]> Pileus Git - ~andy/linux/blob - net/ceph/messenger.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[~andy/linux] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /*
33  * We track the state of the socket on a given connection using
34  * values defined below.  The transition to a new socket state is
35  * handled by a function which verifies we aren't coming from an
36  * unexpected state.
37  *
38  *      --------
39  *      | NEW* |  transient initial state
40  *      --------
41  *          | con_sock_state_init()
42  *          v
43  *      ----------
44  *      | CLOSED |  initialized, but no socket (and no
45  *      ----------  TCP connection)
46  *       ^      \
47  *       |       \ con_sock_state_connecting()
48  *       |        ----------------------
49  *       |                              \
50  *       + con_sock_state_closed()       \
51  *       |+---------------------------    \
52  *       | \                          \    \
53  *       |  -----------                \    \
54  *       |  | CLOSING |  socket event;  \    \
55  *       |  -----------  await close     \    \
56  *       |       ^                        \   |
57  *       |       |                         \  |
58  *       |       + con_sock_state_closing() \ |
59  *       |      / \                         | |
60  *       |     /   ---------------          | |
61  *       |    /                   \         v v
62  *       |   /                    --------------
63  *       |  /    -----------------| CONNECTING |  socket created, TCP
64  *       |  |   /                 --------------  connect initiated
65  *       |  |   | con_sock_state_connected()
66  *       |  |   v
67  *      -------------
68  *      | CONNECTED |  TCP connection established
69  *      -------------
70  *
71  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72  */
73
74 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
79
80 /*
81  * connection states
82  */
83 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
84 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
89
90 /*
91  * ceph_connection flag bits
92  */
93 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
94                                        * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
99
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108
109 /*
110  * When skipping (ignoring) a block of input we read it into a "skip
111  * buffer," which is this many bytes in size.
112  */
113 #define SKIP_BUF_SIZE   1024
114
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118
119 /*
120  * Nicely render a sockaddr as a string.  An array of formatted
121  * strings is used, to approximate reentrancy.
122  */
123 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
124 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
127
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130
131 static struct page *zero_page;          /* used in certain error cases */
132
133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135         int i;
136         char *s;
137         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139
140         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141         s = addr_str[i];
142
143         switch (ss->ss_family) {
144         case AF_INET:
145                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146                          ntohs(in4->sin_port));
147                 break;
148
149         case AF_INET6:
150                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151                          ntohs(in6->sin6_port));
152                 break;
153
154         default:
155                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156                          ss->ss_family);
157         }
158
159         return s;
160 }
161 EXPORT_SYMBOL(ceph_pr_addr);
162
163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166         ceph_encode_addr(&msgr->my_enc_addr);
167 }
168
169 /*
170  * work queue for all reading and writing to/from the socket.
171  */
172 static struct workqueue_struct *ceph_msgr_wq;
173
174 void _ceph_msgr_exit(void)
175 {
176         if (ceph_msgr_wq) {
177                 destroy_workqueue(ceph_msgr_wq);
178                 ceph_msgr_wq = NULL;
179         }
180
181         BUG_ON(zero_page == NULL);
182         kunmap(zero_page);
183         page_cache_release(zero_page);
184         zero_page = NULL;
185 }
186
187 int ceph_msgr_init(void)
188 {
189         BUG_ON(zero_page != NULL);
190         zero_page = ZERO_PAGE(0);
191         page_cache_get(zero_page);
192
193         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194         if (ceph_msgr_wq)
195                 return 0;
196
197         pr_err("msgr_init failed to create workqueue\n");
198         _ceph_msgr_exit();
199
200         return -ENOMEM;
201 }
202 EXPORT_SYMBOL(ceph_msgr_init);
203
204 void ceph_msgr_exit(void)
205 {
206         BUG_ON(ceph_msgr_wq == NULL);
207
208         _ceph_msgr_exit();
209 }
210 EXPORT_SYMBOL(ceph_msgr_exit);
211
212 void ceph_msgr_flush(void)
213 {
214         flush_workqueue(ceph_msgr_wq);
215 }
216 EXPORT_SYMBOL(ceph_msgr_flush);
217
218 /* Connection socket state transition functions */
219
220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222         int old_state;
223
224         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226                 printk("%s: unexpected old state %d\n", __func__, old_state);
227         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
228              CON_SOCK_STATE_CLOSED);
229 }
230
231 static void con_sock_state_connecting(struct ceph_connection *con)
232 {
233         int old_state;
234
235         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
236         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
237                 printk("%s: unexpected old state %d\n", __func__, old_state);
238         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
239              CON_SOCK_STATE_CONNECTING);
240 }
241
242 static void con_sock_state_connected(struct ceph_connection *con)
243 {
244         int old_state;
245
246         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
247         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
248                 printk("%s: unexpected old state %d\n", __func__, old_state);
249         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
250              CON_SOCK_STATE_CONNECTED);
251 }
252
253 static void con_sock_state_closing(struct ceph_connection *con)
254 {
255         int old_state;
256
257         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
258         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
259                         old_state != CON_SOCK_STATE_CONNECTED &&
260                         old_state != CON_SOCK_STATE_CLOSING))
261                 printk("%s: unexpected old state %d\n", __func__, old_state);
262         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
263              CON_SOCK_STATE_CLOSING);
264 }
265
266 static void con_sock_state_closed(struct ceph_connection *con)
267 {
268         int old_state;
269
270         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
271         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
272                     old_state != CON_SOCK_STATE_CLOSING &&
273                     old_state != CON_SOCK_STATE_CONNECTING &&
274                     old_state != CON_SOCK_STATE_CLOSED))
275                 printk("%s: unexpected old state %d\n", __func__, old_state);
276         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
277              CON_SOCK_STATE_CLOSED);
278 }
279
280 /*
281  * socket callback functions
282  */
283
284 /* data available on socket, or listen socket received a connect */
285 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
286 {
287         struct ceph_connection *con = sk->sk_user_data;
288         if (atomic_read(&con->msgr->stopping)) {
289                 return;
290         }
291
292         if (sk->sk_state != TCP_CLOSE_WAIT) {
293                 dout("%s on %p state = %lu, queueing work\n", __func__,
294                      con, con->state);
295                 queue_con(con);
296         }
297 }
298
299 /* socket has buffer space for writing */
300 static void ceph_sock_write_space(struct sock *sk)
301 {
302         struct ceph_connection *con = sk->sk_user_data;
303
304         /* only queue to workqueue if there is data we want to write,
305          * and there is sufficient space in the socket buffer to accept
306          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
307          * doesn't get called again until try_write() fills the socket
308          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
309          * and net/core/stream.c:sk_stream_write_space().
310          */
311         if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
312                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
313                         dout("%s %p queueing write work\n", __func__, con);
314                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
315                         queue_con(con);
316                 }
317         } else {
318                 dout("%s %p nothing to write\n", __func__, con);
319         }
320 }
321
322 /* socket's state has changed */
323 static void ceph_sock_state_change(struct sock *sk)
324 {
325         struct ceph_connection *con = sk->sk_user_data;
326
327         dout("%s %p state = %lu sk_state = %u\n", __func__,
328              con, con->state, sk->sk_state);
329
330         switch (sk->sk_state) {
331         case TCP_CLOSE:
332                 dout("%s TCP_CLOSE\n", __func__);
333         case TCP_CLOSE_WAIT:
334                 dout("%s TCP_CLOSE_WAIT\n", __func__);
335                 con_sock_state_closing(con);
336                 set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
337                 queue_con(con);
338                 break;
339         case TCP_ESTABLISHED:
340                 dout("%s TCP_ESTABLISHED\n", __func__);
341                 con_sock_state_connected(con);
342                 queue_con(con);
343                 break;
344         default:        /* Everything else is uninteresting */
345                 break;
346         }
347 }
348
349 /*
350  * set up socket callbacks
351  */
352 static void set_sock_callbacks(struct socket *sock,
353                                struct ceph_connection *con)
354 {
355         struct sock *sk = sock->sk;
356         sk->sk_user_data = con;
357         sk->sk_data_ready = ceph_sock_data_ready;
358         sk->sk_write_space = ceph_sock_write_space;
359         sk->sk_state_change = ceph_sock_state_change;
360 }
361
362
363 /*
364  * socket helpers
365  */
366
367 /*
368  * initiate connection to a remote socket.
369  */
370 static int ceph_tcp_connect(struct ceph_connection *con)
371 {
372         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
373         struct socket *sock;
374         int ret;
375
376         BUG_ON(con->sock);
377         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
378                                IPPROTO_TCP, &sock);
379         if (ret)
380                 return ret;
381         sock->sk->sk_allocation = GFP_NOFS;
382
383 #ifdef CONFIG_LOCKDEP
384         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
385 #endif
386
387         set_sock_callbacks(sock, con);
388
389         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
390
391         con_sock_state_connecting(con);
392         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
393                                  O_NONBLOCK);
394         if (ret == -EINPROGRESS) {
395                 dout("connect %s EINPROGRESS sk_state = %u\n",
396                      ceph_pr_addr(&con->peer_addr.in_addr),
397                      sock->sk->sk_state);
398         } else if (ret < 0) {
399                 pr_err("connect %s error %d\n",
400                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
401                 sock_release(sock);
402                 con->error_msg = "connect error";
403
404                 return ret;
405         }
406         con->sock = sock;
407         return 0;
408 }
409
410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
411 {
412         struct kvec iov = {buf, len};
413         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
414         int r;
415
416         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
417         if (r == -EAGAIN)
418                 r = 0;
419         return r;
420 }
421
422 /*
423  * write something.  @more is true if caller will be sending more data
424  * shortly.
425  */
426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
427                      size_t kvlen, size_t len, int more)
428 {
429         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
430         int r;
431
432         if (more)
433                 msg.msg_flags |= MSG_MORE;
434         else
435                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
436
437         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
438         if (r == -EAGAIN)
439                 r = 0;
440         return r;
441 }
442
443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
444                      int offset, size_t size, int more)
445 {
446         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
447         int ret;
448
449         ret = kernel_sendpage(sock, page, offset, size, flags);
450         if (ret == -EAGAIN)
451                 ret = 0;
452
453         return ret;
454 }
455
456
457 /*
458  * Shutdown/close the socket for the given connection.
459  */
460 static int con_close_socket(struct ceph_connection *con)
461 {
462         int rc = 0;
463
464         dout("con_close_socket on %p sock %p\n", con, con->sock);
465         if (con->sock) {
466                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
467                 sock_release(con->sock);
468                 con->sock = NULL;
469         }
470
471         /*
472          * Forcibly clear the SOCK_CLOSED flag.  It gets set
473          * independent of the connection mutex, and we could have
474          * received a socket close event before we had the chance to
475          * shut the socket down.
476          */
477         clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
478
479         con_sock_state_closed(con);
480         return rc;
481 }
482
483 /*
484  * Reset a connection.  Discard all incoming and outgoing messages
485  * and clear *_seq state.
486  */
487 static void ceph_msg_remove(struct ceph_msg *msg)
488 {
489         list_del_init(&msg->list_head);
490         BUG_ON(msg->con == NULL);
491         msg->con->ops->put(msg->con);
492         msg->con = NULL;
493
494         ceph_msg_put(msg);
495 }
496 static void ceph_msg_remove_list(struct list_head *head)
497 {
498         while (!list_empty(head)) {
499                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
500                                                         list_head);
501                 ceph_msg_remove(msg);
502         }
503 }
504
505 static void reset_connection(struct ceph_connection *con)
506 {
507         /* reset connection, out_queue, msg_ and connect_seq */
508         /* discard existing out_queue and msg_seq */
509         ceph_msg_remove_list(&con->out_queue);
510         ceph_msg_remove_list(&con->out_sent);
511
512         if (con->in_msg) {
513                 BUG_ON(con->in_msg->con != con);
514                 con->in_msg->con = NULL;
515                 ceph_msg_put(con->in_msg);
516                 con->in_msg = NULL;
517                 con->ops->put(con);
518         }
519
520         con->connect_seq = 0;
521         con->out_seq = 0;
522         if (con->out_msg) {
523                 ceph_msg_put(con->out_msg);
524                 con->out_msg = NULL;
525         }
526         con->in_seq = 0;
527         con->in_seq_acked = 0;
528 }
529
530 /*
531  * mark a peer down.  drop any open connections.
532  */
533 void ceph_con_close(struct ceph_connection *con)
534 {
535         mutex_lock(&con->mutex);
536         dout("con_close %p peer %s\n", con,
537              ceph_pr_addr(&con->peer_addr.in_addr));
538         con->state = CON_STATE_CLOSED;
539
540         clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
541         clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
542         clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
543         clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
544         clear_bit(CON_FLAG_BACKOFF, &con->flags);
545
546         reset_connection(con);
547         con->peer_global_seq = 0;
548         cancel_delayed_work(&con->work);
549         con_close_socket(con);
550         mutex_unlock(&con->mutex);
551 }
552 EXPORT_SYMBOL(ceph_con_close);
553
554 /*
555  * Reopen a closed connection, with a new peer address.
556  */
557 void ceph_con_open(struct ceph_connection *con,
558                    __u8 entity_type, __u64 entity_num,
559                    struct ceph_entity_addr *addr)
560 {
561         mutex_lock(&con->mutex);
562         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
563
564         BUG_ON(con->state != CON_STATE_CLOSED);
565         con->state = CON_STATE_PREOPEN;
566
567         con->peer_name.type = (__u8) entity_type;
568         con->peer_name.num = cpu_to_le64(entity_num);
569
570         memcpy(&con->peer_addr, addr, sizeof(*addr));
571         con->delay = 0;      /* reset backoff memory */
572         mutex_unlock(&con->mutex);
573         queue_con(con);
574 }
575 EXPORT_SYMBOL(ceph_con_open);
576
577 /*
578  * return true if this connection ever successfully opened
579  */
580 bool ceph_con_opened(struct ceph_connection *con)
581 {
582         return con->connect_seq > 0;
583 }
584
585 /*
586  * initialize a new connection.
587  */
588 void ceph_con_init(struct ceph_connection *con, void *private,
589         const struct ceph_connection_operations *ops,
590         struct ceph_messenger *msgr)
591 {
592         dout("con_init %p\n", con);
593         memset(con, 0, sizeof(*con));
594         con->private = private;
595         con->ops = ops;
596         con->msgr = msgr;
597
598         con_sock_state_init(con);
599
600         mutex_init(&con->mutex);
601         INIT_LIST_HEAD(&con->out_queue);
602         INIT_LIST_HEAD(&con->out_sent);
603         INIT_DELAYED_WORK(&con->work, con_work);
604
605         con->state = CON_STATE_CLOSED;
606 }
607 EXPORT_SYMBOL(ceph_con_init);
608
609
610 /*
611  * We maintain a global counter to order connection attempts.  Get
612  * a unique seq greater than @gt.
613  */
614 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
615 {
616         u32 ret;
617
618         spin_lock(&msgr->global_seq_lock);
619         if (msgr->global_seq < gt)
620                 msgr->global_seq = gt;
621         ret = ++msgr->global_seq;
622         spin_unlock(&msgr->global_seq_lock);
623         return ret;
624 }
625
626 static void con_out_kvec_reset(struct ceph_connection *con)
627 {
628         con->out_kvec_left = 0;
629         con->out_kvec_bytes = 0;
630         con->out_kvec_cur = &con->out_kvec[0];
631 }
632
633 static void con_out_kvec_add(struct ceph_connection *con,
634                                 size_t size, void *data)
635 {
636         int index;
637
638         index = con->out_kvec_left;
639         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
640
641         con->out_kvec[index].iov_len = size;
642         con->out_kvec[index].iov_base = data;
643         con->out_kvec_left++;
644         con->out_kvec_bytes += size;
645 }
646
647 #ifdef CONFIG_BLOCK
648 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
649 {
650         if (!bio) {
651                 *iter = NULL;
652                 *seg = 0;
653                 return;
654         }
655         *iter = bio;
656         *seg = bio->bi_idx;
657 }
658
659 static void iter_bio_next(struct bio **bio_iter, int *seg)
660 {
661         if (*bio_iter == NULL)
662                 return;
663
664         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
665
666         (*seg)++;
667         if (*seg == (*bio_iter)->bi_vcnt)
668                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
669 }
670 #endif
671
672 static void prepare_write_message_data(struct ceph_connection *con)
673 {
674         struct ceph_msg *msg = con->out_msg;
675
676         BUG_ON(!msg);
677         BUG_ON(!msg->hdr.data_len);
678
679         /* initialize page iterator */
680         con->out_msg_pos.page = 0;
681         if (msg->pages)
682                 con->out_msg_pos.page_pos = msg->page_alignment;
683         else
684                 con->out_msg_pos.page_pos = 0;
685 #ifdef CONFIG_BLOCK
686         if (msg->bio)
687                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
688 #endif
689         con->out_msg_pos.data_pos = 0;
690         con->out_msg_pos.did_page_crc = false;
691         con->out_more = 1;  /* data + footer will follow */
692 }
693
694 /*
695  * Prepare footer for currently outgoing message, and finish things
696  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
697  */
698 static void prepare_write_message_footer(struct ceph_connection *con)
699 {
700         struct ceph_msg *m = con->out_msg;
701         int v = con->out_kvec_left;
702
703         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
704
705         dout("prepare_write_message_footer %p\n", con);
706         con->out_kvec_is_msg = true;
707         con->out_kvec[v].iov_base = &m->footer;
708         con->out_kvec[v].iov_len = sizeof(m->footer);
709         con->out_kvec_bytes += sizeof(m->footer);
710         con->out_kvec_left++;
711         con->out_more = m->more_to_follow;
712         con->out_msg_done = true;
713 }
714
715 /*
716  * Prepare headers for the next outgoing message.
717  */
718 static void prepare_write_message(struct ceph_connection *con)
719 {
720         struct ceph_msg *m;
721         u32 crc;
722
723         con_out_kvec_reset(con);
724         con->out_kvec_is_msg = true;
725         con->out_msg_done = false;
726
727         /* Sneak an ack in there first?  If we can get it into the same
728          * TCP packet that's a good thing. */
729         if (con->in_seq > con->in_seq_acked) {
730                 con->in_seq_acked = con->in_seq;
731                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
732                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
733                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
734                         &con->out_temp_ack);
735         }
736
737         BUG_ON(list_empty(&con->out_queue));
738         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
739         con->out_msg = m;
740         BUG_ON(m->con != con);
741
742         /* put message on sent list */
743         ceph_msg_get(m);
744         list_move_tail(&m->list_head, &con->out_sent);
745
746         /*
747          * only assign outgoing seq # if we haven't sent this message
748          * yet.  if it is requeued, resend with it's original seq.
749          */
750         if (m->needs_out_seq) {
751                 m->hdr.seq = cpu_to_le64(++con->out_seq);
752                 m->needs_out_seq = false;
753         }
754 #ifdef CONFIG_BLOCK
755         else
756                 m->bio_iter = NULL;
757 #endif
758
759         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
760              m, con->out_seq, le16_to_cpu(m->hdr.type),
761              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
762              le32_to_cpu(m->hdr.data_len),
763              m->nr_pages);
764         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
765
766         /* tag + hdr + front + middle */
767         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
768         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
769         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
770
771         if (m->middle)
772                 con_out_kvec_add(con, m->middle->vec.iov_len,
773                         m->middle->vec.iov_base);
774
775         /* fill in crc (except data pages), footer */
776         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
777         con->out_msg->hdr.crc = cpu_to_le32(crc);
778         con->out_msg->footer.flags = 0;
779
780         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
781         con->out_msg->footer.front_crc = cpu_to_le32(crc);
782         if (m->middle) {
783                 crc = crc32c(0, m->middle->vec.iov_base,
784                                 m->middle->vec.iov_len);
785                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
786         } else
787                 con->out_msg->footer.middle_crc = 0;
788         dout("%s front_crc %u middle_crc %u\n", __func__,
789              le32_to_cpu(con->out_msg->footer.front_crc),
790              le32_to_cpu(con->out_msg->footer.middle_crc));
791
792         /* is there a data payload? */
793         con->out_msg->footer.data_crc = 0;
794         if (m->hdr.data_len)
795                 prepare_write_message_data(con);
796         else
797                 /* no, queue up footer too and be done */
798                 prepare_write_message_footer(con);
799
800         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
801 }
802
803 /*
804  * Prepare an ack.
805  */
806 static void prepare_write_ack(struct ceph_connection *con)
807 {
808         dout("prepare_write_ack %p %llu -> %llu\n", con,
809              con->in_seq_acked, con->in_seq);
810         con->in_seq_acked = con->in_seq;
811
812         con_out_kvec_reset(con);
813
814         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
815
816         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
817         con_out_kvec_add(con, sizeof (con->out_temp_ack),
818                                 &con->out_temp_ack);
819
820         con->out_more = 1;  /* more will follow.. eventually.. */
821         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
822 }
823
824 /*
825  * Prepare to write keepalive byte.
826  */
827 static void prepare_write_keepalive(struct ceph_connection *con)
828 {
829         dout("prepare_write_keepalive %p\n", con);
830         con_out_kvec_reset(con);
831         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
832         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
833 }
834
835 /*
836  * Connection negotiation.
837  */
838
839 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
840                                                 int *auth_proto)
841 {
842         struct ceph_auth_handshake *auth;
843
844         if (!con->ops->get_authorizer) {
845                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
846                 con->out_connect.authorizer_len = 0;
847                 return NULL;
848         }
849
850         /* Can't hold the mutex while getting authorizer */
851         mutex_unlock(&con->mutex);
852         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
853         mutex_lock(&con->mutex);
854
855         if (IS_ERR(auth))
856                 return auth;
857         if (con->state != CON_STATE_NEGOTIATING)
858                 return ERR_PTR(-EAGAIN);
859
860         con->auth_reply_buf = auth->authorizer_reply_buf;
861         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
862         return auth;
863 }
864
865 /*
866  * We connected to a peer and are saying hello.
867  */
868 static void prepare_write_banner(struct ceph_connection *con)
869 {
870         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
871         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
872                                         &con->msgr->my_enc_addr);
873
874         con->out_more = 0;
875         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
876 }
877
878 static int prepare_write_connect(struct ceph_connection *con)
879 {
880         unsigned int global_seq = get_global_seq(con->msgr, 0);
881         int proto;
882         int auth_proto;
883         struct ceph_auth_handshake *auth;
884
885         switch (con->peer_name.type) {
886         case CEPH_ENTITY_TYPE_MON:
887                 proto = CEPH_MONC_PROTOCOL;
888                 break;
889         case CEPH_ENTITY_TYPE_OSD:
890                 proto = CEPH_OSDC_PROTOCOL;
891                 break;
892         case CEPH_ENTITY_TYPE_MDS:
893                 proto = CEPH_MDSC_PROTOCOL;
894                 break;
895         default:
896                 BUG();
897         }
898
899         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
900              con->connect_seq, global_seq, proto);
901
902         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
903         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
904         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
905         con->out_connect.global_seq = cpu_to_le32(global_seq);
906         con->out_connect.protocol_version = cpu_to_le32(proto);
907         con->out_connect.flags = 0;
908
909         auth_proto = CEPH_AUTH_UNKNOWN;
910         auth = get_connect_authorizer(con, &auth_proto);
911         if (IS_ERR(auth))
912                 return PTR_ERR(auth);
913
914         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
915         con->out_connect.authorizer_len = auth ?
916                 cpu_to_le32(auth->authorizer_buf_len) : 0;
917
918         con_out_kvec_reset(con);
919         con_out_kvec_add(con, sizeof (con->out_connect),
920                                         &con->out_connect);
921         if (auth && auth->authorizer_buf_len)
922                 con_out_kvec_add(con, auth->authorizer_buf_len,
923                                         auth->authorizer_buf);
924
925         con->out_more = 0;
926         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
927
928         return 0;
929 }
930
931 /*
932  * write as much of pending kvecs to the socket as we can.
933  *  1 -> done
934  *  0 -> socket full, but more to do
935  * <0 -> error
936  */
937 static int write_partial_kvec(struct ceph_connection *con)
938 {
939         int ret;
940
941         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
942         while (con->out_kvec_bytes > 0) {
943                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
944                                        con->out_kvec_left, con->out_kvec_bytes,
945                                        con->out_more);
946                 if (ret <= 0)
947                         goto out;
948                 con->out_kvec_bytes -= ret;
949                 if (con->out_kvec_bytes == 0)
950                         break;            /* done */
951
952                 /* account for full iov entries consumed */
953                 while (ret >= con->out_kvec_cur->iov_len) {
954                         BUG_ON(!con->out_kvec_left);
955                         ret -= con->out_kvec_cur->iov_len;
956                         con->out_kvec_cur++;
957                         con->out_kvec_left--;
958                 }
959                 /* and for a partially-consumed entry */
960                 if (ret) {
961                         con->out_kvec_cur->iov_len -= ret;
962                         con->out_kvec_cur->iov_base += ret;
963                 }
964         }
965         con->out_kvec_left = 0;
966         con->out_kvec_is_msg = false;
967         ret = 1;
968 out:
969         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
970              con->out_kvec_bytes, con->out_kvec_left, ret);
971         return ret;  /* done! */
972 }
973
974 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
975                         size_t len, size_t sent, bool in_trail)
976 {
977         struct ceph_msg *msg = con->out_msg;
978
979         BUG_ON(!msg);
980         BUG_ON(!sent);
981
982         con->out_msg_pos.data_pos += sent;
983         con->out_msg_pos.page_pos += sent;
984         if (sent < len)
985                 return;
986
987         BUG_ON(sent != len);
988         con->out_msg_pos.page_pos = 0;
989         con->out_msg_pos.page++;
990         con->out_msg_pos.did_page_crc = false;
991         if (in_trail)
992                 list_move_tail(&page->lru,
993                                &msg->trail->head);
994         else if (msg->pagelist)
995                 list_move_tail(&page->lru,
996                                &msg->pagelist->head);
997 #ifdef CONFIG_BLOCK
998         else if (msg->bio)
999                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1000 #endif
1001 }
1002
1003 /*
1004  * Write as much message data payload as we can.  If we finish, queue
1005  * up the footer.
1006  *  1 -> done, footer is now queued in out_kvec[].
1007  *  0 -> socket full, but more to do
1008  * <0 -> error
1009  */
1010 static int write_partial_msg_pages(struct ceph_connection *con)
1011 {
1012         struct ceph_msg *msg = con->out_msg;
1013         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1014         size_t len;
1015         bool do_datacrc = !con->msgr->nocrc;
1016         int ret;
1017         int total_max_write;
1018         bool in_trail = false;
1019         const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1020         const size_t trail_off = data_len - trail_len;
1021
1022         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1023              con, msg, con->out_msg_pos.page, msg->nr_pages,
1024              con->out_msg_pos.page_pos);
1025
1026         /*
1027          * Iterate through each page that contains data to be
1028          * written, and send as much as possible for each.
1029          *
1030          * If we are calculating the data crc (the default), we will
1031          * need to map the page.  If we have no pages, they have
1032          * been revoked, so use the zero page.
1033          */
1034         while (data_len > con->out_msg_pos.data_pos) {
1035                 struct page *page = NULL;
1036                 int max_write = PAGE_SIZE;
1037                 int bio_offset = 0;
1038
1039                 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1040                 if (!in_trail)
1041                         total_max_write = trail_off - con->out_msg_pos.data_pos;
1042
1043                 if (in_trail) {
1044                         total_max_write = data_len - con->out_msg_pos.data_pos;
1045
1046                         page = list_first_entry(&msg->trail->head,
1047                                                 struct page, lru);
1048                 } else if (msg->pages) {
1049                         page = msg->pages[con->out_msg_pos.page];
1050                 } else if (msg->pagelist) {
1051                         page = list_first_entry(&msg->pagelist->head,
1052                                                 struct page, lru);
1053 #ifdef CONFIG_BLOCK
1054                 } else if (msg->bio) {
1055                         struct bio_vec *bv;
1056
1057                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1058                         page = bv->bv_page;
1059                         bio_offset = bv->bv_offset;
1060                         max_write = bv->bv_len;
1061 #endif
1062                 } else {
1063                         page = zero_page;
1064                 }
1065                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1066                             total_max_write);
1067
1068                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1069                         void *base;
1070                         u32 crc = le32_to_cpu(msg->footer.data_crc);
1071                         char *kaddr;
1072
1073                         kaddr = kmap(page);
1074                         BUG_ON(kaddr == NULL);
1075                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1076                         crc = crc32c(crc, base, len);
1077                         msg->footer.data_crc = cpu_to_le32(crc);
1078                         con->out_msg_pos.did_page_crc = true;
1079                 }
1080                 ret = ceph_tcp_sendpage(con->sock, page,
1081                                       con->out_msg_pos.page_pos + bio_offset,
1082                                       len, 1);
1083
1084                 if (do_datacrc)
1085                         kunmap(page);
1086
1087                 if (ret <= 0)
1088                         goto out;
1089
1090                 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1091         }
1092
1093         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1094
1095         /* prepare and queue up footer, too */
1096         if (!do_datacrc)
1097                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1098         con_out_kvec_reset(con);
1099         prepare_write_message_footer(con);
1100         ret = 1;
1101 out:
1102         return ret;
1103 }
1104
1105 /*
1106  * write some zeros
1107  */
1108 static int write_partial_skip(struct ceph_connection *con)
1109 {
1110         int ret;
1111
1112         while (con->out_skip > 0) {
1113                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1114
1115                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1116                 if (ret <= 0)
1117                         goto out;
1118                 con->out_skip -= ret;
1119         }
1120         ret = 1;
1121 out:
1122         return ret;
1123 }
1124
1125 /*
1126  * Prepare to read connection handshake, or an ack.
1127  */
1128 static void prepare_read_banner(struct ceph_connection *con)
1129 {
1130         dout("prepare_read_banner %p\n", con);
1131         con->in_base_pos = 0;
1132 }
1133
1134 static void prepare_read_connect(struct ceph_connection *con)
1135 {
1136         dout("prepare_read_connect %p\n", con);
1137         con->in_base_pos = 0;
1138 }
1139
1140 static void prepare_read_ack(struct ceph_connection *con)
1141 {
1142         dout("prepare_read_ack %p\n", con);
1143         con->in_base_pos = 0;
1144 }
1145
1146 static void prepare_read_tag(struct ceph_connection *con)
1147 {
1148         dout("prepare_read_tag %p\n", con);
1149         con->in_base_pos = 0;
1150         con->in_tag = CEPH_MSGR_TAG_READY;
1151 }
1152
1153 /*
1154  * Prepare to read a message.
1155  */
1156 static int prepare_read_message(struct ceph_connection *con)
1157 {
1158         dout("prepare_read_message %p\n", con);
1159         BUG_ON(con->in_msg != NULL);
1160         con->in_base_pos = 0;
1161         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1162         return 0;
1163 }
1164
1165
1166 static int read_partial(struct ceph_connection *con,
1167                         int end, int size, void *object)
1168 {
1169         while (con->in_base_pos < end) {
1170                 int left = end - con->in_base_pos;
1171                 int have = size - left;
1172                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1173                 if (ret <= 0)
1174                         return ret;
1175                 con->in_base_pos += ret;
1176         }
1177         return 1;
1178 }
1179
1180
1181 /*
1182  * Read all or part of the connect-side handshake on a new connection
1183  */
1184 static int read_partial_banner(struct ceph_connection *con)
1185 {
1186         int size;
1187         int end;
1188         int ret;
1189
1190         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1191
1192         /* peer's banner */
1193         size = strlen(CEPH_BANNER);
1194         end = size;
1195         ret = read_partial(con, end, size, con->in_banner);
1196         if (ret <= 0)
1197                 goto out;
1198
1199         size = sizeof (con->actual_peer_addr);
1200         end += size;
1201         ret = read_partial(con, end, size, &con->actual_peer_addr);
1202         if (ret <= 0)
1203                 goto out;
1204
1205         size = sizeof (con->peer_addr_for_me);
1206         end += size;
1207         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1208         if (ret <= 0)
1209                 goto out;
1210
1211 out:
1212         return ret;
1213 }
1214
1215 static int read_partial_connect(struct ceph_connection *con)
1216 {
1217         int size;
1218         int end;
1219         int ret;
1220
1221         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1222
1223         size = sizeof (con->in_reply);
1224         end = size;
1225         ret = read_partial(con, end, size, &con->in_reply);
1226         if (ret <= 0)
1227                 goto out;
1228
1229         size = le32_to_cpu(con->in_reply.authorizer_len);
1230         end += size;
1231         ret = read_partial(con, end, size, con->auth_reply_buf);
1232         if (ret <= 0)
1233                 goto out;
1234
1235         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1236              con, (int)con->in_reply.tag,
1237              le32_to_cpu(con->in_reply.connect_seq),
1238              le32_to_cpu(con->in_reply.global_seq));
1239 out:
1240         return ret;
1241
1242 }
1243
1244 /*
1245  * Verify the hello banner looks okay.
1246  */
1247 static int verify_hello(struct ceph_connection *con)
1248 {
1249         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1250                 pr_err("connect to %s got bad banner\n",
1251                        ceph_pr_addr(&con->peer_addr.in_addr));
1252                 con->error_msg = "protocol error, bad banner";
1253                 return -1;
1254         }
1255         return 0;
1256 }
1257
1258 static bool addr_is_blank(struct sockaddr_storage *ss)
1259 {
1260         switch (ss->ss_family) {
1261         case AF_INET:
1262                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1263         case AF_INET6:
1264                 return
1265                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1266                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1267                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1268                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1269         }
1270         return false;
1271 }
1272
1273 static int addr_port(struct sockaddr_storage *ss)
1274 {
1275         switch (ss->ss_family) {
1276         case AF_INET:
1277                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1278         case AF_INET6:
1279                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1280         }
1281         return 0;
1282 }
1283
1284 static void addr_set_port(struct sockaddr_storage *ss, int p)
1285 {
1286         switch (ss->ss_family) {
1287         case AF_INET:
1288                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1289                 break;
1290         case AF_INET6:
1291                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1292                 break;
1293         }
1294 }
1295
1296 /*
1297  * Unlike other *_pton function semantics, zero indicates success.
1298  */
1299 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1300                 char delim, const char **ipend)
1301 {
1302         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1303         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1304
1305         memset(ss, 0, sizeof(*ss));
1306
1307         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1308                 ss->ss_family = AF_INET;
1309                 return 0;
1310         }
1311
1312         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1313                 ss->ss_family = AF_INET6;
1314                 return 0;
1315         }
1316
1317         return -EINVAL;
1318 }
1319
1320 /*
1321  * Extract hostname string and resolve using kernel DNS facility.
1322  */
1323 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1324 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1325                 struct sockaddr_storage *ss, char delim, const char **ipend)
1326 {
1327         const char *end, *delim_p;
1328         char *colon_p, *ip_addr = NULL;
1329         int ip_len, ret;
1330
1331         /*
1332          * The end of the hostname occurs immediately preceding the delimiter or
1333          * the port marker (':') where the delimiter takes precedence.
1334          */
1335         delim_p = memchr(name, delim, namelen);
1336         colon_p = memchr(name, ':', namelen);
1337
1338         if (delim_p && colon_p)
1339                 end = delim_p < colon_p ? delim_p : colon_p;
1340         else if (!delim_p && colon_p)
1341                 end = colon_p;
1342         else {
1343                 end = delim_p;
1344                 if (!end) /* case: hostname:/ */
1345                         end = name + namelen;
1346         }
1347
1348         if (end <= name)
1349                 return -EINVAL;
1350
1351         /* do dns_resolve upcall */
1352         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1353         if (ip_len > 0)
1354                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1355         else
1356                 ret = -ESRCH;
1357
1358         kfree(ip_addr);
1359
1360         *ipend = end;
1361
1362         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1363                         ret, ret ? "failed" : ceph_pr_addr(ss));
1364
1365         return ret;
1366 }
1367 #else
1368 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1369                 struct sockaddr_storage *ss, char delim, const char **ipend)
1370 {
1371         return -EINVAL;
1372 }
1373 #endif
1374
1375 /*
1376  * Parse a server name (IP or hostname). If a valid IP address is not found
1377  * then try to extract a hostname to resolve using userspace DNS upcall.
1378  */
1379 static int ceph_parse_server_name(const char *name, size_t namelen,
1380                         struct sockaddr_storage *ss, char delim, const char **ipend)
1381 {
1382         int ret;
1383
1384         ret = ceph_pton(name, namelen, ss, delim, ipend);
1385         if (ret)
1386                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1387
1388         return ret;
1389 }
1390
1391 /*
1392  * Parse an ip[:port] list into an addr array.  Use the default
1393  * monitor port if a port isn't specified.
1394  */
1395 int ceph_parse_ips(const char *c, const char *end,
1396                    struct ceph_entity_addr *addr,
1397                    int max_count, int *count)
1398 {
1399         int i, ret = -EINVAL;
1400         const char *p = c;
1401
1402         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1403         for (i = 0; i < max_count; i++) {
1404                 const char *ipend;
1405                 struct sockaddr_storage *ss = &addr[i].in_addr;
1406                 int port;
1407                 char delim = ',';
1408
1409                 if (*p == '[') {
1410                         delim = ']';
1411                         p++;
1412                 }
1413
1414                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1415                 if (ret)
1416                         goto bad;
1417                 ret = -EINVAL;
1418
1419                 p = ipend;
1420
1421                 if (delim == ']') {
1422                         if (*p != ']') {
1423                                 dout("missing matching ']'\n");
1424                                 goto bad;
1425                         }
1426                         p++;
1427                 }
1428
1429                 /* port? */
1430                 if (p < end && *p == ':') {
1431                         port = 0;
1432                         p++;
1433                         while (p < end && *p >= '0' && *p <= '9') {
1434                                 port = (port * 10) + (*p - '0');
1435                                 p++;
1436                         }
1437                         if (port > 65535 || port == 0)
1438                                 goto bad;
1439                 } else {
1440                         port = CEPH_MON_PORT;
1441                 }
1442
1443                 addr_set_port(ss, port);
1444
1445                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1446
1447                 if (p == end)
1448                         break;
1449                 if (*p != ',')
1450                         goto bad;
1451                 p++;
1452         }
1453
1454         if (p != end)
1455                 goto bad;
1456
1457         if (count)
1458                 *count = i + 1;
1459         return 0;
1460
1461 bad:
1462         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1463         return ret;
1464 }
1465 EXPORT_SYMBOL(ceph_parse_ips);
1466
1467 static int process_banner(struct ceph_connection *con)
1468 {
1469         dout("process_banner on %p\n", con);
1470
1471         if (verify_hello(con) < 0)
1472                 return -1;
1473
1474         ceph_decode_addr(&con->actual_peer_addr);
1475         ceph_decode_addr(&con->peer_addr_for_me);
1476
1477         /*
1478          * Make sure the other end is who we wanted.  note that the other
1479          * end may not yet know their ip address, so if it's 0.0.0.0, give
1480          * them the benefit of the doubt.
1481          */
1482         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1483                    sizeof(con->peer_addr)) != 0 &&
1484             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1485               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1486                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1487                            ceph_pr_addr(&con->peer_addr.in_addr),
1488                            (int)le32_to_cpu(con->peer_addr.nonce),
1489                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1490                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1491                 con->error_msg = "wrong peer at address";
1492                 return -1;
1493         }
1494
1495         /*
1496          * did we learn our address?
1497          */
1498         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1499                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1500
1501                 memcpy(&con->msgr->inst.addr.in_addr,
1502                        &con->peer_addr_for_me.in_addr,
1503                        sizeof(con->peer_addr_for_me.in_addr));
1504                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1505                 encode_my_addr(con->msgr);
1506                 dout("process_banner learned my addr is %s\n",
1507                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1508         }
1509
1510         return 0;
1511 }
1512
1513 static void fail_protocol(struct ceph_connection *con)
1514 {
1515         reset_connection(con);
1516         BUG_ON(con->state != CON_STATE_NEGOTIATING);
1517         con->state = CON_STATE_CLOSED;
1518 }
1519
1520 static int process_connect(struct ceph_connection *con)
1521 {
1522         u64 sup_feat = con->msgr->supported_features;
1523         u64 req_feat = con->msgr->required_features;
1524         u64 server_feat = le64_to_cpu(con->in_reply.features);
1525         int ret;
1526
1527         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1528
1529         switch (con->in_reply.tag) {
1530         case CEPH_MSGR_TAG_FEATURES:
1531                 pr_err("%s%lld %s feature set mismatch,"
1532                        " my %llx < server's %llx, missing %llx\n",
1533                        ENTITY_NAME(con->peer_name),
1534                        ceph_pr_addr(&con->peer_addr.in_addr),
1535                        sup_feat, server_feat, server_feat & ~sup_feat);
1536                 con->error_msg = "missing required protocol features";
1537                 fail_protocol(con);
1538                 return -1;
1539
1540         case CEPH_MSGR_TAG_BADPROTOVER:
1541                 pr_err("%s%lld %s protocol version mismatch,"
1542                        " my %d != server's %d\n",
1543                        ENTITY_NAME(con->peer_name),
1544                        ceph_pr_addr(&con->peer_addr.in_addr),
1545                        le32_to_cpu(con->out_connect.protocol_version),
1546                        le32_to_cpu(con->in_reply.protocol_version));
1547                 con->error_msg = "protocol version mismatch";
1548                 fail_protocol(con);
1549                 return -1;
1550
1551         case CEPH_MSGR_TAG_BADAUTHORIZER:
1552                 con->auth_retry++;
1553                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1554                      con->auth_retry);
1555                 if (con->auth_retry == 2) {
1556                         con->error_msg = "connect authorization failure";
1557                         return -1;
1558                 }
1559                 con->auth_retry = 1;
1560                 ret = prepare_write_connect(con);
1561                 if (ret < 0)
1562                         return ret;
1563                 prepare_read_connect(con);
1564                 break;
1565
1566         case CEPH_MSGR_TAG_RESETSESSION:
1567                 /*
1568                  * If we connected with a large connect_seq but the peer
1569                  * has no record of a session with us (no connection, or
1570                  * connect_seq == 0), they will send RESETSESION to indicate
1571                  * that they must have reset their session, and may have
1572                  * dropped messages.
1573                  */
1574                 dout("process_connect got RESET peer seq %u\n",
1575                      le32_to_cpu(con->in_reply.connect_seq));
1576                 pr_err("%s%lld %s connection reset\n",
1577                        ENTITY_NAME(con->peer_name),
1578                        ceph_pr_addr(&con->peer_addr.in_addr));
1579                 reset_connection(con);
1580                 ret = prepare_write_connect(con);
1581                 if (ret < 0)
1582                         return ret;
1583                 prepare_read_connect(con);
1584
1585                 /* Tell ceph about it. */
1586                 mutex_unlock(&con->mutex);
1587                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1588                 if (con->ops->peer_reset)
1589                         con->ops->peer_reset(con);
1590                 mutex_lock(&con->mutex);
1591                 if (con->state != CON_STATE_NEGOTIATING)
1592                         return -EAGAIN;
1593                 break;
1594
1595         case CEPH_MSGR_TAG_RETRY_SESSION:
1596                 /*
1597                  * If we sent a smaller connect_seq than the peer has, try
1598                  * again with a larger value.
1599                  */
1600                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1601                      le32_to_cpu(con->out_connect.connect_seq),
1602                      le32_to_cpu(con->in_reply.connect_seq));
1603                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1604                 ret = prepare_write_connect(con);
1605                 if (ret < 0)
1606                         return ret;
1607                 prepare_read_connect(con);
1608                 break;
1609
1610         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1611                 /*
1612                  * If we sent a smaller global_seq than the peer has, try
1613                  * again with a larger value.
1614                  */
1615                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1616                      con->peer_global_seq,
1617                      le32_to_cpu(con->in_reply.global_seq));
1618                 get_global_seq(con->msgr,
1619                                le32_to_cpu(con->in_reply.global_seq));
1620                 ret = prepare_write_connect(con);
1621                 if (ret < 0)
1622                         return ret;
1623                 prepare_read_connect(con);
1624                 break;
1625
1626         case CEPH_MSGR_TAG_READY:
1627                 if (req_feat & ~server_feat) {
1628                         pr_err("%s%lld %s protocol feature mismatch,"
1629                                " my required %llx > server's %llx, need %llx\n",
1630                                ENTITY_NAME(con->peer_name),
1631                                ceph_pr_addr(&con->peer_addr.in_addr),
1632                                req_feat, server_feat, req_feat & ~server_feat);
1633                         con->error_msg = "missing required protocol features";
1634                         fail_protocol(con);
1635                         return -1;
1636                 }
1637
1638                 BUG_ON(con->state != CON_STATE_NEGOTIATING);
1639                 con->state = CON_STATE_OPEN;
1640
1641                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1642                 con->connect_seq++;
1643                 con->peer_features = server_feat;
1644                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1645                      con->peer_global_seq,
1646                      le32_to_cpu(con->in_reply.connect_seq),
1647                      con->connect_seq);
1648                 WARN_ON(con->connect_seq !=
1649                         le32_to_cpu(con->in_reply.connect_seq));
1650
1651                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1652                         set_bit(CON_FLAG_LOSSYTX, &con->flags);
1653
1654                 con->delay = 0;      /* reset backoff memory */
1655
1656                 prepare_read_tag(con);
1657                 break;
1658
1659         case CEPH_MSGR_TAG_WAIT:
1660                 /*
1661                  * If there is a connection race (we are opening
1662                  * connections to each other), one of us may just have
1663                  * to WAIT.  This shouldn't happen if we are the
1664                  * client.
1665                  */
1666                 pr_err("process_connect got WAIT as client\n");
1667                 con->error_msg = "protocol error, got WAIT as client";
1668                 return -1;
1669
1670         default:
1671                 pr_err("connect protocol error, will retry\n");
1672                 con->error_msg = "protocol error, garbage tag during connect";
1673                 return -1;
1674         }
1675         return 0;
1676 }
1677
1678
1679 /*
1680  * read (part of) an ack
1681  */
1682 static int read_partial_ack(struct ceph_connection *con)
1683 {
1684         int size = sizeof (con->in_temp_ack);
1685         int end = size;
1686
1687         return read_partial(con, end, size, &con->in_temp_ack);
1688 }
1689
1690
1691 /*
1692  * We can finally discard anything that's been acked.
1693  */
1694 static void process_ack(struct ceph_connection *con)
1695 {
1696         struct ceph_msg *m;
1697         u64 ack = le64_to_cpu(con->in_temp_ack);
1698         u64 seq;
1699
1700         while (!list_empty(&con->out_sent)) {
1701                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1702                                      list_head);
1703                 seq = le64_to_cpu(m->hdr.seq);
1704                 if (seq > ack)
1705                         break;
1706                 dout("got ack for seq %llu type %d at %p\n", seq,
1707                      le16_to_cpu(m->hdr.type), m);
1708                 m->ack_stamp = jiffies;
1709                 ceph_msg_remove(m);
1710         }
1711         prepare_read_tag(con);
1712 }
1713
1714
1715
1716
1717 static int read_partial_message_section(struct ceph_connection *con,
1718                                         struct kvec *section,
1719                                         unsigned int sec_len, u32 *crc)
1720 {
1721         int ret, left;
1722
1723         BUG_ON(!section);
1724
1725         while (section->iov_len < sec_len) {
1726                 BUG_ON(section->iov_base == NULL);
1727                 left = sec_len - section->iov_len;
1728                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1729                                        section->iov_len, left);
1730                 if (ret <= 0)
1731                         return ret;
1732                 section->iov_len += ret;
1733         }
1734         if (section->iov_len == sec_len)
1735                 *crc = crc32c(0, section->iov_base, section->iov_len);
1736
1737         return 1;
1738 }
1739
1740 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1741
1742 static int read_partial_message_pages(struct ceph_connection *con,
1743                                       struct page **pages,
1744                                       unsigned int data_len, bool do_datacrc)
1745 {
1746         void *p;
1747         int ret;
1748         int left;
1749
1750         left = min((int)(data_len - con->in_msg_pos.data_pos),
1751                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1752         /* (page) data */
1753         BUG_ON(pages == NULL);
1754         p = kmap(pages[con->in_msg_pos.page]);
1755         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1756                                left);
1757         if (ret > 0 && do_datacrc)
1758                 con->in_data_crc =
1759                         crc32c(con->in_data_crc,
1760                                   p + con->in_msg_pos.page_pos, ret);
1761         kunmap(pages[con->in_msg_pos.page]);
1762         if (ret <= 0)
1763                 return ret;
1764         con->in_msg_pos.data_pos += ret;
1765         con->in_msg_pos.page_pos += ret;
1766         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1767                 con->in_msg_pos.page_pos = 0;
1768                 con->in_msg_pos.page++;
1769         }
1770
1771         return ret;
1772 }
1773
1774 #ifdef CONFIG_BLOCK
1775 static int read_partial_message_bio(struct ceph_connection *con,
1776                                     struct bio **bio_iter, int *bio_seg,
1777                                     unsigned int data_len, bool do_datacrc)
1778 {
1779         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1780         void *p;
1781         int ret, left;
1782
1783         left = min((int)(data_len - con->in_msg_pos.data_pos),
1784                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1785
1786         p = kmap(bv->bv_page) + bv->bv_offset;
1787
1788         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1789                                left);
1790         if (ret > 0 && do_datacrc)
1791                 con->in_data_crc =
1792                         crc32c(con->in_data_crc,
1793                                   p + con->in_msg_pos.page_pos, ret);
1794         kunmap(bv->bv_page);
1795         if (ret <= 0)
1796                 return ret;
1797         con->in_msg_pos.data_pos += ret;
1798         con->in_msg_pos.page_pos += ret;
1799         if (con->in_msg_pos.page_pos == bv->bv_len) {
1800                 con->in_msg_pos.page_pos = 0;
1801                 iter_bio_next(bio_iter, bio_seg);
1802         }
1803
1804         return ret;
1805 }
1806 #endif
1807
1808 /*
1809  * read (part of) a message.
1810  */
1811 static int read_partial_message(struct ceph_connection *con)
1812 {
1813         struct ceph_msg *m = con->in_msg;
1814         int size;
1815         int end;
1816         int ret;
1817         unsigned int front_len, middle_len, data_len;
1818         bool do_datacrc = !con->msgr->nocrc;
1819         u64 seq;
1820         u32 crc;
1821
1822         dout("read_partial_message con %p msg %p\n", con, m);
1823
1824         /* header */
1825         size = sizeof (con->in_hdr);
1826         end = size;
1827         ret = read_partial(con, end, size, &con->in_hdr);
1828         if (ret <= 0)
1829                 return ret;
1830
1831         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1832         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1833                 pr_err("read_partial_message bad hdr "
1834                        " crc %u != expected %u\n",
1835                        crc, con->in_hdr.crc);
1836                 return -EBADMSG;
1837         }
1838
1839         front_len = le32_to_cpu(con->in_hdr.front_len);
1840         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1841                 return -EIO;
1842         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1843         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1844                 return -EIO;
1845         data_len = le32_to_cpu(con->in_hdr.data_len);
1846         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1847                 return -EIO;
1848
1849         /* verify seq# */
1850         seq = le64_to_cpu(con->in_hdr.seq);
1851         if ((s64)seq - (s64)con->in_seq < 1) {
1852                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1853                         ENTITY_NAME(con->peer_name),
1854                         ceph_pr_addr(&con->peer_addr.in_addr),
1855                         seq, con->in_seq + 1);
1856                 con->in_base_pos = -front_len - middle_len - data_len -
1857                         sizeof(m->footer);
1858                 con->in_tag = CEPH_MSGR_TAG_READY;
1859                 return 0;
1860         } else if ((s64)seq - (s64)con->in_seq > 1) {
1861                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1862                        seq, con->in_seq + 1);
1863                 con->error_msg = "bad message sequence # for incoming message";
1864                 return -EBADMSG;
1865         }
1866
1867         /* allocate message? */
1868         if (!con->in_msg) {
1869                 int skip = 0;
1870
1871                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1872                      con->in_hdr.front_len, con->in_hdr.data_len);
1873                 ret = ceph_con_in_msg_alloc(con, &skip);
1874                 if (ret < 0)
1875                         return ret;
1876                 if (skip) {
1877                         /* skip this message */
1878                         dout("alloc_msg said skip message\n");
1879                         BUG_ON(con->in_msg);
1880                         con->in_base_pos = -front_len - middle_len - data_len -
1881                                 sizeof(m->footer);
1882                         con->in_tag = CEPH_MSGR_TAG_READY;
1883                         con->in_seq++;
1884                         return 0;
1885                 }
1886
1887                 BUG_ON(!con->in_msg);
1888                 BUG_ON(con->in_msg->con != con);
1889                 m = con->in_msg;
1890                 m->front.iov_len = 0;    /* haven't read it yet */
1891                 if (m->middle)
1892                         m->middle->vec.iov_len = 0;
1893
1894                 con->in_msg_pos.page = 0;
1895                 if (m->pages)
1896                         con->in_msg_pos.page_pos = m->page_alignment;
1897                 else
1898                         con->in_msg_pos.page_pos = 0;
1899                 con->in_msg_pos.data_pos = 0;
1900
1901 #ifdef CONFIG_BLOCK
1902                 if (m->bio)
1903                         init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1904 #endif
1905         }
1906
1907         /* front */
1908         ret = read_partial_message_section(con, &m->front, front_len,
1909                                            &con->in_front_crc);
1910         if (ret <= 0)
1911                 return ret;
1912
1913         /* middle */
1914         if (m->middle) {
1915                 ret = read_partial_message_section(con, &m->middle->vec,
1916                                                    middle_len,
1917                                                    &con->in_middle_crc);
1918                 if (ret <= 0)
1919                         return ret;
1920         }
1921
1922         /* (page) data */
1923         while (con->in_msg_pos.data_pos < data_len) {
1924                 if (m->pages) {
1925                         ret = read_partial_message_pages(con, m->pages,
1926                                                  data_len, do_datacrc);
1927                         if (ret <= 0)
1928                                 return ret;
1929 #ifdef CONFIG_BLOCK
1930                 } else if (m->bio) {
1931                         BUG_ON(!m->bio_iter);
1932                         ret = read_partial_message_bio(con,
1933                                                  &m->bio_iter, &m->bio_seg,
1934                                                  data_len, do_datacrc);
1935                         if (ret <= 0)
1936                                 return ret;
1937 #endif
1938                 } else {
1939                         BUG_ON(1);
1940                 }
1941         }
1942
1943         /* footer */
1944         size = sizeof (m->footer);
1945         end += size;
1946         ret = read_partial(con, end, size, &m->footer);
1947         if (ret <= 0)
1948                 return ret;
1949
1950         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1951              m, front_len, m->footer.front_crc, middle_len,
1952              m->footer.middle_crc, data_len, m->footer.data_crc);
1953
1954         /* crc ok? */
1955         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1956                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1957                        m, con->in_front_crc, m->footer.front_crc);
1958                 return -EBADMSG;
1959         }
1960         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1961                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1962                        m, con->in_middle_crc, m->footer.middle_crc);
1963                 return -EBADMSG;
1964         }
1965         if (do_datacrc &&
1966             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1967             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1968                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1969                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1970                 return -EBADMSG;
1971         }
1972
1973         return 1; /* done! */
1974 }
1975
1976 /*
1977  * Process message.  This happens in the worker thread.  The callback should
1978  * be careful not to do anything that waits on other incoming messages or it
1979  * may deadlock.
1980  */
1981 static void process_message(struct ceph_connection *con)
1982 {
1983         struct ceph_msg *msg;
1984
1985         BUG_ON(con->in_msg->con != con);
1986         con->in_msg->con = NULL;
1987         msg = con->in_msg;
1988         con->in_msg = NULL;
1989         con->ops->put(con);
1990
1991         /* if first message, set peer_name */
1992         if (con->peer_name.type == 0)
1993                 con->peer_name = msg->hdr.src;
1994
1995         con->in_seq++;
1996         mutex_unlock(&con->mutex);
1997
1998         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1999              msg, le64_to_cpu(msg->hdr.seq),
2000              ENTITY_NAME(msg->hdr.src),
2001              le16_to_cpu(msg->hdr.type),
2002              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2003              le32_to_cpu(msg->hdr.front_len),
2004              le32_to_cpu(msg->hdr.data_len),
2005              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2006         con->ops->dispatch(con, msg);
2007
2008         mutex_lock(&con->mutex);
2009 }
2010
2011
2012 /*
2013  * Write something to the socket.  Called in a worker thread when the
2014  * socket appears to be writeable and we have something ready to send.
2015  */
2016 static int try_write(struct ceph_connection *con)
2017 {
2018         int ret = 1;
2019
2020         dout("try_write start %p state %lu\n", con, con->state);
2021
2022 more:
2023         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2024
2025         /* open the socket first? */
2026         if (con->state == CON_STATE_PREOPEN) {
2027                 BUG_ON(con->sock);
2028                 con->state = CON_STATE_CONNECTING;
2029
2030                 con_out_kvec_reset(con);
2031                 prepare_write_banner(con);
2032                 prepare_read_banner(con);
2033
2034                 BUG_ON(con->in_msg);
2035                 con->in_tag = CEPH_MSGR_TAG_READY;
2036                 dout("try_write initiating connect on %p new state %lu\n",
2037                      con, con->state);
2038                 ret = ceph_tcp_connect(con);
2039                 if (ret < 0) {
2040                         con->error_msg = "connect error";
2041                         goto out;
2042                 }
2043         }
2044
2045 more_kvec:
2046         /* kvec data queued? */
2047         if (con->out_skip) {
2048                 ret = write_partial_skip(con);
2049                 if (ret <= 0)
2050                         goto out;
2051         }
2052         if (con->out_kvec_left) {
2053                 ret = write_partial_kvec(con);
2054                 if (ret <= 0)
2055                         goto out;
2056         }
2057
2058         /* msg pages? */
2059         if (con->out_msg) {
2060                 if (con->out_msg_done) {
2061                         ceph_msg_put(con->out_msg);
2062                         con->out_msg = NULL;   /* we're done with this one */
2063                         goto do_next;
2064                 }
2065
2066                 ret = write_partial_msg_pages(con);
2067                 if (ret == 1)
2068                         goto more_kvec;  /* we need to send the footer, too! */
2069                 if (ret == 0)
2070                         goto out;
2071                 if (ret < 0) {
2072                         dout("try_write write_partial_msg_pages err %d\n",
2073                              ret);
2074                         goto out;
2075                 }
2076         }
2077
2078 do_next:
2079         if (con->state == CON_STATE_OPEN) {
2080                 /* is anything else pending? */
2081                 if (!list_empty(&con->out_queue)) {
2082                         prepare_write_message(con);
2083                         goto more;
2084                 }
2085                 if (con->in_seq > con->in_seq_acked) {
2086                         prepare_write_ack(con);
2087                         goto more;
2088                 }
2089                 if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2090                                        &con->flags)) {
2091                         prepare_write_keepalive(con);
2092                         goto more;
2093                 }
2094         }
2095
2096         /* Nothing to do! */
2097         clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2098         dout("try_write nothing else to write.\n");
2099         ret = 0;
2100 out:
2101         dout("try_write done on %p ret %d\n", con, ret);
2102         return ret;
2103 }
2104
2105
2106
2107 /*
2108  * Read what we can from the socket.
2109  */
2110 static int try_read(struct ceph_connection *con)
2111 {
2112         int ret = -1;
2113
2114 more:
2115         dout("try_read start on %p state %lu\n", con, con->state);
2116         if (con->state != CON_STATE_CONNECTING &&
2117             con->state != CON_STATE_NEGOTIATING &&
2118             con->state != CON_STATE_OPEN)
2119                 return 0;
2120
2121         BUG_ON(!con->sock);
2122
2123         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2124              con->in_base_pos);
2125
2126         if (con->state == CON_STATE_CONNECTING) {
2127                 dout("try_read connecting\n");
2128                 ret = read_partial_banner(con);
2129                 if (ret <= 0)
2130                         goto out;
2131                 ret = process_banner(con);
2132                 if (ret < 0)
2133                         goto out;
2134
2135                 BUG_ON(con->state != CON_STATE_CONNECTING);
2136                 con->state = CON_STATE_NEGOTIATING;
2137
2138                 /* Banner is good, exchange connection info */
2139                 ret = prepare_write_connect(con);
2140                 if (ret < 0)
2141                         goto out;
2142                 prepare_read_connect(con);
2143
2144                 /* Send connection info before awaiting response */
2145                 goto out;
2146         }
2147
2148         if (con->state == CON_STATE_NEGOTIATING) {
2149                 dout("try_read negotiating\n");
2150                 ret = read_partial_connect(con);
2151                 if (ret <= 0)
2152                         goto out;
2153                 ret = process_connect(con);
2154                 if (ret < 0)
2155                         goto out;
2156                 goto more;
2157         }
2158
2159         BUG_ON(con->state != CON_STATE_OPEN);
2160
2161         if (con->in_base_pos < 0) {
2162                 /*
2163                  * skipping + discarding content.
2164                  *
2165                  * FIXME: there must be a better way to do this!
2166                  */
2167                 static char buf[SKIP_BUF_SIZE];
2168                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2169
2170                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2171                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2172                 if (ret <= 0)
2173                         goto out;
2174                 con->in_base_pos += ret;
2175                 if (con->in_base_pos)
2176                         goto more;
2177         }
2178         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2179                 /*
2180                  * what's next?
2181                  */
2182                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2183                 if (ret <= 0)
2184                         goto out;
2185                 dout("try_read got tag %d\n", (int)con->in_tag);
2186                 switch (con->in_tag) {
2187                 case CEPH_MSGR_TAG_MSG:
2188                         prepare_read_message(con);
2189                         break;
2190                 case CEPH_MSGR_TAG_ACK:
2191                         prepare_read_ack(con);
2192                         break;
2193                 case CEPH_MSGR_TAG_CLOSE:
2194                         con_close_socket(con);
2195                         con->state = CON_STATE_CLOSED;
2196                         goto out;
2197                 default:
2198                         goto bad_tag;
2199                 }
2200         }
2201         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2202                 ret = read_partial_message(con);
2203                 if (ret <= 0) {
2204                         switch (ret) {
2205                         case -EBADMSG:
2206                                 con->error_msg = "bad crc";
2207                                 ret = -EIO;
2208                                 break;
2209                         case -EIO:
2210                                 con->error_msg = "io error";
2211                                 break;
2212                         }
2213                         goto out;
2214                 }
2215                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2216                         goto more;
2217                 process_message(con);
2218                 if (con->state == CON_STATE_OPEN)
2219                         prepare_read_tag(con);
2220                 goto more;
2221         }
2222         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2223                 ret = read_partial_ack(con);
2224                 if (ret <= 0)
2225                         goto out;
2226                 process_ack(con);
2227                 goto more;
2228         }
2229
2230 out:
2231         dout("try_read done on %p ret %d\n", con, ret);
2232         return ret;
2233
2234 bad_tag:
2235         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2236         con->error_msg = "protocol error, garbage tag";
2237         ret = -1;
2238         goto out;
2239 }
2240
2241
2242 /*
2243  * Atomically queue work on a connection.  Bump @con reference to
2244  * avoid races with connection teardown.
2245  */
2246 static void queue_con(struct ceph_connection *con)
2247 {
2248         if (!con->ops->get(con)) {
2249                 dout("queue_con %p ref count 0\n", con);
2250                 return;
2251         }
2252
2253         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2254                 dout("queue_con %p - already queued\n", con);
2255                 con->ops->put(con);
2256         } else {
2257                 dout("queue_con %p\n", con);
2258         }
2259 }
2260
2261 /*
2262  * Do some work on a connection.  Drop a connection ref when we're done.
2263  */
2264 static void con_work(struct work_struct *work)
2265 {
2266         struct ceph_connection *con = container_of(work, struct ceph_connection,
2267                                                    work.work);
2268         int ret;
2269
2270         mutex_lock(&con->mutex);
2271 restart:
2272         if (test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags)) {
2273                 switch (con->state) {
2274                 case CON_STATE_CONNECTING:
2275                         con->error_msg = "connection failed";
2276                         break;
2277                 case CON_STATE_NEGOTIATING:
2278                         con->error_msg = "negotiation failed";
2279                         break;
2280                 case CON_STATE_OPEN:
2281                         con->error_msg = "socket closed";
2282                         break;
2283                 default:
2284                         dout("unrecognized con state %d\n", (int)con->state);
2285                         con->error_msg = "unrecognized con state";
2286                         BUG();
2287                 }
2288                 goto fault;
2289         }
2290
2291         if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2292                 dout("con_work %p backing off\n", con);
2293                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2294                                        round_jiffies_relative(con->delay))) {
2295                         dout("con_work %p backoff %lu\n", con, con->delay);
2296                         mutex_unlock(&con->mutex);
2297                         return;
2298                 } else {
2299                         con->ops->put(con);
2300                         dout("con_work %p FAILED to back off %lu\n", con,
2301                              con->delay);
2302                 }
2303         }
2304
2305         if (con->state == CON_STATE_STANDBY) {
2306                 dout("con_work %p STANDBY\n", con);
2307                 goto done;
2308         }
2309         if (con->state == CON_STATE_CLOSED) {
2310                 dout("con_work %p CLOSED\n", con);
2311                 BUG_ON(con->sock);
2312                 goto done;
2313         }
2314         if (con->state == CON_STATE_PREOPEN) {
2315                 dout("con_work OPENING\n");
2316                 BUG_ON(con->sock);
2317         }
2318
2319         ret = try_read(con);
2320         if (ret == -EAGAIN)
2321                 goto restart;
2322         if (ret < 0) {
2323                 con->error_msg = "socket error on read";
2324                 goto fault;
2325         }
2326
2327         ret = try_write(con);
2328         if (ret == -EAGAIN)
2329                 goto restart;
2330         if (ret < 0) {
2331                 con->error_msg = "socket error on write";
2332                 goto fault;
2333         }
2334
2335 done:
2336         mutex_unlock(&con->mutex);
2337 done_unlocked:
2338         con->ops->put(con);
2339         return;
2340
2341 fault:
2342         ceph_fault(con);     /* error/fault path */
2343         goto done_unlocked;
2344 }
2345
2346
2347 /*
2348  * Generic error/fault handler.  A retry mechanism is used with
2349  * exponential backoff
2350  */
2351 static void ceph_fault(struct ceph_connection *con)
2352         __releases(con->mutex)
2353 {
2354         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2355                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2356         dout("fault %p state %lu to peer %s\n",
2357              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2358
2359         BUG_ON(con->state != CON_STATE_CONNECTING &&
2360                con->state != CON_STATE_NEGOTIATING &&
2361                con->state != CON_STATE_OPEN);
2362
2363         con_close_socket(con);
2364
2365         if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2366                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2367                 con->state = CON_STATE_CLOSED;
2368                 goto out_unlock;
2369         }
2370
2371         if (con->in_msg) {
2372                 BUG_ON(con->in_msg->con != con);
2373                 con->in_msg->con = NULL;
2374                 ceph_msg_put(con->in_msg);
2375                 con->in_msg = NULL;
2376                 con->ops->put(con);
2377         }
2378
2379         /* Requeue anything that hasn't been acked */
2380         list_splice_init(&con->out_sent, &con->out_queue);
2381
2382         /* If there are no messages queued or keepalive pending, place
2383          * the connection in a STANDBY state */
2384         if (list_empty(&con->out_queue) &&
2385             !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2386                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2387                 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2388                 con->state = CON_STATE_STANDBY;
2389         } else {
2390                 /* retry after a delay. */
2391                 con->state = CON_STATE_PREOPEN;
2392                 if (con->delay == 0)
2393                         con->delay = BASE_DELAY_INTERVAL;
2394                 else if (con->delay < MAX_DELAY_INTERVAL)
2395                         con->delay *= 2;
2396                 con->ops->get(con);
2397                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2398                                        round_jiffies_relative(con->delay))) {
2399                         dout("fault queued %p delay %lu\n", con, con->delay);
2400                 } else {
2401                         con->ops->put(con);
2402                         dout("fault failed to queue %p delay %lu, backoff\n",
2403                              con, con->delay);
2404                         /*
2405                          * In many cases we see a socket state change
2406                          * while con_work is running and end up
2407                          * queuing (non-delayed) work, such that we
2408                          * can't backoff with a delay.  Set a flag so
2409                          * that when con_work restarts we schedule the
2410                          * delay then.
2411                          */
2412                         set_bit(CON_FLAG_BACKOFF, &con->flags);
2413                 }
2414         }
2415
2416 out_unlock:
2417         mutex_unlock(&con->mutex);
2418         /*
2419          * in case we faulted due to authentication, invalidate our
2420          * current tickets so that we can get new ones.
2421          */
2422         if (con->auth_retry && con->ops->invalidate_authorizer) {
2423                 dout("calling invalidate_authorizer()\n");
2424                 con->ops->invalidate_authorizer(con);
2425         }
2426
2427         if (con->ops->fault)
2428                 con->ops->fault(con);
2429 }
2430
2431
2432
2433 /*
2434  * initialize a new messenger instance
2435  */
2436 void ceph_messenger_init(struct ceph_messenger *msgr,
2437                         struct ceph_entity_addr *myaddr,
2438                         u32 supported_features,
2439                         u32 required_features,
2440                         bool nocrc)
2441 {
2442         msgr->supported_features = supported_features;
2443         msgr->required_features = required_features;
2444
2445         spin_lock_init(&msgr->global_seq_lock);
2446
2447         if (myaddr)
2448                 msgr->inst.addr = *myaddr;
2449
2450         /* select a random nonce */
2451         msgr->inst.addr.type = 0;
2452         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2453         encode_my_addr(msgr);
2454         msgr->nocrc = nocrc;
2455
2456         atomic_set(&msgr->stopping, 0);
2457
2458         dout("%s %p\n", __func__, msgr);
2459 }
2460 EXPORT_SYMBOL(ceph_messenger_init);
2461
2462 static void clear_standby(struct ceph_connection *con)
2463 {
2464         /* come back from STANDBY? */
2465         if (con->state == CON_STATE_STANDBY) {
2466                 dout("clear_standby %p and ++connect_seq\n", con);
2467                 con->state = CON_STATE_PREOPEN;
2468                 con->connect_seq++;
2469                 WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2470                 WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2471         }
2472 }
2473
2474 /*
2475  * Queue up an outgoing message on the given connection.
2476  */
2477 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2478 {
2479         /* set src+dst */
2480         msg->hdr.src = con->msgr->inst.name;
2481         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2482         msg->needs_out_seq = true;
2483
2484         mutex_lock(&con->mutex);
2485
2486         if (con->state == CON_STATE_CLOSED) {
2487                 dout("con_send %p closed, dropping %p\n", con, msg);
2488                 ceph_msg_put(msg);
2489                 mutex_unlock(&con->mutex);
2490                 return;
2491         }
2492
2493         BUG_ON(msg->con != NULL);
2494         msg->con = con->ops->get(con);
2495         BUG_ON(msg->con == NULL);
2496
2497         BUG_ON(!list_empty(&msg->list_head));
2498         list_add_tail(&msg->list_head, &con->out_queue);
2499         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2500              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2501              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2502              le32_to_cpu(msg->hdr.front_len),
2503              le32_to_cpu(msg->hdr.middle_len),
2504              le32_to_cpu(msg->hdr.data_len));
2505
2506         clear_standby(con);
2507         mutex_unlock(&con->mutex);
2508
2509         /* if there wasn't anything waiting to send before, queue
2510          * new work */
2511         if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2512                 queue_con(con);
2513 }
2514 EXPORT_SYMBOL(ceph_con_send);
2515
2516 /*
2517  * Revoke a message that was previously queued for send
2518  */
2519 void ceph_msg_revoke(struct ceph_msg *msg)
2520 {
2521         struct ceph_connection *con = msg->con;
2522
2523         if (!con)
2524                 return;         /* Message not in our possession */
2525
2526         mutex_lock(&con->mutex);
2527         if (!list_empty(&msg->list_head)) {
2528                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2529                 list_del_init(&msg->list_head);
2530                 BUG_ON(msg->con == NULL);
2531                 msg->con->ops->put(msg->con);
2532                 msg->con = NULL;
2533                 msg->hdr.seq = 0;
2534
2535                 ceph_msg_put(msg);
2536         }
2537         if (con->out_msg == msg) {
2538                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2539                 con->out_msg = NULL;
2540                 if (con->out_kvec_is_msg) {
2541                         con->out_skip = con->out_kvec_bytes;
2542                         con->out_kvec_is_msg = false;
2543                 }
2544                 msg->hdr.seq = 0;
2545
2546                 ceph_msg_put(msg);
2547         }
2548         mutex_unlock(&con->mutex);
2549 }
2550
2551 /*
2552  * Revoke a message that we may be reading data into
2553  */
2554 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2555 {
2556         struct ceph_connection *con;
2557
2558         BUG_ON(msg == NULL);
2559         if (!msg->con) {
2560                 dout("%s msg %p null con\n", __func__, msg);
2561
2562                 return;         /* Message not in our possession */
2563         }
2564
2565         con = msg->con;
2566         mutex_lock(&con->mutex);
2567         if (con->in_msg == msg) {
2568                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2569                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2570                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2571
2572                 /* skip rest of message */
2573                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2574                 con->in_base_pos = con->in_base_pos -
2575                                 sizeof(struct ceph_msg_header) -
2576                                 front_len -
2577                                 middle_len -
2578                                 data_len -
2579                                 sizeof(struct ceph_msg_footer);
2580                 ceph_msg_put(con->in_msg);
2581                 con->in_msg = NULL;
2582                 con->in_tag = CEPH_MSGR_TAG_READY;
2583                 con->in_seq++;
2584         } else {
2585                 dout("%s %p in_msg %p msg %p no-op\n",
2586                      __func__, con, con->in_msg, msg);
2587         }
2588         mutex_unlock(&con->mutex);
2589 }
2590
2591 /*
2592  * Queue a keepalive byte to ensure the tcp connection is alive.
2593  */
2594 void ceph_con_keepalive(struct ceph_connection *con)
2595 {
2596         dout("con_keepalive %p\n", con);
2597         mutex_lock(&con->mutex);
2598         clear_standby(con);
2599         mutex_unlock(&con->mutex);
2600         if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2601             test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2602                 queue_con(con);
2603 }
2604 EXPORT_SYMBOL(ceph_con_keepalive);
2605
2606
2607 /*
2608  * construct a new message with given type, size
2609  * the new msg has a ref count of 1.
2610  */
2611 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2612                               bool can_fail)
2613 {
2614         struct ceph_msg *m;
2615
2616         m = kmalloc(sizeof(*m), flags);
2617         if (m == NULL)
2618                 goto out;
2619         kref_init(&m->kref);
2620
2621         m->con = NULL;
2622         INIT_LIST_HEAD(&m->list_head);
2623
2624         m->hdr.tid = 0;
2625         m->hdr.type = cpu_to_le16(type);
2626         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2627         m->hdr.version = 0;
2628         m->hdr.front_len = cpu_to_le32(front_len);
2629         m->hdr.middle_len = 0;
2630         m->hdr.data_len = 0;
2631         m->hdr.data_off = 0;
2632         m->hdr.reserved = 0;
2633         m->footer.front_crc = 0;
2634         m->footer.middle_crc = 0;
2635         m->footer.data_crc = 0;
2636         m->footer.flags = 0;
2637         m->front_max = front_len;
2638         m->front_is_vmalloc = false;
2639         m->more_to_follow = false;
2640         m->ack_stamp = 0;
2641         m->pool = NULL;
2642
2643         /* middle */
2644         m->middle = NULL;
2645
2646         /* data */
2647         m->nr_pages = 0;
2648         m->page_alignment = 0;
2649         m->pages = NULL;
2650         m->pagelist = NULL;
2651         m->bio = NULL;
2652         m->bio_iter = NULL;
2653         m->bio_seg = 0;
2654         m->trail = NULL;
2655
2656         /* front */
2657         if (front_len) {
2658                 if (front_len > PAGE_CACHE_SIZE) {
2659                         m->front.iov_base = __vmalloc(front_len, flags,
2660                                                       PAGE_KERNEL);
2661                         m->front_is_vmalloc = true;
2662                 } else {
2663                         m->front.iov_base = kmalloc(front_len, flags);
2664                 }
2665                 if (m->front.iov_base == NULL) {
2666                         dout("ceph_msg_new can't allocate %d bytes\n",
2667                              front_len);
2668                         goto out2;
2669                 }
2670         } else {
2671                 m->front.iov_base = NULL;
2672         }
2673         m->front.iov_len = front_len;
2674
2675         dout("ceph_msg_new %p front %d\n", m, front_len);
2676         return m;
2677
2678 out2:
2679         ceph_msg_put(m);
2680 out:
2681         if (!can_fail) {
2682                 pr_err("msg_new can't create type %d front %d\n", type,
2683                        front_len);
2684                 WARN_ON(1);
2685         } else {
2686                 dout("msg_new can't create type %d front %d\n", type,
2687                      front_len);
2688         }
2689         return NULL;
2690 }
2691 EXPORT_SYMBOL(ceph_msg_new);
2692
2693 /*
2694  * Allocate "middle" portion of a message, if it is needed and wasn't
2695  * allocated by alloc_msg.  This allows us to read a small fixed-size
2696  * per-type header in the front and then gracefully fail (i.e.,
2697  * propagate the error to the caller based on info in the front) when
2698  * the middle is too large.
2699  */
2700 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2701 {
2702         int type = le16_to_cpu(msg->hdr.type);
2703         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2704
2705         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2706              ceph_msg_type_name(type), middle_len);
2707         BUG_ON(!middle_len);
2708         BUG_ON(msg->middle);
2709
2710         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2711         if (!msg->middle)
2712                 return -ENOMEM;
2713         return 0;
2714 }
2715
2716 /*
2717  * Allocate a message for receiving an incoming message on a
2718  * connection, and save the result in con->in_msg.  Uses the
2719  * connection's private alloc_msg op if available.
2720  *
2721  * Returns 0 on success, or a negative error code.
2722  *
2723  * On success, if we set *skip = 1:
2724  *  - the next message should be skipped and ignored.
2725  *  - con->in_msg == NULL
2726  * or if we set *skip = 0:
2727  *  - con->in_msg is non-null.
2728  * On error (ENOMEM, EAGAIN, ...),
2729  *  - con->in_msg == NULL
2730  */
2731 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2732 {
2733         struct ceph_msg_header *hdr = &con->in_hdr;
2734         int type = le16_to_cpu(hdr->type);
2735         int front_len = le32_to_cpu(hdr->front_len);
2736         int middle_len = le32_to_cpu(hdr->middle_len);
2737         int ret = 0;
2738
2739         BUG_ON(con->in_msg != NULL);
2740
2741         if (con->ops->alloc_msg) {
2742                 struct ceph_msg *msg;
2743
2744                 mutex_unlock(&con->mutex);
2745                 msg = con->ops->alloc_msg(con, hdr, skip);
2746                 mutex_lock(&con->mutex);
2747                 if (con->state != CON_STATE_OPEN) {
2748                         ceph_msg_put(msg);
2749                         return -EAGAIN;
2750                 }
2751                 con->in_msg = msg;
2752                 if (con->in_msg) {
2753                         con->in_msg->con = con->ops->get(con);
2754                         BUG_ON(con->in_msg->con == NULL);
2755                 }
2756                 if (*skip) {
2757                         con->in_msg = NULL;
2758                         return 0;
2759                 }
2760                 if (!con->in_msg) {
2761                         con->error_msg =
2762                                 "error allocating memory for incoming message";
2763                         return -ENOMEM;
2764                 }
2765         }
2766         if (!con->in_msg) {
2767                 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2768                 if (!con->in_msg) {
2769                         pr_err("unable to allocate msg type %d len %d\n",
2770                                type, front_len);
2771                         return -ENOMEM;
2772                 }
2773                 con->in_msg->con = con->ops->get(con);
2774                 BUG_ON(con->in_msg->con == NULL);
2775                 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2776         }
2777         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2778
2779         if (middle_len && !con->in_msg->middle) {
2780                 ret = ceph_alloc_middle(con, con->in_msg);
2781                 if (ret < 0) {
2782                         ceph_msg_put(con->in_msg);
2783                         con->in_msg = NULL;
2784                 }
2785         }
2786
2787         return ret;
2788 }
2789
2790
2791 /*
2792  * Free a generically kmalloc'd message.
2793  */
2794 void ceph_msg_kfree(struct ceph_msg *m)
2795 {
2796         dout("msg_kfree %p\n", m);
2797         if (m->front_is_vmalloc)
2798                 vfree(m->front.iov_base);
2799         else
2800                 kfree(m->front.iov_base);
2801         kfree(m);
2802 }
2803
2804 /*
2805  * Drop a msg ref.  Destroy as needed.
2806  */
2807 void ceph_msg_last_put(struct kref *kref)
2808 {
2809         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2810
2811         dout("ceph_msg_put last one on %p\n", m);
2812         WARN_ON(!list_empty(&m->list_head));
2813
2814         /* drop middle, data, if any */
2815         if (m->middle) {
2816                 ceph_buffer_put(m->middle);
2817                 m->middle = NULL;
2818         }
2819         m->nr_pages = 0;
2820         m->pages = NULL;
2821
2822         if (m->pagelist) {
2823                 ceph_pagelist_release(m->pagelist);
2824                 kfree(m->pagelist);
2825                 m->pagelist = NULL;
2826         }
2827
2828         m->trail = NULL;
2829
2830         if (m->pool)
2831                 ceph_msgpool_put(m->pool, m);
2832         else
2833                 ceph_msg_kfree(m);
2834 }
2835 EXPORT_SYMBOL(ceph_msg_last_put);
2836
2837 void ceph_msg_dump(struct ceph_msg *msg)
2838 {
2839         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2840                  msg->front_max, msg->nr_pages);
2841         print_hex_dump(KERN_DEBUG, "header: ",
2842                        DUMP_PREFIX_OFFSET, 16, 1,
2843                        &msg->hdr, sizeof(msg->hdr), true);
2844         print_hex_dump(KERN_DEBUG, " front: ",
2845                        DUMP_PREFIX_OFFSET, 16, 1,
2846                        msg->front.iov_base, msg->front.iov_len, true);
2847         if (msg->middle)
2848                 print_hex_dump(KERN_DEBUG, "middle: ",
2849                                DUMP_PREFIX_OFFSET, 16, 1,
2850                                msg->middle->vec.iov_base,
2851                                msg->middle->vec.iov_len, true);
2852         print_hex_dump(KERN_DEBUG, "footer: ",
2853                        DUMP_PREFIX_OFFSET, 16, 1,
2854                        &msg->footer, sizeof(msg->footer), true);
2855 }
2856 EXPORT_SYMBOL(ceph_msg_dump);