]> Pileus Git - ~andy/linux/blob - fs/udf/super.c
Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[~andy/linux] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <asm/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC        0
68 #define VDS_POS_UNALLOC_SPACE_DESC      1
69 #define VDS_POS_LOGICAL_VOL_DESC        2
70 #define VDS_POS_PARTITION_DESC          3
71 #define VDS_POS_IMP_USE_VOL_DESC        4
72 #define VDS_POS_VOL_DESC_PTR            5
73 #define VDS_POS_TERMINATING_DESC        6
74 #define VDS_POS_LENGTH                  7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 /* These are the "meat" - everything else is stuffing */
79 static int udf_fill_super(struct super_block *, void *, int);
80 static void udf_put_super(struct super_block *);
81 static int udf_sync_fs(struct super_block *, int);
82 static int udf_remount_fs(struct super_block *, int *, char *);
83 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
84 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
85                             struct kernel_lb_addr *);
86 static void udf_load_fileset(struct super_block *, struct buffer_head *,
87                              struct kernel_lb_addr *);
88 static void udf_open_lvid(struct super_block *);
89 static void udf_close_lvid(struct super_block *);
90 static unsigned int udf_count_free(struct super_block *);
91 static int udf_statfs(struct dentry *, struct kstatfs *);
92 static int udf_show_options(struct seq_file *, struct dentry *);
93
94 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
95 {
96         struct logicalVolIntegrityDesc *lvid =
97                 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
98         __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
99         __u32 offset = number_of_partitions * 2 *
100                                 sizeof(uint32_t)/sizeof(uint8_t);
101         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
102 }
103
104 /* UDF filesystem type */
105 static struct dentry *udf_mount(struct file_system_type *fs_type,
106                       int flags, const char *dev_name, void *data)
107 {
108         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
109 }
110
111 static struct file_system_type udf_fstype = {
112         .owner          = THIS_MODULE,
113         .name           = "udf",
114         .mount          = udf_mount,
115         .kill_sb        = kill_block_super,
116         .fs_flags       = FS_REQUIRES_DEV,
117 };
118
119 static struct kmem_cache *udf_inode_cachep;
120
121 static struct inode *udf_alloc_inode(struct super_block *sb)
122 {
123         struct udf_inode_info *ei;
124         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
125         if (!ei)
126                 return NULL;
127
128         ei->i_unique = 0;
129         ei->i_lenExtents = 0;
130         ei->i_next_alloc_block = 0;
131         ei->i_next_alloc_goal = 0;
132         ei->i_strat4096 = 0;
133         init_rwsem(&ei->i_data_sem);
134
135         return &ei->vfs_inode;
136 }
137
138 static void udf_i_callback(struct rcu_head *head)
139 {
140         struct inode *inode = container_of(head, struct inode, i_rcu);
141         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
142 }
143
144 static void udf_destroy_inode(struct inode *inode)
145 {
146         call_rcu(&inode->i_rcu, udf_i_callback);
147 }
148
149 static void init_once(void *foo)
150 {
151         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
152
153         ei->i_ext.i_data = NULL;
154         inode_init_once(&ei->vfs_inode);
155 }
156
157 static int init_inodecache(void)
158 {
159         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
160                                              sizeof(struct udf_inode_info),
161                                              0, (SLAB_RECLAIM_ACCOUNT |
162                                                  SLAB_MEM_SPREAD),
163                                              init_once);
164         if (!udf_inode_cachep)
165                 return -ENOMEM;
166         return 0;
167 }
168
169 static void destroy_inodecache(void)
170 {
171         kmem_cache_destroy(udf_inode_cachep);
172 }
173
174 /* Superblock operations */
175 static const struct super_operations udf_sb_ops = {
176         .alloc_inode    = udf_alloc_inode,
177         .destroy_inode  = udf_destroy_inode,
178         .write_inode    = udf_write_inode,
179         .evict_inode    = udf_evict_inode,
180         .put_super      = udf_put_super,
181         .sync_fs        = udf_sync_fs,
182         .statfs         = udf_statfs,
183         .remount_fs     = udf_remount_fs,
184         .show_options   = udf_show_options,
185 };
186
187 struct udf_options {
188         unsigned char novrs;
189         unsigned int blocksize;
190         unsigned int session;
191         unsigned int lastblock;
192         unsigned int anchor;
193         unsigned int volume;
194         unsigned short partition;
195         unsigned int fileset;
196         unsigned int rootdir;
197         unsigned int flags;
198         umode_t umask;
199         gid_t gid;
200         uid_t uid;
201         umode_t fmode;
202         umode_t dmode;
203         struct nls_table *nls_map;
204 };
205
206 static int __init init_udf_fs(void)
207 {
208         int err;
209
210         err = init_inodecache();
211         if (err)
212                 goto out1;
213         err = register_filesystem(&udf_fstype);
214         if (err)
215                 goto out;
216
217         return 0;
218
219 out:
220         destroy_inodecache();
221
222 out1:
223         return err;
224 }
225
226 static void __exit exit_udf_fs(void)
227 {
228         unregister_filesystem(&udf_fstype);
229         destroy_inodecache();
230 }
231
232 module_init(init_udf_fs)
233 module_exit(exit_udf_fs)
234
235 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
236 {
237         struct udf_sb_info *sbi = UDF_SB(sb);
238
239         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
240                                   GFP_KERNEL);
241         if (!sbi->s_partmaps) {
242                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
243                         count);
244                 sbi->s_partitions = 0;
245                 return -ENOMEM;
246         }
247
248         sbi->s_partitions = count;
249         return 0;
250 }
251
252 static int udf_show_options(struct seq_file *seq, struct dentry *root)
253 {
254         struct super_block *sb = root->d_sb;
255         struct udf_sb_info *sbi = UDF_SB(sb);
256
257         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
258                 seq_puts(seq, ",nostrict");
259         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
260                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
261         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
262                 seq_puts(seq, ",unhide");
263         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
264                 seq_puts(seq, ",undelete");
265         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
266                 seq_puts(seq, ",noadinicb");
267         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
268                 seq_puts(seq, ",shortad");
269         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
270                 seq_puts(seq, ",uid=forget");
271         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
272                 seq_puts(seq, ",uid=ignore");
273         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
274                 seq_puts(seq, ",gid=forget");
275         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
276                 seq_puts(seq, ",gid=ignore");
277         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
278                 seq_printf(seq, ",uid=%u", sbi->s_uid);
279         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
280                 seq_printf(seq, ",gid=%u", sbi->s_gid);
281         if (sbi->s_umask != 0)
282                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
283         if (sbi->s_fmode != UDF_INVALID_MODE)
284                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
285         if (sbi->s_dmode != UDF_INVALID_MODE)
286                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
287         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
288                 seq_printf(seq, ",session=%u", sbi->s_session);
289         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
290                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
291         if (sbi->s_anchor != 0)
292                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
293         /*
294          * volume, partition, fileset and rootdir seem to be ignored
295          * currently
296          */
297         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
298                 seq_puts(seq, ",utf8");
299         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
300                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
301
302         return 0;
303 }
304
305 /*
306  * udf_parse_options
307  *
308  * PURPOSE
309  *      Parse mount options.
310  *
311  * DESCRIPTION
312  *      The following mount options are supported:
313  *
314  *      gid=            Set the default group.
315  *      umask=          Set the default umask.
316  *      mode=           Set the default file permissions.
317  *      dmode=          Set the default directory permissions.
318  *      uid=            Set the default user.
319  *      bs=             Set the block size.
320  *      unhide          Show otherwise hidden files.
321  *      undelete        Show deleted files in lists.
322  *      adinicb         Embed data in the inode (default)
323  *      noadinicb       Don't embed data in the inode
324  *      shortad         Use short ad's
325  *      longad          Use long ad's (default)
326  *      nostrict        Unset strict conformance
327  *      iocharset=      Set the NLS character set
328  *
329  *      The remaining are for debugging and disaster recovery:
330  *
331  *      novrs           Skip volume sequence recognition
332  *
333  *      The following expect a offset from 0.
334  *
335  *      session=        Set the CDROM session (default= last session)
336  *      anchor=         Override standard anchor location. (default= 256)
337  *      volume=         Override the VolumeDesc location. (unused)
338  *      partition=      Override the PartitionDesc location. (unused)
339  *      lastblock=      Set the last block of the filesystem/
340  *
341  *      The following expect a offset from the partition root.
342  *
343  *      fileset=        Override the fileset block location. (unused)
344  *      rootdir=        Override the root directory location. (unused)
345  *              WARNING: overriding the rootdir to a non-directory may
346  *              yield highly unpredictable results.
347  *
348  * PRE-CONDITIONS
349  *      options         Pointer to mount options string.
350  *      uopts           Pointer to mount options variable.
351  *
352  * POST-CONDITIONS
353  *      <return>        1       Mount options parsed okay.
354  *      <return>        0       Error parsing mount options.
355  *
356  * HISTORY
357  *      July 1, 1997 - Andrew E. Mileski
358  *      Written, tested, and released.
359  */
360
361 enum {
362         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
363         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
364         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
365         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
366         Opt_rootdir, Opt_utf8, Opt_iocharset,
367         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
368         Opt_fmode, Opt_dmode
369 };
370
371 static const match_table_t tokens = {
372         {Opt_novrs,     "novrs"},
373         {Opt_nostrict,  "nostrict"},
374         {Opt_bs,        "bs=%u"},
375         {Opt_unhide,    "unhide"},
376         {Opt_undelete,  "undelete"},
377         {Opt_noadinicb, "noadinicb"},
378         {Opt_adinicb,   "adinicb"},
379         {Opt_shortad,   "shortad"},
380         {Opt_longad,    "longad"},
381         {Opt_uforget,   "uid=forget"},
382         {Opt_uignore,   "uid=ignore"},
383         {Opt_gforget,   "gid=forget"},
384         {Opt_gignore,   "gid=ignore"},
385         {Opt_gid,       "gid=%u"},
386         {Opt_uid,       "uid=%u"},
387         {Opt_umask,     "umask=%o"},
388         {Opt_session,   "session=%u"},
389         {Opt_lastblock, "lastblock=%u"},
390         {Opt_anchor,    "anchor=%u"},
391         {Opt_volume,    "volume=%u"},
392         {Opt_partition, "partition=%u"},
393         {Opt_fileset,   "fileset=%u"},
394         {Opt_rootdir,   "rootdir=%u"},
395         {Opt_utf8,      "utf8"},
396         {Opt_iocharset, "iocharset=%s"},
397         {Opt_fmode,     "mode=%o"},
398         {Opt_dmode,     "dmode=%o"},
399         {Opt_err,       NULL}
400 };
401
402 static int udf_parse_options(char *options, struct udf_options *uopt,
403                              bool remount)
404 {
405         char *p;
406         int option;
407
408         uopt->novrs = 0;
409         uopt->partition = 0xFFFF;
410         uopt->session = 0xFFFFFFFF;
411         uopt->lastblock = 0;
412         uopt->anchor = 0;
413         uopt->volume = 0xFFFFFFFF;
414         uopt->rootdir = 0xFFFFFFFF;
415         uopt->fileset = 0xFFFFFFFF;
416         uopt->nls_map = NULL;
417
418         if (!options)
419                 return 1;
420
421         while ((p = strsep(&options, ",")) != NULL) {
422                 substring_t args[MAX_OPT_ARGS];
423                 int token;
424                 if (!*p)
425                         continue;
426
427                 token = match_token(p, tokens, args);
428                 switch (token) {
429                 case Opt_novrs:
430                         uopt->novrs = 1;
431                         break;
432                 case Opt_bs:
433                         if (match_int(&args[0], &option))
434                                 return 0;
435                         uopt->blocksize = option;
436                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
437                         break;
438                 case Opt_unhide:
439                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
440                         break;
441                 case Opt_undelete:
442                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
443                         break;
444                 case Opt_noadinicb:
445                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
446                         break;
447                 case Opt_adinicb:
448                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
449                         break;
450                 case Opt_shortad:
451                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
452                         break;
453                 case Opt_longad:
454                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
455                         break;
456                 case Opt_gid:
457                         if (match_int(args, &option))
458                                 return 0;
459                         uopt->gid = option;
460                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
461                         break;
462                 case Opt_uid:
463                         if (match_int(args, &option))
464                                 return 0;
465                         uopt->uid = option;
466                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
467                         break;
468                 case Opt_umask:
469                         if (match_octal(args, &option))
470                                 return 0;
471                         uopt->umask = option;
472                         break;
473                 case Opt_nostrict:
474                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
475                         break;
476                 case Opt_session:
477                         if (match_int(args, &option))
478                                 return 0;
479                         uopt->session = option;
480                         if (!remount)
481                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
482                         break;
483                 case Opt_lastblock:
484                         if (match_int(args, &option))
485                                 return 0;
486                         uopt->lastblock = option;
487                         if (!remount)
488                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
489                         break;
490                 case Opt_anchor:
491                         if (match_int(args, &option))
492                                 return 0;
493                         uopt->anchor = option;
494                         break;
495                 case Opt_volume:
496                         if (match_int(args, &option))
497                                 return 0;
498                         uopt->volume = option;
499                         break;
500                 case Opt_partition:
501                         if (match_int(args, &option))
502                                 return 0;
503                         uopt->partition = option;
504                         break;
505                 case Opt_fileset:
506                         if (match_int(args, &option))
507                                 return 0;
508                         uopt->fileset = option;
509                         break;
510                 case Opt_rootdir:
511                         if (match_int(args, &option))
512                                 return 0;
513                         uopt->rootdir = option;
514                         break;
515                 case Opt_utf8:
516                         uopt->flags |= (1 << UDF_FLAG_UTF8);
517                         break;
518 #ifdef CONFIG_UDF_NLS
519                 case Opt_iocharset:
520                         uopt->nls_map = load_nls(args[0].from);
521                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
522                         break;
523 #endif
524                 case Opt_uignore:
525                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
526                         break;
527                 case Opt_uforget:
528                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
529                         break;
530                 case Opt_gignore:
531                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
532                         break;
533                 case Opt_gforget:
534                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
535                         break;
536                 case Opt_fmode:
537                         if (match_octal(args, &option))
538                                 return 0;
539                         uopt->fmode = option & 0777;
540                         break;
541                 case Opt_dmode:
542                         if (match_octal(args, &option))
543                                 return 0;
544                         uopt->dmode = option & 0777;
545                         break;
546                 default:
547                         pr_err("bad mount option \"%s\" or missing value\n", p);
548                         return 0;
549                 }
550         }
551         return 1;
552 }
553
554 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
555 {
556         struct udf_options uopt;
557         struct udf_sb_info *sbi = UDF_SB(sb);
558         int error = 0;
559
560         uopt.flags = sbi->s_flags;
561         uopt.uid   = sbi->s_uid;
562         uopt.gid   = sbi->s_gid;
563         uopt.umask = sbi->s_umask;
564         uopt.fmode = sbi->s_fmode;
565         uopt.dmode = sbi->s_dmode;
566
567         if (!udf_parse_options(options, &uopt, true))
568                 return -EINVAL;
569
570         write_lock(&sbi->s_cred_lock);
571         sbi->s_flags = uopt.flags;
572         sbi->s_uid   = uopt.uid;
573         sbi->s_gid   = uopt.gid;
574         sbi->s_umask = uopt.umask;
575         sbi->s_fmode = uopt.fmode;
576         sbi->s_dmode = uopt.dmode;
577         write_unlock(&sbi->s_cred_lock);
578
579         if (sbi->s_lvid_bh) {
580                 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
581                 if (write_rev > UDF_MAX_WRITE_VERSION)
582                         *flags |= MS_RDONLY;
583         }
584
585         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
586                 goto out_unlock;
587
588         if (*flags & MS_RDONLY)
589                 udf_close_lvid(sb);
590         else
591                 udf_open_lvid(sb);
592
593 out_unlock:
594         return error;
595 }
596
597 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
598 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
599 static loff_t udf_check_vsd(struct super_block *sb)
600 {
601         struct volStructDesc *vsd = NULL;
602         loff_t sector = 32768;
603         int sectorsize;
604         struct buffer_head *bh = NULL;
605         int nsr02 = 0;
606         int nsr03 = 0;
607         struct udf_sb_info *sbi;
608
609         sbi = UDF_SB(sb);
610         if (sb->s_blocksize < sizeof(struct volStructDesc))
611                 sectorsize = sizeof(struct volStructDesc);
612         else
613                 sectorsize = sb->s_blocksize;
614
615         sector += (sbi->s_session << sb->s_blocksize_bits);
616
617         udf_debug("Starting at sector %u (%ld byte sectors)\n",
618                   (unsigned int)(sector >> sb->s_blocksize_bits),
619                   sb->s_blocksize);
620         /* Process the sequence (if applicable) */
621         for (; !nsr02 && !nsr03; sector += sectorsize) {
622                 /* Read a block */
623                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
624                 if (!bh)
625                         break;
626
627                 /* Look for ISO  descriptors */
628                 vsd = (struct volStructDesc *)(bh->b_data +
629                                               (sector & (sb->s_blocksize - 1)));
630
631                 if (vsd->stdIdent[0] == 0) {
632                         brelse(bh);
633                         break;
634                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
635                                     VSD_STD_ID_LEN)) {
636                         switch (vsd->structType) {
637                         case 0:
638                                 udf_debug("ISO9660 Boot Record found\n");
639                                 break;
640                         case 1:
641                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
642                                 break;
643                         case 2:
644                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
645                                 break;
646                         case 3:
647                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
648                                 break;
649                         case 255:
650                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
651                                 break;
652                         default:
653                                 udf_debug("ISO9660 VRS (%u) found\n",
654                                           vsd->structType);
655                                 break;
656                         }
657                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
658                                     VSD_STD_ID_LEN))
659                         ; /* nothing */
660                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
661                                     VSD_STD_ID_LEN)) {
662                         brelse(bh);
663                         break;
664                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
665                                     VSD_STD_ID_LEN))
666                         nsr02 = sector;
667                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
668                                     VSD_STD_ID_LEN))
669                         nsr03 = sector;
670                 brelse(bh);
671         }
672
673         if (nsr03)
674                 return nsr03;
675         else if (nsr02)
676                 return nsr02;
677         else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
678                 return -1;
679         else
680                 return 0;
681 }
682
683 static int udf_find_fileset(struct super_block *sb,
684                             struct kernel_lb_addr *fileset,
685                             struct kernel_lb_addr *root)
686 {
687         struct buffer_head *bh = NULL;
688         long lastblock;
689         uint16_t ident;
690         struct udf_sb_info *sbi;
691
692         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
693             fileset->partitionReferenceNum != 0xFFFF) {
694                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
695
696                 if (!bh) {
697                         return 1;
698                 } else if (ident != TAG_IDENT_FSD) {
699                         brelse(bh);
700                         return 1;
701                 }
702
703         }
704
705         sbi = UDF_SB(sb);
706         if (!bh) {
707                 /* Search backwards through the partitions */
708                 struct kernel_lb_addr newfileset;
709
710 /* --> cvg: FIXME - is it reasonable? */
711                 return 1;
712
713                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
714                      (newfileset.partitionReferenceNum != 0xFFFF &&
715                       fileset->logicalBlockNum == 0xFFFFFFFF &&
716                       fileset->partitionReferenceNum == 0xFFFF);
717                      newfileset.partitionReferenceNum--) {
718                         lastblock = sbi->s_partmaps
719                                         [newfileset.partitionReferenceNum]
720                                                 .s_partition_len;
721                         newfileset.logicalBlockNum = 0;
722
723                         do {
724                                 bh = udf_read_ptagged(sb, &newfileset, 0,
725                                                       &ident);
726                                 if (!bh) {
727                                         newfileset.logicalBlockNum++;
728                                         continue;
729                                 }
730
731                                 switch (ident) {
732                                 case TAG_IDENT_SBD:
733                                 {
734                                         struct spaceBitmapDesc *sp;
735                                         sp = (struct spaceBitmapDesc *)
736                                                                 bh->b_data;
737                                         newfileset.logicalBlockNum += 1 +
738                                                 ((le32_to_cpu(sp->numOfBytes) +
739                                                   sizeof(struct spaceBitmapDesc)
740                                                   - 1) >> sb->s_blocksize_bits);
741                                         brelse(bh);
742                                         break;
743                                 }
744                                 case TAG_IDENT_FSD:
745                                         *fileset = newfileset;
746                                         break;
747                                 default:
748                                         newfileset.logicalBlockNum++;
749                                         brelse(bh);
750                                         bh = NULL;
751                                         break;
752                                 }
753                         } while (newfileset.logicalBlockNum < lastblock &&
754                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
755                                  fileset->partitionReferenceNum == 0xFFFF);
756                 }
757         }
758
759         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
760              fileset->partitionReferenceNum != 0xFFFF) && bh) {
761                 udf_debug("Fileset at block=%d, partition=%d\n",
762                           fileset->logicalBlockNum,
763                           fileset->partitionReferenceNum);
764
765                 sbi->s_partition = fileset->partitionReferenceNum;
766                 udf_load_fileset(sb, bh, root);
767                 brelse(bh);
768                 return 0;
769         }
770         return 1;
771 }
772
773 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
774 {
775         struct primaryVolDesc *pvoldesc;
776         struct ustr *instr, *outstr;
777         struct buffer_head *bh;
778         uint16_t ident;
779         int ret = 1;
780
781         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
782         if (!instr)
783                 return 1;
784
785         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
786         if (!outstr)
787                 goto out1;
788
789         bh = udf_read_tagged(sb, block, block, &ident);
790         if (!bh)
791                 goto out2;
792
793         BUG_ON(ident != TAG_IDENT_PVD);
794
795         pvoldesc = (struct primaryVolDesc *)bh->b_data;
796
797         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
798                               pvoldesc->recordingDateAndTime)) {
799 #ifdef UDFFS_DEBUG
800                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
801                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
802                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
803                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
804 #endif
805         }
806
807         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
808                 if (udf_CS0toUTF8(outstr, instr)) {
809                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
810                                 outstr->u_len > 31 ? 31 : outstr->u_len);
811                         udf_debug("volIdent[] = '%s'\n",
812                                   UDF_SB(sb)->s_volume_ident);
813                 }
814
815         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
816                 if (udf_CS0toUTF8(outstr, instr))
817                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
818
819         brelse(bh);
820         ret = 0;
821 out2:
822         kfree(outstr);
823 out1:
824         kfree(instr);
825         return ret;
826 }
827
828 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
829                                         u32 meta_file_loc, u32 partition_num)
830 {
831         struct kernel_lb_addr addr;
832         struct inode *metadata_fe;
833
834         addr.logicalBlockNum = meta_file_loc;
835         addr.partitionReferenceNum = partition_num;
836
837         metadata_fe = udf_iget(sb, &addr);
838
839         if (metadata_fe == NULL)
840                 udf_warn(sb, "metadata inode efe not found\n");
841         else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
842                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
843                 iput(metadata_fe);
844                 metadata_fe = NULL;
845         }
846
847         return metadata_fe;
848 }
849
850 static int udf_load_metadata_files(struct super_block *sb, int partition)
851 {
852         struct udf_sb_info *sbi = UDF_SB(sb);
853         struct udf_part_map *map;
854         struct udf_meta_data *mdata;
855         struct kernel_lb_addr addr;
856
857         map = &sbi->s_partmaps[partition];
858         mdata = &map->s_type_specific.s_metadata;
859
860         /* metadata address */
861         udf_debug("Metadata file location: block = %d part = %d\n",
862                   mdata->s_meta_file_loc, map->s_partition_num);
863
864         mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
865                 mdata->s_meta_file_loc, map->s_partition_num);
866
867         if (mdata->s_metadata_fe == NULL) {
868                 /* mirror file entry */
869                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
870                           mdata->s_mirror_file_loc, map->s_partition_num);
871
872                 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
873                         mdata->s_mirror_file_loc, map->s_partition_num);
874
875                 if (mdata->s_mirror_fe == NULL) {
876                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
877                         goto error_exit;
878                 }
879         }
880
881         /*
882          * bitmap file entry
883          * Note:
884          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
885         */
886         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
887                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
888                 addr.partitionReferenceNum = map->s_partition_num;
889
890                 udf_debug("Bitmap file location: block = %d part = %d\n",
891                           addr.logicalBlockNum, addr.partitionReferenceNum);
892
893                 mdata->s_bitmap_fe = udf_iget(sb, &addr);
894
895                 if (mdata->s_bitmap_fe == NULL) {
896                         if (sb->s_flags & MS_RDONLY)
897                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
898                         else {
899                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
900                                 goto error_exit;
901                         }
902                 }
903         }
904
905         udf_debug("udf_load_metadata_files Ok\n");
906
907         return 0;
908
909 error_exit:
910         return 1;
911 }
912
913 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
914                              struct kernel_lb_addr *root)
915 {
916         struct fileSetDesc *fset;
917
918         fset = (struct fileSetDesc *)bh->b_data;
919
920         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
921
922         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
923
924         udf_debug("Rootdir at block=%d, partition=%d\n",
925                   root->logicalBlockNum, root->partitionReferenceNum);
926 }
927
928 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
929 {
930         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
931         return DIV_ROUND_UP(map->s_partition_len +
932                             (sizeof(struct spaceBitmapDesc) << 3),
933                             sb->s_blocksize * 8);
934 }
935
936 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
937 {
938         struct udf_bitmap *bitmap;
939         int nr_groups;
940         int size;
941
942         nr_groups = udf_compute_nr_groups(sb, index);
943         size = sizeof(struct udf_bitmap) +
944                 (sizeof(struct buffer_head *) * nr_groups);
945
946         if (size <= PAGE_SIZE)
947                 bitmap = kzalloc(size, GFP_KERNEL);
948         else
949                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
950
951         if (bitmap == NULL) {
952                 udf_err(sb, "Unable to allocate space for bitmap and %d buffer_head pointers\n",
953                         nr_groups);
954                 return NULL;
955         }
956
957         bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
958         bitmap->s_nr_groups = nr_groups;
959         return bitmap;
960 }
961
962 static int udf_fill_partdesc_info(struct super_block *sb,
963                 struct partitionDesc *p, int p_index)
964 {
965         struct udf_part_map *map;
966         struct udf_sb_info *sbi = UDF_SB(sb);
967         struct partitionHeaderDesc *phd;
968
969         map = &sbi->s_partmaps[p_index];
970
971         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
972         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
973
974         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
975                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
976         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
977                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
978         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
979                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
980         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
981                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
982
983         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
984                   p_index, map->s_partition_type,
985                   map->s_partition_root, map->s_partition_len);
986
987         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
988             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
989                 return 0;
990
991         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
992         if (phd->unallocSpaceTable.extLength) {
993                 struct kernel_lb_addr loc = {
994                         .logicalBlockNum = le32_to_cpu(
995                                 phd->unallocSpaceTable.extPosition),
996                         .partitionReferenceNum = p_index,
997                 };
998
999                 map->s_uspace.s_table = udf_iget(sb, &loc);
1000                 if (!map->s_uspace.s_table) {
1001                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1002                                   p_index);
1003                         return 1;
1004                 }
1005                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1006                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1007                           p_index, map->s_uspace.s_table->i_ino);
1008         }
1009
1010         if (phd->unallocSpaceBitmap.extLength) {
1011                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1012                 if (!bitmap)
1013                         return 1;
1014                 map->s_uspace.s_bitmap = bitmap;
1015                 bitmap->s_extLength = le32_to_cpu(
1016                                 phd->unallocSpaceBitmap.extLength);
1017                 bitmap->s_extPosition = le32_to_cpu(
1018                                 phd->unallocSpaceBitmap.extPosition);
1019                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1020                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1021                           p_index, bitmap->s_extPosition);
1022         }
1023
1024         if (phd->partitionIntegrityTable.extLength)
1025                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1026
1027         if (phd->freedSpaceTable.extLength) {
1028                 struct kernel_lb_addr loc = {
1029                         .logicalBlockNum = le32_to_cpu(
1030                                 phd->freedSpaceTable.extPosition),
1031                         .partitionReferenceNum = p_index,
1032                 };
1033
1034                 map->s_fspace.s_table = udf_iget(sb, &loc);
1035                 if (!map->s_fspace.s_table) {
1036                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1037                                   p_index);
1038                         return 1;
1039                 }
1040
1041                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1042                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1043                           p_index, map->s_fspace.s_table->i_ino);
1044         }
1045
1046         if (phd->freedSpaceBitmap.extLength) {
1047                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1048                 if (!bitmap)
1049                         return 1;
1050                 map->s_fspace.s_bitmap = bitmap;
1051                 bitmap->s_extLength = le32_to_cpu(
1052                                 phd->freedSpaceBitmap.extLength);
1053                 bitmap->s_extPosition = le32_to_cpu(
1054                                 phd->freedSpaceBitmap.extPosition);
1055                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1056                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1057                           p_index, bitmap->s_extPosition);
1058         }
1059         return 0;
1060 }
1061
1062 static void udf_find_vat_block(struct super_block *sb, int p_index,
1063                                int type1_index, sector_t start_block)
1064 {
1065         struct udf_sb_info *sbi = UDF_SB(sb);
1066         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1067         sector_t vat_block;
1068         struct kernel_lb_addr ino;
1069
1070         /*
1071          * VAT file entry is in the last recorded block. Some broken disks have
1072          * it a few blocks before so try a bit harder...
1073          */
1074         ino.partitionReferenceNum = type1_index;
1075         for (vat_block = start_block;
1076              vat_block >= map->s_partition_root &&
1077              vat_block >= start_block - 3 &&
1078              !sbi->s_vat_inode; vat_block--) {
1079                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1080                 sbi->s_vat_inode = udf_iget(sb, &ino);
1081         }
1082 }
1083
1084 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1085 {
1086         struct udf_sb_info *sbi = UDF_SB(sb);
1087         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1088         struct buffer_head *bh = NULL;
1089         struct udf_inode_info *vati;
1090         uint32_t pos;
1091         struct virtualAllocationTable20 *vat20;
1092         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1093
1094         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1095         if (!sbi->s_vat_inode &&
1096             sbi->s_last_block != blocks - 1) {
1097                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1098                           (unsigned long)sbi->s_last_block,
1099                           (unsigned long)blocks - 1);
1100                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1101         }
1102         if (!sbi->s_vat_inode)
1103                 return 1;
1104
1105         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1106                 map->s_type_specific.s_virtual.s_start_offset = 0;
1107                 map->s_type_specific.s_virtual.s_num_entries =
1108                         (sbi->s_vat_inode->i_size - 36) >> 2;
1109         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1110                 vati = UDF_I(sbi->s_vat_inode);
1111                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1112                         pos = udf_block_map(sbi->s_vat_inode, 0);
1113                         bh = sb_bread(sb, pos);
1114                         if (!bh)
1115                                 return 1;
1116                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1117                 } else {
1118                         vat20 = (struct virtualAllocationTable20 *)
1119                                                         vati->i_ext.i_data;
1120                 }
1121
1122                 map->s_type_specific.s_virtual.s_start_offset =
1123                         le16_to_cpu(vat20->lengthHeader);
1124                 map->s_type_specific.s_virtual.s_num_entries =
1125                         (sbi->s_vat_inode->i_size -
1126                                 map->s_type_specific.s_virtual.
1127                                         s_start_offset) >> 2;
1128                 brelse(bh);
1129         }
1130         return 0;
1131 }
1132
1133 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1134 {
1135         struct buffer_head *bh;
1136         struct partitionDesc *p;
1137         struct udf_part_map *map;
1138         struct udf_sb_info *sbi = UDF_SB(sb);
1139         int i, type1_idx;
1140         uint16_t partitionNumber;
1141         uint16_t ident;
1142         int ret = 0;
1143
1144         bh = udf_read_tagged(sb, block, block, &ident);
1145         if (!bh)
1146                 return 1;
1147         if (ident != TAG_IDENT_PD)
1148                 goto out_bh;
1149
1150         p = (struct partitionDesc *)bh->b_data;
1151         partitionNumber = le16_to_cpu(p->partitionNumber);
1152
1153         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1154         for (i = 0; i < sbi->s_partitions; i++) {
1155                 map = &sbi->s_partmaps[i];
1156                 udf_debug("Searching map: (%d == %d)\n",
1157                           map->s_partition_num, partitionNumber);
1158                 if (map->s_partition_num == partitionNumber &&
1159                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1160                      map->s_partition_type == UDF_SPARABLE_MAP15))
1161                         break;
1162         }
1163
1164         if (i >= sbi->s_partitions) {
1165                 udf_debug("Partition (%d) not found in partition map\n",
1166                           partitionNumber);
1167                 goto out_bh;
1168         }
1169
1170         ret = udf_fill_partdesc_info(sb, p, i);
1171
1172         /*
1173          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1174          * PHYSICAL partitions are already set up
1175          */
1176         type1_idx = i;
1177         for (i = 0; i < sbi->s_partitions; i++) {
1178                 map = &sbi->s_partmaps[i];
1179
1180                 if (map->s_partition_num == partitionNumber &&
1181                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1182                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1183                      map->s_partition_type == UDF_METADATA_MAP25))
1184                         break;
1185         }
1186
1187         if (i >= sbi->s_partitions)
1188                 goto out_bh;
1189
1190         ret = udf_fill_partdesc_info(sb, p, i);
1191         if (ret)
1192                 goto out_bh;
1193
1194         if (map->s_partition_type == UDF_METADATA_MAP25) {
1195                 ret = udf_load_metadata_files(sb, i);
1196                 if (ret) {
1197                         udf_err(sb, "error loading MetaData partition map %d\n",
1198                                 i);
1199                         goto out_bh;
1200                 }
1201         } else {
1202                 ret = udf_load_vat(sb, i, type1_idx);
1203                 if (ret)
1204                         goto out_bh;
1205                 /*
1206                  * Mark filesystem read-only if we have a partition with
1207                  * virtual map since we don't handle writing to it (we
1208                  * overwrite blocks instead of relocating them).
1209                  */
1210                 sb->s_flags |= MS_RDONLY;
1211                 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1212         }
1213 out_bh:
1214         /* In case loading failed, we handle cleanup in udf_fill_super */
1215         brelse(bh);
1216         return ret;
1217 }
1218
1219 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1220                                struct kernel_lb_addr *fileset)
1221 {
1222         struct logicalVolDesc *lvd;
1223         int i, j, offset;
1224         uint8_t type;
1225         struct udf_sb_info *sbi = UDF_SB(sb);
1226         struct genericPartitionMap *gpm;
1227         uint16_t ident;
1228         struct buffer_head *bh;
1229         int ret = 0;
1230
1231         bh = udf_read_tagged(sb, block, block, &ident);
1232         if (!bh)
1233                 return 1;
1234         BUG_ON(ident != TAG_IDENT_LVD);
1235         lvd = (struct logicalVolDesc *)bh->b_data;
1236
1237         i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1238         if (i != 0) {
1239                 ret = i;
1240                 goto out_bh;
1241         }
1242
1243         for (i = 0, offset = 0;
1244              i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1245              i++, offset += gpm->partitionMapLength) {
1246                 struct udf_part_map *map = &sbi->s_partmaps[i];
1247                 gpm = (struct genericPartitionMap *)
1248                                 &(lvd->partitionMaps[offset]);
1249                 type = gpm->partitionMapType;
1250                 if (type == 1) {
1251                         struct genericPartitionMap1 *gpm1 =
1252                                 (struct genericPartitionMap1 *)gpm;
1253                         map->s_partition_type = UDF_TYPE1_MAP15;
1254                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1255                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1256                         map->s_partition_func = NULL;
1257                 } else if (type == 2) {
1258                         struct udfPartitionMap2 *upm2 =
1259                                                 (struct udfPartitionMap2 *)gpm;
1260                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1261                                                 strlen(UDF_ID_VIRTUAL))) {
1262                                 u16 suf =
1263                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1264                                                         identSuffix)[0]);
1265                                 if (suf < 0x0200) {
1266                                         map->s_partition_type =
1267                                                         UDF_VIRTUAL_MAP15;
1268                                         map->s_partition_func =
1269                                                         udf_get_pblock_virt15;
1270                                 } else {
1271                                         map->s_partition_type =
1272                                                         UDF_VIRTUAL_MAP20;
1273                                         map->s_partition_func =
1274                                                         udf_get_pblock_virt20;
1275                                 }
1276                         } else if (!strncmp(upm2->partIdent.ident,
1277                                                 UDF_ID_SPARABLE,
1278                                                 strlen(UDF_ID_SPARABLE))) {
1279                                 uint32_t loc;
1280                                 struct sparingTable *st;
1281                                 struct sparablePartitionMap *spm =
1282                                         (struct sparablePartitionMap *)gpm;
1283
1284                                 map->s_partition_type = UDF_SPARABLE_MAP15;
1285                                 map->s_type_specific.s_sparing.s_packet_len =
1286                                                 le16_to_cpu(spm->packetLength);
1287                                 for (j = 0; j < spm->numSparingTables; j++) {
1288                                         struct buffer_head *bh2;
1289
1290                                         loc = le32_to_cpu(
1291                                                 spm->locSparingTable[j]);
1292                                         bh2 = udf_read_tagged(sb, loc, loc,
1293                                                              &ident);
1294                                         map->s_type_specific.s_sparing.
1295                                                         s_spar_map[j] = bh2;
1296
1297                                         if (bh2 == NULL)
1298                                                 continue;
1299
1300                                         st = (struct sparingTable *)bh2->b_data;
1301                                         if (ident != 0 || strncmp(
1302                                                 st->sparingIdent.ident,
1303                                                 UDF_ID_SPARING,
1304                                                 strlen(UDF_ID_SPARING))) {
1305                                                 brelse(bh2);
1306                                                 map->s_type_specific.s_sparing.
1307                                                         s_spar_map[j] = NULL;
1308                                         }
1309                                 }
1310                                 map->s_partition_func = udf_get_pblock_spar15;
1311                         } else if (!strncmp(upm2->partIdent.ident,
1312                                                 UDF_ID_METADATA,
1313                                                 strlen(UDF_ID_METADATA))) {
1314                                 struct udf_meta_data *mdata =
1315                                         &map->s_type_specific.s_metadata;
1316                                 struct metadataPartitionMap *mdm =
1317                                                 (struct metadataPartitionMap *)
1318                                                 &(lvd->partitionMaps[offset]);
1319                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1320                                           i, type, UDF_ID_METADATA);
1321
1322                                 map->s_partition_type = UDF_METADATA_MAP25;
1323                                 map->s_partition_func = udf_get_pblock_meta25;
1324
1325                                 mdata->s_meta_file_loc   =
1326                                         le32_to_cpu(mdm->metadataFileLoc);
1327                                 mdata->s_mirror_file_loc =
1328                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1329                                 mdata->s_bitmap_file_loc =
1330                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1331                                 mdata->s_alloc_unit_size =
1332                                         le32_to_cpu(mdm->allocUnitSize);
1333                                 mdata->s_align_unit_size =
1334                                         le16_to_cpu(mdm->alignUnitSize);
1335                                 if (mdm->flags & 0x01)
1336                                         mdata->s_flags |= MF_DUPLICATE_MD;
1337
1338                                 udf_debug("Metadata Ident suffix=0x%x\n",
1339                                           le16_to_cpu(*(__le16 *)
1340                                                       mdm->partIdent.identSuffix));
1341                                 udf_debug("Metadata part num=%d\n",
1342                                           le16_to_cpu(mdm->partitionNum));
1343                                 udf_debug("Metadata part alloc unit size=%d\n",
1344                                           le32_to_cpu(mdm->allocUnitSize));
1345                                 udf_debug("Metadata file loc=%d\n",
1346                                           le32_to_cpu(mdm->metadataFileLoc));
1347                                 udf_debug("Mirror file loc=%d\n",
1348                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1349                                 udf_debug("Bitmap file loc=%d\n",
1350                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1351                                 udf_debug("Flags: %d %d\n",
1352                                           mdata->s_flags, mdm->flags);
1353                         } else {
1354                                 udf_debug("Unknown ident: %s\n",
1355                                           upm2->partIdent.ident);
1356                                 continue;
1357                         }
1358                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1359                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1360                 }
1361                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1362                           i, map->s_partition_num, type, map->s_volumeseqnum);
1363         }
1364
1365         if (fileset) {
1366                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1367
1368                 *fileset = lelb_to_cpu(la->extLocation);
1369                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1370                           fileset->logicalBlockNum,
1371                           fileset->partitionReferenceNum);
1372         }
1373         if (lvd->integritySeqExt.extLength)
1374                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1375
1376 out_bh:
1377         brelse(bh);
1378         return ret;
1379 }
1380
1381 /*
1382  * udf_load_logicalvolint
1383  *
1384  */
1385 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1386 {
1387         struct buffer_head *bh = NULL;
1388         uint16_t ident;
1389         struct udf_sb_info *sbi = UDF_SB(sb);
1390         struct logicalVolIntegrityDesc *lvid;
1391
1392         while (loc.extLength > 0 &&
1393                (bh = udf_read_tagged(sb, loc.extLocation,
1394                                      loc.extLocation, &ident)) &&
1395                ident == TAG_IDENT_LVID) {
1396                 sbi->s_lvid_bh = bh;
1397                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1398
1399                 if (lvid->nextIntegrityExt.extLength)
1400                         udf_load_logicalvolint(sb,
1401                                 leea_to_cpu(lvid->nextIntegrityExt));
1402
1403                 if (sbi->s_lvid_bh != bh)
1404                         brelse(bh);
1405                 loc.extLength -= sb->s_blocksize;
1406                 loc.extLocation++;
1407         }
1408         if (sbi->s_lvid_bh != bh)
1409                 brelse(bh);
1410 }
1411
1412 /*
1413  * udf_process_sequence
1414  *
1415  * PURPOSE
1416  *      Process a main/reserve volume descriptor sequence.
1417  *
1418  * PRE-CONDITIONS
1419  *      sb                      Pointer to _locked_ superblock.
1420  *      block                   First block of first extent of the sequence.
1421  *      lastblock               Lastblock of first extent of the sequence.
1422  *
1423  * HISTORY
1424  *      July 1, 1997 - Andrew E. Mileski
1425  *      Written, tested, and released.
1426  */
1427 static noinline int udf_process_sequence(struct super_block *sb, long block,
1428                                 long lastblock, struct kernel_lb_addr *fileset)
1429 {
1430         struct buffer_head *bh = NULL;
1431         struct udf_vds_record vds[VDS_POS_LENGTH];
1432         struct udf_vds_record *curr;
1433         struct generic_desc *gd;
1434         struct volDescPtr *vdp;
1435         int done = 0;
1436         uint32_t vdsn;
1437         uint16_t ident;
1438         long next_s = 0, next_e = 0;
1439
1440         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1441
1442         /*
1443          * Read the main descriptor sequence and find which descriptors
1444          * are in it.
1445          */
1446         for (; (!done && block <= lastblock); block++) {
1447
1448                 bh = udf_read_tagged(sb, block, block, &ident);
1449                 if (!bh) {
1450                         udf_err(sb,
1451                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1452                                 (unsigned long long)block);
1453                         return 1;
1454                 }
1455
1456                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1457                 gd = (struct generic_desc *)bh->b_data;
1458                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1459                 switch (ident) {
1460                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1461                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1462                         if (vdsn >= curr->volDescSeqNum) {
1463                                 curr->volDescSeqNum = vdsn;
1464                                 curr->block = block;
1465                         }
1466                         break;
1467                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1468                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1469                         if (vdsn >= curr->volDescSeqNum) {
1470                                 curr->volDescSeqNum = vdsn;
1471                                 curr->block = block;
1472
1473                                 vdp = (struct volDescPtr *)bh->b_data;
1474                                 next_s = le32_to_cpu(
1475                                         vdp->nextVolDescSeqExt.extLocation);
1476                                 next_e = le32_to_cpu(
1477                                         vdp->nextVolDescSeqExt.extLength);
1478                                 next_e = next_e >> sb->s_blocksize_bits;
1479                                 next_e += next_s;
1480                         }
1481                         break;
1482                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1483                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1484                         if (vdsn >= curr->volDescSeqNum) {
1485                                 curr->volDescSeqNum = vdsn;
1486                                 curr->block = block;
1487                         }
1488                         break;
1489                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1490                         curr = &vds[VDS_POS_PARTITION_DESC];
1491                         if (!curr->block)
1492                                 curr->block = block;
1493                         break;
1494                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1495                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1496                         if (vdsn >= curr->volDescSeqNum) {
1497                                 curr->volDescSeqNum = vdsn;
1498                                 curr->block = block;
1499                         }
1500                         break;
1501                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1502                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1503                         if (vdsn >= curr->volDescSeqNum) {
1504                                 curr->volDescSeqNum = vdsn;
1505                                 curr->block = block;
1506                         }
1507                         break;
1508                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1509                         vds[VDS_POS_TERMINATING_DESC].block = block;
1510                         if (next_e) {
1511                                 block = next_s;
1512                                 lastblock = next_e;
1513                                 next_s = next_e = 0;
1514                         } else
1515                                 done = 1;
1516                         break;
1517                 }
1518                 brelse(bh);
1519         }
1520         /*
1521          * Now read interesting descriptors again and process them
1522          * in a suitable order
1523          */
1524         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1525                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1526                 return 1;
1527         }
1528         if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1529                 return 1;
1530
1531         if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1532             vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1533                 return 1;
1534
1535         if (vds[VDS_POS_PARTITION_DESC].block) {
1536                 /*
1537                  * We rescan the whole descriptor sequence to find
1538                  * partition descriptor blocks and process them.
1539                  */
1540                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1541                      block < vds[VDS_POS_TERMINATING_DESC].block;
1542                      block++)
1543                         if (udf_load_partdesc(sb, block))
1544                                 return 1;
1545         }
1546
1547         return 0;
1548 }
1549
1550 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1551                              struct kernel_lb_addr *fileset)
1552 {
1553         struct anchorVolDescPtr *anchor;
1554         long main_s, main_e, reserve_s, reserve_e;
1555
1556         anchor = (struct anchorVolDescPtr *)bh->b_data;
1557
1558         /* Locate the main sequence */
1559         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1560         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1561         main_e = main_e >> sb->s_blocksize_bits;
1562         main_e += main_s;
1563
1564         /* Locate the reserve sequence */
1565         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1566         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1567         reserve_e = reserve_e >> sb->s_blocksize_bits;
1568         reserve_e += reserve_s;
1569
1570         /* Process the main & reserve sequences */
1571         /* responsible for finding the PartitionDesc(s) */
1572         if (!udf_process_sequence(sb, main_s, main_e, fileset))
1573                 return 1;
1574         return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1575 }
1576
1577 /*
1578  * Check whether there is an anchor block in the given block and
1579  * load Volume Descriptor Sequence if so.
1580  */
1581 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1582                                   struct kernel_lb_addr *fileset)
1583 {
1584         struct buffer_head *bh;
1585         uint16_t ident;
1586         int ret;
1587
1588         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1589             udf_fixed_to_variable(block) >=
1590             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1591                 return 0;
1592
1593         bh = udf_read_tagged(sb, block, block, &ident);
1594         if (!bh)
1595                 return 0;
1596         if (ident != TAG_IDENT_AVDP) {
1597                 brelse(bh);
1598                 return 0;
1599         }
1600         ret = udf_load_sequence(sb, bh, fileset);
1601         brelse(bh);
1602         return ret;
1603 }
1604
1605 /* Search for an anchor volume descriptor pointer */
1606 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1607                                  struct kernel_lb_addr *fileset)
1608 {
1609         sector_t last[6];
1610         int i;
1611         struct udf_sb_info *sbi = UDF_SB(sb);
1612         int last_count = 0;
1613
1614         /* First try user provided anchor */
1615         if (sbi->s_anchor) {
1616                 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1617                         return lastblock;
1618         }
1619         /*
1620          * according to spec, anchor is in either:
1621          *     block 256
1622          *     lastblock-256
1623          *     lastblock
1624          *  however, if the disc isn't closed, it could be 512.
1625          */
1626         if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1627                 return lastblock;
1628         /*
1629          * The trouble is which block is the last one. Drives often misreport
1630          * this so we try various possibilities.
1631          */
1632         last[last_count++] = lastblock;
1633         if (lastblock >= 1)
1634                 last[last_count++] = lastblock - 1;
1635         last[last_count++] = lastblock + 1;
1636         if (lastblock >= 2)
1637                 last[last_count++] = lastblock - 2;
1638         if (lastblock >= 150)
1639                 last[last_count++] = lastblock - 150;
1640         if (lastblock >= 152)
1641                 last[last_count++] = lastblock - 152;
1642
1643         for (i = 0; i < last_count; i++) {
1644                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1645                                 sb->s_blocksize_bits)
1646                         continue;
1647                 if (udf_check_anchor_block(sb, last[i], fileset))
1648                         return last[i];
1649                 if (last[i] < 256)
1650                         continue;
1651                 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1652                         return last[i];
1653         }
1654
1655         /* Finally try block 512 in case media is open */
1656         if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1657                 return last[0];
1658         return 0;
1659 }
1660
1661 /*
1662  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1663  * area specified by it. The function expects sbi->s_lastblock to be the last
1664  * block on the media.
1665  *
1666  * Return 1 if ok, 0 if not found.
1667  *
1668  */
1669 static int udf_find_anchor(struct super_block *sb,
1670                            struct kernel_lb_addr *fileset)
1671 {
1672         sector_t lastblock;
1673         struct udf_sb_info *sbi = UDF_SB(sb);
1674
1675         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1676         if (lastblock)
1677                 goto out;
1678
1679         /* No anchor found? Try VARCONV conversion of block numbers */
1680         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1681         /* Firstly, we try to not convert number of the last block */
1682         lastblock = udf_scan_anchors(sb,
1683                                 udf_variable_to_fixed(sbi->s_last_block),
1684                                 fileset);
1685         if (lastblock)
1686                 goto out;
1687
1688         /* Secondly, we try with converted number of the last block */
1689         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1690         if (!lastblock) {
1691                 /* VARCONV didn't help. Clear it. */
1692                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1693                 return 0;
1694         }
1695 out:
1696         sbi->s_last_block = lastblock;
1697         return 1;
1698 }
1699
1700 /*
1701  * Check Volume Structure Descriptor, find Anchor block and load Volume
1702  * Descriptor Sequence
1703  */
1704 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1705                         int silent, struct kernel_lb_addr *fileset)
1706 {
1707         struct udf_sb_info *sbi = UDF_SB(sb);
1708         loff_t nsr_off;
1709
1710         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1711                 if (!silent)
1712                         udf_warn(sb, "Bad block size\n");
1713                 return 0;
1714         }
1715         sbi->s_last_block = uopt->lastblock;
1716         if (!uopt->novrs) {
1717                 /* Check that it is NSR02 compliant */
1718                 nsr_off = udf_check_vsd(sb);
1719                 if (!nsr_off) {
1720                         if (!silent)
1721                                 udf_warn(sb, "No VRS found\n");
1722                         return 0;
1723                 }
1724                 if (nsr_off == -1)
1725                         udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1726                 if (!sbi->s_last_block)
1727                         sbi->s_last_block = udf_get_last_block(sb);
1728         } else {
1729                 udf_debug("Validity check skipped because of novrs option\n");
1730         }
1731
1732         /* Look for anchor block and load Volume Descriptor Sequence */
1733         sbi->s_anchor = uopt->anchor;
1734         if (!udf_find_anchor(sb, fileset)) {
1735                 if (!silent)
1736                         udf_warn(sb, "No anchor found\n");
1737                 return 0;
1738         }
1739         return 1;
1740 }
1741
1742 static void udf_open_lvid(struct super_block *sb)
1743 {
1744         struct udf_sb_info *sbi = UDF_SB(sb);
1745         struct buffer_head *bh = sbi->s_lvid_bh;
1746         struct logicalVolIntegrityDesc *lvid;
1747         struct logicalVolIntegrityDescImpUse *lvidiu;
1748
1749         if (!bh)
1750                 return;
1751
1752         mutex_lock(&sbi->s_alloc_mutex);
1753         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1754         lvidiu = udf_sb_lvidiu(sbi);
1755
1756         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1757         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1758         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1759                                 CURRENT_TIME);
1760         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1761
1762         lvid->descTag.descCRC = cpu_to_le16(
1763                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1764                         le16_to_cpu(lvid->descTag.descCRCLength)));
1765
1766         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1767         mark_buffer_dirty(bh);
1768         sbi->s_lvid_dirty = 0;
1769         mutex_unlock(&sbi->s_alloc_mutex);
1770 }
1771
1772 static void udf_close_lvid(struct super_block *sb)
1773 {
1774         struct udf_sb_info *sbi = UDF_SB(sb);
1775         struct buffer_head *bh = sbi->s_lvid_bh;
1776         struct logicalVolIntegrityDesc *lvid;
1777         struct logicalVolIntegrityDescImpUse *lvidiu;
1778
1779         if (!bh)
1780                 return;
1781
1782         mutex_lock(&sbi->s_alloc_mutex);
1783         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1784         lvidiu = udf_sb_lvidiu(sbi);
1785         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1786         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1787         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1788         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1789                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1790         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1791                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1792         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1793                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1794         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1795
1796         lvid->descTag.descCRC = cpu_to_le16(
1797                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1798                                 le16_to_cpu(lvid->descTag.descCRCLength)));
1799
1800         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1801         /*
1802          * We set buffer uptodate unconditionally here to avoid spurious
1803          * warnings from mark_buffer_dirty() when previous EIO has marked
1804          * the buffer as !uptodate
1805          */
1806         set_buffer_uptodate(bh);
1807         mark_buffer_dirty(bh);
1808         sbi->s_lvid_dirty = 0;
1809         mutex_unlock(&sbi->s_alloc_mutex);
1810 }
1811
1812 u64 lvid_get_unique_id(struct super_block *sb)
1813 {
1814         struct buffer_head *bh;
1815         struct udf_sb_info *sbi = UDF_SB(sb);
1816         struct logicalVolIntegrityDesc *lvid;
1817         struct logicalVolHeaderDesc *lvhd;
1818         u64 uniqueID;
1819         u64 ret;
1820
1821         bh = sbi->s_lvid_bh;
1822         if (!bh)
1823                 return 0;
1824
1825         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1826         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1827
1828         mutex_lock(&sbi->s_alloc_mutex);
1829         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1830         if (!(++uniqueID & 0xFFFFFFFF))
1831                 uniqueID += 16;
1832         lvhd->uniqueID = cpu_to_le64(uniqueID);
1833         mutex_unlock(&sbi->s_alloc_mutex);
1834         mark_buffer_dirty(bh);
1835
1836         return ret;
1837 }
1838
1839 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1840 {
1841         int i;
1842         int nr_groups = bitmap->s_nr_groups;
1843         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1844                                                 nr_groups);
1845
1846         for (i = 0; i < nr_groups; i++)
1847                 if (bitmap->s_block_bitmap[i])
1848                         brelse(bitmap->s_block_bitmap[i]);
1849
1850         if (size <= PAGE_SIZE)
1851                 kfree(bitmap);
1852         else
1853                 vfree(bitmap);
1854 }
1855
1856 static void udf_free_partition(struct udf_part_map *map)
1857 {
1858         int i;
1859         struct udf_meta_data *mdata;
1860
1861         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1862                 iput(map->s_uspace.s_table);
1863         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1864                 iput(map->s_fspace.s_table);
1865         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1866                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1867         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1868                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1869         if (map->s_partition_type == UDF_SPARABLE_MAP15)
1870                 for (i = 0; i < 4; i++)
1871                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1872         else if (map->s_partition_type == UDF_METADATA_MAP25) {
1873                 mdata = &map->s_type_specific.s_metadata;
1874                 iput(mdata->s_metadata_fe);
1875                 mdata->s_metadata_fe = NULL;
1876
1877                 iput(mdata->s_mirror_fe);
1878                 mdata->s_mirror_fe = NULL;
1879
1880                 iput(mdata->s_bitmap_fe);
1881                 mdata->s_bitmap_fe = NULL;
1882         }
1883 }
1884
1885 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1886 {
1887         int i;
1888         int ret;
1889         struct inode *inode = NULL;
1890         struct udf_options uopt;
1891         struct kernel_lb_addr rootdir, fileset;
1892         struct udf_sb_info *sbi;
1893
1894         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1895         uopt.uid = -1;
1896         uopt.gid = -1;
1897         uopt.umask = 0;
1898         uopt.fmode = UDF_INVALID_MODE;
1899         uopt.dmode = UDF_INVALID_MODE;
1900
1901         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1902         if (!sbi)
1903                 return -ENOMEM;
1904
1905         sb->s_fs_info = sbi;
1906
1907         mutex_init(&sbi->s_alloc_mutex);
1908
1909         if (!udf_parse_options((char *)options, &uopt, false))
1910                 goto error_out;
1911
1912         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1913             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1914                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
1915                 goto error_out;
1916         }
1917 #ifdef CONFIG_UDF_NLS
1918         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1919                 uopt.nls_map = load_nls_default();
1920                 if (!uopt.nls_map)
1921                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1922                 else
1923                         udf_debug("Using default NLS map\n");
1924         }
1925 #endif
1926         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1927                 uopt.flags |= (1 << UDF_FLAG_UTF8);
1928
1929         fileset.logicalBlockNum = 0xFFFFFFFF;
1930         fileset.partitionReferenceNum = 0xFFFF;
1931
1932         sbi->s_flags = uopt.flags;
1933         sbi->s_uid = uopt.uid;
1934         sbi->s_gid = uopt.gid;
1935         sbi->s_umask = uopt.umask;
1936         sbi->s_fmode = uopt.fmode;
1937         sbi->s_dmode = uopt.dmode;
1938         sbi->s_nls_map = uopt.nls_map;
1939         rwlock_init(&sbi->s_cred_lock);
1940
1941         if (uopt.session == 0xFFFFFFFF)
1942                 sbi->s_session = udf_get_last_session(sb);
1943         else
1944                 sbi->s_session = uopt.session;
1945
1946         udf_debug("Multi-session=%d\n", sbi->s_session);
1947
1948         /* Fill in the rest of the superblock */
1949         sb->s_op = &udf_sb_ops;
1950         sb->s_export_op = &udf_export_ops;
1951
1952         sb->s_dirt = 0;
1953         sb->s_magic = UDF_SUPER_MAGIC;
1954         sb->s_time_gran = 1000;
1955
1956         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1957                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1958         } else {
1959                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1960                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1961                 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1962                         if (!silent)
1963                                 pr_notice("Rescanning with blocksize %d\n",
1964                                           UDF_DEFAULT_BLOCKSIZE);
1965                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1966                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1967                 }
1968         }
1969         if (!ret) {
1970                 udf_warn(sb, "No partition found (1)\n");
1971                 goto error_out;
1972         }
1973
1974         udf_debug("Lastblock=%d\n", sbi->s_last_block);
1975
1976         if (sbi->s_lvid_bh) {
1977                 struct logicalVolIntegrityDescImpUse *lvidiu =
1978                                                         udf_sb_lvidiu(sbi);
1979                 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1980                 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1981                 /* uint16_t maxUDFWriteRev =
1982                                 le16_to_cpu(lvidiu->maxUDFWriteRev); */
1983
1984                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1985                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
1986                                 le16_to_cpu(lvidiu->minUDFReadRev),
1987                                 UDF_MAX_READ_VERSION);
1988                         goto error_out;
1989                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1990                         sb->s_flags |= MS_RDONLY;
1991
1992                 sbi->s_udfrev = minUDFWriteRev;
1993
1994                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
1995                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
1996                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
1997                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
1998         }
1999
2000         if (!sbi->s_partitions) {
2001                 udf_warn(sb, "No partition found (2)\n");
2002                 goto error_out;
2003         }
2004
2005         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2006                         UDF_PART_FLAG_READ_ONLY) {
2007                 pr_notice("Partition marked readonly; forcing readonly mount\n");
2008                 sb->s_flags |= MS_RDONLY;
2009         }
2010
2011         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2012                 udf_warn(sb, "No fileset found\n");
2013                 goto error_out;
2014         }
2015
2016         if (!silent) {
2017                 struct timestamp ts;
2018                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2019                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2020                          sbi->s_volume_ident,
2021                          le16_to_cpu(ts.year), ts.month, ts.day,
2022                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2023         }
2024         if (!(sb->s_flags & MS_RDONLY))
2025                 udf_open_lvid(sb);
2026
2027         /* Assign the root inode */
2028         /* assign inodes by physical block number */
2029         /* perhaps it's not extensible enough, but for now ... */
2030         inode = udf_iget(sb, &rootdir);
2031         if (!inode) {
2032                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2033                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2034                 goto error_out;
2035         }
2036
2037         /* Allocate a dentry for the root inode */
2038         sb->s_root = d_alloc_root(inode);
2039         if (!sb->s_root) {
2040                 udf_err(sb, "Couldn't allocate root dentry\n");
2041                 iput(inode);
2042                 goto error_out;
2043         }
2044         sb->s_maxbytes = MAX_LFS_FILESIZE;
2045         return 0;
2046
2047 error_out:
2048         if (sbi->s_vat_inode)
2049                 iput(sbi->s_vat_inode);
2050         if (sbi->s_partitions)
2051                 for (i = 0; i < sbi->s_partitions; i++)
2052                         udf_free_partition(&sbi->s_partmaps[i]);
2053 #ifdef CONFIG_UDF_NLS
2054         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2055                 unload_nls(sbi->s_nls_map);
2056 #endif
2057         if (!(sb->s_flags & MS_RDONLY))
2058                 udf_close_lvid(sb);
2059         brelse(sbi->s_lvid_bh);
2060
2061         kfree(sbi->s_partmaps);
2062         kfree(sbi);
2063         sb->s_fs_info = NULL;
2064
2065         return -EINVAL;
2066 }
2067
2068 void _udf_err(struct super_block *sb, const char *function,
2069               const char *fmt, ...)
2070 {
2071         struct va_format vaf;
2072         va_list args;
2073
2074         /* mark sb error */
2075         if (!(sb->s_flags & MS_RDONLY))
2076                 sb->s_dirt = 1;
2077
2078         va_start(args, fmt);
2079
2080         vaf.fmt = fmt;
2081         vaf.va = &args;
2082
2083         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2084
2085         va_end(args);
2086 }
2087
2088 void _udf_warn(struct super_block *sb, const char *function,
2089                const char *fmt, ...)
2090 {
2091         struct va_format vaf;
2092         va_list args;
2093
2094         va_start(args, fmt);
2095
2096         vaf.fmt = fmt;
2097         vaf.va = &args;
2098
2099         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2100
2101         va_end(args);
2102 }
2103
2104 static void udf_put_super(struct super_block *sb)
2105 {
2106         int i;
2107         struct udf_sb_info *sbi;
2108
2109         sbi = UDF_SB(sb);
2110
2111         if (sbi->s_vat_inode)
2112                 iput(sbi->s_vat_inode);
2113         if (sbi->s_partitions)
2114                 for (i = 0; i < sbi->s_partitions; i++)
2115                         udf_free_partition(&sbi->s_partmaps[i]);
2116 #ifdef CONFIG_UDF_NLS
2117         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2118                 unload_nls(sbi->s_nls_map);
2119 #endif
2120         if (!(sb->s_flags & MS_RDONLY))
2121                 udf_close_lvid(sb);
2122         brelse(sbi->s_lvid_bh);
2123         kfree(sbi->s_partmaps);
2124         kfree(sb->s_fs_info);
2125         sb->s_fs_info = NULL;
2126 }
2127
2128 static int udf_sync_fs(struct super_block *sb, int wait)
2129 {
2130         struct udf_sb_info *sbi = UDF_SB(sb);
2131
2132         mutex_lock(&sbi->s_alloc_mutex);
2133         if (sbi->s_lvid_dirty) {
2134                 /*
2135                  * Blockdevice will be synced later so we don't have to submit
2136                  * the buffer for IO
2137                  */
2138                 mark_buffer_dirty(sbi->s_lvid_bh);
2139                 sb->s_dirt = 0;
2140                 sbi->s_lvid_dirty = 0;
2141         }
2142         mutex_unlock(&sbi->s_alloc_mutex);
2143
2144         return 0;
2145 }
2146
2147 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2148 {
2149         struct super_block *sb = dentry->d_sb;
2150         struct udf_sb_info *sbi = UDF_SB(sb);
2151         struct logicalVolIntegrityDescImpUse *lvidiu;
2152         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2153
2154         if (sbi->s_lvid_bh != NULL)
2155                 lvidiu = udf_sb_lvidiu(sbi);
2156         else
2157                 lvidiu = NULL;
2158
2159         buf->f_type = UDF_SUPER_MAGIC;
2160         buf->f_bsize = sb->s_blocksize;
2161         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2162         buf->f_bfree = udf_count_free(sb);
2163         buf->f_bavail = buf->f_bfree;
2164         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2165                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2166                         + buf->f_bfree;
2167         buf->f_ffree = buf->f_bfree;
2168         buf->f_namelen = UDF_NAME_LEN - 2;
2169         buf->f_fsid.val[0] = (u32)id;
2170         buf->f_fsid.val[1] = (u32)(id >> 32);
2171
2172         return 0;
2173 }
2174
2175 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2176                                           struct udf_bitmap *bitmap)
2177 {
2178         struct buffer_head *bh = NULL;
2179         unsigned int accum = 0;
2180         int index;
2181         int block = 0, newblock;
2182         struct kernel_lb_addr loc;
2183         uint32_t bytes;
2184         uint8_t *ptr;
2185         uint16_t ident;
2186         struct spaceBitmapDesc *bm;
2187
2188         loc.logicalBlockNum = bitmap->s_extPosition;
2189         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2190         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2191
2192         if (!bh) {
2193                 udf_err(sb, "udf_count_free failed\n");
2194                 goto out;
2195         } else if (ident != TAG_IDENT_SBD) {
2196                 brelse(bh);
2197                 udf_err(sb, "udf_count_free failed\n");
2198                 goto out;
2199         }
2200
2201         bm = (struct spaceBitmapDesc *)bh->b_data;
2202         bytes = le32_to_cpu(bm->numOfBytes);
2203         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2204         ptr = (uint8_t *)bh->b_data;
2205
2206         while (bytes > 0) {
2207                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2208                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2209                                         cur_bytes * 8);
2210                 bytes -= cur_bytes;
2211                 if (bytes) {
2212                         brelse(bh);
2213                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2214                         bh = udf_tread(sb, newblock);
2215                         if (!bh) {
2216                                 udf_debug("read failed\n");
2217                                 goto out;
2218                         }
2219                         index = 0;
2220                         ptr = (uint8_t *)bh->b_data;
2221                 }
2222         }
2223         brelse(bh);
2224 out:
2225         return accum;
2226 }
2227
2228 static unsigned int udf_count_free_table(struct super_block *sb,
2229                                          struct inode *table)
2230 {
2231         unsigned int accum = 0;
2232         uint32_t elen;
2233         struct kernel_lb_addr eloc;
2234         int8_t etype;
2235         struct extent_position epos;
2236
2237         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2238         epos.block = UDF_I(table)->i_location;
2239         epos.offset = sizeof(struct unallocSpaceEntry);
2240         epos.bh = NULL;
2241
2242         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2243                 accum += (elen >> table->i_sb->s_blocksize_bits);
2244
2245         brelse(epos.bh);
2246         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2247
2248         return accum;
2249 }
2250
2251 static unsigned int udf_count_free(struct super_block *sb)
2252 {
2253         unsigned int accum = 0;
2254         struct udf_sb_info *sbi;
2255         struct udf_part_map *map;
2256
2257         sbi = UDF_SB(sb);
2258         if (sbi->s_lvid_bh) {
2259                 struct logicalVolIntegrityDesc *lvid =
2260                         (struct logicalVolIntegrityDesc *)
2261                         sbi->s_lvid_bh->b_data;
2262                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2263                         accum = le32_to_cpu(
2264                                         lvid->freeSpaceTable[sbi->s_partition]);
2265                         if (accum == 0xFFFFFFFF)
2266                                 accum = 0;
2267                 }
2268         }
2269
2270         if (accum)
2271                 return accum;
2272
2273         map = &sbi->s_partmaps[sbi->s_partition];
2274         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2275                 accum += udf_count_free_bitmap(sb,
2276                                                map->s_uspace.s_bitmap);
2277         }
2278         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2279                 accum += udf_count_free_bitmap(sb,
2280                                                map->s_fspace.s_bitmap);
2281         }
2282         if (accum)
2283                 return accum;
2284
2285         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2286                 accum += udf_count_free_table(sb,
2287                                               map->s_uspace.s_table);
2288         }
2289         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2290                 accum += udf_count_free_table(sb,
2291                                               map->s_fspace.s_table);
2292         }
2293
2294         return accum;
2295 }