]> Pileus Git - ~andy/linux/blob - security/selinux/ss/services.c
Merge branch 'nfsd-next' of git://linux-nfs.org/~bfields/linux
[~andy/linux] / security / selinux / ss / services.c
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *      Support for enhanced MLS infrastructure.
10  *      Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *      This program is free software; you can redistribute it and/or modify
39  *      it under the terms of the GNU General Public License as published by
40  *      the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72
73 int selinux_policycap_netpeer;
74 int selinux_policycap_openperm;
75 int selinux_policycap_alwaysnetwork;
76
77 static DEFINE_RWLOCK(policy_rwlock);
78
79 static struct sidtab sidtab;
80 struct policydb policydb;
81 int ss_initialized;
82
83 /*
84  * The largest sequence number that has been used when
85  * providing an access decision to the access vector cache.
86  * The sequence number only changes when a policy change
87  * occurs.
88  */
89 static u32 latest_granting;
90
91 /* Forward declaration. */
92 static int context_struct_to_string(struct context *context, char **scontext,
93                                     u32 *scontext_len);
94
95 static void context_struct_compute_av(struct context *scontext,
96                                       struct context *tcontext,
97                                       u16 tclass,
98                                       struct av_decision *avd);
99
100 struct selinux_mapping {
101         u16 value; /* policy value */
102         unsigned num_perms;
103         u32 perms[sizeof(u32) * 8];
104 };
105
106 static struct selinux_mapping *current_mapping;
107 static u16 current_mapping_size;
108
109 static int selinux_set_mapping(struct policydb *pol,
110                                struct security_class_mapping *map,
111                                struct selinux_mapping **out_map_p,
112                                u16 *out_map_size)
113 {
114         struct selinux_mapping *out_map = NULL;
115         size_t size = sizeof(struct selinux_mapping);
116         u16 i, j;
117         unsigned k;
118         bool print_unknown_handle = false;
119
120         /* Find number of classes in the input mapping */
121         if (!map)
122                 return -EINVAL;
123         i = 0;
124         while (map[i].name)
125                 i++;
126
127         /* Allocate space for the class records, plus one for class zero */
128         out_map = kcalloc(++i, size, GFP_ATOMIC);
129         if (!out_map)
130                 return -ENOMEM;
131
132         /* Store the raw class and permission values */
133         j = 0;
134         while (map[j].name) {
135                 struct security_class_mapping *p_in = map + (j++);
136                 struct selinux_mapping *p_out = out_map + j;
137
138                 /* An empty class string skips ahead */
139                 if (!strcmp(p_in->name, "")) {
140                         p_out->num_perms = 0;
141                         continue;
142                 }
143
144                 p_out->value = string_to_security_class(pol, p_in->name);
145                 if (!p_out->value) {
146                         printk(KERN_INFO
147                                "SELinux:  Class %s not defined in policy.\n",
148                                p_in->name);
149                         if (pol->reject_unknown)
150                                 goto err;
151                         p_out->num_perms = 0;
152                         print_unknown_handle = true;
153                         continue;
154                 }
155
156                 k = 0;
157                 while (p_in->perms && p_in->perms[k]) {
158                         /* An empty permission string skips ahead */
159                         if (!*p_in->perms[k]) {
160                                 k++;
161                                 continue;
162                         }
163                         p_out->perms[k] = string_to_av_perm(pol, p_out->value,
164                                                             p_in->perms[k]);
165                         if (!p_out->perms[k]) {
166                                 printk(KERN_INFO
167                                        "SELinux:  Permission %s in class %s not defined in policy.\n",
168                                        p_in->perms[k], p_in->name);
169                                 if (pol->reject_unknown)
170                                         goto err;
171                                 print_unknown_handle = true;
172                         }
173
174                         k++;
175                 }
176                 p_out->num_perms = k;
177         }
178
179         if (print_unknown_handle)
180                 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
181                        pol->allow_unknown ? "allowed" : "denied");
182
183         *out_map_p = out_map;
184         *out_map_size = i;
185         return 0;
186 err:
187         kfree(out_map);
188         return -EINVAL;
189 }
190
191 /*
192  * Get real, policy values from mapped values
193  */
194
195 static u16 unmap_class(u16 tclass)
196 {
197         if (tclass < current_mapping_size)
198                 return current_mapping[tclass].value;
199
200         return tclass;
201 }
202
203 /*
204  * Get kernel value for class from its policy value
205  */
206 static u16 map_class(u16 pol_value)
207 {
208         u16 i;
209
210         for (i = 1; i < current_mapping_size; i++) {
211                 if (current_mapping[i].value == pol_value)
212                         return i;
213         }
214
215         return SECCLASS_NULL;
216 }
217
218 static void map_decision(u16 tclass, struct av_decision *avd,
219                          int allow_unknown)
220 {
221         if (tclass < current_mapping_size) {
222                 unsigned i, n = current_mapping[tclass].num_perms;
223                 u32 result;
224
225                 for (i = 0, result = 0; i < n; i++) {
226                         if (avd->allowed & current_mapping[tclass].perms[i])
227                                 result |= 1<<i;
228                         if (allow_unknown && !current_mapping[tclass].perms[i])
229                                 result |= 1<<i;
230                 }
231                 avd->allowed = result;
232
233                 for (i = 0, result = 0; i < n; i++)
234                         if (avd->auditallow & current_mapping[tclass].perms[i])
235                                 result |= 1<<i;
236                 avd->auditallow = result;
237
238                 for (i = 0, result = 0; i < n; i++) {
239                         if (avd->auditdeny & current_mapping[tclass].perms[i])
240                                 result |= 1<<i;
241                         if (!allow_unknown && !current_mapping[tclass].perms[i])
242                                 result |= 1<<i;
243                 }
244                 /*
245                  * In case the kernel has a bug and requests a permission
246                  * between num_perms and the maximum permission number, we
247                  * should audit that denial
248                  */
249                 for (; i < (sizeof(u32)*8); i++)
250                         result |= 1<<i;
251                 avd->auditdeny = result;
252         }
253 }
254
255 int security_mls_enabled(void)
256 {
257         return policydb.mls_enabled;
258 }
259
260 /*
261  * Return the boolean value of a constraint expression
262  * when it is applied to the specified source and target
263  * security contexts.
264  *
265  * xcontext is a special beast...  It is used by the validatetrans rules
266  * only.  For these rules, scontext is the context before the transition,
267  * tcontext is the context after the transition, and xcontext is the context
268  * of the process performing the transition.  All other callers of
269  * constraint_expr_eval should pass in NULL for xcontext.
270  */
271 static int constraint_expr_eval(struct context *scontext,
272                                 struct context *tcontext,
273                                 struct context *xcontext,
274                                 struct constraint_expr *cexpr)
275 {
276         u32 val1, val2;
277         struct context *c;
278         struct role_datum *r1, *r2;
279         struct mls_level *l1, *l2;
280         struct constraint_expr *e;
281         int s[CEXPR_MAXDEPTH];
282         int sp = -1;
283
284         for (e = cexpr; e; e = e->next) {
285                 switch (e->expr_type) {
286                 case CEXPR_NOT:
287                         BUG_ON(sp < 0);
288                         s[sp] = !s[sp];
289                         break;
290                 case CEXPR_AND:
291                         BUG_ON(sp < 1);
292                         sp--;
293                         s[sp] &= s[sp + 1];
294                         break;
295                 case CEXPR_OR:
296                         BUG_ON(sp < 1);
297                         sp--;
298                         s[sp] |= s[sp + 1];
299                         break;
300                 case CEXPR_ATTR:
301                         if (sp == (CEXPR_MAXDEPTH - 1))
302                                 return 0;
303                         switch (e->attr) {
304                         case CEXPR_USER:
305                                 val1 = scontext->user;
306                                 val2 = tcontext->user;
307                                 break;
308                         case CEXPR_TYPE:
309                                 val1 = scontext->type;
310                                 val2 = tcontext->type;
311                                 break;
312                         case CEXPR_ROLE:
313                                 val1 = scontext->role;
314                                 val2 = tcontext->role;
315                                 r1 = policydb.role_val_to_struct[val1 - 1];
316                                 r2 = policydb.role_val_to_struct[val2 - 1];
317                                 switch (e->op) {
318                                 case CEXPR_DOM:
319                                         s[++sp] = ebitmap_get_bit(&r1->dominates,
320                                                                   val2 - 1);
321                                         continue;
322                                 case CEXPR_DOMBY:
323                                         s[++sp] = ebitmap_get_bit(&r2->dominates,
324                                                                   val1 - 1);
325                                         continue;
326                                 case CEXPR_INCOMP:
327                                         s[++sp] = (!ebitmap_get_bit(&r1->dominates,
328                                                                     val2 - 1) &&
329                                                    !ebitmap_get_bit(&r2->dominates,
330                                                                     val1 - 1));
331                                         continue;
332                                 default:
333                                         break;
334                                 }
335                                 break;
336                         case CEXPR_L1L2:
337                                 l1 = &(scontext->range.level[0]);
338                                 l2 = &(tcontext->range.level[0]);
339                                 goto mls_ops;
340                         case CEXPR_L1H2:
341                                 l1 = &(scontext->range.level[0]);
342                                 l2 = &(tcontext->range.level[1]);
343                                 goto mls_ops;
344                         case CEXPR_H1L2:
345                                 l1 = &(scontext->range.level[1]);
346                                 l2 = &(tcontext->range.level[0]);
347                                 goto mls_ops;
348                         case CEXPR_H1H2:
349                                 l1 = &(scontext->range.level[1]);
350                                 l2 = &(tcontext->range.level[1]);
351                                 goto mls_ops;
352                         case CEXPR_L1H1:
353                                 l1 = &(scontext->range.level[0]);
354                                 l2 = &(scontext->range.level[1]);
355                                 goto mls_ops;
356                         case CEXPR_L2H2:
357                                 l1 = &(tcontext->range.level[0]);
358                                 l2 = &(tcontext->range.level[1]);
359                                 goto mls_ops;
360 mls_ops:
361                         switch (e->op) {
362                         case CEXPR_EQ:
363                                 s[++sp] = mls_level_eq(l1, l2);
364                                 continue;
365                         case CEXPR_NEQ:
366                                 s[++sp] = !mls_level_eq(l1, l2);
367                                 continue;
368                         case CEXPR_DOM:
369                                 s[++sp] = mls_level_dom(l1, l2);
370                                 continue;
371                         case CEXPR_DOMBY:
372                                 s[++sp] = mls_level_dom(l2, l1);
373                                 continue;
374                         case CEXPR_INCOMP:
375                                 s[++sp] = mls_level_incomp(l2, l1);
376                                 continue;
377                         default:
378                                 BUG();
379                                 return 0;
380                         }
381                         break;
382                         default:
383                                 BUG();
384                                 return 0;
385                         }
386
387                         switch (e->op) {
388                         case CEXPR_EQ:
389                                 s[++sp] = (val1 == val2);
390                                 break;
391                         case CEXPR_NEQ:
392                                 s[++sp] = (val1 != val2);
393                                 break;
394                         default:
395                                 BUG();
396                                 return 0;
397                         }
398                         break;
399                 case CEXPR_NAMES:
400                         if (sp == (CEXPR_MAXDEPTH-1))
401                                 return 0;
402                         c = scontext;
403                         if (e->attr & CEXPR_TARGET)
404                                 c = tcontext;
405                         else if (e->attr & CEXPR_XTARGET) {
406                                 c = xcontext;
407                                 if (!c) {
408                                         BUG();
409                                         return 0;
410                                 }
411                         }
412                         if (e->attr & CEXPR_USER)
413                                 val1 = c->user;
414                         else if (e->attr & CEXPR_ROLE)
415                                 val1 = c->role;
416                         else if (e->attr & CEXPR_TYPE)
417                                 val1 = c->type;
418                         else {
419                                 BUG();
420                                 return 0;
421                         }
422
423                         switch (e->op) {
424                         case CEXPR_EQ:
425                                 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
426                                 break;
427                         case CEXPR_NEQ:
428                                 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
429                                 break;
430                         default:
431                                 BUG();
432                                 return 0;
433                         }
434                         break;
435                 default:
436                         BUG();
437                         return 0;
438                 }
439         }
440
441         BUG_ON(sp != 0);
442         return s[0];
443 }
444
445 /*
446  * security_dump_masked_av - dumps masked permissions during
447  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
448  */
449 static int dump_masked_av_helper(void *k, void *d, void *args)
450 {
451         struct perm_datum *pdatum = d;
452         char **permission_names = args;
453
454         BUG_ON(pdatum->value < 1 || pdatum->value > 32);
455
456         permission_names[pdatum->value - 1] = (char *)k;
457
458         return 0;
459 }
460
461 static void security_dump_masked_av(struct context *scontext,
462                                     struct context *tcontext,
463                                     u16 tclass,
464                                     u32 permissions,
465                                     const char *reason)
466 {
467         struct common_datum *common_dat;
468         struct class_datum *tclass_dat;
469         struct audit_buffer *ab;
470         char *tclass_name;
471         char *scontext_name = NULL;
472         char *tcontext_name = NULL;
473         char *permission_names[32];
474         int index;
475         u32 length;
476         bool need_comma = false;
477
478         if (!permissions)
479                 return;
480
481         tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
482         tclass_dat = policydb.class_val_to_struct[tclass - 1];
483         common_dat = tclass_dat->comdatum;
484
485         /* init permission_names */
486         if (common_dat &&
487             hashtab_map(common_dat->permissions.table,
488                         dump_masked_av_helper, permission_names) < 0)
489                 goto out;
490
491         if (hashtab_map(tclass_dat->permissions.table,
492                         dump_masked_av_helper, permission_names) < 0)
493                 goto out;
494
495         /* get scontext/tcontext in text form */
496         if (context_struct_to_string(scontext,
497                                      &scontext_name, &length) < 0)
498                 goto out;
499
500         if (context_struct_to_string(tcontext,
501                                      &tcontext_name, &length) < 0)
502                 goto out;
503
504         /* audit a message */
505         ab = audit_log_start(current->audit_context,
506                              GFP_ATOMIC, AUDIT_SELINUX_ERR);
507         if (!ab)
508                 goto out;
509
510         audit_log_format(ab, "op=security_compute_av reason=%s "
511                          "scontext=%s tcontext=%s tclass=%s perms=",
512                          reason, scontext_name, tcontext_name, tclass_name);
513
514         for (index = 0; index < 32; index++) {
515                 u32 mask = (1 << index);
516
517                 if ((mask & permissions) == 0)
518                         continue;
519
520                 audit_log_format(ab, "%s%s",
521                                  need_comma ? "," : "",
522                                  permission_names[index]
523                                  ? permission_names[index] : "????");
524                 need_comma = true;
525         }
526         audit_log_end(ab);
527 out:
528         /* release scontext/tcontext */
529         kfree(tcontext_name);
530         kfree(scontext_name);
531
532         return;
533 }
534
535 /*
536  * security_boundary_permission - drops violated permissions
537  * on boundary constraint.
538  */
539 static void type_attribute_bounds_av(struct context *scontext,
540                                      struct context *tcontext,
541                                      u16 tclass,
542                                      struct av_decision *avd)
543 {
544         struct context lo_scontext;
545         struct context lo_tcontext;
546         struct av_decision lo_avd;
547         struct type_datum *source;
548         struct type_datum *target;
549         u32 masked = 0;
550
551         source = flex_array_get_ptr(policydb.type_val_to_struct_array,
552                                     scontext->type - 1);
553         BUG_ON(!source);
554
555         target = flex_array_get_ptr(policydb.type_val_to_struct_array,
556                                     tcontext->type - 1);
557         BUG_ON(!target);
558
559         if (source->bounds) {
560                 memset(&lo_avd, 0, sizeof(lo_avd));
561
562                 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
563                 lo_scontext.type = source->bounds;
564
565                 context_struct_compute_av(&lo_scontext,
566                                           tcontext,
567                                           tclass,
568                                           &lo_avd);
569                 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
570                         return;         /* no masked permission */
571                 masked = ~lo_avd.allowed & avd->allowed;
572         }
573
574         if (target->bounds) {
575                 memset(&lo_avd, 0, sizeof(lo_avd));
576
577                 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
578                 lo_tcontext.type = target->bounds;
579
580                 context_struct_compute_av(scontext,
581                                           &lo_tcontext,
582                                           tclass,
583                                           &lo_avd);
584                 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
585                         return;         /* no masked permission */
586                 masked = ~lo_avd.allowed & avd->allowed;
587         }
588
589         if (source->bounds && target->bounds) {
590                 memset(&lo_avd, 0, sizeof(lo_avd));
591                 /*
592                  * lo_scontext and lo_tcontext are already
593                  * set up.
594                  */
595
596                 context_struct_compute_av(&lo_scontext,
597                                           &lo_tcontext,
598                                           tclass,
599                                           &lo_avd);
600                 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
601                         return;         /* no masked permission */
602                 masked = ~lo_avd.allowed & avd->allowed;
603         }
604
605         if (masked) {
606                 /* mask violated permissions */
607                 avd->allowed &= ~masked;
608
609                 /* audit masked permissions */
610                 security_dump_masked_av(scontext, tcontext,
611                                         tclass, masked, "bounds");
612         }
613 }
614
615 /*
616  * Compute access vectors based on a context structure pair for
617  * the permissions in a particular class.
618  */
619 static void context_struct_compute_av(struct context *scontext,
620                                       struct context *tcontext,
621                                       u16 tclass,
622                                       struct av_decision *avd)
623 {
624         struct constraint_node *constraint;
625         struct role_allow *ra;
626         struct avtab_key avkey;
627         struct avtab_node *node;
628         struct class_datum *tclass_datum;
629         struct ebitmap *sattr, *tattr;
630         struct ebitmap_node *snode, *tnode;
631         unsigned int i, j;
632
633         avd->allowed = 0;
634         avd->auditallow = 0;
635         avd->auditdeny = 0xffffffff;
636
637         if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
638                 if (printk_ratelimit())
639                         printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
640                 return;
641         }
642
643         tclass_datum = policydb.class_val_to_struct[tclass - 1];
644
645         /*
646          * If a specific type enforcement rule was defined for
647          * this permission check, then use it.
648          */
649         avkey.target_class = tclass;
650         avkey.specified = AVTAB_AV;
651         sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
652         BUG_ON(!sattr);
653         tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
654         BUG_ON(!tattr);
655         ebitmap_for_each_positive_bit(sattr, snode, i) {
656                 ebitmap_for_each_positive_bit(tattr, tnode, j) {
657                         avkey.source_type = i + 1;
658                         avkey.target_type = j + 1;
659                         for (node = avtab_search_node(&policydb.te_avtab, &avkey);
660                              node;
661                              node = avtab_search_node_next(node, avkey.specified)) {
662                                 if (node->key.specified == AVTAB_ALLOWED)
663                                         avd->allowed |= node->datum.data;
664                                 else if (node->key.specified == AVTAB_AUDITALLOW)
665                                         avd->auditallow |= node->datum.data;
666                                 else if (node->key.specified == AVTAB_AUDITDENY)
667                                         avd->auditdeny &= node->datum.data;
668                         }
669
670                         /* Check conditional av table for additional permissions */
671                         cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
672
673                 }
674         }
675
676         /*
677          * Remove any permissions prohibited by a constraint (this includes
678          * the MLS policy).
679          */
680         constraint = tclass_datum->constraints;
681         while (constraint) {
682                 if ((constraint->permissions & (avd->allowed)) &&
683                     !constraint_expr_eval(scontext, tcontext, NULL,
684                                           constraint->expr)) {
685                         avd->allowed &= ~(constraint->permissions);
686                 }
687                 constraint = constraint->next;
688         }
689
690         /*
691          * If checking process transition permission and the
692          * role is changing, then check the (current_role, new_role)
693          * pair.
694          */
695         if (tclass == policydb.process_class &&
696             (avd->allowed & policydb.process_trans_perms) &&
697             scontext->role != tcontext->role) {
698                 for (ra = policydb.role_allow; ra; ra = ra->next) {
699                         if (scontext->role == ra->role &&
700                             tcontext->role == ra->new_role)
701                                 break;
702                 }
703                 if (!ra)
704                         avd->allowed &= ~policydb.process_trans_perms;
705         }
706
707         /*
708          * If the given source and target types have boundary
709          * constraint, lazy checks have to mask any violated
710          * permission and notice it to userspace via audit.
711          */
712         type_attribute_bounds_av(scontext, tcontext,
713                                  tclass, avd);
714 }
715
716 static int security_validtrans_handle_fail(struct context *ocontext,
717                                            struct context *ncontext,
718                                            struct context *tcontext,
719                                            u16 tclass)
720 {
721         char *o = NULL, *n = NULL, *t = NULL;
722         u32 olen, nlen, tlen;
723
724         if (context_struct_to_string(ocontext, &o, &olen))
725                 goto out;
726         if (context_struct_to_string(ncontext, &n, &nlen))
727                 goto out;
728         if (context_struct_to_string(tcontext, &t, &tlen))
729                 goto out;
730         audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
731                   "security_validate_transition:  denied for"
732                   " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
733                   o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
734 out:
735         kfree(o);
736         kfree(n);
737         kfree(t);
738
739         if (!selinux_enforcing)
740                 return 0;
741         return -EPERM;
742 }
743
744 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
745                                  u16 orig_tclass)
746 {
747         struct context *ocontext;
748         struct context *ncontext;
749         struct context *tcontext;
750         struct class_datum *tclass_datum;
751         struct constraint_node *constraint;
752         u16 tclass;
753         int rc = 0;
754
755         if (!ss_initialized)
756                 return 0;
757
758         read_lock(&policy_rwlock);
759
760         tclass = unmap_class(orig_tclass);
761
762         if (!tclass || tclass > policydb.p_classes.nprim) {
763                 printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
764                         __func__, tclass);
765                 rc = -EINVAL;
766                 goto out;
767         }
768         tclass_datum = policydb.class_val_to_struct[tclass - 1];
769
770         ocontext = sidtab_search(&sidtab, oldsid);
771         if (!ocontext) {
772                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
773                         __func__, oldsid);
774                 rc = -EINVAL;
775                 goto out;
776         }
777
778         ncontext = sidtab_search(&sidtab, newsid);
779         if (!ncontext) {
780                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
781                         __func__, newsid);
782                 rc = -EINVAL;
783                 goto out;
784         }
785
786         tcontext = sidtab_search(&sidtab, tasksid);
787         if (!tcontext) {
788                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
789                         __func__, tasksid);
790                 rc = -EINVAL;
791                 goto out;
792         }
793
794         constraint = tclass_datum->validatetrans;
795         while (constraint) {
796                 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
797                                           constraint->expr)) {
798                         rc = security_validtrans_handle_fail(ocontext, ncontext,
799                                                              tcontext, tclass);
800                         goto out;
801                 }
802                 constraint = constraint->next;
803         }
804
805 out:
806         read_unlock(&policy_rwlock);
807         return rc;
808 }
809
810 /*
811  * security_bounded_transition - check whether the given
812  * transition is directed to bounded, or not.
813  * It returns 0, if @newsid is bounded by @oldsid.
814  * Otherwise, it returns error code.
815  *
816  * @oldsid : current security identifier
817  * @newsid : destinated security identifier
818  */
819 int security_bounded_transition(u32 old_sid, u32 new_sid)
820 {
821         struct context *old_context, *new_context;
822         struct type_datum *type;
823         int index;
824         int rc;
825
826         read_lock(&policy_rwlock);
827
828         rc = -EINVAL;
829         old_context = sidtab_search(&sidtab, old_sid);
830         if (!old_context) {
831                 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
832                        __func__, old_sid);
833                 goto out;
834         }
835
836         rc = -EINVAL;
837         new_context = sidtab_search(&sidtab, new_sid);
838         if (!new_context) {
839                 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
840                        __func__, new_sid);
841                 goto out;
842         }
843
844         rc = 0;
845         /* type/domain unchanged */
846         if (old_context->type == new_context->type)
847                 goto out;
848
849         index = new_context->type;
850         while (true) {
851                 type = flex_array_get_ptr(policydb.type_val_to_struct_array,
852                                           index - 1);
853                 BUG_ON(!type);
854
855                 /* not bounded anymore */
856                 rc = -EPERM;
857                 if (!type->bounds)
858                         break;
859
860                 /* @newsid is bounded by @oldsid */
861                 rc = 0;
862                 if (type->bounds == old_context->type)
863                         break;
864
865                 index = type->bounds;
866         }
867
868         if (rc) {
869                 char *old_name = NULL;
870                 char *new_name = NULL;
871                 u32 length;
872
873                 if (!context_struct_to_string(old_context,
874                                               &old_name, &length) &&
875                     !context_struct_to_string(new_context,
876                                               &new_name, &length)) {
877                         audit_log(current->audit_context,
878                                   GFP_ATOMIC, AUDIT_SELINUX_ERR,
879                                   "op=security_bounded_transition "
880                                   "result=denied "
881                                   "oldcontext=%s newcontext=%s",
882                                   old_name, new_name);
883                 }
884                 kfree(new_name);
885                 kfree(old_name);
886         }
887 out:
888         read_unlock(&policy_rwlock);
889
890         return rc;
891 }
892
893 static void avd_init(struct av_decision *avd)
894 {
895         avd->allowed = 0;
896         avd->auditallow = 0;
897         avd->auditdeny = 0xffffffff;
898         avd->seqno = latest_granting;
899         avd->flags = 0;
900 }
901
902
903 /**
904  * security_compute_av - Compute access vector decisions.
905  * @ssid: source security identifier
906  * @tsid: target security identifier
907  * @tclass: target security class
908  * @avd: access vector decisions
909  *
910  * Compute a set of access vector decisions based on the
911  * SID pair (@ssid, @tsid) for the permissions in @tclass.
912  */
913 void security_compute_av(u32 ssid,
914                          u32 tsid,
915                          u16 orig_tclass,
916                          struct av_decision *avd)
917 {
918         u16 tclass;
919         struct context *scontext = NULL, *tcontext = NULL;
920
921         read_lock(&policy_rwlock);
922         avd_init(avd);
923         if (!ss_initialized)
924                 goto allow;
925
926         scontext = sidtab_search(&sidtab, ssid);
927         if (!scontext) {
928                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
929                        __func__, ssid);
930                 goto out;
931         }
932
933         /* permissive domain? */
934         if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
935                 avd->flags |= AVD_FLAGS_PERMISSIVE;
936
937         tcontext = sidtab_search(&sidtab, tsid);
938         if (!tcontext) {
939                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
940                        __func__, tsid);
941                 goto out;
942         }
943
944         tclass = unmap_class(orig_tclass);
945         if (unlikely(orig_tclass && !tclass)) {
946                 if (policydb.allow_unknown)
947                         goto allow;
948                 goto out;
949         }
950         context_struct_compute_av(scontext, tcontext, tclass, avd);
951         map_decision(orig_tclass, avd, policydb.allow_unknown);
952 out:
953         read_unlock(&policy_rwlock);
954         return;
955 allow:
956         avd->allowed = 0xffffffff;
957         goto out;
958 }
959
960 void security_compute_av_user(u32 ssid,
961                               u32 tsid,
962                               u16 tclass,
963                               struct av_decision *avd)
964 {
965         struct context *scontext = NULL, *tcontext = NULL;
966
967         read_lock(&policy_rwlock);
968         avd_init(avd);
969         if (!ss_initialized)
970                 goto allow;
971
972         scontext = sidtab_search(&sidtab, ssid);
973         if (!scontext) {
974                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
975                        __func__, ssid);
976                 goto out;
977         }
978
979         /* permissive domain? */
980         if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
981                 avd->flags |= AVD_FLAGS_PERMISSIVE;
982
983         tcontext = sidtab_search(&sidtab, tsid);
984         if (!tcontext) {
985                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
986                        __func__, tsid);
987                 goto out;
988         }
989
990         if (unlikely(!tclass)) {
991                 if (policydb.allow_unknown)
992                         goto allow;
993                 goto out;
994         }
995
996         context_struct_compute_av(scontext, tcontext, tclass, avd);
997  out:
998         read_unlock(&policy_rwlock);
999         return;
1000 allow:
1001         avd->allowed = 0xffffffff;
1002         goto out;
1003 }
1004
1005 /*
1006  * Write the security context string representation of
1007  * the context structure `context' into a dynamically
1008  * allocated string of the correct size.  Set `*scontext'
1009  * to point to this string and set `*scontext_len' to
1010  * the length of the string.
1011  */
1012 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1013 {
1014         char *scontextp;
1015
1016         if (scontext)
1017                 *scontext = NULL;
1018         *scontext_len = 0;
1019
1020         if (context->len) {
1021                 *scontext_len = context->len;
1022                 if (scontext) {
1023                         *scontext = kstrdup(context->str, GFP_ATOMIC);
1024                         if (!(*scontext))
1025                                 return -ENOMEM;
1026                 }
1027                 return 0;
1028         }
1029
1030         /* Compute the size of the context. */
1031         *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1032         *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1033         *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1034         *scontext_len += mls_compute_context_len(context);
1035
1036         if (!scontext)
1037                 return 0;
1038
1039         /* Allocate space for the context; caller must free this space. */
1040         scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1041         if (!scontextp)
1042                 return -ENOMEM;
1043         *scontext = scontextp;
1044
1045         /*
1046          * Copy the user name, role name and type name into the context.
1047          */
1048         sprintf(scontextp, "%s:%s:%s",
1049                 sym_name(&policydb, SYM_USERS, context->user - 1),
1050                 sym_name(&policydb, SYM_ROLES, context->role - 1),
1051                 sym_name(&policydb, SYM_TYPES, context->type - 1));
1052         scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1053                      1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1054                      1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1055
1056         mls_sid_to_context(context, &scontextp);
1057
1058         *scontextp = 0;
1059
1060         return 0;
1061 }
1062
1063 #include "initial_sid_to_string.h"
1064
1065 const char *security_get_initial_sid_context(u32 sid)
1066 {
1067         if (unlikely(sid > SECINITSID_NUM))
1068                 return NULL;
1069         return initial_sid_to_string[sid];
1070 }
1071
1072 static int security_sid_to_context_core(u32 sid, char **scontext,
1073                                         u32 *scontext_len, int force)
1074 {
1075         struct context *context;
1076         int rc = 0;
1077
1078         if (scontext)
1079                 *scontext = NULL;
1080         *scontext_len  = 0;
1081
1082         if (!ss_initialized) {
1083                 if (sid <= SECINITSID_NUM) {
1084                         char *scontextp;
1085
1086                         *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1087                         if (!scontext)
1088                                 goto out;
1089                         scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1090                         if (!scontextp) {
1091                                 rc = -ENOMEM;
1092                                 goto out;
1093                         }
1094                         strcpy(scontextp, initial_sid_to_string[sid]);
1095                         *scontext = scontextp;
1096                         goto out;
1097                 }
1098                 printk(KERN_ERR "SELinux: %s:  called before initial "
1099                        "load_policy on unknown SID %d\n", __func__, sid);
1100                 rc = -EINVAL;
1101                 goto out;
1102         }
1103         read_lock(&policy_rwlock);
1104         if (force)
1105                 context = sidtab_search_force(&sidtab, sid);
1106         else
1107                 context = sidtab_search(&sidtab, sid);
1108         if (!context) {
1109                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1110                         __func__, sid);
1111                 rc = -EINVAL;
1112                 goto out_unlock;
1113         }
1114         rc = context_struct_to_string(context, scontext, scontext_len);
1115 out_unlock:
1116         read_unlock(&policy_rwlock);
1117 out:
1118         return rc;
1119
1120 }
1121
1122 /**
1123  * security_sid_to_context - Obtain a context for a given SID.
1124  * @sid: security identifier, SID
1125  * @scontext: security context
1126  * @scontext_len: length in bytes
1127  *
1128  * Write the string representation of the context associated with @sid
1129  * into a dynamically allocated string of the correct size.  Set @scontext
1130  * to point to this string and set @scontext_len to the length of the string.
1131  */
1132 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1133 {
1134         return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1135 }
1136
1137 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1138 {
1139         return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1140 }
1141
1142 /*
1143  * Caveat:  Mutates scontext.
1144  */
1145 static int string_to_context_struct(struct policydb *pol,
1146                                     struct sidtab *sidtabp,
1147                                     char *scontext,
1148                                     u32 scontext_len,
1149                                     struct context *ctx,
1150                                     u32 def_sid)
1151 {
1152         struct role_datum *role;
1153         struct type_datum *typdatum;
1154         struct user_datum *usrdatum;
1155         char *scontextp, *p, oldc;
1156         int rc = 0;
1157
1158         context_init(ctx);
1159
1160         /* Parse the security context. */
1161
1162         rc = -EINVAL;
1163         scontextp = (char *) scontext;
1164
1165         /* Extract the user. */
1166         p = scontextp;
1167         while (*p && *p != ':')
1168                 p++;
1169
1170         if (*p == 0)
1171                 goto out;
1172
1173         *p++ = 0;
1174
1175         usrdatum = hashtab_search(pol->p_users.table, scontextp);
1176         if (!usrdatum)
1177                 goto out;
1178
1179         ctx->user = usrdatum->value;
1180
1181         /* Extract role. */
1182         scontextp = p;
1183         while (*p && *p != ':')
1184                 p++;
1185
1186         if (*p == 0)
1187                 goto out;
1188
1189         *p++ = 0;
1190
1191         role = hashtab_search(pol->p_roles.table, scontextp);
1192         if (!role)
1193                 goto out;
1194         ctx->role = role->value;
1195
1196         /* Extract type. */
1197         scontextp = p;
1198         while (*p && *p != ':')
1199                 p++;
1200         oldc = *p;
1201         *p++ = 0;
1202
1203         typdatum = hashtab_search(pol->p_types.table, scontextp);
1204         if (!typdatum || typdatum->attribute)
1205                 goto out;
1206
1207         ctx->type = typdatum->value;
1208
1209         rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1210         if (rc)
1211                 goto out;
1212
1213         rc = -EINVAL;
1214         if ((p - scontext) < scontext_len)
1215                 goto out;
1216
1217         /* Check the validity of the new context. */
1218         if (!policydb_context_isvalid(pol, ctx))
1219                 goto out;
1220         rc = 0;
1221 out:
1222         if (rc)
1223                 context_destroy(ctx);
1224         return rc;
1225 }
1226
1227 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1228                                         u32 *sid, u32 def_sid, gfp_t gfp_flags,
1229                                         int force)
1230 {
1231         char *scontext2, *str = NULL;
1232         struct context context;
1233         int rc = 0;
1234
1235         /* An empty security context is never valid. */
1236         if (!scontext_len)
1237                 return -EINVAL;
1238
1239         if (!ss_initialized) {
1240                 int i;
1241
1242                 for (i = 1; i < SECINITSID_NUM; i++) {
1243                         if (!strcmp(initial_sid_to_string[i], scontext)) {
1244                                 *sid = i;
1245                                 return 0;
1246                         }
1247                 }
1248                 *sid = SECINITSID_KERNEL;
1249                 return 0;
1250         }
1251         *sid = SECSID_NULL;
1252
1253         /* Copy the string so that we can modify the copy as we parse it. */
1254         scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1255         if (!scontext2)
1256                 return -ENOMEM;
1257         memcpy(scontext2, scontext, scontext_len);
1258         scontext2[scontext_len] = 0;
1259
1260         if (force) {
1261                 /* Save another copy for storing in uninterpreted form */
1262                 rc = -ENOMEM;
1263                 str = kstrdup(scontext2, gfp_flags);
1264                 if (!str)
1265                         goto out;
1266         }
1267
1268         read_lock(&policy_rwlock);
1269         rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1270                                       scontext_len, &context, def_sid);
1271         if (rc == -EINVAL && force) {
1272                 context.str = str;
1273                 context.len = scontext_len;
1274                 str = NULL;
1275         } else if (rc)
1276                 goto out_unlock;
1277         rc = sidtab_context_to_sid(&sidtab, &context, sid);
1278         context_destroy(&context);
1279 out_unlock:
1280         read_unlock(&policy_rwlock);
1281 out:
1282         kfree(scontext2);
1283         kfree(str);
1284         return rc;
1285 }
1286
1287 /**
1288  * security_context_to_sid - Obtain a SID for a given security context.
1289  * @scontext: security context
1290  * @scontext_len: length in bytes
1291  * @sid: security identifier, SID
1292  * @gfp: context for the allocation
1293  *
1294  * Obtains a SID associated with the security context that
1295  * has the string representation specified by @scontext.
1296  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1297  * memory is available, or 0 on success.
1298  */
1299 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1300                             gfp_t gfp)
1301 {
1302         return security_context_to_sid_core(scontext, scontext_len,
1303                                             sid, SECSID_NULL, gfp, 0);
1304 }
1305
1306 /**
1307  * security_context_to_sid_default - Obtain a SID for a given security context,
1308  * falling back to specified default if needed.
1309  *
1310  * @scontext: security context
1311  * @scontext_len: length in bytes
1312  * @sid: security identifier, SID
1313  * @def_sid: default SID to assign on error
1314  *
1315  * Obtains a SID associated with the security context that
1316  * has the string representation specified by @scontext.
1317  * The default SID is passed to the MLS layer to be used to allow
1318  * kernel labeling of the MLS field if the MLS field is not present
1319  * (for upgrading to MLS without full relabel).
1320  * Implicitly forces adding of the context even if it cannot be mapped yet.
1321  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1322  * memory is available, or 0 on success.
1323  */
1324 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1325                                     u32 *sid, u32 def_sid, gfp_t gfp_flags)
1326 {
1327         return security_context_to_sid_core(scontext, scontext_len,
1328                                             sid, def_sid, gfp_flags, 1);
1329 }
1330
1331 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1332                                   u32 *sid)
1333 {
1334         return security_context_to_sid_core(scontext, scontext_len,
1335                                             sid, SECSID_NULL, GFP_KERNEL, 1);
1336 }
1337
1338 static int compute_sid_handle_invalid_context(
1339         struct context *scontext,
1340         struct context *tcontext,
1341         u16 tclass,
1342         struct context *newcontext)
1343 {
1344         char *s = NULL, *t = NULL, *n = NULL;
1345         u32 slen, tlen, nlen;
1346
1347         if (context_struct_to_string(scontext, &s, &slen))
1348                 goto out;
1349         if (context_struct_to_string(tcontext, &t, &tlen))
1350                 goto out;
1351         if (context_struct_to_string(newcontext, &n, &nlen))
1352                 goto out;
1353         audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1354                   "security_compute_sid:  invalid context %s"
1355                   " for scontext=%s"
1356                   " tcontext=%s"
1357                   " tclass=%s",
1358                   n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1359 out:
1360         kfree(s);
1361         kfree(t);
1362         kfree(n);
1363         if (!selinux_enforcing)
1364                 return 0;
1365         return -EACCES;
1366 }
1367
1368 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1369                                   u32 stype, u32 ttype, u16 tclass,
1370                                   const char *objname)
1371 {
1372         struct filename_trans ft;
1373         struct filename_trans_datum *otype;
1374
1375         /*
1376          * Most filename trans rules are going to live in specific directories
1377          * like /dev or /var/run.  This bitmap will quickly skip rule searches
1378          * if the ttype does not contain any rules.
1379          */
1380         if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1381                 return;
1382
1383         ft.stype = stype;
1384         ft.ttype = ttype;
1385         ft.tclass = tclass;
1386         ft.name = objname;
1387
1388         otype = hashtab_search(p->filename_trans, &ft);
1389         if (otype)
1390                 newcontext->type = otype->otype;
1391 }
1392
1393 static int security_compute_sid(u32 ssid,
1394                                 u32 tsid,
1395                                 u16 orig_tclass,
1396                                 u32 specified,
1397                                 const char *objname,
1398                                 u32 *out_sid,
1399                                 bool kern)
1400 {
1401         struct class_datum *cladatum = NULL;
1402         struct context *scontext = NULL, *tcontext = NULL, newcontext;
1403         struct role_trans *roletr = NULL;
1404         struct avtab_key avkey;
1405         struct avtab_datum *avdatum;
1406         struct avtab_node *node;
1407         u16 tclass;
1408         int rc = 0;
1409         bool sock;
1410
1411         if (!ss_initialized) {
1412                 switch (orig_tclass) {
1413                 case SECCLASS_PROCESS: /* kernel value */
1414                         *out_sid = ssid;
1415                         break;
1416                 default:
1417                         *out_sid = tsid;
1418                         break;
1419                 }
1420                 goto out;
1421         }
1422
1423         context_init(&newcontext);
1424
1425         read_lock(&policy_rwlock);
1426
1427         if (kern) {
1428                 tclass = unmap_class(orig_tclass);
1429                 sock = security_is_socket_class(orig_tclass);
1430         } else {
1431                 tclass = orig_tclass;
1432                 sock = security_is_socket_class(map_class(tclass));
1433         }
1434
1435         scontext = sidtab_search(&sidtab, ssid);
1436         if (!scontext) {
1437                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1438                        __func__, ssid);
1439                 rc = -EINVAL;
1440                 goto out_unlock;
1441         }
1442         tcontext = sidtab_search(&sidtab, tsid);
1443         if (!tcontext) {
1444                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1445                        __func__, tsid);
1446                 rc = -EINVAL;
1447                 goto out_unlock;
1448         }
1449
1450         if (tclass && tclass <= policydb.p_classes.nprim)
1451                 cladatum = policydb.class_val_to_struct[tclass - 1];
1452
1453         /* Set the user identity. */
1454         switch (specified) {
1455         case AVTAB_TRANSITION:
1456         case AVTAB_CHANGE:
1457                 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1458                         newcontext.user = tcontext->user;
1459                 } else {
1460                         /* notice this gets both DEFAULT_SOURCE and unset */
1461                         /* Use the process user identity. */
1462                         newcontext.user = scontext->user;
1463                 }
1464                 break;
1465         case AVTAB_MEMBER:
1466                 /* Use the related object owner. */
1467                 newcontext.user = tcontext->user;
1468                 break;
1469         }
1470
1471         /* Set the role to default values. */
1472         if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1473                 newcontext.role = scontext->role;
1474         } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1475                 newcontext.role = tcontext->role;
1476         } else {
1477                 if ((tclass == policydb.process_class) || (sock == true))
1478                         newcontext.role = scontext->role;
1479                 else
1480                         newcontext.role = OBJECT_R_VAL;
1481         }
1482
1483         /* Set the type to default values. */
1484         if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1485                 newcontext.type = scontext->type;
1486         } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1487                 newcontext.type = tcontext->type;
1488         } else {
1489                 if ((tclass == policydb.process_class) || (sock == true)) {
1490                         /* Use the type of process. */
1491                         newcontext.type = scontext->type;
1492                 } else {
1493                         /* Use the type of the related object. */
1494                         newcontext.type = tcontext->type;
1495                 }
1496         }
1497
1498         /* Look for a type transition/member/change rule. */
1499         avkey.source_type = scontext->type;
1500         avkey.target_type = tcontext->type;
1501         avkey.target_class = tclass;
1502         avkey.specified = specified;
1503         avdatum = avtab_search(&policydb.te_avtab, &avkey);
1504
1505         /* If no permanent rule, also check for enabled conditional rules */
1506         if (!avdatum) {
1507                 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1508                 for (; node; node = avtab_search_node_next(node, specified)) {
1509                         if (node->key.specified & AVTAB_ENABLED) {
1510                                 avdatum = &node->datum;
1511                                 break;
1512                         }
1513                 }
1514         }
1515
1516         if (avdatum) {
1517                 /* Use the type from the type transition/member/change rule. */
1518                 newcontext.type = avdatum->data;
1519         }
1520
1521         /* if we have a objname this is a file trans check so check those rules */
1522         if (objname)
1523                 filename_compute_type(&policydb, &newcontext, scontext->type,
1524                                       tcontext->type, tclass, objname);
1525
1526         /* Check for class-specific changes. */
1527         if (specified & AVTAB_TRANSITION) {
1528                 /* Look for a role transition rule. */
1529                 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1530                         if ((roletr->role == scontext->role) &&
1531                             (roletr->type == tcontext->type) &&
1532                             (roletr->tclass == tclass)) {
1533                                 /* Use the role transition rule. */
1534                                 newcontext.role = roletr->new_role;
1535                                 break;
1536                         }
1537                 }
1538         }
1539
1540         /* Set the MLS attributes.
1541            This is done last because it may allocate memory. */
1542         rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1543                              &newcontext, sock);
1544         if (rc)
1545                 goto out_unlock;
1546
1547         /* Check the validity of the context. */
1548         if (!policydb_context_isvalid(&policydb, &newcontext)) {
1549                 rc = compute_sid_handle_invalid_context(scontext,
1550                                                         tcontext,
1551                                                         tclass,
1552                                                         &newcontext);
1553                 if (rc)
1554                         goto out_unlock;
1555         }
1556         /* Obtain the sid for the context. */
1557         rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1558 out_unlock:
1559         read_unlock(&policy_rwlock);
1560         context_destroy(&newcontext);
1561 out:
1562         return rc;
1563 }
1564
1565 /**
1566  * security_transition_sid - Compute the SID for a new subject/object.
1567  * @ssid: source security identifier
1568  * @tsid: target security identifier
1569  * @tclass: target security class
1570  * @out_sid: security identifier for new subject/object
1571  *
1572  * Compute a SID to use for labeling a new subject or object in the
1573  * class @tclass based on a SID pair (@ssid, @tsid).
1574  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1575  * if insufficient memory is available, or %0 if the new SID was
1576  * computed successfully.
1577  */
1578 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1579                             const struct qstr *qstr, u32 *out_sid)
1580 {
1581         return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1582                                     qstr ? qstr->name : NULL, out_sid, true);
1583 }
1584
1585 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1586                                  const char *objname, u32 *out_sid)
1587 {
1588         return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1589                                     objname, out_sid, false);
1590 }
1591
1592 /**
1593  * security_member_sid - Compute the SID for member selection.
1594  * @ssid: source security identifier
1595  * @tsid: target security identifier
1596  * @tclass: target security class
1597  * @out_sid: security identifier for selected member
1598  *
1599  * Compute a SID to use when selecting a member of a polyinstantiated
1600  * object of class @tclass based on a SID pair (@ssid, @tsid).
1601  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1602  * if insufficient memory is available, or %0 if the SID was
1603  * computed successfully.
1604  */
1605 int security_member_sid(u32 ssid,
1606                         u32 tsid,
1607                         u16 tclass,
1608                         u32 *out_sid)
1609 {
1610         return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1611                                     out_sid, false);
1612 }
1613
1614 /**
1615  * security_change_sid - Compute the SID for object relabeling.
1616  * @ssid: source security identifier
1617  * @tsid: target security identifier
1618  * @tclass: target security class
1619  * @out_sid: security identifier for selected member
1620  *
1621  * Compute a SID to use for relabeling an object of class @tclass
1622  * based on a SID pair (@ssid, @tsid).
1623  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1624  * if insufficient memory is available, or %0 if the SID was
1625  * computed successfully.
1626  */
1627 int security_change_sid(u32 ssid,
1628                         u32 tsid,
1629                         u16 tclass,
1630                         u32 *out_sid)
1631 {
1632         return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1633                                     out_sid, false);
1634 }
1635
1636 /* Clone the SID into the new SID table. */
1637 static int clone_sid(u32 sid,
1638                      struct context *context,
1639                      void *arg)
1640 {
1641         struct sidtab *s = arg;
1642
1643         if (sid > SECINITSID_NUM)
1644                 return sidtab_insert(s, sid, context);
1645         else
1646                 return 0;
1647 }
1648
1649 static inline int convert_context_handle_invalid_context(struct context *context)
1650 {
1651         char *s;
1652         u32 len;
1653
1654         if (selinux_enforcing)
1655                 return -EINVAL;
1656
1657         if (!context_struct_to_string(context, &s, &len)) {
1658                 printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1659                 kfree(s);
1660         }
1661         return 0;
1662 }
1663
1664 struct convert_context_args {
1665         struct policydb *oldp;
1666         struct policydb *newp;
1667 };
1668
1669 /*
1670  * Convert the values in the security context
1671  * structure `c' from the values specified
1672  * in the policy `p->oldp' to the values specified
1673  * in the policy `p->newp'.  Verify that the
1674  * context is valid under the new policy.
1675  */
1676 static int convert_context(u32 key,
1677                            struct context *c,
1678                            void *p)
1679 {
1680         struct convert_context_args *args;
1681         struct context oldc;
1682         struct ocontext *oc;
1683         struct mls_range *range;
1684         struct role_datum *role;
1685         struct type_datum *typdatum;
1686         struct user_datum *usrdatum;
1687         char *s;
1688         u32 len;
1689         int rc = 0;
1690
1691         if (key <= SECINITSID_NUM)
1692                 goto out;
1693
1694         args = p;
1695
1696         if (c->str) {
1697                 struct context ctx;
1698
1699                 rc = -ENOMEM;
1700                 s = kstrdup(c->str, GFP_KERNEL);
1701                 if (!s)
1702                         goto out;
1703
1704                 rc = string_to_context_struct(args->newp, NULL, s,
1705                                               c->len, &ctx, SECSID_NULL);
1706                 kfree(s);
1707                 if (!rc) {
1708                         printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1709                                c->str);
1710                         /* Replace string with mapped representation. */
1711                         kfree(c->str);
1712                         memcpy(c, &ctx, sizeof(*c));
1713                         goto out;
1714                 } else if (rc == -EINVAL) {
1715                         /* Retain string representation for later mapping. */
1716                         rc = 0;
1717                         goto out;
1718                 } else {
1719                         /* Other error condition, e.g. ENOMEM. */
1720                         printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1721                                c->str, -rc);
1722                         goto out;
1723                 }
1724         }
1725
1726         rc = context_cpy(&oldc, c);
1727         if (rc)
1728                 goto out;
1729
1730         /* Convert the user. */
1731         rc = -EINVAL;
1732         usrdatum = hashtab_search(args->newp->p_users.table,
1733                                   sym_name(args->oldp, SYM_USERS, c->user - 1));
1734         if (!usrdatum)
1735                 goto bad;
1736         c->user = usrdatum->value;
1737
1738         /* Convert the role. */
1739         rc = -EINVAL;
1740         role = hashtab_search(args->newp->p_roles.table,
1741                               sym_name(args->oldp, SYM_ROLES, c->role - 1));
1742         if (!role)
1743                 goto bad;
1744         c->role = role->value;
1745
1746         /* Convert the type. */
1747         rc = -EINVAL;
1748         typdatum = hashtab_search(args->newp->p_types.table,
1749                                   sym_name(args->oldp, SYM_TYPES, c->type - 1));
1750         if (!typdatum)
1751                 goto bad;
1752         c->type = typdatum->value;
1753
1754         /* Convert the MLS fields if dealing with MLS policies */
1755         if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1756                 rc = mls_convert_context(args->oldp, args->newp, c);
1757                 if (rc)
1758                         goto bad;
1759         } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1760                 /*
1761                  * Switching between MLS and non-MLS policy:
1762                  * free any storage used by the MLS fields in the
1763                  * context for all existing entries in the sidtab.
1764                  */
1765                 mls_context_destroy(c);
1766         } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1767                 /*
1768                  * Switching between non-MLS and MLS policy:
1769                  * ensure that the MLS fields of the context for all
1770                  * existing entries in the sidtab are filled in with a
1771                  * suitable default value, likely taken from one of the
1772                  * initial SIDs.
1773                  */
1774                 oc = args->newp->ocontexts[OCON_ISID];
1775                 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1776                         oc = oc->next;
1777                 rc = -EINVAL;
1778                 if (!oc) {
1779                         printk(KERN_ERR "SELinux:  unable to look up"
1780                                 " the initial SIDs list\n");
1781                         goto bad;
1782                 }
1783                 range = &oc->context[0].range;
1784                 rc = mls_range_set(c, range);
1785                 if (rc)
1786                         goto bad;
1787         }
1788
1789         /* Check the validity of the new context. */
1790         if (!policydb_context_isvalid(args->newp, c)) {
1791                 rc = convert_context_handle_invalid_context(&oldc);
1792                 if (rc)
1793                         goto bad;
1794         }
1795
1796         context_destroy(&oldc);
1797
1798         rc = 0;
1799 out:
1800         return rc;
1801 bad:
1802         /* Map old representation to string and save it. */
1803         rc = context_struct_to_string(&oldc, &s, &len);
1804         if (rc)
1805                 return rc;
1806         context_destroy(&oldc);
1807         context_destroy(c);
1808         c->str = s;
1809         c->len = len;
1810         printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1811                c->str);
1812         rc = 0;
1813         goto out;
1814 }
1815
1816 static void security_load_policycaps(void)
1817 {
1818         selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1819                                                   POLICYDB_CAPABILITY_NETPEER);
1820         selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1821                                                   POLICYDB_CAPABILITY_OPENPERM);
1822         selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
1823                                                   POLICYDB_CAPABILITY_ALWAYSNETWORK);
1824 }
1825
1826 static int security_preserve_bools(struct policydb *p);
1827
1828 /**
1829  * security_load_policy - Load a security policy configuration.
1830  * @data: binary policy data
1831  * @len: length of data in bytes
1832  *
1833  * Load a new set of security policy configuration data,
1834  * validate it and convert the SID table as necessary.
1835  * This function will flush the access vector cache after
1836  * loading the new policy.
1837  */
1838 int security_load_policy(void *data, size_t len)
1839 {
1840         struct policydb *oldpolicydb, *newpolicydb;
1841         struct sidtab oldsidtab, newsidtab;
1842         struct selinux_mapping *oldmap, *map = NULL;
1843         struct convert_context_args args;
1844         u32 seqno;
1845         u16 map_size;
1846         int rc = 0;
1847         struct policy_file file = { data, len }, *fp = &file;
1848
1849         oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
1850         if (!oldpolicydb) {
1851                 rc = -ENOMEM;
1852                 goto out;
1853         }
1854         newpolicydb = oldpolicydb + 1;
1855
1856         if (!ss_initialized) {
1857                 avtab_cache_init();
1858                 rc = policydb_read(&policydb, fp);
1859                 if (rc) {
1860                         avtab_cache_destroy();
1861                         goto out;
1862                 }
1863
1864                 policydb.len = len;
1865                 rc = selinux_set_mapping(&policydb, secclass_map,
1866                                          &current_mapping,
1867                                          &current_mapping_size);
1868                 if (rc) {
1869                         policydb_destroy(&policydb);
1870                         avtab_cache_destroy();
1871                         goto out;
1872                 }
1873
1874                 rc = policydb_load_isids(&policydb, &sidtab);
1875                 if (rc) {
1876                         policydb_destroy(&policydb);
1877                         avtab_cache_destroy();
1878                         goto out;
1879                 }
1880
1881                 security_load_policycaps();
1882                 ss_initialized = 1;
1883                 seqno = ++latest_granting;
1884                 selinux_complete_init();
1885                 avc_ss_reset(seqno);
1886                 selnl_notify_policyload(seqno);
1887                 selinux_status_update_policyload(seqno);
1888                 selinux_netlbl_cache_invalidate();
1889                 selinux_xfrm_notify_policyload();
1890                 goto out;
1891         }
1892
1893 #if 0
1894         sidtab_hash_eval(&sidtab, "sids");
1895 #endif
1896
1897         rc = policydb_read(newpolicydb, fp);
1898         if (rc)
1899                 goto out;
1900
1901         newpolicydb->len = len;
1902         /* If switching between different policy types, log MLS status */
1903         if (policydb.mls_enabled && !newpolicydb->mls_enabled)
1904                 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1905         else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
1906                 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1907
1908         rc = policydb_load_isids(newpolicydb, &newsidtab);
1909         if (rc) {
1910                 printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1911                 policydb_destroy(newpolicydb);
1912                 goto out;
1913         }
1914
1915         rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
1916         if (rc)
1917                 goto err;
1918
1919         rc = security_preserve_bools(newpolicydb);
1920         if (rc) {
1921                 printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1922                 goto err;
1923         }
1924
1925         /* Clone the SID table. */
1926         sidtab_shutdown(&sidtab);
1927
1928         rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1929         if (rc)
1930                 goto err;
1931
1932         /*
1933          * Convert the internal representations of contexts
1934          * in the new SID table.
1935          */
1936         args.oldp = &policydb;
1937         args.newp = newpolicydb;
1938         rc = sidtab_map(&newsidtab, convert_context, &args);
1939         if (rc) {
1940                 printk(KERN_ERR "SELinux:  unable to convert the internal"
1941                         " representation of contexts in the new SID"
1942                         " table\n");
1943                 goto err;
1944         }
1945
1946         /* Save the old policydb and SID table to free later. */
1947         memcpy(oldpolicydb, &policydb, sizeof(policydb));
1948         sidtab_set(&oldsidtab, &sidtab);
1949
1950         /* Install the new policydb and SID table. */
1951         write_lock_irq(&policy_rwlock);
1952         memcpy(&policydb, newpolicydb, sizeof(policydb));
1953         sidtab_set(&sidtab, &newsidtab);
1954         security_load_policycaps();
1955         oldmap = current_mapping;
1956         current_mapping = map;
1957         current_mapping_size = map_size;
1958         seqno = ++latest_granting;
1959         write_unlock_irq(&policy_rwlock);
1960
1961         /* Free the old policydb and SID table. */
1962         policydb_destroy(oldpolicydb);
1963         sidtab_destroy(&oldsidtab);
1964         kfree(oldmap);
1965
1966         avc_ss_reset(seqno);
1967         selnl_notify_policyload(seqno);
1968         selinux_status_update_policyload(seqno);
1969         selinux_netlbl_cache_invalidate();
1970         selinux_xfrm_notify_policyload();
1971
1972         rc = 0;
1973         goto out;
1974
1975 err:
1976         kfree(map);
1977         sidtab_destroy(&newsidtab);
1978         policydb_destroy(newpolicydb);
1979
1980 out:
1981         kfree(oldpolicydb);
1982         return rc;
1983 }
1984
1985 size_t security_policydb_len(void)
1986 {
1987         size_t len;
1988
1989         read_lock(&policy_rwlock);
1990         len = policydb.len;
1991         read_unlock(&policy_rwlock);
1992
1993         return len;
1994 }
1995
1996 /**
1997  * security_port_sid - Obtain the SID for a port.
1998  * @protocol: protocol number
1999  * @port: port number
2000  * @out_sid: security identifier
2001  */
2002 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2003 {
2004         struct ocontext *c;
2005         int rc = 0;
2006
2007         read_lock(&policy_rwlock);
2008
2009         c = policydb.ocontexts[OCON_PORT];
2010         while (c) {
2011                 if (c->u.port.protocol == protocol &&
2012                     c->u.port.low_port <= port &&
2013                     c->u.port.high_port >= port)
2014                         break;
2015                 c = c->next;
2016         }
2017
2018         if (c) {
2019                 if (!c->sid[0]) {
2020                         rc = sidtab_context_to_sid(&sidtab,
2021                                                    &c->context[0],
2022                                                    &c->sid[0]);
2023                         if (rc)
2024                                 goto out;
2025                 }
2026                 *out_sid = c->sid[0];
2027         } else {
2028                 *out_sid = SECINITSID_PORT;
2029         }
2030
2031 out:
2032         read_unlock(&policy_rwlock);
2033         return rc;
2034 }
2035
2036 /**
2037  * security_netif_sid - Obtain the SID for a network interface.
2038  * @name: interface name
2039  * @if_sid: interface SID
2040  */
2041 int security_netif_sid(char *name, u32 *if_sid)
2042 {
2043         int rc = 0;
2044         struct ocontext *c;
2045
2046         read_lock(&policy_rwlock);
2047
2048         c = policydb.ocontexts[OCON_NETIF];
2049         while (c) {
2050                 if (strcmp(name, c->u.name) == 0)
2051                         break;
2052                 c = c->next;
2053         }
2054
2055         if (c) {
2056                 if (!c->sid[0] || !c->sid[1]) {
2057                         rc = sidtab_context_to_sid(&sidtab,
2058                                                   &c->context[0],
2059                                                   &c->sid[0]);
2060                         if (rc)
2061                                 goto out;
2062                         rc = sidtab_context_to_sid(&sidtab,
2063                                                    &c->context[1],
2064                                                    &c->sid[1]);
2065                         if (rc)
2066                                 goto out;
2067                 }
2068                 *if_sid = c->sid[0];
2069         } else
2070                 *if_sid = SECINITSID_NETIF;
2071
2072 out:
2073         read_unlock(&policy_rwlock);
2074         return rc;
2075 }
2076
2077 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2078 {
2079         int i, fail = 0;
2080
2081         for (i = 0; i < 4; i++)
2082                 if (addr[i] != (input[i] & mask[i])) {
2083                         fail = 1;
2084                         break;
2085                 }
2086
2087         return !fail;
2088 }
2089
2090 /**
2091  * security_node_sid - Obtain the SID for a node (host).
2092  * @domain: communication domain aka address family
2093  * @addrp: address
2094  * @addrlen: address length in bytes
2095  * @out_sid: security identifier
2096  */
2097 int security_node_sid(u16 domain,
2098                       void *addrp,
2099                       u32 addrlen,
2100                       u32 *out_sid)
2101 {
2102         int rc;
2103         struct ocontext *c;
2104
2105         read_lock(&policy_rwlock);
2106
2107         switch (domain) {
2108         case AF_INET: {
2109                 u32 addr;
2110
2111                 rc = -EINVAL;
2112                 if (addrlen != sizeof(u32))
2113                         goto out;
2114
2115                 addr = *((u32 *)addrp);
2116
2117                 c = policydb.ocontexts[OCON_NODE];
2118                 while (c) {
2119                         if (c->u.node.addr == (addr & c->u.node.mask))
2120                                 break;
2121                         c = c->next;
2122                 }
2123                 break;
2124         }
2125
2126         case AF_INET6:
2127                 rc = -EINVAL;
2128                 if (addrlen != sizeof(u64) * 2)
2129                         goto out;
2130                 c = policydb.ocontexts[OCON_NODE6];
2131                 while (c) {
2132                         if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2133                                                 c->u.node6.mask))
2134                                 break;
2135                         c = c->next;
2136                 }
2137                 break;
2138
2139         default:
2140                 rc = 0;
2141                 *out_sid = SECINITSID_NODE;
2142                 goto out;
2143         }
2144
2145         if (c) {
2146                 if (!c->sid[0]) {
2147                         rc = sidtab_context_to_sid(&sidtab,
2148                                                    &c->context[0],
2149                                                    &c->sid[0]);
2150                         if (rc)
2151                                 goto out;
2152                 }
2153                 *out_sid = c->sid[0];
2154         } else {
2155                 *out_sid = SECINITSID_NODE;
2156         }
2157
2158         rc = 0;
2159 out:
2160         read_unlock(&policy_rwlock);
2161         return rc;
2162 }
2163
2164 #define SIDS_NEL 25
2165
2166 /**
2167  * security_get_user_sids - Obtain reachable SIDs for a user.
2168  * @fromsid: starting SID
2169  * @username: username
2170  * @sids: array of reachable SIDs for user
2171  * @nel: number of elements in @sids
2172  *
2173  * Generate the set of SIDs for legal security contexts
2174  * for a given user that can be reached by @fromsid.
2175  * Set *@sids to point to a dynamically allocated
2176  * array containing the set of SIDs.  Set *@nel to the
2177  * number of elements in the array.
2178  */
2179
2180 int security_get_user_sids(u32 fromsid,
2181                            char *username,
2182                            u32 **sids,
2183                            u32 *nel)
2184 {
2185         struct context *fromcon, usercon;
2186         u32 *mysids = NULL, *mysids2, sid;
2187         u32 mynel = 0, maxnel = SIDS_NEL;
2188         struct user_datum *user;
2189         struct role_datum *role;
2190         struct ebitmap_node *rnode, *tnode;
2191         int rc = 0, i, j;
2192
2193         *sids = NULL;
2194         *nel = 0;
2195
2196         if (!ss_initialized)
2197                 goto out;
2198
2199         read_lock(&policy_rwlock);
2200
2201         context_init(&usercon);
2202
2203         rc = -EINVAL;
2204         fromcon = sidtab_search(&sidtab, fromsid);
2205         if (!fromcon)
2206                 goto out_unlock;
2207
2208         rc = -EINVAL;
2209         user = hashtab_search(policydb.p_users.table, username);
2210         if (!user)
2211                 goto out_unlock;
2212
2213         usercon.user = user->value;
2214
2215         rc = -ENOMEM;
2216         mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2217         if (!mysids)
2218                 goto out_unlock;
2219
2220         ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2221                 role = policydb.role_val_to_struct[i];
2222                 usercon.role = i + 1;
2223                 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2224                         usercon.type = j + 1;
2225
2226                         if (mls_setup_user_range(fromcon, user, &usercon))
2227                                 continue;
2228
2229                         rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2230                         if (rc)
2231                                 goto out_unlock;
2232                         if (mynel < maxnel) {
2233                                 mysids[mynel++] = sid;
2234                         } else {
2235                                 rc = -ENOMEM;
2236                                 maxnel += SIDS_NEL;
2237                                 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2238                                 if (!mysids2)
2239                                         goto out_unlock;
2240                                 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2241                                 kfree(mysids);
2242                                 mysids = mysids2;
2243                                 mysids[mynel++] = sid;
2244                         }
2245                 }
2246         }
2247         rc = 0;
2248 out_unlock:
2249         read_unlock(&policy_rwlock);
2250         if (rc || !mynel) {
2251                 kfree(mysids);
2252                 goto out;
2253         }
2254
2255         rc = -ENOMEM;
2256         mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2257         if (!mysids2) {
2258                 kfree(mysids);
2259                 goto out;
2260         }
2261         for (i = 0, j = 0; i < mynel; i++) {
2262                 struct av_decision dummy_avd;
2263                 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2264                                           SECCLASS_PROCESS, /* kernel value */
2265                                           PROCESS__TRANSITION, AVC_STRICT,
2266                                           &dummy_avd);
2267                 if (!rc)
2268                         mysids2[j++] = mysids[i];
2269                 cond_resched();
2270         }
2271         rc = 0;
2272         kfree(mysids);
2273         *sids = mysids2;
2274         *nel = j;
2275 out:
2276         return rc;
2277 }
2278
2279 /**
2280  * security_genfs_sid - Obtain a SID for a file in a filesystem
2281  * @fstype: filesystem type
2282  * @path: path from root of mount
2283  * @sclass: file security class
2284  * @sid: SID for path
2285  *
2286  * Obtain a SID to use for a file in a filesystem that
2287  * cannot support xattr or use a fixed labeling behavior like
2288  * transition SIDs or task SIDs.
2289  */
2290 int security_genfs_sid(const char *fstype,
2291                        char *path,
2292                        u16 orig_sclass,
2293                        u32 *sid)
2294 {
2295         int len;
2296         u16 sclass;
2297         struct genfs *genfs;
2298         struct ocontext *c;
2299         int rc, cmp = 0;
2300
2301         while (path[0] == '/' && path[1] == '/')
2302                 path++;
2303
2304         read_lock(&policy_rwlock);
2305
2306         sclass = unmap_class(orig_sclass);
2307         *sid = SECINITSID_UNLABELED;
2308
2309         for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2310                 cmp = strcmp(fstype, genfs->fstype);
2311                 if (cmp <= 0)
2312                         break;
2313         }
2314
2315         rc = -ENOENT;
2316         if (!genfs || cmp)
2317                 goto out;
2318
2319         for (c = genfs->head; c; c = c->next) {
2320                 len = strlen(c->u.name);
2321                 if ((!c->v.sclass || sclass == c->v.sclass) &&
2322                     (strncmp(c->u.name, path, len) == 0))
2323                         break;
2324         }
2325
2326         rc = -ENOENT;
2327         if (!c)
2328                 goto out;
2329
2330         if (!c->sid[0]) {
2331                 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2332                 if (rc)
2333                         goto out;
2334         }
2335
2336         *sid = c->sid[0];
2337         rc = 0;
2338 out:
2339         read_unlock(&policy_rwlock);
2340         return rc;
2341 }
2342
2343 /**
2344  * security_fs_use - Determine how to handle labeling for a filesystem.
2345  * @sb: superblock in question
2346  */
2347 int security_fs_use(struct super_block *sb)
2348 {
2349         int rc = 0;
2350         struct ocontext *c;
2351         struct superblock_security_struct *sbsec = sb->s_security;
2352         const char *fstype = sb->s_type->name;
2353
2354         read_lock(&policy_rwlock);
2355
2356         c = policydb.ocontexts[OCON_FSUSE];
2357         while (c) {
2358                 if (strcmp(fstype, c->u.name) == 0)
2359                         break;
2360                 c = c->next;
2361         }
2362
2363         if (c) {
2364                 sbsec->behavior = c->v.behavior;
2365                 if (!c->sid[0]) {
2366                         rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2367                                                    &c->sid[0]);
2368                         if (rc)
2369                                 goto out;
2370                 }
2371                 sbsec->sid = c->sid[0];
2372         } else {
2373                 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, &sbsec->sid);
2374                 if (rc) {
2375                         sbsec->behavior = SECURITY_FS_USE_NONE;
2376                         rc = 0;
2377                 } else {
2378                         sbsec->behavior = SECURITY_FS_USE_GENFS;
2379                 }
2380         }
2381
2382 out:
2383         read_unlock(&policy_rwlock);
2384         return rc;
2385 }
2386
2387 int security_get_bools(int *len, char ***names, int **values)
2388 {
2389         int i, rc;
2390
2391         read_lock(&policy_rwlock);
2392         *names = NULL;
2393         *values = NULL;
2394
2395         rc = 0;
2396         *len = policydb.p_bools.nprim;
2397         if (!*len)
2398                 goto out;
2399
2400         rc = -ENOMEM;
2401         *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2402         if (!*names)
2403                 goto err;
2404
2405         rc = -ENOMEM;
2406         *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2407         if (!*values)
2408                 goto err;
2409
2410         for (i = 0; i < *len; i++) {
2411                 size_t name_len;
2412
2413                 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2414                 name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2415
2416                 rc = -ENOMEM;
2417                 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2418                 if (!(*names)[i])
2419                         goto err;
2420
2421                 strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2422                 (*names)[i][name_len - 1] = 0;
2423         }
2424         rc = 0;
2425 out:
2426         read_unlock(&policy_rwlock);
2427         return rc;
2428 err:
2429         if (*names) {
2430                 for (i = 0; i < *len; i++)
2431                         kfree((*names)[i]);
2432         }
2433         kfree(*values);
2434         goto out;
2435 }
2436
2437
2438 int security_set_bools(int len, int *values)
2439 {
2440         int i, rc;
2441         int lenp, seqno = 0;
2442         struct cond_node *cur;
2443
2444         write_lock_irq(&policy_rwlock);
2445
2446         rc = -EFAULT;
2447         lenp = policydb.p_bools.nprim;
2448         if (len != lenp)
2449                 goto out;
2450
2451         for (i = 0; i < len; i++) {
2452                 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2453                         audit_log(current->audit_context, GFP_ATOMIC,
2454                                 AUDIT_MAC_CONFIG_CHANGE,
2455                                 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2456                                 sym_name(&policydb, SYM_BOOLS, i),
2457                                 !!values[i],
2458                                 policydb.bool_val_to_struct[i]->state,
2459                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2460                                 audit_get_sessionid(current));
2461                 }
2462                 if (values[i])
2463                         policydb.bool_val_to_struct[i]->state = 1;
2464                 else
2465                         policydb.bool_val_to_struct[i]->state = 0;
2466         }
2467
2468         for (cur = policydb.cond_list; cur; cur = cur->next) {
2469                 rc = evaluate_cond_node(&policydb, cur);
2470                 if (rc)
2471                         goto out;
2472         }
2473
2474         seqno = ++latest_granting;
2475         rc = 0;
2476 out:
2477         write_unlock_irq(&policy_rwlock);
2478         if (!rc) {
2479                 avc_ss_reset(seqno);
2480                 selnl_notify_policyload(seqno);
2481                 selinux_status_update_policyload(seqno);
2482                 selinux_xfrm_notify_policyload();
2483         }
2484         return rc;
2485 }
2486
2487 int security_get_bool_value(int bool)
2488 {
2489         int rc;
2490         int len;
2491
2492         read_lock(&policy_rwlock);
2493
2494         rc = -EFAULT;
2495         len = policydb.p_bools.nprim;
2496         if (bool >= len)
2497                 goto out;
2498
2499         rc = policydb.bool_val_to_struct[bool]->state;
2500 out:
2501         read_unlock(&policy_rwlock);
2502         return rc;
2503 }
2504
2505 static int security_preserve_bools(struct policydb *p)
2506 {
2507         int rc, nbools = 0, *bvalues = NULL, i;
2508         char **bnames = NULL;
2509         struct cond_bool_datum *booldatum;
2510         struct cond_node *cur;
2511
2512         rc = security_get_bools(&nbools, &bnames, &bvalues);
2513         if (rc)
2514                 goto out;
2515         for (i = 0; i < nbools; i++) {
2516                 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2517                 if (booldatum)
2518                         booldatum->state = bvalues[i];
2519         }
2520         for (cur = p->cond_list; cur; cur = cur->next) {
2521                 rc = evaluate_cond_node(p, cur);
2522                 if (rc)
2523                         goto out;
2524         }
2525
2526 out:
2527         if (bnames) {
2528                 for (i = 0; i < nbools; i++)
2529                         kfree(bnames[i]);
2530         }
2531         kfree(bnames);
2532         kfree(bvalues);
2533         return rc;
2534 }
2535
2536 /*
2537  * security_sid_mls_copy() - computes a new sid based on the given
2538  * sid and the mls portion of mls_sid.
2539  */
2540 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2541 {
2542         struct context *context1;
2543         struct context *context2;
2544         struct context newcon;
2545         char *s;
2546         u32 len;
2547         int rc;
2548
2549         rc = 0;
2550         if (!ss_initialized || !policydb.mls_enabled) {
2551                 *new_sid = sid;
2552                 goto out;
2553         }
2554
2555         context_init(&newcon);
2556
2557         read_lock(&policy_rwlock);
2558
2559         rc = -EINVAL;
2560         context1 = sidtab_search(&sidtab, sid);
2561         if (!context1) {
2562                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2563                         __func__, sid);
2564                 goto out_unlock;
2565         }
2566
2567         rc = -EINVAL;
2568         context2 = sidtab_search(&sidtab, mls_sid);
2569         if (!context2) {
2570                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2571                         __func__, mls_sid);
2572                 goto out_unlock;
2573         }
2574
2575         newcon.user = context1->user;
2576         newcon.role = context1->role;
2577         newcon.type = context1->type;
2578         rc = mls_context_cpy(&newcon, context2);
2579         if (rc)
2580                 goto out_unlock;
2581
2582         /* Check the validity of the new context. */
2583         if (!policydb_context_isvalid(&policydb, &newcon)) {
2584                 rc = convert_context_handle_invalid_context(&newcon);
2585                 if (rc) {
2586                         if (!context_struct_to_string(&newcon, &s, &len)) {
2587                                 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2588                                           "security_sid_mls_copy: invalid context %s", s);
2589                                 kfree(s);
2590                         }
2591                         goto out_unlock;
2592                 }
2593         }
2594
2595         rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2596 out_unlock:
2597         read_unlock(&policy_rwlock);
2598         context_destroy(&newcon);
2599 out:
2600         return rc;
2601 }
2602
2603 /**
2604  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2605  * @nlbl_sid: NetLabel SID
2606  * @nlbl_type: NetLabel labeling protocol type
2607  * @xfrm_sid: XFRM SID
2608  *
2609  * Description:
2610  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2611  * resolved into a single SID it is returned via @peer_sid and the function
2612  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2613  * returns a negative value.  A table summarizing the behavior is below:
2614  *
2615  *                                 | function return |      @sid
2616  *   ------------------------------+-----------------+-----------------
2617  *   no peer labels                |        0        |    SECSID_NULL
2618  *   single peer label             |        0        |    <peer_label>
2619  *   multiple, consistent labels   |        0        |    <peer_label>
2620  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2621  *
2622  */
2623 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2624                                  u32 xfrm_sid,
2625                                  u32 *peer_sid)
2626 {
2627         int rc;
2628         struct context *nlbl_ctx;
2629         struct context *xfrm_ctx;
2630
2631         *peer_sid = SECSID_NULL;
2632
2633         /* handle the common (which also happens to be the set of easy) cases
2634          * right away, these two if statements catch everything involving a
2635          * single or absent peer SID/label */
2636         if (xfrm_sid == SECSID_NULL) {
2637                 *peer_sid = nlbl_sid;
2638                 return 0;
2639         }
2640         /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2641          * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2642          * is present */
2643         if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2644                 *peer_sid = xfrm_sid;
2645                 return 0;
2646         }
2647
2648         /* we don't need to check ss_initialized here since the only way both
2649          * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2650          * security server was initialized and ss_initialized was true */
2651         if (!policydb.mls_enabled)
2652                 return 0;
2653
2654         read_lock(&policy_rwlock);
2655
2656         rc = -EINVAL;
2657         nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2658         if (!nlbl_ctx) {
2659                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2660                        __func__, nlbl_sid);
2661                 goto out;
2662         }
2663         rc = -EINVAL;
2664         xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2665         if (!xfrm_ctx) {
2666                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2667                        __func__, xfrm_sid);
2668                 goto out;
2669         }
2670         rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2671         if (rc)
2672                 goto out;
2673
2674         /* at present NetLabel SIDs/labels really only carry MLS
2675          * information so if the MLS portion of the NetLabel SID
2676          * matches the MLS portion of the labeled XFRM SID/label
2677          * then pass along the XFRM SID as it is the most
2678          * expressive */
2679         *peer_sid = xfrm_sid;
2680 out:
2681         read_unlock(&policy_rwlock);
2682         return rc;
2683 }
2684
2685 static int get_classes_callback(void *k, void *d, void *args)
2686 {
2687         struct class_datum *datum = d;
2688         char *name = k, **classes = args;
2689         int value = datum->value - 1;
2690
2691         classes[value] = kstrdup(name, GFP_ATOMIC);
2692         if (!classes[value])
2693                 return -ENOMEM;
2694
2695         return 0;
2696 }
2697
2698 int security_get_classes(char ***classes, int *nclasses)
2699 {
2700         int rc;
2701
2702         read_lock(&policy_rwlock);
2703
2704         rc = -ENOMEM;
2705         *nclasses = policydb.p_classes.nprim;
2706         *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2707         if (!*classes)
2708                 goto out;
2709
2710         rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2711                         *classes);
2712         if (rc) {
2713                 int i;
2714                 for (i = 0; i < *nclasses; i++)
2715                         kfree((*classes)[i]);
2716                 kfree(*classes);
2717         }
2718
2719 out:
2720         read_unlock(&policy_rwlock);
2721         return rc;
2722 }
2723
2724 static int get_permissions_callback(void *k, void *d, void *args)
2725 {
2726         struct perm_datum *datum = d;
2727         char *name = k, **perms = args;
2728         int value = datum->value - 1;
2729
2730         perms[value] = kstrdup(name, GFP_ATOMIC);
2731         if (!perms[value])
2732                 return -ENOMEM;
2733
2734         return 0;
2735 }
2736
2737 int security_get_permissions(char *class, char ***perms, int *nperms)
2738 {
2739         int rc, i;
2740         struct class_datum *match;
2741
2742         read_lock(&policy_rwlock);
2743
2744         rc = -EINVAL;
2745         match = hashtab_search(policydb.p_classes.table, class);
2746         if (!match) {
2747                 printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2748                         __func__, class);
2749                 goto out;
2750         }
2751
2752         rc = -ENOMEM;
2753         *nperms = match->permissions.nprim;
2754         *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2755         if (!*perms)
2756                 goto out;
2757
2758         if (match->comdatum) {
2759                 rc = hashtab_map(match->comdatum->permissions.table,
2760                                 get_permissions_callback, *perms);
2761                 if (rc)
2762                         goto err;
2763         }
2764
2765         rc = hashtab_map(match->permissions.table, get_permissions_callback,
2766                         *perms);
2767         if (rc)
2768                 goto err;
2769
2770 out:
2771         read_unlock(&policy_rwlock);
2772         return rc;
2773
2774 err:
2775         read_unlock(&policy_rwlock);
2776         for (i = 0; i < *nperms; i++)
2777                 kfree((*perms)[i]);
2778         kfree(*perms);
2779         return rc;
2780 }
2781
2782 int security_get_reject_unknown(void)
2783 {
2784         return policydb.reject_unknown;
2785 }
2786
2787 int security_get_allow_unknown(void)
2788 {
2789         return policydb.allow_unknown;
2790 }
2791
2792 /**
2793  * security_policycap_supported - Check for a specific policy capability
2794  * @req_cap: capability
2795  *
2796  * Description:
2797  * This function queries the currently loaded policy to see if it supports the
2798  * capability specified by @req_cap.  Returns true (1) if the capability is
2799  * supported, false (0) if it isn't supported.
2800  *
2801  */
2802 int security_policycap_supported(unsigned int req_cap)
2803 {
2804         int rc;
2805
2806         read_lock(&policy_rwlock);
2807         rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2808         read_unlock(&policy_rwlock);
2809
2810         return rc;
2811 }
2812
2813 struct selinux_audit_rule {
2814         u32 au_seqno;
2815         struct context au_ctxt;
2816 };
2817
2818 void selinux_audit_rule_free(void *vrule)
2819 {
2820         struct selinux_audit_rule *rule = vrule;
2821
2822         if (rule) {
2823                 context_destroy(&rule->au_ctxt);
2824                 kfree(rule);
2825         }
2826 }
2827
2828 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2829 {
2830         struct selinux_audit_rule *tmprule;
2831         struct role_datum *roledatum;
2832         struct type_datum *typedatum;
2833         struct user_datum *userdatum;
2834         struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2835         int rc = 0;
2836
2837         *rule = NULL;
2838
2839         if (!ss_initialized)
2840                 return -EOPNOTSUPP;
2841
2842         switch (field) {
2843         case AUDIT_SUBJ_USER:
2844         case AUDIT_SUBJ_ROLE:
2845         case AUDIT_SUBJ_TYPE:
2846         case AUDIT_OBJ_USER:
2847         case AUDIT_OBJ_ROLE:
2848         case AUDIT_OBJ_TYPE:
2849                 /* only 'equals' and 'not equals' fit user, role, and type */
2850                 if (op != Audit_equal && op != Audit_not_equal)
2851                         return -EINVAL;
2852                 break;
2853         case AUDIT_SUBJ_SEN:
2854         case AUDIT_SUBJ_CLR:
2855         case AUDIT_OBJ_LEV_LOW:
2856         case AUDIT_OBJ_LEV_HIGH:
2857                 /* we do not allow a range, indicated by the presence of '-' */
2858                 if (strchr(rulestr, '-'))
2859                         return -EINVAL;
2860                 break;
2861         default:
2862                 /* only the above fields are valid */
2863                 return -EINVAL;
2864         }
2865
2866         tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2867         if (!tmprule)
2868                 return -ENOMEM;
2869
2870         context_init(&tmprule->au_ctxt);
2871
2872         read_lock(&policy_rwlock);
2873
2874         tmprule->au_seqno = latest_granting;
2875
2876         switch (field) {
2877         case AUDIT_SUBJ_USER:
2878         case AUDIT_OBJ_USER:
2879                 rc = -EINVAL;
2880                 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2881                 if (!userdatum)
2882                         goto out;
2883                 tmprule->au_ctxt.user = userdatum->value;
2884                 break;
2885         case AUDIT_SUBJ_ROLE:
2886         case AUDIT_OBJ_ROLE:
2887                 rc = -EINVAL;
2888                 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2889                 if (!roledatum)
2890                         goto out;
2891                 tmprule->au_ctxt.role = roledatum->value;
2892                 break;
2893         case AUDIT_SUBJ_TYPE:
2894         case AUDIT_OBJ_TYPE:
2895                 rc = -EINVAL;
2896                 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2897                 if (!typedatum)
2898                         goto out;
2899                 tmprule->au_ctxt.type = typedatum->value;
2900                 break;
2901         case AUDIT_SUBJ_SEN:
2902         case AUDIT_SUBJ_CLR:
2903         case AUDIT_OBJ_LEV_LOW:
2904         case AUDIT_OBJ_LEV_HIGH:
2905                 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2906                 if (rc)
2907                         goto out;
2908                 break;
2909         }
2910         rc = 0;
2911 out:
2912         read_unlock(&policy_rwlock);
2913
2914         if (rc) {
2915                 selinux_audit_rule_free(tmprule);
2916                 tmprule = NULL;
2917         }
2918
2919         *rule = tmprule;
2920
2921         return rc;
2922 }
2923
2924 /* Check to see if the rule contains any selinux fields */
2925 int selinux_audit_rule_known(struct audit_krule *rule)
2926 {
2927         int i;
2928
2929         for (i = 0; i < rule->field_count; i++) {
2930                 struct audit_field *f = &rule->fields[i];
2931                 switch (f->type) {
2932                 case AUDIT_SUBJ_USER:
2933                 case AUDIT_SUBJ_ROLE:
2934                 case AUDIT_SUBJ_TYPE:
2935                 case AUDIT_SUBJ_SEN:
2936                 case AUDIT_SUBJ_CLR:
2937                 case AUDIT_OBJ_USER:
2938                 case AUDIT_OBJ_ROLE:
2939                 case AUDIT_OBJ_TYPE:
2940                 case AUDIT_OBJ_LEV_LOW:
2941                 case AUDIT_OBJ_LEV_HIGH:
2942                         return 1;
2943                 }
2944         }
2945
2946         return 0;
2947 }
2948
2949 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2950                              struct audit_context *actx)
2951 {
2952         struct context *ctxt;
2953         struct mls_level *level;
2954         struct selinux_audit_rule *rule = vrule;
2955         int match = 0;
2956
2957         if (unlikely(!rule)) {
2958                 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
2959                 return -ENOENT;
2960         }
2961
2962         read_lock(&policy_rwlock);
2963
2964         if (rule->au_seqno < latest_granting) {
2965                 match = -ESTALE;
2966                 goto out;
2967         }
2968
2969         ctxt = sidtab_search(&sidtab, sid);
2970         if (unlikely(!ctxt)) {
2971                 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
2972                           sid);
2973                 match = -ENOENT;
2974                 goto out;
2975         }
2976
2977         /* a field/op pair that is not caught here will simply fall through
2978            without a match */
2979         switch (field) {
2980         case AUDIT_SUBJ_USER:
2981         case AUDIT_OBJ_USER:
2982                 switch (op) {
2983                 case Audit_equal:
2984                         match = (ctxt->user == rule->au_ctxt.user);
2985                         break;
2986                 case Audit_not_equal:
2987                         match = (ctxt->user != rule->au_ctxt.user);
2988                         break;
2989                 }
2990                 break;
2991         case AUDIT_SUBJ_ROLE:
2992         case AUDIT_OBJ_ROLE:
2993                 switch (op) {
2994                 case Audit_equal:
2995                         match = (ctxt->role == rule->au_ctxt.role);
2996                         break;
2997                 case Audit_not_equal:
2998                         match = (ctxt->role != rule->au_ctxt.role);
2999                         break;
3000                 }
3001                 break;
3002         case AUDIT_SUBJ_TYPE:
3003         case AUDIT_OBJ_TYPE:
3004                 switch (op) {
3005                 case Audit_equal:
3006                         match = (ctxt->type == rule->au_ctxt.type);
3007                         break;
3008                 case Audit_not_equal:
3009                         match = (ctxt->type != rule->au_ctxt.type);
3010                         break;
3011                 }
3012                 break;
3013         case AUDIT_SUBJ_SEN:
3014         case AUDIT_SUBJ_CLR:
3015         case AUDIT_OBJ_LEV_LOW:
3016         case AUDIT_OBJ_LEV_HIGH:
3017                 level = ((field == AUDIT_SUBJ_SEN ||
3018                           field == AUDIT_OBJ_LEV_LOW) ?
3019                          &ctxt->range.level[0] : &ctxt->range.level[1]);
3020                 switch (op) {
3021                 case Audit_equal:
3022                         match = mls_level_eq(&rule->au_ctxt.range.level[0],
3023                                              level);
3024                         break;
3025                 case Audit_not_equal:
3026                         match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3027                                               level);
3028                         break;
3029                 case Audit_lt:
3030                         match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3031                                                level) &&
3032                                  !mls_level_eq(&rule->au_ctxt.range.level[0],
3033                                                level));
3034                         break;
3035                 case Audit_le:
3036                         match = mls_level_dom(&rule->au_ctxt.range.level[0],
3037                                               level);
3038                         break;
3039                 case Audit_gt:
3040                         match = (mls_level_dom(level,
3041                                               &rule->au_ctxt.range.level[0]) &&
3042                                  !mls_level_eq(level,
3043                                                &rule->au_ctxt.range.level[0]));
3044                         break;
3045                 case Audit_ge:
3046                         match = mls_level_dom(level,
3047                                               &rule->au_ctxt.range.level[0]);
3048                         break;
3049                 }
3050         }
3051
3052 out:
3053         read_unlock(&policy_rwlock);
3054         return match;
3055 }
3056
3057 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3058
3059 static int aurule_avc_callback(u32 event)
3060 {
3061         int err = 0;
3062
3063         if (event == AVC_CALLBACK_RESET && aurule_callback)
3064                 err = aurule_callback();
3065         return err;
3066 }
3067
3068 static int __init aurule_init(void)
3069 {
3070         int err;
3071
3072         err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3073         if (err)
3074                 panic("avc_add_callback() failed, error %d\n", err);
3075
3076         return err;
3077 }
3078 __initcall(aurule_init);
3079
3080 #ifdef CONFIG_NETLABEL
3081 /**
3082  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3083  * @secattr: the NetLabel packet security attributes
3084  * @sid: the SELinux SID
3085  *
3086  * Description:
3087  * Attempt to cache the context in @ctx, which was derived from the packet in
3088  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3089  * already been initialized.
3090  *
3091  */
3092 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3093                                       u32 sid)
3094 {
3095         u32 *sid_cache;
3096
3097         sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3098         if (sid_cache == NULL)
3099                 return;
3100         secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3101         if (secattr->cache == NULL) {
3102                 kfree(sid_cache);
3103                 return;
3104         }
3105
3106         *sid_cache = sid;
3107         secattr->cache->free = kfree;
3108         secattr->cache->data = sid_cache;
3109         secattr->flags |= NETLBL_SECATTR_CACHE;
3110 }
3111
3112 /**
3113  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3114  * @secattr: the NetLabel packet security attributes
3115  * @sid: the SELinux SID
3116  *
3117  * Description:
3118  * Convert the given NetLabel security attributes in @secattr into a
3119  * SELinux SID.  If the @secattr field does not contain a full SELinux
3120  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3121  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3122  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3123  * conversion for future lookups.  Returns zero on success, negative values on
3124  * failure.
3125  *
3126  */
3127 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3128                                    u32 *sid)
3129 {
3130         int rc;
3131         struct context *ctx;
3132         struct context ctx_new;
3133
3134         if (!ss_initialized) {
3135                 *sid = SECSID_NULL;
3136                 return 0;
3137         }
3138
3139         read_lock(&policy_rwlock);
3140
3141         if (secattr->flags & NETLBL_SECATTR_CACHE)
3142                 *sid = *(u32 *)secattr->cache->data;
3143         else if (secattr->flags & NETLBL_SECATTR_SECID)
3144                 *sid = secattr->attr.secid;
3145         else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3146                 rc = -EIDRM;
3147                 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3148                 if (ctx == NULL)
3149                         goto out;
3150
3151                 context_init(&ctx_new);
3152                 ctx_new.user = ctx->user;
3153                 ctx_new.role = ctx->role;
3154                 ctx_new.type = ctx->type;
3155                 mls_import_netlbl_lvl(&ctx_new, secattr);
3156                 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3157                         rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3158                                                    secattr->attr.mls.cat);
3159                         if (rc)
3160                                 goto out;
3161                         memcpy(&ctx_new.range.level[1].cat,
3162                                &ctx_new.range.level[0].cat,
3163                                sizeof(ctx_new.range.level[0].cat));
3164                 }
3165                 rc = -EIDRM;
3166                 if (!mls_context_isvalid(&policydb, &ctx_new))
3167                         goto out_free;
3168
3169                 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3170                 if (rc)
3171                         goto out_free;
3172
3173                 security_netlbl_cache_add(secattr, *sid);
3174
3175                 ebitmap_destroy(&ctx_new.range.level[0].cat);
3176         } else
3177                 *sid = SECSID_NULL;
3178
3179         read_unlock(&policy_rwlock);
3180         return 0;
3181 out_free:
3182         ebitmap_destroy(&ctx_new.range.level[0].cat);
3183 out:
3184         read_unlock(&policy_rwlock);
3185         return rc;
3186 }
3187
3188 /**
3189  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3190  * @sid: the SELinux SID
3191  * @secattr: the NetLabel packet security attributes
3192  *
3193  * Description:
3194  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3195  * Returns zero on success, negative values on failure.
3196  *
3197  */
3198 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3199 {
3200         int rc;
3201         struct context *ctx;
3202
3203         if (!ss_initialized)
3204                 return 0;
3205
3206         read_lock(&policy_rwlock);
3207
3208         rc = -ENOENT;
3209         ctx = sidtab_search(&sidtab, sid);
3210         if (ctx == NULL)
3211                 goto out;
3212
3213         rc = -ENOMEM;
3214         secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3215                                   GFP_ATOMIC);
3216         if (secattr->domain == NULL)
3217                 goto out;
3218
3219         secattr->attr.secid = sid;
3220         secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3221         mls_export_netlbl_lvl(ctx, secattr);
3222         rc = mls_export_netlbl_cat(ctx, secattr);
3223 out:
3224         read_unlock(&policy_rwlock);
3225         return rc;
3226 }
3227 #endif /* CONFIG_NETLABEL */
3228
3229 /**
3230  * security_read_policy - read the policy.
3231  * @data: binary policy data
3232  * @len: length of data in bytes
3233  *
3234  */
3235 int security_read_policy(void **data, size_t *len)
3236 {
3237         int rc;
3238         struct policy_file fp;
3239
3240         if (!ss_initialized)
3241                 return -EINVAL;
3242
3243         *len = security_policydb_len();
3244
3245         *data = vmalloc_user(*len);
3246         if (!*data)
3247                 return -ENOMEM;
3248
3249         fp.data = *data;
3250         fp.len = *len;
3251
3252         read_lock(&policy_rwlock);
3253         rc = policydb_write(&policydb, &fp);
3254         read_unlock(&policy_rwlock);
3255
3256         if (rc)
3257                 return rc;
3258
3259         *len = (unsigned long)fp.data - (unsigned long)*data;
3260         return 0;
3261
3262 }