]> Pileus Git - ~andy/linux/blob - kernel/futex.c
futexes: Document multiprocessor ordering guarantees
[~andy/linux] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73  * Basic futex operation and ordering guarantees:
74  *
75  * The waiter reads the futex value in user space and calls
76  * futex_wait(). This function computes the hash bucket and acquires
77  * the hash bucket lock. After that it reads the futex user space value
78  * again and verifies that the data has not changed. If it has not
79  * changed it enqueues itself into the hash bucket, releases the hash
80  * bucket lock and schedules.
81  *
82  * The waker side modifies the user space value of the futex and calls
83  * futex_wake(). This functions computes the hash bucket and acquires
84  * the hash bucket lock. Then it looks for waiters on that futex in the
85  * hash bucket and wakes them.
86  *
87  * Note that the spin_lock serializes waiters and wakers, so that the
88  * following scenario is avoided:
89  *
90  * CPU 0                               CPU 1
91  * val = *futex;
92  * sys_futex(WAIT, futex, val);
93  *   futex_wait(futex, val);
94  *   uval = *futex;
95  *                                     *futex = newval;
96  *                                     sys_futex(WAKE, futex);
97  *                                       futex_wake(futex);
98  *                                       if (queue_empty())
99  *                                         return;
100  *   if (uval == val)
101  *      lock(hash_bucket(futex));
102  *      queue();
103  *     unlock(hash_bucket(futex));
104  *     schedule();
105  *
106  * This would cause the waiter on CPU 0 to wait forever because it
107  * missed the transition of the user space value from val to newval
108  * and the waker did not find the waiter in the hash bucket queue.
109  * The spinlock serializes that:
110  *
111  * CPU 0                               CPU 1
112  * val = *futex;
113  * sys_futex(WAIT, futex, val);
114  *   futex_wait(futex, val);
115  *   lock(hash_bucket(futex));
116  *   uval = *futex;
117  *                                     *futex = newval;
118  *                                     sys_futex(WAKE, futex);
119  *                                       futex_wake(futex);
120  *                                       lock(hash_bucket(futex));
121  *   if (uval == val)
122  *      queue();
123  *     unlock(hash_bucket(futex));
124  *     schedule();                       if (!queue_empty())
125  *                                         wake_waiters(futex);
126  *                                       unlock(hash_bucket(futex));
127  */
128
129 int __read_mostly futex_cmpxchg_enabled;
130
131 /*
132  * Futex flags used to encode options to functions and preserve them across
133  * restarts.
134  */
135 #define FLAGS_SHARED            0x01
136 #define FLAGS_CLOCKRT           0x02
137 #define FLAGS_HAS_TIMEOUT       0x04
138
139 /*
140  * Priority Inheritance state:
141  */
142 struct futex_pi_state {
143         /*
144          * list of 'owned' pi_state instances - these have to be
145          * cleaned up in do_exit() if the task exits prematurely:
146          */
147         struct list_head list;
148
149         /*
150          * The PI object:
151          */
152         struct rt_mutex pi_mutex;
153
154         struct task_struct *owner;
155         atomic_t refcount;
156
157         union futex_key key;
158 };
159
160 /**
161  * struct futex_q - The hashed futex queue entry, one per waiting task
162  * @list:               priority-sorted list of tasks waiting on this futex
163  * @task:               the task waiting on the futex
164  * @lock_ptr:           the hash bucket lock
165  * @key:                the key the futex is hashed on
166  * @pi_state:           optional priority inheritance state
167  * @rt_waiter:          rt_waiter storage for use with requeue_pi
168  * @requeue_pi_key:     the requeue_pi target futex key
169  * @bitset:             bitset for the optional bitmasked wakeup
170  *
171  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
172  * we can wake only the relevant ones (hashed queues may be shared).
173  *
174  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
175  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
176  * The order of wakeup is always to make the first condition true, then
177  * the second.
178  *
179  * PI futexes are typically woken before they are removed from the hash list via
180  * the rt_mutex code. See unqueue_me_pi().
181  */
182 struct futex_q {
183         struct plist_node list;
184
185         struct task_struct *task;
186         spinlock_t *lock_ptr;
187         union futex_key key;
188         struct futex_pi_state *pi_state;
189         struct rt_mutex_waiter *rt_waiter;
190         union futex_key *requeue_pi_key;
191         u32 bitset;
192 };
193
194 static const struct futex_q futex_q_init = {
195         /* list gets initialized in queue_me()*/
196         .key = FUTEX_KEY_INIT,
197         .bitset = FUTEX_BITSET_MATCH_ANY
198 };
199
200 /*
201  * Hash buckets are shared by all the futex_keys that hash to the same
202  * location.  Each key may have multiple futex_q structures, one for each task
203  * waiting on a futex.
204  */
205 struct futex_hash_bucket {
206         spinlock_t lock;
207         struct plist_head chain;
208 } ____cacheline_aligned_in_smp;
209
210 static unsigned long __read_mostly futex_hashsize;
211
212 static struct futex_hash_bucket *futex_queues;
213
214 /*
215  * We hash on the keys returned from get_futex_key (see below).
216  */
217 static struct futex_hash_bucket *hash_futex(union futex_key *key)
218 {
219         u32 hash = jhash2((u32*)&key->both.word,
220                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
221                           key->both.offset);
222         return &futex_queues[hash & (futex_hashsize - 1)];
223 }
224
225 /*
226  * Return 1 if two futex_keys are equal, 0 otherwise.
227  */
228 static inline int match_futex(union futex_key *key1, union futex_key *key2)
229 {
230         return (key1 && key2
231                 && key1->both.word == key2->both.word
232                 && key1->both.ptr == key2->both.ptr
233                 && key1->both.offset == key2->both.offset);
234 }
235
236 /*
237  * Take a reference to the resource addressed by a key.
238  * Can be called while holding spinlocks.
239  *
240  */
241 static void get_futex_key_refs(union futex_key *key)
242 {
243         if (!key->both.ptr)
244                 return;
245
246         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
247         case FUT_OFF_INODE:
248                 ihold(key->shared.inode);
249                 break;
250         case FUT_OFF_MMSHARED:
251                 atomic_inc(&key->private.mm->mm_count);
252                 break;
253         }
254 }
255
256 /*
257  * Drop a reference to the resource addressed by a key.
258  * The hash bucket spinlock must not be held.
259  */
260 static void drop_futex_key_refs(union futex_key *key)
261 {
262         if (!key->both.ptr) {
263                 /* If we're here then we tried to put a key we failed to get */
264                 WARN_ON_ONCE(1);
265                 return;
266         }
267
268         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
269         case FUT_OFF_INODE:
270                 iput(key->shared.inode);
271                 break;
272         case FUT_OFF_MMSHARED:
273                 mmdrop(key->private.mm);
274                 break;
275         }
276 }
277
278 /**
279  * get_futex_key() - Get parameters which are the keys for a futex
280  * @uaddr:      virtual address of the futex
281  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
282  * @key:        address where result is stored.
283  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
284  *              VERIFY_WRITE)
285  *
286  * Return: a negative error code or 0
287  *
288  * The key words are stored in *key on success.
289  *
290  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
291  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
292  * We can usually work out the index without swapping in the page.
293  *
294  * lock_page() might sleep, the caller should not hold a spinlock.
295  */
296 static int
297 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
298 {
299         unsigned long address = (unsigned long)uaddr;
300         struct mm_struct *mm = current->mm;
301         struct page *page, *page_head;
302         int err, ro = 0;
303
304         /*
305          * The futex address must be "naturally" aligned.
306          */
307         key->both.offset = address % PAGE_SIZE;
308         if (unlikely((address % sizeof(u32)) != 0))
309                 return -EINVAL;
310         address -= key->both.offset;
311
312         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
313                 return -EFAULT;
314
315         /*
316          * PROCESS_PRIVATE futexes are fast.
317          * As the mm cannot disappear under us and the 'key' only needs
318          * virtual address, we dont even have to find the underlying vma.
319          * Note : We do have to check 'uaddr' is a valid user address,
320          *        but access_ok() should be faster than find_vma()
321          */
322         if (!fshared) {
323                 key->private.mm = mm;
324                 key->private.address = address;
325                 get_futex_key_refs(key);
326                 return 0;
327         }
328
329 again:
330         err = get_user_pages_fast(address, 1, 1, &page);
331         /*
332          * If write access is not required (eg. FUTEX_WAIT), try
333          * and get read-only access.
334          */
335         if (err == -EFAULT && rw == VERIFY_READ) {
336                 err = get_user_pages_fast(address, 1, 0, &page);
337                 ro = 1;
338         }
339         if (err < 0)
340                 return err;
341         else
342                 err = 0;
343
344 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
345         page_head = page;
346         if (unlikely(PageTail(page))) {
347                 put_page(page);
348                 /* serialize against __split_huge_page_splitting() */
349                 local_irq_disable();
350                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
351                         page_head = compound_head(page);
352                         /*
353                          * page_head is valid pointer but we must pin
354                          * it before taking the PG_lock and/or
355                          * PG_compound_lock. The moment we re-enable
356                          * irqs __split_huge_page_splitting() can
357                          * return and the head page can be freed from
358                          * under us. We can't take the PG_lock and/or
359                          * PG_compound_lock on a page that could be
360                          * freed from under us.
361                          */
362                         if (page != page_head) {
363                                 get_page(page_head);
364                                 put_page(page);
365                         }
366                         local_irq_enable();
367                 } else {
368                         local_irq_enable();
369                         goto again;
370                 }
371         }
372 #else
373         page_head = compound_head(page);
374         if (page != page_head) {
375                 get_page(page_head);
376                 put_page(page);
377         }
378 #endif
379
380         lock_page(page_head);
381
382         /*
383          * If page_head->mapping is NULL, then it cannot be a PageAnon
384          * page; but it might be the ZERO_PAGE or in the gate area or
385          * in a special mapping (all cases which we are happy to fail);
386          * or it may have been a good file page when get_user_pages_fast
387          * found it, but truncated or holepunched or subjected to
388          * invalidate_complete_page2 before we got the page lock (also
389          * cases which we are happy to fail).  And we hold a reference,
390          * so refcount care in invalidate_complete_page's remove_mapping
391          * prevents drop_caches from setting mapping to NULL beneath us.
392          *
393          * The case we do have to guard against is when memory pressure made
394          * shmem_writepage move it from filecache to swapcache beneath us:
395          * an unlikely race, but we do need to retry for page_head->mapping.
396          */
397         if (!page_head->mapping) {
398                 int shmem_swizzled = PageSwapCache(page_head);
399                 unlock_page(page_head);
400                 put_page(page_head);
401                 if (shmem_swizzled)
402                         goto again;
403                 return -EFAULT;
404         }
405
406         /*
407          * Private mappings are handled in a simple way.
408          *
409          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
410          * it's a read-only handle, it's expected that futexes attach to
411          * the object not the particular process.
412          */
413         if (PageAnon(page_head)) {
414                 /*
415                  * A RO anonymous page will never change and thus doesn't make
416                  * sense for futex operations.
417                  */
418                 if (ro) {
419                         err = -EFAULT;
420                         goto out;
421                 }
422
423                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
424                 key->private.mm = mm;
425                 key->private.address = address;
426         } else {
427                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
428                 key->shared.inode = page_head->mapping->host;
429                 key->shared.pgoff = basepage_index(page);
430         }
431
432         get_futex_key_refs(key);
433
434 out:
435         unlock_page(page_head);
436         put_page(page_head);
437         return err;
438 }
439
440 static inline void put_futex_key(union futex_key *key)
441 {
442         drop_futex_key_refs(key);
443 }
444
445 /**
446  * fault_in_user_writeable() - Fault in user address and verify RW access
447  * @uaddr:      pointer to faulting user space address
448  *
449  * Slow path to fixup the fault we just took in the atomic write
450  * access to @uaddr.
451  *
452  * We have no generic implementation of a non-destructive write to the
453  * user address. We know that we faulted in the atomic pagefault
454  * disabled section so we can as well avoid the #PF overhead by
455  * calling get_user_pages() right away.
456  */
457 static int fault_in_user_writeable(u32 __user *uaddr)
458 {
459         struct mm_struct *mm = current->mm;
460         int ret;
461
462         down_read(&mm->mmap_sem);
463         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
464                                FAULT_FLAG_WRITE);
465         up_read(&mm->mmap_sem);
466
467         return ret < 0 ? ret : 0;
468 }
469
470 /**
471  * futex_top_waiter() - Return the highest priority waiter on a futex
472  * @hb:         the hash bucket the futex_q's reside in
473  * @key:        the futex key (to distinguish it from other futex futex_q's)
474  *
475  * Must be called with the hb lock held.
476  */
477 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
478                                         union futex_key *key)
479 {
480         struct futex_q *this;
481
482         plist_for_each_entry(this, &hb->chain, list) {
483                 if (match_futex(&this->key, key))
484                         return this;
485         }
486         return NULL;
487 }
488
489 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
490                                       u32 uval, u32 newval)
491 {
492         int ret;
493
494         pagefault_disable();
495         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
496         pagefault_enable();
497
498         return ret;
499 }
500
501 static int get_futex_value_locked(u32 *dest, u32 __user *from)
502 {
503         int ret;
504
505         pagefault_disable();
506         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
507         pagefault_enable();
508
509         return ret ? -EFAULT : 0;
510 }
511
512
513 /*
514  * PI code:
515  */
516 static int refill_pi_state_cache(void)
517 {
518         struct futex_pi_state *pi_state;
519
520         if (likely(current->pi_state_cache))
521                 return 0;
522
523         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
524
525         if (!pi_state)
526                 return -ENOMEM;
527
528         INIT_LIST_HEAD(&pi_state->list);
529         /* pi_mutex gets initialized later */
530         pi_state->owner = NULL;
531         atomic_set(&pi_state->refcount, 1);
532         pi_state->key = FUTEX_KEY_INIT;
533
534         current->pi_state_cache = pi_state;
535
536         return 0;
537 }
538
539 static struct futex_pi_state * alloc_pi_state(void)
540 {
541         struct futex_pi_state *pi_state = current->pi_state_cache;
542
543         WARN_ON(!pi_state);
544         current->pi_state_cache = NULL;
545
546         return pi_state;
547 }
548
549 static void free_pi_state(struct futex_pi_state *pi_state)
550 {
551         if (!atomic_dec_and_test(&pi_state->refcount))
552                 return;
553
554         /*
555          * If pi_state->owner is NULL, the owner is most probably dying
556          * and has cleaned up the pi_state already
557          */
558         if (pi_state->owner) {
559                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
560                 list_del_init(&pi_state->list);
561                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
562
563                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
564         }
565
566         if (current->pi_state_cache)
567                 kfree(pi_state);
568         else {
569                 /*
570                  * pi_state->list is already empty.
571                  * clear pi_state->owner.
572                  * refcount is at 0 - put it back to 1.
573                  */
574                 pi_state->owner = NULL;
575                 atomic_set(&pi_state->refcount, 1);
576                 current->pi_state_cache = pi_state;
577         }
578 }
579
580 /*
581  * Look up the task based on what TID userspace gave us.
582  * We dont trust it.
583  */
584 static struct task_struct * futex_find_get_task(pid_t pid)
585 {
586         struct task_struct *p;
587
588         rcu_read_lock();
589         p = find_task_by_vpid(pid);
590         if (p)
591                 get_task_struct(p);
592
593         rcu_read_unlock();
594
595         return p;
596 }
597
598 /*
599  * This task is holding PI mutexes at exit time => bad.
600  * Kernel cleans up PI-state, but userspace is likely hosed.
601  * (Robust-futex cleanup is separate and might save the day for userspace.)
602  */
603 void exit_pi_state_list(struct task_struct *curr)
604 {
605         struct list_head *next, *head = &curr->pi_state_list;
606         struct futex_pi_state *pi_state;
607         struct futex_hash_bucket *hb;
608         union futex_key key = FUTEX_KEY_INIT;
609
610         if (!futex_cmpxchg_enabled)
611                 return;
612         /*
613          * We are a ZOMBIE and nobody can enqueue itself on
614          * pi_state_list anymore, but we have to be careful
615          * versus waiters unqueueing themselves:
616          */
617         raw_spin_lock_irq(&curr->pi_lock);
618         while (!list_empty(head)) {
619
620                 next = head->next;
621                 pi_state = list_entry(next, struct futex_pi_state, list);
622                 key = pi_state->key;
623                 hb = hash_futex(&key);
624                 raw_spin_unlock_irq(&curr->pi_lock);
625
626                 spin_lock(&hb->lock);
627
628                 raw_spin_lock_irq(&curr->pi_lock);
629                 /*
630                  * We dropped the pi-lock, so re-check whether this
631                  * task still owns the PI-state:
632                  */
633                 if (head->next != next) {
634                         spin_unlock(&hb->lock);
635                         continue;
636                 }
637
638                 WARN_ON(pi_state->owner != curr);
639                 WARN_ON(list_empty(&pi_state->list));
640                 list_del_init(&pi_state->list);
641                 pi_state->owner = NULL;
642                 raw_spin_unlock_irq(&curr->pi_lock);
643
644                 rt_mutex_unlock(&pi_state->pi_mutex);
645
646                 spin_unlock(&hb->lock);
647
648                 raw_spin_lock_irq(&curr->pi_lock);
649         }
650         raw_spin_unlock_irq(&curr->pi_lock);
651 }
652
653 static int
654 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
655                 union futex_key *key, struct futex_pi_state **ps)
656 {
657         struct futex_pi_state *pi_state = NULL;
658         struct futex_q *this, *next;
659         struct task_struct *p;
660         pid_t pid = uval & FUTEX_TID_MASK;
661
662         plist_for_each_entry_safe(this, next, &hb->chain, list) {
663                 if (match_futex(&this->key, key)) {
664                         /*
665                          * Another waiter already exists - bump up
666                          * the refcount and return its pi_state:
667                          */
668                         pi_state = this->pi_state;
669                         /*
670                          * Userspace might have messed up non-PI and PI futexes
671                          */
672                         if (unlikely(!pi_state))
673                                 return -EINVAL;
674
675                         WARN_ON(!atomic_read(&pi_state->refcount));
676
677                         /*
678                          * When pi_state->owner is NULL then the owner died
679                          * and another waiter is on the fly. pi_state->owner
680                          * is fixed up by the task which acquires
681                          * pi_state->rt_mutex.
682                          *
683                          * We do not check for pid == 0 which can happen when
684                          * the owner died and robust_list_exit() cleared the
685                          * TID.
686                          */
687                         if (pid && pi_state->owner) {
688                                 /*
689                                  * Bail out if user space manipulated the
690                                  * futex value.
691                                  */
692                                 if (pid != task_pid_vnr(pi_state->owner))
693                                         return -EINVAL;
694                         }
695
696                         atomic_inc(&pi_state->refcount);
697                         *ps = pi_state;
698
699                         return 0;
700                 }
701         }
702
703         /*
704          * We are the first waiter - try to look up the real owner and attach
705          * the new pi_state to it, but bail out when TID = 0
706          */
707         if (!pid)
708                 return -ESRCH;
709         p = futex_find_get_task(pid);
710         if (!p)
711                 return -ESRCH;
712
713         /*
714          * We need to look at the task state flags to figure out,
715          * whether the task is exiting. To protect against the do_exit
716          * change of the task flags, we do this protected by
717          * p->pi_lock:
718          */
719         raw_spin_lock_irq(&p->pi_lock);
720         if (unlikely(p->flags & PF_EXITING)) {
721                 /*
722                  * The task is on the way out. When PF_EXITPIDONE is
723                  * set, we know that the task has finished the
724                  * cleanup:
725                  */
726                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
727
728                 raw_spin_unlock_irq(&p->pi_lock);
729                 put_task_struct(p);
730                 return ret;
731         }
732
733         pi_state = alloc_pi_state();
734
735         /*
736          * Initialize the pi_mutex in locked state and make 'p'
737          * the owner of it:
738          */
739         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
740
741         /* Store the key for possible exit cleanups: */
742         pi_state->key = *key;
743
744         WARN_ON(!list_empty(&pi_state->list));
745         list_add(&pi_state->list, &p->pi_state_list);
746         pi_state->owner = p;
747         raw_spin_unlock_irq(&p->pi_lock);
748
749         put_task_struct(p);
750
751         *ps = pi_state;
752
753         return 0;
754 }
755
756 /**
757  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
758  * @uaddr:              the pi futex user address
759  * @hb:                 the pi futex hash bucket
760  * @key:                the futex key associated with uaddr and hb
761  * @ps:                 the pi_state pointer where we store the result of the
762  *                      lookup
763  * @task:               the task to perform the atomic lock work for.  This will
764  *                      be "current" except in the case of requeue pi.
765  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
766  *
767  * Return:
768  *  0 - ready to wait;
769  *  1 - acquired the lock;
770  * <0 - error
771  *
772  * The hb->lock and futex_key refs shall be held by the caller.
773  */
774 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
775                                 union futex_key *key,
776                                 struct futex_pi_state **ps,
777                                 struct task_struct *task, int set_waiters)
778 {
779         int lock_taken, ret, force_take = 0;
780         u32 uval, newval, curval, vpid = task_pid_vnr(task);
781
782 retry:
783         ret = lock_taken = 0;
784
785         /*
786          * To avoid races, we attempt to take the lock here again
787          * (by doing a 0 -> TID atomic cmpxchg), while holding all
788          * the locks. It will most likely not succeed.
789          */
790         newval = vpid;
791         if (set_waiters)
792                 newval |= FUTEX_WAITERS;
793
794         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
795                 return -EFAULT;
796
797         /*
798          * Detect deadlocks.
799          */
800         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
801                 return -EDEADLK;
802
803         /*
804          * Surprise - we got the lock. Just return to userspace:
805          */
806         if (unlikely(!curval))
807                 return 1;
808
809         uval = curval;
810
811         /*
812          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
813          * to wake at the next unlock.
814          */
815         newval = curval | FUTEX_WAITERS;
816
817         /*
818          * Should we force take the futex? See below.
819          */
820         if (unlikely(force_take)) {
821                 /*
822                  * Keep the OWNER_DIED and the WAITERS bit and set the
823                  * new TID value.
824                  */
825                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
826                 force_take = 0;
827                 lock_taken = 1;
828         }
829
830         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
831                 return -EFAULT;
832         if (unlikely(curval != uval))
833                 goto retry;
834
835         /*
836          * We took the lock due to forced take over.
837          */
838         if (unlikely(lock_taken))
839                 return 1;
840
841         /*
842          * We dont have the lock. Look up the PI state (or create it if
843          * we are the first waiter):
844          */
845         ret = lookup_pi_state(uval, hb, key, ps);
846
847         if (unlikely(ret)) {
848                 switch (ret) {
849                 case -ESRCH:
850                         /*
851                          * We failed to find an owner for this
852                          * futex. So we have no pi_state to block
853                          * on. This can happen in two cases:
854                          *
855                          * 1) The owner died
856                          * 2) A stale FUTEX_WAITERS bit
857                          *
858                          * Re-read the futex value.
859                          */
860                         if (get_futex_value_locked(&curval, uaddr))
861                                 return -EFAULT;
862
863                         /*
864                          * If the owner died or we have a stale
865                          * WAITERS bit the owner TID in the user space
866                          * futex is 0.
867                          */
868                         if (!(curval & FUTEX_TID_MASK)) {
869                                 force_take = 1;
870                                 goto retry;
871                         }
872                 default:
873                         break;
874                 }
875         }
876
877         return ret;
878 }
879
880 /**
881  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
882  * @q:  The futex_q to unqueue
883  *
884  * The q->lock_ptr must not be NULL and must be held by the caller.
885  */
886 static void __unqueue_futex(struct futex_q *q)
887 {
888         struct futex_hash_bucket *hb;
889
890         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
891             || WARN_ON(plist_node_empty(&q->list)))
892                 return;
893
894         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
895         plist_del(&q->list, &hb->chain);
896 }
897
898 /*
899  * The hash bucket lock must be held when this is called.
900  * Afterwards, the futex_q must not be accessed.
901  */
902 static void wake_futex(struct futex_q *q)
903 {
904         struct task_struct *p = q->task;
905
906         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
907                 return;
908
909         /*
910          * We set q->lock_ptr = NULL _before_ we wake up the task. If
911          * a non-futex wake up happens on another CPU then the task
912          * might exit and p would dereference a non-existing task
913          * struct. Prevent this by holding a reference on p across the
914          * wake up.
915          */
916         get_task_struct(p);
917
918         __unqueue_futex(q);
919         /*
920          * The waiting task can free the futex_q as soon as
921          * q->lock_ptr = NULL is written, without taking any locks. A
922          * memory barrier is required here to prevent the following
923          * store to lock_ptr from getting ahead of the plist_del.
924          */
925         smp_wmb();
926         q->lock_ptr = NULL;
927
928         wake_up_state(p, TASK_NORMAL);
929         put_task_struct(p);
930 }
931
932 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
933 {
934         struct task_struct *new_owner;
935         struct futex_pi_state *pi_state = this->pi_state;
936         u32 uninitialized_var(curval), newval;
937
938         if (!pi_state)
939                 return -EINVAL;
940
941         /*
942          * If current does not own the pi_state then the futex is
943          * inconsistent and user space fiddled with the futex value.
944          */
945         if (pi_state->owner != current)
946                 return -EINVAL;
947
948         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
949         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
950
951         /*
952          * It is possible that the next waiter (the one that brought
953          * this owner to the kernel) timed out and is no longer
954          * waiting on the lock.
955          */
956         if (!new_owner)
957                 new_owner = this->task;
958
959         /*
960          * We pass it to the next owner. (The WAITERS bit is always
961          * kept enabled while there is PI state around. We must also
962          * preserve the owner died bit.)
963          */
964         if (!(uval & FUTEX_OWNER_DIED)) {
965                 int ret = 0;
966
967                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
968
969                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
970                         ret = -EFAULT;
971                 else if (curval != uval)
972                         ret = -EINVAL;
973                 if (ret) {
974                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
975                         return ret;
976                 }
977         }
978
979         raw_spin_lock_irq(&pi_state->owner->pi_lock);
980         WARN_ON(list_empty(&pi_state->list));
981         list_del_init(&pi_state->list);
982         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
983
984         raw_spin_lock_irq(&new_owner->pi_lock);
985         WARN_ON(!list_empty(&pi_state->list));
986         list_add(&pi_state->list, &new_owner->pi_state_list);
987         pi_state->owner = new_owner;
988         raw_spin_unlock_irq(&new_owner->pi_lock);
989
990         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
991         rt_mutex_unlock(&pi_state->pi_mutex);
992
993         return 0;
994 }
995
996 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
997 {
998         u32 uninitialized_var(oldval);
999
1000         /*
1001          * There is no waiter, so we unlock the futex. The owner died
1002          * bit has not to be preserved here. We are the owner:
1003          */
1004         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1005                 return -EFAULT;
1006         if (oldval != uval)
1007                 return -EAGAIN;
1008
1009         return 0;
1010 }
1011
1012 /*
1013  * Express the locking dependencies for lockdep:
1014  */
1015 static inline void
1016 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1017 {
1018         if (hb1 <= hb2) {
1019                 spin_lock(&hb1->lock);
1020                 if (hb1 < hb2)
1021                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1022         } else { /* hb1 > hb2 */
1023                 spin_lock(&hb2->lock);
1024                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1025         }
1026 }
1027
1028 static inline void
1029 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1030 {
1031         spin_unlock(&hb1->lock);
1032         if (hb1 != hb2)
1033                 spin_unlock(&hb2->lock);
1034 }
1035
1036 /*
1037  * Wake up waiters matching bitset queued on this futex (uaddr).
1038  */
1039 static int
1040 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1041 {
1042         struct futex_hash_bucket *hb;
1043         struct futex_q *this, *next;
1044         union futex_key key = FUTEX_KEY_INIT;
1045         int ret;
1046
1047         if (!bitset)
1048                 return -EINVAL;
1049
1050         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1051         if (unlikely(ret != 0))
1052                 goto out;
1053
1054         hb = hash_futex(&key);
1055         spin_lock(&hb->lock);
1056
1057         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1058                 if (match_futex (&this->key, &key)) {
1059                         if (this->pi_state || this->rt_waiter) {
1060                                 ret = -EINVAL;
1061                                 break;
1062                         }
1063
1064                         /* Check if one of the bits is set in both bitsets */
1065                         if (!(this->bitset & bitset))
1066                                 continue;
1067
1068                         wake_futex(this);
1069                         if (++ret >= nr_wake)
1070                                 break;
1071                 }
1072         }
1073
1074         spin_unlock(&hb->lock);
1075         put_futex_key(&key);
1076 out:
1077         return ret;
1078 }
1079
1080 /*
1081  * Wake up all waiters hashed on the physical page that is mapped
1082  * to this virtual address:
1083  */
1084 static int
1085 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1086               int nr_wake, int nr_wake2, int op)
1087 {
1088         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1089         struct futex_hash_bucket *hb1, *hb2;
1090         struct futex_q *this, *next;
1091         int ret, op_ret;
1092
1093 retry:
1094         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1095         if (unlikely(ret != 0))
1096                 goto out;
1097         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1098         if (unlikely(ret != 0))
1099                 goto out_put_key1;
1100
1101         hb1 = hash_futex(&key1);
1102         hb2 = hash_futex(&key2);
1103
1104 retry_private:
1105         double_lock_hb(hb1, hb2);
1106         op_ret = futex_atomic_op_inuser(op, uaddr2);
1107         if (unlikely(op_ret < 0)) {
1108
1109                 double_unlock_hb(hb1, hb2);
1110
1111 #ifndef CONFIG_MMU
1112                 /*
1113                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1114                  * but we might get them from range checking
1115                  */
1116                 ret = op_ret;
1117                 goto out_put_keys;
1118 #endif
1119
1120                 if (unlikely(op_ret != -EFAULT)) {
1121                         ret = op_ret;
1122                         goto out_put_keys;
1123                 }
1124
1125                 ret = fault_in_user_writeable(uaddr2);
1126                 if (ret)
1127                         goto out_put_keys;
1128
1129                 if (!(flags & FLAGS_SHARED))
1130                         goto retry_private;
1131
1132                 put_futex_key(&key2);
1133                 put_futex_key(&key1);
1134                 goto retry;
1135         }
1136
1137         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1138                 if (match_futex (&this->key, &key1)) {
1139                         if (this->pi_state || this->rt_waiter) {
1140                                 ret = -EINVAL;
1141                                 goto out_unlock;
1142                         }
1143                         wake_futex(this);
1144                         if (++ret >= nr_wake)
1145                                 break;
1146                 }
1147         }
1148
1149         if (op_ret > 0) {
1150                 op_ret = 0;
1151                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1152                         if (match_futex (&this->key, &key2)) {
1153                                 if (this->pi_state || this->rt_waiter) {
1154                                         ret = -EINVAL;
1155                                         goto out_unlock;
1156                                 }
1157                                 wake_futex(this);
1158                                 if (++op_ret >= nr_wake2)
1159                                         break;
1160                         }
1161                 }
1162                 ret += op_ret;
1163         }
1164
1165 out_unlock:
1166         double_unlock_hb(hb1, hb2);
1167 out_put_keys:
1168         put_futex_key(&key2);
1169 out_put_key1:
1170         put_futex_key(&key1);
1171 out:
1172         return ret;
1173 }
1174
1175 /**
1176  * requeue_futex() - Requeue a futex_q from one hb to another
1177  * @q:          the futex_q to requeue
1178  * @hb1:        the source hash_bucket
1179  * @hb2:        the target hash_bucket
1180  * @key2:       the new key for the requeued futex_q
1181  */
1182 static inline
1183 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1184                    struct futex_hash_bucket *hb2, union futex_key *key2)
1185 {
1186
1187         /*
1188          * If key1 and key2 hash to the same bucket, no need to
1189          * requeue.
1190          */
1191         if (likely(&hb1->chain != &hb2->chain)) {
1192                 plist_del(&q->list, &hb1->chain);
1193                 plist_add(&q->list, &hb2->chain);
1194                 q->lock_ptr = &hb2->lock;
1195         }
1196         get_futex_key_refs(key2);
1197         q->key = *key2;
1198 }
1199
1200 /**
1201  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1202  * @q:          the futex_q
1203  * @key:        the key of the requeue target futex
1204  * @hb:         the hash_bucket of the requeue target futex
1205  *
1206  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1207  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1208  * to the requeue target futex so the waiter can detect the wakeup on the right
1209  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1210  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1211  * to protect access to the pi_state to fixup the owner later.  Must be called
1212  * with both q->lock_ptr and hb->lock held.
1213  */
1214 static inline
1215 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1216                            struct futex_hash_bucket *hb)
1217 {
1218         get_futex_key_refs(key);
1219         q->key = *key;
1220
1221         __unqueue_futex(q);
1222
1223         WARN_ON(!q->rt_waiter);
1224         q->rt_waiter = NULL;
1225
1226         q->lock_ptr = &hb->lock;
1227
1228         wake_up_state(q->task, TASK_NORMAL);
1229 }
1230
1231 /**
1232  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1233  * @pifutex:            the user address of the to futex
1234  * @hb1:                the from futex hash bucket, must be locked by the caller
1235  * @hb2:                the to futex hash bucket, must be locked by the caller
1236  * @key1:               the from futex key
1237  * @key2:               the to futex key
1238  * @ps:                 address to store the pi_state pointer
1239  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1240  *
1241  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1242  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1243  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1244  * hb1 and hb2 must be held by the caller.
1245  *
1246  * Return:
1247  *  0 - failed to acquire the lock atomically;
1248  *  1 - acquired the lock;
1249  * <0 - error
1250  */
1251 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1252                                  struct futex_hash_bucket *hb1,
1253                                  struct futex_hash_bucket *hb2,
1254                                  union futex_key *key1, union futex_key *key2,
1255                                  struct futex_pi_state **ps, int set_waiters)
1256 {
1257         struct futex_q *top_waiter = NULL;
1258         u32 curval;
1259         int ret;
1260
1261         if (get_futex_value_locked(&curval, pifutex))
1262                 return -EFAULT;
1263
1264         /*
1265          * Find the top_waiter and determine if there are additional waiters.
1266          * If the caller intends to requeue more than 1 waiter to pifutex,
1267          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1268          * as we have means to handle the possible fault.  If not, don't set
1269          * the bit unecessarily as it will force the subsequent unlock to enter
1270          * the kernel.
1271          */
1272         top_waiter = futex_top_waiter(hb1, key1);
1273
1274         /* There are no waiters, nothing for us to do. */
1275         if (!top_waiter)
1276                 return 0;
1277
1278         /* Ensure we requeue to the expected futex. */
1279         if (!match_futex(top_waiter->requeue_pi_key, key2))
1280                 return -EINVAL;
1281
1282         /*
1283          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1284          * the contended case or if set_waiters is 1.  The pi_state is returned
1285          * in ps in contended cases.
1286          */
1287         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1288                                    set_waiters);
1289         if (ret == 1)
1290                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1291
1292         return ret;
1293 }
1294
1295 /**
1296  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1297  * @uaddr1:     source futex user address
1298  * @flags:      futex flags (FLAGS_SHARED, etc.)
1299  * @uaddr2:     target futex user address
1300  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1301  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1302  * @cmpval:     @uaddr1 expected value (or %NULL)
1303  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1304  *              pi futex (pi to pi requeue is not supported)
1305  *
1306  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1307  * uaddr2 atomically on behalf of the top waiter.
1308  *
1309  * Return:
1310  * >=0 - on success, the number of tasks requeued or woken;
1311  *  <0 - on error
1312  */
1313 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1314                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1315                          u32 *cmpval, int requeue_pi)
1316 {
1317         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1318         int drop_count = 0, task_count = 0, ret;
1319         struct futex_pi_state *pi_state = NULL;
1320         struct futex_hash_bucket *hb1, *hb2;
1321         struct futex_q *this, *next;
1322         u32 curval2;
1323
1324         if (requeue_pi) {
1325                 /*
1326                  * requeue_pi requires a pi_state, try to allocate it now
1327                  * without any locks in case it fails.
1328                  */
1329                 if (refill_pi_state_cache())
1330                         return -ENOMEM;
1331                 /*
1332                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1333                  * + nr_requeue, since it acquires the rt_mutex prior to
1334                  * returning to userspace, so as to not leave the rt_mutex with
1335                  * waiters and no owner.  However, second and third wake-ups
1336                  * cannot be predicted as they involve race conditions with the
1337                  * first wake and a fault while looking up the pi_state.  Both
1338                  * pthread_cond_signal() and pthread_cond_broadcast() should
1339                  * use nr_wake=1.
1340                  */
1341                 if (nr_wake != 1)
1342                         return -EINVAL;
1343         }
1344
1345 retry:
1346         if (pi_state != NULL) {
1347                 /*
1348                  * We will have to lookup the pi_state again, so free this one
1349                  * to keep the accounting correct.
1350                  */
1351                 free_pi_state(pi_state);
1352                 pi_state = NULL;
1353         }
1354
1355         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1356         if (unlikely(ret != 0))
1357                 goto out;
1358         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1359                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1360         if (unlikely(ret != 0))
1361                 goto out_put_key1;
1362
1363         hb1 = hash_futex(&key1);
1364         hb2 = hash_futex(&key2);
1365
1366 retry_private:
1367         double_lock_hb(hb1, hb2);
1368
1369         if (likely(cmpval != NULL)) {
1370                 u32 curval;
1371
1372                 ret = get_futex_value_locked(&curval, uaddr1);
1373
1374                 if (unlikely(ret)) {
1375                         double_unlock_hb(hb1, hb2);
1376
1377                         ret = get_user(curval, uaddr1);
1378                         if (ret)
1379                                 goto out_put_keys;
1380
1381                         if (!(flags & FLAGS_SHARED))
1382                                 goto retry_private;
1383
1384                         put_futex_key(&key2);
1385                         put_futex_key(&key1);
1386                         goto retry;
1387                 }
1388                 if (curval != *cmpval) {
1389                         ret = -EAGAIN;
1390                         goto out_unlock;
1391                 }
1392         }
1393
1394         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1395                 /*
1396                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1397                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1398                  * bit.  We force this here where we are able to easily handle
1399                  * faults rather in the requeue loop below.
1400                  */
1401                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1402                                                  &key2, &pi_state, nr_requeue);
1403
1404                 /*
1405                  * At this point the top_waiter has either taken uaddr2 or is
1406                  * waiting on it.  If the former, then the pi_state will not
1407                  * exist yet, look it up one more time to ensure we have a
1408                  * reference to it.
1409                  */
1410                 if (ret == 1) {
1411                         WARN_ON(pi_state);
1412                         drop_count++;
1413                         task_count++;
1414                         ret = get_futex_value_locked(&curval2, uaddr2);
1415                         if (!ret)
1416                                 ret = lookup_pi_state(curval2, hb2, &key2,
1417                                                       &pi_state);
1418                 }
1419
1420                 switch (ret) {
1421                 case 0:
1422                         break;
1423                 case -EFAULT:
1424                         double_unlock_hb(hb1, hb2);
1425                         put_futex_key(&key2);
1426                         put_futex_key(&key1);
1427                         ret = fault_in_user_writeable(uaddr2);
1428                         if (!ret)
1429                                 goto retry;
1430                         goto out;
1431                 case -EAGAIN:
1432                         /* The owner was exiting, try again. */
1433                         double_unlock_hb(hb1, hb2);
1434                         put_futex_key(&key2);
1435                         put_futex_key(&key1);
1436                         cond_resched();
1437                         goto retry;
1438                 default:
1439                         goto out_unlock;
1440                 }
1441         }
1442
1443         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1444                 if (task_count - nr_wake >= nr_requeue)
1445                         break;
1446
1447                 if (!match_futex(&this->key, &key1))
1448                         continue;
1449
1450                 /*
1451                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1452                  * be paired with each other and no other futex ops.
1453                  *
1454                  * We should never be requeueing a futex_q with a pi_state,
1455                  * which is awaiting a futex_unlock_pi().
1456                  */
1457                 if ((requeue_pi && !this->rt_waiter) ||
1458                     (!requeue_pi && this->rt_waiter) ||
1459                     this->pi_state) {
1460                         ret = -EINVAL;
1461                         break;
1462                 }
1463
1464                 /*
1465                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1466                  * lock, we already woke the top_waiter.  If not, it will be
1467                  * woken by futex_unlock_pi().
1468                  */
1469                 if (++task_count <= nr_wake && !requeue_pi) {
1470                         wake_futex(this);
1471                         continue;
1472                 }
1473
1474                 /* Ensure we requeue to the expected futex for requeue_pi. */
1475                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1476                         ret = -EINVAL;
1477                         break;
1478                 }
1479
1480                 /*
1481                  * Requeue nr_requeue waiters and possibly one more in the case
1482                  * of requeue_pi if we couldn't acquire the lock atomically.
1483                  */
1484                 if (requeue_pi) {
1485                         /* Prepare the waiter to take the rt_mutex. */
1486                         atomic_inc(&pi_state->refcount);
1487                         this->pi_state = pi_state;
1488                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1489                                                         this->rt_waiter,
1490                                                         this->task, 1);
1491                         if (ret == 1) {
1492                                 /* We got the lock. */
1493                                 requeue_pi_wake_futex(this, &key2, hb2);
1494                                 drop_count++;
1495                                 continue;
1496                         } else if (ret) {
1497                                 /* -EDEADLK */
1498                                 this->pi_state = NULL;
1499                                 free_pi_state(pi_state);
1500                                 goto out_unlock;
1501                         }
1502                 }
1503                 requeue_futex(this, hb1, hb2, &key2);
1504                 drop_count++;
1505         }
1506
1507 out_unlock:
1508         double_unlock_hb(hb1, hb2);
1509
1510         /*
1511          * drop_futex_key_refs() must be called outside the spinlocks. During
1512          * the requeue we moved futex_q's from the hash bucket at key1 to the
1513          * one at key2 and updated their key pointer.  We no longer need to
1514          * hold the references to key1.
1515          */
1516         while (--drop_count >= 0)
1517                 drop_futex_key_refs(&key1);
1518
1519 out_put_keys:
1520         put_futex_key(&key2);
1521 out_put_key1:
1522         put_futex_key(&key1);
1523 out:
1524         if (pi_state != NULL)
1525                 free_pi_state(pi_state);
1526         return ret ? ret : task_count;
1527 }
1528
1529 /* The key must be already stored in q->key. */
1530 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1531         __acquires(&hb->lock)
1532 {
1533         struct futex_hash_bucket *hb;
1534
1535         hb = hash_futex(&q->key);
1536         q->lock_ptr = &hb->lock;
1537
1538         spin_lock(&hb->lock);
1539         return hb;
1540 }
1541
1542 static inline void
1543 queue_unlock(struct futex_hash_bucket *hb)
1544         __releases(&hb->lock)
1545 {
1546         spin_unlock(&hb->lock);
1547 }
1548
1549 /**
1550  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1551  * @q:  The futex_q to enqueue
1552  * @hb: The destination hash bucket
1553  *
1554  * The hb->lock must be held by the caller, and is released here. A call to
1555  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1556  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1557  * or nothing if the unqueue is done as part of the wake process and the unqueue
1558  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1559  * an example).
1560  */
1561 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1562         __releases(&hb->lock)
1563 {
1564         int prio;
1565
1566         /*
1567          * The priority used to register this element is
1568          * - either the real thread-priority for the real-time threads
1569          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1570          * - or MAX_RT_PRIO for non-RT threads.
1571          * Thus, all RT-threads are woken first in priority order, and
1572          * the others are woken last, in FIFO order.
1573          */
1574         prio = min(current->normal_prio, MAX_RT_PRIO);
1575
1576         plist_node_init(&q->list, prio);
1577         plist_add(&q->list, &hb->chain);
1578         q->task = current;
1579         spin_unlock(&hb->lock);
1580 }
1581
1582 /**
1583  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1584  * @q:  The futex_q to unqueue
1585  *
1586  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1587  * be paired with exactly one earlier call to queue_me().
1588  *
1589  * Return:
1590  *   1 - if the futex_q was still queued (and we removed unqueued it);
1591  *   0 - if the futex_q was already removed by the waking thread
1592  */
1593 static int unqueue_me(struct futex_q *q)
1594 {
1595         spinlock_t *lock_ptr;
1596         int ret = 0;
1597
1598         /* In the common case we don't take the spinlock, which is nice. */
1599 retry:
1600         lock_ptr = q->lock_ptr;
1601         barrier();
1602         if (lock_ptr != NULL) {
1603                 spin_lock(lock_ptr);
1604                 /*
1605                  * q->lock_ptr can change between reading it and
1606                  * spin_lock(), causing us to take the wrong lock.  This
1607                  * corrects the race condition.
1608                  *
1609                  * Reasoning goes like this: if we have the wrong lock,
1610                  * q->lock_ptr must have changed (maybe several times)
1611                  * between reading it and the spin_lock().  It can
1612                  * change again after the spin_lock() but only if it was
1613                  * already changed before the spin_lock().  It cannot,
1614                  * however, change back to the original value.  Therefore
1615                  * we can detect whether we acquired the correct lock.
1616                  */
1617                 if (unlikely(lock_ptr != q->lock_ptr)) {
1618                         spin_unlock(lock_ptr);
1619                         goto retry;
1620                 }
1621                 __unqueue_futex(q);
1622
1623                 BUG_ON(q->pi_state);
1624
1625                 spin_unlock(lock_ptr);
1626                 ret = 1;
1627         }
1628
1629         drop_futex_key_refs(&q->key);
1630         return ret;
1631 }
1632
1633 /*
1634  * PI futexes can not be requeued and must remove themself from the
1635  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1636  * and dropped here.
1637  */
1638 static void unqueue_me_pi(struct futex_q *q)
1639         __releases(q->lock_ptr)
1640 {
1641         __unqueue_futex(q);
1642
1643         BUG_ON(!q->pi_state);
1644         free_pi_state(q->pi_state);
1645         q->pi_state = NULL;
1646
1647         spin_unlock(q->lock_ptr);
1648 }
1649
1650 /*
1651  * Fixup the pi_state owner with the new owner.
1652  *
1653  * Must be called with hash bucket lock held and mm->sem held for non
1654  * private futexes.
1655  */
1656 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1657                                 struct task_struct *newowner)
1658 {
1659         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1660         struct futex_pi_state *pi_state = q->pi_state;
1661         struct task_struct *oldowner = pi_state->owner;
1662         u32 uval, uninitialized_var(curval), newval;
1663         int ret;
1664
1665         /* Owner died? */
1666         if (!pi_state->owner)
1667                 newtid |= FUTEX_OWNER_DIED;
1668
1669         /*
1670          * We are here either because we stole the rtmutex from the
1671          * previous highest priority waiter or we are the highest priority
1672          * waiter but failed to get the rtmutex the first time.
1673          * We have to replace the newowner TID in the user space variable.
1674          * This must be atomic as we have to preserve the owner died bit here.
1675          *
1676          * Note: We write the user space value _before_ changing the pi_state
1677          * because we can fault here. Imagine swapped out pages or a fork
1678          * that marked all the anonymous memory readonly for cow.
1679          *
1680          * Modifying pi_state _before_ the user space value would
1681          * leave the pi_state in an inconsistent state when we fault
1682          * here, because we need to drop the hash bucket lock to
1683          * handle the fault. This might be observed in the PID check
1684          * in lookup_pi_state.
1685          */
1686 retry:
1687         if (get_futex_value_locked(&uval, uaddr))
1688                 goto handle_fault;
1689
1690         while (1) {
1691                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1692
1693                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1694                         goto handle_fault;
1695                 if (curval == uval)
1696                         break;
1697                 uval = curval;
1698         }
1699
1700         /*
1701          * We fixed up user space. Now we need to fix the pi_state
1702          * itself.
1703          */
1704         if (pi_state->owner != NULL) {
1705                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1706                 WARN_ON(list_empty(&pi_state->list));
1707                 list_del_init(&pi_state->list);
1708                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1709         }
1710
1711         pi_state->owner = newowner;
1712
1713         raw_spin_lock_irq(&newowner->pi_lock);
1714         WARN_ON(!list_empty(&pi_state->list));
1715         list_add(&pi_state->list, &newowner->pi_state_list);
1716         raw_spin_unlock_irq(&newowner->pi_lock);
1717         return 0;
1718
1719         /*
1720          * To handle the page fault we need to drop the hash bucket
1721          * lock here. That gives the other task (either the highest priority
1722          * waiter itself or the task which stole the rtmutex) the
1723          * chance to try the fixup of the pi_state. So once we are
1724          * back from handling the fault we need to check the pi_state
1725          * after reacquiring the hash bucket lock and before trying to
1726          * do another fixup. When the fixup has been done already we
1727          * simply return.
1728          */
1729 handle_fault:
1730         spin_unlock(q->lock_ptr);
1731
1732         ret = fault_in_user_writeable(uaddr);
1733
1734         spin_lock(q->lock_ptr);
1735
1736         /*
1737          * Check if someone else fixed it for us:
1738          */
1739         if (pi_state->owner != oldowner)
1740                 return 0;
1741
1742         if (ret)
1743                 return ret;
1744
1745         goto retry;
1746 }
1747
1748 static long futex_wait_restart(struct restart_block *restart);
1749
1750 /**
1751  * fixup_owner() - Post lock pi_state and corner case management
1752  * @uaddr:      user address of the futex
1753  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1754  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1755  *
1756  * After attempting to lock an rt_mutex, this function is called to cleanup
1757  * the pi_state owner as well as handle race conditions that may allow us to
1758  * acquire the lock. Must be called with the hb lock held.
1759  *
1760  * Return:
1761  *  1 - success, lock taken;
1762  *  0 - success, lock not taken;
1763  * <0 - on error (-EFAULT)
1764  */
1765 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1766 {
1767         struct task_struct *owner;
1768         int ret = 0;
1769
1770         if (locked) {
1771                 /*
1772                  * Got the lock. We might not be the anticipated owner if we
1773                  * did a lock-steal - fix up the PI-state in that case:
1774                  */
1775                 if (q->pi_state->owner != current)
1776                         ret = fixup_pi_state_owner(uaddr, q, current);
1777                 goto out;
1778         }
1779
1780         /*
1781          * Catch the rare case, where the lock was released when we were on the
1782          * way back before we locked the hash bucket.
1783          */
1784         if (q->pi_state->owner == current) {
1785                 /*
1786                  * Try to get the rt_mutex now. This might fail as some other
1787                  * task acquired the rt_mutex after we removed ourself from the
1788                  * rt_mutex waiters list.
1789                  */
1790                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1791                         locked = 1;
1792                         goto out;
1793                 }
1794
1795                 /*
1796                  * pi_state is incorrect, some other task did a lock steal and
1797                  * we returned due to timeout or signal without taking the
1798                  * rt_mutex. Too late.
1799                  */
1800                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1801                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1802                 if (!owner)
1803                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1804                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1805                 ret = fixup_pi_state_owner(uaddr, q, owner);
1806                 goto out;
1807         }
1808
1809         /*
1810          * Paranoia check. If we did not take the lock, then we should not be
1811          * the owner of the rt_mutex.
1812          */
1813         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1814                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1815                                 "pi-state %p\n", ret,
1816                                 q->pi_state->pi_mutex.owner,
1817                                 q->pi_state->owner);
1818
1819 out:
1820         return ret ? ret : locked;
1821 }
1822
1823 /**
1824  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1825  * @hb:         the futex hash bucket, must be locked by the caller
1826  * @q:          the futex_q to queue up on
1827  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1828  */
1829 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1830                                 struct hrtimer_sleeper *timeout)
1831 {
1832         /*
1833          * The task state is guaranteed to be set before another task can
1834          * wake it. set_current_state() is implemented using set_mb() and
1835          * queue_me() calls spin_unlock() upon completion, both serializing
1836          * access to the hash list and forcing another memory barrier.
1837          */
1838         set_current_state(TASK_INTERRUPTIBLE);
1839         queue_me(q, hb);
1840
1841         /* Arm the timer */
1842         if (timeout) {
1843                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1844                 if (!hrtimer_active(&timeout->timer))
1845                         timeout->task = NULL;
1846         }
1847
1848         /*
1849          * If we have been removed from the hash list, then another task
1850          * has tried to wake us, and we can skip the call to schedule().
1851          */
1852         if (likely(!plist_node_empty(&q->list))) {
1853                 /*
1854                  * If the timer has already expired, current will already be
1855                  * flagged for rescheduling. Only call schedule if there
1856                  * is no timeout, or if it has yet to expire.
1857                  */
1858                 if (!timeout || timeout->task)
1859                         freezable_schedule();
1860         }
1861         __set_current_state(TASK_RUNNING);
1862 }
1863
1864 /**
1865  * futex_wait_setup() - Prepare to wait on a futex
1866  * @uaddr:      the futex userspace address
1867  * @val:        the expected value
1868  * @flags:      futex flags (FLAGS_SHARED, etc.)
1869  * @q:          the associated futex_q
1870  * @hb:         storage for hash_bucket pointer to be returned to caller
1871  *
1872  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1873  * compare it with the expected value.  Handle atomic faults internally.
1874  * Return with the hb lock held and a q.key reference on success, and unlocked
1875  * with no q.key reference on failure.
1876  *
1877  * Return:
1878  *  0 - uaddr contains val and hb has been locked;
1879  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1880  */
1881 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1882                            struct futex_q *q, struct futex_hash_bucket **hb)
1883 {
1884         u32 uval;
1885         int ret;
1886
1887         /*
1888          * Access the page AFTER the hash-bucket is locked.
1889          * Order is important:
1890          *
1891          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1892          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1893          *
1894          * The basic logical guarantee of a futex is that it blocks ONLY
1895          * if cond(var) is known to be true at the time of blocking, for
1896          * any cond.  If we locked the hash-bucket after testing *uaddr, that
1897          * would open a race condition where we could block indefinitely with
1898          * cond(var) false, which would violate the guarantee.
1899          *
1900          * On the other hand, we insert q and release the hash-bucket only
1901          * after testing *uaddr.  This guarantees that futex_wait() will NOT
1902          * absorb a wakeup if *uaddr does not match the desired values
1903          * while the syscall executes.
1904          */
1905 retry:
1906         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1907         if (unlikely(ret != 0))
1908                 return ret;
1909
1910 retry_private:
1911         *hb = queue_lock(q);
1912
1913         ret = get_futex_value_locked(&uval, uaddr);
1914
1915         if (ret) {
1916                 queue_unlock(*hb);
1917
1918                 ret = get_user(uval, uaddr);
1919                 if (ret)
1920                         goto out;
1921
1922                 if (!(flags & FLAGS_SHARED))
1923                         goto retry_private;
1924
1925                 put_futex_key(&q->key);
1926                 goto retry;
1927         }
1928
1929         if (uval != val) {
1930                 queue_unlock(*hb);
1931                 ret = -EWOULDBLOCK;
1932         }
1933
1934 out:
1935         if (ret)
1936                 put_futex_key(&q->key);
1937         return ret;
1938 }
1939
1940 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1941                       ktime_t *abs_time, u32 bitset)
1942 {
1943         struct hrtimer_sleeper timeout, *to = NULL;
1944         struct restart_block *restart;
1945         struct futex_hash_bucket *hb;
1946         struct futex_q q = futex_q_init;
1947         int ret;
1948
1949         if (!bitset)
1950                 return -EINVAL;
1951         q.bitset = bitset;
1952
1953         if (abs_time) {
1954                 to = &timeout;
1955
1956                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1957                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
1958                                       HRTIMER_MODE_ABS);
1959                 hrtimer_init_sleeper(to, current);
1960                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1961                                              current->timer_slack_ns);
1962         }
1963
1964 retry:
1965         /*
1966          * Prepare to wait on uaddr. On success, holds hb lock and increments
1967          * q.key refs.
1968          */
1969         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1970         if (ret)
1971                 goto out;
1972
1973         /* queue_me and wait for wakeup, timeout, or a signal. */
1974         futex_wait_queue_me(hb, &q, to);
1975
1976         /* If we were woken (and unqueued), we succeeded, whatever. */
1977         ret = 0;
1978         /* unqueue_me() drops q.key ref */
1979         if (!unqueue_me(&q))
1980                 goto out;
1981         ret = -ETIMEDOUT;
1982         if (to && !to->task)
1983                 goto out;
1984
1985         /*
1986          * We expect signal_pending(current), but we might be the
1987          * victim of a spurious wakeup as well.
1988          */
1989         if (!signal_pending(current))
1990                 goto retry;
1991
1992         ret = -ERESTARTSYS;
1993         if (!abs_time)
1994                 goto out;
1995
1996         restart = &current_thread_info()->restart_block;
1997         restart->fn = futex_wait_restart;
1998         restart->futex.uaddr = uaddr;
1999         restart->futex.val = val;
2000         restart->futex.time = abs_time->tv64;
2001         restart->futex.bitset = bitset;
2002         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2003
2004         ret = -ERESTART_RESTARTBLOCK;
2005
2006 out:
2007         if (to) {
2008                 hrtimer_cancel(&to->timer);
2009                 destroy_hrtimer_on_stack(&to->timer);
2010         }
2011         return ret;
2012 }
2013
2014
2015 static long futex_wait_restart(struct restart_block *restart)
2016 {
2017         u32 __user *uaddr = restart->futex.uaddr;
2018         ktime_t t, *tp = NULL;
2019
2020         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2021                 t.tv64 = restart->futex.time;
2022                 tp = &t;
2023         }
2024         restart->fn = do_no_restart_syscall;
2025
2026         return (long)futex_wait(uaddr, restart->futex.flags,
2027                                 restart->futex.val, tp, restart->futex.bitset);
2028 }
2029
2030
2031 /*
2032  * Userspace tried a 0 -> TID atomic transition of the futex value
2033  * and failed. The kernel side here does the whole locking operation:
2034  * if there are waiters then it will block, it does PI, etc. (Due to
2035  * races the kernel might see a 0 value of the futex too.)
2036  */
2037 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2038                          ktime_t *time, int trylock)
2039 {
2040         struct hrtimer_sleeper timeout, *to = NULL;
2041         struct futex_hash_bucket *hb;
2042         struct futex_q q = futex_q_init;
2043         int res, ret;
2044
2045         if (refill_pi_state_cache())
2046                 return -ENOMEM;
2047
2048         if (time) {
2049                 to = &timeout;
2050                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2051                                       HRTIMER_MODE_ABS);
2052                 hrtimer_init_sleeper(to, current);
2053                 hrtimer_set_expires(&to->timer, *time);
2054         }
2055
2056 retry:
2057         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2058         if (unlikely(ret != 0))
2059                 goto out;
2060
2061 retry_private:
2062         hb = queue_lock(&q);
2063
2064         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2065         if (unlikely(ret)) {
2066                 switch (ret) {
2067                 case 1:
2068                         /* We got the lock. */
2069                         ret = 0;
2070                         goto out_unlock_put_key;
2071                 case -EFAULT:
2072                         goto uaddr_faulted;
2073                 case -EAGAIN:
2074                         /*
2075                          * Task is exiting and we just wait for the
2076                          * exit to complete.
2077                          */
2078                         queue_unlock(hb);
2079                         put_futex_key(&q.key);
2080                         cond_resched();
2081                         goto retry;
2082                 default:
2083                         goto out_unlock_put_key;
2084                 }
2085         }
2086
2087         /*
2088          * Only actually queue now that the atomic ops are done:
2089          */
2090         queue_me(&q, hb);
2091
2092         WARN_ON(!q.pi_state);
2093         /*
2094          * Block on the PI mutex:
2095          */
2096         if (!trylock)
2097                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2098         else {
2099                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2100                 /* Fixup the trylock return value: */
2101                 ret = ret ? 0 : -EWOULDBLOCK;
2102         }
2103
2104         spin_lock(q.lock_ptr);
2105         /*
2106          * Fixup the pi_state owner and possibly acquire the lock if we
2107          * haven't already.
2108          */
2109         res = fixup_owner(uaddr, &q, !ret);
2110         /*
2111          * If fixup_owner() returned an error, proprogate that.  If it acquired
2112          * the lock, clear our -ETIMEDOUT or -EINTR.
2113          */
2114         if (res)
2115                 ret = (res < 0) ? res : 0;
2116
2117         /*
2118          * If fixup_owner() faulted and was unable to handle the fault, unlock
2119          * it and return the fault to userspace.
2120          */
2121         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2122                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2123
2124         /* Unqueue and drop the lock */
2125         unqueue_me_pi(&q);
2126
2127         goto out_put_key;
2128
2129 out_unlock_put_key:
2130         queue_unlock(hb);
2131
2132 out_put_key:
2133         put_futex_key(&q.key);
2134 out:
2135         if (to)
2136                 destroy_hrtimer_on_stack(&to->timer);
2137         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2138
2139 uaddr_faulted:
2140         queue_unlock(hb);
2141
2142         ret = fault_in_user_writeable(uaddr);
2143         if (ret)
2144                 goto out_put_key;
2145
2146         if (!(flags & FLAGS_SHARED))
2147                 goto retry_private;
2148
2149         put_futex_key(&q.key);
2150         goto retry;
2151 }
2152
2153 /*
2154  * Userspace attempted a TID -> 0 atomic transition, and failed.
2155  * This is the in-kernel slowpath: we look up the PI state (if any),
2156  * and do the rt-mutex unlock.
2157  */
2158 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2159 {
2160         struct futex_hash_bucket *hb;
2161         struct futex_q *this, *next;
2162         union futex_key key = FUTEX_KEY_INIT;
2163         u32 uval, vpid = task_pid_vnr(current);
2164         int ret;
2165
2166 retry:
2167         if (get_user(uval, uaddr))
2168                 return -EFAULT;
2169         /*
2170          * We release only a lock we actually own:
2171          */
2172         if ((uval & FUTEX_TID_MASK) != vpid)
2173                 return -EPERM;
2174
2175         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2176         if (unlikely(ret != 0))
2177                 goto out;
2178
2179         hb = hash_futex(&key);
2180         spin_lock(&hb->lock);
2181
2182         /*
2183          * To avoid races, try to do the TID -> 0 atomic transition
2184          * again. If it succeeds then we can return without waking
2185          * anyone else up:
2186          */
2187         if (!(uval & FUTEX_OWNER_DIED) &&
2188             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2189                 goto pi_faulted;
2190         /*
2191          * Rare case: we managed to release the lock atomically,
2192          * no need to wake anyone else up:
2193          */
2194         if (unlikely(uval == vpid))
2195                 goto out_unlock;
2196
2197         /*
2198          * Ok, other tasks may need to be woken up - check waiters
2199          * and do the wakeup if necessary:
2200          */
2201         plist_for_each_entry_safe(this, next, &hb->chain, list) {
2202                 if (!match_futex (&this->key, &key))
2203                         continue;
2204                 ret = wake_futex_pi(uaddr, uval, this);
2205                 /*
2206                  * The atomic access to the futex value
2207                  * generated a pagefault, so retry the
2208                  * user-access and the wakeup:
2209                  */
2210                 if (ret == -EFAULT)
2211                         goto pi_faulted;
2212                 goto out_unlock;
2213         }
2214         /*
2215          * No waiters - kernel unlocks the futex:
2216          */
2217         if (!(uval & FUTEX_OWNER_DIED)) {
2218                 ret = unlock_futex_pi(uaddr, uval);
2219                 if (ret == -EFAULT)
2220                         goto pi_faulted;
2221         }
2222
2223 out_unlock:
2224         spin_unlock(&hb->lock);
2225         put_futex_key(&key);
2226
2227 out:
2228         return ret;
2229
2230 pi_faulted:
2231         spin_unlock(&hb->lock);
2232         put_futex_key(&key);
2233
2234         ret = fault_in_user_writeable(uaddr);
2235         if (!ret)
2236                 goto retry;
2237
2238         return ret;
2239 }
2240
2241 /**
2242  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2243  * @hb:         the hash_bucket futex_q was original enqueued on
2244  * @q:          the futex_q woken while waiting to be requeued
2245  * @key2:       the futex_key of the requeue target futex
2246  * @timeout:    the timeout associated with the wait (NULL if none)
2247  *
2248  * Detect if the task was woken on the initial futex as opposed to the requeue
2249  * target futex.  If so, determine if it was a timeout or a signal that caused
2250  * the wakeup and return the appropriate error code to the caller.  Must be
2251  * called with the hb lock held.
2252  *
2253  * Return:
2254  *  0 = no early wakeup detected;
2255  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2256  */
2257 static inline
2258 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2259                                    struct futex_q *q, union futex_key *key2,
2260                                    struct hrtimer_sleeper *timeout)
2261 {
2262         int ret = 0;
2263
2264         /*
2265          * With the hb lock held, we avoid races while we process the wakeup.
2266          * We only need to hold hb (and not hb2) to ensure atomicity as the
2267          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2268          * It can't be requeued from uaddr2 to something else since we don't
2269          * support a PI aware source futex for requeue.
2270          */
2271         if (!match_futex(&q->key, key2)) {
2272                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2273                 /*
2274                  * We were woken prior to requeue by a timeout or a signal.
2275                  * Unqueue the futex_q and determine which it was.
2276                  */
2277                 plist_del(&q->list, &hb->chain);
2278
2279                 /* Handle spurious wakeups gracefully */
2280                 ret = -EWOULDBLOCK;
2281                 if (timeout && !timeout->task)
2282                         ret = -ETIMEDOUT;
2283                 else if (signal_pending(current))
2284                         ret = -ERESTARTNOINTR;
2285         }
2286         return ret;
2287 }
2288
2289 /**
2290  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2291  * @uaddr:      the futex we initially wait on (non-pi)
2292  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2293  *              the same type, no requeueing from private to shared, etc.
2294  * @val:        the expected value of uaddr
2295  * @abs_time:   absolute timeout
2296  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2297  * @uaddr2:     the pi futex we will take prior to returning to user-space
2298  *
2299  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2300  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2301  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2302  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2303  * without one, the pi logic would not know which task to boost/deboost, if
2304  * there was a need to.
2305  *
2306  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2307  * via the following--
2308  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2309  * 2) wakeup on uaddr2 after a requeue
2310  * 3) signal
2311  * 4) timeout
2312  *
2313  * If 3, cleanup and return -ERESTARTNOINTR.
2314  *
2315  * If 2, we may then block on trying to take the rt_mutex and return via:
2316  * 5) successful lock
2317  * 6) signal
2318  * 7) timeout
2319  * 8) other lock acquisition failure
2320  *
2321  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2322  *
2323  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2324  *
2325  * Return:
2326  *  0 - On success;
2327  * <0 - On error
2328  */
2329 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2330                                  u32 val, ktime_t *abs_time, u32 bitset,
2331                                  u32 __user *uaddr2)
2332 {
2333         struct hrtimer_sleeper timeout, *to = NULL;
2334         struct rt_mutex_waiter rt_waiter;
2335         struct rt_mutex *pi_mutex = NULL;
2336         struct futex_hash_bucket *hb;
2337         union futex_key key2 = FUTEX_KEY_INIT;
2338         struct futex_q q = futex_q_init;
2339         int res, ret;
2340
2341         if (uaddr == uaddr2)
2342                 return -EINVAL;
2343
2344         if (!bitset)
2345                 return -EINVAL;
2346
2347         if (abs_time) {
2348                 to = &timeout;
2349                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2350                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2351                                       HRTIMER_MODE_ABS);
2352                 hrtimer_init_sleeper(to, current);
2353                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2354                                              current->timer_slack_ns);
2355         }
2356
2357         /*
2358          * The waiter is allocated on our stack, manipulated by the requeue
2359          * code while we sleep on uaddr.
2360          */
2361         debug_rt_mutex_init_waiter(&rt_waiter);
2362         rt_waiter.task = NULL;
2363
2364         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2365         if (unlikely(ret != 0))
2366                 goto out;
2367
2368         q.bitset = bitset;
2369         q.rt_waiter = &rt_waiter;
2370         q.requeue_pi_key = &key2;
2371
2372         /*
2373          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2374          * count.
2375          */
2376         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2377         if (ret)
2378                 goto out_key2;
2379
2380         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2381         futex_wait_queue_me(hb, &q, to);
2382
2383         spin_lock(&hb->lock);
2384         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2385         spin_unlock(&hb->lock);
2386         if (ret)
2387                 goto out_put_keys;
2388
2389         /*
2390          * In order for us to be here, we know our q.key == key2, and since
2391          * we took the hb->lock above, we also know that futex_requeue() has
2392          * completed and we no longer have to concern ourselves with a wakeup
2393          * race with the atomic proxy lock acquisition by the requeue code. The
2394          * futex_requeue dropped our key1 reference and incremented our key2
2395          * reference count.
2396          */
2397
2398         /* Check if the requeue code acquired the second futex for us. */
2399         if (!q.rt_waiter) {
2400                 /*
2401                  * Got the lock. We might not be the anticipated owner if we
2402                  * did a lock-steal - fix up the PI-state in that case.
2403                  */
2404                 if (q.pi_state && (q.pi_state->owner != current)) {
2405                         spin_lock(q.lock_ptr);
2406                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2407                         spin_unlock(q.lock_ptr);
2408                 }
2409         } else {
2410                 /*
2411                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2412                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2413                  * the pi_state.
2414                  */
2415                 WARN_ON(!q.pi_state);
2416                 pi_mutex = &q.pi_state->pi_mutex;
2417                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2418                 debug_rt_mutex_free_waiter(&rt_waiter);
2419
2420                 spin_lock(q.lock_ptr);
2421                 /*
2422                  * Fixup the pi_state owner and possibly acquire the lock if we
2423                  * haven't already.
2424                  */
2425                 res = fixup_owner(uaddr2, &q, !ret);
2426                 /*
2427                  * If fixup_owner() returned an error, proprogate that.  If it
2428                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2429                  */
2430                 if (res)
2431                         ret = (res < 0) ? res : 0;
2432
2433                 /* Unqueue and drop the lock. */
2434                 unqueue_me_pi(&q);
2435         }
2436
2437         /*
2438          * If fixup_pi_state_owner() faulted and was unable to handle the
2439          * fault, unlock the rt_mutex and return the fault to userspace.
2440          */
2441         if (ret == -EFAULT) {
2442                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2443                         rt_mutex_unlock(pi_mutex);
2444         } else if (ret == -EINTR) {
2445                 /*
2446                  * We've already been requeued, but cannot restart by calling
2447                  * futex_lock_pi() directly. We could restart this syscall, but
2448                  * it would detect that the user space "val" changed and return
2449                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2450                  * -EWOULDBLOCK directly.
2451                  */
2452                 ret = -EWOULDBLOCK;
2453         }
2454
2455 out_put_keys:
2456         put_futex_key(&q.key);
2457 out_key2:
2458         put_futex_key(&key2);
2459
2460 out:
2461         if (to) {
2462                 hrtimer_cancel(&to->timer);
2463                 destroy_hrtimer_on_stack(&to->timer);
2464         }
2465         return ret;
2466 }
2467
2468 /*
2469  * Support for robust futexes: the kernel cleans up held futexes at
2470  * thread exit time.
2471  *
2472  * Implementation: user-space maintains a per-thread list of locks it
2473  * is holding. Upon do_exit(), the kernel carefully walks this list,
2474  * and marks all locks that are owned by this thread with the
2475  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2476  * always manipulated with the lock held, so the list is private and
2477  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2478  * field, to allow the kernel to clean up if the thread dies after
2479  * acquiring the lock, but just before it could have added itself to
2480  * the list. There can only be one such pending lock.
2481  */
2482
2483 /**
2484  * sys_set_robust_list() - Set the robust-futex list head of a task
2485  * @head:       pointer to the list-head
2486  * @len:        length of the list-head, as userspace expects
2487  */
2488 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2489                 size_t, len)
2490 {
2491         if (!futex_cmpxchg_enabled)
2492                 return -ENOSYS;
2493         /*
2494          * The kernel knows only one size for now:
2495          */
2496         if (unlikely(len != sizeof(*head)))
2497                 return -EINVAL;
2498
2499         current->robust_list = head;
2500
2501         return 0;
2502 }
2503
2504 /**
2505  * sys_get_robust_list() - Get the robust-futex list head of a task
2506  * @pid:        pid of the process [zero for current task]
2507  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2508  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2509  */
2510 SYSCALL_DEFINE3(get_robust_list, int, pid,
2511                 struct robust_list_head __user * __user *, head_ptr,
2512                 size_t __user *, len_ptr)
2513 {
2514         struct robust_list_head __user *head;
2515         unsigned long ret;
2516         struct task_struct *p;
2517
2518         if (!futex_cmpxchg_enabled)
2519                 return -ENOSYS;
2520
2521         rcu_read_lock();
2522
2523         ret = -ESRCH;
2524         if (!pid)
2525                 p = current;
2526         else {
2527                 p = find_task_by_vpid(pid);
2528                 if (!p)
2529                         goto err_unlock;
2530         }
2531
2532         ret = -EPERM;
2533         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2534                 goto err_unlock;
2535
2536         head = p->robust_list;
2537         rcu_read_unlock();
2538
2539         if (put_user(sizeof(*head), len_ptr))
2540                 return -EFAULT;
2541         return put_user(head, head_ptr);
2542
2543 err_unlock:
2544         rcu_read_unlock();
2545
2546         return ret;
2547 }
2548
2549 /*
2550  * Process a futex-list entry, check whether it's owned by the
2551  * dying task, and do notification if so:
2552  */
2553 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2554 {
2555         u32 uval, uninitialized_var(nval), mval;
2556
2557 retry:
2558         if (get_user(uval, uaddr))
2559                 return -1;
2560
2561         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2562                 /*
2563                  * Ok, this dying thread is truly holding a futex
2564                  * of interest. Set the OWNER_DIED bit atomically
2565                  * via cmpxchg, and if the value had FUTEX_WAITERS
2566                  * set, wake up a waiter (if any). (We have to do a
2567                  * futex_wake() even if OWNER_DIED is already set -
2568                  * to handle the rare but possible case of recursive
2569                  * thread-death.) The rest of the cleanup is done in
2570                  * userspace.
2571                  */
2572                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2573                 /*
2574                  * We are not holding a lock here, but we want to have
2575                  * the pagefault_disable/enable() protection because
2576                  * we want to handle the fault gracefully. If the
2577                  * access fails we try to fault in the futex with R/W
2578                  * verification via get_user_pages. get_user() above
2579                  * does not guarantee R/W access. If that fails we
2580                  * give up and leave the futex locked.
2581                  */
2582                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2583                         if (fault_in_user_writeable(uaddr))
2584                                 return -1;
2585                         goto retry;
2586                 }
2587                 if (nval != uval)
2588                         goto retry;
2589
2590                 /*
2591                  * Wake robust non-PI futexes here. The wakeup of
2592                  * PI futexes happens in exit_pi_state():
2593                  */
2594                 if (!pi && (uval & FUTEX_WAITERS))
2595                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2596         }
2597         return 0;
2598 }
2599
2600 /*
2601  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2602  */
2603 static inline int fetch_robust_entry(struct robust_list __user **entry,
2604                                      struct robust_list __user * __user *head,
2605                                      unsigned int *pi)
2606 {
2607         unsigned long uentry;
2608
2609         if (get_user(uentry, (unsigned long __user *)head))
2610                 return -EFAULT;
2611
2612         *entry = (void __user *)(uentry & ~1UL);
2613         *pi = uentry & 1;
2614
2615         return 0;
2616 }
2617
2618 /*
2619  * Walk curr->robust_list (very carefully, it's a userspace list!)
2620  * and mark any locks found there dead, and notify any waiters.
2621  *
2622  * We silently return on any sign of list-walking problem.
2623  */
2624 void exit_robust_list(struct task_struct *curr)
2625 {
2626         struct robust_list_head __user *head = curr->robust_list;
2627         struct robust_list __user *entry, *next_entry, *pending;
2628         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2629         unsigned int uninitialized_var(next_pi);
2630         unsigned long futex_offset;
2631         int rc;
2632
2633         if (!futex_cmpxchg_enabled)
2634                 return;
2635
2636         /*
2637          * Fetch the list head (which was registered earlier, via
2638          * sys_set_robust_list()):
2639          */
2640         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2641                 return;
2642         /*
2643          * Fetch the relative futex offset:
2644          */
2645         if (get_user(futex_offset, &head->futex_offset))
2646                 return;
2647         /*
2648          * Fetch any possibly pending lock-add first, and handle it
2649          * if it exists:
2650          */
2651         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2652                 return;
2653
2654         next_entry = NULL;      /* avoid warning with gcc */
2655         while (entry != &head->list) {
2656                 /*
2657                  * Fetch the next entry in the list before calling
2658                  * handle_futex_death:
2659                  */
2660                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2661                 /*
2662                  * A pending lock might already be on the list, so
2663                  * don't process it twice:
2664                  */
2665                 if (entry != pending)
2666                         if (handle_futex_death((void __user *)entry + futex_offset,
2667                                                 curr, pi))
2668                                 return;
2669                 if (rc)
2670                         return;
2671                 entry = next_entry;
2672                 pi = next_pi;
2673                 /*
2674                  * Avoid excessively long or circular lists:
2675                  */
2676                 if (!--limit)
2677                         break;
2678
2679                 cond_resched();
2680         }
2681
2682         if (pending)
2683                 handle_futex_death((void __user *)pending + futex_offset,
2684                                    curr, pip);
2685 }
2686
2687 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2688                 u32 __user *uaddr2, u32 val2, u32 val3)
2689 {
2690         int cmd = op & FUTEX_CMD_MASK;
2691         unsigned int flags = 0;
2692
2693         if (!(op & FUTEX_PRIVATE_FLAG))
2694                 flags |= FLAGS_SHARED;
2695
2696         if (op & FUTEX_CLOCK_REALTIME) {
2697                 flags |= FLAGS_CLOCKRT;
2698                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2699                         return -ENOSYS;
2700         }
2701
2702         switch (cmd) {
2703         case FUTEX_LOCK_PI:
2704         case FUTEX_UNLOCK_PI:
2705         case FUTEX_TRYLOCK_PI:
2706         case FUTEX_WAIT_REQUEUE_PI:
2707         case FUTEX_CMP_REQUEUE_PI:
2708                 if (!futex_cmpxchg_enabled)
2709                         return -ENOSYS;
2710         }
2711
2712         switch (cmd) {
2713         case FUTEX_WAIT:
2714                 val3 = FUTEX_BITSET_MATCH_ANY;
2715         case FUTEX_WAIT_BITSET:
2716                 return futex_wait(uaddr, flags, val, timeout, val3);
2717         case FUTEX_WAKE:
2718                 val3 = FUTEX_BITSET_MATCH_ANY;
2719         case FUTEX_WAKE_BITSET:
2720                 return futex_wake(uaddr, flags, val, val3);
2721         case FUTEX_REQUEUE:
2722                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2723         case FUTEX_CMP_REQUEUE:
2724                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2725         case FUTEX_WAKE_OP:
2726                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2727         case FUTEX_LOCK_PI:
2728                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2729         case FUTEX_UNLOCK_PI:
2730                 return futex_unlock_pi(uaddr, flags);
2731         case FUTEX_TRYLOCK_PI:
2732                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2733         case FUTEX_WAIT_REQUEUE_PI:
2734                 val3 = FUTEX_BITSET_MATCH_ANY;
2735                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2736                                              uaddr2);
2737         case FUTEX_CMP_REQUEUE_PI:
2738                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2739         }
2740         return -ENOSYS;
2741 }
2742
2743
2744 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2745                 struct timespec __user *, utime, u32 __user *, uaddr2,
2746                 u32, val3)
2747 {
2748         struct timespec ts;
2749         ktime_t t, *tp = NULL;
2750         u32 val2 = 0;
2751         int cmd = op & FUTEX_CMD_MASK;
2752
2753         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2754                       cmd == FUTEX_WAIT_BITSET ||
2755                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2756                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2757                         return -EFAULT;
2758                 if (!timespec_valid(&ts))
2759                         return -EINVAL;
2760
2761                 t = timespec_to_ktime(ts);
2762                 if (cmd == FUTEX_WAIT)
2763                         t = ktime_add_safe(ktime_get(), t);
2764                 tp = &t;
2765         }
2766         /*
2767          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2768          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2769          */
2770         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2771             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2772                 val2 = (u32) (unsigned long) utime;
2773
2774         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2775 }
2776
2777 static int __init futex_init(void)
2778 {
2779         u32 curval;
2780         unsigned long i;
2781
2782 #if CONFIG_BASE_SMALL
2783         futex_hashsize = 16;
2784 #else
2785         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2786 #endif
2787
2788         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2789                                                futex_hashsize, 0,
2790                                                futex_hashsize < 256 ? HASH_SMALL : 0,
2791                                                NULL, NULL, futex_hashsize, futex_hashsize);
2792
2793         /*
2794          * This will fail and we want it. Some arch implementations do
2795          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2796          * functionality. We want to know that before we call in any
2797          * of the complex code paths. Also we want to prevent
2798          * registration of robust lists in that case. NULL is
2799          * guaranteed to fault and we get -EFAULT on functional
2800          * implementation, the non-functional ones will return
2801          * -ENOSYS.
2802          */
2803         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2804                 futex_cmpxchg_enabled = 1;
2805
2806         for (i = 0; i < futex_hashsize; i++) {
2807                 plist_head_init(&futex_queues[i].chain);
2808                 spin_lock_init(&futex_queues[i].lock);
2809         }
2810
2811         return 0;
2812 }
2813 __initcall(futex_init);