]> Pileus Git - ~andy/linux/blob - mm/hugetlb.c
Linux 3.14
[~andy/linux] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52  * free_huge_pages, and surplus_huge_pages.
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation_mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 long seg_from;
277                 long seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << huge_page_shift(hstate);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440 {
441         VM_BUG_ON(!is_vm_hugetlb_page(vma));
442         if (!(vma->vm_flags & VM_MAYSHARE))
443                 vma->vm_private_data = (void *)0;
444 }
445
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448 {
449         if (vma->vm_flags & VM_NORESERVE) {
450                 /*
451                  * This address is already reserved by other process(chg == 0),
452                  * so, we should decrement reserved count. Without decrementing,
453                  * reserve count remains after releasing inode, because this
454                  * allocated page will go into page cache and is regarded as
455                  * coming from reserved pool in releasing step.  Currently, we
456                  * don't have any other solution to deal with this situation
457                  * properly, so add work-around here.
458                  */
459                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460                         return 1;
461                 else
462                         return 0;
463         }
464
465         /* Shared mappings always use reserves */
466         if (vma->vm_flags & VM_MAYSHARE)
467                 return 1;
468
469         /*
470          * Only the process that called mmap() has reserves for
471          * private mappings.
472          */
473         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474                 return 1;
475
476         return 0;
477 }
478
479 static void enqueue_huge_page(struct hstate *h, struct page *page)
480 {
481         int nid = page_to_nid(page);
482         list_move(&page->lru, &h->hugepage_freelists[nid]);
483         h->free_huge_pages++;
484         h->free_huge_pages_node[nid]++;
485 }
486
487 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
488 {
489         struct page *page;
490
491         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
492                 if (!is_migrate_isolate_page(page))
493                         break;
494         /*
495          * if 'non-isolated free hugepage' not found on the list,
496          * the allocation fails.
497          */
498         if (&h->hugepage_freelists[nid] == &page->lru)
499                 return NULL;
500         list_move(&page->lru, &h->hugepage_activelist);
501         set_page_refcounted(page);
502         h->free_huge_pages--;
503         h->free_huge_pages_node[nid]--;
504         return page;
505 }
506
507 /* Movability of hugepages depends on migration support. */
508 static inline gfp_t htlb_alloc_mask(struct hstate *h)
509 {
510         if (hugepages_treat_as_movable || hugepage_migration_support(h))
511                 return GFP_HIGHUSER_MOVABLE;
512         else
513                 return GFP_HIGHUSER;
514 }
515
516 static struct page *dequeue_huge_page_vma(struct hstate *h,
517                                 struct vm_area_struct *vma,
518                                 unsigned long address, int avoid_reserve,
519                                 long chg)
520 {
521         struct page *page = NULL;
522         struct mempolicy *mpol;
523         nodemask_t *nodemask;
524         struct zonelist *zonelist;
525         struct zone *zone;
526         struct zoneref *z;
527         unsigned int cpuset_mems_cookie;
528
529         /*
530          * A child process with MAP_PRIVATE mappings created by their parent
531          * have no page reserves. This check ensures that reservations are
532          * not "stolen". The child may still get SIGKILLed
533          */
534         if (!vma_has_reserves(vma, chg) &&
535                         h->free_huge_pages - h->resv_huge_pages == 0)
536                 goto err;
537
538         /* If reserves cannot be used, ensure enough pages are in the pool */
539         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
540                 goto err;
541
542 retry_cpuset:
543         cpuset_mems_cookie = get_mems_allowed();
544         zonelist = huge_zonelist(vma, address,
545                                         htlb_alloc_mask(h), &mpol, &nodemask);
546
547         for_each_zone_zonelist_nodemask(zone, z, zonelist,
548                                                 MAX_NR_ZONES - 1, nodemask) {
549                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
550                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
551                         if (page) {
552                                 if (avoid_reserve)
553                                         break;
554                                 if (!vma_has_reserves(vma, chg))
555                                         break;
556
557                                 SetPagePrivate(page);
558                                 h->resv_huge_pages--;
559                                 break;
560                         }
561                 }
562         }
563
564         mpol_cond_put(mpol);
565         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
566                 goto retry_cpuset;
567         return page;
568
569 err:
570         return NULL;
571 }
572
573 static void update_and_free_page(struct hstate *h, struct page *page)
574 {
575         int i;
576
577         VM_BUG_ON(h->order >= MAX_ORDER);
578
579         h->nr_huge_pages--;
580         h->nr_huge_pages_node[page_to_nid(page)]--;
581         for (i = 0; i < pages_per_huge_page(h); i++) {
582                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
583                                 1 << PG_referenced | 1 << PG_dirty |
584                                 1 << PG_active | 1 << PG_reserved |
585                                 1 << PG_private | 1 << PG_writeback);
586         }
587         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
588         set_compound_page_dtor(page, NULL);
589         set_page_refcounted(page);
590         arch_release_hugepage(page);
591         __free_pages(page, huge_page_order(h));
592 }
593
594 struct hstate *size_to_hstate(unsigned long size)
595 {
596         struct hstate *h;
597
598         for_each_hstate(h) {
599                 if (huge_page_size(h) == size)
600                         return h;
601         }
602         return NULL;
603 }
604
605 static void free_huge_page(struct page *page)
606 {
607         /*
608          * Can't pass hstate in here because it is called from the
609          * compound page destructor.
610          */
611         struct hstate *h = page_hstate(page);
612         int nid = page_to_nid(page);
613         struct hugepage_subpool *spool =
614                 (struct hugepage_subpool *)page_private(page);
615         bool restore_reserve;
616
617         set_page_private(page, 0);
618         page->mapping = NULL;
619         BUG_ON(page_count(page));
620         BUG_ON(page_mapcount(page));
621         restore_reserve = PagePrivate(page);
622         ClearPagePrivate(page);
623
624         spin_lock(&hugetlb_lock);
625         hugetlb_cgroup_uncharge_page(hstate_index(h),
626                                      pages_per_huge_page(h), page);
627         if (restore_reserve)
628                 h->resv_huge_pages++;
629
630         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631                 /* remove the page from active list */
632                 list_del(&page->lru);
633                 update_and_free_page(h, page);
634                 h->surplus_huge_pages--;
635                 h->surplus_huge_pages_node[nid]--;
636         } else {
637                 arch_clear_hugepage_flags(page);
638                 enqueue_huge_page(h, page);
639         }
640         spin_unlock(&hugetlb_lock);
641         hugepage_subpool_put_pages(spool, 1);
642 }
643
644 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
645 {
646         INIT_LIST_HEAD(&page->lru);
647         set_compound_page_dtor(page, free_huge_page);
648         spin_lock(&hugetlb_lock);
649         set_hugetlb_cgroup(page, NULL);
650         h->nr_huge_pages++;
651         h->nr_huge_pages_node[nid]++;
652         spin_unlock(&hugetlb_lock);
653         put_page(page); /* free it into the hugepage allocator */
654 }
655
656 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
657 {
658         int i;
659         int nr_pages = 1 << order;
660         struct page *p = page + 1;
661
662         /* we rely on prep_new_huge_page to set the destructor */
663         set_compound_order(page, order);
664         __SetPageHead(page);
665         __ClearPageReserved(page);
666         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
667                 __SetPageTail(p);
668                 /*
669                  * For gigantic hugepages allocated through bootmem at
670                  * boot, it's safer to be consistent with the not-gigantic
671                  * hugepages and clear the PG_reserved bit from all tail pages
672                  * too.  Otherwse drivers using get_user_pages() to access tail
673                  * pages may get the reference counting wrong if they see
674                  * PG_reserved set on a tail page (despite the head page not
675                  * having PG_reserved set).  Enforcing this consistency between
676                  * head and tail pages allows drivers to optimize away a check
677                  * on the head page when they need know if put_page() is needed
678                  * after get_user_pages().
679                  */
680                 __ClearPageReserved(p);
681                 set_page_count(p, 0);
682                 p->first_page = page;
683         }
684 }
685
686 /*
687  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688  * transparent huge pages.  See the PageTransHuge() documentation for more
689  * details.
690  */
691 int PageHuge(struct page *page)
692 {
693         if (!PageCompound(page))
694                 return 0;
695
696         page = compound_head(page);
697         return get_compound_page_dtor(page) == free_huge_page;
698 }
699 EXPORT_SYMBOL_GPL(PageHuge);
700
701 /*
702  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
703  * normal or transparent huge pages.
704  */
705 int PageHeadHuge(struct page *page_head)
706 {
707         if (!PageHead(page_head))
708                 return 0;
709
710         return get_compound_page_dtor(page_head) == free_huge_page;
711 }
712
713 pgoff_t __basepage_index(struct page *page)
714 {
715         struct page *page_head = compound_head(page);
716         pgoff_t index = page_index(page_head);
717         unsigned long compound_idx;
718
719         if (!PageHuge(page_head))
720                 return page_index(page);
721
722         if (compound_order(page_head) >= MAX_ORDER)
723                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
724         else
725                 compound_idx = page - page_head;
726
727         return (index << compound_order(page_head)) + compound_idx;
728 }
729
730 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
731 {
732         struct page *page;
733
734         if (h->order >= MAX_ORDER)
735                 return NULL;
736
737         page = alloc_pages_exact_node(nid,
738                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
739                                                 __GFP_REPEAT|__GFP_NOWARN,
740                 huge_page_order(h));
741         if (page) {
742                 if (arch_prepare_hugepage(page)) {
743                         __free_pages(page, huge_page_order(h));
744                         return NULL;
745                 }
746                 prep_new_huge_page(h, page, nid);
747         }
748
749         return page;
750 }
751
752 /*
753  * common helper functions for hstate_next_node_to_{alloc|free}.
754  * We may have allocated or freed a huge page based on a different
755  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
756  * be outside of *nodes_allowed.  Ensure that we use an allowed
757  * node for alloc or free.
758  */
759 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
760 {
761         nid = next_node(nid, *nodes_allowed);
762         if (nid == MAX_NUMNODES)
763                 nid = first_node(*nodes_allowed);
764         VM_BUG_ON(nid >= MAX_NUMNODES);
765
766         return nid;
767 }
768
769 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
770 {
771         if (!node_isset(nid, *nodes_allowed))
772                 nid = next_node_allowed(nid, nodes_allowed);
773         return nid;
774 }
775
776 /*
777  * returns the previously saved node ["this node"] from which to
778  * allocate a persistent huge page for the pool and advance the
779  * next node from which to allocate, handling wrap at end of node
780  * mask.
781  */
782 static int hstate_next_node_to_alloc(struct hstate *h,
783                                         nodemask_t *nodes_allowed)
784 {
785         int nid;
786
787         VM_BUG_ON(!nodes_allowed);
788
789         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
790         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
791
792         return nid;
793 }
794
795 /*
796  * helper for free_pool_huge_page() - return the previously saved
797  * node ["this node"] from which to free a huge page.  Advance the
798  * next node id whether or not we find a free huge page to free so
799  * that the next attempt to free addresses the next node.
800  */
801 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
802 {
803         int nid;
804
805         VM_BUG_ON(!nodes_allowed);
806
807         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
808         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
809
810         return nid;
811 }
812
813 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
814         for (nr_nodes = nodes_weight(*mask);                            \
815                 nr_nodes > 0 &&                                         \
816                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
817                 nr_nodes--)
818
819 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
820         for (nr_nodes = nodes_weight(*mask);                            \
821                 nr_nodes > 0 &&                                         \
822                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
823                 nr_nodes--)
824
825 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
826 {
827         struct page *page;
828         int nr_nodes, node;
829         int ret = 0;
830
831         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
832                 page = alloc_fresh_huge_page_node(h, node);
833                 if (page) {
834                         ret = 1;
835                         break;
836                 }
837         }
838
839         if (ret)
840                 count_vm_event(HTLB_BUDDY_PGALLOC);
841         else
842                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
843
844         return ret;
845 }
846
847 /*
848  * Free huge page from pool from next node to free.
849  * Attempt to keep persistent huge pages more or less
850  * balanced over allowed nodes.
851  * Called with hugetlb_lock locked.
852  */
853 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
854                                                          bool acct_surplus)
855 {
856         int nr_nodes, node;
857         int ret = 0;
858
859         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
860                 /*
861                  * If we're returning unused surplus pages, only examine
862                  * nodes with surplus pages.
863                  */
864                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
865                     !list_empty(&h->hugepage_freelists[node])) {
866                         struct page *page =
867                                 list_entry(h->hugepage_freelists[node].next,
868                                           struct page, lru);
869                         list_del(&page->lru);
870                         h->free_huge_pages--;
871                         h->free_huge_pages_node[node]--;
872                         if (acct_surplus) {
873                                 h->surplus_huge_pages--;
874                                 h->surplus_huge_pages_node[node]--;
875                         }
876                         update_and_free_page(h, page);
877                         ret = 1;
878                         break;
879                 }
880         }
881
882         return ret;
883 }
884
885 /*
886  * Dissolve a given free hugepage into free buddy pages. This function does
887  * nothing for in-use (including surplus) hugepages.
888  */
889 static void dissolve_free_huge_page(struct page *page)
890 {
891         spin_lock(&hugetlb_lock);
892         if (PageHuge(page) && !page_count(page)) {
893                 struct hstate *h = page_hstate(page);
894                 int nid = page_to_nid(page);
895                 list_del(&page->lru);
896                 h->free_huge_pages--;
897                 h->free_huge_pages_node[nid]--;
898                 update_and_free_page(h, page);
899         }
900         spin_unlock(&hugetlb_lock);
901 }
902
903 /*
904  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
905  * make specified memory blocks removable from the system.
906  * Note that start_pfn should aligned with (minimum) hugepage size.
907  */
908 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
909 {
910         unsigned int order = 8 * sizeof(void *);
911         unsigned long pfn;
912         struct hstate *h;
913
914         /* Set scan step to minimum hugepage size */
915         for_each_hstate(h)
916                 if (order > huge_page_order(h))
917                         order = huge_page_order(h);
918         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
919         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
920                 dissolve_free_huge_page(pfn_to_page(pfn));
921 }
922
923 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
924 {
925         struct page *page;
926         unsigned int r_nid;
927
928         if (h->order >= MAX_ORDER)
929                 return NULL;
930
931         /*
932          * Assume we will successfully allocate the surplus page to
933          * prevent racing processes from causing the surplus to exceed
934          * overcommit
935          *
936          * This however introduces a different race, where a process B
937          * tries to grow the static hugepage pool while alloc_pages() is
938          * called by process A. B will only examine the per-node
939          * counters in determining if surplus huge pages can be
940          * converted to normal huge pages in adjust_pool_surplus(). A
941          * won't be able to increment the per-node counter, until the
942          * lock is dropped by B, but B doesn't drop hugetlb_lock until
943          * no more huge pages can be converted from surplus to normal
944          * state (and doesn't try to convert again). Thus, we have a
945          * case where a surplus huge page exists, the pool is grown, and
946          * the surplus huge page still exists after, even though it
947          * should just have been converted to a normal huge page. This
948          * does not leak memory, though, as the hugepage will be freed
949          * once it is out of use. It also does not allow the counters to
950          * go out of whack in adjust_pool_surplus() as we don't modify
951          * the node values until we've gotten the hugepage and only the
952          * per-node value is checked there.
953          */
954         spin_lock(&hugetlb_lock);
955         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
956                 spin_unlock(&hugetlb_lock);
957                 return NULL;
958         } else {
959                 h->nr_huge_pages++;
960                 h->surplus_huge_pages++;
961         }
962         spin_unlock(&hugetlb_lock);
963
964         if (nid == NUMA_NO_NODE)
965                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
966                                    __GFP_REPEAT|__GFP_NOWARN,
967                                    huge_page_order(h));
968         else
969                 page = alloc_pages_exact_node(nid,
970                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
971                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
972
973         if (page && arch_prepare_hugepage(page)) {
974                 __free_pages(page, huge_page_order(h));
975                 page = NULL;
976         }
977
978         spin_lock(&hugetlb_lock);
979         if (page) {
980                 INIT_LIST_HEAD(&page->lru);
981                 r_nid = page_to_nid(page);
982                 set_compound_page_dtor(page, free_huge_page);
983                 set_hugetlb_cgroup(page, NULL);
984                 /*
985                  * We incremented the global counters already
986                  */
987                 h->nr_huge_pages_node[r_nid]++;
988                 h->surplus_huge_pages_node[r_nid]++;
989                 __count_vm_event(HTLB_BUDDY_PGALLOC);
990         } else {
991                 h->nr_huge_pages--;
992                 h->surplus_huge_pages--;
993                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
994         }
995         spin_unlock(&hugetlb_lock);
996
997         return page;
998 }
999
1000 /*
1001  * This allocation function is useful in the context where vma is irrelevant.
1002  * E.g. soft-offlining uses this function because it only cares physical
1003  * address of error page.
1004  */
1005 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1006 {
1007         struct page *page = NULL;
1008
1009         spin_lock(&hugetlb_lock);
1010         if (h->free_huge_pages - h->resv_huge_pages > 0)
1011                 page = dequeue_huge_page_node(h, nid);
1012         spin_unlock(&hugetlb_lock);
1013
1014         if (!page)
1015                 page = alloc_buddy_huge_page(h, nid);
1016
1017         return page;
1018 }
1019
1020 /*
1021  * Increase the hugetlb pool such that it can accommodate a reservation
1022  * of size 'delta'.
1023  */
1024 static int gather_surplus_pages(struct hstate *h, int delta)
1025 {
1026         struct list_head surplus_list;
1027         struct page *page, *tmp;
1028         int ret, i;
1029         int needed, allocated;
1030         bool alloc_ok = true;
1031
1032         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1033         if (needed <= 0) {
1034                 h->resv_huge_pages += delta;
1035                 return 0;
1036         }
1037
1038         allocated = 0;
1039         INIT_LIST_HEAD(&surplus_list);
1040
1041         ret = -ENOMEM;
1042 retry:
1043         spin_unlock(&hugetlb_lock);
1044         for (i = 0; i < needed; i++) {
1045                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1046                 if (!page) {
1047                         alloc_ok = false;
1048                         break;
1049                 }
1050                 list_add(&page->lru, &surplus_list);
1051         }
1052         allocated += i;
1053
1054         /*
1055          * After retaking hugetlb_lock, we need to recalculate 'needed'
1056          * because either resv_huge_pages or free_huge_pages may have changed.
1057          */
1058         spin_lock(&hugetlb_lock);
1059         needed = (h->resv_huge_pages + delta) -
1060                         (h->free_huge_pages + allocated);
1061         if (needed > 0) {
1062                 if (alloc_ok)
1063                         goto retry;
1064                 /*
1065                  * We were not able to allocate enough pages to
1066                  * satisfy the entire reservation so we free what
1067                  * we've allocated so far.
1068                  */
1069                 goto free;
1070         }
1071         /*
1072          * The surplus_list now contains _at_least_ the number of extra pages
1073          * needed to accommodate the reservation.  Add the appropriate number
1074          * of pages to the hugetlb pool and free the extras back to the buddy
1075          * allocator.  Commit the entire reservation here to prevent another
1076          * process from stealing the pages as they are added to the pool but
1077          * before they are reserved.
1078          */
1079         needed += allocated;
1080         h->resv_huge_pages += delta;
1081         ret = 0;
1082
1083         /* Free the needed pages to the hugetlb pool */
1084         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1085                 if ((--needed) < 0)
1086                         break;
1087                 /*
1088                  * This page is now managed by the hugetlb allocator and has
1089                  * no users -- drop the buddy allocator's reference.
1090                  */
1091                 put_page_testzero(page);
1092                 VM_BUG_ON_PAGE(page_count(page), page);
1093                 enqueue_huge_page(h, page);
1094         }
1095 free:
1096         spin_unlock(&hugetlb_lock);
1097
1098         /* Free unnecessary surplus pages to the buddy allocator */
1099         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1100                 put_page(page);
1101         spin_lock(&hugetlb_lock);
1102
1103         return ret;
1104 }
1105
1106 /*
1107  * When releasing a hugetlb pool reservation, any surplus pages that were
1108  * allocated to satisfy the reservation must be explicitly freed if they were
1109  * never used.
1110  * Called with hugetlb_lock held.
1111  */
1112 static void return_unused_surplus_pages(struct hstate *h,
1113                                         unsigned long unused_resv_pages)
1114 {
1115         unsigned long nr_pages;
1116
1117         /* Uncommit the reservation */
1118         h->resv_huge_pages -= unused_resv_pages;
1119
1120         /* Cannot return gigantic pages currently */
1121         if (h->order >= MAX_ORDER)
1122                 return;
1123
1124         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1125
1126         /*
1127          * We want to release as many surplus pages as possible, spread
1128          * evenly across all nodes with memory. Iterate across these nodes
1129          * until we can no longer free unreserved surplus pages. This occurs
1130          * when the nodes with surplus pages have no free pages.
1131          * free_pool_huge_page() will balance the the freed pages across the
1132          * on-line nodes with memory and will handle the hstate accounting.
1133          */
1134         while (nr_pages--) {
1135                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1136                         break;
1137         }
1138 }
1139
1140 /*
1141  * Determine if the huge page at addr within the vma has an associated
1142  * reservation.  Where it does not we will need to logically increase
1143  * reservation and actually increase subpool usage before an allocation
1144  * can occur.  Where any new reservation would be required the
1145  * reservation change is prepared, but not committed.  Once the page
1146  * has been allocated from the subpool and instantiated the change should
1147  * be committed via vma_commit_reservation.  No action is required on
1148  * failure.
1149  */
1150 static long vma_needs_reservation(struct hstate *h,
1151                         struct vm_area_struct *vma, unsigned long addr)
1152 {
1153         struct address_space *mapping = vma->vm_file->f_mapping;
1154         struct inode *inode = mapping->host;
1155
1156         if (vma->vm_flags & VM_MAYSHARE) {
1157                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1158                 return region_chg(&inode->i_mapping->private_list,
1159                                                         idx, idx + 1);
1160
1161         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1162                 return 1;
1163
1164         } else  {
1165                 long err;
1166                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1167                 struct resv_map *resv = vma_resv_map(vma);
1168
1169                 err = region_chg(&resv->regions, idx, idx + 1);
1170                 if (err < 0)
1171                         return err;
1172                 return 0;
1173         }
1174 }
1175 static void vma_commit_reservation(struct hstate *h,
1176                         struct vm_area_struct *vma, unsigned long addr)
1177 {
1178         struct address_space *mapping = vma->vm_file->f_mapping;
1179         struct inode *inode = mapping->host;
1180
1181         if (vma->vm_flags & VM_MAYSHARE) {
1182                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1183                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1184
1185         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1186                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1187                 struct resv_map *resv = vma_resv_map(vma);
1188
1189                 /* Mark this page used in the map. */
1190                 region_add(&resv->regions, idx, idx + 1);
1191         }
1192 }
1193
1194 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1195                                     unsigned long addr, int avoid_reserve)
1196 {
1197         struct hugepage_subpool *spool = subpool_vma(vma);
1198         struct hstate *h = hstate_vma(vma);
1199         struct page *page;
1200         long chg;
1201         int ret, idx;
1202         struct hugetlb_cgroup *h_cg;
1203
1204         idx = hstate_index(h);
1205         /*
1206          * Processes that did not create the mapping will have no
1207          * reserves and will not have accounted against subpool
1208          * limit. Check that the subpool limit can be made before
1209          * satisfying the allocation MAP_NORESERVE mappings may also
1210          * need pages and subpool limit allocated allocated if no reserve
1211          * mapping overlaps.
1212          */
1213         chg = vma_needs_reservation(h, vma, addr);
1214         if (chg < 0)
1215                 return ERR_PTR(-ENOMEM);
1216         if (chg || avoid_reserve)
1217                 if (hugepage_subpool_get_pages(spool, 1))
1218                         return ERR_PTR(-ENOSPC);
1219
1220         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1221         if (ret) {
1222                 if (chg || avoid_reserve)
1223                         hugepage_subpool_put_pages(spool, 1);
1224                 return ERR_PTR(-ENOSPC);
1225         }
1226         spin_lock(&hugetlb_lock);
1227         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1228         if (!page) {
1229                 spin_unlock(&hugetlb_lock);
1230                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1231                 if (!page) {
1232                         hugetlb_cgroup_uncharge_cgroup(idx,
1233                                                        pages_per_huge_page(h),
1234                                                        h_cg);
1235                         if (chg || avoid_reserve)
1236                                 hugepage_subpool_put_pages(spool, 1);
1237                         return ERR_PTR(-ENOSPC);
1238                 }
1239                 spin_lock(&hugetlb_lock);
1240                 list_move(&page->lru, &h->hugepage_activelist);
1241                 /* Fall through */
1242         }
1243         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1244         spin_unlock(&hugetlb_lock);
1245
1246         set_page_private(page, (unsigned long)spool);
1247
1248         vma_commit_reservation(h, vma, addr);
1249         return page;
1250 }
1251
1252 /*
1253  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1254  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1255  * where no ERR_VALUE is expected to be returned.
1256  */
1257 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1258                                 unsigned long addr, int avoid_reserve)
1259 {
1260         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1261         if (IS_ERR(page))
1262                 page = NULL;
1263         return page;
1264 }
1265
1266 int __weak alloc_bootmem_huge_page(struct hstate *h)
1267 {
1268         struct huge_bootmem_page *m;
1269         int nr_nodes, node;
1270
1271         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1272                 void *addr;
1273
1274                 addr = memblock_virt_alloc_try_nid_nopanic(
1275                                 huge_page_size(h), huge_page_size(h),
1276                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1277                 if (addr) {
1278                         /*
1279                          * Use the beginning of the huge page to store the
1280                          * huge_bootmem_page struct (until gather_bootmem
1281                          * puts them into the mem_map).
1282                          */
1283                         m = addr;
1284                         goto found;
1285                 }
1286         }
1287         return 0;
1288
1289 found:
1290         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1291         /* Put them into a private list first because mem_map is not up yet */
1292         list_add(&m->list, &huge_boot_pages);
1293         m->hstate = h;
1294         return 1;
1295 }
1296
1297 static void prep_compound_huge_page(struct page *page, int order)
1298 {
1299         if (unlikely(order > (MAX_ORDER - 1)))
1300                 prep_compound_gigantic_page(page, order);
1301         else
1302                 prep_compound_page(page, order);
1303 }
1304
1305 /* Put bootmem huge pages into the standard lists after mem_map is up */
1306 static void __init gather_bootmem_prealloc(void)
1307 {
1308         struct huge_bootmem_page *m;
1309
1310         list_for_each_entry(m, &huge_boot_pages, list) {
1311                 struct hstate *h = m->hstate;
1312                 struct page *page;
1313
1314 #ifdef CONFIG_HIGHMEM
1315                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1316                 memblock_free_late(__pa(m),
1317                                    sizeof(struct huge_bootmem_page));
1318 #else
1319                 page = virt_to_page(m);
1320 #endif
1321                 WARN_ON(page_count(page) != 1);
1322                 prep_compound_huge_page(page, h->order);
1323                 WARN_ON(PageReserved(page));
1324                 prep_new_huge_page(h, page, page_to_nid(page));
1325                 /*
1326                  * If we had gigantic hugepages allocated at boot time, we need
1327                  * to restore the 'stolen' pages to totalram_pages in order to
1328                  * fix confusing memory reports from free(1) and another
1329                  * side-effects, like CommitLimit going negative.
1330                  */
1331                 if (h->order > (MAX_ORDER - 1))
1332                         adjust_managed_page_count(page, 1 << h->order);
1333         }
1334 }
1335
1336 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1337 {
1338         unsigned long i;
1339
1340         for (i = 0; i < h->max_huge_pages; ++i) {
1341                 if (h->order >= MAX_ORDER) {
1342                         if (!alloc_bootmem_huge_page(h))
1343                                 break;
1344                 } else if (!alloc_fresh_huge_page(h,
1345                                          &node_states[N_MEMORY]))
1346                         break;
1347         }
1348         h->max_huge_pages = i;
1349 }
1350
1351 static void __init hugetlb_init_hstates(void)
1352 {
1353         struct hstate *h;
1354
1355         for_each_hstate(h) {
1356                 /* oversize hugepages were init'ed in early boot */
1357                 if (h->order < MAX_ORDER)
1358                         hugetlb_hstate_alloc_pages(h);
1359         }
1360 }
1361
1362 static char * __init memfmt(char *buf, unsigned long n)
1363 {
1364         if (n >= (1UL << 30))
1365                 sprintf(buf, "%lu GB", n >> 30);
1366         else if (n >= (1UL << 20))
1367                 sprintf(buf, "%lu MB", n >> 20);
1368         else
1369                 sprintf(buf, "%lu KB", n >> 10);
1370         return buf;
1371 }
1372
1373 static void __init report_hugepages(void)
1374 {
1375         struct hstate *h;
1376
1377         for_each_hstate(h) {
1378                 char buf[32];
1379                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1380                         memfmt(buf, huge_page_size(h)),
1381                         h->free_huge_pages);
1382         }
1383 }
1384
1385 #ifdef CONFIG_HIGHMEM
1386 static void try_to_free_low(struct hstate *h, unsigned long count,
1387                                                 nodemask_t *nodes_allowed)
1388 {
1389         int i;
1390
1391         if (h->order >= MAX_ORDER)
1392                 return;
1393
1394         for_each_node_mask(i, *nodes_allowed) {
1395                 struct page *page, *next;
1396                 struct list_head *freel = &h->hugepage_freelists[i];
1397                 list_for_each_entry_safe(page, next, freel, lru) {
1398                         if (count >= h->nr_huge_pages)
1399                                 return;
1400                         if (PageHighMem(page))
1401                                 continue;
1402                         list_del(&page->lru);
1403                         update_and_free_page(h, page);
1404                         h->free_huge_pages--;
1405                         h->free_huge_pages_node[page_to_nid(page)]--;
1406                 }
1407         }
1408 }
1409 #else
1410 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1411                                                 nodemask_t *nodes_allowed)
1412 {
1413 }
1414 #endif
1415
1416 /*
1417  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1418  * balanced by operating on them in a round-robin fashion.
1419  * Returns 1 if an adjustment was made.
1420  */
1421 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1422                                 int delta)
1423 {
1424         int nr_nodes, node;
1425
1426         VM_BUG_ON(delta != -1 && delta != 1);
1427
1428         if (delta < 0) {
1429                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1430                         if (h->surplus_huge_pages_node[node])
1431                                 goto found;
1432                 }
1433         } else {
1434                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1435                         if (h->surplus_huge_pages_node[node] <
1436                                         h->nr_huge_pages_node[node])
1437                                 goto found;
1438                 }
1439         }
1440         return 0;
1441
1442 found:
1443         h->surplus_huge_pages += delta;
1444         h->surplus_huge_pages_node[node] += delta;
1445         return 1;
1446 }
1447
1448 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1449 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1450                                                 nodemask_t *nodes_allowed)
1451 {
1452         unsigned long min_count, ret;
1453
1454         if (h->order >= MAX_ORDER)
1455                 return h->max_huge_pages;
1456
1457         /*
1458          * Increase the pool size
1459          * First take pages out of surplus state.  Then make up the
1460          * remaining difference by allocating fresh huge pages.
1461          *
1462          * We might race with alloc_buddy_huge_page() here and be unable
1463          * to convert a surplus huge page to a normal huge page. That is
1464          * not critical, though, it just means the overall size of the
1465          * pool might be one hugepage larger than it needs to be, but
1466          * within all the constraints specified by the sysctls.
1467          */
1468         spin_lock(&hugetlb_lock);
1469         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1470                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1471                         break;
1472         }
1473
1474         while (count > persistent_huge_pages(h)) {
1475                 /*
1476                  * If this allocation races such that we no longer need the
1477                  * page, free_huge_page will handle it by freeing the page
1478                  * and reducing the surplus.
1479                  */
1480                 spin_unlock(&hugetlb_lock);
1481                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1482                 spin_lock(&hugetlb_lock);
1483                 if (!ret)
1484                         goto out;
1485
1486                 /* Bail for signals. Probably ctrl-c from user */
1487                 if (signal_pending(current))
1488                         goto out;
1489         }
1490
1491         /*
1492          * Decrease the pool size
1493          * First return free pages to the buddy allocator (being careful
1494          * to keep enough around to satisfy reservations).  Then place
1495          * pages into surplus state as needed so the pool will shrink
1496          * to the desired size as pages become free.
1497          *
1498          * By placing pages into the surplus state independent of the
1499          * overcommit value, we are allowing the surplus pool size to
1500          * exceed overcommit. There are few sane options here. Since
1501          * alloc_buddy_huge_page() is checking the global counter,
1502          * though, we'll note that we're not allowed to exceed surplus
1503          * and won't grow the pool anywhere else. Not until one of the
1504          * sysctls are changed, or the surplus pages go out of use.
1505          */
1506         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1507         min_count = max(count, min_count);
1508         try_to_free_low(h, min_count, nodes_allowed);
1509         while (min_count < persistent_huge_pages(h)) {
1510                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1511                         break;
1512         }
1513         while (count < persistent_huge_pages(h)) {
1514                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1515                         break;
1516         }
1517 out:
1518         ret = persistent_huge_pages(h);
1519         spin_unlock(&hugetlb_lock);
1520         return ret;
1521 }
1522
1523 #define HSTATE_ATTR_RO(_name) \
1524         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1525
1526 #define HSTATE_ATTR(_name) \
1527         static struct kobj_attribute _name##_attr = \
1528                 __ATTR(_name, 0644, _name##_show, _name##_store)
1529
1530 static struct kobject *hugepages_kobj;
1531 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1532
1533 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1534
1535 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1536 {
1537         int i;
1538
1539         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1540                 if (hstate_kobjs[i] == kobj) {
1541                         if (nidp)
1542                                 *nidp = NUMA_NO_NODE;
1543                         return &hstates[i];
1544                 }
1545
1546         return kobj_to_node_hstate(kobj, nidp);
1547 }
1548
1549 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1550                                         struct kobj_attribute *attr, char *buf)
1551 {
1552         struct hstate *h;
1553         unsigned long nr_huge_pages;
1554         int nid;
1555
1556         h = kobj_to_hstate(kobj, &nid);
1557         if (nid == NUMA_NO_NODE)
1558                 nr_huge_pages = h->nr_huge_pages;
1559         else
1560                 nr_huge_pages = h->nr_huge_pages_node[nid];
1561
1562         return sprintf(buf, "%lu\n", nr_huge_pages);
1563 }
1564
1565 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1566                         struct kobject *kobj, struct kobj_attribute *attr,
1567                         const char *buf, size_t len)
1568 {
1569         int err;
1570         int nid;
1571         unsigned long count;
1572         struct hstate *h;
1573         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1574
1575         err = kstrtoul(buf, 10, &count);
1576         if (err)
1577                 goto out;
1578
1579         h = kobj_to_hstate(kobj, &nid);
1580         if (h->order >= MAX_ORDER) {
1581                 err = -EINVAL;
1582                 goto out;
1583         }
1584
1585         if (nid == NUMA_NO_NODE) {
1586                 /*
1587                  * global hstate attribute
1588                  */
1589                 if (!(obey_mempolicy &&
1590                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1591                         NODEMASK_FREE(nodes_allowed);
1592                         nodes_allowed = &node_states[N_MEMORY];
1593                 }
1594         } else if (nodes_allowed) {
1595                 /*
1596                  * per node hstate attribute: adjust count to global,
1597                  * but restrict alloc/free to the specified node.
1598                  */
1599                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1600                 init_nodemask_of_node(nodes_allowed, nid);
1601         } else
1602                 nodes_allowed = &node_states[N_MEMORY];
1603
1604         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1605
1606         if (nodes_allowed != &node_states[N_MEMORY])
1607                 NODEMASK_FREE(nodes_allowed);
1608
1609         return len;
1610 out:
1611         NODEMASK_FREE(nodes_allowed);
1612         return err;
1613 }
1614
1615 static ssize_t nr_hugepages_show(struct kobject *kobj,
1616                                        struct kobj_attribute *attr, char *buf)
1617 {
1618         return nr_hugepages_show_common(kobj, attr, buf);
1619 }
1620
1621 static ssize_t nr_hugepages_store(struct kobject *kobj,
1622                struct kobj_attribute *attr, const char *buf, size_t len)
1623 {
1624         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1625 }
1626 HSTATE_ATTR(nr_hugepages);
1627
1628 #ifdef CONFIG_NUMA
1629
1630 /*
1631  * hstate attribute for optionally mempolicy-based constraint on persistent
1632  * huge page alloc/free.
1633  */
1634 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1635                                        struct kobj_attribute *attr, char *buf)
1636 {
1637         return nr_hugepages_show_common(kobj, attr, buf);
1638 }
1639
1640 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1641                struct kobj_attribute *attr, const char *buf, size_t len)
1642 {
1643         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1644 }
1645 HSTATE_ATTR(nr_hugepages_mempolicy);
1646 #endif
1647
1648
1649 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1650                                         struct kobj_attribute *attr, char *buf)
1651 {
1652         struct hstate *h = kobj_to_hstate(kobj, NULL);
1653         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1654 }
1655
1656 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1657                 struct kobj_attribute *attr, const char *buf, size_t count)
1658 {
1659         int err;
1660         unsigned long input;
1661         struct hstate *h = kobj_to_hstate(kobj, NULL);
1662
1663         if (h->order >= MAX_ORDER)
1664                 return -EINVAL;
1665
1666         err = kstrtoul(buf, 10, &input);
1667         if (err)
1668                 return err;
1669
1670         spin_lock(&hugetlb_lock);
1671         h->nr_overcommit_huge_pages = input;
1672         spin_unlock(&hugetlb_lock);
1673
1674         return count;
1675 }
1676 HSTATE_ATTR(nr_overcommit_hugepages);
1677
1678 static ssize_t free_hugepages_show(struct kobject *kobj,
1679                                         struct kobj_attribute *attr, char *buf)
1680 {
1681         struct hstate *h;
1682         unsigned long free_huge_pages;
1683         int nid;
1684
1685         h = kobj_to_hstate(kobj, &nid);
1686         if (nid == NUMA_NO_NODE)
1687                 free_huge_pages = h->free_huge_pages;
1688         else
1689                 free_huge_pages = h->free_huge_pages_node[nid];
1690
1691         return sprintf(buf, "%lu\n", free_huge_pages);
1692 }
1693 HSTATE_ATTR_RO(free_hugepages);
1694
1695 static ssize_t resv_hugepages_show(struct kobject *kobj,
1696                                         struct kobj_attribute *attr, char *buf)
1697 {
1698         struct hstate *h = kobj_to_hstate(kobj, NULL);
1699         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1700 }
1701 HSTATE_ATTR_RO(resv_hugepages);
1702
1703 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1704                                         struct kobj_attribute *attr, char *buf)
1705 {
1706         struct hstate *h;
1707         unsigned long surplus_huge_pages;
1708         int nid;
1709
1710         h = kobj_to_hstate(kobj, &nid);
1711         if (nid == NUMA_NO_NODE)
1712                 surplus_huge_pages = h->surplus_huge_pages;
1713         else
1714                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1715
1716         return sprintf(buf, "%lu\n", surplus_huge_pages);
1717 }
1718 HSTATE_ATTR_RO(surplus_hugepages);
1719
1720 static struct attribute *hstate_attrs[] = {
1721         &nr_hugepages_attr.attr,
1722         &nr_overcommit_hugepages_attr.attr,
1723         &free_hugepages_attr.attr,
1724         &resv_hugepages_attr.attr,
1725         &surplus_hugepages_attr.attr,
1726 #ifdef CONFIG_NUMA
1727         &nr_hugepages_mempolicy_attr.attr,
1728 #endif
1729         NULL,
1730 };
1731
1732 static struct attribute_group hstate_attr_group = {
1733         .attrs = hstate_attrs,
1734 };
1735
1736 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1737                                     struct kobject **hstate_kobjs,
1738                                     struct attribute_group *hstate_attr_group)
1739 {
1740         int retval;
1741         int hi = hstate_index(h);
1742
1743         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1744         if (!hstate_kobjs[hi])
1745                 return -ENOMEM;
1746
1747         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1748         if (retval)
1749                 kobject_put(hstate_kobjs[hi]);
1750
1751         return retval;
1752 }
1753
1754 static void __init hugetlb_sysfs_init(void)
1755 {
1756         struct hstate *h;
1757         int err;
1758
1759         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1760         if (!hugepages_kobj)
1761                 return;
1762
1763         for_each_hstate(h) {
1764                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1765                                          hstate_kobjs, &hstate_attr_group);
1766                 if (err)
1767                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1768         }
1769 }
1770
1771 #ifdef CONFIG_NUMA
1772
1773 /*
1774  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1775  * with node devices in node_devices[] using a parallel array.  The array
1776  * index of a node device or _hstate == node id.
1777  * This is here to avoid any static dependency of the node device driver, in
1778  * the base kernel, on the hugetlb module.
1779  */
1780 struct node_hstate {
1781         struct kobject          *hugepages_kobj;
1782         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1783 };
1784 struct node_hstate node_hstates[MAX_NUMNODES];
1785
1786 /*
1787  * A subset of global hstate attributes for node devices
1788  */
1789 static struct attribute *per_node_hstate_attrs[] = {
1790         &nr_hugepages_attr.attr,
1791         &free_hugepages_attr.attr,
1792         &surplus_hugepages_attr.attr,
1793         NULL,
1794 };
1795
1796 static struct attribute_group per_node_hstate_attr_group = {
1797         .attrs = per_node_hstate_attrs,
1798 };
1799
1800 /*
1801  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1802  * Returns node id via non-NULL nidp.
1803  */
1804 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1805 {
1806         int nid;
1807
1808         for (nid = 0; nid < nr_node_ids; nid++) {
1809                 struct node_hstate *nhs = &node_hstates[nid];
1810                 int i;
1811                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1812                         if (nhs->hstate_kobjs[i] == kobj) {
1813                                 if (nidp)
1814                                         *nidp = nid;
1815                                 return &hstates[i];
1816                         }
1817         }
1818
1819         BUG();
1820         return NULL;
1821 }
1822
1823 /*
1824  * Unregister hstate attributes from a single node device.
1825  * No-op if no hstate attributes attached.
1826  */
1827 static void hugetlb_unregister_node(struct node *node)
1828 {
1829         struct hstate *h;
1830         struct node_hstate *nhs = &node_hstates[node->dev.id];
1831
1832         if (!nhs->hugepages_kobj)
1833                 return;         /* no hstate attributes */
1834
1835         for_each_hstate(h) {
1836                 int idx = hstate_index(h);
1837                 if (nhs->hstate_kobjs[idx]) {
1838                         kobject_put(nhs->hstate_kobjs[idx]);
1839                         nhs->hstate_kobjs[idx] = NULL;
1840                 }
1841         }
1842
1843         kobject_put(nhs->hugepages_kobj);
1844         nhs->hugepages_kobj = NULL;
1845 }
1846
1847 /*
1848  * hugetlb module exit:  unregister hstate attributes from node devices
1849  * that have them.
1850  */
1851 static void hugetlb_unregister_all_nodes(void)
1852 {
1853         int nid;
1854
1855         /*
1856          * disable node device registrations.
1857          */
1858         register_hugetlbfs_with_node(NULL, NULL);
1859
1860         /*
1861          * remove hstate attributes from any nodes that have them.
1862          */
1863         for (nid = 0; nid < nr_node_ids; nid++)
1864                 hugetlb_unregister_node(node_devices[nid]);
1865 }
1866
1867 /*
1868  * Register hstate attributes for a single node device.
1869  * No-op if attributes already registered.
1870  */
1871 static void hugetlb_register_node(struct node *node)
1872 {
1873         struct hstate *h;
1874         struct node_hstate *nhs = &node_hstates[node->dev.id];
1875         int err;
1876
1877         if (nhs->hugepages_kobj)
1878                 return;         /* already allocated */
1879
1880         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1881                                                         &node->dev.kobj);
1882         if (!nhs->hugepages_kobj)
1883                 return;
1884
1885         for_each_hstate(h) {
1886                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1887                                                 nhs->hstate_kobjs,
1888                                                 &per_node_hstate_attr_group);
1889                 if (err) {
1890                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1891                                 h->name, node->dev.id);
1892                         hugetlb_unregister_node(node);
1893                         break;
1894                 }
1895         }
1896 }
1897
1898 /*
1899  * hugetlb init time:  register hstate attributes for all registered node
1900  * devices of nodes that have memory.  All on-line nodes should have
1901  * registered their associated device by this time.
1902  */
1903 static void hugetlb_register_all_nodes(void)
1904 {
1905         int nid;
1906
1907         for_each_node_state(nid, N_MEMORY) {
1908                 struct node *node = node_devices[nid];
1909                 if (node->dev.id == nid)
1910                         hugetlb_register_node(node);
1911         }
1912
1913         /*
1914          * Let the node device driver know we're here so it can
1915          * [un]register hstate attributes on node hotplug.
1916          */
1917         register_hugetlbfs_with_node(hugetlb_register_node,
1918                                      hugetlb_unregister_node);
1919 }
1920 #else   /* !CONFIG_NUMA */
1921
1922 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1923 {
1924         BUG();
1925         if (nidp)
1926                 *nidp = -1;
1927         return NULL;
1928 }
1929
1930 static void hugetlb_unregister_all_nodes(void) { }
1931
1932 static void hugetlb_register_all_nodes(void) { }
1933
1934 #endif
1935
1936 static void __exit hugetlb_exit(void)
1937 {
1938         struct hstate *h;
1939
1940         hugetlb_unregister_all_nodes();
1941
1942         for_each_hstate(h) {
1943                 kobject_put(hstate_kobjs[hstate_index(h)]);
1944         }
1945
1946         kobject_put(hugepages_kobj);
1947 }
1948 module_exit(hugetlb_exit);
1949
1950 static int __init hugetlb_init(void)
1951 {
1952         /* Some platform decide whether they support huge pages at boot
1953          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1954          * there is no such support
1955          */
1956         if (HPAGE_SHIFT == 0)
1957                 return 0;
1958
1959         if (!size_to_hstate(default_hstate_size)) {
1960                 default_hstate_size = HPAGE_SIZE;
1961                 if (!size_to_hstate(default_hstate_size))
1962                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1963         }
1964         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1965         if (default_hstate_max_huge_pages)
1966                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1967
1968         hugetlb_init_hstates();
1969         gather_bootmem_prealloc();
1970         report_hugepages();
1971
1972         hugetlb_sysfs_init();
1973         hugetlb_register_all_nodes();
1974         hugetlb_cgroup_file_init();
1975
1976         return 0;
1977 }
1978 module_init(hugetlb_init);
1979
1980 /* Should be called on processing a hugepagesz=... option */
1981 void __init hugetlb_add_hstate(unsigned order)
1982 {
1983         struct hstate *h;
1984         unsigned long i;
1985
1986         if (size_to_hstate(PAGE_SIZE << order)) {
1987                 pr_warning("hugepagesz= specified twice, ignoring\n");
1988                 return;
1989         }
1990         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1991         BUG_ON(order == 0);
1992         h = &hstates[hugetlb_max_hstate++];
1993         h->order = order;
1994         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1995         h->nr_huge_pages = 0;
1996         h->free_huge_pages = 0;
1997         for (i = 0; i < MAX_NUMNODES; ++i)
1998                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1999         INIT_LIST_HEAD(&h->hugepage_activelist);
2000         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2001         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2002         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2003                                         huge_page_size(h)/1024);
2004
2005         parsed_hstate = h;
2006 }
2007
2008 static int __init hugetlb_nrpages_setup(char *s)
2009 {
2010         unsigned long *mhp;
2011         static unsigned long *last_mhp;
2012
2013         /*
2014          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2015          * so this hugepages= parameter goes to the "default hstate".
2016          */
2017         if (!hugetlb_max_hstate)
2018                 mhp = &default_hstate_max_huge_pages;
2019         else
2020                 mhp = &parsed_hstate->max_huge_pages;
2021
2022         if (mhp == last_mhp) {
2023                 pr_warning("hugepages= specified twice without "
2024                            "interleaving hugepagesz=, ignoring\n");
2025                 return 1;
2026         }
2027
2028         if (sscanf(s, "%lu", mhp) <= 0)
2029                 *mhp = 0;
2030
2031         /*
2032          * Global state is always initialized later in hugetlb_init.
2033          * But we need to allocate >= MAX_ORDER hstates here early to still
2034          * use the bootmem allocator.
2035          */
2036         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2037                 hugetlb_hstate_alloc_pages(parsed_hstate);
2038
2039         last_mhp = mhp;
2040
2041         return 1;
2042 }
2043 __setup("hugepages=", hugetlb_nrpages_setup);
2044
2045 static int __init hugetlb_default_setup(char *s)
2046 {
2047         default_hstate_size = memparse(s, &s);
2048         return 1;
2049 }
2050 __setup("default_hugepagesz=", hugetlb_default_setup);
2051
2052 static unsigned int cpuset_mems_nr(unsigned int *array)
2053 {
2054         int node;
2055         unsigned int nr = 0;
2056
2057         for_each_node_mask(node, cpuset_current_mems_allowed)
2058                 nr += array[node];
2059
2060         return nr;
2061 }
2062
2063 #ifdef CONFIG_SYSCTL
2064 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2065                          struct ctl_table *table, int write,
2066                          void __user *buffer, size_t *length, loff_t *ppos)
2067 {
2068         struct hstate *h = &default_hstate;
2069         unsigned long tmp;
2070         int ret;
2071
2072         tmp = h->max_huge_pages;
2073
2074         if (write && h->order >= MAX_ORDER)
2075                 return -EINVAL;
2076
2077         table->data = &tmp;
2078         table->maxlen = sizeof(unsigned long);
2079         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2080         if (ret)
2081                 goto out;
2082
2083         if (write) {
2084                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2085                                                 GFP_KERNEL | __GFP_NORETRY);
2086                 if (!(obey_mempolicy &&
2087                                init_nodemask_of_mempolicy(nodes_allowed))) {
2088                         NODEMASK_FREE(nodes_allowed);
2089                         nodes_allowed = &node_states[N_MEMORY];
2090                 }
2091                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2092
2093                 if (nodes_allowed != &node_states[N_MEMORY])
2094                         NODEMASK_FREE(nodes_allowed);
2095         }
2096 out:
2097         return ret;
2098 }
2099
2100 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2101                           void __user *buffer, size_t *length, loff_t *ppos)
2102 {
2103
2104         return hugetlb_sysctl_handler_common(false, table, write,
2105                                                         buffer, length, ppos);
2106 }
2107
2108 #ifdef CONFIG_NUMA
2109 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2110                           void __user *buffer, size_t *length, loff_t *ppos)
2111 {
2112         return hugetlb_sysctl_handler_common(true, table, write,
2113                                                         buffer, length, ppos);
2114 }
2115 #endif /* CONFIG_NUMA */
2116
2117 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2118                         void __user *buffer,
2119                         size_t *length, loff_t *ppos)
2120 {
2121         struct hstate *h = &default_hstate;
2122         unsigned long tmp;
2123         int ret;
2124
2125         tmp = h->nr_overcommit_huge_pages;
2126
2127         if (write && h->order >= MAX_ORDER)
2128                 return -EINVAL;
2129
2130         table->data = &tmp;
2131         table->maxlen = sizeof(unsigned long);
2132         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2133         if (ret)
2134                 goto out;
2135
2136         if (write) {
2137                 spin_lock(&hugetlb_lock);
2138                 h->nr_overcommit_huge_pages = tmp;
2139                 spin_unlock(&hugetlb_lock);
2140         }
2141 out:
2142         return ret;
2143 }
2144
2145 #endif /* CONFIG_SYSCTL */
2146
2147 void hugetlb_report_meminfo(struct seq_file *m)
2148 {
2149         struct hstate *h = &default_hstate;
2150         seq_printf(m,
2151                         "HugePages_Total:   %5lu\n"
2152                         "HugePages_Free:    %5lu\n"
2153                         "HugePages_Rsvd:    %5lu\n"
2154                         "HugePages_Surp:    %5lu\n"
2155                         "Hugepagesize:   %8lu kB\n",
2156                         h->nr_huge_pages,
2157                         h->free_huge_pages,
2158                         h->resv_huge_pages,
2159                         h->surplus_huge_pages,
2160                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2161 }
2162
2163 int hugetlb_report_node_meminfo(int nid, char *buf)
2164 {
2165         struct hstate *h = &default_hstate;
2166         return sprintf(buf,
2167                 "Node %d HugePages_Total: %5u\n"
2168                 "Node %d HugePages_Free:  %5u\n"
2169                 "Node %d HugePages_Surp:  %5u\n",
2170                 nid, h->nr_huge_pages_node[nid],
2171                 nid, h->free_huge_pages_node[nid],
2172                 nid, h->surplus_huge_pages_node[nid]);
2173 }
2174
2175 void hugetlb_show_meminfo(void)
2176 {
2177         struct hstate *h;
2178         int nid;
2179
2180         for_each_node_state(nid, N_MEMORY)
2181                 for_each_hstate(h)
2182                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2183                                 nid,
2184                                 h->nr_huge_pages_node[nid],
2185                                 h->free_huge_pages_node[nid],
2186                                 h->surplus_huge_pages_node[nid],
2187                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2188 }
2189
2190 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2191 unsigned long hugetlb_total_pages(void)
2192 {
2193         struct hstate *h;
2194         unsigned long nr_total_pages = 0;
2195
2196         for_each_hstate(h)
2197                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2198         return nr_total_pages;
2199 }
2200
2201 static int hugetlb_acct_memory(struct hstate *h, long delta)
2202 {
2203         int ret = -ENOMEM;
2204
2205         spin_lock(&hugetlb_lock);
2206         /*
2207          * When cpuset is configured, it breaks the strict hugetlb page
2208          * reservation as the accounting is done on a global variable. Such
2209          * reservation is completely rubbish in the presence of cpuset because
2210          * the reservation is not checked against page availability for the
2211          * current cpuset. Application can still potentially OOM'ed by kernel
2212          * with lack of free htlb page in cpuset that the task is in.
2213          * Attempt to enforce strict accounting with cpuset is almost
2214          * impossible (or too ugly) because cpuset is too fluid that
2215          * task or memory node can be dynamically moved between cpusets.
2216          *
2217          * The change of semantics for shared hugetlb mapping with cpuset is
2218          * undesirable. However, in order to preserve some of the semantics,
2219          * we fall back to check against current free page availability as
2220          * a best attempt and hopefully to minimize the impact of changing
2221          * semantics that cpuset has.
2222          */
2223         if (delta > 0) {
2224                 if (gather_surplus_pages(h, delta) < 0)
2225                         goto out;
2226
2227                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2228                         return_unused_surplus_pages(h, delta);
2229                         goto out;
2230                 }
2231         }
2232
2233         ret = 0;
2234         if (delta < 0)
2235                 return_unused_surplus_pages(h, (unsigned long) -delta);
2236
2237 out:
2238         spin_unlock(&hugetlb_lock);
2239         return ret;
2240 }
2241
2242 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2243 {
2244         struct resv_map *resv = vma_resv_map(vma);
2245
2246         /*
2247          * This new VMA should share its siblings reservation map if present.
2248          * The VMA will only ever have a valid reservation map pointer where
2249          * it is being copied for another still existing VMA.  As that VMA
2250          * has a reference to the reservation map it cannot disappear until
2251          * after this open call completes.  It is therefore safe to take a
2252          * new reference here without additional locking.
2253          */
2254         if (resv)
2255                 kref_get(&resv->refs);
2256 }
2257
2258 static void resv_map_put(struct vm_area_struct *vma)
2259 {
2260         struct resv_map *resv = vma_resv_map(vma);
2261
2262         if (!resv)
2263                 return;
2264         kref_put(&resv->refs, resv_map_release);
2265 }
2266
2267 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2268 {
2269         struct hstate *h = hstate_vma(vma);
2270         struct resv_map *resv = vma_resv_map(vma);
2271         struct hugepage_subpool *spool = subpool_vma(vma);
2272         unsigned long reserve;
2273         unsigned long start;
2274         unsigned long end;
2275
2276         if (resv) {
2277                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2278                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2279
2280                 reserve = (end - start) -
2281                         region_count(&resv->regions, start, end);
2282
2283                 resv_map_put(vma);
2284
2285                 if (reserve) {
2286                         hugetlb_acct_memory(h, -reserve);
2287                         hugepage_subpool_put_pages(spool, reserve);
2288                 }
2289         }
2290 }
2291
2292 /*
2293  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2294  * handle_mm_fault() to try to instantiate regular-sized pages in the
2295  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2296  * this far.
2297  */
2298 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2299 {
2300         BUG();
2301         return 0;
2302 }
2303
2304 const struct vm_operations_struct hugetlb_vm_ops = {
2305         .fault = hugetlb_vm_op_fault,
2306         .open = hugetlb_vm_op_open,
2307         .close = hugetlb_vm_op_close,
2308 };
2309
2310 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2311                                 int writable)
2312 {
2313         pte_t entry;
2314
2315         if (writable) {
2316                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2317                                          vma->vm_page_prot)));
2318         } else {
2319                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2320                                            vma->vm_page_prot));
2321         }
2322         entry = pte_mkyoung(entry);
2323         entry = pte_mkhuge(entry);
2324         entry = arch_make_huge_pte(entry, vma, page, writable);
2325
2326         return entry;
2327 }
2328
2329 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2330                                    unsigned long address, pte_t *ptep)
2331 {
2332         pte_t entry;
2333
2334         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2335         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2336                 update_mmu_cache(vma, address, ptep);
2337 }
2338
2339
2340 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2341                             struct vm_area_struct *vma)
2342 {
2343         pte_t *src_pte, *dst_pte, entry;
2344         struct page *ptepage;
2345         unsigned long addr;
2346         int cow;
2347         struct hstate *h = hstate_vma(vma);
2348         unsigned long sz = huge_page_size(h);
2349         unsigned long mmun_start;       /* For mmu_notifiers */
2350         unsigned long mmun_end;         /* For mmu_notifiers */
2351         int ret = 0;
2352
2353         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2354
2355         mmun_start = vma->vm_start;
2356         mmun_end = vma->vm_end;
2357         if (cow)
2358                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2359
2360         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2361                 spinlock_t *src_ptl, *dst_ptl;
2362                 src_pte = huge_pte_offset(src, addr);
2363                 if (!src_pte)
2364                         continue;
2365                 dst_pte = huge_pte_alloc(dst, addr, sz);
2366                 if (!dst_pte) {
2367                         ret = -ENOMEM;
2368                         break;
2369                 }
2370
2371                 /* If the pagetables are shared don't copy or take references */
2372                 if (dst_pte == src_pte)
2373                         continue;
2374
2375                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2376                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2377                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2378                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2379                         if (cow)
2380                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2381                         entry = huge_ptep_get(src_pte);
2382                         ptepage = pte_page(entry);
2383                         get_page(ptepage);
2384                         page_dup_rmap(ptepage);
2385                         set_huge_pte_at(dst, addr, dst_pte, entry);
2386                 }
2387                 spin_unlock(src_ptl);
2388                 spin_unlock(dst_ptl);
2389         }
2390
2391         if (cow)
2392                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2393
2394         return ret;
2395 }
2396
2397 static int is_hugetlb_entry_migration(pte_t pte)
2398 {
2399         swp_entry_t swp;
2400
2401         if (huge_pte_none(pte) || pte_present(pte))
2402                 return 0;
2403         swp = pte_to_swp_entry(pte);
2404         if (non_swap_entry(swp) && is_migration_entry(swp))
2405                 return 1;
2406         else
2407                 return 0;
2408 }
2409
2410 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2411 {
2412         swp_entry_t swp;
2413
2414         if (huge_pte_none(pte) || pte_present(pte))
2415                 return 0;
2416         swp = pte_to_swp_entry(pte);
2417         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2418                 return 1;
2419         else
2420                 return 0;
2421 }
2422
2423 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2424                             unsigned long start, unsigned long end,
2425                             struct page *ref_page)
2426 {
2427         int force_flush = 0;
2428         struct mm_struct *mm = vma->vm_mm;
2429         unsigned long address;
2430         pte_t *ptep;
2431         pte_t pte;
2432         spinlock_t *ptl;
2433         struct page *page;
2434         struct hstate *h = hstate_vma(vma);
2435         unsigned long sz = huge_page_size(h);
2436         const unsigned long mmun_start = start; /* For mmu_notifiers */
2437         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2438
2439         WARN_ON(!is_vm_hugetlb_page(vma));
2440         BUG_ON(start & ~huge_page_mask(h));
2441         BUG_ON(end & ~huge_page_mask(h));
2442
2443         tlb_start_vma(tlb, vma);
2444         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2445 again:
2446         for (address = start; address < end; address += sz) {
2447                 ptep = huge_pte_offset(mm, address);
2448                 if (!ptep)
2449                         continue;
2450
2451                 ptl = huge_pte_lock(h, mm, ptep);
2452                 if (huge_pmd_unshare(mm, &address, ptep))
2453                         goto unlock;
2454
2455                 pte = huge_ptep_get(ptep);
2456                 if (huge_pte_none(pte))
2457                         goto unlock;
2458
2459                 /*
2460                  * HWPoisoned hugepage is already unmapped and dropped reference
2461                  */
2462                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2463                         huge_pte_clear(mm, address, ptep);
2464                         goto unlock;
2465                 }
2466
2467                 page = pte_page(pte);
2468                 /*
2469                  * If a reference page is supplied, it is because a specific
2470                  * page is being unmapped, not a range. Ensure the page we
2471                  * are about to unmap is the actual page of interest.
2472                  */
2473                 if (ref_page) {
2474                         if (page != ref_page)
2475                                 goto unlock;
2476
2477                         /*
2478                          * Mark the VMA as having unmapped its page so that
2479                          * future faults in this VMA will fail rather than
2480                          * looking like data was lost
2481                          */
2482                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2483                 }
2484
2485                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2486                 tlb_remove_tlb_entry(tlb, ptep, address);
2487                 if (huge_pte_dirty(pte))
2488                         set_page_dirty(page);
2489
2490                 page_remove_rmap(page);
2491                 force_flush = !__tlb_remove_page(tlb, page);
2492                 if (force_flush) {
2493                         spin_unlock(ptl);
2494                         break;
2495                 }
2496                 /* Bail out after unmapping reference page if supplied */
2497                 if (ref_page) {
2498                         spin_unlock(ptl);
2499                         break;
2500                 }
2501 unlock:
2502                 spin_unlock(ptl);
2503         }
2504         /*
2505          * mmu_gather ran out of room to batch pages, we break out of
2506          * the PTE lock to avoid doing the potential expensive TLB invalidate
2507          * and page-free while holding it.
2508          */
2509         if (force_flush) {
2510                 force_flush = 0;
2511                 tlb_flush_mmu(tlb);
2512                 if (address < end && !ref_page)
2513                         goto again;
2514         }
2515         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2516         tlb_end_vma(tlb, vma);
2517 }
2518
2519 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2520                           struct vm_area_struct *vma, unsigned long start,
2521                           unsigned long end, struct page *ref_page)
2522 {
2523         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2524
2525         /*
2526          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2527          * test will fail on a vma being torn down, and not grab a page table
2528          * on its way out.  We're lucky that the flag has such an appropriate
2529          * name, and can in fact be safely cleared here. We could clear it
2530          * before the __unmap_hugepage_range above, but all that's necessary
2531          * is to clear it before releasing the i_mmap_mutex. This works
2532          * because in the context this is called, the VMA is about to be
2533          * destroyed and the i_mmap_mutex is held.
2534          */
2535         vma->vm_flags &= ~VM_MAYSHARE;
2536 }
2537
2538 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2539                           unsigned long end, struct page *ref_page)
2540 {
2541         struct mm_struct *mm;
2542         struct mmu_gather tlb;
2543
2544         mm = vma->vm_mm;
2545
2546         tlb_gather_mmu(&tlb, mm, start, end);
2547         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2548         tlb_finish_mmu(&tlb, start, end);
2549 }
2550
2551 /*
2552  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2553  * mappping it owns the reserve page for. The intention is to unmap the page
2554  * from other VMAs and let the children be SIGKILLed if they are faulting the
2555  * same region.
2556  */
2557 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2558                                 struct page *page, unsigned long address)
2559 {
2560         struct hstate *h = hstate_vma(vma);
2561         struct vm_area_struct *iter_vma;
2562         struct address_space *mapping;
2563         pgoff_t pgoff;
2564
2565         /*
2566          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2567          * from page cache lookup which is in HPAGE_SIZE units.
2568          */
2569         address = address & huge_page_mask(h);
2570         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2571                         vma->vm_pgoff;
2572         mapping = file_inode(vma->vm_file)->i_mapping;
2573
2574         /*
2575          * Take the mapping lock for the duration of the table walk. As
2576          * this mapping should be shared between all the VMAs,
2577          * __unmap_hugepage_range() is called as the lock is already held
2578          */
2579         mutex_lock(&mapping->i_mmap_mutex);
2580         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2581                 /* Do not unmap the current VMA */
2582                 if (iter_vma == vma)
2583                         continue;
2584
2585                 /*
2586                  * Unmap the page from other VMAs without their own reserves.
2587                  * They get marked to be SIGKILLed if they fault in these
2588                  * areas. This is because a future no-page fault on this VMA
2589                  * could insert a zeroed page instead of the data existing
2590                  * from the time of fork. This would look like data corruption
2591                  */
2592                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2593                         unmap_hugepage_range(iter_vma, address,
2594                                              address + huge_page_size(h), page);
2595         }
2596         mutex_unlock(&mapping->i_mmap_mutex);
2597
2598         return 1;
2599 }
2600
2601 /*
2602  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2603  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2604  * cannot race with other handlers or page migration.
2605  * Keep the pte_same checks anyway to make transition from the mutex easier.
2606  */
2607 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2608                         unsigned long address, pte_t *ptep, pte_t pte,
2609                         struct page *pagecache_page, spinlock_t *ptl)
2610 {
2611         struct hstate *h = hstate_vma(vma);
2612         struct page *old_page, *new_page;
2613         int outside_reserve = 0;
2614         unsigned long mmun_start;       /* For mmu_notifiers */
2615         unsigned long mmun_end;         /* For mmu_notifiers */
2616
2617         old_page = pte_page(pte);
2618
2619 retry_avoidcopy:
2620         /* If no-one else is actually using this page, avoid the copy
2621          * and just make the page writable */
2622         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2623                 page_move_anon_rmap(old_page, vma, address);
2624                 set_huge_ptep_writable(vma, address, ptep);
2625                 return 0;
2626         }
2627
2628         /*
2629          * If the process that created a MAP_PRIVATE mapping is about to
2630          * perform a COW due to a shared page count, attempt to satisfy
2631          * the allocation without using the existing reserves. The pagecache
2632          * page is used to determine if the reserve at this address was
2633          * consumed or not. If reserves were used, a partial faulted mapping
2634          * at the time of fork() could consume its reserves on COW instead
2635          * of the full address range.
2636          */
2637         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2638                         old_page != pagecache_page)
2639                 outside_reserve = 1;
2640
2641         page_cache_get(old_page);
2642
2643         /* Drop page table lock as buddy allocator may be called */
2644         spin_unlock(ptl);
2645         new_page = alloc_huge_page(vma, address, outside_reserve);
2646
2647         if (IS_ERR(new_page)) {
2648                 long err = PTR_ERR(new_page);
2649                 page_cache_release(old_page);
2650
2651                 /*
2652                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2653                  * it is due to references held by a child and an insufficient
2654                  * huge page pool. To guarantee the original mappers
2655                  * reliability, unmap the page from child processes. The child
2656                  * may get SIGKILLed if it later faults.
2657                  */
2658                 if (outside_reserve) {
2659                         BUG_ON(huge_pte_none(pte));
2660                         if (unmap_ref_private(mm, vma, old_page, address)) {
2661                                 BUG_ON(huge_pte_none(pte));
2662                                 spin_lock(ptl);
2663                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2664                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2665                                         goto retry_avoidcopy;
2666                                 /*
2667                                  * race occurs while re-acquiring page table
2668                                  * lock, and our job is done.
2669                                  */
2670                                 return 0;
2671                         }
2672                         WARN_ON_ONCE(1);
2673                 }
2674
2675                 /* Caller expects lock to be held */
2676                 spin_lock(ptl);
2677                 if (err == -ENOMEM)
2678                         return VM_FAULT_OOM;
2679                 else
2680                         return VM_FAULT_SIGBUS;
2681         }
2682
2683         /*
2684          * When the original hugepage is shared one, it does not have
2685          * anon_vma prepared.
2686          */
2687         if (unlikely(anon_vma_prepare(vma))) {
2688                 page_cache_release(new_page);
2689                 page_cache_release(old_page);
2690                 /* Caller expects lock to be held */
2691                 spin_lock(ptl);
2692                 return VM_FAULT_OOM;
2693         }
2694
2695         copy_user_huge_page(new_page, old_page, address, vma,
2696                             pages_per_huge_page(h));
2697         __SetPageUptodate(new_page);
2698
2699         mmun_start = address & huge_page_mask(h);
2700         mmun_end = mmun_start + huge_page_size(h);
2701         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2702         /*
2703          * Retake the page table lock to check for racing updates
2704          * before the page tables are altered
2705          */
2706         spin_lock(ptl);
2707         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2708         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2709                 ClearPagePrivate(new_page);
2710
2711                 /* Break COW */
2712                 huge_ptep_clear_flush(vma, address, ptep);
2713                 set_huge_pte_at(mm, address, ptep,
2714                                 make_huge_pte(vma, new_page, 1));
2715                 page_remove_rmap(old_page);
2716                 hugepage_add_new_anon_rmap(new_page, vma, address);
2717                 /* Make the old page be freed below */
2718                 new_page = old_page;
2719         }
2720         spin_unlock(ptl);
2721         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2722         page_cache_release(new_page);
2723         page_cache_release(old_page);
2724
2725         /* Caller expects lock to be held */
2726         spin_lock(ptl);
2727         return 0;
2728 }
2729
2730 /* Return the pagecache page at a given address within a VMA */
2731 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2732                         struct vm_area_struct *vma, unsigned long address)
2733 {
2734         struct address_space *mapping;
2735         pgoff_t idx;
2736
2737         mapping = vma->vm_file->f_mapping;
2738         idx = vma_hugecache_offset(h, vma, address);
2739
2740         return find_lock_page(mapping, idx);
2741 }
2742
2743 /*
2744  * Return whether there is a pagecache page to back given address within VMA.
2745  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2746  */
2747 static bool hugetlbfs_pagecache_present(struct hstate *h,
2748                         struct vm_area_struct *vma, unsigned long address)
2749 {
2750         struct address_space *mapping;
2751         pgoff_t idx;
2752         struct page *page;
2753
2754         mapping = vma->vm_file->f_mapping;
2755         idx = vma_hugecache_offset(h, vma, address);
2756
2757         page = find_get_page(mapping, idx);
2758         if (page)
2759                 put_page(page);
2760         return page != NULL;
2761 }
2762
2763 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2764                         unsigned long address, pte_t *ptep, unsigned int flags)
2765 {
2766         struct hstate *h = hstate_vma(vma);
2767         int ret = VM_FAULT_SIGBUS;
2768         int anon_rmap = 0;
2769         pgoff_t idx;
2770         unsigned long size;
2771         struct page *page;
2772         struct address_space *mapping;
2773         pte_t new_pte;
2774         spinlock_t *ptl;
2775
2776         /*
2777          * Currently, we are forced to kill the process in the event the
2778          * original mapper has unmapped pages from the child due to a failed
2779          * COW. Warn that such a situation has occurred as it may not be obvious
2780          */
2781         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2782                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2783                            current->pid);
2784                 return ret;
2785         }
2786
2787         mapping = vma->vm_file->f_mapping;
2788         idx = vma_hugecache_offset(h, vma, address);
2789
2790         /*
2791          * Use page lock to guard against racing truncation
2792          * before we get page_table_lock.
2793          */
2794 retry:
2795         page = find_lock_page(mapping, idx);
2796         if (!page) {
2797                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2798                 if (idx >= size)
2799                         goto out;
2800                 page = alloc_huge_page(vma, address, 0);
2801                 if (IS_ERR(page)) {
2802                         ret = PTR_ERR(page);
2803                         if (ret == -ENOMEM)
2804                                 ret = VM_FAULT_OOM;
2805                         else
2806                                 ret = VM_FAULT_SIGBUS;
2807                         goto out;
2808                 }
2809                 clear_huge_page(page, address, pages_per_huge_page(h));
2810                 __SetPageUptodate(page);
2811
2812                 if (vma->vm_flags & VM_MAYSHARE) {
2813                         int err;
2814                         struct inode *inode = mapping->host;
2815
2816                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2817                         if (err) {
2818                                 put_page(page);
2819                                 if (err == -EEXIST)
2820                                         goto retry;
2821                                 goto out;
2822                         }
2823                         ClearPagePrivate(page);
2824
2825                         spin_lock(&inode->i_lock);
2826                         inode->i_blocks += blocks_per_huge_page(h);
2827                         spin_unlock(&inode->i_lock);
2828                 } else {
2829                         lock_page(page);
2830                         if (unlikely(anon_vma_prepare(vma))) {
2831                                 ret = VM_FAULT_OOM;
2832                                 goto backout_unlocked;
2833                         }
2834                         anon_rmap = 1;
2835                 }
2836         } else {
2837                 /*
2838                  * If memory error occurs between mmap() and fault, some process
2839                  * don't have hwpoisoned swap entry for errored virtual address.
2840                  * So we need to block hugepage fault by PG_hwpoison bit check.
2841                  */
2842                 if (unlikely(PageHWPoison(page))) {
2843                         ret = VM_FAULT_HWPOISON |
2844                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2845                         goto backout_unlocked;
2846                 }
2847         }
2848
2849         /*
2850          * If we are going to COW a private mapping later, we examine the
2851          * pending reservations for this page now. This will ensure that
2852          * any allocations necessary to record that reservation occur outside
2853          * the spinlock.
2854          */
2855         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2856                 if (vma_needs_reservation(h, vma, address) < 0) {
2857                         ret = VM_FAULT_OOM;
2858                         goto backout_unlocked;
2859                 }
2860
2861         ptl = huge_pte_lockptr(h, mm, ptep);
2862         spin_lock(ptl);
2863         size = i_size_read(mapping->host) >> huge_page_shift(h);
2864         if (idx >= size)
2865                 goto backout;
2866
2867         ret = 0;
2868         if (!huge_pte_none(huge_ptep_get(ptep)))
2869                 goto backout;
2870
2871         if (anon_rmap) {
2872                 ClearPagePrivate(page);
2873                 hugepage_add_new_anon_rmap(page, vma, address);
2874         }
2875         else
2876                 page_dup_rmap(page);
2877         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2878                                 && (vma->vm_flags & VM_SHARED)));
2879         set_huge_pte_at(mm, address, ptep, new_pte);
2880
2881         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2882                 /* Optimization, do the COW without a second fault */
2883                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2884         }
2885
2886         spin_unlock(ptl);
2887         unlock_page(page);
2888 out:
2889         return ret;
2890
2891 backout:
2892         spin_unlock(ptl);
2893 backout_unlocked:
2894         unlock_page(page);
2895         put_page(page);
2896         goto out;
2897 }
2898
2899 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2900                         unsigned long address, unsigned int flags)
2901 {
2902         pte_t *ptep;
2903         pte_t entry;
2904         spinlock_t *ptl;
2905         int ret;
2906         struct page *page = NULL;
2907         struct page *pagecache_page = NULL;
2908         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2909         struct hstate *h = hstate_vma(vma);
2910
2911         address &= huge_page_mask(h);
2912
2913         ptep = huge_pte_offset(mm, address);
2914         if (ptep) {
2915                 entry = huge_ptep_get(ptep);
2916                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2917                         migration_entry_wait_huge(vma, mm, ptep);
2918                         return 0;
2919                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2920                         return VM_FAULT_HWPOISON_LARGE |
2921                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2922         }
2923
2924         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2925         if (!ptep)
2926                 return VM_FAULT_OOM;
2927
2928         /*
2929          * Serialize hugepage allocation and instantiation, so that we don't
2930          * get spurious allocation failures if two CPUs race to instantiate
2931          * the same page in the page cache.
2932          */
2933         mutex_lock(&hugetlb_instantiation_mutex);
2934         entry = huge_ptep_get(ptep);
2935         if (huge_pte_none(entry)) {
2936                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2937                 goto out_mutex;
2938         }
2939
2940         ret = 0;
2941
2942         /*
2943          * If we are going to COW the mapping later, we examine the pending
2944          * reservations for this page now. This will ensure that any
2945          * allocations necessary to record that reservation occur outside the
2946          * spinlock. For private mappings, we also lookup the pagecache
2947          * page now as it is used to determine if a reservation has been
2948          * consumed.
2949          */
2950         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2951                 if (vma_needs_reservation(h, vma, address) < 0) {
2952                         ret = VM_FAULT_OOM;
2953                         goto out_mutex;
2954                 }
2955
2956                 if (!(vma->vm_flags & VM_MAYSHARE))
2957                         pagecache_page = hugetlbfs_pagecache_page(h,
2958                                                                 vma, address);
2959         }
2960
2961         /*
2962          * hugetlb_cow() requires page locks of pte_page(entry) and
2963          * pagecache_page, so here we need take the former one
2964          * when page != pagecache_page or !pagecache_page.
2965          * Note that locking order is always pagecache_page -> page,
2966          * so no worry about deadlock.
2967          */
2968         page = pte_page(entry);
2969         get_page(page);
2970         if (page != pagecache_page)
2971                 lock_page(page);
2972
2973         ptl = huge_pte_lockptr(h, mm, ptep);
2974         spin_lock(ptl);
2975         /* Check for a racing update before calling hugetlb_cow */
2976         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2977                 goto out_ptl;
2978
2979
2980         if (flags & FAULT_FLAG_WRITE) {
2981                 if (!huge_pte_write(entry)) {
2982                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2983                                         pagecache_page, ptl);
2984                         goto out_ptl;
2985                 }
2986                 entry = huge_pte_mkdirty(entry);
2987         }
2988         entry = pte_mkyoung(entry);
2989         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2990                                                 flags & FAULT_FLAG_WRITE))
2991                 update_mmu_cache(vma, address, ptep);
2992
2993 out_ptl:
2994         spin_unlock(ptl);
2995
2996         if (pagecache_page) {
2997                 unlock_page(pagecache_page);
2998                 put_page(pagecache_page);
2999         }
3000         if (page != pagecache_page)
3001                 unlock_page(page);
3002         put_page(page);
3003
3004 out_mutex:
3005         mutex_unlock(&hugetlb_instantiation_mutex);
3006
3007         return ret;
3008 }
3009
3010 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3011                          struct page **pages, struct vm_area_struct **vmas,
3012                          unsigned long *position, unsigned long *nr_pages,
3013                          long i, unsigned int flags)
3014 {
3015         unsigned long pfn_offset;
3016         unsigned long vaddr = *position;
3017         unsigned long remainder = *nr_pages;
3018         struct hstate *h = hstate_vma(vma);
3019
3020         while (vaddr < vma->vm_end && remainder) {
3021                 pte_t *pte;
3022                 spinlock_t *ptl = NULL;
3023                 int absent;
3024                 struct page *page;
3025
3026                 /*
3027                  * Some archs (sparc64, sh*) have multiple pte_ts to
3028                  * each hugepage.  We have to make sure we get the
3029                  * first, for the page indexing below to work.
3030                  *
3031                  * Note that page table lock is not held when pte is null.
3032                  */
3033                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3034                 if (pte)
3035                         ptl = huge_pte_lock(h, mm, pte);
3036                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3037
3038                 /*
3039                  * When coredumping, it suits get_dump_page if we just return
3040                  * an error where there's an empty slot with no huge pagecache
3041                  * to back it.  This way, we avoid allocating a hugepage, and
3042                  * the sparse dumpfile avoids allocating disk blocks, but its
3043                  * huge holes still show up with zeroes where they need to be.
3044                  */
3045                 if (absent && (flags & FOLL_DUMP) &&
3046                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3047                         if (pte)
3048                                 spin_unlock(ptl);
3049                         remainder = 0;
3050                         break;
3051                 }
3052
3053                 /*
3054                  * We need call hugetlb_fault for both hugepages under migration
3055                  * (in which case hugetlb_fault waits for the migration,) and
3056                  * hwpoisoned hugepages (in which case we need to prevent the
3057                  * caller from accessing to them.) In order to do this, we use
3058                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3059                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3060                  * both cases, and because we can't follow correct pages
3061                  * directly from any kind of swap entries.
3062                  */
3063                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3064                     ((flags & FOLL_WRITE) &&
3065                       !huge_pte_write(huge_ptep_get(pte)))) {
3066                         int ret;
3067
3068                         if (pte)
3069                                 spin_unlock(ptl);
3070                         ret = hugetlb_fault(mm, vma, vaddr,
3071                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3072                         if (!(ret & VM_FAULT_ERROR))
3073                                 continue;
3074
3075                         remainder = 0;
3076                         break;
3077                 }
3078
3079                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3080                 page = pte_page(huge_ptep_get(pte));
3081 same_page:
3082                 if (pages) {
3083                         pages[i] = mem_map_offset(page, pfn_offset);
3084                         get_page_foll(pages[i]);
3085                 }
3086
3087                 if (vmas)
3088                         vmas[i] = vma;
3089
3090                 vaddr += PAGE_SIZE;
3091                 ++pfn_offset;
3092                 --remainder;
3093                 ++i;
3094                 if (vaddr < vma->vm_end && remainder &&
3095                                 pfn_offset < pages_per_huge_page(h)) {
3096                         /*
3097                          * We use pfn_offset to avoid touching the pageframes
3098                          * of this compound page.
3099                          */
3100                         goto same_page;
3101                 }
3102                 spin_unlock(ptl);
3103         }
3104         *nr_pages = remainder;
3105         *position = vaddr;
3106
3107         return i ? i : -EFAULT;
3108 }
3109
3110 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3111                 unsigned long address, unsigned long end, pgprot_t newprot)
3112 {
3113         struct mm_struct *mm = vma->vm_mm;
3114         unsigned long start = address;
3115         pte_t *ptep;
3116         pte_t pte;
3117         struct hstate *h = hstate_vma(vma);
3118         unsigned long pages = 0;
3119
3120         BUG_ON(address >= end);
3121         flush_cache_range(vma, address, end);
3122
3123         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3124         for (; address < end; address += huge_page_size(h)) {
3125                 spinlock_t *ptl;
3126                 ptep = huge_pte_offset(mm, address);
3127                 if (!ptep)
3128                         continue;
3129                 ptl = huge_pte_lock(h, mm, ptep);
3130                 if (huge_pmd_unshare(mm, &address, ptep)) {
3131                         pages++;
3132                         spin_unlock(ptl);
3133                         continue;
3134                 }
3135                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3136                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3137                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3138                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3139                         set_huge_pte_at(mm, address, ptep, pte);
3140                         pages++;
3141                 }
3142                 spin_unlock(ptl);
3143         }
3144         /*
3145          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3146          * may have cleared our pud entry and done put_page on the page table:
3147          * once we release i_mmap_mutex, another task can do the final put_page
3148          * and that page table be reused and filled with junk.
3149          */
3150         flush_tlb_range(vma, start, end);
3151         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3152
3153         return pages << h->order;
3154 }
3155
3156 int hugetlb_reserve_pages(struct inode *inode,
3157                                         long from, long to,
3158                                         struct vm_area_struct *vma,
3159                                         vm_flags_t vm_flags)
3160 {
3161         long ret, chg;
3162         struct hstate *h = hstate_inode(inode);
3163         struct hugepage_subpool *spool = subpool_inode(inode);
3164
3165         /*
3166          * Only apply hugepage reservation if asked. At fault time, an
3167          * attempt will be made for VM_NORESERVE to allocate a page
3168          * without using reserves
3169          */
3170         if (vm_flags & VM_NORESERVE)
3171                 return 0;
3172
3173         /*
3174          * Shared mappings base their reservation on the number of pages that
3175          * are already allocated on behalf of the file. Private mappings need
3176          * to reserve the full area even if read-only as mprotect() may be
3177          * called to make the mapping read-write. Assume !vma is a shm mapping
3178          */
3179         if (!vma || vma->vm_flags & VM_MAYSHARE)
3180                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3181         else {
3182                 struct resv_map *resv_map = resv_map_alloc();
3183                 if (!resv_map)
3184                         return -ENOMEM;
3185
3186                 chg = to - from;
3187
3188                 set_vma_resv_map(vma, resv_map);
3189                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3190         }
3191
3192         if (chg < 0) {
3193                 ret = chg;
3194                 goto out_err;
3195         }
3196
3197         /* There must be enough pages in the subpool for the mapping */
3198         if (hugepage_subpool_get_pages(spool, chg)) {
3199                 ret = -ENOSPC;
3200                 goto out_err;
3201         }
3202
3203         /*
3204          * Check enough hugepages are available for the reservation.
3205          * Hand the pages back to the subpool if there are not
3206          */
3207         ret = hugetlb_acct_memory(h, chg);
3208         if (ret < 0) {
3209                 hugepage_subpool_put_pages(spool, chg);
3210                 goto out_err;
3211         }
3212
3213         /*
3214          * Account for the reservations made. Shared mappings record regions
3215          * that have reservations as they are shared by multiple VMAs.
3216          * When the last VMA disappears, the region map says how much
3217          * the reservation was and the page cache tells how much of
3218          * the reservation was consumed. Private mappings are per-VMA and
3219          * only the consumed reservations are tracked. When the VMA
3220          * disappears, the original reservation is the VMA size and the
3221          * consumed reservations are stored in the map. Hence, nothing
3222          * else has to be done for private mappings here
3223          */
3224         if (!vma || vma->vm_flags & VM_MAYSHARE)
3225                 region_add(&inode->i_mapping->private_list, from, to);
3226         return 0;
3227 out_err:
3228         if (vma)
3229                 resv_map_put(vma);
3230         return ret;
3231 }
3232
3233 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3234 {
3235         struct hstate *h = hstate_inode(inode);
3236         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3237         struct hugepage_subpool *spool = subpool_inode(inode);
3238
3239         spin_lock(&inode->i_lock);
3240         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3241         spin_unlock(&inode->i_lock);
3242
3243         hugepage_subpool_put_pages(spool, (chg - freed));
3244         hugetlb_acct_memory(h, -(chg - freed));
3245 }
3246
3247 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3248 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3249                                 struct vm_area_struct *vma,
3250                                 unsigned long addr, pgoff_t idx)
3251 {
3252         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3253                                 svma->vm_start;
3254         unsigned long sbase = saddr & PUD_MASK;
3255         unsigned long s_end = sbase + PUD_SIZE;
3256
3257         /* Allow segments to share if only one is marked locked */
3258         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3259         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3260
3261         /*
3262          * match the virtual addresses, permission and the alignment of the
3263          * page table page.
3264          */
3265         if (pmd_index(addr) != pmd_index(saddr) ||
3266             vm_flags != svm_flags ||
3267             sbase < svma->vm_start || svma->vm_end < s_end)
3268                 return 0;
3269
3270         return saddr;
3271 }
3272
3273 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3274 {
3275         unsigned long base = addr & PUD_MASK;
3276         unsigned long end = base + PUD_SIZE;
3277
3278         /*
3279          * check on proper vm_flags and page table alignment
3280          */
3281         if (vma->vm_flags & VM_MAYSHARE &&
3282             vma->vm_start <= base && end <= vma->vm_end)
3283                 return 1;
3284         return 0;
3285 }
3286
3287 /*
3288  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3289  * and returns the corresponding pte. While this is not necessary for the
3290  * !shared pmd case because we can allocate the pmd later as well, it makes the
3291  * code much cleaner. pmd allocation is essential for the shared case because
3292  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3293  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3294  * bad pmd for sharing.
3295  */
3296 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3297 {
3298         struct vm_area_struct *vma = find_vma(mm, addr);
3299         struct address_space *mapping = vma->vm_file->f_mapping;
3300         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3301                         vma->vm_pgoff;
3302         struct vm_area_struct *svma;
3303         unsigned long saddr;
3304         pte_t *spte = NULL;
3305         pte_t *pte;
3306         spinlock_t *ptl;
3307
3308         if (!vma_shareable(vma, addr))
3309                 return (pte_t *)pmd_alloc(mm, pud, addr);
3310
3311         mutex_lock(&mapping->i_mmap_mutex);
3312         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3313                 if (svma == vma)
3314                         continue;
3315
3316                 saddr = page_table_shareable(svma, vma, addr, idx);
3317                 if (saddr) {
3318                         spte = huge_pte_offset(svma->vm_mm, saddr);
3319                         if (spte) {
3320                                 get_page(virt_to_page(spte));
3321                                 break;
3322                         }
3323                 }
3324         }
3325
3326         if (!spte)
3327                 goto out;
3328
3329         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3330         spin_lock(ptl);
3331         if (pud_none(*pud))
3332                 pud_populate(mm, pud,
3333                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3334         else
3335                 put_page(virt_to_page(spte));
3336         spin_unlock(ptl);
3337 out:
3338         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3339         mutex_unlock(&mapping->i_mmap_mutex);
3340         return pte;
3341 }
3342
3343 /*
3344  * unmap huge page backed by shared pte.
3345  *
3346  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3347  * indicated by page_count > 1, unmap is achieved by clearing pud and
3348  * decrementing the ref count. If count == 1, the pte page is not shared.
3349  *
3350  * called with page table lock held.
3351  *
3352  * returns: 1 successfully unmapped a shared pte page
3353  *          0 the underlying pte page is not shared, or it is the last user
3354  */
3355 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3356 {
3357         pgd_t *pgd = pgd_offset(mm, *addr);
3358         pud_t *pud = pud_offset(pgd, *addr);
3359
3360         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3361         if (page_count(virt_to_page(ptep)) == 1)
3362                 return 0;
3363
3364         pud_clear(pud);
3365         put_page(virt_to_page(ptep));
3366         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3367         return 1;
3368 }
3369 #define want_pmd_share()        (1)
3370 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3371 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3372 {
3373         return NULL;
3374 }
3375 #define want_pmd_share()        (0)
3376 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3377
3378 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3379 pte_t *huge_pte_alloc(struct mm_struct *mm,
3380                         unsigned long addr, unsigned long sz)
3381 {
3382         pgd_t *pgd;
3383         pud_t *pud;
3384         pte_t *pte = NULL;
3385
3386         pgd = pgd_offset(mm, addr);
3387         pud = pud_alloc(mm, pgd, addr);
3388         if (pud) {
3389                 if (sz == PUD_SIZE) {
3390                         pte = (pte_t *)pud;
3391                 } else {
3392                         BUG_ON(sz != PMD_SIZE);
3393                         if (want_pmd_share() && pud_none(*pud))
3394                                 pte = huge_pmd_share(mm, addr, pud);
3395                         else
3396                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3397                 }
3398         }
3399         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3400
3401         return pte;
3402 }
3403
3404 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3405 {
3406         pgd_t *pgd;
3407         pud_t *pud;
3408         pmd_t *pmd = NULL;
3409
3410         pgd = pgd_offset(mm, addr);
3411         if (pgd_present(*pgd)) {
3412                 pud = pud_offset(pgd, addr);
3413                 if (pud_present(*pud)) {
3414                         if (pud_huge(*pud))
3415                                 return (pte_t *)pud;
3416                         pmd = pmd_offset(pud, addr);
3417                 }
3418         }
3419         return (pte_t *) pmd;
3420 }
3421
3422 struct page *
3423 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3424                 pmd_t *pmd, int write)
3425 {
3426         struct page *page;
3427
3428         page = pte_page(*(pte_t *)pmd);
3429         if (page)
3430                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3431         return page;
3432 }
3433
3434 struct page *
3435 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3436                 pud_t *pud, int write)
3437 {
3438         struct page *page;
3439
3440         page = pte_page(*(pte_t *)pud);
3441         if (page)
3442                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3443         return page;
3444 }
3445
3446 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3447
3448 /* Can be overriden by architectures */
3449 __attribute__((weak)) struct page *
3450 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3451                pud_t *pud, int write)
3452 {
3453         BUG();
3454         return NULL;
3455 }
3456
3457 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3458
3459 #ifdef CONFIG_MEMORY_FAILURE
3460
3461 /* Should be called in hugetlb_lock */
3462 static int is_hugepage_on_freelist(struct page *hpage)
3463 {
3464         struct page *page;
3465         struct page *tmp;
3466         struct hstate *h = page_hstate(hpage);
3467         int nid = page_to_nid(hpage);
3468
3469         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3470                 if (page == hpage)
3471                         return 1;
3472         return 0;
3473 }
3474
3475 /*
3476  * This function is called from memory failure code.
3477  * Assume the caller holds page lock of the head page.
3478  */
3479 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3480 {
3481         struct hstate *h = page_hstate(hpage);
3482         int nid = page_to_nid(hpage);
3483         int ret = -EBUSY;
3484
3485         spin_lock(&hugetlb_lock);
3486         if (is_hugepage_on_freelist(hpage)) {
3487                 /*
3488                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3489                  * but dangling hpage->lru can trigger list-debug warnings
3490                  * (this happens when we call unpoison_memory() on it),
3491                  * so let it point to itself with list_del_init().
3492                  */
3493                 list_del_init(&hpage->lru);
3494                 set_page_refcounted(hpage);
3495                 h->free_huge_pages--;
3496                 h->free_huge_pages_node[nid]--;
3497                 ret = 0;
3498         }
3499         spin_unlock(&hugetlb_lock);
3500         return ret;
3501 }
3502 #endif
3503
3504 bool isolate_huge_page(struct page *page, struct list_head *list)
3505 {
3506         VM_BUG_ON_PAGE(!PageHead(page), page);
3507         if (!get_page_unless_zero(page))
3508                 return false;
3509         spin_lock(&hugetlb_lock);
3510         list_move_tail(&page->lru, list);
3511         spin_unlock(&hugetlb_lock);
3512         return true;
3513 }
3514
3515 void putback_active_hugepage(struct page *page)
3516 {
3517         VM_BUG_ON_PAGE(!PageHead(page), page);
3518         spin_lock(&hugetlb_lock);
3519         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3520         spin_unlock(&hugetlb_lock);
3521         put_page(page);
3522 }
3523
3524 bool is_hugepage_active(struct page *page)
3525 {
3526         VM_BUG_ON_PAGE(!PageHuge(page), page);
3527         /*
3528          * This function can be called for a tail page because the caller,
3529          * scan_movable_pages, scans through a given pfn-range which typically
3530          * covers one memory block. In systems using gigantic hugepage (1GB
3531          * for x86_64,) a hugepage is larger than a memory block, and we don't
3532          * support migrating such large hugepages for now, so return false
3533          * when called for tail pages.
3534          */
3535         if (PageTail(page))
3536                 return false;
3537         /*
3538          * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3539          * so we should return false for them.
3540          */
3541         if (unlikely(PageHWPoison(page)))
3542                 return false;
3543         return page_count(page) > 0;
3544 }