
739         if (!selinux_enforcing)
740                 return 0;
741         return -EPERM;
742 }
743
744 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
745                                  u16 orig_tclass)
746 {
747         struct context *ocontext;
748         struct context *ncontext;
749         struct context *tcontext;
750         struct class_datum *tclass_datum;
751         struct constraint_node *constraint;
752         u16 tclass;
753         int rc = 0;
754
755         if (!ss_initialized)
756                 return 0;
757
758         read_lock(&policy_rwlock);
759
760         tclass = unmap_class(orig_tclass);
761
762         if (!tclass || tclass > policydb.p_classes.nprim) {
763                 printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
764                         __func__, tclass);
765                 rc = -EINVAL;
766                 goto out;
767         }
768         tclass_datum = policydb.class_val_to_struct[tclass - 1];
769
770         ocontext = sidtab_search(&sidtab, oldsid);
771         if (!ocontext) {
772                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
773                         __func__, oldsid);
774                 rc = -EINVAL;
775                 goto out;
776         }
777
778         ncontext = sidtab_search(&sidtab, newsid);
779         if (!ncontext) {
780                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
781                         __func__, newsid);
782                 rc = -EINVAL;
783                 goto out;
784         }
785
786         tcontext = sidtab_search(&sidtab, tasksid);
787         if (!tcontext) {
788                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
789                         __func__, tasksid);
790                 rc = -EINVAL;
791                 goto out;
792         }
793
794         constraint = tclass_datum->validatetrans;
795         while (constraint) {
796                 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
797                                           constraint->expr)) {
798                         rc = security_validtrans_handle_fail(ocontext, ncontext,
799                                                              tcontext, tclass);
800                         goto out;
801                 }
802                 constraint = constraint->next;
803         }
804
805 out:
806         read_unlock(&policy_rwlock);
807         return rc;
808 }
809
810 /*
811  * security_bounded_transition - check whether the given
812  * transition is directed to bounded, or not.
813  * It returns 0, if @newsid is bounded by @oldsid.
814  * Otherwise, it returns error code.
815  *
816  * @oldsid : current security identifier
817  * @newsid : destinated security identifier
818  */
819 int security_bounded_transition(u32 old_sid, u32 new_sid)
820 {
821         struct context *old_context, *new_context;
822         struct type_datum *type;
823         int index;
824         int rc;
825
826         read_lock(&policy_rwlock);
827
828         rc = -EINVAL;
829         old_context = sidtab_search(&sidtab, old_sid);
830         if (!old_context) {
831                 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
832                        __func__, old_sid);
833                 goto out;
834         }
835
836         rc = -EINVAL;
837         new_context = sidtab_search(&sidtab, new_sid);
838         if (!new_context) {
839                 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
840                        __func__, new_sid);
841                 goto out;
842         }
843
844         rc = 0;
845         /* type/domain unchanged */
846         if (old_context->type == new_context->type)
847                 goto out;
848
849         index = new_context->type;
850         while (true) {
851                 type = flex_array_get_ptr(policydb.type_val_to_struct_array,
852                                           index - 1);
853                 BUG_ON(!type);
854
855                 /* not bounded anymore */
856                 rc = -EPERM;
857                 if (!type->bounds)
858                         break;
859
860                 /* @newsid is bounded by @oldsid */
861                 rc = 0;
862                 if (type->bounds == old_context->type)
863                         break;
864
865                 index = type->bounds;
866         }
867
868         if (rc) {
869                 char *old_name = NULL;
870                 char *new_name = NULL;
871                 u32 length;
872
873                 if (!context_struct_to_string(old_context,
874                                               &old_name, &length) &&
875                     !context_struct_to_string(new_context,
876                                               &new_name, &length)) {
877                         audit_log(current->audit_context,
878                                   GFP_ATOMIC, AUDIT_SELINUX_ERR,
879                                   "op=security_bounded_transition "
880                                   "result=denied "
881                                   "oldcontext=%s newcontext=%s",
882                                   old_name, new_name);
883                 }
884                 kfree(new_name);
885                 kfree(old_name);
886         }
887 out:
888         read_unlock(&policy_rwlock);
889
890         return rc;
891 }
892
893 static void avd_init(struct av_decision *avd)
894 {
895         avd->allowed = 0;
896         avd->auditallow = 0;
897         avd->auditdeny = 0xffffffff;
898         avd->seqno = latest_granting;
899         avd->flags = 0;
900 }
901
902
903 /**
904  * security_compute_av - Compute access vector decisions.
905  * @ssid: source security identifier
906  * @tsid: target security identifier
907  * @tclass: target security class
908  * @avd: access vector decisions
909  *
910  * Compute a set of access vector decisions based on the
911  * SID pair (@ssid, @tsid) for the permissions in @tclass.
912  */
913 void security_compute_av(u32 ssid,
914                          u32 tsid,
915                          u16 orig_tclass,
916                          struct av_decision *avd)
917 {
918         u16 tclass;
919         struct context *scontext = NULL, *tcontext = NULL;
920
921         read_lock(&policy_rwlock);
922         avd_init(avd);
923         if (!ss_initialized)
924                 goto allow;
925
926         scontext = sidtab_search(&sidtab, ssid);
927         if (!scontext) {
928                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
929                        __func__, ssid);
930                 goto out;
931         }
932
933         /* permissive domain? */
934         if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
935                 avd->flags |= AVD_FLAGS_PERMISSIVE;
936
937         tcontext = sidtab_search(&sidtab, tsid);
938         if (!tcontext) {
939                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
940                        __func__, tsid);
941                 goto out;
942         }
943
944         tclass = unmap_class(orig_tclass);
945         if (unlikely(orig_tclass && !tclass)) {
946                 if (policydb.allow_unknown)
947                         goto allow;
948                 goto out;
949         }
950         context_struct_compute_av(scontext, tcontext, tclass, avd);
951         map_decision(orig_tclass, avd, policydb.allow_unknown);
952 out:
953         read_unlock(&policy_rwlock);
954         return;
955 allow:
956         avd->allowed = 0xffffffff;
957         goto out;
958 }
959
960 void security_compute_av_user(u32 ssid,
961                               u32 tsid,
962                               u16 tclass,
963                               struct av_decision *avd)
964 {
965         struct context *scontext = NULL, *tcontext = NULL;
966
967         read_lock(&policy_rwlock);
968         avd_init(avd);
969         if (!ss_initialized)
970                 goto allow;
971
972         scontext = sidtab_search(&sidtab, ssid);
973         if (!scontext) {
974                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
975                        __func__, ssid);
976                 goto out;
977         }
978
979         /* permissive domain? */
980         if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
981                 avd->flags |= AVD_FLAGS_PERMISSIVE;
982
983         tcontext = sidtab_search(&sidtab, tsid);
984         if (!tcontext) {
985                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
986                        __func__, tsid);
987                 goto out;
988         }
989
990         if (unlikely(!tclass)) {
991                 if (policydb.allow_unknown)
992                         goto allow;
993                 goto out;
994         }
995
996         context_struct_compute_av(scontext, tcontext, tclass, avd);
997  out:
998         read_unlock(&policy_rwlock);
999         return;
1000 allow:
1001         avd->allowed = 0xffffffff;
1002         goto out;
1003 }
1004
1005 /*
1006  * Write the security context string representation of
1007  * the context structure `context' into a dynamically
1008  * allocated string of the correct size.  Set `*scontext'
1009  * to point to this string and set `*scontext_len' to
1010  * the length of the string.
1011  */
1012 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1013 {
1014         char *scontextp;
1015
1016         if (scontext)
1017                 *scontext = NULL;
1018         *scontext_len = 0;
1019
1020         if (context->len) {
1021                 *scontext_len = context->len;
1022                 if (scontext) {
1023                         *scontext = kstrdup(context->str, GFP_ATOMIC);
1024                         if (!(*scontext))
1025                                 return -ENOMEM;
1026                 }
1027                 return 0;
1028         }
1029
1030         /* Compute the size of the context. */
1031         *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1032         *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1033         *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1034         *scontext_len += mls_compute_context_len(context);
1035
1036         if (!scontext)
1037                 return 0;
1038
1039         /* Allocate space for the context; caller must free this space. */
1040         scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1041         if (!scontextp)
1042                 return -ENOMEM;
1043         *scontext = scontextp;
1044
1045         /*
1046          * Copy the user name, role name and type name into the context.
1047          */
1048         sprintf(scontextp, "%s:%s:%s",
1049                 sym_name(&policydb, SYM_USERS, context->user - 1),
1050                 sym_name(&policydb, SYM_ROLES, context->role - 1),
1051                 sym_name(&policydb, SYM_TYPES, context->type - 1));
1052         scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1053                      1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1054                      1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1055
1056         mls_sid_to_context(context, &scontextp);
1057
1058         *scontextp = 0;
1059
1060         return 0;
1061 }
1062
1063 #include "initial_sid_to_string.h"
1064
1065 const char *security_get_initial_sid_context(u32 sid)
1066 {
1067         if (unlikely(sid > SECINITSID_NUM))
1068                 return NULL;
1069         return initial_sid_to_string[sid];
1070 }
1071
1072 static int security_sid_to_context_core(u32 sid, char **scontext,
1073                                         u32 *scontext_len, int force)
1074 {
1075         struct context *context;
1076         int rc = 0;
1077
1078         if (scontext)
1079                 *scontext = NULL;
1080         *scontext_len  = 0;
1081
1082         if (!ss_initialized) {
1083                 if (sid <= SECINITSID_NUM) {
1084                         char *scontextp;
1085
1086                         *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1087                         if (!scontext)
1088                                 goto out;
1089                         scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1090                         if (!scontextp) {
1091                                 rc = -ENOMEM;
1092                                 goto out;
1093                         }
1094                         strcpy(scontextp, initial_sid_to_string[sid]);
1095                         *scontext = scontextp;
1096                         goto out;
1097                 }
1098                 printk(KERN_ERR "SELinux: %s:  called before initial "
1099                        "load_policy on unknown SID %d\n", __func__, sid);
1100                 rc = -EINVAL;
1101                 goto out;
1102         }
1103         read_lock(&policy_rwlock);
1104         if (force)
1105                 context = sidtab_search_force(&sidtab, sid);
1106         else
1107                 context = sidtab_search(&sidtab, sid);
1108         if (!context) {
1109                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1110                         __func__, sid);
1111                 rc = -EINVAL;
1112                 goto out_unlock;
1113         }
1114         rc = context_struct_to_string(context, scontext, scontext_len);
1115 out_unlock:
1116         read_unlock(&policy_rwlock);
1117 out:
1118         return rc;
1119
1120 }
1121
1122 /**
1123  * security_sid_to_context - Obtain a context for a given SID.
1124  * @sid: security identifier, SID
1125  * @scontext: security context
1126  * @scontext_len: length in bytes
1127  *
1128  * Write the string representation of the context associated with @sid
1129  * into a dynamically allocated string of the correct size.  Set @scontext
1130  * to point to this string and set @scontext_len to the length of the string.
1131  */
1132 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1133 {
1134         return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1135 }
1136
1137 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1138 {
1139         return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1140 }
1141
1142 /*
1143  * Caveat:  Mutates scontext.
1144  */
1145 static int string_to_context_struct(struct policydb *pol,
1146                                     struct sidtab *sidtabp,
1147                                     char *scontext,
1148                                     u32 scontext_len,
1149                                     struct context *ctx,
1150                                     u32 def_sid)
1151 {
1152         struct role_datum *role;
1153         struct type_datum *typdatum;
1154         struct user_datum *usrdatum;
1155         char *scontextp, *p, oldc;
1156         int rc = 0;
1157
1158         context_init(ctx);
1159
1160         /* Parse the security context. */
1161
1162         rc = -EINVAL;
1163         scontextp = (char *) scontext;
1164
1165         /* Extract the user. */
1166         p = scontextp;
1167         while (*p && *p != ':')
1168                 p++;
1169
1170         if (*p == 0)
1171                 goto out;
1172
1173         *p++ = 0;
1174
1175         usrdatum = hashtab_search(pol->p_users.table, scontextp);
1176         if (!usrdatum)
1177                 goto out;
1178
1179         ctx->user = usrdatum->value;
1180
1181         /* Extract role. */
1182         scontextp = p;
1183         while (*p && *p != ':')
1184                 p++;
1185
1186         if (*p == 0)
1187                 goto out;
1188
1189         *p++ = 0;
1190
1191         role = hashtab_search(pol->p_roles.table, scontextp);
1192         if (!role)
1193                 goto out;
1194         ctx->role = role->value;
1195
1196         /* Extract type. */
1197         scontextp = p;
1198         while (*p && *p != ':')
1199                 p++;
1200         oldc = *p;
1201         *p++ = 0;
1202
1203         typdatum = hashtab_search(pol->p_types.table, scontextp);
1204         if (!typdatum || typdatum->attribute)
1205                 goto out;
1206
1207         ctx->type = typdatum->value;
1208
1209         rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1210         if (rc)
1211                 goto out;
1212
1213         rc = -EINVAL;
1214         if ((p - scontext) < scontext_len)
1215                 goto out;
1216
1217         /* Check the validity of the new context. */
1218         if (!policydb_context_isvalid(pol, ctx))
1219                 goto out;
1220         rc = 0;
1221 out:
1222         if (rc)
1223                 context_destroy(ctx);
1224         return rc;
1225 }
1226
1227 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1228                                         u32 *sid, u32 def_sid, gfp_t gfp_flags,
1229                                         int force)
1230 {
1231         char *scontext2, *str = NULL;
1232         struct context context;
1233         int rc = 0;
1234
1235         if (!ss_initialized) {
1236                 int i;
1237
1238                 for (i = 1; i < SECINITSID_NUM; i++) {
1239                         if (!strcmp(initial_sid_to_string[i], scontext)) {
1240                                 *sid = i;
1241                                 return 0;
1242                         }
1243                 }
1244                 *sid = SECINITSID_KERNEL;
1245                 return 0;
1246         }
1247         *sid = SECSID_NULL;
1248
1249         /* Copy the string so that we can modify the copy as we parse it. */
1250         scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1251         if (!scontext2)
1252                 return -ENOMEM;
1253         memcpy(scontext2, scontext, scontext_len);
1254         scontext2[scontext_len] = 0;
1255
1256         if (force) {
1257                 /* Save another copy for storing in uninterpreted form */
1258                 rc = -ENOMEM;
1259                 str = kstrdup(scontext2, gfp_flags);
1260                 if (!str)
1261                         goto out;
1262         }
1263
1264         read_lock(&policy_rwlock);
1265         rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1266                                       scontext_len, &context, def_sid);
1267         if (rc == -EINVAL && force) {
1268                 context.str = str;
1269                 context.len = scontext_len;
1270                 str = NULL;
1271         } else if (rc)
1272                 goto out_unlock;
1273         rc = sidtab_context_to_sid(&sidtab, &context, sid);
1274         context_destroy(&context);
1275 out_unlock:
1276         read_unlock(&policy_rwlock);
1277 out:
1278         kfree(scontext2);
1279         kfree(str);
1280         return rc;
1281 }
1282
1283 /**
1284  * security_context_to_sid - Obtain a SID for a given security context.
1285  * @scontext: security context
1286  * @scontext_len: length in bytes
1287  * @sid: security identifier, SID
1288  *
1289  * Obtains a SID associated with the security context that
1290  * has the string representation specified by @scontext.
1291  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1292  * memory is available, or 0 on success.
1293  */
1294 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1295 {
1296         return security_context_to_sid_core(scontext, scontext_len,
1297                                             sid, SECSID_NULL, GFP_KERNEL, 0);
1298 }
1299
1300 /**
1301  * security_context_to_sid_default - Obtain a SID for a given security context,
1302  * falling back to specified default if needed.
1303  *
1304  * @scontext: security context
1305  * @scontext_len: length in bytes
1306  * @sid: security identifier, SID
1307  * @def_sid: default SID to assign on error
1308  *
1309  * Obtains a SID associated with the security context that
1310  * has the string representation specified by @scontext.
1311  * The default SID is passed to the MLS layer to be used to allow
1312  * kernel labeling of the MLS field if the MLS field is not present
1313  * (for upgrading to MLS without full relabel).
1314  * Implicitly forces adding of the context even if it cannot be mapped yet.
1315  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1316  * memory is available, or 0 on success.
1317  */
1318 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1319                                     u32 *sid, u32 def_sid, gfp_t gfp_flags)
1320 {
1321         return security_context_to_sid_core(scontext, scontext_len,
1322                                             sid, def_sid, gfp_flags, 1);
1323 }
1324
1325 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1326                                   u32 *sid)
1327 {
1328         return security_context_to_sid_core(scontext, scontext_len,
1329                                             sid, SECSID_NULL, GFP_KERNEL, 1);
1330 }
1331
1332 static int compute_sid_handle_invalid_context(
1333         struct context *scontext,
1334         struct context *tcontext,
1335         u16 tclass,
1336         struct context *newcontext)
1337 {
1338         char *s = NULL, *t = NULL, *n = NULL;
1339         u32 slen, tlen, nlen;
1340
1341         if (context_struct_to_string(scontext, &s, &slen))
1342                 goto out;
1343         if (context_struct_to_string(tcontext, &t, &tlen))
1344                 goto out;
1345         if (context_struct_to_string(newcontext, &n, &nlen))
1346                 goto out;
1347         audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1348                   "security_compute_sid:  invalid context %s"
1349                   " for scontext=%s"
1350                   " tcontext=%s"
1351                   " tclass=%s",
1352                   n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1353 out:
1354         kfree(s);
1355         kfree(t);
1356         kfree(n);
1357         if (!selinux_enforcing)
1358                 return 0;
1359         return -EACCES;
1360 }
1361
1362 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1363                                   u32 stype, u32 ttype, u16 tclass,
1364                                   const char *objname)
1365 {
1366         struct filename_trans ft;
1367         struct filename_trans_datum *otype;
1368
1369         /*
1370          * Most filename trans rules are going to live in specific directories
1371          * like /dev or /var/run.  This bitmap will quickly skip rule searches
1372          * if the ttype does not contain any rules.
1373          */
1374         if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1375                 return;
1376
1377         ft.stype = stype;
1378         ft.ttype = ttype;
1379         ft.tclass = tclass;
1380         ft.name = objname;
1381
1382         otype = hashtab_search(p->filename_trans, &ft);
1383         if (otype)
1384                 newcontext->type = otype->otype;
1385 }
1386
1387 static int security_compute_sid(u32 ssid,
1388                                 u32 tsid,
1389                                 u16 orig_tclass,
1390                                 u32 specified,
1391                                 const char *objname,
1392                                 u32 *out_sid,
1393                                 bool kern)
1394 {
1395         struct class_datum *cladatum = NULL;
1396         struct context *scontext = NULL, *tcontext = NULL, newcontext;
1397         struct role_trans *roletr = NULL;
1398         struct avtab_key avkey;
1399         struct avtab_datum *avdatum;
1400         struct avtab_node *node;
1401         u16 tclass;
1402         int rc = 0;
1403         bool sock;
1404
1405         if (!ss_initialized) {
1406                 switch (orig_tclass) {
1407                 case SECCLASS_PROCESS: /* kernel value */
1408                         *out_sid = ssid;
1409                         break;
1410                 default:
1411                         *out_sid = tsid;
1412                         break;
1413                 }
1414                 goto out;
1415         }
1416
1417         context_init(&newcontext);
1418
1419         read_lock(&policy_rwlock);
1420
1421         if (kern) {
1422                 tclass = unmap_class(orig_tclass);
1423                 sock = security_is_socket_class(orig_tclass);
1424         } else {
1425                 tclass = orig_tclass;
1426                 sock = security_is_socket_class(map_class(tclass));
1427         }
1428
1429         scontext = sidtab_search(&sidtab, ssid);
1430         if (!scontext) {
1431                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1432                        __func__, ssid);
1433                 rc = -EINVAL;
1434                 goto out_unlock;
1435         }
1436         tcontext = sidtab_search(&sidtab, tsid);
1437         if (!tcontext) {
1438                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1439                        __func__, tsid);
1440                 rc = -EINVAL;
1441                 goto out_unlock;
1442         }
1443
1444         if (tclass && tclass <= policydb.p_classes.nprim)
1445                 cladatum = policydb.class_val_to_struct[tclass - 1];
1446
1447         /* Set the user identity. */
1448         switch (specified) {
1449         case AVTAB_TRANSITION:
1450         case AVTAB_CHANGE:
1451                 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1452                         newcontext.user = tcontext->user;
1453                 } else {
1454                         /* notice this gets both DEFAULT_SOURCE and unset */
1455                         /* Use the process user identity. */
1456                         newcontext.user = scontext->user;
1457                 }
1458                 break;
1459         case AVTAB_MEMBER:
1460                 /* Use the related object owner. */
1461                 newcontext.user = tcontext->user;
1462                 break;
1463         }
1464
1465         /* Set the role to default values. */
1466         if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1467                 newcontext.role = scontext->role;
1468         } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1469                 newcontext.role = tcontext->role;
1470         } else {
1471                 if ((tclass == policydb.process_class) || (sock == true))
1472                         newcontext.role = scontext->role;
1473                 else
1474                         newcontext.role = OBJECT_R_VAL;
1475         }
1476
1477         /* Set the type to default values. */
1478         if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1479                 newcontext.type = scontext->type;
1480         } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1481                 newcontext.type = tcontext->type;
1482         } else {
1483                 if ((tclass == policydb.process_class) || (sock == true)) {
1484                         /* Use the type of process. */
1485                         newcontext.type = scontext->type;
1486                 } else {
1487                         /* Use the type of the related object. */
1488                         newcontext.type = tcontext->type;
1489                 }
1490         }
1491
1492         /* Look for a type transition/member/change rule. */
1493         avkey.source_type = scontext->type;
1494         avkey.target_type = tcontext->type;
1495         avkey.target_class = tclass;
1496         avkey.specified = specified;
1497         avdatum = avtab_search(&policydb.te_avtab, &avkey);
1498
1499         /* If no permanent rule, also check for enabled conditional rules */
1500         if (!avdatum) {
1501                 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1502                 for (; node; node = avtab_search_node_next(node, specified)) {
1503                         if (node->key.specified & AVTAB_ENABLED) {
1504                                 avdatum = &node->datum;
1505                                 break;
1506                         }
1507                 }
1508         }
1509
1510         if (avdatum) {
1511                 /* Use the type from the type transition/member/change rule. */
1512                 newcontext.type = avdatum->data;
1513         }
1514
1515         /* if we have a objname this is a file trans check so check those rules */
1516         if (objname)
1517                 filename_compute_type(&policydb, &newcontext, scontext->type,
1518                                       tcontext->type, tclass, objname);
1519
1520         /* Check for class-specific changes. */
1521         if (specified & AVTAB_TRANSITION) {
1522                 /* Look for a role transition rule. */
1523                 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1524                         if ((roletr->role == scontext->role) &&
1525                             (roletr->type == tcontext->type) &&
1526                             (roletr->tclass == tclass)) {
1527                                 /* Use the role transition rule. */
1528                                 newcontext.role = roletr->new_role;
1529                                 break;
1530                         }
1531                 }
1532         }
1533
1534         /* Set the MLS attributes.
1535            This is done last because it may allocate memory. */
1536         rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1537                              &newcontext, sock);
1538         if (rc)
1539                 goto out_unlock;
1540
1541         /* Check the validity of the context. */
1542         if (!policydb_context_isvalid(&policydb, &newcontext)) {
1543                 rc = compute_sid_handle_invalid_context(scontext,
1544                                                         tcontext,
1545                                                         tclass,
1546                                                         &newcontext);
1547                 if (rc)
1548                         goto out_unlock;
1549         }
1550         /* Obtain the sid for the context. */
1551         rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1552 out_unlock:
1553         read_unlock(&policy_rwlock);
1554         context_destroy(&newcontext);
1555 out:
1556         return rc;
1557 }
1558
1559 /**
1560  * security_transition_sid - Compute the SID for a new subject/object.
1561  * @ssid: source security identifier
1562  * @tsid: target security identifier
1563  * @tclass: target security class
1564  * @out_sid: security identifier for new subject/object
1565  *
1566  * Compute a SID to use for labeling a new subject or object in the
1567  * class @tclass based on a SID pair (@ssid, @tsid).
1568  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1569  * if insufficient memory is available, or %0 if the new SID was
1570  * computed successfully.
1571  */
1572 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1573                             const struct qstr *qstr, u32 *out_sid)
1574 {
1575         return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1576                                     qstr ? qstr->name : NULL, out_sid, true);
1577 }
1578
1579 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1580                                  const char *objname, u32 *out_sid)
1581 {
1582         return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1583                                     objname, out_sid, false);
1584 }
1585
1586 /**
1587  * security_member_sid - Compute the SID for member selection.
1588  * @ssid: source security identifier
1589  * @tsid: target security identifier
1590  * @tclass: target security class
1591  * @out_sid: security identifier for selected member
1592  *
1593  * Compute a SID to use when selecting a member of a polyinstantiated
1594  * object of class @tclass based on a SID pair (@ssid, @tsid).
1595  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1596  * if insufficient memory is available, or %0 if the SID was
1597  * computed successfully.
1598  */
1599 int security_member_sid(u32 ssid,
1600                         u32 tsid,
1601                         u16 tclass,
1602                         u32 *out_sid)
1603 {
1604         return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1605                                     out_sid, false);
1606 }
1607
1608 /**
1609  * security_change_sid - Compute the SID for object relabeling.
1610  * @ssid: source security identifier
1611  * @tsid: target security identifier
1612  * @tclass: target security class
1613  * @out_sid: security identifier for selected member
1614  *
1615  * Compute a SID to use for relabeling an object of class @tclass
1616  * based on a SID pair (@ssid, @tsid).
1617  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1618  * if insufficient memory is available, or %0 if the SID was
1619  * computed successfully.
1620  */
1621 int security_change_sid(u32 ssid,
1622                         u32 tsid,
1623                         u16 tclass,
1624                         u32 *out_sid)
1625 {
1626         return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1627                                     out_sid, false);
1628 }
1629
1630 /* Clone the SID into the new SID table. */
1631 static int clone_sid(u32 sid,
1632                      struct context *context,
1633                      void *arg)
1634 {
1635         struct sidtab *s = arg;
1636
1637         if (sid > SECINITSID_NUM)
1638                 return sidtab_insert(s, sid, context);
1639         else
1640                 return 0;
1641 }
1642
1643 static inline int convert_context_handle_invalid_context(struct context *context)
1644 {
1645         char *s;
1646         u32 len;
1647
1648         if (selinux_enforcing)
1649                 return -EINVAL;
1650
1651         if (!context_struct_to_string(context, &s, &len)) {
1652                 printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1653                 kfree(s);
1654         }
1655         return 0;
1656 }
1657
1658 struct convert_context_args {
1659         struct policydb *oldp;
1660         struct policydb *newp;
1661 };
1662
1663 /*
1664  * Convert the values in the security context
1665  * structure `c' from the values specified
1666  * in the policy `p->oldp' to the values specified
1667  * in the policy `p->newp'.  Verify that the
1668  * context is valid under the new policy.
1669  */
1670 static int convert_context(u32 key,
1671                            struct context *c,
1672                            void *p)
1673 {
1674         struct convert_context_args *args;
1675         struct context oldc;
1676         struct ocontext *oc;
1677         struct mls_range *range;
1678         struct role_datum *role;
1679         struct type_datum *typdatum;
1680         struct user_datum *usrdatum;
1681         char *s;
1682         u32 len;
1683         int rc = 0;
1684
1685         if (key <= SECINITSID_NUM)
1686                 goto out;
1687
1688         args = p;
1689
1690         if (c->str) {
1691                 struct context ctx;
1692
1693                 rc = -ENOMEM;
1694                 s = kstrdup(c->str, GFP_KERNEL);
1695                 if (!s)
1696                         goto out;
1697
1698                 rc = string_to_context_struct(args->newp, NULL, s,
1699                                               c->len, &ctx, SECSID_NULL);
1700                 kfree(s);
1701                 if (!rc) {
1702                         printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1703                                c->str);
1704                         /* Replace string with mapped representation. */
1705                         kfree(c->str);
1706                         memcpy(c, &ctx, sizeof(*c));
1707                         goto out;
1708                 } else if (rc == -EINVAL) {
1709                         /* Retain string representation for later mapping. */
1710                         rc = 0;
1711                         goto out;
1712                 } else {
1713                         /* Other error condition, e.g. ENOMEM. */
1714                         printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1715                                c->str, -rc);
1716                         goto out;
1717                 }
1718         }
1719
1720         rc = context_cpy(&oldc, c);
1721         if (rc)
1722                 goto out;
1723
1724         /* Convert the user. */
1725         rc = -EINVAL;
1726         usrdatum = hashtab_search(args->newp->p_users.table,
1727                                   sym_name(args->oldp, SYM_USERS, c->user - 1));
1728         if (!usrdatum)
1729                 goto bad;
1730         c->user = usrdatum->value;
1731
1732         /* Convert the role. */
1733         rc = -EINVAL;
1734         role = hashtab_search(args->newp->p_roles.table,
1735                               sym_name(args->oldp, SYM_ROLES, c->role - 1));
1736         if (!role)
1737                 goto bad;
1738         c->role = role->value;
1739
1740         /* Convert the type. */
1741         rc = -EINVAL;
1742         typdatum = hashtab_search(args->newp->p_types.table,
1743                                   sym_name(args->oldp, SYM_TYPES, c->type - 1));
1744         if (!typdatum)
1745                 goto bad;
1746         c->type = typdatum->value;
1747
1748         /* Convert the MLS fields if dealing with MLS policies */
1749         if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1750                 rc = mls_convert_context(args->oldp, args->newp, c);
1751                 if (rc)
1752                         goto bad;
1753         } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1754                 /*
1755                  * Switching between MLS and non-MLS policy:
1756                  * free any storage used by the MLS fields in the
1757                  * context for all existing entries in the sidtab.
1758                  */
1759                 mls_context_destroy(c);
1760         } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1761                 /*
1762                  * Switching between non-MLS and MLS policy:
1763                  * ensure that the MLS fields of the context for all
1764                  * existing entries in the sidtab are filled in with a
1765                  * suitable default value, likely taken from one of the
1766                  * initial SIDs.
1767                  */
1768                 oc = args->newp->ocontexts[OCON_ISID];
1769                 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1770                         oc = oc->next;
1771                 rc = -EINVAL;
1772                 if (!oc) {
1773                         printk(KERN_ERR "SELinux:  unable to look up"
1774                                 " the initial SIDs list\n");
1775                         goto bad;
1776                 }
1777                 range = &oc->context[0].range;
1778                 rc = mls_range_set(c, range);
1779                 if (rc)
1780                         goto bad;
1781         }
1782
1783         /* Check the validity of the new context. */
1784         if (!policydb_context_isvalid(args->newp, c)) {
1785                 rc = convert_context_handle_invalid_context(&oldc);
1786                 if (rc)
1787                         goto bad;
1788         }
1789
1790         context_destroy(&oldc);
1791
1792         rc = 0;
1793 out:
1794         return rc;
1795 bad:
1796         /* Map old representation to string and save it. */
1797         rc = context_struct_to_string(&oldc, &s, &len);
1798         if (rc)
1799                 return rc;
1800         context_destroy(&oldc);
1801         context_destroy(c);
1802         c->str = s;
1803         c->len = len;
1804         printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1805                c->str);
1806         rc = 0;
1807         goto out;
1808 }
1809
1810 static void security_load_policycaps(void)
1811 {
1812         selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1813                                                   POLICYDB_CAPABILITY_NETPEER);
1814         selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1815                                                   POLICYDB_CAPABILITY_OPENPERM);
1816         selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
1817                                                   POLICYDB_CAPABILITY_ALWAYSNETWORK);
1818 }
1819
1820 static int security_preserve_bools(struct policydb *p);
1821
1822 /**
1823  * security_load_policy - Load a security policy configuration.
1824  * @data: binary policy data
1825  * @len: length of data in bytes
1826  *
1827  * Load a new set of security policy configuration data,
1828  * validate it and convert the SID table as necessary.
1829  * This function will flush the access vector cache after
1830  * loading the new policy.
1831  */
1832 int security_load_policy(void *data, size_t len)
1833 {
1834         struct policydb *oldpolicydb, *newpolicydb;
1835         struct sidtab oldsidtab, newsidtab;
1836         struct selinux_mapping *oldmap, *map = NULL;
1837         struct convert_context_args args;
1838         u32 seqno;
1839         u16 map_size;
1840         int rc = 0;
1841         struct policy_file file = { data, len }, *fp = &file;
1842
1843         oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
1844         if (!oldpolicydb) {
1845                 rc = -ENOMEM;
1846                 goto out;
1847         }
1848         newpolicydb = oldpolicydb + 1;
1849
1850         if (!ss_initialized) {
1851                 avtab_cache_init();
1852                 rc = policydb_read(&policydb, fp);
1853                 if (rc) {
1854                         avtab_cache_destroy();
1855                         goto out;
1856                 }
1857
1858                 policydb.len = len;
1859                 rc = selinux_set_mapping(&policydb, secclass_map,
1860                                          &current_mapping,
1861                                          &current_mapping_size);
1862                 if (rc) {
1863                         policydb_destroy(&policydb);
1864                         avtab_cache_destroy();
1865                         goto out;
1866                 }
1867
1868                 rc = policydb_load_isids(&policydb, &sidtab);
1869                 if (rc) {
1870                         policydb_destroy(&policydb);
1871                         avtab_cache_destroy();
1872                         goto out;
1873                 }
1874
1875                 security_load_policycaps();
1876                 ss_initialized = 1;
1877                 seqno = ++latest_granting;
1878                 selinux_complete_init();
1879                 avc_ss_reset(seqno);
1880                 selnl_notify_policyload(seqno);
1881                 selinux_status_update_policyload(seqno);
1882                 selinux_netlbl_cache_invalidate();
1883                 selinux_xfrm_notify_policyload();
1884                 goto out;
1885         }
1886
1887 #if 0
1888         sidtab_hash_eval(&sidtab, "sids");
1889 #endif
1890
1891         rc = policydb_read(newpolicydb, fp);
1892         if (rc)
1893                 goto out;
1894
1895         newpolicydb->len = len;
1896         /* If switching between different policy types, log MLS status */
1897         if (policydb.mls_enabled && !newpolicydb->mls_enabled)
1898                 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1899         else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
1900                 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1901
1902         rc = policydb_load_isids(newpolicydb, &newsidtab);
1903         if (rc) {
1904                 printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1905                 policydb_destroy(newpolicydb);
1906                 goto out;
1907         }
1908
1909         rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
1910         if (rc)
1911                 goto err;
1912
1913         rc = security_preserve_bools(newpolicydb);
1914         if (rc) {
1915                 printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1916                 goto err;
1917         }
1918
1919         /* Clone the SID table. */
1920         sidtab_shutdown(&sidtab);
1921
1922         rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1923         if (rc)
1924                 goto err;
1925
1926         /*
1927          * Convert the internal representations of contexts
1928          * in the new SID table.
1929          */
1930         args.oldp = &policydb;
1931         args.newp = newpolicydb;
1932         rc = sidtab_map(&newsidtab, convert_context, &args);
1933         if (rc) {
1934                 printk(KERN_ERR "SELinux:  unable to convert the internal"
1935                         " representation of contexts in the new SID"
1936                         " table\n");
1937                 goto err;
1938         }
1939
1940         /* Save the old policydb and SID table to free later. */
1941         memcpy(oldpolicydb, &policydb, sizeof(policydb));
1942         sidtab_set(&oldsidtab, &sidtab);
1943
1944         /* Install the new policydb and SID table. */
1945         write_lock_irq(&policy_rwlock);
1946         memcpy(&policydb, newpolicydb, sizeof(policydb));
1947         sidtab_set(&sidtab, &newsidtab);
1948         security_load_policycaps();
1949         oldmap = current_mapping;
1950         current_mapping = map;
1951         current_mapping_size = map_size;
1952         seqno = ++latest_granting;
1953         write_unlock_irq(&policy_rwlock);
1954
1955         /* Free the old policydb and SID table. */
1956         policydb_destroy(oldpolicydb);
1957         sidtab_destroy(&oldsidtab);
1958         kfree(oldmap);
1959
1960         avc_ss_reset(seqno);
1961         selnl_notify_policyload(seqno);
1962         selinux_status_update_policyload(seqno);
1963         selinux_netlbl_cache_invalidate();
1964         selinux_xfrm_notify_policyload();
1965
1966         rc = 0;
1967         goto out;
1968
1969 err:
1970         kfree(map);
1971         sidtab_destroy(&newsidtab);
1972         policydb_destroy(newpolicydb);
1973
1974 out:
1975         kfree(oldpolicydb);
1976         return rc;
1977 }
1978
1979 size_t security_policydb_len(void)
1980 {
1981         size_t len;
1982
1983         read_lock(&policy_rwlock);
1984         len = policydb.len;
1985         read_unlock(&policy_rwlock);
1986
1987         return len;
1988 }
1989
1990 /**
1991  * security_port_sid - Obtain the SID for a port.
1992  * @protocol: protocol number
1993  * @port: port number
1994  * @out_sid: security identifier
1995  */
1996 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1997 {
1998         struct ocontext *c;
1999         int rc = 0;
2000
2001         read_lock(&policy_rwlock);
2002
2003         c = policydb.ocontexts[OCON_PORT];
2004         while (c) {
2005                 if (c->u.port.protocol == protocol &&
2006                     c->u.port.low_port <= port &&
2007                     c->u.port.high_port >= port)
2008                         break;
2009                 c = c->next;
2010         }
2011
2012         if (c) {
2013                 if (!c->sid[0]) {
2014                         rc = sidtab_context_to_sid(&sidtab,
2015                                                    &c->context[0],
2016                                                    &c->sid[0]);
2017                         if (rc)
2018                                 goto out;
2019                 }
2020                 *out_sid = c->sid[0];
2021         } else {
2022                 *out_sid = SECINITSID_PORT;
2023         }
2024
2025 out:
2026         read_unlock(&policy_rwlock);
2027         return rc;
2028 }
2029
2030 /**
2031  * security_netif_sid - Obtain the SID for a network interface.
2032  * @name: interface name
2033  * @if_sid: interface SID
2034  */
2035 int security_netif_sid(char *name, u32 *if_sid)
2036 {
2037         int rc = 0;
2038         struct ocontext *c;
2039
2040         read_lock(&policy_rwlock);
2041
2042         c = policydb.ocontexts[OCON_NETIF];
2043         while (c) {
2044                 if (strcmp(name, c->u.name) == 0)
2045                         break;
2046                 c = c->next;
2047         }
2048
2049         if (c) {
2050                 if (!c->sid[0] || !c->sid[1]) {
2051                         rc = sidtab_context_to_sid(&sidtab,
2052                                                   &c->context[0],
2053                                                   &c->sid[0]);
2054                         if (rc)
2055                                 goto out;
2056                         rc = sidtab_context_to_sid(&sidtab,
2057                                                    &c->context[1],
2058                                                    &c->sid[1]);
2059                         if (rc)
2060                                 goto out;
2061                 }
2062                 *if_sid = c->sid[0];
2063         } else
2064                 *if_sid = SECINITSID_NETIF;
2065
2066 out:
2067         read_unlock(&policy_rwlock);
2068         return rc;
2069 }
2070
2071 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2072 {
2073         int i, fail = 0;
2074
2075         for (i = 0; i < 4; i++)
2076                 if (addr[i] != (input[i] & mask[i])) {
2077                         fail = 1;
2078                         break;
2079                 }
2080
2081         return !fail;
2082 }
2083
2084 /**
2085  * security_node_sid - Obtain the SID for a node (host).
2086  * @domain: communication domain aka address family
2087  * @addrp: address
2088  * @addrlen: address length in bytes
2089  * @out_sid: security identifier
2090  */
2091 int security_node_sid(u16 domain,
2092                       void *addrp,
2093                       u32 addrlen,
2094                       u32 *out_sid)
2095 {
2096         int rc;
2097         struct ocontext *c;
2098
2099         read_lock(&policy_rwlock);
2100
2101         switch (domain) {
2102         case AF_INET: {
2103                 u32 addr;
2104
2105                 rc = -EINVAL;
2106                 if (addrlen != sizeof(u32))
2107                         goto out;
2108
2109                 addr = *((u32 *)addrp);
2110
2111                 c = policydb.ocontexts[OCON_NODE];
2112                 while (c) {
2113                         if (c->u.node.addr == (addr & c->u.node.mask))
2114                                 break;
2115                         c = c->next;
2116                 }
2117                 break;
2118         }
2119
2120         case AF_INET6:
2121                 rc = -EINVAL;
2122                 if (addrlen != sizeof(u64) * 2)
2123                         goto out;
2124                 c = policydb.ocontexts[OCON_NODE6];
2125                 while (c) {
2126                         if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2127                                                 c->u.node6.mask))
2128                                 break;
2129                         c = c->next;
2130                 }
2131                 break;
2132
2133         default:
2134                 rc = 0;
2135                 *out_sid = SECINITSID_NODE;
2136                 goto out;
2137         }
2138
2139         if (c) {
2140                 if (!c->sid[0]) {
2141                         rc = sidtab_context_to_sid(&sidtab,
2142                                                    &c->context[0],
2143                                                    &c->sid[0]);
2144                         if (rc)
2145                                 goto out;
2146                 }
2147                 *out_sid = c->sid[0];
2148         } else {
2149                 *out_sid = SECINITSID_NODE;
2150         }
2151
2152         rc = 0;
2153 out:
2154         read_unlock(&policy_rwlock);
2155         return rc;
2156 }
2157
2158 #define SIDS_NEL 25
2159
2160 /**
2161  * security_get_user_sids - Obtain reachable SIDs for a user.
2162  * @fromsid: starting SID
2163  * @username: username
2164  * @sids: array of reachable SIDs for user
2165  * @nel: number of elements in @sids
2166  *
2167  * Generate the set of SIDs for legal security contexts
2168  * for a given user that can be reached by @fromsid.
2169  * Set *@sids to point to a dynamically allocated
2170  * array containing the set of SIDs.  Set *@nel to the
2171  * number of elements in the array.
2172  */
2173
2174 int security_get_user_sids(u32 fromsid,
2175                            char *username,
2176                            u32 **sids,
2177                            u32 *nel)
2178 {
2179         struct context *fromcon, usercon;
2180         u32 *mysids = NULL, *mysids2, sid;
2181         u32 mynel = 0, maxnel = SIDS_NEL;
2182         struct user_datum *user;
2183         struct role_datum *role;
2184         struct ebitmap_node *rnode, *tnode;
2185         int rc = 0, i, j;
2186
2187         *sids = NULL;
2188         *nel = 0;
2189
2190         if (!ss_initialized)
2191                 goto out;
2192
2193         read_lock(&policy_rwlock);
2194
2195         context_init(&usercon);
2196
2197         rc = -EINVAL;
2198         fromcon = sidtab_search(&sidtab, fromsid);
2199         if (!fromcon)
2200                 goto out_unlock;
2201
2202         rc = -EINVAL;
2203         user = hashtab_search(policydb.p_users.table, username);
2204         if (!user)
2205                 goto out_unlock;
2206
2207         usercon.user = user->value;
2208
2209         rc = -ENOMEM;
2210         mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2211         if (!mysids)
2212                 goto out_unlock;
2213
2214         ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2215                 role = policydb.role_val_to_struct[i];
2216                 usercon.role = i + 1;
2217                 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2218                         usercon.type = j + 1;
2219
2220                         if (mls_setup_user_range(fromcon, user, &usercon))
2221                                 continue;
2222
2223                         rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2224                         if (rc)
2225                                 goto out_unlock;
2226                         if (mynel < maxnel) {
2227                                 mysids[mynel++] = sid;
2228                         } else {
2229                                 rc = -ENOMEM;
2230                                 maxnel += SIDS_NEL;
2231                                 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2232                                 if (!mysids2)
2233                                         goto out_unlock;
2234                                 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2235                                 kfree(mysids);
2236                                 mysids = mysids2;
2237                                 mysids[mynel++] = sid;
2238                         }
2239                 }
2240         }
2241         rc = 0;
2242 out_unlock:
2243         read_unlock(&policy_rwlock);
2244         if (rc || !mynel) {
2245                 kfree(mysids);
2246                 goto out;
2247         }
2248
2249         rc = -ENOMEM;
2250         mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2251         if (!mysids2) {
2252                 kfree(mysids);
2253                 goto out;
2254         }
2255         for (i = 0, j = 0; i < mynel; i++) {
2256                 struct av_decision dummy_avd;
2257                 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2258                                           SECCLASS_PROCESS, /* kernel value */
2259                                           PROCESS__TRANSITION, AVC_STRICT,
2260                                           &dummy_avd);
2261                 if (!rc)
2262                         mysids2[j++] = mysids[i];
2263                 cond_resched();
2264         }
2265         rc = 0;
2266         kfree(mysids);
2267         *sids = mysids2;
2268         *nel = j;
2269 out:
2270         return rc;
2271 }
2272
2273 /**
2274  * security_genfs_sid - Obtain a SID for a file in a filesystem
2275  * @fstype: filesystem type
2276  * @path: path from root of mount
2277  * @sclass: file security class
2278  * @sid: SID for path
2279  *
2280  * Obtain a SID to use for a file in a filesystem that
2281  * cannot support xattr or use a fixed labeling behavior like
2282  * transition SIDs or task SIDs.
2283  */
2284 int security_genfs_sid(const char *fstype,
2285                        char *path,
2286                        u16 orig_sclass,
2287                        u32 *sid)
2288 {
2289         int len;
2290         u16 sclass;
2291         struct genfs *genfs;
2292         struct ocontext *c;
2293         int rc, cmp = 0;
2294
2295         while (path[0] == '/' && path[1] == '/')
2296                 path++;
2297
2298         read_lock(&policy_rwlock);
2299
2300         sclass = unmap_class(orig_sclass);
2301         *sid = SECINITSID_UNLABELED;
2302
2303         for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2304                 cmp = strcmp(fstype, genfs->fstype);
2305                 if (cmp <= 0)
2306                         break;
2307         }
2308
2309         rc = -ENOENT;
2310         if (!genfs || cmp)
2311                 goto out;
2312
2313         for (c = genfs->head; c; c = c->next) {
2314                 len = strlen(c->u.name);
2315                 if ((!c->v.sclass || sclass == c->v.sclass) &&
2316                     (strncmp(c->u.name, path, len) == 0))
2317                         break;
2318         }
2319
2320         rc = -ENOENT;
2321         if (!c)
2322                 goto out;
2323
2324         if (!c->sid[0]) {
2325                 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2326                 if (rc)
2327                         goto out;
2328         }
2329
2330         *sid = c->sid[0];
2331         rc = 0;
2332 out:
2333         read_unlock(&policy_rwlock);
2334         return rc;
2335 }
2336
2337 /**
2338  * security_fs_use - Determine how to handle labeling for a filesystem.
2339  * @sb: superblock in question
2340  */
2341 int security_fs_use(struct super_block *sb)
2342 {
2343         int rc = 0;
2344         struct ocontext *c;
2345         struct superblock_security_struct *sbsec = sb->s_security;
2346         const char *fstype = sb->s_type->name;
2347
2348         read_lock(&policy_rwlock);
2349
2350         c = policydb.ocontexts[OCON_FSUSE];
2351         while (c) {
2352                 if (strcmp(fstype, c->u.name) == 0)
2353                         break;
2354                 c = c->next;
2355         }
2356
2357         if (c) {
2358                 sbsec->behavior = c->v.behavior;
2359                 if (!c->sid[0]) {
2360                         rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2361                                                    &c->sid[0]);
2362                         if (rc)
2363                                 goto out;
2364                 }
2365                 sbsec->sid = c->sid[0];
2366         } else {
2367                 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, &sbsec->sid);
2368                 if (rc) {
2369                         sbsec->behavior = SECURITY_FS_USE_NONE;
2370                         rc = 0;
2371                 } else {
2372                         sbsec->behavior = SECURITY_FS_USE_GENFS;
2373                 }
2374         }
2375
2376 out:
2377         read_unlock(&policy_rwlock);
2378         return rc;
2379 }
2380
2381 int security_get_bools(int *len, char ***names, int **values)
2382 {
2383         int i, rc;
2384
2385         read_lock(&policy_rwlock);
2386         *names = NULL;
2387         *values = NULL;
2388
2389         rc = 0;
2390         *len = policydb.p_bools.nprim;
2391         if (!*len)
2392                 goto out;
2393
2394         rc = -ENOMEM;
2395         *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2396         if (!*names)
2397                 goto err;
2398
2399         rc = -ENOMEM;
2400         *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2401         if (!*values)
2402                 goto err;
2403
2404         for (i = 0; i < *len; i++) {
2405                 size_t name_len;
2406
2407                 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2408                 name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2409
2410                 rc = -ENOMEM;
2411                 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2412                 if (!(*names)[i])
2413                         goto err;
2414
2415                 strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2416                 (*names)[i][name_len - 1] = 0;
2417         }
2418         rc = 0;
2419 out:
2420         read_unlock(&policy_rwlock);
2421         return rc;
2422 err:
2423         if (*names) {
2424                 for (i = 0; i < *len; i++)
2425                         kfree((*names)[i]);
2426         }
2427         kfree(*values);
2428         goto out;
2429 }
2430
2431
2432 int security_set_bools(int len, int *values)
2433 {
2434         int i, rc;
2435         int lenp, seqno = 0;
2436         struct cond_node *cur;
2437
2438         write_lock_irq(&policy_rwlock);
2439
2440         rc = -EFAULT;
2441         lenp = policydb.p_bools.nprim;
2442         if (len != lenp)
2443                 goto out;
2444
2445         for (i = 0; i < len; i++) {
2446                 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2447                         audit_log(current->audit_context, GFP_ATOMIC,
2448                                 AUDIT_MAC_CONFIG_CHANGE,
2449                                 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2450                                 sym_name(&policydb, SYM_BOOLS, i),
2451                                 !!values[i],
2452                                 policydb.bool_val_to_struct[i]->state,
2453                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2454                                 audit_get_sessionid(current));
2455                 }
2456                 if (values[i])
2457                         policydb.bool_val_to_struct[i]->state = 1;
2458                 else
2459                         policydb.bool_val_to_struct[i]->state = 0;
2460         }
2461
2462         for (cur = policydb.cond_list; cur; cur = cur->next) {
2463                 rc = evaluate_cond_node(&policydb, cur);
2464                 if (rc)
2465                         goto out;
2466         }
2467
2468         seqno = ++latest_granting;
2469         rc = 0;
2470 out:
2471         write_unlock_irq(&policy_rwlock);
2472         if (!rc) {
2473                 avc_ss_reset(seqno);
2474                 selnl_notify_policyload(seqno);
2475                 selinux_status_update_policyload(seqno);
2476                 selinux_xfrm_notify_policyload();
2477         }
2478         return rc;
2479 }
2480
2481 int security_get_bool_value(int bool)
2482 {
2483         int rc;
2484         int len;
2485
2486         read_lock(&policy_rwlock);
2487
2488         rc = -EFAULT;
2489         len = policydb.p_bools.nprim;
2490         if (bool >= len)
2491                 goto out;
2492
2493         rc = policydb.bool_val_to_struct[bool]->state;
2494 out:
2495         read_unlock(&policy_rwlock);
2496         return rc;
2497 }
2498
2499 static int security_preserve_bools(struct policydb *p)
2500 {
2501         int rc, nbools = 0, *bvalues = NULL, i;
2502         char **bnames = NULL;
2503         struct cond_bool_datum *booldatum;
2504         struct cond_node *cur;
2505
2506         rc = security_get_bools(&nbools, &bnames, &bvalues);
2507         if (rc)
2508                 goto out;
2509         for (i = 0; i < nbools; i++) {
2510                 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2511                 if (booldatum)
2512                         booldatum->state = bvalues[i];
2513         }
2514         for (cur = p->cond_list; cur; cur = cur->next) {
2515                 rc = evaluate_cond_node(p, cur);
2516                 if (rc)
2517                         goto out;
2518         }
2519
2520 out:
2521         if (bnames) {
2522                 for (i = 0; i < nbools; i++)
2523                         kfree(bnames[i]);
2524         }
2525         kfree(bnames);
2526         kfree(bvalues);
2527         return rc;
2528 }
2529
2530 /*
2531  * security_sid_mls_copy() - computes a new sid based on the given
2532  * sid and the mls portion of mls_sid.
2533  */
2534 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2535 {
2536         struct context *context1;
2537         struct context *context2;
2538         struct context newcon;
2539         char *s;
2540         u32 len;
2541         int rc;
2542
2543         rc = 0;
2544         if (!ss_initialized || !policydb.mls_enabled) {
2545                 *new_sid = sid;
2546                 goto out;
2547         }
2548
2549         context_init(&newcon);
2550
2551         read_lock(&policy_rwlock);
2552
2553         rc = -EINVAL;
2554         context1 = sidtab_search(&sidtab, sid);
2555         if (!context1) {
2556                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2557                         __func__, sid);
2558                 goto out_unlock;
2559         }
2560
2561         rc = -EINVAL;
2562         context2 = sidtab_search(&sidtab, mls_sid);
2563         if (!context2) {
2564                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2565                         __func__, mls_sid);
2566                 goto out_unlock;
2567         }
2568
2569         newcon.user = context1->user;
2570         newcon.role = context1->role;
2571         newcon.type = context1->type;
2572         rc = mls_context_cpy(&newcon, context2);
2573         if (rc)
2574                 goto out_unlock;
2575
2576         /* Check the validity of the new context. */
2577         if (!policydb_context_isvalid(&policydb, &newcon)) {
2578                 rc = convert_context_handle_invalid_context(&newcon);
2579                 if (rc) {
2580                         if (!context_struct_to_string(&newcon, &s, &len)) {
2581                                 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2582                                           "security_sid_mls_copy: invalid context %s", s);
2583                                 kfree(s);
2584                         }
2585                         goto out_unlock;
2586                 }
2587         }
2588
2589         rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2590 out_unlock:
2591         read_unlock(&policy_rwlock);
2592         context_destroy(&newcon);
2593 out:
2594         return rc;
2595 }
2596
2597 /**
2598  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2599  * @nlbl_sid: NetLabel SID
2600  * @nlbl_type: NetLabel labeling protocol type
2601  * @xfrm_sid: XFRM SID
2602  *
2603  * Description:
2604  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2605  * resolved into a single SID it is returned via @peer_sid and the function
2606  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2607  * returns a negative value.  A table summarizing the behavior is below:
2608  *
2609  *                                 | function return |      @sid
2610  *   ------------------------------+-----------------+-----------------
2611  *   no peer labels                |        0        |    SECSID_NULL
2612  *   single peer label             |        0        |    <peer_label>
2613  *   multiple, consistent labels   |        0        |    <peer_label>
2614  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2615  *
2616  */
2617 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2618                                  u32 xfrm_sid,
2619                                  u32 *peer_sid)
2620 {
2621         int rc;
2622         struct context *nlbl_ctx;
2623         struct context *xfrm_ctx;
2624
2625         *peer_sid = SECSID_NULL;
2626
2627         /* handle the common (which also happens to be the set of easy) cases
2628          * right away, these two if statements catch everything involving a
2629          * single or absent peer SID/label */
2630         if (xfrm_sid == SECSID_NULL) {
2631                 *peer_sid = nlbl_sid;
2632                 return 0;
2633         }
2634         /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2635          * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2636          * is present */
2637         if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2638                 *peer_sid = xfrm_sid;
2639                 return 0;
2640         }
2641
2642         /* we don't need to check ss_initialized here since the only way both
2643          * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2644          * security server was initialized and ss_initialized was true */
2645         if (!policydb.mls_enabled)
2646                 return 0;
2647
2648         read_lock(&policy_rwlock);
2649
2650         rc = -EINVAL;
2651         nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2652         if (!nlbl_ctx) {
2653                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2654                        __func__, nlbl_sid);
2655                 goto out;
2656         }
2657         rc = -EINVAL;
2658         xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2659         if (!xfrm_ctx) {
2660                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2661                        __func__, xfrm_sid);
2662                 goto out;
2663         }
2664         rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2665         if (rc)
2666                 goto out;
2667
2668         /* at present NetLabel SIDs/labels really only carry MLS
2669          * information so if the MLS portion of the NetLabel SID
2670          * matches the MLS portion of the labeled XFRM SID/label
2671          * then pass along the XFRM SID as it is the most
2672          * expressive */
2673         *peer_sid = xfrm_sid;
2674 out:
2675         read_unlock(&policy_rwlock);
2676         return rc;
2677 }
2678
2679 static int get_classes_callback(void *k, void *d, void *args)
2680 {
2681         struct class_datum *datum = d;
2682         char *name = k, **classes = args;
2683         int value = datum->value - 1;
2684
2685         classes[value] = kstrdup(name, GFP_ATOMIC);
2686         if (!classes[value])
2687                 return -ENOMEM;
2688
2689         return 0;
2690 }
2691
2692 int security_get_classes(char ***classes, int *nclasses)
2693 {
2694         int rc;
2695
2696         read_lock(&policy_rwlock);
2697
2698         rc = -ENOMEM;
2699         *nclasses = policydb.p_classes.nprim;
2700         *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2701         if (!*classes)
2702                 goto out;
2703
2704         rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2705                         *classes);
2706         if (rc) {
2707                 int i;
2708                 for (i = 0; i < *nclasses; i++)
2709                         kfree((*classes)[i]);
2710                 kfree(*classes);
2711         }
2712
2713 out:
2714         read_unlock(&policy_rwlock);
2715         return rc;
2716 }
2717
2718 static int get_permissions_callback(void *k, void *d, void *args)
2719 {
2720         struct perm_datum *datum = d;
2721         char *name = k, **perms = args;
2722         int value = datum->value - 1;
2723
2724         perms[value] = kstrdup(name, GFP_ATOMIC);
2725         if (!perms[value])
2726                 return -ENOMEM;
2727
2728         return 0;
2729 }
2730
2731 int security_get_permissions(char *class, char ***perms, int *nperms)
2732 {
2733         int rc, i;
2734         struct class_datum *match;
2735
2736         read_lock(&policy_rwlock);
2737
2738         rc = -EINVAL;
2739         match = hashtab_search(policydb.p_classes.table, class);
2740         if (!match) {
2741                 printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2742                         __func__, class);
2743                 goto out;
2744         }
2745
2746         rc = -ENOMEM;
2747         *nperms = match->permissions.nprim;
2748         *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2749         if (!*perms)
2750                 goto out;
2751
2752         if (match->comdatum) {
2753                 rc = hashtab_map(match->comdatum->permissions.table,
2754                                 get_permissions_callback, *perms);
2755                 if (rc)
2756                         goto err;
2757         }
2758
2759         rc = hashtab_map(match->permissions.table, get_permissions_callback,
2760                         *perms);
2761         if (rc)
2762                 goto err;
2763
2764 out:
2765         read_unlock(&policy_rwlock);
2766         return rc;
2767
2768 err:
2769         read_unlock(&policy_rwlock);
2770         for (i = 0; i < *nperms; i++)
2771                 kfree((*perms)[i]);
2772         kfree(*perms);
2773         return rc;
2774 }
2775
2776 int security_get_reject_unknown(void)
2777 {
2778         return policydb.reject_unknown;
2779 }
2780
2781 int security_get_allow_unknown(void)
2782 {
2783         return policydb.allow_unknown;
2784 }
2785
2786 /**
2787  * security_policycap_supported - Check for a specific policy capability
2788  * @req_cap: capability
2789  *
2790  * Description:
2791  * This function queries the currently loaded policy to see if it supports the
2792  * capability specified by @req_cap.  Returns true (1) if the capability is
2793  * supported, false (0) if it isn't supported.
2794  *
2795  */
2796 int security_policycap_supported(unsigned int req_cap)
2797 {
2798         int rc;
2799
2800         read_lock(&policy_rwlock);
2801         rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2802         read_unlock(&policy_rwlock);
2803
2804         return rc;
2805 }
2806
2807 struct selinux_audit_rule {
2808         u32 au_seqno;
2809         struct context au_ctxt;
2810 };
2811
2812 void selinux_audit_rule_free(void *vrule)
2813 {
2814         struct selinux_audit_rule *rule = vrule;
2815
2816         if (rule) {
2817                 context_destroy(&rule->au_ctxt);
2818                 kfree(rule);
2819         }
2820 }
2821
2822 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2823 {
2824         struct selinux_audit_rule *tmprule;
2825         struct role_datum *roledatum;
2826         struct type_datum *typedatum;
2827         struct user_datum *userdatum;
2828         struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2829         int rc = 0;
2830
2831         *rule = NULL;
2832
2833         if (!ss_initialized)
2834                 return -EOPNOTSUPP;
2835
2836         switch (field) {
2837         case AUDIT_SUBJ_USER:
2838         case AUDIT_SUBJ_ROLE:
2839         case AUDIT_SUBJ_TYPE:
2840         case AUDIT_OBJ_USER:
2841         case AUDIT_OBJ_ROLE:
2842         case AUDIT_OBJ_TYPE:
2843                 /* only 'equals' and 'not equals' fit user, role, and type */
2844                 if (op != Audit_equal && op != Audit_not_equal)
2845                         return -EINVAL;
2846                 break;
2847         case AUDIT_SUBJ_SEN:
2848         case AUDIT_SUBJ_CLR:
2849         case AUDIT_OBJ_LEV_LOW:
2850         case AUDIT_OBJ_LEV_HIGH:
2851                 /* we do not allow a range, indicated by the presence of '-' */
2852                 if (strchr(rulestr, '-'))
2853                         return -EINVAL;
2854                 break;
2855         default:
2856                 /* only the above fields are valid */
2857                 return -EINVAL;
2858         }
2859
2860         tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2861         if (!tmprule)
2862                 return -ENOMEM;
2863
2864         context_init(&tmprule->au_ctxt);
2865
2866         read_lock(&policy_rwlock);
2867
2868         tmprule->au_seqno = latest_granting;
2869
2870         switch (field) {
2871         case AUDIT_SUBJ_USER:
2872         case AUDIT_OBJ_USER:
2873                 rc = -EINVAL;
2874                 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2875                 if (!userdatum)
2876                         goto out;
2877                 tmprule->au_ctxt.user = userdatum->value;
2878                 break;
2879         case AUDIT_SUBJ_ROLE:
2880         case AUDIT_OBJ_ROLE:
2881                 rc = -EINVAL;
2882                 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2883                 if (!roledatum)
2884                         goto out;
2885                 tmprule->au_ctxt.role = roledatum->value;
2886                 break;
2887         case AUDIT_SUBJ_TYPE:
2888         case AUDIT_OBJ_TYPE:
2889                 rc = -EINVAL;
2890                 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2891                 if (!typedatum)
2892                         goto out;
2893                 tmprule->au_ctxt.type = typedatum->value;
2894                 break;
2895         case AUDIT_SUBJ_SEN:
2896         case AUDIT_SUBJ_CLR:
2897         case AUDIT_OBJ_LEV_LOW:
2898         case AUDIT_OBJ_LEV_HIGH:
2899                 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2900                 if (rc)
2901                         goto out;
2902                 break;
2903         }
2904         rc = 0;
2905 out:
2906         read_unlock(&policy_rwlock);
2907
2908         if (rc) {
2909                 selinux_audit_rule_free(tmprule);
2910                 tmprule = NULL;
2911         }
2912
2913         *rule = tmprule;
2914
2915         return rc;
2916 }
2917
2918 /* Check to see if the rule contains any selinux fields */
2919 int selinux_audit_rule_known(struct audit_krule *rule)
2920 {
2921         int i;
2922
2923         for (i = 0; i < rule->field_count; i++) {
2924                 struct audit_field *f = &rule->fields[i];
2925                 switch (f->type) {
2926                 case AUDIT_SUBJ_USER:
2927                 case AUDIT_SUBJ_ROLE:
2928                 case AUDIT_SUBJ_TYPE:
2929                 case AUDIT_SUBJ_SEN:
2930                 case AUDIT_SUBJ_CLR:
2931                 case AUDIT_OBJ_USER:
2932                 case AUDIT_OBJ_ROLE:
2933                 case AUDIT_OBJ_TYPE:
2934                 case AUDIT_OBJ_LEV_LOW:
2935                 case AUDIT_OBJ_LEV_HIGH:
2936                         return 1;
2937                 }
2938         }
2939
2940         return 0;
2941 }
2942
2943 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2944                              struct audit_context *actx)
2945 {
2946         struct context *ctxt;
2947         struct mls_level *level;
2948         struct selinux_audit_rule *rule = vrule;
2949         int match = 0;
2950
2951         if (unlikely(!rule)) {
2952                 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
2953                 return -ENOENT;
2954         }
2955
2956         read_lock(&policy_rwlock);
2957
2958         if (rule->au_seqno < latest_granting) {
2959                 match = -ESTALE;
2960                 goto out;
2961         }
2962
2963         ctxt = sidtab_search(&sidtab, sid);
2964         if (unlikely(!ctxt)) {
2965                 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
2966                           sid);
2967                 match = -ENOENT;
2968                 goto out;
2969         }
2970
2971         /* a field/op pair that is not caught here will simply fall through
2972            without a match */
2973         switch (field) {
2974         case AUDIT_SUBJ_USER:
2975         case AUDIT_OBJ_USER:
2976                 switch (op) {
2977                 case Audit_equal:
2978                         match = (ctxt->user == rule->au_ctxt.user);
2979                         break;
2980                 case Audit_not_equal:
2981                         match = (ctxt->user != rule->au_ctxt.user);
2982                         break;
2983                 }
2984                 break;
2985         case AUDIT_SUBJ_ROLE:
2986         case AUDIT_OBJ_ROLE:
2987                 switch (op) {
2988                 case Audit_equal:
2989                         match = (ctxt->role == rule->au_ctxt.role);
2990                         break;
2991                 case Audit_not_equal:
2992                         match = (ctxt->role != rule->au_ctxt.role);
2993                         break;
2994                 }
2995                 break;
2996         case AUDIT_SUBJ_TYPE:
2997         case AUDIT_OBJ_TYPE:
2998                 switch (op) {
2999                 case Audit_equal:
3000                         match = (ctxt->type == rule->au_ctxt.type);
3001                         break;
3002                 case Audit_not_equal:
3003                         match = (ctxt->type != rule->au_ctxt.type);
3004                         break;
3005                 }
3006                 break;
3007         case AUDIT_SUBJ_SEN:
3008         case AUDIT_SUBJ_CLR:
3009         case AUDIT_OBJ_LEV_LOW:
3010         case AUDIT_OBJ_LEV_HIGH:
3011                 level = ((field == AUDIT_SUBJ_SEN ||
3012                           field == AUDIT_OBJ_LEV_LOW) ?
3013                          &ctxt->range.level[0] : &ctxt->range.level[1]);
3014                 switch (op) {
3015                 case Audit_equal:
3016                         match = mls_level_eq(&rule->au_ctxt.range.level[0],
3017                                              level);
3018                         break;
3019                 case Audit_not_equal:
3020                         match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3021                                               level);
3022                         break;
3023                 case Audit_lt:
3024                         match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3025                                                level) &&
3026                                  !mls_level_eq(&rule->au_ctxt.range.level[0],
3027                                                level));
3028                         break;
3029                 case Audit_le:
3030                         match = mls_level_dom(&rule->au_ctxt.range.level[0],
3031                                               level);
3032                         break;
3033                 case Audit_gt:
3034                         match = (mls_level_dom(level,
3035                                               &rule->au_ctxt.range.level[0]) &&
3036                                  !mls_level_eq(level,
3037                                                &rule->au_ctxt.range.level[0]));
3038                         break;
3039                 case Audit_ge:
3040                         match = mls_level_dom(level,
3041                                               &rule->au_ctxt.range.level[0]);
3042                         break;
3043                 }
3044         }
3045
3046 out:
3047         read_unlock(&policy_rwlock);
3048         return match;
3049 }
3050
3051 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3052
3053 static int aurule_avc_callback(u32 event)
3054 {
3055         int err = 0;
3056
3057         if (event == AVC_CALLBACK_RESET && aurule_callback)
3058                 err = aurule_callback();
3059         return err;
3060 }
3061
3062 static int __init aurule_init(void)
3063 {
3064         int err;
3065
3066         err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3067         if (err)
3068                 panic("avc_add_callback() failed, error %d\n", err);
3069
3070         return err;
3071 }
3072 __initcall(aurule_init);
3073
3074 #ifdef CONFIG_NETLABEL
3075 /**
3076  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3077  * @secattr: the NetLabel packet security attributes
3078  * @sid: the SELinux SID
3079  *
3080  * Description:
3081  * Attempt to cache the context in @ctx, which was derived from the packet in
3082  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3083  * already been initialized.
3084  *
3085  */
3086 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3087                                       u32 sid)
3088 {
3089         u32 *sid_cache;
3090
3091         sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3092         if (sid_cache == NULL)
3093                 return;
3094         secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3095         if (secattr->cache == NULL) {
3096                 kfree(sid_cache);
3097                 return;
3098         }
3099
3100         *sid_cache = sid;
3101         secattr->cache->free = kfree;
3102         secattr->cache->data = sid_cache;
3103         secattr->flags |= NETLBL_SECATTR_CACHE;
3104 }
3105
3106 /**
3107  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3108  * @secattr: the NetLabel packet security attributes
3109  * @sid: the SELinux SID
3110  *
3111  * Description:
3112  * Convert the given NetLabel security attributes in @secattr into a
3113  * SELinux SID.  If the @secattr field does not contain a full SELinux
3114  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3115  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3116  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3117  * conversion for future lookups.  Returns zero on success, negative values on
3118  * failure.
3119  *
3120  */
3121 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3122                                    u32 *sid)
3123 {
3124         int rc;
3125         struct context *ctx;
3126         struct context ctx_new;
3127
3128         if (!ss_initialized) {
3129                 *sid = SECSID_NULL;
3130                 return 0;
3131         }
3132
3133         read_lock(&policy_rwlock);
3134
3135         if (secattr->flags & NETLBL_SECATTR_CACHE)
3136                 *sid = *(u32 *)secattr->cache->data;
3137         else if (secattr->flags & NETLBL_SECATTR_SECID)
3138                 *sid = secattr->attr.secid;
3139         else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3140                 rc = -EIDRM;
3141                 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3142                 if (ctx == NULL)
3143                         goto out;
3144
3145                 context_init(&ctx_new);
3146                 ctx_new.user = ctx->user;
3147                 ctx_new.role = ctx->role;
3148                 ctx_new.type = ctx->type;
3149                 mls_import_netlbl_lvl(&ctx_new, secattr);
3150                 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3151                         rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3152                                                    secattr->attr.mls.cat);
3153                         if (rc)
3154                                 goto out;
3155                         memcpy(&ctx_new.range.level[1].cat,
3156                                &ctx_new.range.level[0].cat,
3157                                sizeof(ctx_new.range.level[0].cat));
3158                 }
3159                 rc = -EIDRM;
3160                 if (!mls_context_isvalid(&policydb, &ctx_new))
3161                         goto out_free;
3162
3163                 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3164                 if (rc)
3165                         goto out_free;
3166
3167                 security_netlbl_cache_add(secattr, *sid);
3168
3169                 ebitmap_destroy(&ctx_new.range.level[0].cat);
3170         } else
3171                 *sid = SECSID_NULL;
3172
3173         read_unlock(&policy_rwlock);
3174         return 0;
3175 out_free:
3176         ebitmap_destroy(&ctx_new.range.level[0].cat);
3177 out:
3178         read_unlock(&policy_rwlock);
3179         return rc;
3180 }
3181
3182 /**
3183  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3184  * @sid: the SELinux SID
3185  * @secattr: the NetLabel packet security attributes
3186  *
3187  * Description:
3188  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3189  * Returns zero on success, negative values on failure.
3190  *
3191  */
3192 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3193 {
3194         int rc;
3195         struct context *ctx;
3196
3197         if (!ss_initialized)
3198                 return 0;
3199
3200         read_lock(&policy_rwlock);
3201
3202         rc = -ENOENT;
3203         ctx = sidtab_search(&sidtab, sid);
3204         if (ctx == NULL)
3205                 goto out;
3206
3207         rc = -ENOMEM;
3208         secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3209                                   GFP_ATOMIC);
3210         if (secattr->domain == NULL)
3211                 goto out;
3212
3213         secattr->attr.secid = sid;
3214         secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3215         mls_export_netlbl_lvl(ctx, secattr);
3216         rc = mls_export_netlbl_cat(ctx, secattr);
3217 out:
3218         read_unlock(&policy_rwlock);
3219         return rc;
3220 }
3221 #endif /* CONFIG_NETLABEL */
3222
3223 /**
3224  * security_read_policy - read the policy.
3225  * @data: binary policy data
3226  * @len: length of data in bytes
3227  *
3228  */
3229 int security_read_policy(void **data, size_t *len)
3230 {
3231         int rc;
3232         struct policy_file fp;
3233
3234         if (!ss_initialized)
3235                 return -EINVAL;
3236
3237         *len = security_policydb_len();
3238
3239         *data = vmalloc_user(*len);
3240         if (!*data)
3241                 return -ENOMEM;
3242
3243         fp.data = *data;
3244         fp.len = *len;
3245
3246         read_lock(&policy_rwlock);
3247         rc = policydb_write(&policydb, &fp);
3248         read_unlock(&policy_rwlock);
3249
3250         if (rc)
3251                 return rc;
3252
3253         *len = (unsigned long)fp.data - (unsigned long)*data;
3254         return 0;
3255
3256 }