]> Pileus Git - ~andy/linux/blob - mm/memory.c
6dc1882fbd725c61badb4fd072418c7330001ce1
[~andy/linux] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84
85 unsigned long num_physpages;
86 /*
87  * A number of key systems in x86 including ioremap() rely on the assumption
88  * that high_memory defines the upper bound on direct map memory, then end
89  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
90  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91  * and ZONE_HIGHMEM.
92  */
93 void * high_memory;
94
95 EXPORT_SYMBOL(num_physpages);
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 /*
122  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123  */
124 static int __init init_zero_pfn(void)
125 {
126         zero_pfn = page_to_pfn(ZERO_PAGE(0));
127         return 0;
128 }
129 core_initcall(init_zero_pfn);
130
131
132 #if defined(SPLIT_RSS_COUNTING)
133
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136         int i;
137
138         for (i = 0; i < NR_MM_COUNTERS; i++) {
139                 if (current->rss_stat.count[i]) {
140                         add_mm_counter(mm, i, current->rss_stat.count[i]);
141                         current->rss_stat.count[i] = 0;
142                 }
143         }
144         current->rss_stat.events = 0;
145 }
146
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149         struct task_struct *task = current;
150
151         if (likely(task->mm == mm))
152                 task->rss_stat.count[member] += val;
153         else
154                 add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH  (64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163         if (unlikely(task != current))
164                 return;
165         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166                 sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176
177 #endif /* SPLIT_RSS_COUNTING */
178
179 #ifdef HAVE_GENERIC_MMU_GATHER
180
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183         struct mmu_gather_batch *batch;
184
185         batch = tlb->active;
186         if (batch->next) {
187                 tlb->active = batch->next;
188                 return 1;
189         }
190
191         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192                 return 0;
193
194         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195         if (!batch)
196                 return 0;
197
198         tlb->batch_count++;
199         batch->next = NULL;
200         batch->nr   = 0;
201         batch->max  = MAX_GATHER_BATCH;
202
203         tlb->active->next = batch;
204         tlb->active = batch;
205
206         return 1;
207 }
208
209 /* tlb_gather_mmu
210  *      Called to initialize an (on-stack) mmu_gather structure for page-table
211  *      tear-down from @mm. The @fullmm argument is used when @mm is without
212  *      users and we're going to destroy the full address space (exit/execve).
213  */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
215 {
216         tlb->mm = mm;
217
218         tlb->fullmm     = fullmm;
219         tlb->need_flush_all = 0;
220         tlb->start      = -1UL;
221         tlb->end        = 0;
222         tlb->need_flush = 0;
223         tlb->fast_mode  = (num_possible_cpus() == 1);
224         tlb->local.next = NULL;
225         tlb->local.nr   = 0;
226         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227         tlb->active     = &tlb->local;
228         tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231         tlb->batch = NULL;
232 #endif
233 }
234
235 void tlb_flush_mmu(struct mmu_gather *tlb)
236 {
237         struct mmu_gather_batch *batch;
238
239         if (!tlb->need_flush)
240                 return;
241         tlb->need_flush = 0;
242         tlb_flush(tlb);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244         tlb_table_flush(tlb);
245 #endif
246
247         if (tlb_fast_mode(tlb))
248                 return;
249
250         for (batch = &tlb->local; batch; batch = batch->next) {
251                 free_pages_and_swap_cache(batch->pages, batch->nr);
252                 batch->nr = 0;
253         }
254         tlb->active = &tlb->local;
255 }
256
257 /* tlb_finish_mmu
258  *      Called at the end of the shootdown operation to free up any resources
259  *      that were required.
260  */
261 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
262 {
263         struct mmu_gather_batch *batch, *next;
264
265         tlb->start = start;
266         tlb->end   = end;
267         tlb_flush_mmu(tlb);
268
269         /* keep the page table cache within bounds */
270         check_pgt_cache();
271
272         for (batch = tlb->local.next; batch; batch = next) {
273                 next = batch->next;
274                 free_pages((unsigned long)batch, 0);
275         }
276         tlb->local.next = NULL;
277 }
278
279 /* __tlb_remove_page
280  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
281  *      handling the additional races in SMP caused by other CPUs caching valid
282  *      mappings in their TLBs. Returns the number of free page slots left.
283  *      When out of page slots we must call tlb_flush_mmu().
284  */
285 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
286 {
287         struct mmu_gather_batch *batch;
288
289         VM_BUG_ON(!tlb->need_flush);
290
291         if (tlb_fast_mode(tlb)) {
292                 free_page_and_swap_cache(page);
293                 return 1; /* avoid calling tlb_flush_mmu() */
294         }
295
296         batch = tlb->active;
297         batch->pages[batch->nr++] = page;
298         if (batch->nr == batch->max) {
299                 if (!tlb_next_batch(tlb))
300                         return 0;
301                 batch = tlb->active;
302         }
303         VM_BUG_ON(batch->nr > batch->max);
304
305         return batch->max - batch->nr;
306 }
307
308 #endif /* HAVE_GENERIC_MMU_GATHER */
309
310 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
311
312 /*
313  * See the comment near struct mmu_table_batch.
314  */
315
316 static void tlb_remove_table_smp_sync(void *arg)
317 {
318         /* Simply deliver the interrupt */
319 }
320
321 static void tlb_remove_table_one(void *table)
322 {
323         /*
324          * This isn't an RCU grace period and hence the page-tables cannot be
325          * assumed to be actually RCU-freed.
326          *
327          * It is however sufficient for software page-table walkers that rely on
328          * IRQ disabling. See the comment near struct mmu_table_batch.
329          */
330         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
331         __tlb_remove_table(table);
332 }
333
334 static void tlb_remove_table_rcu(struct rcu_head *head)
335 {
336         struct mmu_table_batch *batch;
337         int i;
338
339         batch = container_of(head, struct mmu_table_batch, rcu);
340
341         for (i = 0; i < batch->nr; i++)
342                 __tlb_remove_table(batch->tables[i]);
343
344         free_page((unsigned long)batch);
345 }
346
347 void tlb_table_flush(struct mmu_gather *tlb)
348 {
349         struct mmu_table_batch **batch = &tlb->batch;
350
351         if (*batch) {
352                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
353                 *batch = NULL;
354         }
355 }
356
357 void tlb_remove_table(struct mmu_gather *tlb, void *table)
358 {
359         struct mmu_table_batch **batch = &tlb->batch;
360
361         tlb->need_flush = 1;
362
363         /*
364          * When there's less then two users of this mm there cannot be a
365          * concurrent page-table walk.
366          */
367         if (atomic_read(&tlb->mm->mm_users) < 2) {
368                 __tlb_remove_table(table);
369                 return;
370         }
371
372         if (*batch == NULL) {
373                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374                 if (*batch == NULL) {
375                         tlb_remove_table_one(table);
376                         return;
377                 }
378                 (*batch)->nr = 0;
379         }
380         (*batch)->tables[(*batch)->nr++] = table;
381         if ((*batch)->nr == MAX_TABLE_BATCH)
382                 tlb_table_flush(tlb);
383 }
384
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386
387 /*
388  * If a p?d_bad entry is found while walking page tables, report
389  * the error, before resetting entry to p?d_none.  Usually (but
390  * very seldom) called out from the p?d_none_or_clear_bad macros.
391  */
392
393 void pgd_clear_bad(pgd_t *pgd)
394 {
395         pgd_ERROR(*pgd);
396         pgd_clear(pgd);
397 }
398
399 void pud_clear_bad(pud_t *pud)
400 {
401         pud_ERROR(*pud);
402         pud_clear(pud);
403 }
404
405 void pmd_clear_bad(pmd_t *pmd)
406 {
407         pmd_ERROR(*pmd);
408         pmd_clear(pmd);
409 }
410
411 /*
412  * Note: this doesn't free the actual pages themselves. That
413  * has been handled earlier when unmapping all the memory regions.
414  */
415 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
416                            unsigned long addr)
417 {
418         pgtable_t token = pmd_pgtable(*pmd);
419         pmd_clear(pmd);
420         pte_free_tlb(tlb, token, addr);
421         tlb->mm->nr_ptes--;
422 }
423
424 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
425                                 unsigned long addr, unsigned long end,
426                                 unsigned long floor, unsigned long ceiling)
427 {
428         pmd_t *pmd;
429         unsigned long next;
430         unsigned long start;
431
432         start = addr;
433         pmd = pmd_offset(pud, addr);
434         do {
435                 next = pmd_addr_end(addr, end);
436                 if (pmd_none_or_clear_bad(pmd))
437                         continue;
438                 free_pte_range(tlb, pmd, addr);
439         } while (pmd++, addr = next, addr != end);
440
441         start &= PUD_MASK;
442         if (start < floor)
443                 return;
444         if (ceiling) {
445                 ceiling &= PUD_MASK;
446                 if (!ceiling)
447                         return;
448         }
449         if (end - 1 > ceiling - 1)
450                 return;
451
452         pmd = pmd_offset(pud, start);
453         pud_clear(pud);
454         pmd_free_tlb(tlb, pmd, start);
455 }
456
457 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
458                                 unsigned long addr, unsigned long end,
459                                 unsigned long floor, unsigned long ceiling)
460 {
461         pud_t *pud;
462         unsigned long next;
463         unsigned long start;
464
465         start = addr;
466         pud = pud_offset(pgd, addr);
467         do {
468                 next = pud_addr_end(addr, end);
469                 if (pud_none_or_clear_bad(pud))
470                         continue;
471                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
472         } while (pud++, addr = next, addr != end);
473
474         start &= PGDIR_MASK;
475         if (start < floor)
476                 return;
477         if (ceiling) {
478                 ceiling &= PGDIR_MASK;
479                 if (!ceiling)
480                         return;
481         }
482         if (end - 1 > ceiling - 1)
483                 return;
484
485         pud = pud_offset(pgd, start);
486         pgd_clear(pgd);
487         pud_free_tlb(tlb, pud, start);
488 }
489
490 /*
491  * This function frees user-level page tables of a process.
492  *
493  * Must be called with pagetable lock held.
494  */
495 void free_pgd_range(struct mmu_gather *tlb,
496                         unsigned long addr, unsigned long end,
497                         unsigned long floor, unsigned long ceiling)
498 {
499         pgd_t *pgd;
500         unsigned long next;
501
502         /*
503          * The next few lines have given us lots of grief...
504          *
505          * Why are we testing PMD* at this top level?  Because often
506          * there will be no work to do at all, and we'd prefer not to
507          * go all the way down to the bottom just to discover that.
508          *
509          * Why all these "- 1"s?  Because 0 represents both the bottom
510          * of the address space and the top of it (using -1 for the
511          * top wouldn't help much: the masks would do the wrong thing).
512          * The rule is that addr 0 and floor 0 refer to the bottom of
513          * the address space, but end 0 and ceiling 0 refer to the top
514          * Comparisons need to use "end - 1" and "ceiling - 1" (though
515          * that end 0 case should be mythical).
516          *
517          * Wherever addr is brought up or ceiling brought down, we must
518          * be careful to reject "the opposite 0" before it confuses the
519          * subsequent tests.  But what about where end is brought down
520          * by PMD_SIZE below? no, end can't go down to 0 there.
521          *
522          * Whereas we round start (addr) and ceiling down, by different
523          * masks at different levels, in order to test whether a table
524          * now has no other vmas using it, so can be freed, we don't
525          * bother to round floor or end up - the tests don't need that.
526          */
527
528         addr &= PMD_MASK;
529         if (addr < floor) {
530                 addr += PMD_SIZE;
531                 if (!addr)
532                         return;
533         }
534         if (ceiling) {
535                 ceiling &= PMD_MASK;
536                 if (!ceiling)
537                         return;
538         }
539         if (end - 1 > ceiling - 1)
540                 end -= PMD_SIZE;
541         if (addr > end - 1)
542                 return;
543
544         pgd = pgd_offset(tlb->mm, addr);
545         do {
546                 next = pgd_addr_end(addr, end);
547                 if (pgd_none_or_clear_bad(pgd))
548                         continue;
549                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
550         } while (pgd++, addr = next, addr != end);
551 }
552
553 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
554                 unsigned long floor, unsigned long ceiling)
555 {
556         while (vma) {
557                 struct vm_area_struct *next = vma->vm_next;
558                 unsigned long addr = vma->vm_start;
559
560                 /*
561                  * Hide vma from rmap and truncate_pagecache before freeing
562                  * pgtables
563                  */
564                 unlink_anon_vmas(vma);
565                 unlink_file_vma(vma);
566
567                 if (is_vm_hugetlb_page(vma)) {
568                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
569                                 floor, next? next->vm_start: ceiling);
570                 } else {
571                         /*
572                          * Optimization: gather nearby vmas into one call down
573                          */
574                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
575                                && !is_vm_hugetlb_page(next)) {
576                                 vma = next;
577                                 next = vma->vm_next;
578                                 unlink_anon_vmas(vma);
579                                 unlink_file_vma(vma);
580                         }
581                         free_pgd_range(tlb, addr, vma->vm_end,
582                                 floor, next? next->vm_start: ceiling);
583                 }
584                 vma = next;
585         }
586 }
587
588 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
589                 pmd_t *pmd, unsigned long address)
590 {
591         pgtable_t new = pte_alloc_one(mm, address);
592         int wait_split_huge_page;
593         if (!new)
594                 return -ENOMEM;
595
596         /*
597          * Ensure all pte setup (eg. pte page lock and page clearing) are
598          * visible before the pte is made visible to other CPUs by being
599          * put into page tables.
600          *
601          * The other side of the story is the pointer chasing in the page
602          * table walking code (when walking the page table without locking;
603          * ie. most of the time). Fortunately, these data accesses consist
604          * of a chain of data-dependent loads, meaning most CPUs (alpha
605          * being the notable exception) will already guarantee loads are
606          * seen in-order. See the alpha page table accessors for the
607          * smp_read_barrier_depends() barriers in page table walking code.
608          */
609         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
610
611         spin_lock(&mm->page_table_lock);
612         wait_split_huge_page = 0;
613         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
614                 mm->nr_ptes++;
615                 pmd_populate(mm, pmd, new);
616                 new = NULL;
617         } else if (unlikely(pmd_trans_splitting(*pmd)))
618                 wait_split_huge_page = 1;
619         spin_unlock(&mm->page_table_lock);
620         if (new)
621                 pte_free(mm, new);
622         if (wait_split_huge_page)
623                 wait_split_huge_page(vma->anon_vma, pmd);
624         return 0;
625 }
626
627 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
628 {
629         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
630         if (!new)
631                 return -ENOMEM;
632
633         smp_wmb(); /* See comment in __pte_alloc */
634
635         spin_lock(&init_mm.page_table_lock);
636         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
637                 pmd_populate_kernel(&init_mm, pmd, new);
638                 new = NULL;
639         } else
640                 VM_BUG_ON(pmd_trans_splitting(*pmd));
641         spin_unlock(&init_mm.page_table_lock);
642         if (new)
643                 pte_free_kernel(&init_mm, new);
644         return 0;
645 }
646
647 static inline void init_rss_vec(int *rss)
648 {
649         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
650 }
651
652 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
653 {
654         int i;
655
656         if (current->mm == mm)
657                 sync_mm_rss(mm);
658         for (i = 0; i < NR_MM_COUNTERS; i++)
659                 if (rss[i])
660                         add_mm_counter(mm, i, rss[i]);
661 }
662
663 /*
664  * This function is called to print an error when a bad pte
665  * is found. For example, we might have a PFN-mapped pte in
666  * a region that doesn't allow it.
667  *
668  * The calling function must still handle the error.
669  */
670 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
671                           pte_t pte, struct page *page)
672 {
673         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
674         pud_t *pud = pud_offset(pgd, addr);
675         pmd_t *pmd = pmd_offset(pud, addr);
676         struct address_space *mapping;
677         pgoff_t index;
678         static unsigned long resume;
679         static unsigned long nr_shown;
680         static unsigned long nr_unshown;
681
682         /*
683          * Allow a burst of 60 reports, then keep quiet for that minute;
684          * or allow a steady drip of one report per second.
685          */
686         if (nr_shown == 60) {
687                 if (time_before(jiffies, resume)) {
688                         nr_unshown++;
689                         return;
690                 }
691                 if (nr_unshown) {
692                         printk(KERN_ALERT
693                                 "BUG: Bad page map: %lu messages suppressed\n",
694                                 nr_unshown);
695                         nr_unshown = 0;
696                 }
697                 nr_shown = 0;
698         }
699         if (nr_shown++ == 0)
700                 resume = jiffies + 60 * HZ;
701
702         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
703         index = linear_page_index(vma, addr);
704
705         printk(KERN_ALERT
706                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
707                 current->comm,
708                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
709         if (page)
710                 dump_page(page);
711         printk(KERN_ALERT
712                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
713                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
714         /*
715          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
716          */
717         if (vma->vm_ops)
718                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
719                        vma->vm_ops->fault);
720         if (vma->vm_file && vma->vm_file->f_op)
721                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
722                        vma->vm_file->f_op->mmap);
723         dump_stack();
724         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
725 }
726
727 static inline bool is_cow_mapping(vm_flags_t flags)
728 {
729         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
730 }
731
732 /*
733  * vm_normal_page -- This function gets the "struct page" associated with a pte.
734  *
735  * "Special" mappings do not wish to be associated with a "struct page" (either
736  * it doesn't exist, or it exists but they don't want to touch it). In this
737  * case, NULL is returned here. "Normal" mappings do have a struct page.
738  *
739  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
740  * pte bit, in which case this function is trivial. Secondly, an architecture
741  * may not have a spare pte bit, which requires a more complicated scheme,
742  * described below.
743  *
744  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
745  * special mapping (even if there are underlying and valid "struct pages").
746  * COWed pages of a VM_PFNMAP are always normal.
747  *
748  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
749  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
750  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
751  * mapping will always honor the rule
752  *
753  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
754  *
755  * And for normal mappings this is false.
756  *
757  * This restricts such mappings to be a linear translation from virtual address
758  * to pfn. To get around this restriction, we allow arbitrary mappings so long
759  * as the vma is not a COW mapping; in that case, we know that all ptes are
760  * special (because none can have been COWed).
761  *
762  *
763  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
764  *
765  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
766  * page" backing, however the difference is that _all_ pages with a struct
767  * page (that is, those where pfn_valid is true) are refcounted and considered
768  * normal pages by the VM. The disadvantage is that pages are refcounted
769  * (which can be slower and simply not an option for some PFNMAP users). The
770  * advantage is that we don't have to follow the strict linearity rule of
771  * PFNMAP mappings in order to support COWable mappings.
772  *
773  */
774 #ifdef __HAVE_ARCH_PTE_SPECIAL
775 # define HAVE_PTE_SPECIAL 1
776 #else
777 # define HAVE_PTE_SPECIAL 0
778 #endif
779 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
780                                 pte_t pte)
781 {
782         unsigned long pfn = pte_pfn(pte);
783
784         if (HAVE_PTE_SPECIAL) {
785                 if (likely(!pte_special(pte)))
786                         goto check_pfn;
787                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
788                         return NULL;
789                 if (!is_zero_pfn(pfn))
790                         print_bad_pte(vma, addr, pte, NULL);
791                 return NULL;
792         }
793
794         /* !HAVE_PTE_SPECIAL case follows: */
795
796         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
797                 if (vma->vm_flags & VM_MIXEDMAP) {
798                         if (!pfn_valid(pfn))
799                                 return NULL;
800                         goto out;
801                 } else {
802                         unsigned long off;
803                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
804                         if (pfn == vma->vm_pgoff + off)
805                                 return NULL;
806                         if (!is_cow_mapping(vma->vm_flags))
807                                 return NULL;
808                 }
809         }
810
811         if (is_zero_pfn(pfn))
812                 return NULL;
813 check_pfn:
814         if (unlikely(pfn > highest_memmap_pfn)) {
815                 print_bad_pte(vma, addr, pte, NULL);
816                 return NULL;
817         }
818
819         /*
820          * NOTE! We still have PageReserved() pages in the page tables.
821          * eg. VDSO mappings can cause them to exist.
822          */
823 out:
824         return pfn_to_page(pfn);
825 }
826
827 /*
828  * copy one vm_area from one task to the other. Assumes the page tables
829  * already present in the new task to be cleared in the whole range
830  * covered by this vma.
831  */
832
833 static inline unsigned long
834 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
835                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
836                 unsigned long addr, int *rss)
837 {
838         unsigned long vm_flags = vma->vm_flags;
839         pte_t pte = *src_pte;
840         struct page *page;
841
842         /* pte contains position in swap or file, so copy. */
843         if (unlikely(!pte_present(pte))) {
844                 if (!pte_file(pte)) {
845                         swp_entry_t entry = pte_to_swp_entry(pte);
846
847                         if (swap_duplicate(entry) < 0)
848                                 return entry.val;
849
850                         /* make sure dst_mm is on swapoff's mmlist. */
851                         if (unlikely(list_empty(&dst_mm->mmlist))) {
852                                 spin_lock(&mmlist_lock);
853                                 if (list_empty(&dst_mm->mmlist))
854                                         list_add(&dst_mm->mmlist,
855                                                  &src_mm->mmlist);
856                                 spin_unlock(&mmlist_lock);
857                         }
858                         if (likely(!non_swap_entry(entry)))
859                                 rss[MM_SWAPENTS]++;
860                         else if (is_migration_entry(entry)) {
861                                 page = migration_entry_to_page(entry);
862
863                                 if (PageAnon(page))
864                                         rss[MM_ANONPAGES]++;
865                                 else
866                                         rss[MM_FILEPAGES]++;
867
868                                 if (is_write_migration_entry(entry) &&
869                                     is_cow_mapping(vm_flags)) {
870                                         /*
871                                          * COW mappings require pages in both
872                                          * parent and child to be set to read.
873                                          */
874                                         make_migration_entry_read(&entry);
875                                         pte = swp_entry_to_pte(entry);
876                                         set_pte_at(src_mm, addr, src_pte, pte);
877                                 }
878                         }
879                 }
880                 goto out_set_pte;
881         }
882
883         /*
884          * If it's a COW mapping, write protect it both
885          * in the parent and the child
886          */
887         if (is_cow_mapping(vm_flags)) {
888                 ptep_set_wrprotect(src_mm, addr, src_pte);
889                 pte = pte_wrprotect(pte);
890         }
891
892         /*
893          * If it's a shared mapping, mark it clean in
894          * the child
895          */
896         if (vm_flags & VM_SHARED)
897                 pte = pte_mkclean(pte);
898         pte = pte_mkold(pte);
899
900         page = vm_normal_page(vma, addr, pte);
901         if (page) {
902                 get_page(page);
903                 page_dup_rmap(page);
904                 if (PageAnon(page))
905                         rss[MM_ANONPAGES]++;
906                 else
907                         rss[MM_FILEPAGES]++;
908         }
909
910 out_set_pte:
911         set_pte_at(dst_mm, addr, dst_pte, pte);
912         return 0;
913 }
914
915 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
917                    unsigned long addr, unsigned long end)
918 {
919         pte_t *orig_src_pte, *orig_dst_pte;
920         pte_t *src_pte, *dst_pte;
921         spinlock_t *src_ptl, *dst_ptl;
922         int progress = 0;
923         int rss[NR_MM_COUNTERS];
924         swp_entry_t entry = (swp_entry_t){0};
925
926 again:
927         init_rss_vec(rss);
928
929         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
930         if (!dst_pte)
931                 return -ENOMEM;
932         src_pte = pte_offset_map(src_pmd, addr);
933         src_ptl = pte_lockptr(src_mm, src_pmd);
934         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
935         orig_src_pte = src_pte;
936         orig_dst_pte = dst_pte;
937         arch_enter_lazy_mmu_mode();
938
939         do {
940                 /*
941                  * We are holding two locks at this point - either of them
942                  * could generate latencies in another task on another CPU.
943                  */
944                 if (progress >= 32) {
945                         progress = 0;
946                         if (need_resched() ||
947                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
948                                 break;
949                 }
950                 if (pte_none(*src_pte)) {
951                         progress++;
952                         continue;
953                 }
954                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
955                                                         vma, addr, rss);
956                 if (entry.val)
957                         break;
958                 progress += 8;
959         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
960
961         arch_leave_lazy_mmu_mode();
962         spin_unlock(src_ptl);
963         pte_unmap(orig_src_pte);
964         add_mm_rss_vec(dst_mm, rss);
965         pte_unmap_unlock(orig_dst_pte, dst_ptl);
966         cond_resched();
967
968         if (entry.val) {
969                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
970                         return -ENOMEM;
971                 progress = 0;
972         }
973         if (addr != end)
974                 goto again;
975         return 0;
976 }
977
978 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
980                 unsigned long addr, unsigned long end)
981 {
982         pmd_t *src_pmd, *dst_pmd;
983         unsigned long next;
984
985         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
986         if (!dst_pmd)
987                 return -ENOMEM;
988         src_pmd = pmd_offset(src_pud, addr);
989         do {
990                 next = pmd_addr_end(addr, end);
991                 if (pmd_trans_huge(*src_pmd)) {
992                         int err;
993                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
994                         err = copy_huge_pmd(dst_mm, src_mm,
995                                             dst_pmd, src_pmd, addr, vma);
996                         if (err == -ENOMEM)
997                                 return -ENOMEM;
998                         if (!err)
999                                 continue;
1000                         /* fall through */
1001                 }
1002                 if (pmd_none_or_clear_bad(src_pmd))
1003                         continue;
1004                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1005                                                 vma, addr, next))
1006                         return -ENOMEM;
1007         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1008         return 0;
1009 }
1010
1011 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1012                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1013                 unsigned long addr, unsigned long end)
1014 {
1015         pud_t *src_pud, *dst_pud;
1016         unsigned long next;
1017
1018         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1019         if (!dst_pud)
1020                 return -ENOMEM;
1021         src_pud = pud_offset(src_pgd, addr);
1022         do {
1023                 next = pud_addr_end(addr, end);
1024                 if (pud_none_or_clear_bad(src_pud))
1025                         continue;
1026                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1027                                                 vma, addr, next))
1028                         return -ENOMEM;
1029         } while (dst_pud++, src_pud++, addr = next, addr != end);
1030         return 0;
1031 }
1032
1033 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1034                 struct vm_area_struct *vma)
1035 {
1036         pgd_t *src_pgd, *dst_pgd;
1037         unsigned long next;
1038         unsigned long addr = vma->vm_start;
1039         unsigned long end = vma->vm_end;
1040         unsigned long mmun_start;       /* For mmu_notifiers */
1041         unsigned long mmun_end;         /* For mmu_notifiers */
1042         bool is_cow;
1043         int ret;
1044
1045         /*
1046          * Don't copy ptes where a page fault will fill them correctly.
1047          * Fork becomes much lighter when there are big shared or private
1048          * readonly mappings. The tradeoff is that copy_page_range is more
1049          * efficient than faulting.
1050          */
1051         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1052                                VM_PFNMAP | VM_MIXEDMAP))) {
1053                 if (!vma->anon_vma)
1054                         return 0;
1055         }
1056
1057         if (is_vm_hugetlb_page(vma))
1058                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1059
1060         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1061                 /*
1062                  * We do not free on error cases below as remove_vma
1063                  * gets called on error from higher level routine
1064                  */
1065                 ret = track_pfn_copy(vma);
1066                 if (ret)
1067                         return ret;
1068         }
1069
1070         /*
1071          * We need to invalidate the secondary MMU mappings only when
1072          * there could be a permission downgrade on the ptes of the
1073          * parent mm. And a permission downgrade will only happen if
1074          * is_cow_mapping() returns true.
1075          */
1076         is_cow = is_cow_mapping(vma->vm_flags);
1077         mmun_start = addr;
1078         mmun_end   = end;
1079         if (is_cow)
1080                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1081                                                     mmun_end);
1082
1083         ret = 0;
1084         dst_pgd = pgd_offset(dst_mm, addr);
1085         src_pgd = pgd_offset(src_mm, addr);
1086         do {
1087                 next = pgd_addr_end(addr, end);
1088                 if (pgd_none_or_clear_bad(src_pgd))
1089                         continue;
1090                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1091                                             vma, addr, next))) {
1092                         ret = -ENOMEM;
1093                         break;
1094                 }
1095         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1096
1097         if (is_cow)
1098                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1099         return ret;
1100 }
1101
1102 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1103                                 struct vm_area_struct *vma, pmd_t *pmd,
1104                                 unsigned long addr, unsigned long end,
1105                                 struct zap_details *details)
1106 {
1107         struct mm_struct *mm = tlb->mm;
1108         int force_flush = 0;
1109         int rss[NR_MM_COUNTERS];
1110         spinlock_t *ptl;
1111         pte_t *start_pte;
1112         pte_t *pte;
1113
1114 again:
1115         init_rss_vec(rss);
1116         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1117         pte = start_pte;
1118         arch_enter_lazy_mmu_mode();
1119         do {
1120                 pte_t ptent = *pte;
1121                 if (pte_none(ptent)) {
1122                         continue;
1123                 }
1124
1125                 if (pte_present(ptent)) {
1126                         struct page *page;
1127
1128                         page = vm_normal_page(vma, addr, ptent);
1129                         if (unlikely(details) && page) {
1130                                 /*
1131                                  * unmap_shared_mapping_pages() wants to
1132                                  * invalidate cache without truncating:
1133                                  * unmap shared but keep private pages.
1134                                  */
1135                                 if (details->check_mapping &&
1136                                     details->check_mapping != page->mapping)
1137                                         continue;
1138                                 /*
1139                                  * Each page->index must be checked when
1140                                  * invalidating or truncating nonlinear.
1141                                  */
1142                                 if (details->nonlinear_vma &&
1143                                     (page->index < details->first_index ||
1144                                      page->index > details->last_index))
1145                                         continue;
1146                         }
1147                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1148                                                         tlb->fullmm);
1149                         tlb_remove_tlb_entry(tlb, pte, addr);
1150                         if (unlikely(!page))
1151                                 continue;
1152                         if (unlikely(details) && details->nonlinear_vma
1153                             && linear_page_index(details->nonlinear_vma,
1154                                                 addr) != page->index)
1155                                 set_pte_at(mm, addr, pte,
1156                                            pgoff_to_pte(page->index));
1157                         if (PageAnon(page))
1158                                 rss[MM_ANONPAGES]--;
1159                         else {
1160                                 if (pte_dirty(ptent))
1161                                         set_page_dirty(page);
1162                                 if (pte_young(ptent) &&
1163                                     likely(!VM_SequentialReadHint(vma)))
1164                                         mark_page_accessed(page);
1165                                 rss[MM_FILEPAGES]--;
1166                         }
1167                         page_remove_rmap(page);
1168                         if (unlikely(page_mapcount(page) < 0))
1169                                 print_bad_pte(vma, addr, ptent, page);
1170                         force_flush = !__tlb_remove_page(tlb, page);
1171                         if (force_flush)
1172                                 break;
1173                         continue;
1174                 }
1175                 /*
1176                  * If details->check_mapping, we leave swap entries;
1177                  * if details->nonlinear_vma, we leave file entries.
1178                  */
1179                 if (unlikely(details))
1180                         continue;
1181                 if (pte_file(ptent)) {
1182                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1183                                 print_bad_pte(vma, addr, ptent, NULL);
1184                 } else {
1185                         swp_entry_t entry = pte_to_swp_entry(ptent);
1186
1187                         if (!non_swap_entry(entry))
1188                                 rss[MM_SWAPENTS]--;
1189                         else if (is_migration_entry(entry)) {
1190                                 struct page *page;
1191
1192                                 page = migration_entry_to_page(entry);
1193
1194                                 if (PageAnon(page))
1195                                         rss[MM_ANONPAGES]--;
1196                                 else
1197                                         rss[MM_FILEPAGES]--;
1198                         }
1199                         if (unlikely(!free_swap_and_cache(entry)))
1200                                 print_bad_pte(vma, addr, ptent, NULL);
1201                 }
1202                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1203         } while (pte++, addr += PAGE_SIZE, addr != end);
1204
1205         add_mm_rss_vec(mm, rss);
1206         arch_leave_lazy_mmu_mode();
1207         pte_unmap_unlock(start_pte, ptl);
1208
1209         /*
1210          * mmu_gather ran out of room to batch pages, we break out of
1211          * the PTE lock to avoid doing the potential expensive TLB invalidate
1212          * and page-free while holding it.
1213          */
1214         if (force_flush) {
1215                 force_flush = 0;
1216
1217 #ifdef HAVE_GENERIC_MMU_GATHER
1218                 tlb->start = addr;
1219                 tlb->end = end;
1220 #endif
1221                 tlb_flush_mmu(tlb);
1222                 if (addr != end)
1223                         goto again;
1224         }
1225
1226         return addr;
1227 }
1228
1229 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1230                                 struct vm_area_struct *vma, pud_t *pud,
1231                                 unsigned long addr, unsigned long end,
1232                                 struct zap_details *details)
1233 {
1234         pmd_t *pmd;
1235         unsigned long next;
1236
1237         pmd = pmd_offset(pud, addr);
1238         do {
1239                 next = pmd_addr_end(addr, end);
1240                 if (pmd_trans_huge(*pmd)) {
1241                         if (next - addr != HPAGE_PMD_SIZE) {
1242 #ifdef CONFIG_DEBUG_VM
1243                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1244                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1245                                                 __func__, addr, end,
1246                                                 vma->vm_start,
1247                                                 vma->vm_end);
1248                                         BUG();
1249                                 }
1250 #endif
1251                                 split_huge_page_pmd(vma, addr, pmd);
1252                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1253                                 goto next;
1254                         /* fall through */
1255                 }
1256                 /*
1257                  * Here there can be other concurrent MADV_DONTNEED or
1258                  * trans huge page faults running, and if the pmd is
1259                  * none or trans huge it can change under us. This is
1260                  * because MADV_DONTNEED holds the mmap_sem in read
1261                  * mode.
1262                  */
1263                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1264                         goto next;
1265                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1266 next:
1267                 cond_resched();
1268         } while (pmd++, addr = next, addr != end);
1269
1270         return addr;
1271 }
1272
1273 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1274                                 struct vm_area_struct *vma, pgd_t *pgd,
1275                                 unsigned long addr, unsigned long end,
1276                                 struct zap_details *details)
1277 {
1278         pud_t *pud;
1279         unsigned long next;
1280
1281         pud = pud_offset(pgd, addr);
1282         do {
1283                 next = pud_addr_end(addr, end);
1284                 if (pud_none_or_clear_bad(pud))
1285                         continue;
1286                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1287         } while (pud++, addr = next, addr != end);
1288
1289         return addr;
1290 }
1291
1292 static void unmap_page_range(struct mmu_gather *tlb,
1293                              struct vm_area_struct *vma,
1294                              unsigned long addr, unsigned long end,
1295                              struct zap_details *details)
1296 {
1297         pgd_t *pgd;
1298         unsigned long next;
1299
1300         if (details && !details->check_mapping && !details->nonlinear_vma)
1301                 details = NULL;
1302
1303         BUG_ON(addr >= end);
1304         mem_cgroup_uncharge_start();
1305         tlb_start_vma(tlb, vma);
1306         pgd = pgd_offset(vma->vm_mm, addr);
1307         do {
1308                 next = pgd_addr_end(addr, end);
1309                 if (pgd_none_or_clear_bad(pgd))
1310                         continue;
1311                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1312         } while (pgd++, addr = next, addr != end);
1313         tlb_end_vma(tlb, vma);
1314         mem_cgroup_uncharge_end();
1315 }
1316
1317
1318 static void unmap_single_vma(struct mmu_gather *tlb,
1319                 struct vm_area_struct *vma, unsigned long start_addr,
1320                 unsigned long end_addr,
1321                 struct zap_details *details)
1322 {
1323         unsigned long start = max(vma->vm_start, start_addr);
1324         unsigned long end;
1325
1326         if (start >= vma->vm_end)
1327                 return;
1328         end = min(vma->vm_end, end_addr);
1329         if (end <= vma->vm_start)
1330                 return;
1331
1332         if (vma->vm_file)
1333                 uprobe_munmap(vma, start, end);
1334
1335         if (unlikely(vma->vm_flags & VM_PFNMAP))
1336                 untrack_pfn(vma, 0, 0);
1337
1338         if (start != end) {
1339                 if (unlikely(is_vm_hugetlb_page(vma))) {
1340                         /*
1341                          * It is undesirable to test vma->vm_file as it
1342                          * should be non-null for valid hugetlb area.
1343                          * However, vm_file will be NULL in the error
1344                          * cleanup path of do_mmap_pgoff. When
1345                          * hugetlbfs ->mmap method fails,
1346                          * do_mmap_pgoff() nullifies vma->vm_file
1347                          * before calling this function to clean up.
1348                          * Since no pte has actually been setup, it is
1349                          * safe to do nothing in this case.
1350                          */
1351                         if (vma->vm_file) {
1352                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1353                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1354                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1355                         }
1356                 } else
1357                         unmap_page_range(tlb, vma, start, end, details);
1358         }
1359 }
1360
1361 /**
1362  * unmap_vmas - unmap a range of memory covered by a list of vma's
1363  * @tlb: address of the caller's struct mmu_gather
1364  * @vma: the starting vma
1365  * @start_addr: virtual address at which to start unmapping
1366  * @end_addr: virtual address at which to end unmapping
1367  *
1368  * Unmap all pages in the vma list.
1369  *
1370  * Only addresses between `start' and `end' will be unmapped.
1371  *
1372  * The VMA list must be sorted in ascending virtual address order.
1373  *
1374  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1375  * range after unmap_vmas() returns.  So the only responsibility here is to
1376  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1377  * drops the lock and schedules.
1378  */
1379 void unmap_vmas(struct mmu_gather *tlb,
1380                 struct vm_area_struct *vma, unsigned long start_addr,
1381                 unsigned long end_addr)
1382 {
1383         struct mm_struct *mm = vma->vm_mm;
1384
1385         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1386         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1387                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1388         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1389 }
1390
1391 /**
1392  * zap_page_range - remove user pages in a given range
1393  * @vma: vm_area_struct holding the applicable pages
1394  * @start: starting address of pages to zap
1395  * @size: number of bytes to zap
1396  * @details: details of nonlinear truncation or shared cache invalidation
1397  *
1398  * Caller must protect the VMA list
1399  */
1400 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1401                 unsigned long size, struct zap_details *details)
1402 {
1403         struct mm_struct *mm = vma->vm_mm;
1404         struct mmu_gather tlb;
1405         unsigned long end = start + size;
1406
1407         lru_add_drain();
1408         tlb_gather_mmu(&tlb, mm, 0);
1409         update_hiwater_rss(mm);
1410         mmu_notifier_invalidate_range_start(mm, start, end);
1411         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1412                 unmap_single_vma(&tlb, vma, start, end, details);
1413         mmu_notifier_invalidate_range_end(mm, start, end);
1414         tlb_finish_mmu(&tlb, start, end);
1415 }
1416
1417 /**
1418  * zap_page_range_single - remove user pages in a given range
1419  * @vma: vm_area_struct holding the applicable pages
1420  * @address: starting address of pages to zap
1421  * @size: number of bytes to zap
1422  * @details: details of nonlinear truncation or shared cache invalidation
1423  *
1424  * The range must fit into one VMA.
1425  */
1426 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1427                 unsigned long size, struct zap_details *details)
1428 {
1429         struct mm_struct *mm = vma->vm_mm;
1430         struct mmu_gather tlb;
1431         unsigned long end = address + size;
1432
1433         lru_add_drain();
1434         tlb_gather_mmu(&tlb, mm, 0);
1435         update_hiwater_rss(mm);
1436         mmu_notifier_invalidate_range_start(mm, address, end);
1437         unmap_single_vma(&tlb, vma, address, end, details);
1438         mmu_notifier_invalidate_range_end(mm, address, end);
1439         tlb_finish_mmu(&tlb, address, end);
1440 }
1441
1442 /**
1443  * zap_vma_ptes - remove ptes mapping the vma
1444  * @vma: vm_area_struct holding ptes to be zapped
1445  * @address: starting address of pages to zap
1446  * @size: number of bytes to zap
1447  *
1448  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1449  *
1450  * The entire address range must be fully contained within the vma.
1451  *
1452  * Returns 0 if successful.
1453  */
1454 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1455                 unsigned long size)
1456 {
1457         if (address < vma->vm_start || address + size > vma->vm_end ||
1458                         !(vma->vm_flags & VM_PFNMAP))
1459                 return -1;
1460         zap_page_range_single(vma, address, size, NULL);
1461         return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1464
1465 /**
1466  * follow_page_mask - look up a page descriptor from a user-virtual address
1467  * @vma: vm_area_struct mapping @address
1468  * @address: virtual address to look up
1469  * @flags: flags modifying lookup behaviour
1470  * @page_mask: on output, *page_mask is set according to the size of the page
1471  *
1472  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1473  *
1474  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1475  * an error pointer if there is a mapping to something not represented
1476  * by a page descriptor (see also vm_normal_page()).
1477  */
1478 struct page *follow_page_mask(struct vm_area_struct *vma,
1479                               unsigned long address, unsigned int flags,
1480                               unsigned int *page_mask)
1481 {
1482         pgd_t *pgd;
1483         pud_t *pud;
1484         pmd_t *pmd;
1485         pte_t *ptep, pte;
1486         spinlock_t *ptl;
1487         struct page *page;
1488         struct mm_struct *mm = vma->vm_mm;
1489
1490         *page_mask = 0;
1491
1492         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1493         if (!IS_ERR(page)) {
1494                 BUG_ON(flags & FOLL_GET);
1495                 goto out;
1496         }
1497
1498         page = NULL;
1499         pgd = pgd_offset(mm, address);
1500         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1501                 goto no_page_table;
1502
1503         pud = pud_offset(pgd, address);
1504         if (pud_none(*pud))
1505                 goto no_page_table;
1506         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1507                 BUG_ON(flags & FOLL_GET);
1508                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1509                 goto out;
1510         }
1511         if (unlikely(pud_bad(*pud)))
1512                 goto no_page_table;
1513
1514         pmd = pmd_offset(pud, address);
1515         if (pmd_none(*pmd))
1516                 goto no_page_table;
1517         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1518                 BUG_ON(flags & FOLL_GET);
1519                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1520                 goto out;
1521         }
1522         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1523                 goto no_page_table;
1524         if (pmd_trans_huge(*pmd)) {
1525                 if (flags & FOLL_SPLIT) {
1526                         split_huge_page_pmd(vma, address, pmd);
1527                         goto split_fallthrough;
1528                 }
1529                 spin_lock(&mm->page_table_lock);
1530                 if (likely(pmd_trans_huge(*pmd))) {
1531                         if (unlikely(pmd_trans_splitting(*pmd))) {
1532                                 spin_unlock(&mm->page_table_lock);
1533                                 wait_split_huge_page(vma->anon_vma, pmd);
1534                         } else {
1535                                 page = follow_trans_huge_pmd(vma, address,
1536                                                              pmd, flags);
1537                                 spin_unlock(&mm->page_table_lock);
1538                                 *page_mask = HPAGE_PMD_NR - 1;
1539                                 goto out;
1540                         }
1541                 } else
1542                         spin_unlock(&mm->page_table_lock);
1543                 /* fall through */
1544         }
1545 split_fallthrough:
1546         if (unlikely(pmd_bad(*pmd)))
1547                 goto no_page_table;
1548
1549         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1550
1551         pte = *ptep;
1552         if (!pte_present(pte)) {
1553                 swp_entry_t entry;
1554                 /*
1555                  * KSM's break_ksm() relies upon recognizing a ksm page
1556                  * even while it is being migrated, so for that case we
1557                  * need migration_entry_wait().
1558                  */
1559                 if (likely(!(flags & FOLL_MIGRATION)))
1560                         goto no_page;
1561                 if (pte_none(pte) || pte_file(pte))
1562                         goto no_page;
1563                 entry = pte_to_swp_entry(pte);
1564                 if (!is_migration_entry(entry))
1565                         goto no_page;
1566                 pte_unmap_unlock(ptep, ptl);
1567                 migration_entry_wait(mm, pmd, address);
1568                 goto split_fallthrough;
1569         }
1570         if ((flags & FOLL_NUMA) && pte_numa(pte))
1571                 goto no_page;
1572         if ((flags & FOLL_WRITE) && !pte_write(pte))
1573                 goto unlock;
1574
1575         page = vm_normal_page(vma, address, pte);
1576         if (unlikely(!page)) {
1577                 if ((flags & FOLL_DUMP) ||
1578                     !is_zero_pfn(pte_pfn(pte)))
1579                         goto bad_page;
1580                 page = pte_page(pte);
1581         }
1582
1583         if (flags & FOLL_GET)
1584                 get_page_foll(page);
1585         if (flags & FOLL_TOUCH) {
1586                 if ((flags & FOLL_WRITE) &&
1587                     !pte_dirty(pte) && !PageDirty(page))
1588                         set_page_dirty(page);
1589                 /*
1590                  * pte_mkyoung() would be more correct here, but atomic care
1591                  * is needed to avoid losing the dirty bit: it is easier to use
1592                  * mark_page_accessed().
1593                  */
1594                 mark_page_accessed(page);
1595         }
1596         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1597                 /*
1598                  * The preliminary mapping check is mainly to avoid the
1599                  * pointless overhead of lock_page on the ZERO_PAGE
1600                  * which might bounce very badly if there is contention.
1601                  *
1602                  * If the page is already locked, we don't need to
1603                  * handle it now - vmscan will handle it later if and
1604                  * when it attempts to reclaim the page.
1605                  */
1606                 if (page->mapping && trylock_page(page)) {
1607                         lru_add_drain();  /* push cached pages to LRU */
1608                         /*
1609                          * Because we lock page here, and migration is
1610                          * blocked by the pte's page reference, and we
1611                          * know the page is still mapped, we don't even
1612                          * need to check for file-cache page truncation.
1613                          */
1614                         mlock_vma_page(page);
1615                         unlock_page(page);
1616                 }
1617         }
1618 unlock:
1619         pte_unmap_unlock(ptep, ptl);
1620 out:
1621         return page;
1622
1623 bad_page:
1624         pte_unmap_unlock(ptep, ptl);
1625         return ERR_PTR(-EFAULT);
1626
1627 no_page:
1628         pte_unmap_unlock(ptep, ptl);
1629         if (!pte_none(pte))
1630                 return page;
1631
1632 no_page_table:
1633         /*
1634          * When core dumping an enormous anonymous area that nobody
1635          * has touched so far, we don't want to allocate unnecessary pages or
1636          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1637          * then get_dump_page() will return NULL to leave a hole in the dump.
1638          * But we can only make this optimization where a hole would surely
1639          * be zero-filled if handle_mm_fault() actually did handle it.
1640          */
1641         if ((flags & FOLL_DUMP) &&
1642             (!vma->vm_ops || !vma->vm_ops->fault))
1643                 return ERR_PTR(-EFAULT);
1644         return page;
1645 }
1646
1647 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1648 {
1649         return stack_guard_page_start(vma, addr) ||
1650                stack_guard_page_end(vma, addr+PAGE_SIZE);
1651 }
1652
1653 /**
1654  * __get_user_pages() - pin user pages in memory
1655  * @tsk:        task_struct of target task
1656  * @mm:         mm_struct of target mm
1657  * @start:      starting user address
1658  * @nr_pages:   number of pages from start to pin
1659  * @gup_flags:  flags modifying pin behaviour
1660  * @pages:      array that receives pointers to the pages pinned.
1661  *              Should be at least nr_pages long. Or NULL, if caller
1662  *              only intends to ensure the pages are faulted in.
1663  * @vmas:       array of pointers to vmas corresponding to each page.
1664  *              Or NULL if the caller does not require them.
1665  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1666  *
1667  * Returns number of pages pinned. This may be fewer than the number
1668  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1669  * were pinned, returns -errno. Each page returned must be released
1670  * with a put_page() call when it is finished with. vmas will only
1671  * remain valid while mmap_sem is held.
1672  *
1673  * Must be called with mmap_sem held for read or write.
1674  *
1675  * __get_user_pages walks a process's page tables and takes a reference to
1676  * each struct page that each user address corresponds to at a given
1677  * instant. That is, it takes the page that would be accessed if a user
1678  * thread accesses the given user virtual address at that instant.
1679  *
1680  * This does not guarantee that the page exists in the user mappings when
1681  * __get_user_pages returns, and there may even be a completely different
1682  * page there in some cases (eg. if mmapped pagecache has been invalidated
1683  * and subsequently re faulted). However it does guarantee that the page
1684  * won't be freed completely. And mostly callers simply care that the page
1685  * contains data that was valid *at some point in time*. Typically, an IO
1686  * or similar operation cannot guarantee anything stronger anyway because
1687  * locks can't be held over the syscall boundary.
1688  *
1689  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1690  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1691  * appropriate) must be called after the page is finished with, and
1692  * before put_page is called.
1693  *
1694  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1695  * or mmap_sem contention, and if waiting is needed to pin all pages,
1696  * *@nonblocking will be set to 0.
1697  *
1698  * In most cases, get_user_pages or get_user_pages_fast should be used
1699  * instead of __get_user_pages. __get_user_pages should be used only if
1700  * you need some special @gup_flags.
1701  */
1702 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1703                 unsigned long start, unsigned long nr_pages,
1704                 unsigned int gup_flags, struct page **pages,
1705                 struct vm_area_struct **vmas, int *nonblocking)
1706 {
1707         long i;
1708         unsigned long vm_flags;
1709         unsigned int page_mask;
1710
1711         if (!nr_pages)
1712                 return 0;
1713
1714         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1715
1716         /* 
1717          * Require read or write permissions.
1718          * If FOLL_FORCE is set, we only require the "MAY" flags.
1719          */
1720         vm_flags  = (gup_flags & FOLL_WRITE) ?
1721                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1722         vm_flags &= (gup_flags & FOLL_FORCE) ?
1723                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1724
1725         /*
1726          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1727          * would be called on PROT_NONE ranges. We must never invoke
1728          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1729          * page faults would unprotect the PROT_NONE ranges if
1730          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1731          * bitflag. So to avoid that, don't set FOLL_NUMA if
1732          * FOLL_FORCE is set.
1733          */
1734         if (!(gup_flags & FOLL_FORCE))
1735                 gup_flags |= FOLL_NUMA;
1736
1737         i = 0;
1738
1739         do {
1740                 struct vm_area_struct *vma;
1741
1742                 vma = find_extend_vma(mm, start);
1743                 if (!vma && in_gate_area(mm, start)) {
1744                         unsigned long pg = start & PAGE_MASK;
1745                         pgd_t *pgd;
1746                         pud_t *pud;
1747                         pmd_t *pmd;
1748                         pte_t *pte;
1749
1750                         /* user gate pages are read-only */
1751                         if (gup_flags & FOLL_WRITE)
1752                                 return i ? : -EFAULT;
1753                         if (pg > TASK_SIZE)
1754                                 pgd = pgd_offset_k(pg);
1755                         else
1756                                 pgd = pgd_offset_gate(mm, pg);
1757                         BUG_ON(pgd_none(*pgd));
1758                         pud = pud_offset(pgd, pg);
1759                         BUG_ON(pud_none(*pud));
1760                         pmd = pmd_offset(pud, pg);
1761                         if (pmd_none(*pmd))
1762                                 return i ? : -EFAULT;
1763                         VM_BUG_ON(pmd_trans_huge(*pmd));
1764                         pte = pte_offset_map(pmd, pg);
1765                         if (pte_none(*pte)) {
1766                                 pte_unmap(pte);
1767                                 return i ? : -EFAULT;
1768                         }
1769                         vma = get_gate_vma(mm);
1770                         if (pages) {
1771                                 struct page *page;
1772
1773                                 page = vm_normal_page(vma, start, *pte);
1774                                 if (!page) {
1775                                         if (!(gup_flags & FOLL_DUMP) &&
1776                                              is_zero_pfn(pte_pfn(*pte)))
1777                                                 page = pte_page(*pte);
1778                                         else {
1779                                                 pte_unmap(pte);
1780                                                 return i ? : -EFAULT;
1781                                         }
1782                                 }
1783                                 pages[i] = page;
1784                                 get_page(page);
1785                         }
1786                         pte_unmap(pte);
1787                         page_mask = 0;
1788                         goto next_page;
1789                 }
1790
1791                 if (!vma ||
1792                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1793                     !(vm_flags & vma->vm_flags))
1794                         return i ? : -EFAULT;
1795
1796                 if (is_vm_hugetlb_page(vma)) {
1797                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1798                                         &start, &nr_pages, i, gup_flags);
1799                         continue;
1800                 }
1801
1802                 do {
1803                         struct page *page;
1804                         unsigned int foll_flags = gup_flags;
1805                         unsigned int page_increm;
1806
1807                         /*
1808                          * If we have a pending SIGKILL, don't keep faulting
1809                          * pages and potentially allocating memory.
1810                          */
1811                         if (unlikely(fatal_signal_pending(current)))
1812                                 return i ? i : -ERESTARTSYS;
1813
1814                         cond_resched();
1815                         while (!(page = follow_page_mask(vma, start,
1816                                                 foll_flags, &page_mask))) {
1817                                 int ret;
1818                                 unsigned int fault_flags = 0;
1819
1820                                 /* For mlock, just skip the stack guard page. */
1821                                 if (foll_flags & FOLL_MLOCK) {
1822                                         if (stack_guard_page(vma, start))
1823                                                 goto next_page;
1824                                 }
1825                                 if (foll_flags & FOLL_WRITE)
1826                                         fault_flags |= FAULT_FLAG_WRITE;
1827                                 if (nonblocking)
1828                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1829                                 if (foll_flags & FOLL_NOWAIT)
1830                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1831
1832                                 ret = handle_mm_fault(mm, vma, start,
1833                                                         fault_flags);
1834
1835                                 if (ret & VM_FAULT_ERROR) {
1836                                         if (ret & VM_FAULT_OOM)
1837                                                 return i ? i : -ENOMEM;
1838                                         if (ret & (VM_FAULT_HWPOISON |
1839                                                    VM_FAULT_HWPOISON_LARGE)) {
1840                                                 if (i)
1841                                                         return i;
1842                                                 else if (gup_flags & FOLL_HWPOISON)
1843                                                         return -EHWPOISON;
1844                                                 else
1845                                                         return -EFAULT;
1846                                         }
1847                                         if (ret & VM_FAULT_SIGBUS)
1848                                                 return i ? i : -EFAULT;
1849                                         BUG();
1850                                 }
1851
1852                                 if (tsk) {
1853                                         if (ret & VM_FAULT_MAJOR)
1854                                                 tsk->maj_flt++;
1855                                         else
1856                                                 tsk->min_flt++;
1857                                 }
1858
1859                                 if (ret & VM_FAULT_RETRY) {
1860                                         if (nonblocking)
1861                                                 *nonblocking = 0;
1862                                         return i;
1863                                 }
1864
1865                                 /*
1866                                  * The VM_FAULT_WRITE bit tells us that
1867                                  * do_wp_page has broken COW when necessary,
1868                                  * even if maybe_mkwrite decided not to set
1869                                  * pte_write. We can thus safely do subsequent
1870                                  * page lookups as if they were reads. But only
1871                                  * do so when looping for pte_write is futile:
1872                                  * in some cases userspace may also be wanting
1873                                  * to write to the gotten user page, which a
1874                                  * read fault here might prevent (a readonly
1875                                  * page might get reCOWed by userspace write).
1876                                  */
1877                                 if ((ret & VM_FAULT_WRITE) &&
1878                                     !(vma->vm_flags & VM_WRITE))
1879                                         foll_flags &= ~FOLL_WRITE;
1880
1881                                 cond_resched();
1882                         }
1883                         if (IS_ERR(page))
1884                                 return i ? i : PTR_ERR(page);
1885                         if (pages) {
1886                                 pages[i] = page;
1887
1888                                 flush_anon_page(vma, page, start);
1889                                 flush_dcache_page(page);
1890                                 page_mask = 0;
1891                         }
1892 next_page:
1893                         if (vmas) {
1894                                 vmas[i] = vma;
1895                                 page_mask = 0;
1896                         }
1897                         page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1898                         if (page_increm > nr_pages)
1899                                 page_increm = nr_pages;
1900                         i += page_increm;
1901                         start += page_increm * PAGE_SIZE;
1902                         nr_pages -= page_increm;
1903                 } while (nr_pages && start < vma->vm_end);
1904         } while (nr_pages);
1905         return i;
1906 }
1907 EXPORT_SYMBOL(__get_user_pages);
1908
1909 /*
1910  * fixup_user_fault() - manually resolve a user page fault
1911  * @tsk:        the task_struct to use for page fault accounting, or
1912  *              NULL if faults are not to be recorded.
1913  * @mm:         mm_struct of target mm
1914  * @address:    user address
1915  * @fault_flags:flags to pass down to handle_mm_fault()
1916  *
1917  * This is meant to be called in the specific scenario where for locking reasons
1918  * we try to access user memory in atomic context (within a pagefault_disable()
1919  * section), this returns -EFAULT, and we want to resolve the user fault before
1920  * trying again.
1921  *
1922  * Typically this is meant to be used by the futex code.
1923  *
1924  * The main difference with get_user_pages() is that this function will
1925  * unconditionally call handle_mm_fault() which will in turn perform all the
1926  * necessary SW fixup of the dirty and young bits in the PTE, while
1927  * handle_mm_fault() only guarantees to update these in the struct page.
1928  *
1929  * This is important for some architectures where those bits also gate the
1930  * access permission to the page because they are maintained in software.  On
1931  * such architectures, gup() will not be enough to make a subsequent access
1932  * succeed.
1933  *
1934  * This should be called with the mm_sem held for read.
1935  */
1936 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1937                      unsigned long address, unsigned int fault_flags)
1938 {
1939         struct vm_area_struct *vma;
1940         int ret;
1941
1942         vma = find_extend_vma(mm, address);
1943         if (!vma || address < vma->vm_start)
1944                 return -EFAULT;
1945
1946         ret = handle_mm_fault(mm, vma, address, fault_flags);
1947         if (ret & VM_FAULT_ERROR) {
1948                 if (ret & VM_FAULT_OOM)
1949                         return -ENOMEM;
1950                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1951                         return -EHWPOISON;
1952                 if (ret & VM_FAULT_SIGBUS)
1953                         return -EFAULT;
1954                 BUG();
1955         }
1956         if (tsk) {
1957                 if (ret & VM_FAULT_MAJOR)
1958                         tsk->maj_flt++;
1959                 else
1960                         tsk->min_flt++;
1961         }
1962         return 0;
1963 }
1964
1965 /*
1966  * get_user_pages() - pin user pages in memory
1967  * @tsk:        the task_struct to use for page fault accounting, or
1968  *              NULL if faults are not to be recorded.
1969  * @mm:         mm_struct of target mm
1970  * @start:      starting user address
1971  * @nr_pages:   number of pages from start to pin
1972  * @write:      whether pages will be written to by the caller
1973  * @force:      whether to force write access even if user mapping is
1974  *              readonly. This will result in the page being COWed even
1975  *              in MAP_SHARED mappings. You do not want this.
1976  * @pages:      array that receives pointers to the pages pinned.
1977  *              Should be at least nr_pages long. Or NULL, if caller
1978  *              only intends to ensure the pages are faulted in.
1979  * @vmas:       array of pointers to vmas corresponding to each page.
1980  *              Or NULL if the caller does not require them.
1981  *
1982  * Returns number of pages pinned. This may be fewer than the number
1983  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1984  * were pinned, returns -errno. Each page returned must be released
1985  * with a put_page() call when it is finished with. vmas will only
1986  * remain valid while mmap_sem is held.
1987  *
1988  * Must be called with mmap_sem held for read or write.
1989  *
1990  * get_user_pages walks a process's page tables and takes a reference to
1991  * each struct page that each user address corresponds to at a given
1992  * instant. That is, it takes the page that would be accessed if a user
1993  * thread accesses the given user virtual address at that instant.
1994  *
1995  * This does not guarantee that the page exists in the user mappings when
1996  * get_user_pages returns, and there may even be a completely different
1997  * page there in some cases (eg. if mmapped pagecache has been invalidated
1998  * and subsequently re faulted). However it does guarantee that the page
1999  * won't be freed completely. And mostly callers simply care that the page
2000  * contains data that was valid *at some point in time*. Typically, an IO
2001  * or similar operation cannot guarantee anything stronger anyway because
2002  * locks can't be held over the syscall boundary.
2003  *
2004  * If write=0, the page must not be written to. If the page is written to,
2005  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2006  * after the page is finished with, and before put_page is called.
2007  *
2008  * get_user_pages is typically used for fewer-copy IO operations, to get a
2009  * handle on the memory by some means other than accesses via the user virtual
2010  * addresses. The pages may be submitted for DMA to devices or accessed via
2011  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2012  * use the correct cache flushing APIs.
2013  *
2014  * See also get_user_pages_fast, for performance critical applications.
2015  */
2016 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2017                 unsigned long start, unsigned long nr_pages, int write,
2018                 int force, struct page **pages, struct vm_area_struct **vmas)
2019 {
2020         int flags = FOLL_TOUCH;
2021
2022         if (pages)
2023                 flags |= FOLL_GET;
2024         if (write)
2025                 flags |= FOLL_WRITE;
2026         if (force)
2027                 flags |= FOLL_FORCE;
2028
2029         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2030                                 NULL);
2031 }
2032 EXPORT_SYMBOL(get_user_pages);
2033
2034 /**
2035  * get_dump_page() - pin user page in memory while writing it to core dump
2036  * @addr: user address
2037  *
2038  * Returns struct page pointer of user page pinned for dump,
2039  * to be freed afterwards by page_cache_release() or put_page().
2040  *
2041  * Returns NULL on any kind of failure - a hole must then be inserted into
2042  * the corefile, to preserve alignment with its headers; and also returns
2043  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2044  * allowing a hole to be left in the corefile to save diskspace.
2045  *
2046  * Called without mmap_sem, but after all other threads have been killed.
2047  */
2048 #ifdef CONFIG_ELF_CORE
2049 struct page *get_dump_page(unsigned long addr)
2050 {
2051         struct vm_area_struct *vma;
2052         struct page *page;
2053
2054         if (__get_user_pages(current, current->mm, addr, 1,
2055                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2056                              NULL) < 1)
2057                 return NULL;
2058         flush_cache_page(vma, addr, page_to_pfn(page));
2059         return page;
2060 }
2061 #endif /* CONFIG_ELF_CORE */
2062
2063 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2064                         spinlock_t **ptl)
2065 {
2066         pgd_t * pgd = pgd_offset(mm, addr);
2067         pud_t * pud = pud_alloc(mm, pgd, addr);
2068         if (pud) {
2069                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2070                 if (pmd) {
2071                         VM_BUG_ON(pmd_trans_huge(*pmd));
2072                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2073                 }
2074         }
2075         return NULL;
2076 }
2077
2078 /*
2079  * This is the old fallback for page remapping.
2080  *
2081  * For historical reasons, it only allows reserved pages. Only
2082  * old drivers should use this, and they needed to mark their
2083  * pages reserved for the old functions anyway.
2084  */
2085 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2086                         struct page *page, pgprot_t prot)
2087 {
2088         struct mm_struct *mm = vma->vm_mm;
2089         int retval;
2090         pte_t *pte;
2091         spinlock_t *ptl;
2092
2093         retval = -EINVAL;
2094         if (PageAnon(page))
2095                 goto out;
2096         retval = -ENOMEM;
2097         flush_dcache_page(page);
2098         pte = get_locked_pte(mm, addr, &ptl);
2099         if (!pte)
2100                 goto out;
2101         retval = -EBUSY;
2102         if (!pte_none(*pte))
2103                 goto out_unlock;
2104
2105         /* Ok, finally just insert the thing.. */
2106         get_page(page);
2107         inc_mm_counter_fast(mm, MM_FILEPAGES);
2108         page_add_file_rmap(page);
2109         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2110
2111         retval = 0;
2112         pte_unmap_unlock(pte, ptl);
2113         return retval;
2114 out_unlock:
2115         pte_unmap_unlock(pte, ptl);
2116 out:
2117         return retval;
2118 }
2119
2120 /**
2121  * vm_insert_page - insert single page into user vma
2122  * @vma: user vma to map to
2123  * @addr: target user address of this page
2124  * @page: source kernel page
2125  *
2126  * This allows drivers to insert individual pages they've allocated
2127  * into a user vma.
2128  *
2129  * The page has to be a nice clean _individual_ kernel allocation.
2130  * If you allocate a compound page, you need to have marked it as
2131  * such (__GFP_COMP), or manually just split the page up yourself
2132  * (see split_page()).
2133  *
2134  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2135  * took an arbitrary page protection parameter. This doesn't allow
2136  * that. Your vma protection will have to be set up correctly, which
2137  * means that if you want a shared writable mapping, you'd better
2138  * ask for a shared writable mapping!
2139  *
2140  * The page does not need to be reserved.
2141  *
2142  * Usually this function is called from f_op->mmap() handler
2143  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2144  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2145  * function from other places, for example from page-fault handler.
2146  */
2147 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2148                         struct page *page)
2149 {
2150         if (addr < vma->vm_start || addr >= vma->vm_end)
2151                 return -EFAULT;
2152         if (!page_count(page))
2153                 return -EINVAL;
2154         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2155                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2156                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2157                 vma->vm_flags |= VM_MIXEDMAP;
2158         }
2159         return insert_page(vma, addr, page, vma->vm_page_prot);
2160 }
2161 EXPORT_SYMBOL(vm_insert_page);
2162
2163 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2164                         unsigned long pfn, pgprot_t prot)
2165 {
2166         struct mm_struct *mm = vma->vm_mm;
2167         int retval;
2168         pte_t *pte, entry;
2169         spinlock_t *ptl;
2170
2171         retval = -ENOMEM;
2172         pte = get_locked_pte(mm, addr, &ptl);
2173         if (!pte)
2174                 goto out;
2175         retval = -EBUSY;
2176         if (!pte_none(*pte))
2177                 goto out_unlock;
2178
2179         /* Ok, finally just insert the thing.. */
2180         entry = pte_mkspecial(pfn_pte(pfn, prot));
2181         set_pte_at(mm, addr, pte, entry);
2182         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2183
2184         retval = 0;
2185 out_unlock:
2186         pte_unmap_unlock(pte, ptl);
2187 out:
2188         return retval;
2189 }
2190
2191 /**
2192  * vm_insert_pfn - insert single pfn into user vma
2193  * @vma: user vma to map to
2194  * @addr: target user address of this page
2195  * @pfn: source kernel pfn
2196  *
2197  * Similar to vm_insert_page, this allows drivers to insert individual pages
2198  * they've allocated into a user vma. Same comments apply.
2199  *
2200  * This function should only be called from a vm_ops->fault handler, and
2201  * in that case the handler should return NULL.
2202  *
2203  * vma cannot be a COW mapping.
2204  *
2205  * As this is called only for pages that do not currently exist, we
2206  * do not need to flush old virtual caches or the TLB.
2207  */
2208 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2209                         unsigned long pfn)
2210 {
2211         int ret;
2212         pgprot_t pgprot = vma->vm_page_prot;
2213         /*
2214          * Technically, architectures with pte_special can avoid all these
2215          * restrictions (same for remap_pfn_range).  However we would like
2216          * consistency in testing and feature parity among all, so we should
2217          * try to keep these invariants in place for everybody.
2218          */
2219         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2220         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2221                                                 (VM_PFNMAP|VM_MIXEDMAP));
2222         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2223         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2224
2225         if (addr < vma->vm_start || addr >= vma->vm_end)
2226                 return -EFAULT;
2227         if (track_pfn_insert(vma, &pgprot, pfn))
2228                 return -EINVAL;
2229
2230         ret = insert_pfn(vma, addr, pfn, pgprot);
2231
2232         return ret;
2233 }
2234 EXPORT_SYMBOL(vm_insert_pfn);
2235
2236 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2237                         unsigned long pfn)
2238 {
2239         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2240
2241         if (addr < vma->vm_start || addr >= vma->vm_end)
2242                 return -EFAULT;
2243
2244         /*
2245          * If we don't have pte special, then we have to use the pfn_valid()
2246          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2247          * refcount the page if pfn_valid is true (hence insert_page rather
2248          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2249          * without pte special, it would there be refcounted as a normal page.
2250          */
2251         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2252                 struct page *page;
2253
2254                 page = pfn_to_page(pfn);
2255                 return insert_page(vma, addr, page, vma->vm_page_prot);
2256         }
2257         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2258 }
2259 EXPORT_SYMBOL(vm_insert_mixed);
2260
2261 /*
2262  * maps a range of physical memory into the requested pages. the old
2263  * mappings are removed. any references to nonexistent pages results
2264  * in null mappings (currently treated as "copy-on-access")
2265  */
2266 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2267                         unsigned long addr, unsigned long end,
2268                         unsigned long pfn, pgprot_t prot)
2269 {
2270         pte_t *pte;
2271         spinlock_t *ptl;
2272
2273         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2274         if (!pte)
2275                 return -ENOMEM;
2276         arch_enter_lazy_mmu_mode();
2277         do {
2278                 BUG_ON(!pte_none(*pte));
2279                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2280                 pfn++;
2281         } while (pte++, addr += PAGE_SIZE, addr != end);
2282         arch_leave_lazy_mmu_mode();
2283         pte_unmap_unlock(pte - 1, ptl);
2284         return 0;
2285 }
2286
2287 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2288                         unsigned long addr, unsigned long end,
2289                         unsigned long pfn, pgprot_t prot)
2290 {
2291         pmd_t *pmd;
2292         unsigned long next;
2293
2294         pfn -= addr >> PAGE_SHIFT;
2295         pmd = pmd_alloc(mm, pud, addr);
2296         if (!pmd)
2297                 return -ENOMEM;
2298         VM_BUG_ON(pmd_trans_huge(*pmd));
2299         do {
2300                 next = pmd_addr_end(addr, end);
2301                 if (remap_pte_range(mm, pmd, addr, next,
2302                                 pfn + (addr >> PAGE_SHIFT), prot))
2303                         return -ENOMEM;
2304         } while (pmd++, addr = next, addr != end);
2305         return 0;
2306 }
2307
2308 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2309                         unsigned long addr, unsigned long end,
2310                         unsigned long pfn, pgprot_t prot)
2311 {
2312         pud_t *pud;
2313         unsigned long next;
2314
2315         pfn -= addr >> PAGE_SHIFT;
2316         pud = pud_alloc(mm, pgd, addr);
2317         if (!pud)
2318                 return -ENOMEM;
2319         do {
2320                 next = pud_addr_end(addr, end);
2321                 if (remap_pmd_range(mm, pud, addr, next,
2322                                 pfn + (addr >> PAGE_SHIFT), prot))
2323                         return -ENOMEM;
2324         } while (pud++, addr = next, addr != end);
2325         return 0;
2326 }
2327
2328 /**
2329  * remap_pfn_range - remap kernel memory to userspace
2330  * @vma: user vma to map to
2331  * @addr: target user address to start at
2332  * @pfn: physical address of kernel memory
2333  * @size: size of map area
2334  * @prot: page protection flags for this mapping
2335  *
2336  *  Note: this is only safe if the mm semaphore is held when called.
2337  */
2338 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2339                     unsigned long pfn, unsigned long size, pgprot_t prot)
2340 {
2341         pgd_t *pgd;
2342         unsigned long next;
2343         unsigned long end = addr + PAGE_ALIGN(size);
2344         struct mm_struct *mm = vma->vm_mm;
2345         int err;
2346
2347         /*
2348          * Physically remapped pages are special. Tell the
2349          * rest of the world about it:
2350          *   VM_IO tells people not to look at these pages
2351          *      (accesses can have side effects).
2352          *   VM_PFNMAP tells the core MM that the base pages are just
2353          *      raw PFN mappings, and do not have a "struct page" associated
2354          *      with them.
2355          *   VM_DONTEXPAND
2356          *      Disable vma merging and expanding with mremap().
2357          *   VM_DONTDUMP
2358          *      Omit vma from core dump, even when VM_IO turned off.
2359          *
2360          * There's a horrible special case to handle copy-on-write
2361          * behaviour that some programs depend on. We mark the "original"
2362          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2363          * See vm_normal_page() for details.
2364          */
2365         if (is_cow_mapping(vma->vm_flags)) {
2366                 if (addr != vma->vm_start || end != vma->vm_end)
2367                         return -EINVAL;
2368                 vma->vm_pgoff = pfn;
2369         }
2370
2371         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2372         if (err)
2373                 return -EINVAL;
2374
2375         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2376
2377         BUG_ON(addr >= end);
2378         pfn -= addr >> PAGE_SHIFT;
2379         pgd = pgd_offset(mm, addr);
2380         flush_cache_range(vma, addr, end);
2381         do {
2382                 next = pgd_addr_end(addr, end);
2383                 err = remap_pud_range(mm, pgd, addr, next,
2384                                 pfn + (addr >> PAGE_SHIFT), prot);
2385                 if (err)
2386                         break;
2387         } while (pgd++, addr = next, addr != end);
2388
2389         if (err)
2390                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2391
2392         return err;
2393 }
2394 EXPORT_SYMBOL(remap_pfn_range);
2395
2396 /**
2397  * vm_iomap_memory - remap memory to userspace
2398  * @vma: user vma to map to
2399  * @start: start of area
2400  * @len: size of area
2401  *
2402  * This is a simplified io_remap_pfn_range() for common driver use. The
2403  * driver just needs to give us the physical memory range to be mapped,
2404  * we'll figure out the rest from the vma information.
2405  *
2406  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2407  * whatever write-combining details or similar.
2408  */
2409 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2410 {
2411         unsigned long vm_len, pfn, pages;
2412
2413         /* Check that the physical memory area passed in looks valid */
2414         if (start + len < start)
2415                 return -EINVAL;
2416         /*
2417          * You *really* shouldn't map things that aren't page-aligned,
2418          * but we've historically allowed it because IO memory might
2419          * just have smaller alignment.
2420          */
2421         len += start & ~PAGE_MASK;
2422         pfn = start >> PAGE_SHIFT;
2423         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2424         if (pfn + pages < pfn)
2425                 return -EINVAL;
2426
2427         /* We start the mapping 'vm_pgoff' pages into the area */
2428         if (vma->vm_pgoff > pages)
2429                 return -EINVAL;
2430         pfn += vma->vm_pgoff;
2431         pages -= vma->vm_pgoff;
2432
2433         /* Can we fit all of the mapping? */
2434         vm_len = vma->vm_end - vma->vm_start;
2435         if (vm_len >> PAGE_SHIFT > pages)
2436                 return -EINVAL;
2437
2438         /* Ok, let it rip */
2439         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2440 }
2441 EXPORT_SYMBOL(vm_iomap_memory);
2442
2443 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2444                                      unsigned long addr, unsigned long end,
2445                                      pte_fn_t fn, void *data)
2446 {
2447         pte_t *pte;
2448         int err;
2449         pgtable_t token;
2450         spinlock_t *uninitialized_var(ptl);
2451
2452         pte = (mm == &init_mm) ?
2453                 pte_alloc_kernel(pmd, addr) :
2454                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2455         if (!pte)
2456                 return -ENOMEM;
2457
2458         BUG_ON(pmd_huge(*pmd));
2459
2460         arch_enter_lazy_mmu_mode();
2461
2462         token = pmd_pgtable(*pmd);
2463
2464         do {
2465                 err = fn(pte++, token, addr, data);
2466                 if (err)
2467                         break;
2468         } while (addr += PAGE_SIZE, addr != end);
2469
2470         arch_leave_lazy_mmu_mode();
2471
2472         if (mm != &init_mm)
2473                 pte_unmap_unlock(pte-1, ptl);
2474         return err;
2475 }
2476
2477 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2478                                      unsigned long addr, unsigned long end,
2479                                      pte_fn_t fn, void *data)
2480 {
2481         pmd_t *pmd;
2482         unsigned long next;
2483         int err;
2484
2485         BUG_ON(pud_huge(*pud));
2486
2487         pmd = pmd_alloc(mm, pud, addr);
2488         if (!pmd)
2489                 return -ENOMEM;
2490         do {
2491                 next = pmd_addr_end(addr, end);
2492                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2493                 if (err)
2494                         break;
2495         } while (pmd++, addr = next, addr != end);
2496         return err;
2497 }
2498
2499 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2500                                      unsigned long addr, unsigned long end,
2501                                      pte_fn_t fn, void *data)
2502 {
2503         pud_t *pud;
2504         unsigned long next;
2505         int err;
2506
2507         pud = pud_alloc(mm, pgd, addr);
2508         if (!pud)
2509                 return -ENOMEM;
2510         do {
2511                 next = pud_addr_end(addr, end);
2512                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2513                 if (err)
2514                         break;
2515         } while (pud++, addr = next, addr != end);
2516         return err;
2517 }
2518
2519 /*
2520  * Scan a region of virtual memory, filling in page tables as necessary
2521  * and calling a provided function on each leaf page table.
2522  */
2523 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2524                         unsigned long size, pte_fn_t fn, void *data)
2525 {
2526         pgd_t *pgd;
2527         unsigned long next;
2528         unsigned long end = addr + size;
2529         int err;
2530
2531         BUG_ON(addr >= end);
2532         pgd = pgd_offset(mm, addr);
2533         do {
2534                 next = pgd_addr_end(addr, end);
2535                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2536                 if (err)
2537                         break;
2538         } while (pgd++, addr = next, addr != end);
2539
2540         return err;
2541 }
2542 EXPORT_SYMBOL_GPL(apply_to_page_range);
2543
2544 /*
2545  * handle_pte_fault chooses page fault handler according to an entry
2546  * which was read non-atomically.  Before making any commitment, on
2547  * those architectures or configurations (e.g. i386 with PAE) which
2548  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2549  * must check under lock before unmapping the pte and proceeding
2550  * (but do_wp_page is only called after already making such a check;
2551  * and do_anonymous_page can safely check later on).
2552  */
2553 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2554                                 pte_t *page_table, pte_t orig_pte)
2555 {
2556         int same = 1;
2557 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2558         if (sizeof(pte_t) > sizeof(unsigned long)) {
2559                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2560                 spin_lock(ptl);
2561                 same = pte_same(*page_table, orig_pte);
2562                 spin_unlock(ptl);
2563         }
2564 #endif
2565         pte_unmap(page_table);
2566         return same;
2567 }
2568
2569 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2570 {
2571         /*
2572          * If the source page was a PFN mapping, we don't have
2573          * a "struct page" for it. We do a best-effort copy by
2574          * just copying from the original user address. If that
2575          * fails, we just zero-fill it. Live with it.
2576          */
2577         if (unlikely(!src)) {
2578                 void *kaddr = kmap_atomic(dst);
2579                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2580
2581                 /*
2582                  * This really shouldn't fail, because the page is there
2583                  * in the page tables. But it might just be unreadable,
2584                  * in which case we just give up and fill the result with
2585                  * zeroes.
2586                  */
2587                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2588                         clear_page(kaddr);
2589                 kunmap_atomic(kaddr);
2590                 flush_dcache_page(dst);
2591         } else
2592                 copy_user_highpage(dst, src, va, vma);
2593 }
2594
2595 /*
2596  * This routine handles present pages, when users try to write
2597  * to a shared page. It is done by copying the page to a new address
2598  * and decrementing the shared-page counter for the old page.
2599  *
2600  * Note that this routine assumes that the protection checks have been
2601  * done by the caller (the low-level page fault routine in most cases).
2602  * Thus we can safely just mark it writable once we've done any necessary
2603  * COW.
2604  *
2605  * We also mark the page dirty at this point even though the page will
2606  * change only once the write actually happens. This avoids a few races,
2607  * and potentially makes it more efficient.
2608  *
2609  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2610  * but allow concurrent faults), with pte both mapped and locked.
2611  * We return with mmap_sem still held, but pte unmapped and unlocked.
2612  */
2613 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2614                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2615                 spinlock_t *ptl, pte_t orig_pte)
2616         __releases(ptl)
2617 {
2618         struct page *old_page, *new_page = NULL;
2619         pte_t entry;
2620         int ret = 0;
2621         int page_mkwrite = 0;
2622         struct page *dirty_page = NULL;
2623         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2624         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2625
2626         old_page = vm_normal_page(vma, address, orig_pte);
2627         if (!old_page) {
2628                 /*
2629                  * VM_MIXEDMAP !pfn_valid() case
2630                  *
2631                  * We should not cow pages in a shared writeable mapping.
2632                  * Just mark the pages writable as we can't do any dirty
2633                  * accounting on raw pfn maps.
2634                  */
2635                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2636                                      (VM_WRITE|VM_SHARED))
2637                         goto reuse;
2638                 goto gotten;
2639         }
2640
2641         /*
2642          * Take out anonymous pages first, anonymous shared vmas are
2643          * not dirty accountable.
2644          */
2645         if (PageAnon(old_page) && !PageKsm(old_page)) {
2646                 if (!trylock_page(old_page)) {
2647                         page_cache_get(old_page);
2648                         pte_unmap_unlock(page_table, ptl);
2649                         lock_page(old_page);
2650                         page_table = pte_offset_map_lock(mm, pmd, address,
2651                                                          &ptl);
2652                         if (!pte_same(*page_table, orig_pte)) {
2653                                 unlock_page(old_page);
2654                                 goto unlock;
2655                         }
2656                         page_cache_release(old_page);
2657                 }
2658                 if (reuse_swap_page(old_page)) {
2659                         /*
2660                          * The page is all ours.  Move it to our anon_vma so
2661                          * the rmap code will not search our parent or siblings.
2662                          * Protected against the rmap code by the page lock.
2663                          */
2664                         page_move_anon_rmap(old_page, vma, address);
2665                         unlock_page(old_page);
2666                         goto reuse;
2667                 }
2668                 unlock_page(old_page);
2669         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2670                                         (VM_WRITE|VM_SHARED))) {
2671                 /*
2672                  * Only catch write-faults on shared writable pages,
2673                  * read-only shared pages can get COWed by
2674                  * get_user_pages(.write=1, .force=1).
2675                  */
2676                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2677                         struct vm_fault vmf;
2678                         int tmp;
2679
2680                         vmf.virtual_address = (void __user *)(address &
2681                                                                 PAGE_MASK);
2682                         vmf.pgoff = old_page->index;
2683                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2684                         vmf.page = old_page;
2685
2686                         /*
2687                          * Notify the address space that the page is about to
2688                          * become writable so that it can prohibit this or wait
2689                          * for the page to get into an appropriate state.
2690                          *
2691                          * We do this without the lock held, so that it can
2692                          * sleep if it needs to.
2693                          */
2694                         page_cache_get(old_page);
2695                         pte_unmap_unlock(page_table, ptl);
2696
2697                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2698                         if (unlikely(tmp &
2699                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2700                                 ret = tmp;
2701                                 goto unwritable_page;
2702                         }
2703                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2704                                 lock_page(old_page);
2705                                 if (!old_page->mapping) {
2706                                         ret = 0; /* retry the fault */
2707                                         unlock_page(old_page);
2708                                         goto unwritable_page;
2709                                 }
2710                         } else
2711                                 VM_BUG_ON(!PageLocked(old_page));
2712
2713                         /*
2714                          * Since we dropped the lock we need to revalidate
2715                          * the PTE as someone else may have changed it.  If
2716                          * they did, we just return, as we can count on the
2717                          * MMU to tell us if they didn't also make it writable.
2718                          */
2719                         page_table = pte_offset_map_lock(mm, pmd, address,
2720                                                          &ptl);
2721                         if (!pte_same(*page_table, orig_pte)) {
2722                                 unlock_page(old_page);
2723                                 goto unlock;
2724                         }
2725
2726                         page_mkwrite = 1;
2727                 }
2728                 dirty_page = old_page;
2729                 get_page(dirty_page);
2730
2731 reuse:
2732                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2733                 entry = pte_mkyoung(orig_pte);
2734                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2735                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2736                         update_mmu_cache(vma, address, page_table);
2737                 pte_unmap_unlock(page_table, ptl);
2738                 ret |= VM_FAULT_WRITE;
2739
2740                 if (!dirty_page)
2741                         return ret;
2742
2743                 /*
2744                  * Yes, Virginia, this is actually required to prevent a race
2745                  * with clear_page_dirty_for_io() from clearing the page dirty
2746                  * bit after it clear all dirty ptes, but before a racing
2747                  * do_wp_page installs a dirty pte.
2748                  *
2749                  * __do_fault is protected similarly.
2750                  */
2751                 if (!page_mkwrite) {
2752                         wait_on_page_locked(dirty_page);
2753                         set_page_dirty_balance(dirty_page, page_mkwrite);
2754                         /* file_update_time outside page_lock */
2755                         if (vma->vm_file)
2756                                 file_update_time(vma->vm_file);
2757                 }
2758                 put_page(dirty_page);
2759                 if (page_mkwrite) {
2760                         struct address_space *mapping = dirty_page->mapping;
2761
2762                         set_page_dirty(dirty_page);
2763                         unlock_page(dirty_page);
2764                         page_cache_release(dirty_page);
2765                         if (mapping)    {
2766                                 /*
2767                                  * Some device drivers do not set page.mapping
2768                                  * but still dirty their pages
2769                                  */
2770                                 balance_dirty_pages_ratelimited(mapping);
2771                         }
2772                 }
2773
2774                 return ret;
2775         }
2776
2777         /*
2778          * Ok, we need to copy. Oh, well..
2779          */
2780         page_cache_get(old_page);
2781 gotten:
2782         pte_unmap_unlock(page_table, ptl);
2783
2784         if (unlikely(anon_vma_prepare(vma)))
2785                 goto oom;
2786
2787         if (is_zero_pfn(pte_pfn(orig_pte))) {
2788                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2789                 if (!new_page)
2790                         goto oom;
2791         } else {
2792                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2793                 if (!new_page)
2794                         goto oom;
2795                 cow_user_page(new_page, old_page, address, vma);
2796         }
2797         __SetPageUptodate(new_page);
2798
2799         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2800                 goto oom_free_new;
2801
2802         mmun_start  = address & PAGE_MASK;
2803         mmun_end    = mmun_start + PAGE_SIZE;
2804         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2805
2806         /*
2807          * Re-check the pte - we dropped the lock
2808          */
2809         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2810         if (likely(pte_same(*page_table, orig_pte))) {
2811                 if (old_page) {
2812                         if (!PageAnon(old_page)) {
2813                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2814                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2815                         }
2816                 } else
2817                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2818                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2819                 entry = mk_pte(new_page, vma->vm_page_prot);
2820                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2821                 /*
2822                  * Clear the pte entry and flush it first, before updating the
2823                  * pte with the new entry. This will avoid a race condition
2824                  * seen in the presence of one thread doing SMC and another
2825                  * thread doing COW.
2826                  */
2827                 ptep_clear_flush(vma, address, page_table);
2828                 page_add_new_anon_rmap(new_page, vma, address);
2829                 /*
2830                  * We call the notify macro here because, when using secondary
2831                  * mmu page tables (such as kvm shadow page tables), we want the
2832                  * new page to be mapped directly into the secondary page table.
2833                  */
2834                 set_pte_at_notify(mm, address, page_table, entry);
2835                 update_mmu_cache(vma, address, page_table);
2836                 if (old_page) {
2837                         /*
2838                          * Only after switching the pte to the new page may
2839                          * we remove the mapcount here. Otherwise another
2840                          * process may come and find the rmap count decremented
2841                          * before the pte is switched to the new page, and
2842                          * "reuse" the old page writing into it while our pte
2843                          * here still points into it and can be read by other
2844                          * threads.
2845                          *
2846                          * The critical issue is to order this
2847                          * page_remove_rmap with the ptp_clear_flush above.
2848                          * Those stores are ordered by (if nothing else,)
2849                          * the barrier present in the atomic_add_negative
2850                          * in page_remove_rmap.
2851                          *
2852                          * Then the TLB flush in ptep_clear_flush ensures that
2853                          * no process can access the old page before the
2854                          * decremented mapcount is visible. And the old page
2855                          * cannot be reused until after the decremented
2856                          * mapcount is visible. So transitively, TLBs to
2857                          * old page will be flushed before it can be reused.
2858                          */
2859                         page_remove_rmap(old_page);
2860                 }
2861
2862                 /* Free the old page.. */
2863                 new_page = old_page;
2864                 ret |= VM_FAULT_WRITE;
2865         } else
2866                 mem_cgroup_uncharge_page(new_page);
2867
2868         if (new_page)
2869                 page_cache_release(new_page);
2870 unlock:
2871         pte_unmap_unlock(page_table, ptl);
2872         if (mmun_end > mmun_start)
2873                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2874         if (old_page) {
2875                 /*
2876                  * Don't let another task, with possibly unlocked vma,
2877                  * keep the mlocked page.
2878                  */
2879                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2880                         lock_page(old_page);    /* LRU manipulation */
2881                         munlock_vma_page(old_page);
2882                         unlock_page(old_page);
2883                 }
2884                 page_cache_release(old_page);
2885         }
2886         return ret;
2887 oom_free_new:
2888         page_cache_release(new_page);
2889 oom:
2890         if (old_page)
2891                 page_cache_release(old_page);
2892         return VM_FAULT_OOM;
2893
2894 unwritable_page:
2895         page_cache_release(old_page);
2896         return ret;
2897 }
2898
2899 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2900                 unsigned long start_addr, unsigned long end_addr,
2901                 struct zap_details *details)
2902 {
2903         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2904 }
2905
2906 static inline void unmap_mapping_range_tree(struct rb_root *root,
2907                                             struct zap_details *details)
2908 {
2909         struct vm_area_struct *vma;
2910         pgoff_t vba, vea, zba, zea;
2911
2912         vma_interval_tree_foreach(vma, root,
2913                         details->first_index, details->last_index) {
2914
2915                 vba = vma->vm_pgoff;
2916                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2917                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2918                 zba = details->first_index;
2919                 if (zba < vba)
2920                         zba = vba;
2921                 zea = details->last_index;
2922                 if (zea > vea)
2923                         zea = vea;
2924
2925                 unmap_mapping_range_vma(vma,
2926                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2927                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2928                                 details);
2929         }
2930 }
2931
2932 static inline void unmap_mapping_range_list(struct list_head *head,
2933                                             struct zap_details *details)
2934 {
2935         struct vm_area_struct *vma;
2936
2937         /*
2938          * In nonlinear VMAs there is no correspondence between virtual address
2939          * offset and file offset.  So we must perform an exhaustive search
2940          * across *all* the pages in each nonlinear VMA, not just the pages
2941          * whose virtual address lies outside the file truncation point.
2942          */
2943         list_for_each_entry(vma, head, shared.nonlinear) {
2944                 details->nonlinear_vma = vma;
2945                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2946         }
2947 }
2948
2949 /**
2950  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2951  * @mapping: the address space containing mmaps to be unmapped.
2952  * @holebegin: byte in first page to unmap, relative to the start of
2953  * the underlying file.  This will be rounded down to a PAGE_SIZE
2954  * boundary.  Note that this is different from truncate_pagecache(), which
2955  * must keep the partial page.  In contrast, we must get rid of
2956  * partial pages.
2957  * @holelen: size of prospective hole in bytes.  This will be rounded
2958  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2959  * end of the file.
2960  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2961  * but 0 when invalidating pagecache, don't throw away private data.
2962  */
2963 void unmap_mapping_range(struct address_space *mapping,
2964                 loff_t const holebegin, loff_t const holelen, int even_cows)
2965 {
2966         struct zap_details details;
2967         pgoff_t hba = holebegin >> PAGE_SHIFT;
2968         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2969
2970         /* Check for overflow. */
2971         if (sizeof(holelen) > sizeof(hlen)) {
2972                 long long holeend =
2973                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2974                 if (holeend & ~(long long)ULONG_MAX)
2975                         hlen = ULONG_MAX - hba + 1;
2976         }
2977
2978         details.check_mapping = even_cows? NULL: mapping;
2979         details.nonlinear_vma = NULL;
2980         details.first_index = hba;
2981         details.last_index = hba + hlen - 1;
2982         if (details.last_index < details.first_index)
2983                 details.last_index = ULONG_MAX;
2984
2985
2986         mutex_lock(&mapping->i_mmap_mutex);
2987         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2988                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2989         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2990                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2991         mutex_unlock(&mapping->i_mmap_mutex);
2992 }
2993 EXPORT_SYMBOL(unmap_mapping_range);
2994
2995 /*
2996  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2997  * but allow concurrent faults), and pte mapped but not yet locked.
2998  * We return with mmap_sem still held, but pte unmapped and unlocked.
2999  */
3000 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3001                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3002                 unsigned int flags, pte_t orig_pte)
3003 {
3004         spinlock_t *ptl;
3005         struct page *page, *swapcache;
3006         swp_entry_t entry;
3007         pte_t pte;
3008         int locked;
3009         struct mem_cgroup *ptr;
3010         int exclusive = 0;
3011         int ret = 0;
3012
3013         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3014                 goto out;
3015
3016         entry = pte_to_swp_entry(orig_pte);
3017         if (unlikely(non_swap_entry(entry))) {
3018                 if (is_migration_entry(entry)) {
3019                         migration_entry_wait(mm, pmd, address);
3020                 } else if (is_hwpoison_entry(entry)) {
3021                         ret = VM_FAULT_HWPOISON;
3022                 } else {
3023                         print_bad_pte(vma, address, orig_pte, NULL);
3024                         ret = VM_FAULT_SIGBUS;
3025                 }
3026                 goto out;
3027         }
3028         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3029         page = lookup_swap_cache(entry);
3030         if (!page) {
3031                 page = swapin_readahead(entry,
3032                                         GFP_HIGHUSER_MOVABLE, vma, address);
3033                 if (!page) {
3034                         /*
3035                          * Back out if somebody else faulted in this pte
3036                          * while we released the pte lock.
3037                          */
3038                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3039                         if (likely(pte_same(*page_table, orig_pte)))
3040                                 ret = VM_FAULT_OOM;
3041                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3042                         goto unlock;
3043                 }
3044
3045                 /* Had to read the page from swap area: Major fault */
3046                 ret = VM_FAULT_MAJOR;
3047                 count_vm_event(PGMAJFAULT);
3048                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3049         } else if (PageHWPoison(page)) {
3050                 /*
3051                  * hwpoisoned dirty swapcache pages are kept for killing
3052                  * owner processes (which may be unknown at hwpoison time)
3053                  */
3054                 ret = VM_FAULT_HWPOISON;
3055                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3056                 swapcache = page;
3057                 goto out_release;
3058         }
3059
3060         swapcache = page;
3061         locked = lock_page_or_retry(page, mm, flags);
3062
3063         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3064         if (!locked) {
3065                 ret |= VM_FAULT_RETRY;
3066                 goto out_release;
3067         }
3068
3069         /*
3070          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3071          * release the swapcache from under us.  The page pin, and pte_same
3072          * test below, are not enough to exclude that.  Even if it is still
3073          * swapcache, we need to check that the page's swap has not changed.
3074          */
3075         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3076                 goto out_page;
3077
3078         page = ksm_might_need_to_copy(page, vma, address);
3079         if (unlikely(!page)) {
3080                 ret = VM_FAULT_OOM;
3081                 page = swapcache;
3082                 goto out_page;
3083         }
3084
3085         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3086                 ret = VM_FAULT_OOM;
3087                 goto out_page;
3088         }
3089
3090         /*
3091          * Back out if somebody else already faulted in this pte.
3092          */
3093         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3094         if (unlikely(!pte_same(*page_table, orig_pte)))
3095                 goto out_nomap;
3096
3097         if (unlikely(!PageUptodate(page))) {
3098                 ret = VM_FAULT_SIGBUS;
3099                 goto out_nomap;
3100         }
3101
3102         /*
3103          * The page isn't present yet, go ahead with the fault.
3104          *
3105          * Be careful about the sequence of operations here.
3106          * To get its accounting right, reuse_swap_page() must be called
3107          * while the page is counted on swap but not yet in mapcount i.e.
3108          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3109          * must be called after the swap_free(), or it will never succeed.
3110          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3111          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3112          * in page->private. In this case, a record in swap_cgroup  is silently
3113          * discarded at swap_free().
3114          */
3115
3116         inc_mm_counter_fast(mm, MM_ANONPAGES);
3117         dec_mm_counter_fast(mm, MM_SWAPENTS);
3118         pte = mk_pte(page, vma->vm_page_prot);
3119         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3120                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3121                 flags &= ~FAULT_FLAG_WRITE;
3122                 ret |= VM_FAULT_WRITE;
3123                 exclusive = 1;
3124         }
3125         flush_icache_page(vma, page);
3126         set_pte_at(mm, address, page_table, pte);
3127         if (page == swapcache)
3128                 do_page_add_anon_rmap(page, vma, address, exclusive);
3129         else /* ksm created a completely new copy */
3130                 page_add_new_anon_rmap(page, vma, address);
3131         /* It's better to call commit-charge after rmap is established */
3132         mem_cgroup_commit_charge_swapin(page, ptr);
3133
3134         swap_free(entry);
3135         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3136                 try_to_free_swap(page);
3137         unlock_page(page);
3138         if (page != swapcache) {
3139                 /*
3140                  * Hold the lock to avoid the swap entry to be reused
3141                  * until we take the PT lock for the pte_same() check
3142                  * (to avoid false positives from pte_same). For
3143                  * further safety release the lock after the swap_free
3144                  * so that the swap count won't change under a
3145                  * parallel locked swapcache.
3146                  */
3147                 unlock_page(swapcache);
3148                 page_cache_release(swapcache);
3149         }
3150
3151         if (flags & FAULT_FLAG_WRITE) {
3152                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3153                 if (ret & VM_FAULT_ERROR)
3154                         ret &= VM_FAULT_ERROR;
3155                 goto out;
3156         }
3157
3158         /* No need to invalidate - it was non-present before */
3159         update_mmu_cache(vma, address, page_table);
3160 unlock:
3161         pte_unmap_unlock(page_table, ptl);
3162 out:
3163         return ret;
3164 out_nomap:
3165         mem_cgroup_cancel_charge_swapin(ptr);
3166         pte_unmap_unlock(page_table, ptl);
3167 out_page:
3168         unlock_page(page);
3169 out_release:
3170         page_cache_release(page);
3171         if (page != swapcache) {
3172                 unlock_page(swapcache);
3173                 page_cache_release(swapcache);
3174         }
3175         return ret;
3176 }
3177
3178 /*
3179  * This is like a special single-page "expand_{down|up}wards()",
3180  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3181  * doesn't hit another vma.
3182  */
3183 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3184 {
3185         address &= PAGE_MASK;
3186         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3187                 struct vm_area_struct *prev = vma->vm_prev;
3188
3189                 /*
3190                  * Is there a mapping abutting this one below?
3191                  *
3192                  * That's only ok if it's the same stack mapping
3193                  * that has gotten split..
3194                  */
3195                 if (prev && prev->vm_end == address)
3196                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3197
3198                 expand_downwards(vma, address - PAGE_SIZE);
3199         }
3200         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3201                 struct vm_area_struct *next = vma->vm_next;
3202
3203                 /* As VM_GROWSDOWN but s/below/above/ */
3204                 if (next && next->vm_start == address + PAGE_SIZE)
3205                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3206
3207                 expand_upwards(vma, address + PAGE_SIZE);
3208         }
3209         return 0;
3210 }
3211
3212 /*
3213  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3214  * but allow concurrent faults), and pte mapped but not yet locked.
3215  * We return with mmap_sem still held, but pte unmapped and unlocked.
3216  */
3217 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3218                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3219                 unsigned int flags)
3220 {
3221         struct page *page;
3222         spinlock_t *ptl;
3223         pte_t entry;
3224
3225         pte_unmap(page_table);
3226
3227         /* Check if we need to add a guard page to the stack */
3228         if (check_stack_guard_page(vma, address) < 0)
3229                 return VM_FAULT_SIGBUS;
3230
3231         /* Use the zero-page for reads */
3232         if (!(flags & FAULT_FLAG_WRITE)) {
3233                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3234                                                 vma->vm_page_prot));
3235                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3236                 if (!pte_none(*page_table))
3237                         goto unlock;
3238                 goto setpte;
3239         }
3240
3241         /* Allocate our own private page. */
3242         if (unlikely(anon_vma_prepare(vma)))
3243                 goto oom;
3244         page = alloc_zeroed_user_highpage_movable(vma, address);
3245         if (!page)
3246                 goto oom;
3247         /*
3248          * The memory barrier inside __SetPageUptodate makes sure that
3249          * preceeding stores to the page contents become visible before
3250          * the set_pte_at() write.
3251          */
3252         __SetPageUptodate(page);
3253
3254         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3255                 goto oom_free_page;
3256
3257         entry = mk_pte(page, vma->vm_page_prot);
3258         if (vma->vm_flags & VM_WRITE)
3259                 entry = pte_mkwrite(pte_mkdirty(entry));
3260
3261         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3262         if (!pte_none(*page_table))
3263                 goto release;
3264
3265         inc_mm_counter_fast(mm, MM_ANONPAGES);
3266         page_add_new_anon_rmap(page, vma, address);
3267 setpte:
3268         set_pte_at(mm, address, page_table, entry);
3269
3270         /* No need to invalidate - it was non-present before */
3271         update_mmu_cache(vma, address, page_table);
3272 unlock:
3273         pte_unmap_unlock(page_table, ptl);
3274         return 0;
3275 release:
3276         mem_cgroup_uncharge_page(page);
3277         page_cache_release(page);
3278         goto unlock;
3279 oom_free_page:
3280         page_cache_release(page);
3281 oom:
3282         return VM_FAULT_OOM;
3283 }
3284
3285 /*
3286  * __do_fault() tries to create a new page mapping. It aggressively
3287  * tries to share with existing pages, but makes a separate copy if
3288  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3289  * the next page fault.
3290  *
3291  * As this is called only for pages that do not currently exist, we
3292  * do not need to flush old virtual caches or the TLB.
3293  *
3294  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3295  * but allow concurrent faults), and pte neither mapped nor locked.
3296  * We return with mmap_sem still held, but pte unmapped and unlocked.
3297  */
3298 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3299                 unsigned long address, pmd_t *pmd,
3300                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3301 {
3302         pte_t *page_table;
3303         spinlock_t *ptl;
3304         struct page *page;
3305         struct page *cow_page;
3306         pte_t entry;
3307         int anon = 0;
3308         struct page *dirty_page = NULL;
3309         struct vm_fault vmf;
3310         int ret;
3311         int page_mkwrite = 0;
3312
3313         /*
3314          * If we do COW later, allocate page befor taking lock_page()
3315          * on the file cache page. This will reduce lock holding time.
3316          */
3317         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3318
3319                 if (unlikely(anon_vma_prepare(vma)))
3320                         return VM_FAULT_OOM;
3321
3322                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3323                 if (!cow_page)
3324                         return VM_FAULT_OOM;
3325
3326                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3327                         page_cache_release(cow_page);
3328                         return VM_FAULT_OOM;
3329                 }
3330         } else
3331                 cow_page = NULL;
3332
3333         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3334         vmf.pgoff = pgoff;
3335         vmf.flags = flags;
3336         vmf.page = NULL;
3337
3338         ret = vma->vm_ops->fault(vma, &vmf);
3339         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3340                             VM_FAULT_RETRY)))
3341                 goto uncharge_out;
3342
3343         if (unlikely(PageHWPoison(vmf.page))) {
3344                 if (ret & VM_FAULT_LOCKED)
3345                         unlock_page(vmf.page);
3346                 ret = VM_FAULT_HWPOISON;
3347                 goto uncharge_out;
3348         }
3349
3350         /*
3351          * For consistency in subsequent calls, make the faulted page always
3352          * locked.
3353          */
3354         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3355                 lock_page(vmf.page);
3356         else
3357                 VM_BUG_ON(!PageLocked(vmf.page));
3358
3359         /*
3360          * Should we do an early C-O-W break?
3361          */
3362         page = vmf.page;
3363         if (flags & FAULT_FLAG_WRITE) {
3364                 if (!(vma->vm_flags & VM_SHARED)) {
3365                         page = cow_page;
3366                         anon = 1;
3367                         copy_user_highpage(page, vmf.page, address, vma);
3368                         __SetPageUptodate(page);
3369                 } else {
3370                         /*
3371                          * If the page will be shareable, see if the backing
3372                          * address space wants to know that the page is about
3373                          * to become writable
3374                          */
3375                         if (vma->vm_ops->page_mkwrite) {
3376                                 int tmp;
3377
3378                                 unlock_page(page);
3379                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3380                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3381                                 if (unlikely(tmp &
3382                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3383                                         ret = tmp;
3384                                         goto unwritable_page;
3385                                 }
3386                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3387                                         lock_page(page);
3388                                         if (!page->mapping) {
3389                                                 ret = 0; /* retry the fault */
3390                                                 unlock_page(page);
3391                                                 goto unwritable_page;
3392                                         }
3393                                 } else
3394                                         VM_BUG_ON(!PageLocked(page));
3395                                 page_mkwrite = 1;
3396                         }
3397                 }
3398
3399         }
3400
3401         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3402
3403         /*
3404          * This silly early PAGE_DIRTY setting removes a race
3405          * due to the bad i386 page protection. But it's valid
3406          * for other architectures too.
3407          *
3408          * Note that if FAULT_FLAG_WRITE is set, we either now have
3409          * an exclusive copy of the page, or this is a shared mapping,
3410          * so we can make it writable and dirty to avoid having to
3411          * handle that later.
3412          */
3413         /* Only go through if we didn't race with anybody else... */
3414         if (likely(pte_same(*page_table, orig_pte))) {
3415                 flush_icache_page(vma, page);
3416                 entry = mk_pte(page, vma->vm_page_prot);
3417                 if (flags & FAULT_FLAG_WRITE)
3418                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3419                 if (anon) {
3420                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3421                         page_add_new_anon_rmap(page, vma, address);
3422                 } else {
3423                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3424                         page_add_file_rmap(page);
3425                         if (flags & FAULT_FLAG_WRITE) {
3426                                 dirty_page = page;
3427                                 get_page(dirty_page);
3428                         }
3429                 }
3430                 set_pte_at(mm, address, page_table, entry);
3431
3432                 /* no need to invalidate: a not-present page won't be cached */
3433                 update_mmu_cache(vma, address, page_table);
3434         } else {
3435                 if (cow_page)
3436                         mem_cgroup_uncharge_page(cow_page);
3437                 if (anon)
3438                         page_cache_release(page);
3439                 else
3440                         anon = 1; /* no anon but release faulted_page */
3441         }
3442
3443         pte_unmap_unlock(page_table, ptl);
3444
3445         if (dirty_page) {
3446                 struct address_space *mapping = page->mapping;
3447                 int dirtied = 0;
3448
3449                 if (set_page_dirty(dirty_page))
3450                         dirtied = 1;
3451                 unlock_page(dirty_page);
3452                 put_page(dirty_page);
3453                 if ((dirtied || page_mkwrite) && mapping) {
3454                         /*
3455                          * Some device drivers do not set page.mapping but still
3456                          * dirty their pages
3457                          */
3458                         balance_dirty_pages_ratelimited(mapping);
3459                 }
3460
3461                 /* file_update_time outside page_lock */
3462                 if (vma->vm_file && !page_mkwrite)
3463                         file_update_time(vma->vm_file);
3464         } else {
3465                 unlock_page(vmf.page);
3466                 if (anon)
3467                         page_cache_release(vmf.page);
3468         }
3469
3470         return ret;
3471
3472 unwritable_page:
3473         page_cache_release(page);
3474         return ret;
3475 uncharge_out:
3476         /* fs's fault handler get error */
3477         if (cow_page) {
3478                 mem_cgroup_uncharge_page(cow_page);
3479                 page_cache_release(cow_page);
3480         }
3481         return ret;
3482 }
3483
3484 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3485                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3486                 unsigned int flags, pte_t orig_pte)
3487 {
3488         pgoff_t pgoff = (((address & PAGE_MASK)
3489                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3490
3491         pte_unmap(page_table);
3492         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3493 }
3494
3495 /*
3496  * Fault of a previously existing named mapping. Repopulate the pte
3497  * from the encoded file_pte if possible. This enables swappable
3498  * nonlinear vmas.
3499  *
3500  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3501  * but allow concurrent faults), and pte mapped but not yet locked.
3502  * We return with mmap_sem still held, but pte unmapped and unlocked.
3503  */
3504 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3505                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3506                 unsigned int flags, pte_t orig_pte)
3507 {
3508         pgoff_t pgoff;
3509
3510         flags |= FAULT_FLAG_NONLINEAR;
3511
3512         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3513                 return 0;
3514
3515         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3516                 /*
3517                  * Page table corrupted: show pte and kill process.
3518                  */
3519                 print_bad_pte(vma, address, orig_pte, NULL);
3520                 return VM_FAULT_SIGBUS;
3521         }
3522
3523         pgoff = pte_to_pgoff(orig_pte);
3524         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3525 }
3526
3527 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3528                                 unsigned long addr, int current_nid)
3529 {
3530         get_page(page);
3531
3532         count_vm_numa_event(NUMA_HINT_FAULTS);
3533         if (current_nid == numa_node_id())
3534                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3535
3536         return mpol_misplaced(page, vma, addr);
3537 }
3538
3539 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3540                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3541 {
3542         struct page *page = NULL;
3543         spinlock_t *ptl;
3544         int current_nid = -1;
3545         int target_nid;
3546         bool migrated = false;
3547
3548         /*
3549         * The "pte" at this point cannot be used safely without
3550         * validation through pte_unmap_same(). It's of NUMA type but
3551         * the pfn may be screwed if the read is non atomic.
3552         *
3553         * ptep_modify_prot_start is not called as this is clearing
3554         * the _PAGE_NUMA bit and it is not really expected that there
3555         * would be concurrent hardware modifications to the PTE.
3556         */
3557         ptl = pte_lockptr(mm, pmd);
3558         spin_lock(ptl);
3559         if (unlikely(!pte_same(*ptep, pte))) {
3560                 pte_unmap_unlock(ptep, ptl);
3561                 goto out;
3562         }
3563
3564         pte = pte_mknonnuma(pte);
3565         set_pte_at(mm, addr, ptep, pte);
3566         update_mmu_cache(vma, addr, ptep);
3567
3568         page = vm_normal_page(vma, addr, pte);
3569         if (!page) {
3570                 pte_unmap_unlock(ptep, ptl);
3571                 return 0;
3572         }
3573
3574         current_nid = page_to_nid(page);
3575         target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3576         pte_unmap_unlock(ptep, ptl);
3577         if (target_nid == -1) {
3578                 /*
3579                  * Account for the fault against the current node if it not
3580                  * being replaced regardless of where the page is located.
3581                  */
3582                 current_nid = numa_node_id();
3583                 put_page(page);
3584                 goto out;
3585         }
3586
3587         /* Migrate to the requested node */
3588         migrated = migrate_misplaced_page(page, target_nid);
3589         if (migrated)
3590                 current_nid = target_nid;
3591
3592 out:
3593         if (current_nid != -1)
3594                 task_numa_fault(current_nid, 1, migrated);
3595         return 0;
3596 }
3597
3598 /* NUMA hinting page fault entry point for regular pmds */
3599 #ifdef CONFIG_NUMA_BALANCING
3600 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3601                      unsigned long addr, pmd_t *pmdp)
3602 {
3603         pmd_t pmd;
3604         pte_t *pte, *orig_pte;
3605         unsigned long _addr = addr & PMD_MASK;
3606         unsigned long offset;
3607         spinlock_t *ptl;
3608         bool numa = false;
3609         int local_nid = numa_node_id();
3610
3611         spin_lock(&mm->page_table_lock);
3612         pmd = *pmdp;
3613         if (pmd_numa(pmd)) {
3614                 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3615                 numa = true;
3616         }
3617         spin_unlock(&mm->page_table_lock);
3618
3619         if (!numa)
3620                 return 0;
3621
3622         /* we're in a page fault so some vma must be in the range */
3623         BUG_ON(!vma);
3624         BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3625         offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3626         VM_BUG_ON(offset >= PMD_SIZE);
3627         orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3628         pte += offset >> PAGE_SHIFT;
3629         for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3630                 pte_t pteval = *pte;
3631                 struct page *page;
3632                 int curr_nid = local_nid;
3633                 int target_nid;
3634                 bool migrated;
3635                 if (!pte_present(pteval))
3636                         continue;
3637                 if (!pte_numa(pteval))
3638                         continue;
3639                 if (addr >= vma->vm_end) {
3640                         vma = find_vma(mm, addr);
3641                         /* there's a pte present so there must be a vma */
3642                         BUG_ON(!vma);
3643                         BUG_ON(addr < vma->vm_start);
3644                 }
3645                 if (pte_numa(pteval)) {
3646                         pteval = pte_mknonnuma(pteval);
3647                         set_pte_at(mm, addr, pte, pteval);
3648                 }
3649                 page = vm_normal_page(vma, addr, pteval);
3650                 if (unlikely(!page))
3651                         continue;
3652                 /* only check non-shared pages */
3653                 if (unlikely(page_mapcount(page) != 1))
3654                         continue;
3655
3656                 /*
3657                  * Note that the NUMA fault is later accounted to either
3658                  * the node that is currently running or where the page is
3659                  * migrated to.
3660                  */
3661                 curr_nid = local_nid;
3662                 target_nid = numa_migrate_prep(page, vma, addr,
3663                                                page_to_nid(page));
3664                 if (target_nid == -1) {
3665                         put_page(page);
3666                         continue;
3667                 }
3668
3669                 /* Migrate to the requested node */
3670                 pte_unmap_unlock(pte, ptl);
3671                 migrated = migrate_misplaced_page(page, target_nid);
3672                 if (migrated)
3673                         curr_nid = target_nid;
3674                 task_numa_fault(curr_nid, 1, migrated);
3675
3676                 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3677         }
3678         pte_unmap_unlock(orig_pte, ptl);
3679
3680         return 0;
3681 }
3682 #else
3683 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3684                      unsigned long addr, pmd_t *pmdp)
3685 {
3686         BUG();
3687         return 0;
3688 }
3689 #endif /* CONFIG_NUMA_BALANCING */
3690
3691 /*
3692  * These routines also need to handle stuff like marking pages dirty
3693  * and/or accessed for architectures that don't do it in hardware (most
3694  * RISC architectures).  The early dirtying is also good on the i386.
3695  *
3696  * There is also a hook called "update_mmu_cache()" that architectures
3697  * with external mmu caches can use to update those (ie the Sparc or
3698  * PowerPC hashed page tables that act as extended TLBs).
3699  *
3700  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3701  * but allow concurrent faults), and pte mapped but not yet locked.
3702  * We return with mmap_sem still held, but pte unmapped and unlocked.
3703  */
3704 int handle_pte_fault(struct mm_struct *mm,
3705                      struct vm_area_struct *vma, unsigned long address,
3706                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3707 {
3708         pte_t entry;
3709         spinlock_t *ptl;
3710
3711         entry = *pte;
3712         if (!pte_present(entry)) {
3713                 if (pte_none(entry)) {
3714                         if (vma->vm_ops) {
3715                                 if (likely(vma->vm_ops->fault))
3716                                         return do_linear_fault(mm, vma, address,
3717                                                 pte, pmd, flags, entry);
3718                         }
3719                         return do_anonymous_page(mm, vma, address,
3720                                                  pte, pmd, flags);
3721                 }
3722                 if (pte_file(entry))
3723                         return do_nonlinear_fault(mm, vma, address,
3724                                         pte, pmd, flags, entry);
3725                 return do_swap_page(mm, vma, address,
3726                                         pte, pmd, flags, entry);
3727         }
3728
3729         if (pte_numa(entry))
3730                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3731
3732         ptl = pte_lockptr(mm, pmd);
3733         spin_lock(ptl);
3734         if (unlikely(!pte_same(*pte, entry)))
3735                 goto unlock;
3736         if (flags & FAULT_FLAG_WRITE) {
3737                 if (!pte_write(entry))
3738                         return do_wp_page(mm, vma, address,
3739                                         pte, pmd, ptl, entry);
3740                 entry = pte_mkdirty(entry);
3741         }
3742         entry = pte_mkyoung(entry);
3743         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3744                 update_mmu_cache(vma, address, pte);
3745         } else {
3746                 /*
3747                  * This is needed only for protection faults but the arch code
3748                  * is not yet telling us if this is a protection fault or not.
3749                  * This still avoids useless tlb flushes for .text page faults
3750                  * with threads.
3751                  */
3752                 if (flags & FAULT_FLAG_WRITE)
3753                         flush_tlb_fix_spurious_fault(vma, address);
3754         }
3755 unlock:
3756         pte_unmap_unlock(pte, ptl);
3757         return 0;
3758 }
3759
3760 /*
3761  * By the time we get here, we already hold the mm semaphore
3762  */
3763 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3764                 unsigned long address, unsigned int flags)
3765 {
3766         pgd_t *pgd;
3767         pud_t *pud;
3768         pmd_t *pmd;
3769         pte_t *pte;
3770
3771         __set_current_state(TASK_RUNNING);
3772
3773         count_vm_event(PGFAULT);
3774         mem_cgroup_count_vm_event(mm, PGFAULT);
3775
3776         /* do counter updates before entering really critical section. */
3777         check_sync_rss_stat(current);
3778
3779         if (unlikely(is_vm_hugetlb_page(vma)))
3780                 return hugetlb_fault(mm, vma, address, flags);
3781
3782 retry:
3783         pgd = pgd_offset(mm, address);
3784         pud = pud_alloc(mm, pgd, address);
3785         if (!pud)
3786                 return VM_FAULT_OOM;
3787         pmd = pmd_alloc(mm, pud, address);
3788         if (!pmd)
3789                 return VM_FAULT_OOM;
3790         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3791                 if (!vma->vm_ops)
3792                         return do_huge_pmd_anonymous_page(mm, vma, address,
3793                                                           pmd, flags);
3794         } else {
3795                 pmd_t orig_pmd = *pmd;
3796                 int ret;
3797
3798                 barrier();
3799                 if (pmd_trans_huge(orig_pmd)) {
3800                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3801
3802                         /*
3803                          * If the pmd is splitting, return and retry the
3804                          * the fault.  Alternative: wait until the split
3805                          * is done, and goto retry.
3806                          */
3807                         if (pmd_trans_splitting(orig_pmd))
3808                                 return 0;
3809
3810                         if (pmd_numa(orig_pmd))
3811                                 return do_huge_pmd_numa_page(mm, vma, address,
3812                                                              orig_pmd, pmd);
3813
3814                         if (dirty && !pmd_write(orig_pmd)) {
3815                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3816                                                           orig_pmd);
3817                                 /*
3818                                  * If COW results in an oom, the huge pmd will
3819                                  * have been split, so retry the fault on the
3820                                  * pte for a smaller charge.
3821                                  */
3822                                 if (unlikely(ret & VM_FAULT_OOM))
3823                                         goto retry;
3824                                 return ret;
3825                         } else {
3826                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3827                                                       orig_pmd, dirty);
3828                         }
3829
3830                         return 0;
3831                 }
3832         }
3833
3834         if (pmd_numa(*pmd))
3835                 return do_pmd_numa_page(mm, vma, address, pmd);
3836
3837         /*
3838          * Use __pte_alloc instead of pte_alloc_map, because we can't
3839          * run pte_offset_map on the pmd, if an huge pmd could
3840          * materialize from under us from a different thread.
3841          */
3842         if (unlikely(pmd_none(*pmd)) &&
3843             unlikely(__pte_alloc(mm, vma, pmd, address)))
3844                 return VM_FAULT_OOM;
3845         /* if an huge pmd materialized from under us just retry later */
3846         if (unlikely(pmd_trans_huge(*pmd)))
3847                 return 0;
3848         /*
3849          * A regular pmd is established and it can't morph into a huge pmd
3850          * from under us anymore at this point because we hold the mmap_sem
3851          * read mode and khugepaged takes it in write mode. So now it's
3852          * safe to run pte_offset_map().
3853          */
3854         pte = pte_offset_map(pmd, address);
3855
3856         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3857 }
3858
3859 #ifndef __PAGETABLE_PUD_FOLDED
3860 /*
3861  * Allocate page upper directory.
3862  * We've already handled the fast-path in-line.
3863  */
3864 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3865 {
3866         pud_t *new = pud_alloc_one(mm, address);
3867         if (!new)
3868                 return -ENOMEM;
3869
3870         smp_wmb(); /* See comment in __pte_alloc */
3871
3872         spin_lock(&mm->page_table_lock);
3873         if (pgd_present(*pgd))          /* Another has populated it */
3874                 pud_free(mm, new);
3875         else
3876                 pgd_populate(mm, pgd, new);
3877         spin_unlock(&mm->page_table_lock);
3878         return 0;
3879 }
3880 #endif /* __PAGETABLE_PUD_FOLDED */
3881
3882 #ifndef __PAGETABLE_PMD_FOLDED
3883 /*
3884  * Allocate page middle directory.
3885  * We've already handled the fast-path in-line.
3886  */
3887 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3888 {
3889         pmd_t *new = pmd_alloc_one(mm, address);
3890         if (!new)
3891                 return -ENOMEM;
3892
3893         smp_wmb(); /* See comment in __pte_alloc */
3894
3895         spin_lock(&mm->page_table_lock);
3896 #ifndef __ARCH_HAS_4LEVEL_HACK
3897         if (pud_present(*pud))          /* Another has populated it */
3898                 pmd_free(mm, new);
3899         else
3900                 pud_populate(mm, pud, new);
3901 #else
3902         if (pgd_present(*pud))          /* Another has populated it */
3903                 pmd_free(mm, new);
3904         else
3905                 pgd_populate(mm, pud, new);
3906 #endif /* __ARCH_HAS_4LEVEL_HACK */
3907         spin_unlock(&mm->page_table_lock);
3908         return 0;
3909 }
3910 #endif /* __PAGETABLE_PMD_FOLDED */
3911
3912 #if !defined(__HAVE_ARCH_GATE_AREA)
3913
3914 #if defined(AT_SYSINFO_EHDR)
3915 static struct vm_area_struct gate_vma;
3916
3917 static int __init gate_vma_init(void)
3918 {
3919         gate_vma.vm_mm = NULL;
3920         gate_vma.vm_start = FIXADDR_USER_START;
3921         gate_vma.vm_end = FIXADDR_USER_END;
3922         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3923         gate_vma.vm_page_prot = __P101;
3924
3925         return 0;
3926 }
3927 __initcall(gate_vma_init);
3928 #endif
3929
3930 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3931 {
3932 #ifdef AT_SYSINFO_EHDR
3933         return &gate_vma;
3934 #else
3935         return NULL;
3936 #endif
3937 }
3938
3939 int in_gate_area_no_mm(unsigned long addr)
3940 {
3941 #ifdef AT_SYSINFO_EHDR
3942         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3943                 return 1;
3944 #endif
3945         return 0;
3946 }
3947
3948 #endif  /* __HAVE_ARCH_GATE_AREA */
3949
3950 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3951                 pte_t **ptepp, spinlock_t **ptlp)
3952 {
3953         pgd_t *pgd;
3954         pud_t *pud;
3955         pmd_t *pmd;
3956         pte_t *ptep;
3957
3958         pgd = pgd_offset(mm, address);
3959         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3960                 goto out;
3961
3962         pud = pud_offset(pgd, address);
3963         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3964                 goto out;
3965
3966         pmd = pmd_offset(pud, address);
3967         VM_BUG_ON(pmd_trans_huge(*pmd));
3968         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3969                 goto out;
3970
3971         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3972         if (pmd_huge(*pmd))
3973                 goto out;
3974
3975         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3976         if (!ptep)
3977                 goto out;
3978         if (!pte_present(*ptep))
3979                 goto unlock;
3980         *ptepp = ptep;
3981         return 0;
3982 unlock:
3983         pte_unmap_unlock(ptep, *ptlp);
3984 out:
3985         return -EINVAL;
3986 }
3987
3988 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3989                              pte_t **ptepp, spinlock_t **ptlp)
3990 {
3991         int res;
3992
3993         /* (void) is needed to make gcc happy */
3994         (void) __cond_lock(*ptlp,
3995                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3996         return res;
3997 }
3998
3999 /**
4000  * follow_pfn - look up PFN at a user virtual address
4001  * @vma: memory mapping
4002  * @address: user virtual address
4003  * @pfn: location to store found PFN
4004  *
4005  * Only IO mappings and raw PFN mappings are allowed.
4006  *
4007  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4008  */
4009 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4010         unsigned long *pfn)
4011 {
4012         int ret = -EINVAL;
4013         spinlock_t *ptl;
4014         pte_t *ptep;
4015
4016         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4017                 return ret;
4018
4019         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4020         if (ret)
4021                 return ret;
4022         *pfn = pte_pfn(*ptep);
4023         pte_unmap_unlock(ptep, ptl);
4024         return 0;
4025 }
4026 EXPORT_SYMBOL(follow_pfn);
4027
4028 #ifdef CONFIG_HAVE_IOREMAP_PROT
4029 int follow_phys(struct vm_area_struct *vma,
4030                 unsigned long address, unsigned int flags,
4031                 unsigned long *prot, resource_size_t *phys)
4032 {
4033         int ret = -EINVAL;
4034         pte_t *ptep, pte;
4035         spinlock_t *ptl;
4036
4037         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4038                 goto out;
4039
4040         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4041                 goto out;
4042         pte = *ptep;
4043
4044         if ((flags & FOLL_WRITE) && !pte_write(pte))
4045                 goto unlock;
4046
4047         *prot = pgprot_val(pte_pgprot(pte));
4048         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4049
4050         ret = 0;
4051 unlock:
4052         pte_unmap_unlock(ptep, ptl);
4053 out:
4054         return ret;
4055 }
4056
4057 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4058                         void *buf, int len, int write)
4059 {
4060         resource_size_t phys_addr;
4061         unsigned long prot = 0;
4062         void __iomem *maddr;
4063         int offset = addr & (PAGE_SIZE-1);
4064
4065         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4066                 return -EINVAL;
4067
4068         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4069         if (write)
4070                 memcpy_toio(maddr + offset, buf, len);
4071         else
4072                 memcpy_fromio(buf, maddr + offset, len);
4073         iounmap(maddr);
4074
4075         return len;
4076 }
4077 #endif
4078
4079 /*
4080  * Access another process' address space as given in mm.  If non-NULL, use the
4081  * given task for page fault accounting.
4082  */
4083 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4084                 unsigned long addr, void *buf, int len, int write)
4085 {
4086         struct vm_area_struct *vma;
4087         void *old_buf = buf;
4088
4089         down_read(&mm->mmap_sem);
4090         /* ignore errors, just check how much was successfully transferred */
4091         while (len) {
4092                 int bytes, ret, offset;
4093                 void *maddr;
4094                 struct page *page = NULL;
4095
4096                 ret = get_user_pages(tsk, mm, addr, 1,
4097                                 write, 1, &page, &vma);
4098                 if (ret <= 0) {
4099                         /*
4100                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4101                          * we can access using slightly different code.
4102                          */
4103 #ifdef CONFIG_HAVE_IOREMAP_PROT
4104                         vma = find_vma(mm, addr);
4105                         if (!vma || vma->vm_start > addr)
4106                                 break;
4107                         if (vma->vm_ops && vma->vm_ops->access)
4108                                 ret = vma->vm_ops->access(vma, addr, buf,
4109                                                           len, write);
4110                         if (ret <= 0)
4111 #endif
4112                                 break;
4113                         bytes = ret;
4114                 } else {
4115                         bytes = len;
4116                         offset = addr & (PAGE_SIZE-1);
4117                         if (bytes > PAGE_SIZE-offset)
4118                                 bytes = PAGE_SIZE-offset;
4119
4120                         maddr = kmap(page);
4121                         if (write) {
4122                                 copy_to_user_page(vma, page, addr,
4123                                                   maddr + offset, buf, bytes);
4124                                 set_page_dirty_lock(page);
4125                         } else {
4126                                 copy_from_user_page(vma, page, addr,
4127                                                     buf, maddr + offset, bytes);
4128                         }
4129                         kunmap(page);
4130                         page_cache_release(page);
4131                 }
4132                 len -= bytes;
4133                 buf += bytes;
4134                 addr += bytes;
4135         }
4136         up_read(&mm->mmap_sem);
4137
4138         return buf - old_buf;
4139 }
4140
4141 /**
4142  * access_remote_vm - access another process' address space
4143  * @mm:         the mm_struct of the target address space
4144  * @addr:       start address to access
4145  * @buf:        source or destination buffer
4146  * @len:        number of bytes to transfer
4147  * @write:      whether the access is a write
4148  *
4149  * The caller must hold a reference on @mm.
4150  */
4151 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4152                 void *buf, int len, int write)
4153 {
4154         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4155 }
4156
4157 /*
4158  * Access another process' address space.
4159  * Source/target buffer must be kernel space,
4160  * Do not walk the page table directly, use get_user_pages
4161  */
4162 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4163                 void *buf, int len, int write)
4164 {
4165         struct mm_struct *mm;
4166         int ret;
4167
4168         mm = get_task_mm(tsk);
4169         if (!mm)
4170                 return 0;
4171
4172         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4173         mmput(mm);
4174
4175         return ret;
4176 }
4177
4178 /*
4179  * Print the name of a VMA.
4180  */
4181 void print_vma_addr(char *prefix, unsigned long ip)
4182 {
4183         struct mm_struct *mm = current->mm;
4184         struct vm_area_struct *vma;
4185
4186         /*
4187          * Do not print if we are in atomic
4188          * contexts (in exception stacks, etc.):
4189          */
4190         if (preempt_count())
4191                 return;
4192
4193         down_read(&mm->mmap_sem);
4194         vma = find_vma(mm, ip);
4195         if (vma && vma->vm_file) {
4196                 struct file *f = vma->vm_file;
4197                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4198                 if (buf) {
4199                         char *p;
4200
4201                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4202                         if (IS_ERR(p))
4203                                 p = "?";
4204                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4205                                         vma->vm_start,
4206                                         vma->vm_end - vma->vm_start);
4207                         free_page((unsigned long)buf);
4208                 }
4209         }
4210         up_read(&mm->mmap_sem);
4211 }
4212
4213 #ifdef CONFIG_PROVE_LOCKING
4214 void might_fault(void)
4215 {
4216         /*
4217          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4218          * holding the mmap_sem, this is safe because kernel memory doesn't
4219          * get paged out, therefore we'll never actually fault, and the
4220          * below annotations will generate false positives.
4221          */
4222         if (segment_eq(get_fs(), KERNEL_DS))
4223                 return;
4224
4225         might_sleep();
4226         /*
4227          * it would be nicer only to annotate paths which are not under
4228          * pagefault_disable, however that requires a larger audit and
4229          * providing helpers like get_user_atomic.
4230          */
4231         if (!in_atomic() && current->mm)
4232                 might_lock_read(&current->mm->mmap_sem);
4233 }
4234 EXPORT_SYMBOL(might_fault);
4235 #endif
4236
4237 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4238 static void clear_gigantic_page(struct page *page,
4239                                 unsigned long addr,
4240                                 unsigned int pages_per_huge_page)
4241 {
4242         int i;
4243         struct page *p = page;
4244
4245         might_sleep();
4246         for (i = 0; i < pages_per_huge_page;
4247              i++, p = mem_map_next(p, page, i)) {
4248                 cond_resched();
4249                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4250         }
4251 }
4252 void clear_huge_page(struct page *page,
4253                      unsigned long addr, unsigned int pages_per_huge_page)
4254 {
4255         int i;
4256
4257         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4258                 clear_gigantic_page(page, addr, pages_per_huge_page);
4259                 return;
4260         }
4261
4262         might_sleep();
4263         for (i = 0; i < pages_per_huge_page; i++) {
4264                 cond_resched();
4265                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4266         }
4267 }
4268
4269 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4270                                     unsigned long addr,
4271                                     struct vm_area_struct *vma,
4272                                     unsigned int pages_per_huge_page)
4273 {
4274         int i;
4275         struct page *dst_base = dst;
4276         struct page *src_base = src;
4277
4278         for (i = 0; i < pages_per_huge_page; ) {
4279                 cond_resched();
4280                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4281
4282                 i++;
4283                 dst = mem_map_next(dst, dst_base, i);
4284                 src = mem_map_next(src, src_base, i);
4285         }
4286 }
4287
4288 void copy_user_huge_page(struct page *dst, struct page *src,
4289                          unsigned long addr, struct vm_area_struct *vma,
4290                          unsigned int pages_per_huge_page)
4291 {
4292         int i;
4293
4294         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4295                 copy_user_gigantic_page(dst, src, addr, vma,
4296                                         pages_per_huge_page);
4297                 return;
4298         }
4299
4300         might_sleep();
4301         for (i = 0; i < pages_per_huge_page; i++) {
4302                 cond_resched();
4303                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4304         }
4305 }
4306 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */