]> Pileus Git - ~andy/linux/blob - security/selinux/hooks.c
Merge branch 'for-linus' of git://selinuxproject.org/~jmorris/linux-security
[~andy/linux] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/ext2_fs.h>
32 #include <linux/sched.h>
33 #include <linux/security.h>
34 #include <linux/xattr.h>
35 #include <linux/capability.h>
36 #include <linux/unistd.h>
37 #include <linux/mm.h>
38 #include <linux/mman.h>
39 #include <linux/slab.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/swap.h>
43 #include <linux/spinlock.h>
44 #include <linux/syscalls.h>
45 #include <linux/dcache.h>
46 #include <linux/file.h>
47 #include <linux/fdtable.h>
48 #include <linux/namei.h>
49 #include <linux/mount.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>             /* for local_port_range[] */
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h>    /* for network interface checks */
64 #include <linux/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h>           /* for Unix socket types */
70 #include <net/af_unix.h>        /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84
85 #include "avc.h"
86 #include "objsec.h"
87 #include "netif.h"
88 #include "netnode.h"
89 #include "netport.h"
90 #include "xfrm.h"
91 #include "netlabel.h"
92 #include "audit.h"
93 #include "avc_ss.h"
94
95 #define NUM_SEL_MNT_OPTS 5
96
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130 static struct kmem_cache *sel_inode_cache;
131
132 /**
133  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
134  *
135  * Description:
136  * This function checks the SECMARK reference counter to see if any SECMARK
137  * targets are currently configured, if the reference counter is greater than
138  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
139  * enabled, false (0) if SECMARK is disabled.
140  *
141  */
142 static int selinux_secmark_enabled(void)
143 {
144         return (atomic_read(&selinux_secmark_refcount) > 0);
145 }
146
147 /*
148  * initialise the security for the init task
149  */
150 static void cred_init_security(void)
151 {
152         struct cred *cred = (struct cred *) current->real_cred;
153         struct task_security_struct *tsec;
154
155         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
156         if (!tsec)
157                 panic("SELinux:  Failed to initialize initial task.\n");
158
159         tsec->osid = tsec->sid = SECINITSID_KERNEL;
160         cred->security = tsec;
161 }
162
163 /*
164  * get the security ID of a set of credentials
165  */
166 static inline u32 cred_sid(const struct cred *cred)
167 {
168         const struct task_security_struct *tsec;
169
170         tsec = cred->security;
171         return tsec->sid;
172 }
173
174 /*
175  * get the objective security ID of a task
176  */
177 static inline u32 task_sid(const struct task_struct *task)
178 {
179         u32 sid;
180
181         rcu_read_lock();
182         sid = cred_sid(__task_cred(task));
183         rcu_read_unlock();
184         return sid;
185 }
186
187 /*
188  * get the subjective security ID of the current task
189  */
190 static inline u32 current_sid(void)
191 {
192         const struct task_security_struct *tsec = current_security();
193
194         return tsec->sid;
195 }
196
197 /* Allocate and free functions for each kind of security blob. */
198
199 static int inode_alloc_security(struct inode *inode)
200 {
201         struct inode_security_struct *isec;
202         u32 sid = current_sid();
203
204         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
205         if (!isec)
206                 return -ENOMEM;
207
208         mutex_init(&isec->lock);
209         INIT_LIST_HEAD(&isec->list);
210         isec->inode = inode;
211         isec->sid = SECINITSID_UNLABELED;
212         isec->sclass = SECCLASS_FILE;
213         isec->task_sid = sid;
214         inode->i_security = isec;
215
216         return 0;
217 }
218
219 static void inode_free_security(struct inode *inode)
220 {
221         struct inode_security_struct *isec = inode->i_security;
222         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
223
224         spin_lock(&sbsec->isec_lock);
225         if (!list_empty(&isec->list))
226                 list_del_init(&isec->list);
227         spin_unlock(&sbsec->isec_lock);
228
229         inode->i_security = NULL;
230         kmem_cache_free(sel_inode_cache, isec);
231 }
232
233 static int file_alloc_security(struct file *file)
234 {
235         struct file_security_struct *fsec;
236         u32 sid = current_sid();
237
238         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
239         if (!fsec)
240                 return -ENOMEM;
241
242         fsec->sid = sid;
243         fsec->fown_sid = sid;
244         file->f_security = fsec;
245
246         return 0;
247 }
248
249 static void file_free_security(struct file *file)
250 {
251         struct file_security_struct *fsec = file->f_security;
252         file->f_security = NULL;
253         kfree(fsec);
254 }
255
256 static int superblock_alloc_security(struct super_block *sb)
257 {
258         struct superblock_security_struct *sbsec;
259
260         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
261         if (!sbsec)
262                 return -ENOMEM;
263
264         mutex_init(&sbsec->lock);
265         INIT_LIST_HEAD(&sbsec->isec_head);
266         spin_lock_init(&sbsec->isec_lock);
267         sbsec->sb = sb;
268         sbsec->sid = SECINITSID_UNLABELED;
269         sbsec->def_sid = SECINITSID_FILE;
270         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
271         sb->s_security = sbsec;
272
273         return 0;
274 }
275
276 static void superblock_free_security(struct super_block *sb)
277 {
278         struct superblock_security_struct *sbsec = sb->s_security;
279         sb->s_security = NULL;
280         kfree(sbsec);
281 }
282
283 /* The file system's label must be initialized prior to use. */
284
285 static const char *labeling_behaviors[6] = {
286         "uses xattr",
287         "uses transition SIDs",
288         "uses task SIDs",
289         "uses genfs_contexts",
290         "not configured for labeling",
291         "uses mountpoint labeling",
292 };
293
294 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
295
296 static inline int inode_doinit(struct inode *inode)
297 {
298         return inode_doinit_with_dentry(inode, NULL);
299 }
300
301 enum {
302         Opt_error = -1,
303         Opt_context = 1,
304         Opt_fscontext = 2,
305         Opt_defcontext = 3,
306         Opt_rootcontext = 4,
307         Opt_labelsupport = 5,
308 };
309
310 static const match_table_t tokens = {
311         {Opt_context, CONTEXT_STR "%s"},
312         {Opt_fscontext, FSCONTEXT_STR "%s"},
313         {Opt_defcontext, DEFCONTEXT_STR "%s"},
314         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
315         {Opt_labelsupport, LABELSUPP_STR},
316         {Opt_error, NULL},
317 };
318
319 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
320
321 static int may_context_mount_sb_relabel(u32 sid,
322                         struct superblock_security_struct *sbsec,
323                         const struct cred *cred)
324 {
325         const struct task_security_struct *tsec = cred->security;
326         int rc;
327
328         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
329                           FILESYSTEM__RELABELFROM, NULL);
330         if (rc)
331                 return rc;
332
333         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
334                           FILESYSTEM__RELABELTO, NULL);
335         return rc;
336 }
337
338 static int may_context_mount_inode_relabel(u32 sid,
339                         struct superblock_security_struct *sbsec,
340                         const struct cred *cred)
341 {
342         const struct task_security_struct *tsec = cred->security;
343         int rc;
344         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
345                           FILESYSTEM__RELABELFROM, NULL);
346         if (rc)
347                 return rc;
348
349         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
350                           FILESYSTEM__ASSOCIATE, NULL);
351         return rc;
352 }
353
354 static int sb_finish_set_opts(struct super_block *sb)
355 {
356         struct superblock_security_struct *sbsec = sb->s_security;
357         struct dentry *root = sb->s_root;
358         struct inode *root_inode = root->d_inode;
359         int rc = 0;
360
361         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
362                 /* Make sure that the xattr handler exists and that no
363                    error other than -ENODATA is returned by getxattr on
364                    the root directory.  -ENODATA is ok, as this may be
365                    the first boot of the SELinux kernel before we have
366                    assigned xattr values to the filesystem. */
367                 if (!root_inode->i_op->getxattr) {
368                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
369                                "xattr support\n", sb->s_id, sb->s_type->name);
370                         rc = -EOPNOTSUPP;
371                         goto out;
372                 }
373                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
374                 if (rc < 0 && rc != -ENODATA) {
375                         if (rc == -EOPNOTSUPP)
376                                 printk(KERN_WARNING "SELinux: (dev %s, type "
377                                        "%s) has no security xattr handler\n",
378                                        sb->s_id, sb->s_type->name);
379                         else
380                                 printk(KERN_WARNING "SELinux: (dev %s, type "
381                                        "%s) getxattr errno %d\n", sb->s_id,
382                                        sb->s_type->name, -rc);
383                         goto out;
384                 }
385         }
386
387         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
388
389         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
390                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
391                        sb->s_id, sb->s_type->name);
392         else
393                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
394                        sb->s_id, sb->s_type->name,
395                        labeling_behaviors[sbsec->behavior-1]);
396
397         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
398             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
399             sbsec->behavior == SECURITY_FS_USE_NONE ||
400             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
401                 sbsec->flags &= ~SE_SBLABELSUPP;
402
403         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
404         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
405                 sbsec->flags |= SE_SBLABELSUPP;
406
407         /* Initialize the root inode. */
408         rc = inode_doinit_with_dentry(root_inode, root);
409
410         /* Initialize any other inodes associated with the superblock, e.g.
411            inodes created prior to initial policy load or inodes created
412            during get_sb by a pseudo filesystem that directly
413            populates itself. */
414         spin_lock(&sbsec->isec_lock);
415 next_inode:
416         if (!list_empty(&sbsec->isec_head)) {
417                 struct inode_security_struct *isec =
418                                 list_entry(sbsec->isec_head.next,
419                                            struct inode_security_struct, list);
420                 struct inode *inode = isec->inode;
421                 spin_unlock(&sbsec->isec_lock);
422                 inode = igrab(inode);
423                 if (inode) {
424                         if (!IS_PRIVATE(inode))
425                                 inode_doinit(inode);
426                         iput(inode);
427                 }
428                 spin_lock(&sbsec->isec_lock);
429                 list_del_init(&isec->list);
430                 goto next_inode;
431         }
432         spin_unlock(&sbsec->isec_lock);
433 out:
434         return rc;
435 }
436
437 /*
438  * This function should allow an FS to ask what it's mount security
439  * options were so it can use those later for submounts, displaying
440  * mount options, or whatever.
441  */
442 static int selinux_get_mnt_opts(const struct super_block *sb,
443                                 struct security_mnt_opts *opts)
444 {
445         int rc = 0, i;
446         struct superblock_security_struct *sbsec = sb->s_security;
447         char *context = NULL;
448         u32 len;
449         char tmp;
450
451         security_init_mnt_opts(opts);
452
453         if (!(sbsec->flags & SE_SBINITIALIZED))
454                 return -EINVAL;
455
456         if (!ss_initialized)
457                 return -EINVAL;
458
459         tmp = sbsec->flags & SE_MNTMASK;
460         /* count the number of mount options for this sb */
461         for (i = 0; i < 8; i++) {
462                 if (tmp & 0x01)
463                         opts->num_mnt_opts++;
464                 tmp >>= 1;
465         }
466         /* Check if the Label support flag is set */
467         if (sbsec->flags & SE_SBLABELSUPP)
468                 opts->num_mnt_opts++;
469
470         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
471         if (!opts->mnt_opts) {
472                 rc = -ENOMEM;
473                 goto out_free;
474         }
475
476         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
477         if (!opts->mnt_opts_flags) {
478                 rc = -ENOMEM;
479                 goto out_free;
480         }
481
482         i = 0;
483         if (sbsec->flags & FSCONTEXT_MNT) {
484                 rc = security_sid_to_context(sbsec->sid, &context, &len);
485                 if (rc)
486                         goto out_free;
487                 opts->mnt_opts[i] = context;
488                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
489         }
490         if (sbsec->flags & CONTEXT_MNT) {
491                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
492                 if (rc)
493                         goto out_free;
494                 opts->mnt_opts[i] = context;
495                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
496         }
497         if (sbsec->flags & DEFCONTEXT_MNT) {
498                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
499                 if (rc)
500                         goto out_free;
501                 opts->mnt_opts[i] = context;
502                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
503         }
504         if (sbsec->flags & ROOTCONTEXT_MNT) {
505                 struct inode *root = sbsec->sb->s_root->d_inode;
506                 struct inode_security_struct *isec = root->i_security;
507
508                 rc = security_sid_to_context(isec->sid, &context, &len);
509                 if (rc)
510                         goto out_free;
511                 opts->mnt_opts[i] = context;
512                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
513         }
514         if (sbsec->flags & SE_SBLABELSUPP) {
515                 opts->mnt_opts[i] = NULL;
516                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
517         }
518
519         BUG_ON(i != opts->num_mnt_opts);
520
521         return 0;
522
523 out_free:
524         security_free_mnt_opts(opts);
525         return rc;
526 }
527
528 static int bad_option(struct superblock_security_struct *sbsec, char flag,
529                       u32 old_sid, u32 new_sid)
530 {
531         char mnt_flags = sbsec->flags & SE_MNTMASK;
532
533         /* check if the old mount command had the same options */
534         if (sbsec->flags & SE_SBINITIALIZED)
535                 if (!(sbsec->flags & flag) ||
536                     (old_sid != new_sid))
537                         return 1;
538
539         /* check if we were passed the same options twice,
540          * aka someone passed context=a,context=b
541          */
542         if (!(sbsec->flags & SE_SBINITIALIZED))
543                 if (mnt_flags & flag)
544                         return 1;
545         return 0;
546 }
547
548 /*
549  * Allow filesystems with binary mount data to explicitly set mount point
550  * labeling information.
551  */
552 static int selinux_set_mnt_opts(struct super_block *sb,
553                                 struct security_mnt_opts *opts)
554 {
555         const struct cred *cred = current_cred();
556         int rc = 0, i;
557         struct superblock_security_struct *sbsec = sb->s_security;
558         const char *name = sb->s_type->name;
559         struct inode *inode = sbsec->sb->s_root->d_inode;
560         struct inode_security_struct *root_isec = inode->i_security;
561         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
562         u32 defcontext_sid = 0;
563         char **mount_options = opts->mnt_opts;
564         int *flags = opts->mnt_opts_flags;
565         int num_opts = opts->num_mnt_opts;
566
567         mutex_lock(&sbsec->lock);
568
569         if (!ss_initialized) {
570                 if (!num_opts) {
571                         /* Defer initialization until selinux_complete_init,
572                            after the initial policy is loaded and the security
573                            server is ready to handle calls. */
574                         goto out;
575                 }
576                 rc = -EINVAL;
577                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
578                         "before the security server is initialized\n");
579                 goto out;
580         }
581
582         /*
583          * Binary mount data FS will come through this function twice.  Once
584          * from an explicit call and once from the generic calls from the vfs.
585          * Since the generic VFS calls will not contain any security mount data
586          * we need to skip the double mount verification.
587          *
588          * This does open a hole in which we will not notice if the first
589          * mount using this sb set explict options and a second mount using
590          * this sb does not set any security options.  (The first options
591          * will be used for both mounts)
592          */
593         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
594             && (num_opts == 0))
595                 goto out;
596
597         /*
598          * parse the mount options, check if they are valid sids.
599          * also check if someone is trying to mount the same sb more
600          * than once with different security options.
601          */
602         for (i = 0; i < num_opts; i++) {
603                 u32 sid;
604
605                 if (flags[i] == SE_SBLABELSUPP)
606                         continue;
607                 rc = security_context_to_sid(mount_options[i],
608                                              strlen(mount_options[i]), &sid);
609                 if (rc) {
610                         printk(KERN_WARNING "SELinux: security_context_to_sid"
611                                "(%s) failed for (dev %s, type %s) errno=%d\n",
612                                mount_options[i], sb->s_id, name, rc);
613                         goto out;
614                 }
615                 switch (flags[i]) {
616                 case FSCONTEXT_MNT:
617                         fscontext_sid = sid;
618
619                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
620                                         fscontext_sid))
621                                 goto out_double_mount;
622
623                         sbsec->flags |= FSCONTEXT_MNT;
624                         break;
625                 case CONTEXT_MNT:
626                         context_sid = sid;
627
628                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
629                                         context_sid))
630                                 goto out_double_mount;
631
632                         sbsec->flags |= CONTEXT_MNT;
633                         break;
634                 case ROOTCONTEXT_MNT:
635                         rootcontext_sid = sid;
636
637                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
638                                         rootcontext_sid))
639                                 goto out_double_mount;
640
641                         sbsec->flags |= ROOTCONTEXT_MNT;
642
643                         break;
644                 case DEFCONTEXT_MNT:
645                         defcontext_sid = sid;
646
647                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
648                                         defcontext_sid))
649                                 goto out_double_mount;
650
651                         sbsec->flags |= DEFCONTEXT_MNT;
652
653                         break;
654                 default:
655                         rc = -EINVAL;
656                         goto out;
657                 }
658         }
659
660         if (sbsec->flags & SE_SBINITIALIZED) {
661                 /* previously mounted with options, but not on this attempt? */
662                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
663                         goto out_double_mount;
664                 rc = 0;
665                 goto out;
666         }
667
668         if (strcmp(sb->s_type->name, "proc") == 0)
669                 sbsec->flags |= SE_SBPROC;
670
671         /* Determine the labeling behavior to use for this filesystem type. */
672         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
673         if (rc) {
674                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
675                        __func__, sb->s_type->name, rc);
676                 goto out;
677         }
678
679         /* sets the context of the superblock for the fs being mounted. */
680         if (fscontext_sid) {
681                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
682                 if (rc)
683                         goto out;
684
685                 sbsec->sid = fscontext_sid;
686         }
687
688         /*
689          * Switch to using mount point labeling behavior.
690          * sets the label used on all file below the mountpoint, and will set
691          * the superblock context if not already set.
692          */
693         if (context_sid) {
694                 if (!fscontext_sid) {
695                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
696                                                           cred);
697                         if (rc)
698                                 goto out;
699                         sbsec->sid = context_sid;
700                 } else {
701                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
702                                                              cred);
703                         if (rc)
704                                 goto out;
705                 }
706                 if (!rootcontext_sid)
707                         rootcontext_sid = context_sid;
708
709                 sbsec->mntpoint_sid = context_sid;
710                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
711         }
712
713         if (rootcontext_sid) {
714                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
715                                                      cred);
716                 if (rc)
717                         goto out;
718
719                 root_isec->sid = rootcontext_sid;
720                 root_isec->initialized = 1;
721         }
722
723         if (defcontext_sid) {
724                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
725                         rc = -EINVAL;
726                         printk(KERN_WARNING "SELinux: defcontext option is "
727                                "invalid for this filesystem type\n");
728                         goto out;
729                 }
730
731                 if (defcontext_sid != sbsec->def_sid) {
732                         rc = may_context_mount_inode_relabel(defcontext_sid,
733                                                              sbsec, cred);
734                         if (rc)
735                                 goto out;
736                 }
737
738                 sbsec->def_sid = defcontext_sid;
739         }
740
741         rc = sb_finish_set_opts(sb);
742 out:
743         mutex_unlock(&sbsec->lock);
744         return rc;
745 out_double_mount:
746         rc = -EINVAL;
747         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
748                "security settings for (dev %s, type %s)\n", sb->s_id, name);
749         goto out;
750 }
751
752 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
753                                         struct super_block *newsb)
754 {
755         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
756         struct superblock_security_struct *newsbsec = newsb->s_security;
757
758         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
759         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
760         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
761
762         /*
763          * if the parent was able to be mounted it clearly had no special lsm
764          * mount options.  thus we can safely deal with this superblock later
765          */
766         if (!ss_initialized)
767                 return;
768
769         /* how can we clone if the old one wasn't set up?? */
770         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
771
772         /* if fs is reusing a sb, just let its options stand... */
773         if (newsbsec->flags & SE_SBINITIALIZED)
774                 return;
775
776         mutex_lock(&newsbsec->lock);
777
778         newsbsec->flags = oldsbsec->flags;
779
780         newsbsec->sid = oldsbsec->sid;
781         newsbsec->def_sid = oldsbsec->def_sid;
782         newsbsec->behavior = oldsbsec->behavior;
783
784         if (set_context) {
785                 u32 sid = oldsbsec->mntpoint_sid;
786
787                 if (!set_fscontext)
788                         newsbsec->sid = sid;
789                 if (!set_rootcontext) {
790                         struct inode *newinode = newsb->s_root->d_inode;
791                         struct inode_security_struct *newisec = newinode->i_security;
792                         newisec->sid = sid;
793                 }
794                 newsbsec->mntpoint_sid = sid;
795         }
796         if (set_rootcontext) {
797                 const struct inode *oldinode = oldsb->s_root->d_inode;
798                 const struct inode_security_struct *oldisec = oldinode->i_security;
799                 struct inode *newinode = newsb->s_root->d_inode;
800                 struct inode_security_struct *newisec = newinode->i_security;
801
802                 newisec->sid = oldisec->sid;
803         }
804
805         sb_finish_set_opts(newsb);
806         mutex_unlock(&newsbsec->lock);
807 }
808
809 static int selinux_parse_opts_str(char *options,
810                                   struct security_mnt_opts *opts)
811 {
812         char *p;
813         char *context = NULL, *defcontext = NULL;
814         char *fscontext = NULL, *rootcontext = NULL;
815         int rc, num_mnt_opts = 0;
816
817         opts->num_mnt_opts = 0;
818
819         /* Standard string-based options. */
820         while ((p = strsep(&options, "|")) != NULL) {
821                 int token;
822                 substring_t args[MAX_OPT_ARGS];
823
824                 if (!*p)
825                         continue;
826
827                 token = match_token(p, tokens, args);
828
829                 switch (token) {
830                 case Opt_context:
831                         if (context || defcontext) {
832                                 rc = -EINVAL;
833                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
834                                 goto out_err;
835                         }
836                         context = match_strdup(&args[0]);
837                         if (!context) {
838                                 rc = -ENOMEM;
839                                 goto out_err;
840                         }
841                         break;
842
843                 case Opt_fscontext:
844                         if (fscontext) {
845                                 rc = -EINVAL;
846                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
847                                 goto out_err;
848                         }
849                         fscontext = match_strdup(&args[0]);
850                         if (!fscontext) {
851                                 rc = -ENOMEM;
852                                 goto out_err;
853                         }
854                         break;
855
856                 case Opt_rootcontext:
857                         if (rootcontext) {
858                                 rc = -EINVAL;
859                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
860                                 goto out_err;
861                         }
862                         rootcontext = match_strdup(&args[0]);
863                         if (!rootcontext) {
864                                 rc = -ENOMEM;
865                                 goto out_err;
866                         }
867                         break;
868
869                 case Opt_defcontext:
870                         if (context || defcontext) {
871                                 rc = -EINVAL;
872                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
873                                 goto out_err;
874                         }
875                         defcontext = match_strdup(&args[0]);
876                         if (!defcontext) {
877                                 rc = -ENOMEM;
878                                 goto out_err;
879                         }
880                         break;
881                 case Opt_labelsupport:
882                         break;
883                 default:
884                         rc = -EINVAL;
885                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
886                         goto out_err;
887
888                 }
889         }
890
891         rc = -ENOMEM;
892         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
893         if (!opts->mnt_opts)
894                 goto out_err;
895
896         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
897         if (!opts->mnt_opts_flags) {
898                 kfree(opts->mnt_opts);
899                 goto out_err;
900         }
901
902         if (fscontext) {
903                 opts->mnt_opts[num_mnt_opts] = fscontext;
904                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
905         }
906         if (context) {
907                 opts->mnt_opts[num_mnt_opts] = context;
908                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
909         }
910         if (rootcontext) {
911                 opts->mnt_opts[num_mnt_opts] = rootcontext;
912                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
913         }
914         if (defcontext) {
915                 opts->mnt_opts[num_mnt_opts] = defcontext;
916                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
917         }
918
919         opts->num_mnt_opts = num_mnt_opts;
920         return 0;
921
922 out_err:
923         kfree(context);
924         kfree(defcontext);
925         kfree(fscontext);
926         kfree(rootcontext);
927         return rc;
928 }
929 /*
930  * string mount options parsing and call set the sbsec
931  */
932 static int superblock_doinit(struct super_block *sb, void *data)
933 {
934         int rc = 0;
935         char *options = data;
936         struct security_mnt_opts opts;
937
938         security_init_mnt_opts(&opts);
939
940         if (!data)
941                 goto out;
942
943         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
944
945         rc = selinux_parse_opts_str(options, &opts);
946         if (rc)
947                 goto out_err;
948
949 out:
950         rc = selinux_set_mnt_opts(sb, &opts);
951
952 out_err:
953         security_free_mnt_opts(&opts);
954         return rc;
955 }
956
957 static void selinux_write_opts(struct seq_file *m,
958                                struct security_mnt_opts *opts)
959 {
960         int i;
961         char *prefix;
962
963         for (i = 0; i < opts->num_mnt_opts; i++) {
964                 char *has_comma;
965
966                 if (opts->mnt_opts[i])
967                         has_comma = strchr(opts->mnt_opts[i], ',');
968                 else
969                         has_comma = NULL;
970
971                 switch (opts->mnt_opts_flags[i]) {
972                 case CONTEXT_MNT:
973                         prefix = CONTEXT_STR;
974                         break;
975                 case FSCONTEXT_MNT:
976                         prefix = FSCONTEXT_STR;
977                         break;
978                 case ROOTCONTEXT_MNT:
979                         prefix = ROOTCONTEXT_STR;
980                         break;
981                 case DEFCONTEXT_MNT:
982                         prefix = DEFCONTEXT_STR;
983                         break;
984                 case SE_SBLABELSUPP:
985                         seq_putc(m, ',');
986                         seq_puts(m, LABELSUPP_STR);
987                         continue;
988                 default:
989                         BUG();
990                         return;
991                 };
992                 /* we need a comma before each option */
993                 seq_putc(m, ',');
994                 seq_puts(m, prefix);
995                 if (has_comma)
996                         seq_putc(m, '\"');
997                 seq_puts(m, opts->mnt_opts[i]);
998                 if (has_comma)
999                         seq_putc(m, '\"');
1000         }
1001 }
1002
1003 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1004 {
1005         struct security_mnt_opts opts;
1006         int rc;
1007
1008         rc = selinux_get_mnt_opts(sb, &opts);
1009         if (rc) {
1010                 /* before policy load we may get EINVAL, don't show anything */
1011                 if (rc == -EINVAL)
1012                         rc = 0;
1013                 return rc;
1014         }
1015
1016         selinux_write_opts(m, &opts);
1017
1018         security_free_mnt_opts(&opts);
1019
1020         return rc;
1021 }
1022
1023 static inline u16 inode_mode_to_security_class(umode_t mode)
1024 {
1025         switch (mode & S_IFMT) {
1026         case S_IFSOCK:
1027                 return SECCLASS_SOCK_FILE;
1028         case S_IFLNK:
1029                 return SECCLASS_LNK_FILE;
1030         case S_IFREG:
1031                 return SECCLASS_FILE;
1032         case S_IFBLK:
1033                 return SECCLASS_BLK_FILE;
1034         case S_IFDIR:
1035                 return SECCLASS_DIR;
1036         case S_IFCHR:
1037                 return SECCLASS_CHR_FILE;
1038         case S_IFIFO:
1039                 return SECCLASS_FIFO_FILE;
1040
1041         }
1042
1043         return SECCLASS_FILE;
1044 }
1045
1046 static inline int default_protocol_stream(int protocol)
1047 {
1048         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1049 }
1050
1051 static inline int default_protocol_dgram(int protocol)
1052 {
1053         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1054 }
1055
1056 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1057 {
1058         switch (family) {
1059         case PF_UNIX:
1060                 switch (type) {
1061                 case SOCK_STREAM:
1062                 case SOCK_SEQPACKET:
1063                         return SECCLASS_UNIX_STREAM_SOCKET;
1064                 case SOCK_DGRAM:
1065                         return SECCLASS_UNIX_DGRAM_SOCKET;
1066                 }
1067                 break;
1068         case PF_INET:
1069         case PF_INET6:
1070                 switch (type) {
1071                 case SOCK_STREAM:
1072                         if (default_protocol_stream(protocol))
1073                                 return SECCLASS_TCP_SOCKET;
1074                         else
1075                                 return SECCLASS_RAWIP_SOCKET;
1076                 case SOCK_DGRAM:
1077                         if (default_protocol_dgram(protocol))
1078                                 return SECCLASS_UDP_SOCKET;
1079                         else
1080                                 return SECCLASS_RAWIP_SOCKET;
1081                 case SOCK_DCCP:
1082                         return SECCLASS_DCCP_SOCKET;
1083                 default:
1084                         return SECCLASS_RAWIP_SOCKET;
1085                 }
1086                 break;
1087         case PF_NETLINK:
1088                 switch (protocol) {
1089                 case NETLINK_ROUTE:
1090                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1091                 case NETLINK_FIREWALL:
1092                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1093                 case NETLINK_SOCK_DIAG:
1094                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1095                 case NETLINK_NFLOG:
1096                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1097                 case NETLINK_XFRM:
1098                         return SECCLASS_NETLINK_XFRM_SOCKET;
1099                 case NETLINK_SELINUX:
1100                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1101                 case NETLINK_AUDIT:
1102                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1103                 case NETLINK_IP6_FW:
1104                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1105                 case NETLINK_DNRTMSG:
1106                         return SECCLASS_NETLINK_DNRT_SOCKET;
1107                 case NETLINK_KOBJECT_UEVENT:
1108                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1109                 default:
1110                         return SECCLASS_NETLINK_SOCKET;
1111                 }
1112         case PF_PACKET:
1113                 return SECCLASS_PACKET_SOCKET;
1114         case PF_KEY:
1115                 return SECCLASS_KEY_SOCKET;
1116         case PF_APPLETALK:
1117                 return SECCLASS_APPLETALK_SOCKET;
1118         }
1119
1120         return SECCLASS_SOCKET;
1121 }
1122
1123 #ifdef CONFIG_PROC_FS
1124 static int selinux_proc_get_sid(struct dentry *dentry,
1125                                 u16 tclass,
1126                                 u32 *sid)
1127 {
1128         int rc;
1129         char *buffer, *path;
1130
1131         buffer = (char *)__get_free_page(GFP_KERNEL);
1132         if (!buffer)
1133                 return -ENOMEM;
1134
1135         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1136         if (IS_ERR(path))
1137                 rc = PTR_ERR(path);
1138         else {
1139                 /* each process gets a /proc/PID/ entry. Strip off the
1140                  * PID part to get a valid selinux labeling.
1141                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1142                 while (path[1] >= '0' && path[1] <= '9') {
1143                         path[1] = '/';
1144                         path++;
1145                 }
1146                 rc = security_genfs_sid("proc", path, tclass, sid);
1147         }
1148         free_page((unsigned long)buffer);
1149         return rc;
1150 }
1151 #else
1152 static int selinux_proc_get_sid(struct dentry *dentry,
1153                                 u16 tclass,
1154                                 u32 *sid)
1155 {
1156         return -EINVAL;
1157 }
1158 #endif
1159
1160 /* The inode's security attributes must be initialized before first use. */
1161 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1162 {
1163         struct superblock_security_struct *sbsec = NULL;
1164         struct inode_security_struct *isec = inode->i_security;
1165         u32 sid;
1166         struct dentry *dentry;
1167 #define INITCONTEXTLEN 255
1168         char *context = NULL;
1169         unsigned len = 0;
1170         int rc = 0;
1171
1172         if (isec->initialized)
1173                 goto out;
1174
1175         mutex_lock(&isec->lock);
1176         if (isec->initialized)
1177                 goto out_unlock;
1178
1179         sbsec = inode->i_sb->s_security;
1180         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1181                 /* Defer initialization until selinux_complete_init,
1182                    after the initial policy is loaded and the security
1183                    server is ready to handle calls. */
1184                 spin_lock(&sbsec->isec_lock);
1185                 if (list_empty(&isec->list))
1186                         list_add(&isec->list, &sbsec->isec_head);
1187                 spin_unlock(&sbsec->isec_lock);
1188                 goto out_unlock;
1189         }
1190
1191         switch (sbsec->behavior) {
1192         case SECURITY_FS_USE_XATTR:
1193                 if (!inode->i_op->getxattr) {
1194                         isec->sid = sbsec->def_sid;
1195                         break;
1196                 }
1197
1198                 /* Need a dentry, since the xattr API requires one.
1199                    Life would be simpler if we could just pass the inode. */
1200                 if (opt_dentry) {
1201                         /* Called from d_instantiate or d_splice_alias. */
1202                         dentry = dget(opt_dentry);
1203                 } else {
1204                         /* Called from selinux_complete_init, try to find a dentry. */
1205                         dentry = d_find_alias(inode);
1206                 }
1207                 if (!dentry) {
1208                         /*
1209                          * this is can be hit on boot when a file is accessed
1210                          * before the policy is loaded.  When we load policy we
1211                          * may find inodes that have no dentry on the
1212                          * sbsec->isec_head list.  No reason to complain as these
1213                          * will get fixed up the next time we go through
1214                          * inode_doinit with a dentry, before these inodes could
1215                          * be used again by userspace.
1216                          */
1217                         goto out_unlock;
1218                 }
1219
1220                 len = INITCONTEXTLEN;
1221                 context = kmalloc(len+1, GFP_NOFS);
1222                 if (!context) {
1223                         rc = -ENOMEM;
1224                         dput(dentry);
1225                         goto out_unlock;
1226                 }
1227                 context[len] = '\0';
1228                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1229                                            context, len);
1230                 if (rc == -ERANGE) {
1231                         kfree(context);
1232
1233                         /* Need a larger buffer.  Query for the right size. */
1234                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1235                                                    NULL, 0);
1236                         if (rc < 0) {
1237                                 dput(dentry);
1238                                 goto out_unlock;
1239                         }
1240                         len = rc;
1241                         context = kmalloc(len+1, GFP_NOFS);
1242                         if (!context) {
1243                                 rc = -ENOMEM;
1244                                 dput(dentry);
1245                                 goto out_unlock;
1246                         }
1247                         context[len] = '\0';
1248                         rc = inode->i_op->getxattr(dentry,
1249                                                    XATTR_NAME_SELINUX,
1250                                                    context, len);
1251                 }
1252                 dput(dentry);
1253                 if (rc < 0) {
1254                         if (rc != -ENODATA) {
1255                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1256                                        "%d for dev=%s ino=%ld\n", __func__,
1257                                        -rc, inode->i_sb->s_id, inode->i_ino);
1258                                 kfree(context);
1259                                 goto out_unlock;
1260                         }
1261                         /* Map ENODATA to the default file SID */
1262                         sid = sbsec->def_sid;
1263                         rc = 0;
1264                 } else {
1265                         rc = security_context_to_sid_default(context, rc, &sid,
1266                                                              sbsec->def_sid,
1267                                                              GFP_NOFS);
1268                         if (rc) {
1269                                 char *dev = inode->i_sb->s_id;
1270                                 unsigned long ino = inode->i_ino;
1271
1272                                 if (rc == -EINVAL) {
1273                                         if (printk_ratelimit())
1274                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1275                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1276                                                         "filesystem in question.\n", ino, dev, context);
1277                                 } else {
1278                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1279                                                "returned %d for dev=%s ino=%ld\n",
1280                                                __func__, context, -rc, dev, ino);
1281                                 }
1282                                 kfree(context);
1283                                 /* Leave with the unlabeled SID */
1284                                 rc = 0;
1285                                 break;
1286                         }
1287                 }
1288                 kfree(context);
1289                 isec->sid = sid;
1290                 break;
1291         case SECURITY_FS_USE_TASK:
1292                 isec->sid = isec->task_sid;
1293                 break;
1294         case SECURITY_FS_USE_TRANS:
1295                 /* Default to the fs SID. */
1296                 isec->sid = sbsec->sid;
1297
1298                 /* Try to obtain a transition SID. */
1299                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1300                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1301                                              isec->sclass, NULL, &sid);
1302                 if (rc)
1303                         goto out_unlock;
1304                 isec->sid = sid;
1305                 break;
1306         case SECURITY_FS_USE_MNTPOINT:
1307                 isec->sid = sbsec->mntpoint_sid;
1308                 break;
1309         default:
1310                 /* Default to the fs superblock SID. */
1311                 isec->sid = sbsec->sid;
1312
1313                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1314                         if (opt_dentry) {
1315                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1316                                 rc = selinux_proc_get_sid(opt_dentry,
1317                                                           isec->sclass,
1318                                                           &sid);
1319                                 if (rc)
1320                                         goto out_unlock;
1321                                 isec->sid = sid;
1322                         }
1323                 }
1324                 break;
1325         }
1326
1327         isec->initialized = 1;
1328
1329 out_unlock:
1330         mutex_unlock(&isec->lock);
1331 out:
1332         if (isec->sclass == SECCLASS_FILE)
1333                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1334         return rc;
1335 }
1336
1337 /* Convert a Linux signal to an access vector. */
1338 static inline u32 signal_to_av(int sig)
1339 {
1340         u32 perm = 0;
1341
1342         switch (sig) {
1343         case SIGCHLD:
1344                 /* Commonly granted from child to parent. */
1345                 perm = PROCESS__SIGCHLD;
1346                 break;
1347         case SIGKILL:
1348                 /* Cannot be caught or ignored */
1349                 perm = PROCESS__SIGKILL;
1350                 break;
1351         case SIGSTOP:
1352                 /* Cannot be caught or ignored */
1353                 perm = PROCESS__SIGSTOP;
1354                 break;
1355         default:
1356                 /* All other signals. */
1357                 perm = PROCESS__SIGNAL;
1358                 break;
1359         }
1360
1361         return perm;
1362 }
1363
1364 /*
1365  * Check permission between a pair of credentials
1366  * fork check, ptrace check, etc.
1367  */
1368 static int cred_has_perm(const struct cred *actor,
1369                          const struct cred *target,
1370                          u32 perms)
1371 {
1372         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1373
1374         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1375 }
1376
1377 /*
1378  * Check permission between a pair of tasks, e.g. signal checks,
1379  * fork check, ptrace check, etc.
1380  * tsk1 is the actor and tsk2 is the target
1381  * - this uses the default subjective creds of tsk1
1382  */
1383 static int task_has_perm(const struct task_struct *tsk1,
1384                          const struct task_struct *tsk2,
1385                          u32 perms)
1386 {
1387         const struct task_security_struct *__tsec1, *__tsec2;
1388         u32 sid1, sid2;
1389
1390         rcu_read_lock();
1391         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1392         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1393         rcu_read_unlock();
1394         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1395 }
1396
1397 /*
1398  * Check permission between current and another task, e.g. signal checks,
1399  * fork check, ptrace check, etc.
1400  * current is the actor and tsk2 is the target
1401  * - this uses current's subjective creds
1402  */
1403 static int current_has_perm(const struct task_struct *tsk,
1404                             u32 perms)
1405 {
1406         u32 sid, tsid;
1407
1408         sid = current_sid();
1409         tsid = task_sid(tsk);
1410         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1411 }
1412
1413 #if CAP_LAST_CAP > 63
1414 #error Fix SELinux to handle capabilities > 63.
1415 #endif
1416
1417 /* Check whether a task is allowed to use a capability. */
1418 static int cred_has_capability(const struct cred *cred,
1419                                int cap, int audit)
1420 {
1421         struct common_audit_data ad;
1422         struct av_decision avd;
1423         u16 sclass;
1424         u32 sid = cred_sid(cred);
1425         u32 av = CAP_TO_MASK(cap);
1426         int rc;
1427
1428         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1429         ad.tsk = current;
1430         ad.u.cap = cap;
1431
1432         switch (CAP_TO_INDEX(cap)) {
1433         case 0:
1434                 sclass = SECCLASS_CAPABILITY;
1435                 break;
1436         case 1:
1437                 sclass = SECCLASS_CAPABILITY2;
1438                 break;
1439         default:
1440                 printk(KERN_ERR
1441                        "SELinux:  out of range capability %d\n", cap);
1442                 BUG();
1443                 return -EINVAL;
1444         }
1445
1446         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447         if (audit == SECURITY_CAP_AUDIT) {
1448                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1449                 if (rc2)
1450                         return rc2;
1451         }
1452         return rc;
1453 }
1454
1455 /* Check whether a task is allowed to use a system operation. */
1456 static int task_has_system(struct task_struct *tsk,
1457                            u32 perms)
1458 {
1459         u32 sid = task_sid(tsk);
1460
1461         return avc_has_perm(sid, SECINITSID_KERNEL,
1462                             SECCLASS_SYSTEM, perms, NULL);
1463 }
1464
1465 /* Check whether a task has a particular permission to an inode.
1466    The 'adp' parameter is optional and allows other audit
1467    data to be passed (e.g. the dentry). */
1468 static int inode_has_perm(const struct cred *cred,
1469                           struct inode *inode,
1470                           u32 perms,
1471                           struct common_audit_data *adp,
1472                           unsigned flags)
1473 {
1474         struct inode_security_struct *isec;
1475         u32 sid;
1476
1477         validate_creds(cred);
1478
1479         if (unlikely(IS_PRIVATE(inode)))
1480                 return 0;
1481
1482         sid = cred_sid(cred);
1483         isec = inode->i_security;
1484
1485         return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1486 }
1487
1488 static int inode_has_perm_noadp(const struct cred *cred,
1489                                 struct inode *inode,
1490                                 u32 perms,
1491                                 unsigned flags)
1492 {
1493         struct common_audit_data ad;
1494
1495         COMMON_AUDIT_DATA_INIT(&ad, INODE);
1496         ad.u.inode = inode;
1497         return inode_has_perm(cred, inode, perms, &ad, flags);
1498 }
1499
1500 /* Same as inode_has_perm, but pass explicit audit data containing
1501    the dentry to help the auditing code to more easily generate the
1502    pathname if needed. */
1503 static inline int dentry_has_perm(const struct cred *cred,
1504                                   struct dentry *dentry,
1505                                   u32 av)
1506 {
1507         struct inode *inode = dentry->d_inode;
1508         struct common_audit_data ad;
1509
1510         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1511         ad.u.dentry = dentry;
1512         return inode_has_perm(cred, inode, av, &ad, 0);
1513 }
1514
1515 /* Same as inode_has_perm, but pass explicit audit data containing
1516    the path to help the auditing code to more easily generate the
1517    pathname if needed. */
1518 static inline int path_has_perm(const struct cred *cred,
1519                                 struct path *path,
1520                                 u32 av)
1521 {
1522         struct inode *inode = path->dentry->d_inode;
1523         struct common_audit_data ad;
1524
1525         COMMON_AUDIT_DATA_INIT(&ad, PATH);
1526         ad.u.path = *path;
1527         return inode_has_perm(cred, inode, av, &ad, 0);
1528 }
1529
1530 /* Check whether a task can use an open file descriptor to
1531    access an inode in a given way.  Check access to the
1532    descriptor itself, and then use dentry_has_perm to
1533    check a particular permission to the file.
1534    Access to the descriptor is implicitly granted if it
1535    has the same SID as the process.  If av is zero, then
1536    access to the file is not checked, e.g. for cases
1537    where only the descriptor is affected like seek. */
1538 static int file_has_perm(const struct cred *cred,
1539                          struct file *file,
1540                          u32 av)
1541 {
1542         struct file_security_struct *fsec = file->f_security;
1543         struct inode *inode = file->f_path.dentry->d_inode;
1544         struct common_audit_data ad;
1545         u32 sid = cred_sid(cred);
1546         int rc;
1547
1548         COMMON_AUDIT_DATA_INIT(&ad, PATH);
1549         ad.u.path = file->f_path;
1550
1551         if (sid != fsec->sid) {
1552                 rc = avc_has_perm(sid, fsec->sid,
1553                                   SECCLASS_FD,
1554                                   FD__USE,
1555                                   &ad);
1556                 if (rc)
1557                         goto out;
1558         }
1559
1560         /* av is zero if only checking access to the descriptor. */
1561         rc = 0;
1562         if (av)
1563                 rc = inode_has_perm(cred, inode, av, &ad, 0);
1564
1565 out:
1566         return rc;
1567 }
1568
1569 /* Check whether a task can create a file. */
1570 static int may_create(struct inode *dir,
1571                       struct dentry *dentry,
1572                       u16 tclass)
1573 {
1574         const struct task_security_struct *tsec = current_security();
1575         struct inode_security_struct *dsec;
1576         struct superblock_security_struct *sbsec;
1577         u32 sid, newsid;
1578         struct common_audit_data ad;
1579         int rc;
1580
1581         dsec = dir->i_security;
1582         sbsec = dir->i_sb->s_security;
1583
1584         sid = tsec->sid;
1585         newsid = tsec->create_sid;
1586
1587         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1588         ad.u.dentry = dentry;
1589
1590         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1591                           DIR__ADD_NAME | DIR__SEARCH,
1592                           &ad);
1593         if (rc)
1594                 return rc;
1595
1596         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1597                 rc = security_transition_sid(sid, dsec->sid, tclass,
1598                                              &dentry->d_name, &newsid);
1599                 if (rc)
1600                         return rc;
1601         }
1602
1603         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1604         if (rc)
1605                 return rc;
1606
1607         return avc_has_perm(newsid, sbsec->sid,
1608                             SECCLASS_FILESYSTEM,
1609                             FILESYSTEM__ASSOCIATE, &ad);
1610 }
1611
1612 /* Check whether a task can create a key. */
1613 static int may_create_key(u32 ksid,
1614                           struct task_struct *ctx)
1615 {
1616         u32 sid = task_sid(ctx);
1617
1618         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1619 }
1620
1621 #define MAY_LINK        0
1622 #define MAY_UNLINK      1
1623 #define MAY_RMDIR       2
1624
1625 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1626 static int may_link(struct inode *dir,
1627                     struct dentry *dentry,
1628                     int kind)
1629
1630 {
1631         struct inode_security_struct *dsec, *isec;
1632         struct common_audit_data ad;
1633         u32 sid = current_sid();
1634         u32 av;
1635         int rc;
1636
1637         dsec = dir->i_security;
1638         isec = dentry->d_inode->i_security;
1639
1640         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1641         ad.u.dentry = dentry;
1642
1643         av = DIR__SEARCH;
1644         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1645         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1646         if (rc)
1647                 return rc;
1648
1649         switch (kind) {
1650         case MAY_LINK:
1651                 av = FILE__LINK;
1652                 break;
1653         case MAY_UNLINK:
1654                 av = FILE__UNLINK;
1655                 break;
1656         case MAY_RMDIR:
1657                 av = DIR__RMDIR;
1658                 break;
1659         default:
1660                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1661                         __func__, kind);
1662                 return 0;
1663         }
1664
1665         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1666         return rc;
1667 }
1668
1669 static inline int may_rename(struct inode *old_dir,
1670                              struct dentry *old_dentry,
1671                              struct inode *new_dir,
1672                              struct dentry *new_dentry)
1673 {
1674         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1675         struct common_audit_data ad;
1676         u32 sid = current_sid();
1677         u32 av;
1678         int old_is_dir, new_is_dir;
1679         int rc;
1680
1681         old_dsec = old_dir->i_security;
1682         old_isec = old_dentry->d_inode->i_security;
1683         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1684         new_dsec = new_dir->i_security;
1685
1686         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1687
1688         ad.u.dentry = old_dentry;
1689         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1690                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1691         if (rc)
1692                 return rc;
1693         rc = avc_has_perm(sid, old_isec->sid,
1694                           old_isec->sclass, FILE__RENAME, &ad);
1695         if (rc)
1696                 return rc;
1697         if (old_is_dir && new_dir != old_dir) {
1698                 rc = avc_has_perm(sid, old_isec->sid,
1699                                   old_isec->sclass, DIR__REPARENT, &ad);
1700                 if (rc)
1701                         return rc;
1702         }
1703
1704         ad.u.dentry = new_dentry;
1705         av = DIR__ADD_NAME | DIR__SEARCH;
1706         if (new_dentry->d_inode)
1707                 av |= DIR__REMOVE_NAME;
1708         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1709         if (rc)
1710                 return rc;
1711         if (new_dentry->d_inode) {
1712                 new_isec = new_dentry->d_inode->i_security;
1713                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1714                 rc = avc_has_perm(sid, new_isec->sid,
1715                                   new_isec->sclass,
1716                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1717                 if (rc)
1718                         return rc;
1719         }
1720
1721         return 0;
1722 }
1723
1724 /* Check whether a task can perform a filesystem operation. */
1725 static int superblock_has_perm(const struct cred *cred,
1726                                struct super_block *sb,
1727                                u32 perms,
1728                                struct common_audit_data *ad)
1729 {
1730         struct superblock_security_struct *sbsec;
1731         u32 sid = cred_sid(cred);
1732
1733         sbsec = sb->s_security;
1734         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1735 }
1736
1737 /* Convert a Linux mode and permission mask to an access vector. */
1738 static inline u32 file_mask_to_av(int mode, int mask)
1739 {
1740         u32 av = 0;
1741
1742         if (!S_ISDIR(mode)) {
1743                 if (mask & MAY_EXEC)
1744                         av |= FILE__EXECUTE;
1745                 if (mask & MAY_READ)
1746                         av |= FILE__READ;
1747
1748                 if (mask & MAY_APPEND)
1749                         av |= FILE__APPEND;
1750                 else if (mask & MAY_WRITE)
1751                         av |= FILE__WRITE;
1752
1753         } else {
1754                 if (mask & MAY_EXEC)
1755                         av |= DIR__SEARCH;
1756                 if (mask & MAY_WRITE)
1757                         av |= DIR__WRITE;
1758                 if (mask & MAY_READ)
1759                         av |= DIR__READ;
1760         }
1761
1762         return av;
1763 }
1764
1765 /* Convert a Linux file to an access vector. */
1766 static inline u32 file_to_av(struct file *file)
1767 {
1768         u32 av = 0;
1769
1770         if (file->f_mode & FMODE_READ)
1771                 av |= FILE__READ;
1772         if (file->f_mode & FMODE_WRITE) {
1773                 if (file->f_flags & O_APPEND)
1774                         av |= FILE__APPEND;
1775                 else
1776                         av |= FILE__WRITE;
1777         }
1778         if (!av) {
1779                 /*
1780                  * Special file opened with flags 3 for ioctl-only use.
1781                  */
1782                 av = FILE__IOCTL;
1783         }
1784
1785         return av;
1786 }
1787
1788 /*
1789  * Convert a file to an access vector and include the correct open
1790  * open permission.
1791  */
1792 static inline u32 open_file_to_av(struct file *file)
1793 {
1794         u32 av = file_to_av(file);
1795
1796         if (selinux_policycap_openperm)
1797                 av |= FILE__OPEN;
1798
1799         return av;
1800 }
1801
1802 /* Hook functions begin here. */
1803
1804 static int selinux_ptrace_access_check(struct task_struct *child,
1805                                      unsigned int mode)
1806 {
1807         int rc;
1808
1809         rc = cap_ptrace_access_check(child, mode);
1810         if (rc)
1811                 return rc;
1812
1813         if (mode & PTRACE_MODE_READ) {
1814                 u32 sid = current_sid();
1815                 u32 csid = task_sid(child);
1816                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1817         }
1818
1819         return current_has_perm(child, PROCESS__PTRACE);
1820 }
1821
1822 static int selinux_ptrace_traceme(struct task_struct *parent)
1823 {
1824         int rc;
1825
1826         rc = cap_ptrace_traceme(parent);
1827         if (rc)
1828                 return rc;
1829
1830         return task_has_perm(parent, current, PROCESS__PTRACE);
1831 }
1832
1833 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1834                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1835 {
1836         int error;
1837
1838         error = current_has_perm(target, PROCESS__GETCAP);
1839         if (error)
1840                 return error;
1841
1842         return cap_capget(target, effective, inheritable, permitted);
1843 }
1844
1845 static int selinux_capset(struct cred *new, const struct cred *old,
1846                           const kernel_cap_t *effective,
1847                           const kernel_cap_t *inheritable,
1848                           const kernel_cap_t *permitted)
1849 {
1850         int error;
1851
1852         error = cap_capset(new, old,
1853                                       effective, inheritable, permitted);
1854         if (error)
1855                 return error;
1856
1857         return cred_has_perm(old, new, PROCESS__SETCAP);
1858 }
1859
1860 /*
1861  * (This comment used to live with the selinux_task_setuid hook,
1862  * which was removed).
1863  *
1864  * Since setuid only affects the current process, and since the SELinux
1865  * controls are not based on the Linux identity attributes, SELinux does not
1866  * need to control this operation.  However, SELinux does control the use of
1867  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1868  */
1869
1870 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1871                            int cap, int audit)
1872 {
1873         int rc;
1874
1875         rc = cap_capable(cred, ns, cap, audit);
1876         if (rc)
1877                 return rc;
1878
1879         return cred_has_capability(cred, cap, audit);
1880 }
1881
1882 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1883 {
1884         const struct cred *cred = current_cred();
1885         int rc = 0;
1886
1887         if (!sb)
1888                 return 0;
1889
1890         switch (cmds) {
1891         case Q_SYNC:
1892         case Q_QUOTAON:
1893         case Q_QUOTAOFF:
1894         case Q_SETINFO:
1895         case Q_SETQUOTA:
1896                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1897                 break;
1898         case Q_GETFMT:
1899         case Q_GETINFO:
1900         case Q_GETQUOTA:
1901                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1902                 break;
1903         default:
1904                 rc = 0;  /* let the kernel handle invalid cmds */
1905                 break;
1906         }
1907         return rc;
1908 }
1909
1910 static int selinux_quota_on(struct dentry *dentry)
1911 {
1912         const struct cred *cred = current_cred();
1913
1914         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1915 }
1916
1917 static int selinux_syslog(int type)
1918 {
1919         int rc;
1920
1921         switch (type) {
1922         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
1923         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1924                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1925                 break;
1926         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1927         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
1928         /* Set level of messages printed to console */
1929         case SYSLOG_ACTION_CONSOLE_LEVEL:
1930                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1931                 break;
1932         case SYSLOG_ACTION_CLOSE:       /* Close log */
1933         case SYSLOG_ACTION_OPEN:        /* Open log */
1934         case SYSLOG_ACTION_READ:        /* Read from log */
1935         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
1936         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
1937         default:
1938                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1939                 break;
1940         }
1941         return rc;
1942 }
1943
1944 /*
1945  * Check that a process has enough memory to allocate a new virtual
1946  * mapping. 0 means there is enough memory for the allocation to
1947  * succeed and -ENOMEM implies there is not.
1948  *
1949  * Do not audit the selinux permission check, as this is applied to all
1950  * processes that allocate mappings.
1951  */
1952 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1953 {
1954         int rc, cap_sys_admin = 0;
1955
1956         rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1957                              SECURITY_CAP_NOAUDIT);
1958         if (rc == 0)
1959                 cap_sys_admin = 1;
1960
1961         return __vm_enough_memory(mm, pages, cap_sys_admin);
1962 }
1963
1964 /* binprm security operations */
1965
1966 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1967 {
1968         const struct task_security_struct *old_tsec;
1969         struct task_security_struct *new_tsec;
1970         struct inode_security_struct *isec;
1971         struct common_audit_data ad;
1972         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1973         int rc;
1974
1975         rc = cap_bprm_set_creds(bprm);
1976         if (rc)
1977                 return rc;
1978
1979         /* SELinux context only depends on initial program or script and not
1980          * the script interpreter */
1981         if (bprm->cred_prepared)
1982                 return 0;
1983
1984         old_tsec = current_security();
1985         new_tsec = bprm->cred->security;
1986         isec = inode->i_security;
1987
1988         /* Default to the current task SID. */
1989         new_tsec->sid = old_tsec->sid;
1990         new_tsec->osid = old_tsec->sid;
1991
1992         /* Reset fs, key, and sock SIDs on execve. */
1993         new_tsec->create_sid = 0;
1994         new_tsec->keycreate_sid = 0;
1995         new_tsec->sockcreate_sid = 0;
1996
1997         if (old_tsec->exec_sid) {
1998                 new_tsec->sid = old_tsec->exec_sid;
1999                 /* Reset exec SID on execve. */
2000                 new_tsec->exec_sid = 0;
2001         } else {
2002                 /* Check for a default transition on this program. */
2003                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2004                                              SECCLASS_PROCESS, NULL,
2005                                              &new_tsec->sid);
2006                 if (rc)
2007                         return rc;
2008         }
2009
2010         COMMON_AUDIT_DATA_INIT(&ad, PATH);
2011         ad.u.path = bprm->file->f_path;
2012
2013         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2014                 new_tsec->sid = old_tsec->sid;
2015
2016         if (new_tsec->sid == old_tsec->sid) {
2017                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2018                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2019                 if (rc)
2020                         return rc;
2021         } else {
2022                 /* Check permissions for the transition. */
2023                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2024                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2025                 if (rc)
2026                         return rc;
2027
2028                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2029                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2030                 if (rc)
2031                         return rc;
2032
2033                 /* Check for shared state */
2034                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2035                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2036                                           SECCLASS_PROCESS, PROCESS__SHARE,
2037                                           NULL);
2038                         if (rc)
2039                                 return -EPERM;
2040                 }
2041
2042                 /* Make sure that anyone attempting to ptrace over a task that
2043                  * changes its SID has the appropriate permit */
2044                 if (bprm->unsafe &
2045                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2046                         struct task_struct *tracer;
2047                         struct task_security_struct *sec;
2048                         u32 ptsid = 0;
2049
2050                         rcu_read_lock();
2051                         tracer = ptrace_parent(current);
2052                         if (likely(tracer != NULL)) {
2053                                 sec = __task_cred(tracer)->security;
2054                                 ptsid = sec->sid;
2055                         }
2056                         rcu_read_unlock();
2057
2058                         if (ptsid != 0) {
2059                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2060                                                   SECCLASS_PROCESS,
2061                                                   PROCESS__PTRACE, NULL);
2062                                 if (rc)
2063                                         return -EPERM;
2064                         }
2065                 }
2066
2067                 /* Clear any possibly unsafe personality bits on exec: */
2068                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2069         }
2070
2071         return 0;
2072 }
2073
2074 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2075 {
2076         const struct task_security_struct *tsec = current_security();
2077         u32 sid, osid;
2078         int atsecure = 0;
2079
2080         sid = tsec->sid;
2081         osid = tsec->osid;
2082
2083         if (osid != sid) {
2084                 /* Enable secure mode for SIDs transitions unless
2085                    the noatsecure permission is granted between
2086                    the two SIDs, i.e. ahp returns 0. */
2087                 atsecure = avc_has_perm(osid, sid,
2088                                         SECCLASS_PROCESS,
2089                                         PROCESS__NOATSECURE, NULL);
2090         }
2091
2092         return (atsecure || cap_bprm_secureexec(bprm));
2093 }
2094
2095 /* Derived from fs/exec.c:flush_old_files. */
2096 static inline void flush_unauthorized_files(const struct cred *cred,
2097                                             struct files_struct *files)
2098 {
2099         struct common_audit_data ad;
2100         struct file *file, *devnull = NULL;
2101         struct tty_struct *tty;
2102         struct fdtable *fdt;
2103         long j = -1;
2104         int drop_tty = 0;
2105
2106         tty = get_current_tty();
2107         if (tty) {
2108                 spin_lock(&tty_files_lock);
2109                 if (!list_empty(&tty->tty_files)) {
2110                         struct tty_file_private *file_priv;
2111                         struct inode *inode;
2112
2113                         /* Revalidate access to controlling tty.
2114                            Use inode_has_perm on the tty inode directly rather
2115                            than using file_has_perm, as this particular open
2116                            file may belong to another process and we are only
2117                            interested in the inode-based check here. */
2118                         file_priv = list_first_entry(&tty->tty_files,
2119                                                 struct tty_file_private, list);
2120                         file = file_priv->file;
2121                         inode = file->f_path.dentry->d_inode;
2122                         if (inode_has_perm_noadp(cred, inode,
2123                                            FILE__READ | FILE__WRITE, 0)) {
2124                                 drop_tty = 1;
2125                         }
2126                 }
2127                 spin_unlock(&tty_files_lock);
2128                 tty_kref_put(tty);
2129         }
2130         /* Reset controlling tty. */
2131         if (drop_tty)
2132                 no_tty();
2133
2134         /* Revalidate access to inherited open files. */
2135
2136         COMMON_AUDIT_DATA_INIT(&ad, INODE);
2137
2138         spin_lock(&files->file_lock);
2139         for (;;) {
2140                 unsigned long set, i;
2141                 int fd;
2142
2143                 j++;
2144                 i = j * __NFDBITS;
2145                 fdt = files_fdtable(files);
2146                 if (i >= fdt->max_fds)
2147                         break;
2148                 set = fdt->open_fds->fds_bits[j];
2149                 if (!set)
2150                         continue;
2151                 spin_unlock(&files->file_lock);
2152                 for ( ; set ; i++, set >>= 1) {
2153                         if (set & 1) {
2154                                 file = fget(i);
2155                                 if (!file)
2156                                         continue;
2157                                 if (file_has_perm(cred,
2158                                                   file,
2159                                                   file_to_av(file))) {
2160                                         sys_close(i);
2161                                         fd = get_unused_fd();
2162                                         if (fd != i) {
2163                                                 if (fd >= 0)
2164                                                         put_unused_fd(fd);
2165                                                 fput(file);
2166                                                 continue;
2167                                         }
2168                                         if (devnull) {
2169                                                 get_file(devnull);
2170                                         } else {
2171                                                 devnull = dentry_open(
2172                                                         dget(selinux_null),
2173                                                         mntget(selinuxfs_mount),
2174                                                         O_RDWR, cred);
2175                                                 if (IS_ERR(devnull)) {
2176                                                         devnull = NULL;
2177                                                         put_unused_fd(fd);
2178                                                         fput(file);
2179                                                         continue;
2180                                                 }
2181                                         }
2182                                         fd_install(fd, devnull);
2183                                 }
2184                                 fput(file);
2185                         }
2186                 }
2187                 spin_lock(&files->file_lock);
2188
2189         }
2190         spin_unlock(&files->file_lock);
2191 }
2192
2193 /*
2194  * Prepare a process for imminent new credential changes due to exec
2195  */
2196 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2197 {
2198         struct task_security_struct *new_tsec;
2199         struct rlimit *rlim, *initrlim;
2200         int rc, i;
2201
2202         new_tsec = bprm->cred->security;
2203         if (new_tsec->sid == new_tsec->osid)
2204                 return;
2205
2206         /* Close files for which the new task SID is not authorized. */
2207         flush_unauthorized_files(bprm->cred, current->files);
2208
2209         /* Always clear parent death signal on SID transitions. */
2210         current->pdeath_signal = 0;
2211
2212         /* Check whether the new SID can inherit resource limits from the old
2213          * SID.  If not, reset all soft limits to the lower of the current
2214          * task's hard limit and the init task's soft limit.
2215          *
2216          * Note that the setting of hard limits (even to lower them) can be
2217          * controlled by the setrlimit check.  The inclusion of the init task's
2218          * soft limit into the computation is to avoid resetting soft limits
2219          * higher than the default soft limit for cases where the default is
2220          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2221          */
2222         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2223                           PROCESS__RLIMITINH, NULL);
2224         if (rc) {
2225                 /* protect against do_prlimit() */
2226                 task_lock(current);
2227                 for (i = 0; i < RLIM_NLIMITS; i++) {
2228                         rlim = current->signal->rlim + i;
2229                         initrlim = init_task.signal->rlim + i;
2230                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2231                 }
2232                 task_unlock(current);
2233                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2234         }
2235 }
2236
2237 /*
2238  * Clean up the process immediately after the installation of new credentials
2239  * due to exec
2240  */
2241 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2242 {
2243         const struct task_security_struct *tsec = current_security();
2244         struct itimerval itimer;
2245         u32 osid, sid;
2246         int rc, i;
2247
2248         osid = tsec->osid;
2249         sid = tsec->sid;
2250
2251         if (sid == osid)
2252                 return;
2253
2254         /* Check whether the new SID can inherit signal state from the old SID.
2255          * If not, clear itimers to avoid subsequent signal generation and
2256          * flush and unblock signals.
2257          *
2258          * This must occur _after_ the task SID has been updated so that any
2259          * kill done after the flush will be checked against the new SID.
2260          */
2261         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2262         if (rc) {
2263                 memset(&itimer, 0, sizeof itimer);
2264                 for (i = 0; i < 3; i++)
2265                         do_setitimer(i, &itimer, NULL);
2266                 spin_lock_irq(&current->sighand->siglock);
2267                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2268                         __flush_signals(current);
2269                         flush_signal_handlers(current, 1);
2270                         sigemptyset(&current->blocked);
2271                 }
2272                 spin_unlock_irq(&current->sighand->siglock);
2273         }
2274
2275         /* Wake up the parent if it is waiting so that it can recheck
2276          * wait permission to the new task SID. */
2277         read_lock(&tasklist_lock);
2278         __wake_up_parent(current, current->real_parent);
2279         read_unlock(&tasklist_lock);
2280 }
2281
2282 /* superblock security operations */
2283
2284 static int selinux_sb_alloc_security(struct super_block *sb)
2285 {
2286         return superblock_alloc_security(sb);
2287 }
2288
2289 static void selinux_sb_free_security(struct super_block *sb)
2290 {
2291         superblock_free_security(sb);
2292 }
2293
2294 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2295 {
2296         if (plen > olen)
2297                 return 0;
2298
2299         return !memcmp(prefix, option, plen);
2300 }
2301
2302 static inline int selinux_option(char *option, int len)
2303 {
2304         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2305                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2306                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2307                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2308                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2309 }
2310
2311 static inline void take_option(char **to, char *from, int *first, int len)
2312 {
2313         if (!*first) {
2314                 **to = ',';
2315                 *to += 1;
2316         } else
2317                 *first = 0;
2318         memcpy(*to, from, len);
2319         *to += len;
2320 }
2321
2322 static inline void take_selinux_option(char **to, char *from, int *first,
2323                                        int len)
2324 {
2325         int current_size = 0;
2326
2327         if (!*first) {
2328                 **to = '|';
2329                 *to += 1;
2330         } else
2331                 *first = 0;
2332
2333         while (current_size < len) {
2334                 if (*from != '"') {
2335                         **to = *from;
2336                         *to += 1;
2337                 }
2338                 from += 1;
2339                 current_size += 1;
2340         }
2341 }
2342
2343 static int selinux_sb_copy_data(char *orig, char *copy)
2344 {
2345         int fnosec, fsec, rc = 0;
2346         char *in_save, *in_curr, *in_end;
2347         char *sec_curr, *nosec_save, *nosec;
2348         int open_quote = 0;
2349
2350         in_curr = orig;
2351         sec_curr = copy;
2352
2353         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2354         if (!nosec) {
2355                 rc = -ENOMEM;
2356                 goto out;
2357         }
2358
2359         nosec_save = nosec;
2360         fnosec = fsec = 1;
2361         in_save = in_end = orig;
2362
2363         do {
2364                 if (*in_end == '"')
2365                         open_quote = !open_quote;
2366                 if ((*in_end == ',' && open_quote == 0) ||
2367                                 *in_end == '\0') {
2368                         int len = in_end - in_curr;
2369
2370                         if (selinux_option(in_curr, len))
2371                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2372                         else
2373                                 take_option(&nosec, in_curr, &fnosec, len);
2374
2375                         in_curr = in_end + 1;
2376                 }
2377         } while (*in_end++);
2378
2379         strcpy(in_save, nosec_save);
2380         free_page((unsigned long)nosec_save);
2381 out:
2382         return rc;
2383 }
2384
2385 static int selinux_sb_remount(struct super_block *sb, void *data)
2386 {
2387         int rc, i, *flags;
2388         struct security_mnt_opts opts;
2389         char *secdata, **mount_options;
2390         struct superblock_security_struct *sbsec = sb->s_security;
2391
2392         if (!(sbsec->flags & SE_SBINITIALIZED))
2393                 return 0;
2394
2395         if (!data)
2396                 return 0;
2397
2398         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2399                 return 0;
2400
2401         security_init_mnt_opts(&opts);
2402         secdata = alloc_secdata();
2403         if (!secdata)
2404                 return -ENOMEM;
2405         rc = selinux_sb_copy_data(data, secdata);
2406         if (rc)
2407                 goto out_free_secdata;
2408
2409         rc = selinux_parse_opts_str(secdata, &opts);
2410         if (rc)
2411                 goto out_free_secdata;
2412
2413         mount_options = opts.mnt_opts;
2414         flags = opts.mnt_opts_flags;
2415
2416         for (i = 0; i < opts.num_mnt_opts; i++) {
2417                 u32 sid;
2418                 size_t len;
2419
2420                 if (flags[i] == SE_SBLABELSUPP)
2421                         continue;
2422                 len = strlen(mount_options[i]);
2423                 rc = security_context_to_sid(mount_options[i], len, &sid);
2424                 if (rc) {
2425                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2426                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2427                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2428                         goto out_free_opts;
2429                 }
2430                 rc = -EINVAL;
2431                 switch (flags[i]) {
2432                 case FSCONTEXT_MNT:
2433                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2434                                 goto out_bad_option;
2435                         break;
2436                 case CONTEXT_MNT:
2437                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2438                                 goto out_bad_option;
2439                         break;
2440                 case ROOTCONTEXT_MNT: {
2441                         struct inode_security_struct *root_isec;
2442                         root_isec = sb->s_root->d_inode->i_security;
2443
2444                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2445                                 goto out_bad_option;
2446                         break;
2447                 }
2448                 case DEFCONTEXT_MNT:
2449                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2450                                 goto out_bad_option;
2451                         break;
2452                 default:
2453                         goto out_free_opts;
2454                 }
2455         }
2456
2457         rc = 0;
2458 out_free_opts:
2459         security_free_mnt_opts(&opts);
2460 out_free_secdata:
2461         free_secdata(secdata);
2462         return rc;
2463 out_bad_option:
2464         printk(KERN_WARNING "SELinux: unable to change security options "
2465                "during remount (dev %s, type=%s)\n", sb->s_id,
2466                sb->s_type->name);
2467         goto out_free_opts;
2468 }
2469
2470 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2471 {
2472         const struct cred *cred = current_cred();
2473         struct common_audit_data ad;
2474         int rc;
2475
2476         rc = superblock_doinit(sb, data);
2477         if (rc)
2478                 return rc;
2479
2480         /* Allow all mounts performed by the kernel */
2481         if (flags & MS_KERNMOUNT)
2482                 return 0;
2483
2484         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2485         ad.u.dentry = sb->s_root;
2486         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2487 }
2488
2489 static int selinux_sb_statfs(struct dentry *dentry)
2490 {
2491         const struct cred *cred = current_cred();
2492         struct common_audit_data ad;
2493
2494         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2495         ad.u.dentry = dentry->d_sb->s_root;
2496         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2497 }
2498
2499 static int selinux_mount(char *dev_name,
2500                          struct path *path,
2501                          char *type,
2502                          unsigned long flags,
2503                          void *data)
2504 {
2505         const struct cred *cred = current_cred();
2506
2507         if (flags & MS_REMOUNT)
2508                 return superblock_has_perm(cred, path->dentry->d_sb,
2509                                            FILESYSTEM__REMOUNT, NULL);
2510         else
2511                 return path_has_perm(cred, path, FILE__MOUNTON);
2512 }
2513
2514 static int selinux_umount(struct vfsmount *mnt, int flags)
2515 {
2516         const struct cred *cred = current_cred();
2517
2518         return superblock_has_perm(cred, mnt->mnt_sb,
2519                                    FILESYSTEM__UNMOUNT, NULL);
2520 }
2521
2522 /* inode security operations */
2523
2524 static int selinux_inode_alloc_security(struct inode *inode)
2525 {
2526         return inode_alloc_security(inode);
2527 }
2528
2529 static void selinux_inode_free_security(struct inode *inode)
2530 {
2531         inode_free_security(inode);
2532 }
2533
2534 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2535                                        const struct qstr *qstr, char **name,
2536                                        void **value, size_t *len)
2537 {
2538         const struct task_security_struct *tsec = current_security();
2539         struct inode_security_struct *dsec;
2540         struct superblock_security_struct *sbsec;
2541         u32 sid, newsid, clen;
2542         int rc;
2543         char *namep = NULL, *context;
2544
2545         dsec = dir->i_security;
2546         sbsec = dir->i_sb->s_security;
2547
2548         sid = tsec->sid;
2549         newsid = tsec->create_sid;
2550
2551         if ((sbsec->flags & SE_SBINITIALIZED) &&
2552             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2553                 newsid = sbsec->mntpoint_sid;
2554         else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2555                 rc = security_transition_sid(sid, dsec->sid,
2556                                              inode_mode_to_security_class(inode->i_mode),
2557                                              qstr, &newsid);
2558                 if (rc) {
2559                         printk(KERN_WARNING "%s:  "
2560                                "security_transition_sid failed, rc=%d (dev=%s "
2561                                "ino=%ld)\n",
2562                                __func__,
2563                                -rc, inode->i_sb->s_id, inode->i_ino);
2564                         return rc;
2565                 }
2566         }
2567
2568         /* Possibly defer initialization to selinux_complete_init. */
2569         if (sbsec->flags & SE_SBINITIALIZED) {
2570                 struct inode_security_struct *isec = inode->i_security;
2571                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2572                 isec->sid = newsid;
2573                 isec->initialized = 1;
2574         }
2575
2576         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2577                 return -EOPNOTSUPP;
2578
2579         if (name) {
2580                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2581                 if (!namep)
2582                         return -ENOMEM;
2583                 *name = namep;
2584         }
2585
2586         if (value && len) {
2587                 rc = security_sid_to_context_force(newsid, &context, &clen);
2588                 if (rc) {
2589                         kfree(namep);
2590                         return rc;
2591                 }
2592                 *value = context;
2593                 *len = clen;
2594         }
2595
2596         return 0;
2597 }
2598
2599 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2600 {
2601         return may_create(dir, dentry, SECCLASS_FILE);
2602 }
2603
2604 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2605 {
2606         return may_link(dir, old_dentry, MAY_LINK);
2607 }
2608
2609 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2610 {
2611         return may_link(dir, dentry, MAY_UNLINK);
2612 }
2613
2614 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2615 {
2616         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2617 }
2618
2619 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2620 {
2621         return may_create(dir, dentry, SECCLASS_DIR);
2622 }
2623
2624 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2625 {
2626         return may_link(dir, dentry, MAY_RMDIR);
2627 }
2628
2629 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2630 {
2631         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2632 }
2633
2634 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2635                                 struct inode *new_inode, struct dentry *new_dentry)
2636 {
2637         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2638 }
2639
2640 static int selinux_inode_readlink(struct dentry *dentry)
2641 {
2642         const struct cred *cred = current_cred();
2643
2644         return dentry_has_perm(cred, dentry, FILE__READ);
2645 }
2646
2647 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2648 {
2649         const struct cred *cred = current_cred();
2650
2651         return dentry_has_perm(cred, dentry, FILE__READ);
2652 }
2653
2654 static int selinux_inode_permission(struct inode *inode, int mask)
2655 {
2656         const struct cred *cred = current_cred();
2657         struct common_audit_data ad;
2658         u32 perms;
2659         bool from_access;
2660         unsigned flags = mask & MAY_NOT_BLOCK;
2661
2662         from_access = mask & MAY_ACCESS;
2663         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2664
2665         /* No permission to check.  Existence test. */
2666         if (!mask)
2667                 return 0;
2668
2669         COMMON_AUDIT_DATA_INIT(&ad, INODE);
2670         ad.u.inode = inode;
2671
2672         if (from_access)
2673                 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2674
2675         perms = file_mask_to_av(inode->i_mode, mask);
2676
2677         return inode_has_perm(cred, inode, perms, &ad, flags);
2678 }
2679
2680 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2681 {
2682         const struct cred *cred = current_cred();
2683         unsigned int ia_valid = iattr->ia_valid;
2684
2685         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2686         if (ia_valid & ATTR_FORCE) {
2687                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2688                               ATTR_FORCE);
2689                 if (!ia_valid)
2690                         return 0;
2691         }
2692
2693         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2694                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2695                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2696
2697         return dentry_has_perm(cred, dentry, FILE__WRITE);
2698 }
2699
2700 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2701 {
2702         const struct cred *cred = current_cred();
2703         struct path path;
2704
2705         path.dentry = dentry;
2706         path.mnt = mnt;
2707
2708         return path_has_perm(cred, &path, FILE__GETATTR);
2709 }
2710
2711 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2712 {
2713         const struct cred *cred = current_cred();
2714
2715         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2716                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2717                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2718                         if (!capable(CAP_SETFCAP))
2719                                 return -EPERM;
2720                 } else if (!capable(CAP_SYS_ADMIN)) {
2721                         /* A different attribute in the security namespace.
2722                            Restrict to administrator. */
2723                         return -EPERM;
2724                 }
2725         }
2726
2727         /* Not an attribute we recognize, so just check the
2728            ordinary setattr permission. */
2729         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2730 }
2731
2732 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2733                                   const void *value, size_t size, int flags)
2734 {
2735         struct inode *inode = dentry->d_inode;
2736         struct inode_security_struct *isec = inode->i_security;
2737         struct superblock_security_struct *sbsec;
2738         struct common_audit_data ad;
2739         u32 newsid, sid = current_sid();
2740         int rc = 0;
2741
2742         if (strcmp(name, XATTR_NAME_SELINUX))
2743                 return selinux_inode_setotherxattr(dentry, name);
2744
2745         sbsec = inode->i_sb->s_security;
2746         if (!(sbsec->flags & SE_SBLABELSUPP))
2747                 return -EOPNOTSUPP;
2748
2749         if (!inode_owner_or_capable(inode))
2750                 return -EPERM;
2751
2752         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2753         ad.u.dentry = dentry;
2754
2755         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2756                           FILE__RELABELFROM, &ad);
2757         if (rc)
2758                 return rc;
2759
2760         rc = security_context_to_sid(value, size, &newsid);
2761         if (rc == -EINVAL) {
2762                 if (!capable(CAP_MAC_ADMIN))
2763                         return rc;
2764                 rc = security_context_to_sid_force(value, size, &newsid);
2765         }
2766         if (rc)
2767                 return rc;
2768
2769         rc = avc_has_perm(sid, newsid, isec->sclass,
2770                           FILE__RELABELTO, &ad);
2771         if (rc)
2772                 return rc;
2773
2774         rc = security_validate_transition(isec->sid, newsid, sid,
2775                                           isec->sclass);
2776         if (rc)
2777                 return rc;
2778
2779         return avc_has_perm(newsid,
2780                             sbsec->sid,
2781                             SECCLASS_FILESYSTEM,
2782                             FILESYSTEM__ASSOCIATE,
2783                             &ad);
2784 }
2785
2786 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2787                                         const void *value, size_t size,
2788                                         int flags)
2789 {
2790         struct inode *inode = dentry->d_inode;
2791         struct inode_security_struct *isec = inode->i_security;
2792         u32 newsid;
2793         int rc;
2794
2795         if (strcmp(name, XATTR_NAME_SELINUX)) {
2796                 /* Not an attribute we recognize, so nothing to do. */
2797                 return;
2798         }
2799
2800         rc = security_context_to_sid_force(value, size, &newsid);
2801         if (rc) {
2802                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2803                        "for (%s, %lu), rc=%d\n",
2804                        inode->i_sb->s_id, inode->i_ino, -rc);
2805                 return;
2806         }
2807
2808         isec->sid = newsid;
2809         return;
2810 }
2811
2812 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2813 {
2814         const struct cred *cred = current_cred();
2815
2816         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2817 }
2818
2819 static int selinux_inode_listxattr(struct dentry *dentry)
2820 {
2821         const struct cred *cred = current_cred();
2822
2823         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2824 }
2825
2826 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2827 {
2828         if (strcmp(name, XATTR_NAME_SELINUX))
2829                 return selinux_inode_setotherxattr(dentry, name);
2830
2831         /* No one is allowed to remove a SELinux security label.
2832            You can change the label, but all data must be labeled. */
2833         return -EACCES;
2834 }
2835
2836 /*
2837  * Copy the inode security context value to the user.
2838  *
2839  * Permission check is handled by selinux_inode_getxattr hook.
2840  */
2841 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2842 {
2843         u32 size;
2844         int error;
2845         char *context = NULL;
2846         struct inode_security_struct *isec = inode->i_security;
2847
2848         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2849                 return -EOPNOTSUPP;
2850
2851         /*
2852          * If the caller has CAP_MAC_ADMIN, then get the raw context
2853          * value even if it is not defined by current policy; otherwise,
2854          * use the in-core value under current policy.
2855          * Use the non-auditing forms of the permission checks since
2856          * getxattr may be called by unprivileged processes commonly
2857          * and lack of permission just means that we fall back to the
2858          * in-core context value, not a denial.
2859          */
2860         error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2861                                 SECURITY_CAP_NOAUDIT);
2862         if (!error)
2863                 error = security_sid_to_context_force(isec->sid, &context,
2864                                                       &size);
2865         else
2866                 error = security_sid_to_context(isec->sid, &context, &size);
2867         if (error)
2868                 return error;
2869         error = size;
2870         if (alloc) {
2871                 *buffer = context;
2872                 goto out_nofree;
2873         }
2874         kfree(context);
2875 out_nofree:
2876         return error;
2877 }
2878
2879 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2880                                      const void *value, size_t size, int flags)
2881 {
2882         struct inode_security_struct *isec = inode->i_security;
2883         u32 newsid;
2884         int rc;
2885
2886         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2887                 return -EOPNOTSUPP;
2888
2889         if (!value || !size)
2890                 return -EACCES;
2891
2892         rc = security_context_to_sid((void *)value, size, &newsid);
2893         if (rc)
2894                 return rc;
2895
2896         isec->sid = newsid;
2897         isec->initialized = 1;
2898         return 0;
2899 }
2900
2901 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2902 {
2903         const int len = sizeof(XATTR_NAME_SELINUX);
2904         if (buffer && len <= buffer_size)
2905                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2906         return len;
2907 }
2908
2909 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2910 {
2911         struct inode_security_struct *isec = inode->i_security;
2912         *secid = isec->sid;
2913 }
2914
2915 /* file security operations */
2916
2917 static int selinux_revalidate_file_permission(struct file *file, int mask)
2918 {
2919         const struct cred *cred = current_cred();
2920         struct inode *inode = file->f_path.dentry->d_inode;
2921
2922         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2923         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2924                 mask |= MAY_APPEND;
2925
2926         return file_has_perm(cred, file,
2927                              file_mask_to_av(inode->i_mode, mask));
2928 }
2929
2930 static int selinux_file_permission(struct file *file, int mask)
2931 {
2932         struct inode *inode = file->f_path.dentry->d_inode;
2933         struct file_security_struct *fsec = file->f_security;
2934         struct inode_security_struct *isec = inode->i_security;
2935         u32 sid = current_sid();
2936
2937         if (!mask)
2938                 /* No permission to check.  Existence test. */
2939                 return 0;
2940
2941         if (sid == fsec->sid && fsec->isid == isec->sid &&
2942             fsec->pseqno == avc_policy_seqno())
2943                 /* No change since dentry_open check. */
2944                 return 0;
2945
2946         return selinux_revalidate_file_permission(file, mask);
2947 }
2948
2949 static int selinux_file_alloc_security(struct file *file)
2950 {
2951         return file_alloc_security(file);
2952 }
2953
2954 static void selinux_file_free_security(struct file *file)
2955 {
2956         file_free_security(file);
2957 }
2958
2959 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2960                               unsigned long arg)
2961 {
2962         const struct cred *cred = current_cred();
2963         int error = 0;
2964
2965         switch (cmd) {
2966         case FIONREAD:
2967         /* fall through */
2968         case FIBMAP:
2969         /* fall through */
2970         case FIGETBSZ:
2971         /* fall through */
2972         case EXT2_IOC_GETFLAGS:
2973         /* fall through */
2974         case EXT2_IOC_GETVERSION:
2975                 error = file_has_perm(cred, file, FILE__GETATTR);
2976                 break;
2977
2978         case EXT2_IOC_SETFLAGS:
2979         /* fall through */
2980         case EXT2_IOC_SETVERSION:
2981                 error = file_has_perm(cred, file, FILE__SETATTR);
2982                 break;
2983
2984         /* sys_ioctl() checks */
2985         case FIONBIO:
2986         /* fall through */
2987         case FIOASYNC:
2988                 error = file_has_perm(cred, file, 0);
2989                 break;
2990
2991         case KDSKBENT:
2992         case KDSKBSENT:
2993                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
2994                                             SECURITY_CAP_AUDIT);
2995                 break;
2996
2997         /* default case assumes that the command will go
2998          * to the file's ioctl() function.
2999          */
3000         default:
3001                 error = file_has_perm(cred, file, FILE__IOCTL);
3002         }
3003         return error;
3004 }
3005
3006 static int default_noexec;
3007
3008 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3009 {
3010         const struct cred *cred = current_cred();
3011         int rc = 0;
3012
3013         if (default_noexec &&
3014             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3015                 /*
3016                  * We are making executable an anonymous mapping or a
3017                  * private file mapping that will also be writable.
3018                  * This has an additional check.
3019                  */
3020                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3021                 if (rc)
3022                         goto error;
3023         }
3024
3025         if (file) {
3026                 /* read access is always possible with a mapping */
3027                 u32 av = FILE__READ;
3028
3029                 /* write access only matters if the mapping is shared */
3030                 if (shared && (prot & PROT_WRITE))
3031                         av |= FILE__WRITE;
3032
3033                 if (prot & PROT_EXEC)
3034                         av |= FILE__EXECUTE;
3035
3036                 return file_has_perm(cred, file, av);
3037         }
3038
3039 error:
3040         return rc;
3041 }
3042
3043 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3044                              unsigned long prot, unsigned long flags,
3045                              unsigned long addr, unsigned long addr_only)
3046 {
3047         int rc = 0;
3048         u32 sid = current_sid();
3049
3050         /*
3051          * notice that we are intentionally putting the SELinux check before
3052          * the secondary cap_file_mmap check.  This is such a likely attempt
3053          * at bad behaviour/exploit that we always want to get the AVC, even
3054          * if DAC would have also denied the operation.
3055          */
3056         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3057                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3058                                   MEMPROTECT__MMAP_ZERO, NULL);
3059                 if (rc)
3060                         return rc;
3061         }
3062
3063         /* do DAC check on address space usage */
3064         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3065         if (rc || addr_only)
3066                 return rc;
3067
3068         if (selinux_checkreqprot)
3069                 prot = reqprot;
3070
3071         return file_map_prot_check(file, prot,
3072                                    (flags & MAP_TYPE) == MAP_SHARED);
3073 }
3074
3075 static int selinux_file_mprotect(struct vm_area_struct *vma,
3076                                  unsigned long reqprot,
3077                                  unsigned long prot)
3078 {
3079         const struct cred *cred = current_cred();
3080
3081         if (selinux_checkreqprot)
3082                 prot = reqprot;
3083
3084         if (default_noexec &&
3085             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3086                 int rc = 0;
3087                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3088                     vma->vm_end <= vma->vm_mm->brk) {
3089                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3090                 } else if (!vma->vm_file &&
3091                            vma->vm_start <= vma->vm_mm->start_stack &&
3092                            vma->vm_end >= vma->vm_mm->start_stack) {
3093                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3094                 } else if (vma->vm_file && vma->anon_vma) {
3095                         /*
3096                          * We are making executable a file mapping that has
3097                          * had some COW done. Since pages might have been
3098                          * written, check ability to execute the possibly
3099                          * modified content.  This typically should only
3100                          * occur for text relocations.
3101                          */
3102                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3103                 }
3104                 if (rc)
3105                         return rc;
3106         }
3107
3108         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3109 }
3110
3111 static int selinux_file_lock(struct file *file, unsigned int cmd)
3112 {
3113         const struct cred *cred = current_cred();
3114
3115         return file_has_perm(cred, file, FILE__LOCK);
3116 }
3117
3118 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3119                               unsigned long arg)
3120 {
3121         const struct cred *cred = current_cred();
3122         int err = 0;
3123
3124         switch (cmd) {
3125         case F_SETFL:
3126                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3127                         err = -EINVAL;
3128                         break;
3129                 }
3130
3131                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3132                         err = file_has_perm(cred, file, FILE__WRITE);
3133                         break;
3134                 }
3135                 /* fall through */
3136         case F_SETOWN:
3137         case F_SETSIG:
3138         case F_GETFL:
3139         case F_GETOWN:
3140         case F_GETSIG:
3141                 /* Just check FD__USE permission */
3142                 err = file_has_perm(cred, file, 0);
3143                 break;
3144         case F_GETLK:
3145         case F_SETLK:
3146         case F_SETLKW:
3147 #if BITS_PER_LONG == 32
3148         case F_GETLK64:
3149         case F_SETLK64:
3150         case F_SETLKW64:
3151 #endif
3152                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3153                         err = -EINVAL;
3154                         break;
3155                 }
3156                 err = file_has_perm(cred, file, FILE__LOCK);
3157                 break;
3158         }
3159
3160         return err;
3161 }
3162
3163 static int selinux_file_set_fowner(struct file *file)
3164 {
3165         struct file_security_struct *fsec;
3166
3167         fsec = file->f_security;
3168         fsec->fown_sid = current_sid();
3169
3170         return 0;
3171 }
3172
3173 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3174                                        struct fown_struct *fown, int signum)
3175 {
3176         struct file *file;
3177         u32 sid = task_sid(tsk);
3178         u32 perm;
3179         struct file_security_struct *fsec;
3180
3181         /* struct fown_struct is never outside the context of a struct file */
3182         file = container_of(fown, struct file, f_owner);
3183
3184         fsec = file->f_security;
3185
3186         if (!signum)
3187                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3188         else
3189                 perm = signal_to_av(signum);
3190
3191         return avc_has_perm(fsec->fown_sid, sid,
3192                             SECCLASS_PROCESS, perm, NULL);
3193 }
3194
3195 static int selinux_file_receive(struct file *file)
3196 {
3197         const struct cred *cred = current_cred();
3198
3199         return file_has_perm(cred, file, file_to_av(file));
3200 }
3201
3202 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3203 {
3204         struct file_security_struct *fsec;
3205         struct inode *inode;
3206         struct inode_security_struct *isec;
3207
3208         inode = file->f_path.dentry->d_inode;
3209         fsec = file->f_security;
3210         isec = inode->i_security;
3211         /*
3212          * Save inode label and policy sequence number
3213          * at open-time so that selinux_file_permission
3214          * can determine whether revalidation is necessary.
3215          * Task label is already saved in the file security
3216          * struct as its SID.
3217          */
3218         fsec->isid = isec->sid;
3219         fsec->pseqno = avc_policy_seqno();
3220         /*
3221          * Since the inode label or policy seqno may have changed
3222          * between the selinux_inode_permission check and the saving
3223          * of state above, recheck that access is still permitted.
3224          * Otherwise, access might never be revalidated against the
3225          * new inode label or new policy.
3226          * This check is not redundant - do not remove.
3227          */
3228         return inode_has_perm_noadp(cred, inode, open_file_to_av(file), 0);
3229 }
3230
3231 /* task security operations */
3232
3233 static int selinux_task_create(unsigned long clone_flags)
3234 {
3235         return current_has_perm(current, PROCESS__FORK);
3236 }
3237
3238 /*
3239  * allocate the SELinux part of blank credentials
3240  */
3241 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3242 {
3243         struct task_security_struct *tsec;
3244
3245         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3246         if (!tsec)
3247                 return -ENOMEM;
3248
3249         cred->security = tsec;
3250         return 0;
3251 }
3252
3253 /*
3254  * detach and free the LSM part of a set of credentials
3255  */
3256 static void selinux_cred_free(struct cred *cred)
3257 {
3258         struct task_security_struct *tsec = cred->security;
3259
3260         /*
3261          * cred->security == NULL if security_cred_alloc_blank() or
3262          * security_prepare_creds() returned an error.
3263          */
3264         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3265         cred->security = (void *) 0x7UL;
3266         kfree(tsec);
3267 }
3268
3269 /*
3270  * prepare a new set of credentials for modification
3271  */
3272 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3273                                 gfp_t gfp)
3274 {
3275         const struct task_security_struct *old_tsec;
3276         struct task_security_struct *tsec;
3277
3278         old_tsec = old->security;
3279
3280         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3281         if (!tsec)
3282                 return -ENOMEM;
3283
3284         new->security = tsec;
3285         return 0;
3286 }
3287
3288 /*
3289  * transfer the SELinux data to a blank set of creds
3290  */
3291 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3292 {
3293         const struct task_security_struct *old_tsec = old->security;
3294         struct task_security_struct *tsec = new->security;
3295
3296         *tsec = *old_tsec;
3297 }
3298
3299 /*
3300  * set the security data for a kernel service
3301  * - all the creation contexts are set to unlabelled
3302  */
3303 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3304 {
3305         struct task_security_struct *tsec = new->security;
3306         u32 sid = current_sid();
3307         int ret;
3308
3309         ret = avc_has_perm(sid, secid,
3310                            SECCLASS_KERNEL_SERVICE,
3311                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3312                            NULL);
3313         if (ret == 0) {
3314                 tsec->sid = secid;
3315                 tsec->create_sid = 0;
3316                 tsec->keycreate_sid = 0;
3317                 tsec->sockcreate_sid = 0;
3318         }
3319         return ret;
3320 }
3321
3322 /*
3323  * set the file creation context in a security record to the same as the
3324  * objective context of the specified inode
3325  */
3326 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3327 {
3328         struct inode_security_struct *isec = inode->i_security;
3329         struct task_security_struct *tsec = new->security;
3330         u32 sid = current_sid();
3331         int ret;
3332
3333         ret = avc_has_perm(sid, isec->sid,
3334                            SECCLASS_KERNEL_SERVICE,
3335                            KERNEL_SERVICE__CREATE_FILES_AS,
3336                            NULL);
3337
3338         if (ret == 0)
3339                 tsec->create_sid = isec->sid;
3340         return ret;
3341 }
3342
3343 static int selinux_kernel_module_request(char *kmod_name)
3344 {
3345         u32 sid;
3346         struct common_audit_data ad;
3347
3348         sid = task_sid(current);
3349
3350         COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3351         ad.u.kmod_name = kmod_name;
3352
3353         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3354                             SYSTEM__MODULE_REQUEST, &ad);
3355 }
3356
3357 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3358 {
3359         return current_has_perm(p, PROCESS__SETPGID);
3360 }
3361
3362 static int selinux_task_getpgid(struct task_struct *p)
3363 {
3364         return current_has_perm(p, PROCESS__GETPGID);
3365 }
3366
3367 static int selinux_task_getsid(struct task_struct *p)
3368 {
3369         return current_has_perm(p, PROCESS__GETSESSION);
3370 }
3371
3372 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3373 {
3374         *secid = task_sid(p);
3375 }
3376
3377 static int selinux_task_setnice(struct task_struct *p, int nice)
3378 {
3379         int rc;
3380
3381         rc = cap_task_setnice(p, nice);
3382         if (rc)
3383                 return rc;
3384
3385         return current_has_perm(p, PROCESS__SETSCHED);
3386 }
3387
3388 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3389 {
3390         int rc;
3391
3392         rc = cap_task_setioprio(p, ioprio);
3393         if (rc)
3394                 return rc;
3395
3396         return current_has_perm(p, PROCESS__SETSCHED);
3397 }
3398
3399 static int selinux_task_getioprio(struct task_struct *p)
3400 {
3401         return current_has_perm(p, PROCESS__GETSCHED);
3402 }
3403
3404 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3405                 struct rlimit *new_rlim)
3406 {
3407         struct rlimit *old_rlim = p->signal->rlim + resource;
3408
3409         /* Control the ability to change the hard limit (whether
3410            lowering or raising it), so that the hard limit can
3411            later be used as a safe reset point for the soft limit
3412            upon context transitions.  See selinux_bprm_committing_creds. */
3413         if (old_rlim->rlim_max != new_rlim->rlim_max)
3414                 return current_has_perm(p, PROCESS__SETRLIMIT);
3415
3416         return 0;
3417 }
3418
3419 static int selinux_task_setscheduler(struct task_struct *p)
3420 {
3421         int rc;
3422
3423         rc = cap_task_setscheduler(p);
3424         if (rc)
3425                 return rc;
3426
3427         return current_has_perm(p, PROCESS__SETSCHED);
3428 }
3429
3430 static int selinux_task_getscheduler(struct task_struct *p)
3431 {
3432         return current_has_perm(p, PROCESS__GETSCHED);
3433 }
3434
3435 static int selinux_task_movememory(struct task_struct *p)
3436 {
3437         return current_has_perm(p, PROCESS__SETSCHED);
3438 }
3439
3440 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3441                                 int sig, u32 secid)
3442 {
3443         u32 perm;
3444         int rc;
3445
3446         if (!sig)
3447                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3448         else
3449                 perm = signal_to_av(sig);
3450         if (secid)
3451                 rc = avc_has_perm(secid, task_sid(p),
3452                                   SECCLASS_PROCESS, perm, NULL);
3453         else
3454                 rc = current_has_perm(p, perm);
3455         return rc;
3456 }
3457
3458 static int selinux_task_wait(struct task_struct *p)
3459 {
3460         return task_has_perm(p, current, PROCESS__SIGCHLD);
3461 }
3462
3463 static void selinux_task_to_inode(struct task_struct *p,
3464                                   struct inode *inode)
3465 {
3466         struct inode_security_struct *isec = inode->i_security;
3467         u32 sid = task_sid(p);
3468
3469         isec->sid = sid;
3470         isec->initialized = 1;
3471 }
3472
3473 /* Returns error only if unable to parse addresses */
3474 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3475                         struct common_audit_data *ad, u8 *proto)
3476 {
3477         int offset, ihlen, ret = -EINVAL;
3478         struct iphdr _iph, *ih;
3479
3480         offset = skb_network_offset(skb);
3481         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3482         if (ih == NULL)
3483                 goto out;
3484
3485         ihlen = ih->ihl * 4;
3486         if (ihlen < sizeof(_iph))
3487                 goto out;
3488
3489         ad->u.net.v4info.saddr = ih->saddr;
3490         ad->u.net.v4info.daddr = ih->daddr;
3491         ret = 0;
3492
3493         if (proto)
3494                 *proto = ih->protocol;
3495
3496         switch (ih->protocol) {
3497         case IPPROTO_TCP: {
3498                 struct tcphdr _tcph, *th;
3499
3500                 if (ntohs(ih->frag_off) & IP_OFFSET)
3501                         break;
3502
3503                 offset += ihlen;
3504                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3505                 if (th == NULL)
3506                         break;
3507
3508                 ad->u.net.sport = th->source;
3509                 ad->u.net.dport = th->dest;
3510                 break;
3511         }
3512
3513         case IPPROTO_UDP: {
3514                 struct udphdr _udph, *uh;
3515
3516                 if (ntohs(ih->frag_off) & IP_OFFSET)
3517                         break;
3518
3519                 offset += ihlen;
3520                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3521                 if (uh == NULL)
3522                         break;
3523
3524                 ad->u.net.sport = uh->source;
3525                 ad->u.net.dport = uh->dest;
3526                 break;
3527         }
3528
3529         case IPPROTO_DCCP: {
3530                 struct dccp_hdr _dccph, *dh;
3531
3532                 if (ntohs(ih->frag_off) & IP_OFFSET)
3533                         break;
3534
3535                 offset += ihlen;
3536                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3537                 if (dh == NULL)
3538                         break;
3539
3540                 ad->u.net.sport = dh->dccph_sport;
3541                 ad->u.net.dport = dh->dccph_dport;
3542                 break;
3543         }
3544
3545         default:
3546                 break;
3547         }
3548 out:
3549         return ret;
3550 }
3551
3552 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3553
3554 /* Returns error only if unable to parse addresses */
3555 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3556                         struct common_audit_data *ad, u8 *proto)
3557 {
3558         u8 nexthdr;
3559         int ret = -EINVAL, offset;
3560         struct ipv6hdr _ipv6h, *ip6;
3561         __be16 frag_off;
3562
3563         offset = skb_network_offset(skb);
3564         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3565         if (ip6 == NULL)
3566                 goto out;
3567
3568         ad->u.net.v6info.saddr = ip6->saddr;
3569         ad->u.net.v6info.daddr = ip6->daddr;
3570         ret = 0;
3571
3572         nexthdr = ip6->nexthdr;
3573         offset += sizeof(_ipv6h);
3574         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3575         if (offset < 0)
3576                 goto out;
3577
3578         if (proto)
3579                 *proto = nexthdr;
3580
3581         switch (nexthdr) {
3582         case IPPROTO_TCP: {
3583                 struct tcphdr _tcph, *th;
3584
3585                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3586                 if (th == NULL)
3587                         break;
3588
3589                 ad->u.net.sport = th->source;
3590                 ad->u.net.dport = th->dest;
3591                 break;
3592         }
3593
3594         case IPPROTO_UDP: {
3595                 struct udphdr _udph, *uh;
3596
3597                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3598                 if (uh == NULL)
3599                         break;
3600
3601                 ad->u.net.sport = uh->source;
3602                 ad->u.net.dport = uh->dest;
3603                 break;
3604         }
3605
3606         case IPPROTO_DCCP: {
3607                 struct dccp_hdr _dccph, *dh;
3608
3609                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3610                 if (dh == NULL)
3611                         break;
3612
3613                 ad->u.net.sport = dh->dccph_sport;
3614                 ad->u.net.dport = dh->dccph_dport;
3615                 break;
3616         }
3617
3618         /* includes fragments */
3619         default:
3620                 break;
3621         }
3622 out:
3623         return ret;
3624 }
3625
3626 #endif /* IPV6 */
3627
3628 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3629                              char **_addrp, int src, u8 *proto)
3630 {
3631         char *addrp;
3632         int ret;
3633
3634         switch (ad->u.net.family) {
3635         case PF_INET:
3636                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3637                 if (ret)
3638                         goto parse_error;
3639                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3640                                        &ad->u.net.v4info.daddr);
3641                 goto okay;
3642
3643 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3644         case PF_INET6:
3645                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3646                 if (ret)
3647                         goto parse_error;
3648                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3649                                        &ad->u.net.v6info.daddr);
3650                 goto okay;
3651 #endif  /* IPV6 */
3652         default:
3653                 addrp = NULL;
3654                 goto okay;
3655         }
3656
3657 parse_error:
3658         printk(KERN_WARNING
3659                "SELinux: failure in selinux_parse_skb(),"
3660                " unable to parse packet\n");
3661         return ret;
3662
3663 okay:
3664         if (_addrp)
3665                 *_addrp = addrp;
3666         return 0;
3667 }
3668
3669 /**
3670  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3671  * @skb: the packet
3672  * @family: protocol family
3673  * @sid: the packet's peer label SID
3674  *
3675  * Description:
3676  * Check the various different forms of network peer labeling and determine
3677  * the peer label/SID for the packet; most of the magic actually occurs in
3678  * the security server function security_net_peersid_cmp().  The function
3679  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3680  * or -EACCES if @sid is invalid due to inconsistencies with the different
3681  * peer labels.
3682  *
3683  */
3684 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3685 {
3686         int err;
3687         u32 xfrm_sid;
3688         u32 nlbl_sid;
3689         u32 nlbl_type;
3690
3691         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3692         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3693
3694         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3695         if (unlikely(err)) {
3696                 printk(KERN_WARNING
3697                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3698                        " unable to determine packet's peer label\n");
3699                 return -EACCES;
3700         }
3701
3702         return 0;
3703 }
3704
3705 /* socket security operations */
3706
3707 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3708                                  u16 secclass, u32 *socksid)
3709 {
3710         if (tsec->sockcreate_sid > SECSID_NULL) {
3711                 *socksid = tsec->sockcreate_sid;
3712                 return 0;
3713         }
3714
3715         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3716                                        socksid);
3717 }
3718
3719 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3720 {
3721         struct sk_security_struct *sksec = sk->sk_security;
3722         struct common_audit_data ad;
3723         u32 tsid = task_sid(task);
3724
3725         if (sksec->sid == SECINITSID_KERNEL)
3726                 return 0;
3727
3728         COMMON_AUDIT_DATA_INIT(&ad, NET);
3729         ad.u.net.sk = sk;
3730
3731         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3732 }
3733
3734 static int selinux_socket_create(int family, int type,
3735                                  int protocol, int kern)
3736 {
3737         const struct task_security_struct *tsec = current_security();
3738         u32 newsid;
3739         u16 secclass;
3740         int rc;
3741
3742         if (kern)
3743                 return 0;
3744
3745         secclass = socket_type_to_security_class(family, type, protocol);
3746         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3747         if (rc)
3748                 return rc;
3749
3750         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3751 }
3752
3753 static int selinux_socket_post_create(struct socket *sock, int family,
3754                                       int type, int protocol, int kern)
3755 {
3756         const struct task_security_struct *tsec = current_security();
3757         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3758         struct sk_security_struct *sksec;
3759         int err = 0;
3760
3761         isec->sclass = socket_type_to_security_class(family, type, protocol);
3762
3763         if (kern)
3764                 isec->sid = SECINITSID_KERNEL;
3765         else {
3766                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3767                 if (err)
3768                         return err;
3769         }
3770
3771         isec->initialized = 1;
3772
3773         if (sock->sk) {
3774                 sksec = sock->sk->sk_security;
3775                 sksec->sid = isec->sid;
3776                 sksec->sclass = isec->sclass;
3777                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3778         }
3779
3780         return err;
3781 }
3782
3783 /* Range of port numbers used to automatically bind.
3784    Need to determine whether we should perform a name_bind
3785    permission check between the socket and the port number. */
3786
3787 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3788 {
3789         struct sock *sk = sock->sk;
3790         u16 family;
3791         int err;
3792
3793         err = sock_has_perm(current, sk, SOCKET__BIND);
3794         if (err)
3795                 goto out;
3796
3797         /*
3798          * If PF_INET or PF_INET6, check name_bind permission for the port.
3799          * Multiple address binding for SCTP is not supported yet: we just
3800          * check the first address now.
3801          */
3802         family = sk->sk_family;
3803         if (family == PF_INET || family == PF_INET6) {
3804                 char *addrp;
3805                 struct sk_security_struct *sksec = sk->sk_security;
3806                 struct common_audit_data ad;
3807                 struct sockaddr_in *addr4 = NULL;
3808                 struct sockaddr_in6 *addr6 = NULL;
3809                 unsigned short snum;
3810                 u32 sid, node_perm;
3811
3812                 if (family == PF_INET) {
3813                         addr4 = (struct sockaddr_in *)address;
3814                         snum = ntohs(addr4->sin_port);
3815                         addrp = (char *)&addr4->sin_addr.s_addr;
3816                 } else {
3817                         addr6 = (struct sockaddr_in6 *)address;
3818                         snum = ntohs(addr6->sin6_port);
3819                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3820                 }
3821
3822                 if (snum) {
3823                         int low, high;
3824
3825                         inet_get_local_port_range(&low, &high);
3826
3827                         if (snum < max(PROT_SOCK, low) || snum > high) {
3828                                 err = sel_netport_sid(sk->sk_protocol,
3829                                                       snum, &sid);
3830                                 if (err)
3831                                         goto out;
3832                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3833                                 ad.u.net.sport = htons(snum);
3834                                 ad.u.net.family = family;
3835                                 err = avc_has_perm(sksec->sid, sid,
3836                                                    sksec->sclass,
3837                                                    SOCKET__NAME_BIND, &ad);
3838                                 if (err)
3839                                         goto out;
3840                         }
3841                 }
3842
3843                 switch (sksec->sclass) {
3844                 case SECCLASS_TCP_SOCKET:
3845                         node_perm = TCP_SOCKET__NODE_BIND;
3846                         break;
3847
3848                 case SECCLASS_UDP_SOCKET:
3849                         node_perm = UDP_SOCKET__NODE_BIND;
3850                         break;
3851
3852                 case SECCLASS_DCCP_SOCKET:
3853                         node_perm = DCCP_SOCKET__NODE_BIND;
3854                         break;
3855
3856                 default:
3857                         node_perm = RAWIP_SOCKET__NODE_BIND;
3858                         break;
3859                 }
3860
3861                 err = sel_netnode_sid(addrp, family, &sid);
3862                 if (err)
3863                         goto out;
3864
3865                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3866                 ad.u.net.sport = htons(snum);
3867                 ad.u.net.family = family;
3868
3869                 if (family == PF_INET)
3870                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3871                 else
3872                         ad.u.net.v6info.saddr = addr6->sin6_addr;
3873
3874                 err = avc_has_perm(sksec->sid, sid,
3875                                    sksec->sclass, node_perm, &ad);
3876                 if (err)
3877                         goto out;
3878         }
3879 out:
3880         return err;
3881 }
3882
3883 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3884 {
3885         struct sock *sk = sock->sk;
3886         struct sk_security_struct *sksec = sk->sk_security;
3887         int err;
3888
3889         err = sock_has_perm(current, sk, SOCKET__CONNECT);
3890         if (err)
3891                 return err;
3892
3893         /*
3894          * If a TCP or DCCP socket, check name_connect permission for the port.
3895          */
3896         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3897             sksec->sclass == SECCLASS_DCCP_SOCKET) {
3898                 struct common_audit_data ad;
3899                 struct sockaddr_in *addr4 = NULL;
3900                 struct sockaddr_in6 *addr6 = NULL;
3901                 unsigned short snum;
3902                 u32 sid, perm;
3903
3904                 if (sk->sk_family == PF_INET) {
3905                         addr4 = (struct sockaddr_in *)address;
3906                         if (addrlen < sizeof(struct sockaddr_in))
3907                                 return -EINVAL;
3908                         snum = ntohs(addr4->sin_port);
3909                 } else {
3910                         addr6 = (struct sockaddr_in6 *)address;
3911                         if (addrlen < SIN6_LEN_RFC2133)
3912                                 return -EINVAL;
3913                         snum = ntohs(addr6->sin6_port);
3914                 }
3915
3916                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3917                 if (err)
3918                         goto out;
3919
3920                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3921                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3922
3923                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3924                 ad.u.net.dport = htons(snum);
3925                 ad.u.net.family = sk->sk_family;
3926                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3927                 if (err)
3928                         goto out;
3929         }
3930
3931         err = selinux_netlbl_socket_connect(sk, address);
3932
3933 out:
3934         return err;
3935 }
3936
3937 static int selinux_socket_listen(struct socket *sock, int backlog)
3938 {
3939         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3940 }
3941
3942 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3943 {
3944         int err;
3945         struct inode_security_struct *isec;
3946         struct inode_security_struct *newisec;
3947
3948         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3949         if (err)
3950                 return err;
3951
3952         newisec = SOCK_INODE(newsock)->i_security;
3953
3954         isec = SOCK_INODE(sock)->i_security;
3955         newisec->sclass = isec->sclass;
3956         newisec->sid = isec->sid;
3957         newisec->initialized = 1;
3958
3959         return 0;
3960 }
3961
3962 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3963                                   int size)
3964 {
3965         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3966 }
3967
3968 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3969                                   int size, int flags)
3970 {
3971         return sock_has_perm(current, sock->sk, SOCKET__READ);
3972 }
3973
3974 static int selinux_socket_getsockname(struct socket *sock)
3975 {
3976         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3977 }
3978
3979 static int selinux_socket_getpeername(struct socket *sock)
3980 {
3981         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3982 }
3983
3984 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3985 {
3986         int err;
3987
3988         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3989         if (err)
3990                 return err;
3991
3992         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3993 }
3994
3995 static int selinux_socket_getsockopt(struct socket *sock, int level,
3996                                      int optname)
3997 {
3998         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
3999 }
4000
4001 static int selinux_socket_shutdown(struct socket *sock, int how)
4002 {
4003         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4004 }
4005
4006 static int selinux_socket_unix_stream_connect(struct sock *sock,
4007                                               struct sock *other,
4008                                               struct sock *newsk)
4009 {
4010         struct sk_security_struct *sksec_sock = sock->sk_security;
4011         struct sk_security_struct *sksec_other = other->sk_security;
4012         struct sk_security_struct *sksec_new = newsk->sk_security;
4013         struct common_audit_data ad;
4014         int err;
4015
4016         COMMON_AUDIT_DATA_INIT(&ad, NET);
4017         ad.u.net.sk = other;
4018
4019         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4020                            sksec_other->sclass,
4021                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4022         if (err)
4023                 return err;
4024
4025         /* server child socket */
4026         sksec_new->peer_sid = sksec_sock->sid;
4027         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4028                                     &sksec_new->sid);
4029         if (err)
4030                 return err;
4031
4032         /* connecting socket */
4033         sksec_sock->peer_sid = sksec_new->sid;
4034
4035         return 0;
4036 }
4037
4038 static int selinux_socket_unix_may_send(struct socket *sock,
4039                                         struct socket *other)
4040 {
4041         struct sk_security_struct *ssec = sock->sk->sk_security;
4042         struct sk_security_struct *osec = other->sk->sk_security;
4043         struct common_audit_data ad;
4044
4045         COMMON_AUDIT_DATA_INIT(&ad, NET);
4046         ad.u.net.sk = other->sk;
4047
4048         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4049                             &ad);
4050 }
4051
4052 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4053                                     u32 peer_sid,
4054                                     struct common_audit_data *ad)
4055 {
4056         int err;
4057         u32 if_sid;
4058         u32 node_sid;
4059
4060         err = sel_netif_sid(ifindex, &if_sid);
4061         if (err)
4062                 return err;
4063         err = avc_has_perm(peer_sid, if_sid,
4064                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4065         if (err)
4066                 return err;
4067
4068         err = sel_netnode_sid(addrp, family, &node_sid);
4069         if (err)
4070                 return err;
4071         return avc_has_perm(peer_sid, node_sid,
4072                             SECCLASS_NODE, NODE__RECVFROM, ad);
4073 }
4074
4075 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4076                                        u16 family)
4077 {
4078         int err = 0;
4079         struct sk_security_struct *sksec = sk->sk_security;
4080         u32 sk_sid = sksec->sid;
4081         struct common_audit_data ad;
4082         char *addrp;
4083
4084         COMMON_AUDIT_DATA_INIT(&ad, NET);
4085         ad.u.net.netif = skb->skb_iif;
4086         ad.u.net.family = family;
4087         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4088         if (err)
4089                 return err;
4090
4091         if (selinux_secmark_enabled()) {
4092                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4093                                    PACKET__RECV, &ad);
4094                 if (err)
4095                         return err;
4096         }
4097
4098         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4099         if (err)
4100                 return err;
4101         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4102
4103         return err;
4104 }
4105
4106 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4107 {
4108         int err;
4109         struct sk_security_struct *sksec = sk->sk_security;
4110         u16 family = sk->sk_family;
4111         u32 sk_sid = sksec->sid;
4112         struct common_audit_data ad;
4113         char *addrp;
4114         u8 secmark_active;
4115         u8 peerlbl_active;
4116
4117         if (family != PF_INET && family != PF_INET6)
4118                 return 0;
4119
4120         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4121         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4122                 family = PF_INET;
4123
4124         /* If any sort of compatibility mode is enabled then handoff processing
4125          * to the selinux_sock_rcv_skb_compat() function to deal with the
4126          * special handling.  We do this in an attempt to keep this function
4127          * as fast and as clean as possible. */
4128         if (!selinux_policycap_netpeer)
4129                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4130
4131         secmark_active = selinux_secmark_enabled();
4132         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4133         if (!secmark_active && !peerlbl_active)
4134                 return 0;
4135
4136         COMMON_AUDIT_DATA_INIT(&ad, NET);
4137         ad.u.net.netif = skb->skb_iif;
4138         ad.u.net.family = family;
4139         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4140         if (err)
4141                 return err;
4142
4143         if (peerlbl_active) {
4144                 u32 peer_sid;
4145
4146                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4147                 if (err)
4148                         return err;
4149                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4150                                                peer_sid, &ad);
4151                 if (err) {
4152                         selinux_netlbl_err(skb, err, 0);
4153                         return err;
4154                 }
4155                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4156                                    PEER__RECV, &ad);
4157                 if (err)
4158                         selinux_netlbl_err(skb, err, 0);
4159         }
4160
4161         if (secmark_active) {
4162                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4163                                    PACKET__RECV, &ad);
4164                 if (err)
4165                         return err;
4166         }
4167
4168         return err;
4169 }
4170
4171 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4172                                             int __user *optlen, unsigned len)
4173 {
4174         int err = 0;
4175         char *scontext;
4176         u32 scontext_len;
4177         struct sk_security_struct *sksec = sock->sk->sk_security;
4178         u32 peer_sid = SECSID_NULL;
4179
4180         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4181             sksec->sclass == SECCLASS_TCP_SOCKET)
4182                 peer_sid = sksec->peer_sid;
4183         if (peer_sid == SECSID_NULL)
4184                 return -ENOPROTOOPT;
4185
4186         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4187         if (err)
4188                 return err;
4189
4190         if (scontext_len > len) {
4191                 err = -ERANGE;
4192                 goto out_len;
4193         }
4194
4195         if (copy_to_user(optval, scontext, scontext_len))
4196                 err = -EFAULT;
4197
4198 out_len:
4199         if (put_user(scontext_len, optlen))
4200                 err = -EFAULT;
4201         kfree(scontext);
4202         return err;
4203 }
4204
4205 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4206 {
4207         u32 peer_secid = SECSID_NULL;
4208         u16 family;
4209
4210         if (skb && skb->protocol == htons(ETH_P_IP))
4211                 family = PF_INET;
4212         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4213                 family = PF_INET6;
4214         else if (sock)
4215                 family = sock->sk->sk_family;
4216         else
4217                 goto out;
4218
4219         if (sock && family == PF_UNIX)
4220                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4221         else if (skb)
4222                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4223
4224 out:
4225         *secid = peer_secid;
4226         if (peer_secid == SECSID_NULL)
4227                 return -EINVAL;
4228         return 0;
4229 }
4230
4231 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4232 {
4233         struct sk_security_struct *sksec;
4234
4235         sksec = kzalloc(sizeof(*sksec), priority);
4236         if (!sksec)
4237                 return -ENOMEM;
4238
4239         sksec->peer_sid = SECINITSID_UNLABELED;
4240         sksec->sid = SECINITSID_UNLABELED;
4241         selinux_netlbl_sk_security_reset(sksec);
4242         sk->sk_security = sksec;
4243
4244         return 0;
4245 }
4246
4247 static void selinux_sk_free_security(struct sock *sk)
4248 {
4249         struct sk_security_struct *sksec = sk->sk_security;
4250
4251         sk->sk_security = NULL;
4252         selinux_netlbl_sk_security_free(sksec);
4253         kfree(sksec);
4254 }
4255
4256 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4257 {
4258         struct sk_security_struct *sksec = sk->sk_security;
4259         struct sk_security_struct *newsksec = newsk->sk_security;
4260
4261         newsksec->sid = sksec->sid;
4262         newsksec->peer_sid = sksec->peer_sid;
4263         newsksec->sclass = sksec->sclass;
4264
4265         selinux_netlbl_sk_security_reset(newsksec);
4266 }
4267
4268 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4269 {
4270         if (!sk)
4271                 *secid = SECINITSID_ANY_SOCKET;
4272         else {
4273                 struct sk_security_struct *sksec = sk->sk_security;
4274
4275                 *secid = sksec->sid;
4276         }
4277 }
4278
4279 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4280 {
4281         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4282         struct sk_security_struct *sksec = sk->sk_security;
4283
4284         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4285             sk->sk_family == PF_UNIX)
4286                 isec->sid = sksec->sid;
4287         sksec->sclass = isec->sclass;
4288 }
4289
4290 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4291                                      struct request_sock *req)
4292 {
4293         struct sk_security_struct *sksec = sk->sk_security;
4294         int err;
4295         u16 family = sk->sk_family;
4296         u32 newsid;
4297         u32 peersid;
4298
4299         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4300         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4301                 family = PF_INET;
4302
4303         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4304         if (err)
4305                 return err;
4306         if (peersid == SECSID_NULL) {
4307                 req->secid = sksec->sid;
4308                 req->peer_secid = SECSID_NULL;
4309         } else {
4310                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4311                 if (err)
4312                         return err;
4313                 req->secid = newsid;
4314                 req->peer_secid = peersid;
4315         }
4316
4317         return selinux_netlbl_inet_conn_request(req, family);
4318 }
4319
4320 static void selinux_inet_csk_clone(struct sock *newsk,
4321                                    const struct request_sock *req)
4322 {
4323         struct sk_security_struct *newsksec = newsk->sk_security;
4324
4325         newsksec->sid = req->secid;
4326         newsksec->peer_sid = req->peer_secid;
4327         /* NOTE: Ideally, we should also get the isec->sid for the
4328            new socket in sync, but we don't have the isec available yet.
4329            So we will wait until sock_graft to do it, by which
4330            time it will have been created and available. */
4331
4332         /* We don't need to take any sort of lock here as we are the only
4333          * thread with access to newsksec */
4334         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4335 }
4336
4337 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4338 {
4339         u16 family = sk->sk_family;
4340         struct sk_security_struct *sksec = sk->sk_security;
4341
4342         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4343         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4344                 family = PF_INET;
4345
4346         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4347 }
4348
4349 static int selinux_secmark_relabel_packet(u32 sid)
4350 {
4351         const struct task_security_struct *__tsec;
4352         u32 tsid;
4353
4354         __tsec = current_security();
4355         tsid = __tsec->sid;
4356
4357         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4358 }
4359
4360 static void selinux_secmark_refcount_inc(void)
4361 {
4362         atomic_inc(&selinux_secmark_refcount);
4363 }
4364
4365 static void selinux_secmark_refcount_dec(void)
4366 {
4367         atomic_dec(&selinux_secmark_refcount);
4368 }
4369
4370 static void selinux_req_classify_flow(const struct request_sock *req,
4371                                       struct flowi *fl)
4372 {
4373         fl->flowi_secid = req->secid;
4374 }
4375
4376 static int selinux_tun_dev_create(void)
4377 {
4378         u32 sid = current_sid();
4379
4380         /* we aren't taking into account the "sockcreate" SID since the socket
4381          * that is being created here is not a socket in the traditional sense,
4382          * instead it is a private sock, accessible only to the kernel, and
4383          * representing a wide range of network traffic spanning multiple
4384          * connections unlike traditional sockets - check the TUN driver to
4385          * get a better understanding of why this socket is special */
4386
4387         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4388                             NULL);
4389 }
4390
4391 static void selinux_tun_dev_post_create(struct sock *sk)
4392 {
4393         struct sk_security_struct *sksec = sk->sk_security;
4394
4395         /* we don't currently perform any NetLabel based labeling here and it
4396          * isn't clear that we would want to do so anyway; while we could apply
4397          * labeling without the support of the TUN user the resulting labeled
4398          * traffic from the other end of the connection would almost certainly
4399          * cause confusion to the TUN user that had no idea network labeling
4400          * protocols were being used */
4401
4402         /* see the comments in selinux_tun_dev_create() about why we don't use
4403          * the sockcreate SID here */
4404
4405         sksec->sid = current_sid();
4406         sksec->sclass = SECCLASS_TUN_SOCKET;
4407 }
4408
4409 static int selinux_tun_dev_attach(struct sock *sk)
4410 {
4411         struct sk_security_struct *sksec = sk->sk_security;
4412         u32 sid = current_sid();
4413         int err;
4414
4415         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4416                            TUN_SOCKET__RELABELFROM, NULL);
4417         if (err)
4418                 return err;
4419         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4420                            TUN_SOCKET__RELABELTO, NULL);
4421         if (err)
4422                 return err;
4423
4424         sksec->sid = sid;
4425
4426         return 0;
4427 }
4428
4429 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4430 {
4431         int err = 0;
4432         u32 perm;
4433         struct nlmsghdr *nlh;
4434         struct sk_security_struct *sksec = sk->sk_security;
4435
4436         if (skb->len < NLMSG_SPACE(0)) {
4437                 err = -EINVAL;
4438                 goto out;
4439         }
4440         nlh = nlmsg_hdr(skb);
4441
4442         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4443         if (err) {
4444                 if (err == -EINVAL) {
4445                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4446                                   "SELinux:  unrecognized netlink message"
4447                                   " type=%hu for sclass=%hu\n",
4448                                   nlh->nlmsg_type, sksec->sclass);
4449                         if (!selinux_enforcing || security_get_allow_unknown())
4450                                 err = 0;
4451                 }
4452
4453                 /* Ignore */
4454                 if (err == -ENOENT)
4455                         err = 0;
4456                 goto out;
4457         }
4458
4459         err = sock_has_perm(current, sk, perm);
4460 out:
4461         return err;
4462 }
4463
4464 #ifdef CONFIG_NETFILTER
4465
4466 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4467                                        u16 family)
4468 {
4469         int err;
4470         char *addrp;
4471         u32 peer_sid;
4472         struct common_audit_data ad;
4473         u8 secmark_active;
4474         u8 netlbl_active;
4475         u8 peerlbl_active;
4476
4477         if (!selinux_policycap_netpeer)
4478                 return NF_ACCEPT;
4479
4480         secmark_active = selinux_secmark_enabled();
4481         netlbl_active = netlbl_enabled();
4482         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4483         if (!secmark_active && !peerlbl_active)
4484                 return NF_ACCEPT;
4485
4486         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4487                 return NF_DROP;
4488
4489         COMMON_AUDIT_DATA_INIT(&ad, NET);
4490         ad.u.net.netif = ifindex;
4491         ad.u.net.family = family;
4492         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4493                 return NF_DROP;
4494
4495         if (peerlbl_active) {
4496                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4497                                                peer_sid, &ad);
4498                 if (err) {
4499                         selinux_netlbl_err(skb, err, 1);
4500                         return NF_DROP;
4501                 }
4502         }
4503
4504         if (secmark_active)
4505                 if (avc_has_perm(peer_sid, skb->secmark,
4506                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4507                         return NF_DROP;
4508
4509         if (netlbl_active)
4510                 /* we do this in the FORWARD path and not the POST_ROUTING
4511                  * path because we want to make sure we apply the necessary
4512                  * labeling before IPsec is applied so we can leverage AH
4513                  * protection */
4514                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4515                         return NF_DROP;
4516
4517         return NF_ACCEPT;
4518 }
4519
4520 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4521                                          struct sk_buff *skb,
4522                                          const struct net_device *in,
4523                                          const struct net_device *out,
4524                                          int (*okfn)(struct sk_buff *))
4525 {
4526         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4527 }
4528
4529 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4530 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4531                                          struct sk_buff *skb,
4532                                          const struct net_device *in,
4533                                          const struct net_device *out,
4534                                          int (*okfn)(struct sk_buff *))
4535 {
4536         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4537 }
4538 #endif  /* IPV6 */
4539
4540 static unsigned int selinux_ip_output(struct sk_buff *skb,
4541                                       u16 family)
4542 {
4543         u32 sid;
4544
4545         if (!netlbl_enabled())
4546                 return NF_ACCEPT;
4547
4548         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4549          * because we want to make sure we apply the necessary labeling
4550          * before IPsec is applied so we can leverage AH protection */
4551         if (skb->sk) {
4552                 struct sk_security_struct *sksec = skb->sk->sk_security;
4553                 sid = sksec->sid;
4554         } else
4555                 sid = SECINITSID_KERNEL;
4556         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4557                 return NF_DROP;
4558
4559         return NF_ACCEPT;
4560 }
4561
4562 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4563                                         struct sk_buff *skb,
4564                                         const struct net_device *in,
4565                                         const struct net_device *out,
4566                                         int (*okfn)(struct sk_buff *))
4567 {
4568         return selinux_ip_output(skb, PF_INET);
4569 }
4570
4571 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4572                                                 int ifindex,
4573                                                 u16 family)
4574 {
4575         struct sock *sk = skb->sk;
4576         struct sk_security_struct *sksec;
4577         struct common_audit_data ad;
4578         char *addrp;
4579         u8 proto;
4580
4581         if (sk == NULL)
4582                 return NF_ACCEPT;
4583         sksec = sk->sk_security;
4584
4585         COMMON_AUDIT_DATA_INIT(&ad, NET);
4586         ad.u.net.netif = ifindex;
4587         ad.u.net.family = family;
4588         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4589                 return NF_DROP;
4590
4591         if (selinux_secmark_enabled())
4592                 if (avc_has_perm(sksec->sid, skb->secmark,
4593                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4594                         return NF_DROP_ERR(-ECONNREFUSED);
4595
4596         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4597                 return NF_DROP_ERR(-ECONNREFUSED);
4598
4599         return NF_ACCEPT;
4600 }
4601
4602 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4603                                          u16 family)
4604 {
4605         u32 secmark_perm;
4606         u32 peer_sid;
4607         struct sock *sk;
4608         struct common_audit_data ad;
4609         char *addrp;
4610         u8 secmark_active;
4611         u8 peerlbl_active;
4612
4613         /* If any sort of compatibility mode is enabled then handoff processing
4614          * to the selinux_ip_postroute_compat() function to deal with the
4615          * special handling.  We do this in an attempt to keep this function
4616          * as fast and as clean as possible. */
4617         if (!selinux_policycap_netpeer)
4618                 return selinux_ip_postroute_compat(skb, ifindex, family);
4619 #ifdef CONFIG_XFRM
4620         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4621          * packet transformation so allow the packet to pass without any checks
4622          * since we'll have another chance to perform access control checks
4623          * when the packet is on it's final way out.
4624          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4625          *       is NULL, in this case go ahead and apply access control. */
4626         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4627                 return NF_ACCEPT;
4628 #endif
4629         secmark_active = selinux_secmark_enabled();
4630         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4631         if (!secmark_active && !peerlbl_active)
4632                 return NF_ACCEPT;
4633
4634         /* if the packet is being forwarded then get the peer label from the
4635          * packet itself; otherwise check to see if it is from a local
4636          * application or the kernel, if from an application get the peer label
4637          * from the sending socket, otherwise use the kernel's sid */
4638         sk = skb->sk;
4639         if (sk == NULL) {
4640                 if (skb->skb_iif) {
4641                         secmark_perm = PACKET__FORWARD_OUT;
4642                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4643                                 return NF_DROP;
4644                 } else {
4645                         secmark_perm = PACKET__SEND;
4646                         peer_sid = SECINITSID_KERNEL;
4647                 }
4648         } else {
4649                 struct sk_security_struct *sksec = sk->sk_security;
4650                 peer_sid = sksec->sid;
4651                 secmark_perm = PACKET__SEND;
4652         }
4653
4654         COMMON_AUDIT_DATA_INIT(&ad, NET);
4655         ad.u.net.netif = ifindex;
4656         ad.u.net.family = family;
4657         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4658                 return NF_DROP;
4659
4660         if (secmark_active)
4661                 if (avc_has_perm(peer_sid, skb->secmark,
4662                                  SECCLASS_PACKET, secmark_perm, &ad))
4663                         return NF_DROP_ERR(-ECONNREFUSED);
4664
4665         if (peerlbl_active) {
4666                 u32 if_sid;
4667                 u32 node_sid;
4668
4669                 if (sel_netif_sid(ifindex, &if_sid))
4670                         return NF_DROP;
4671                 if (avc_has_perm(peer_sid, if_sid,
4672                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4673                         return NF_DROP_ERR(-ECONNREFUSED);
4674
4675                 if (sel_netnode_sid(addrp, family, &node_sid))
4676                         return NF_DROP;
4677                 if (avc_has_perm(peer_sid, node_sid,
4678                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4679                         return NF_DROP_ERR(-ECONNREFUSED);
4680         }
4681
4682         return NF_ACCEPT;
4683 }
4684
4685 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4686                                            struct sk_buff *skb,
4687                                            const struct net_device *in,
4688                                            const struct net_device *out,
4689                                            int (*okfn)(struct sk_buff *))
4690 {
4691         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4692 }
4693
4694 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4695 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4696                                            struct sk_buff *skb,
4697                                            const struct net_device *in,
4698                                            const struct net_device *out,
4699                                            int (*okfn)(struct sk_buff *))
4700 {
4701         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4702 }
4703 #endif  /* IPV6 */
4704
4705 #endif  /* CONFIG_NETFILTER */
4706
4707 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4708 {
4709         int err;
4710
4711         err = cap_netlink_send(sk, skb);
4712         if (err)
4713                 return err;
4714
4715         return selinux_nlmsg_perm(sk, skb);
4716 }
4717
4718 static int ipc_alloc_security(struct task_struct *task,
4719                               struct kern_ipc_perm *perm,
4720                               u16 sclass)
4721 {
4722         struct ipc_security_struct *isec;
4723         u32 sid;
4724
4725         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4726         if (!isec)
4727                 return -ENOMEM;
4728
4729         sid = task_sid(task);
4730         isec->sclass = sclass;
4731         isec->sid = sid;
4732         perm->security = isec;
4733
4734         return 0;
4735 }
4736
4737 static void ipc_free_security(struct kern_ipc_perm *perm)
4738 {
4739         struct ipc_security_struct *isec = perm->security;
4740         perm->security = NULL;
4741         kfree(isec);
4742 }
4743
4744 static int msg_msg_alloc_security(struct msg_msg *msg)
4745 {
4746         struct msg_security_struct *msec;
4747
4748         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4749         if (!msec)
4750                 return -ENOMEM;
4751
4752         msec->sid = SECINITSID_UNLABELED;
4753         msg->security = msec;
4754
4755         return 0;
4756 }
4757
4758 static void msg_msg_free_security(struct msg_msg *msg)
4759 {
4760         struct msg_security_struct *msec = msg->security;
4761
4762         msg->security = NULL;
4763         kfree(msec);
4764 }
4765
4766 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4767                         u32 perms)
4768 {
4769         struct ipc_security_struct *isec;
4770         struct common_audit_data ad;
4771         u32 sid = current_sid();
4772
4773         isec = ipc_perms->security;
4774
4775         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4776         ad.u.ipc_id = ipc_perms->key;
4777
4778         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4779 }
4780
4781 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4782 {
4783         return msg_msg_alloc_security(msg);
4784 }
4785
4786 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4787 {
4788         msg_msg_free_security(msg);
4789 }
4790
4791 /* message queue security operations */
4792 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4793 {
4794         struct ipc_security_struct *isec;
4795         struct common_audit_data ad;
4796         u32 sid = current_sid();
4797         int rc;
4798
4799         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4800         if (rc)
4801                 return rc;
4802
4803         isec = msq->q_perm.security;
4804
4805         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4806         ad.u.ipc_id = msq->q_perm.key;
4807
4808         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4809                           MSGQ__CREATE, &ad);
4810         if (rc) {
4811                 ipc_free_security(&msq->q_perm);
4812                 return rc;
4813         }
4814         return 0;
4815 }
4816
4817 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4818 {
4819         ipc_free_security(&msq->q_perm);
4820 }
4821
4822 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4823 {
4824         struct ipc_security_struct *isec;
4825         struct common_audit_data ad;
4826         u32 sid = current_sid();
4827
4828         isec = msq->q_perm.security;
4829
4830         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4831         ad.u.ipc_id = msq->q_perm.key;
4832
4833         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4834                             MSGQ__ASSOCIATE, &ad);
4835 }
4836
4837 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4838 {
4839         int err;
4840         int perms;
4841
4842         switch (cmd) {
4843         case IPC_INFO:
4844         case MSG_INFO:
4845                 /* No specific object, just general system-wide information. */
4846                 return task_has_system(current, SYSTEM__IPC_INFO);
4847         case IPC_STAT:
4848         case MSG_STAT:
4849                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4850                 break;
4851         case IPC_SET:
4852                 perms = MSGQ__SETATTR;
4853                 break;
4854         case IPC_RMID:
4855                 perms = MSGQ__DESTROY;
4856                 break;
4857         default:
4858                 return 0;
4859         }
4860
4861         err = ipc_has_perm(&msq->q_perm, perms);
4862         return err;
4863 }
4864
4865 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4866 {
4867         struct ipc_security_struct *isec;
4868         struct msg_security_struct *msec;
4869         struct common_audit_data ad;
4870         u32 sid = current_sid();
4871         int rc;
4872
4873         isec = msq->q_perm.security;
4874         msec = msg->security;
4875
4876         /*
4877          * First time through, need to assign label to the message
4878          */
4879         if (msec->sid == SECINITSID_UNLABELED) {
4880                 /*
4881                  * Compute new sid based on current process and
4882                  * message queue this message will be stored in
4883                  */
4884                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4885                                              NULL, &msec->sid);
4886                 if (rc)
4887                         return rc;
4888         }
4889
4890         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4891         ad.u.ipc_id = msq->q_perm.key;
4892
4893         /* Can this process write to the queue? */
4894         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4895                           MSGQ__WRITE, &ad);
4896         if (!rc)
4897                 /* Can this process send the message */
4898                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4899                                   MSG__SEND, &ad);
4900         if (!rc)
4901                 /* Can the message be put in the queue? */
4902                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4903                                   MSGQ__ENQUEUE, &ad);
4904
4905         return rc;
4906 }
4907
4908 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4909                                     struct task_struct *target,
4910                                     long type, int mode)
4911 {
4912         struct ipc_security_struct *isec;
4913         struct msg_security_struct *msec;
4914         struct common_audit_data ad;
4915         u32 sid = task_sid(target);
4916         int rc;
4917
4918         isec = msq->q_perm.security;
4919         msec = msg->security;
4920
4921         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4922         ad.u.ipc_id = msq->q_perm.key;
4923
4924         rc = avc_has_perm(sid, isec->sid,
4925                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4926         if (!rc)
4927                 rc = avc_has_perm(sid, msec->sid,
4928                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4929         return rc;
4930 }
4931
4932 /* Shared Memory security operations */
4933 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4934 {
4935         struct ipc_security_struct *isec;
4936         struct common_audit_data ad;
4937         u32 sid = current_sid();
4938         int rc;
4939
4940         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4941         if (rc)
4942                 return rc;
4943
4944         isec = shp->shm_perm.security;
4945
4946         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4947         ad.u.ipc_id = shp->shm_perm.key;
4948
4949         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4950                           SHM__CREATE, &ad);
4951         if (rc) {
4952                 ipc_free_security(&shp->shm_perm);
4953                 return rc;
4954         }
4955         return 0;
4956 }
4957
4958 static void selinux_shm_free_security(struct shmid_kernel *shp)
4959 {
4960         ipc_free_security(&shp->shm_perm);
4961 }
4962
4963 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4964 {
4965         struct ipc_security_struct *isec;
4966         struct common_audit_data ad;
4967         u32 sid = current_sid();
4968
4969         isec = shp->shm_perm.security;
4970
4971         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4972         ad.u.ipc_id = shp->shm_perm.key;
4973
4974         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4975                             SHM__ASSOCIATE, &ad);
4976 }
4977
4978 /* Note, at this point, shp is locked down */
4979 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4980 {
4981         int perms;
4982         int err;
4983
4984         switch (cmd) {
4985         case IPC_INFO:
4986         case SHM_INFO:
4987                 /* No specific object, just general system-wide information. */
4988                 return task_has_system(current, SYSTEM__IPC_INFO);
4989         case IPC_STAT:
4990         case SHM_STAT:
4991                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4992                 break;
4993         case IPC_SET:
4994                 perms = SHM__SETATTR;
4995                 break;
4996         case SHM_LOCK:
4997         case SHM_UNLOCK:
4998                 perms = SHM__LOCK;
4999                 break;
5000         case IPC_RMID:
5001                 perms = SHM__DESTROY;
5002                 break;
5003         default:
5004                 return 0;
5005         }
5006
5007         err = ipc_has_perm(&shp->shm_perm, perms);
5008         return err;
5009 }
5010
5011 static int selinux_shm_shmat(struct shmid_kernel *shp,
5012                              char __user *shmaddr, int shmflg)
5013 {
5014         u32 perms;
5015
5016         if (shmflg & SHM_RDONLY)
5017                 perms = SHM__READ;
5018         else
5019                 perms = SHM__READ | SHM__WRITE;
5020
5021         return ipc_has_perm(&shp->shm_perm, perms);
5022 }
5023
5024 /* Semaphore security operations */
5025 static int selinux_sem_alloc_security(struct sem_array *sma)
5026 {
5027         struct ipc_security_struct *isec;
5028         struct common_audit_data ad;
5029         u32 sid = current_sid();
5030         int rc;
5031
5032         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5033         if (rc)
5034                 return rc;
5035
5036         isec = sma->sem_perm.security;
5037
5038         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5039         ad.u.ipc_id = sma->sem_perm.key;
5040
5041         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5042                           SEM__CREATE, &ad);
5043         if (rc) {
5044                 ipc_free_security(&sma->sem_perm);
5045                 return rc;
5046         }
5047         return 0;
5048 }
5049
5050 static void selinux_sem_free_security(struct sem_array *sma)
5051 {
5052         ipc_free_security(&sma->sem_perm);
5053 }
5054
5055 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5056 {
5057         struct ipc_security_struct *isec;
5058         struct common_audit_data ad;
5059         u32 sid = current_sid();
5060
5061         isec = sma->sem_perm.security;
5062
5063         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5064         ad.u.ipc_id = sma->sem_perm.key;
5065
5066         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5067                             SEM__ASSOCIATE, &ad);
5068 }
5069
5070 /* Note, at this point, sma is locked down */
5071 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5072 {
5073         int err;
5074         u32 perms;
5075
5076         switch (cmd) {
5077         case IPC_INFO:
5078         case SEM_INFO:
5079                 /* No specific object, just general system-wide information. */
5080                 return task_has_system(current, SYSTEM__IPC_INFO);
5081         case GETPID:
5082         case GETNCNT:
5083         case GETZCNT:
5084                 perms = SEM__GETATTR;
5085                 break;
5086         case GETVAL:
5087         case GETALL:
5088                 perms = SEM__READ;
5089                 break;
5090         case SETVAL:
5091         case SETALL:
5092                 perms = SEM__WRITE;
5093                 break;
5094         case IPC_RMID:
5095                 perms = SEM__DESTROY;
5096                 break;
5097         case IPC_SET:
5098                 perms = SEM__SETATTR;
5099                 break;
5100         case IPC_STAT:
5101         case SEM_STAT:
5102                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5103                 break;
5104         default:
5105                 return 0;
5106         }
5107
5108         err = ipc_has_perm(&sma->sem_perm, perms);
5109         return err;
5110 }
5111
5112 static int selinux_sem_semop(struct sem_array *sma,
5113                              struct sembuf *sops, unsigned nsops, int alter)
5114 {
5115         u32 perms;
5116
5117         if (alter)
5118                 perms = SEM__READ | SEM__WRITE;
5119         else
5120                 perms = SEM__READ;
5121
5122         return ipc_has_perm(&sma->sem_perm, perms);
5123 }
5124
5125 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5126 {
5127         u32 av = 0;
5128
5129         av = 0;
5130         if (flag & S_IRUGO)
5131                 av |= IPC__UNIX_READ;
5132         if (flag & S_IWUGO)
5133                 av |= IPC__UNIX_WRITE;
5134
5135         if (av == 0)
5136                 return 0;
5137
5138         return ipc_has_perm(ipcp, av);
5139 }
5140
5141 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5142 {
5143         struct ipc_security_struct *isec = ipcp->security;
5144         *secid = isec->sid;
5145 }
5146
5147 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5148 {
5149         if (inode)
5150                 inode_doinit_with_dentry(inode, dentry);
5151 }
5152
5153 static int selinux_getprocattr(struct task_struct *p,
5154                                char *name, char **value)
5155 {
5156         const struct task_security_struct *__tsec;
5157         u32 sid;
5158         int error;
5159         unsigned len;
5160
5161         if (current != p) {
5162                 error = current_has_perm(p, PROCESS__GETATTR);
5163                 if (error)
5164                         return error;
5165         }
5166
5167         rcu_read_lock();
5168         __tsec = __task_cred(p)->security;
5169
5170         if (!strcmp(name, "current"))
5171                 sid = __tsec->sid;
5172         else if (!strcmp(name, "prev"))
5173                 sid = __tsec->osid;
5174         else if (!strcmp(name, "exec"))
5175                 sid = __tsec->exec_sid;
5176         else if (!strcmp(name, "fscreate"))
5177                 sid = __tsec->create_sid;
5178         else if (!strcmp(name, "keycreate"))
5179                 sid = __tsec->keycreate_sid;
5180         else if (!strcmp(name, "sockcreate"))
5181                 sid = __tsec->sockcreate_sid;
5182         else
5183                 goto invalid;
5184         rcu_read_unlock();
5185
5186         if (!sid)
5187                 return 0;
5188
5189         error = security_sid_to_context(sid, value, &len);
5190         if (error)
5191                 return error;
5192         return len;
5193
5194 invalid:
5195         rcu_read_unlock();
5196         return -EINVAL;
5197 }
5198
5199 static int selinux_setprocattr(struct task_struct *p,
5200                                char *name, void *value, size_t size)
5201 {
5202         struct task_security_struct *tsec;
5203         struct task_struct *tracer;
5204         struct cred *new;
5205         u32 sid = 0, ptsid;
5206         int error;
5207         char *str = value;
5208
5209         if (current != p) {
5210                 /* SELinux only allows a process to change its own
5211                    security attributes. */
5212                 return -EACCES;
5213         }
5214
5215         /*
5216          * Basic control over ability to set these attributes at all.
5217          * current == p, but we'll pass them separately in case the
5218          * above restriction is ever removed.
5219          */
5220         if (!strcmp(name, "exec"))
5221                 error = current_has_perm(p, PROCESS__SETEXEC);
5222         else if (!strcmp(name, "fscreate"))
5223                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5224         else if (!strcmp(name, "keycreate"))
5225                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5226         else if (!strcmp(name, "sockcreate"))
5227                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5228         else if (!strcmp(name, "current"))
5229                 error = current_has_perm(p, PROCESS__SETCURRENT);
5230         else
5231                 error = -EINVAL;
5232         if (error)
5233                 return error;
5234
5235         /* Obtain a SID for the context, if one was specified. */
5236         if (size && str[1] && str[1] != '\n') {
5237                 if (str[size-1] == '\n') {
5238                         str[size-1] = 0;
5239                         size--;
5240                 }
5241                 error = security_context_to_sid(value, size, &sid);
5242                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5243                         if (!capable(CAP_MAC_ADMIN))
5244                                 return error;
5245                         error = security_context_to_sid_force(value, size,
5246                                                               &sid);
5247                 }
5248                 if (error)
5249                         return error;
5250         }
5251
5252         new = prepare_creds();
5253         if (!new)
5254                 return -ENOMEM;
5255
5256         /* Permission checking based on the specified context is
5257            performed during the actual operation (execve,
5258            open/mkdir/...), when we know the full context of the
5259            operation.  See selinux_bprm_set_creds for the execve
5260            checks and may_create for the file creation checks. The
5261            operation will then fail if the context is not permitted. */
5262         tsec = new->security;
5263         if (!strcmp(name, "exec")) {
5264                 tsec->exec_sid = sid;
5265         } else if (!strcmp(name, "fscreate")) {
5266                 tsec->create_sid = sid;
5267         } else if (!strcmp(name, "keycreate")) {
5268                 error = may_create_key(sid, p);
5269                 if (error)
5270                         goto abort_change;
5271                 tsec->keycreate_sid = sid;
5272         } else if (!strcmp(name, "sockcreate")) {
5273                 tsec->sockcreate_sid = sid;
5274         } else if (!strcmp(name, "current")) {
5275                 error = -EINVAL;
5276                 if (sid == 0)
5277                         goto abort_change;
5278
5279                 /* Only allow single threaded processes to change context */
5280                 error = -EPERM;
5281                 if (!current_is_single_threaded()) {
5282                         error = security_bounded_transition(tsec->sid, sid);
5283                         if (error)
5284                                 goto abort_change;
5285                 }
5286
5287                 /* Check permissions for the transition. */
5288                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5289                                      PROCESS__DYNTRANSITION, NULL);
5290                 if (error)
5291                         goto abort_change;
5292
5293                 /* Check for ptracing, and update the task SID if ok.
5294                    Otherwise, leave SID unchanged and fail. */
5295                 ptsid = 0;
5296                 task_lock(p);
5297                 tracer = ptrace_parent(p);
5298                 if (tracer)
5299                         ptsid = task_sid(tracer);
5300                 task_unlock(p);
5301
5302                 if (tracer) {
5303                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5304                                              PROCESS__PTRACE, NULL);
5305                         if (error)
5306                                 goto abort_change;
5307                 }
5308
5309                 tsec->sid = sid;
5310         } else {
5311                 error = -EINVAL;
5312                 goto abort_change;
5313         }
5314
5315         commit_creds(new);
5316         return size;
5317
5318 abort_change:
5319         abort_creds(new);
5320         return error;
5321 }
5322
5323 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5324 {
5325         return security_sid_to_context(secid, secdata, seclen);
5326 }
5327
5328 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5329 {
5330         return security_context_to_sid(secdata, seclen, secid);
5331 }
5332
5333 static void selinux_release_secctx(char *secdata, u32 seclen)
5334 {
5335         kfree(secdata);
5336 }
5337
5338 /*
5339  *      called with inode->i_mutex locked
5340  */
5341 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5342 {
5343         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5344 }
5345
5346 /*
5347  *      called with inode->i_mutex locked
5348  */
5349 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5350 {
5351         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5352 }
5353
5354 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5355 {
5356         int len = 0;
5357         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5358                                                 ctx, true);
5359         if (len < 0)
5360                 return len;
5361         *ctxlen = len;
5362         return 0;
5363 }
5364 #ifdef CONFIG_KEYS
5365
5366 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5367                              unsigned long flags)
5368 {
5369         const struct task_security_struct *tsec;
5370         struct key_security_struct *ksec;
5371
5372         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5373         if (!ksec)
5374                 return -ENOMEM;
5375
5376         tsec = cred->security;
5377         if (tsec->keycreate_sid)
5378                 ksec->sid = tsec->keycreate_sid;
5379         else
5380                 ksec->sid = tsec->sid;
5381
5382         k->security = ksec;
5383         return 0;
5384 }
5385
5386 static void selinux_key_free(struct key *k)
5387 {
5388         struct key_security_struct *ksec = k->security;
5389
5390         k->security = NULL;
5391         kfree(ksec);
5392 }
5393
5394 static int selinux_key_permission(key_ref_t key_ref,
5395                                   const struct cred *cred,
5396                                   key_perm_t perm)
5397 {
5398         struct key *key;
5399         struct key_security_struct *ksec;
5400         u32 sid;
5401
5402         /* if no specific permissions are requested, we skip the
5403            permission check. No serious, additional covert channels
5404            appear to be created. */
5405         if (perm == 0)
5406                 return 0;
5407
5408         sid = cred_sid(cred);
5409
5410         key = key_ref_to_ptr(key_ref);
5411         ksec = key->security;
5412
5413         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5414 }
5415
5416 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5417 {
5418         struct key_security_struct *ksec = key->security;
5419         char *context = NULL;
5420         unsigned len;
5421         int rc;
5422
5423         rc = security_sid_to_context(ksec->sid, &context, &len);
5424         if (!rc)
5425                 rc = len;
5426         *_buffer = context;
5427         return rc;
5428 }
5429
5430 #endif
5431
5432 static struct security_operations selinux_ops = {
5433         .name =                         "selinux",
5434
5435         .ptrace_access_check =          selinux_ptrace_access_check,
5436         .ptrace_traceme =               selinux_ptrace_traceme,
5437         .capget =                       selinux_capget,
5438         .capset =                       selinux_capset,
5439         .capable =                      selinux_capable,
5440         .quotactl =                     selinux_quotactl,
5441         .quota_on =                     selinux_quota_on,
5442         .syslog =                       selinux_syslog,
5443         .vm_enough_memory =             selinux_vm_enough_memory,
5444
5445         .netlink_send =                 selinux_netlink_send,
5446
5447         .bprm_set_creds =               selinux_bprm_set_creds,
5448         .bprm_committing_creds =        selinux_bprm_committing_creds,
5449         .bprm_committed_creds =         selinux_bprm_committed_creds,
5450         .bprm_secureexec =              selinux_bprm_secureexec,
5451
5452         .sb_alloc_security =            selinux_sb_alloc_security,
5453         .sb_free_security =             selinux_sb_free_security,
5454         .sb_copy_data =                 selinux_sb_copy_data,
5455         .sb_remount =                   selinux_sb_remount,
5456         .sb_kern_mount =                selinux_sb_kern_mount,
5457         .sb_show_options =              selinux_sb_show_options,
5458         .sb_statfs =                    selinux_sb_statfs,
5459         .sb_mount =                     selinux_mount,
5460         .sb_umount =                    selinux_umount,
5461         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5462         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5463         .sb_parse_opts_str =            selinux_parse_opts_str,
5464
5465
5466         .inode_alloc_security =         selinux_inode_alloc_security,
5467         .inode_free_security =          selinux_inode_free_security,
5468         .inode_init_security =          selinux_inode_init_security,
5469         .inode_create =                 selinux_inode_create,
5470         .inode_link =                   selinux_inode_link,
5471         .inode_unlink =                 selinux_inode_unlink,
5472         .inode_symlink =                selinux_inode_symlink,
5473         .inode_mkdir =                  selinux_inode_mkdir,
5474         .inode_rmdir =                  selinux_inode_rmdir,
5475         .inode_mknod =                  selinux_inode_mknod,
5476         .inode_rename =                 selinux_inode_rename,
5477         .inode_readlink =               selinux_inode_readlink,
5478         .inode_follow_link =            selinux_inode_follow_link,
5479         .inode_permission =             selinux_inode_permission,
5480         .inode_setattr =                selinux_inode_setattr,
5481         .inode_getattr =                selinux_inode_getattr,
5482         .inode_setxattr =               selinux_inode_setxattr,
5483         .inode_post_setxattr =          selinux_inode_post_setxattr,
5484         .inode_getxattr =               selinux_inode_getxattr,
5485         .inode_listxattr =              selinux_inode_listxattr,
5486         .inode_removexattr =            selinux_inode_removexattr,
5487         .inode_getsecurity =            selinux_inode_getsecurity,
5488         .inode_setsecurity =            selinux_inode_setsecurity,
5489         .inode_listsecurity =           selinux_inode_listsecurity,
5490         .inode_getsecid =               selinux_inode_getsecid,
5491
5492         .file_permission =              selinux_file_permission,
5493         .file_alloc_security =          selinux_file_alloc_security,
5494         .file_free_security =           selinux_file_free_security,
5495         .file_ioctl =                   selinux_file_ioctl,
5496         .file_mmap =                    selinux_file_mmap,
5497         .file_mprotect =                selinux_file_mprotect,
5498         .file_lock =                    selinux_file_lock,
5499         .file_fcntl =                   selinux_file_fcntl,
5500         .file_set_fowner =              selinux_file_set_fowner,
5501         .file_send_sigiotask =          selinux_file_send_sigiotask,
5502         .file_receive =                 selinux_file_receive,
5503
5504         .dentry_open =                  selinux_dentry_open,
5505
5506         .task_create =                  selinux_task_create,
5507         .cred_alloc_blank =             selinux_cred_alloc_blank,
5508         .cred_free =                    selinux_cred_free,
5509         .cred_prepare =                 selinux_cred_prepare,
5510         .cred_transfer =                selinux_cred_transfer,
5511         .kernel_act_as =                selinux_kernel_act_as,
5512         .kernel_create_files_as =       selinux_kernel_create_files_as,
5513         .kernel_module_request =        selinux_kernel_module_request,
5514         .task_setpgid =                 selinux_task_setpgid,
5515         .task_getpgid =                 selinux_task_getpgid,
5516         .task_getsid =                  selinux_task_getsid,
5517         .task_getsecid =                selinux_task_getsecid,
5518         .task_setnice =                 selinux_task_setnice,
5519         .task_setioprio =               selinux_task_setioprio,
5520         .task_getioprio =               selinux_task_getioprio,
5521         .task_setrlimit =               selinux_task_setrlimit,
5522         .task_setscheduler =            selinux_task_setscheduler,
5523         .task_getscheduler =            selinux_task_getscheduler,
5524         .task_movememory =              selinux_task_movememory,
5525         .task_kill =                    selinux_task_kill,
5526         .task_wait =                    selinux_task_wait,
5527         .task_to_inode =                selinux_task_to_inode,
5528
5529         .ipc_permission =               selinux_ipc_permission,
5530         .ipc_getsecid =                 selinux_ipc_getsecid,
5531
5532         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5533         .msg_msg_free_security =        selinux_msg_msg_free_security,
5534
5535         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5536         .msg_queue_free_security =      selinux_msg_queue_free_security,
5537         .msg_queue_associate =          selinux_msg_queue_associate,
5538         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5539         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5540         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5541
5542         .shm_alloc_security =           selinux_shm_alloc_security,
5543         .shm_free_security =            selinux_shm_free_security,
5544         .shm_associate =                selinux_shm_associate,
5545         .shm_shmctl =                   selinux_shm_shmctl,
5546         .shm_shmat =                    selinux_shm_shmat,
5547
5548         .sem_alloc_security =           selinux_sem_alloc_security,
5549         .sem_free_security =            selinux_sem_free_security,
5550         .sem_associate =                selinux_sem_associate,
5551         .sem_semctl =                   selinux_sem_semctl,
5552         .sem_semop =                    selinux_sem_semop,
5553
5554         .d_instantiate =                selinux_d_instantiate,
5555
5556         .getprocattr =                  selinux_getprocattr,
5557         .setprocattr =                  selinux_setprocattr,
5558
5559         .secid_to_secctx =              selinux_secid_to_secctx,
5560         .secctx_to_secid =              selinux_secctx_to_secid,
5561         .release_secctx =               selinux_release_secctx,
5562         .inode_notifysecctx =           selinux_inode_notifysecctx,
5563         .inode_setsecctx =              selinux_inode_setsecctx,
5564         .inode_getsecctx =              selinux_inode_getsecctx,
5565
5566         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5567         .unix_may_send =                selinux_socket_unix_may_send,
5568
5569         .socket_create =                selinux_socket_create,
5570         .socket_post_create =           selinux_socket_post_create,
5571         .socket_bind =                  selinux_socket_bind,
5572         .socket_connect =               selinux_socket_connect,
5573         .socket_listen =                selinux_socket_listen,
5574         .socket_accept =                selinux_socket_accept,
5575         .socket_sendmsg =               selinux_socket_sendmsg,
5576         .socket_recvmsg =               selinux_socket_recvmsg,
5577         .socket_getsockname =           selinux_socket_getsockname,
5578         .socket_getpeername =           selinux_socket_getpeername,
5579         .socket_getsockopt =            selinux_socket_getsockopt,
5580         .socket_setsockopt =            selinux_socket_setsockopt,
5581         .socket_shutdown =              selinux_socket_shutdown,
5582         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5583         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5584         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5585         .sk_alloc_security =            selinux_sk_alloc_security,
5586         .sk_free_security =             selinux_sk_free_security,
5587         .sk_clone_security =            selinux_sk_clone_security,
5588         .sk_getsecid =                  selinux_sk_getsecid,
5589         .sock_graft =                   selinux_sock_graft,
5590         .inet_conn_request =            selinux_inet_conn_request,
5591         .inet_csk_clone =               selinux_inet_csk_clone,
5592         .inet_conn_established =        selinux_inet_conn_established,
5593         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5594         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5595         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5596         .req_classify_flow =            selinux_req_classify_flow,
5597         .tun_dev_create =               selinux_tun_dev_create,
5598         .tun_dev_post_create =          selinux_tun_dev_post_create,
5599         .tun_dev_attach =               selinux_tun_dev_attach,
5600
5601 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5602         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5603         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5604         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5605         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5606         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5607         .xfrm_state_free_security =     selinux_xfrm_state_free,
5608         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5609         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5610         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5611         .xfrm_decode_session =          selinux_xfrm_decode_session,
5612 #endif
5613
5614 #ifdef CONFIG_KEYS
5615         .key_alloc =                    selinux_key_alloc,
5616         .key_free =                     selinux_key_free,
5617         .key_permission =               selinux_key_permission,
5618         .key_getsecurity =              selinux_key_getsecurity,
5619 #endif
5620
5621 #ifdef CONFIG_AUDIT
5622         .audit_rule_init =              selinux_audit_rule_init,
5623         .audit_rule_known =             selinux_audit_rule_known,
5624         .audit_rule_match =             selinux_audit_rule_match,
5625         .audit_rule_free =              selinux_audit_rule_free,
5626 #endif
5627 };
5628
5629 static __init int selinux_init(void)
5630 {
5631         if (!security_module_enable(&selinux_ops)) {
5632                 selinux_enabled = 0;
5633                 return 0;
5634         }
5635
5636         if (!selinux_enabled) {
5637                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5638                 return 0;
5639         }
5640
5641         printk(KERN_INFO "SELinux:  Initializing.\n");
5642
5643         /* Set the security state for the initial task. */
5644         cred_init_security();
5645
5646         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5647
5648         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5649                                             sizeof(struct inode_security_struct),
5650                                             0, SLAB_PANIC, NULL);
5651         avc_init();
5652
5653         if (register_security(&selinux_ops))
5654                 panic("SELinux: Unable to register with kernel.\n");
5655
5656         if (selinux_enforcing)
5657                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5658         else
5659                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5660
5661         return 0;
5662 }
5663
5664 static void delayed_superblock_init(struct super_block *sb, void *unused)
5665 {
5666         superblock_doinit(sb, NULL);
5667 }
5668
5669 void selinux_complete_init(void)
5670 {
5671         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5672
5673         /* Set up any superblocks initialized prior to the policy load. */
5674         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5675         iterate_supers(delayed_superblock_init, NULL);
5676 }
5677
5678 /* SELinux requires early initialization in order to label
5679    all processes and objects when they are created. */
5680 security_initcall(selinux_init);
5681
5682 #if defined(CONFIG_NETFILTER)
5683
5684 static struct nf_hook_ops selinux_ipv4_ops[] = {
5685         {
5686                 .hook =         selinux_ipv4_postroute,
5687                 .owner =        THIS_MODULE,
5688                 .pf =           PF_INET,
5689                 .hooknum =      NF_INET_POST_ROUTING,
5690                 .priority =     NF_IP_PRI_SELINUX_LAST,
5691         },
5692         {
5693                 .hook =         selinux_ipv4_forward,
5694                 .owner =        THIS_MODULE,
5695                 .pf =           PF_INET,
5696                 .hooknum =      NF_INET_FORWARD,
5697                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5698         },
5699         {
5700                 .hook =         selinux_ipv4_output,
5701                 .owner =        THIS_MODULE,
5702                 .pf =           PF_INET,
5703                 .hooknum =      NF_INET_LOCAL_OUT,
5704                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5705         }
5706 };
5707
5708 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5709
5710 static struct nf_hook_ops selinux_ipv6_ops[] = {
5711         {
5712                 .hook =         selinux_ipv6_postroute,
5713                 .owner =        THIS_MODULE,
5714                 .pf =           PF_INET6,
5715                 .hooknum =      NF_INET_POST_ROUTING,
5716                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5717         },
5718         {
5719                 .hook =         selinux_ipv6_forward,
5720                 .owner =        THIS_MODULE,
5721                 .pf =           PF_INET6,
5722                 .hooknum =      NF_INET_FORWARD,
5723                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5724         }
5725 };
5726
5727 #endif  /* IPV6 */
5728
5729 static int __init selinux_nf_ip_init(void)
5730 {
5731         int err = 0;
5732
5733         if (!selinux_enabled)
5734                 goto out;
5735
5736         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5737
5738         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5739         if (err)
5740                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5741
5742 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5743         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5744         if (err)
5745                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5746 #endif  /* IPV6 */
5747
5748 out:
5749         return err;
5750 }
5751
5752 __initcall(selinux_nf_ip_init);
5753
5754 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5755 static void selinux_nf_ip_exit(void)
5756 {
5757         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5758
5759         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5760 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5761         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5762 #endif  /* IPV6 */
5763 }
5764 #endif
5765
5766 #else /* CONFIG_NETFILTER */
5767
5768 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5769 #define selinux_nf_ip_exit()
5770 #endif
5771
5772 #endif /* CONFIG_NETFILTER */
5773
5774 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5775 static int selinux_disabled;
5776
5777 int selinux_disable(void)
5778 {
5779         if (ss_initialized) {
5780                 /* Not permitted after initial policy load. */
5781                 return -EINVAL;
5782         }
5783
5784         if (selinux_disabled) {
5785                 /* Only do this once. */
5786                 return -EINVAL;
5787         }
5788
5789         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5790
5791         selinux_disabled = 1;
5792         selinux_enabled = 0;
5793
5794         reset_security_ops();
5795
5796         /* Try to destroy the avc node cache */
5797         avc_disable();
5798
5799         /* Unregister netfilter hooks. */
5800         selinux_nf_ip_exit();
5801
5802         /* Unregister selinuxfs. */
5803         exit_sel_fs();
5804
5805         return 0;
5806 }
5807 #endif