]> Pileus Git - ~andy/linux/blob - kernel/sched/stats.h
sched: Fix comment for sched_info_depart
[~andy/linux] / kernel / sched / stats.h
1
2 #ifdef CONFIG_SCHEDSTATS
3
4 /*
5  * Expects runqueue lock to be held for atomicity of update
6  */
7 static inline void
8 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
9 {
10         if (rq) {
11                 rq->rq_sched_info.run_delay += delta;
12                 rq->rq_sched_info.pcount++;
13         }
14 }
15
16 /*
17  * Expects runqueue lock to be held for atomicity of update
18  */
19 static inline void
20 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
21 {
22         if (rq)
23                 rq->rq_cpu_time += delta;
24 }
25
26 static inline void
27 rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
28 {
29         if (rq)
30                 rq->rq_sched_info.run_delay += delta;
31 }
32 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
33 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
34 # define schedstat_set(var, val)        do { var = (val); } while (0)
35 #else /* !CONFIG_SCHEDSTATS */
36 static inline void
37 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
38 {}
39 static inline void
40 rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
41 {}
42 static inline void
43 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
44 {}
45 # define schedstat_inc(rq, field)       do { } while (0)
46 # define schedstat_add(rq, field, amt)  do { } while (0)
47 # define schedstat_set(var, val)        do { } while (0)
48 #endif
49
50 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
51 static inline void sched_info_reset_dequeued(struct task_struct *t)
52 {
53         t->sched_info.last_queued = 0;
54 }
55
56 /*
57  * We are interested in knowing how long it was from the *first* time a
58  * task was queued to the time that it finally hit a cpu, we call this routine
59  * from dequeue_task() to account for possible rq->clock skew across cpus. The
60  * delta taken on each cpu would annul the skew.
61  */
62 static inline void sched_info_dequeued(struct task_struct *t)
63 {
64         unsigned long long now = rq_clock(task_rq(t)), delta = 0;
65
66         if (unlikely(sched_info_on()))
67                 if (t->sched_info.last_queued)
68                         delta = now - t->sched_info.last_queued;
69         sched_info_reset_dequeued(t);
70         t->sched_info.run_delay += delta;
71
72         rq_sched_info_dequeued(task_rq(t), delta);
73 }
74
75 /*
76  * Called when a task finally hits the cpu.  We can now calculate how
77  * long it was waiting to run.  We also note when it began so that we
78  * can keep stats on how long its timeslice is.
79  */
80 static void sched_info_arrive(struct task_struct *t)
81 {
82         unsigned long long now = rq_clock(task_rq(t)), delta = 0;
83
84         if (t->sched_info.last_queued)
85                 delta = now - t->sched_info.last_queued;
86         sched_info_reset_dequeued(t);
87         t->sched_info.run_delay += delta;
88         t->sched_info.last_arrival = now;
89         t->sched_info.pcount++;
90
91         rq_sched_info_arrive(task_rq(t), delta);
92 }
93
94 /*
95  * This function is only called from enqueue_task(), but also only updates
96  * the timestamp if it is already not set.  It's assumed that
97  * sched_info_dequeued() will clear that stamp when appropriate.
98  */
99 static inline void sched_info_queued(struct task_struct *t)
100 {
101         if (unlikely(sched_info_on()))
102                 if (!t->sched_info.last_queued)
103                         t->sched_info.last_queued = rq_clock(task_rq(t));
104 }
105
106 /*
107  * Called when a process ceases being the active-running process involuntarily
108  * due, typically, to expiring its time slice (this may also be called when
109  * switching to the idle task).  Now we can calculate how long we ran.
110  * Also, if the process is still in the TASK_RUNNING state, call
111  * sched_info_queued() to mark that it has now again started waiting on
112  * the runqueue.
113  */
114 static inline void sched_info_depart(struct task_struct *t)
115 {
116         unsigned long long delta = rq_clock(task_rq(t)) -
117                                         t->sched_info.last_arrival;
118
119         rq_sched_info_depart(task_rq(t), delta);
120
121         if (t->state == TASK_RUNNING)
122                 sched_info_queued(t);
123 }
124
125 /*
126  * Called when tasks are switched involuntarily due, typically, to expiring
127  * their time slice.  (This may also be called when switching to or from
128  * the idle task.)  We are only called when prev != next.
129  */
130 static inline void
131 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
132 {
133         struct rq *rq = task_rq(prev);
134
135         /*
136          * prev now departs the cpu.  It's not interesting to record
137          * stats about how efficient we were at scheduling the idle
138          * process, however.
139          */
140         if (prev != rq->idle)
141                 sched_info_depart(prev);
142
143         if (next != rq->idle)
144                 sched_info_arrive(next);
145 }
146 static inline void
147 sched_info_switch(struct task_struct *prev, struct task_struct *next)
148 {
149         if (unlikely(sched_info_on()))
150                 __sched_info_switch(prev, next);
151 }
152 #else
153 #define sched_info_queued(t)                    do { } while (0)
154 #define sched_info_reset_dequeued(t)    do { } while (0)
155 #define sched_info_dequeued(t)                  do { } while (0)
156 #define sched_info_switch(t, next)              do { } while (0)
157 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
158
159 /*
160  * The following are functions that support scheduler-internal time accounting.
161  * These functions are generally called at the timer tick.  None of this depends
162  * on CONFIG_SCHEDSTATS.
163  */
164
165 /**
166  * cputimer_running - return true if cputimer is running
167  *
168  * @tsk:        Pointer to target task.
169  */
170 static inline bool cputimer_running(struct task_struct *tsk)
171
172 {
173         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
174
175         if (!cputimer->running)
176                 return false;
177
178         /*
179          * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime
180          * in __exit_signal(), we won't account to the signal struct further
181          * cputime consumed by that task, even though the task can still be
182          * ticking after __exit_signal().
183          *
184          * In order to keep a consistent behaviour between thread group cputime
185          * and thread group cputimer accounting, lets also ignore the cputime
186          * elapsing after __exit_signal() in any thread group timer running.
187          *
188          * This makes sure that POSIX CPU clocks and timers are synchronized, so
189          * that a POSIX CPU timer won't expire while the corresponding POSIX CPU
190          * clock delta is behind the expiring timer value.
191          */
192         if (unlikely(!tsk->sighand))
193                 return false;
194
195         return true;
196 }
197
198 /**
199  * account_group_user_time - Maintain utime for a thread group.
200  *
201  * @tsk:        Pointer to task structure.
202  * @cputime:    Time value by which to increment the utime field of the
203  *              thread_group_cputime structure.
204  *
205  * If thread group time is being maintained, get the structure for the
206  * running CPU and update the utime field there.
207  */
208 static inline void account_group_user_time(struct task_struct *tsk,
209                                            cputime_t cputime)
210 {
211         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
212
213         if (!cputimer_running(tsk))
214                 return;
215
216         raw_spin_lock(&cputimer->lock);
217         cputimer->cputime.utime += cputime;
218         raw_spin_unlock(&cputimer->lock);
219 }
220
221 /**
222  * account_group_system_time - Maintain stime for a thread group.
223  *
224  * @tsk:        Pointer to task structure.
225  * @cputime:    Time value by which to increment the stime field of the
226  *              thread_group_cputime structure.
227  *
228  * If thread group time is being maintained, get the structure for the
229  * running CPU and update the stime field there.
230  */
231 static inline void account_group_system_time(struct task_struct *tsk,
232                                              cputime_t cputime)
233 {
234         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
235
236         if (!cputimer_running(tsk))
237                 return;
238
239         raw_spin_lock(&cputimer->lock);
240         cputimer->cputime.stime += cputime;
241         raw_spin_unlock(&cputimer->lock);
242 }
243
244 /**
245  * account_group_exec_runtime - Maintain exec runtime for a thread group.
246  *
247  * @tsk:        Pointer to task structure.
248  * @ns:         Time value by which to increment the sum_exec_runtime field
249  *              of the thread_group_cputime structure.
250  *
251  * If thread group time is being maintained, get the structure for the
252  * running CPU and update the sum_exec_runtime field there.
253  */
254 static inline void account_group_exec_runtime(struct task_struct *tsk,
255                                               unsigned long long ns)
256 {
257         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
258
259         if (!cputimer_running(tsk))
260                 return;
261
262         raw_spin_lock(&cputimer->lock);
263         cputimer->cputime.sum_exec_runtime += ns;
264         raw_spin_unlock(&cputimer->lock);
265 }