]> Pileus Git - ~andy/linux/blob - fs/ocfs2/aops.c
Linux 3.14
[~andy/linux] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
48
49 #include "buffer_head_io.h"
50
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52                                    struct buffer_head *bh_result, int create)
53 {
54         int err = -EIO;
55         int status;
56         struct ocfs2_dinode *fe = NULL;
57         struct buffer_head *bh = NULL;
58         struct buffer_head *buffer_cache_bh = NULL;
59         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60         void *kaddr;
61
62         trace_ocfs2_symlink_get_block(
63                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
64                         (unsigned long long)iblock, bh_result, create);
65
66         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70                      (unsigned long long)iblock);
71                 goto bail;
72         }
73
74         status = ocfs2_read_inode_block(inode, &bh);
75         if (status < 0) {
76                 mlog_errno(status);
77                 goto bail;
78         }
79         fe = (struct ocfs2_dinode *) bh->b_data;
80
81         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82                                                     le32_to_cpu(fe->i_clusters))) {
83                 err = -ENOMEM;
84                 mlog(ML_ERROR, "block offset is outside the allocated size: "
85                      "%llu\n", (unsigned long long)iblock);
86                 goto bail;
87         }
88
89         /* We don't use the page cache to create symlink data, so if
90          * need be, copy it over from the buffer cache. */
91         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
92                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
93                             iblock;
94                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
95                 if (!buffer_cache_bh) {
96                         err = -ENOMEM;
97                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
98                         goto bail;
99                 }
100
101                 /* we haven't locked out transactions, so a commit
102                  * could've happened. Since we've got a reference on
103                  * the bh, even if it commits while we're doing the
104                  * copy, the data is still good. */
105                 if (buffer_jbd(buffer_cache_bh)
106                     && ocfs2_inode_is_new(inode)) {
107                         kaddr = kmap_atomic(bh_result->b_page);
108                         if (!kaddr) {
109                                 mlog(ML_ERROR, "couldn't kmap!\n");
110                                 goto bail;
111                         }
112                         memcpy(kaddr + (bh_result->b_size * iblock),
113                                buffer_cache_bh->b_data,
114                                bh_result->b_size);
115                         kunmap_atomic(kaddr);
116                         set_buffer_uptodate(bh_result);
117                 }
118                 brelse(buffer_cache_bh);
119         }
120
121         map_bh(bh_result, inode->i_sb,
122                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
123
124         err = 0;
125
126 bail:
127         brelse(bh);
128
129         return err;
130 }
131
132 int ocfs2_get_block(struct inode *inode, sector_t iblock,
133                     struct buffer_head *bh_result, int create)
134 {
135         int err = 0;
136         unsigned int ext_flags;
137         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
138         u64 p_blkno, count, past_eof;
139         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
140
141         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
142                               (unsigned long long)iblock, bh_result, create);
143
144         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
145                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
146                      inode, inode->i_ino);
147
148         if (S_ISLNK(inode->i_mode)) {
149                 /* this always does I/O for some reason. */
150                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
151                 goto bail;
152         }
153
154         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
155                                           &ext_flags);
156         if (err) {
157                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
158                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
159                      (unsigned long long)p_blkno);
160                 goto bail;
161         }
162
163         if (max_blocks < count)
164                 count = max_blocks;
165
166         /*
167          * ocfs2 never allocates in this function - the only time we
168          * need to use BH_New is when we're extending i_size on a file
169          * system which doesn't support holes, in which case BH_New
170          * allows __block_write_begin() to zero.
171          *
172          * If we see this on a sparse file system, then a truncate has
173          * raced us and removed the cluster. In this case, we clear
174          * the buffers dirty and uptodate bits and let the buffer code
175          * ignore it as a hole.
176          */
177         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
178                 clear_buffer_dirty(bh_result);
179                 clear_buffer_uptodate(bh_result);
180                 goto bail;
181         }
182
183         /* Treat the unwritten extent as a hole for zeroing purposes. */
184         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
185                 map_bh(bh_result, inode->i_sb, p_blkno);
186
187         bh_result->b_size = count << inode->i_blkbits;
188
189         if (!ocfs2_sparse_alloc(osb)) {
190                 if (p_blkno == 0) {
191                         err = -EIO;
192                         mlog(ML_ERROR,
193                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
194                              (unsigned long long)iblock,
195                              (unsigned long long)p_blkno,
196                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
197                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
198                         dump_stack();
199                         goto bail;
200                 }
201         }
202
203         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
204
205         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
206                                   (unsigned long long)past_eof);
207         if (create && (iblock >= past_eof))
208                 set_buffer_new(bh_result);
209
210 bail:
211         if (err < 0)
212                 err = -EIO;
213
214         return err;
215 }
216
217 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
218                            struct buffer_head *di_bh)
219 {
220         void *kaddr;
221         loff_t size;
222         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
223
224         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
225                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
226                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
227                 return -EROFS;
228         }
229
230         size = i_size_read(inode);
231
232         if (size > PAGE_CACHE_SIZE ||
233             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
234                 ocfs2_error(inode->i_sb,
235                             "Inode %llu has with inline data has bad size: %Lu",
236                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
237                             (unsigned long long)size);
238                 return -EROFS;
239         }
240
241         kaddr = kmap_atomic(page);
242         if (size)
243                 memcpy(kaddr, di->id2.i_data.id_data, size);
244         /* Clear the remaining part of the page */
245         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
246         flush_dcache_page(page);
247         kunmap_atomic(kaddr);
248
249         SetPageUptodate(page);
250
251         return 0;
252 }
253
254 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
255 {
256         int ret;
257         struct buffer_head *di_bh = NULL;
258
259         BUG_ON(!PageLocked(page));
260         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
261
262         ret = ocfs2_read_inode_block(inode, &di_bh);
263         if (ret) {
264                 mlog_errno(ret);
265                 goto out;
266         }
267
268         ret = ocfs2_read_inline_data(inode, page, di_bh);
269 out:
270         unlock_page(page);
271
272         brelse(di_bh);
273         return ret;
274 }
275
276 static int ocfs2_readpage(struct file *file, struct page *page)
277 {
278         struct inode *inode = page->mapping->host;
279         struct ocfs2_inode_info *oi = OCFS2_I(inode);
280         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
281         int ret, unlock = 1;
282
283         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
284                              (page ? page->index : 0));
285
286         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
287         if (ret != 0) {
288                 if (ret == AOP_TRUNCATED_PAGE)
289                         unlock = 0;
290                 mlog_errno(ret);
291                 goto out;
292         }
293
294         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
295                 /*
296                  * Unlock the page and cycle ip_alloc_sem so that we don't
297                  * busyloop waiting for ip_alloc_sem to unlock
298                  */
299                 ret = AOP_TRUNCATED_PAGE;
300                 unlock_page(page);
301                 unlock = 0;
302                 down_read(&oi->ip_alloc_sem);
303                 up_read(&oi->ip_alloc_sem);
304                 goto out_inode_unlock;
305         }
306
307         /*
308          * i_size might have just been updated as we grabed the meta lock.  We
309          * might now be discovering a truncate that hit on another node.
310          * block_read_full_page->get_block freaks out if it is asked to read
311          * beyond the end of a file, so we check here.  Callers
312          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
313          * and notice that the page they just read isn't needed.
314          *
315          * XXX sys_readahead() seems to get that wrong?
316          */
317         if (start >= i_size_read(inode)) {
318                 zero_user(page, 0, PAGE_SIZE);
319                 SetPageUptodate(page);
320                 ret = 0;
321                 goto out_alloc;
322         }
323
324         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325                 ret = ocfs2_readpage_inline(inode, page);
326         else
327                 ret = block_read_full_page(page, ocfs2_get_block);
328         unlock = 0;
329
330 out_alloc:
331         up_read(&OCFS2_I(inode)->ip_alloc_sem);
332 out_inode_unlock:
333         ocfs2_inode_unlock(inode, 0);
334 out:
335         if (unlock)
336                 unlock_page(page);
337         return ret;
338 }
339
340 /*
341  * This is used only for read-ahead. Failures or difficult to handle
342  * situations are safe to ignore.
343  *
344  * Right now, we don't bother with BH_Boundary - in-inode extent lists
345  * are quite large (243 extents on 4k blocks), so most inodes don't
346  * grow out to a tree. If need be, detecting boundary extents could
347  * trivially be added in a future version of ocfs2_get_block().
348  */
349 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350                            struct list_head *pages, unsigned nr_pages)
351 {
352         int ret, err = -EIO;
353         struct inode *inode = mapping->host;
354         struct ocfs2_inode_info *oi = OCFS2_I(inode);
355         loff_t start;
356         struct page *last;
357
358         /*
359          * Use the nonblocking flag for the dlm code to avoid page
360          * lock inversion, but don't bother with retrying.
361          */
362         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363         if (ret)
364                 return err;
365
366         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367                 ocfs2_inode_unlock(inode, 0);
368                 return err;
369         }
370
371         /*
372          * Don't bother with inline-data. There isn't anything
373          * to read-ahead in that case anyway...
374          */
375         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376                 goto out_unlock;
377
378         /*
379          * Check whether a remote node truncated this file - we just
380          * drop out in that case as it's not worth handling here.
381          */
382         last = list_entry(pages->prev, struct page, lru);
383         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384         if (start >= i_size_read(inode))
385                 goto out_unlock;
386
387         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388
389 out_unlock:
390         up_read(&oi->ip_alloc_sem);
391         ocfs2_inode_unlock(inode, 0);
392
393         return err;
394 }
395
396 /* Note: Because we don't support holes, our allocation has
397  * already happened (allocation writes zeros to the file data)
398  * so we don't have to worry about ordered writes in
399  * ocfs2_writepage.
400  *
401  * ->writepage is called during the process of invalidating the page cache
402  * during blocked lock processing.  It can't block on any cluster locks
403  * to during block mapping.  It's relying on the fact that the block
404  * mapping can't have disappeared under the dirty pages that it is
405  * being asked to write back.
406  */
407 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408 {
409         trace_ocfs2_writepage(
410                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
411                 page->index);
412
413         return block_write_full_page(page, ocfs2_get_block, wbc);
414 }
415
416 /* Taken from ext3. We don't necessarily need the full blown
417  * functionality yet, but IMHO it's better to cut and paste the whole
418  * thing so we can avoid introducing our own bugs (and easily pick up
419  * their fixes when they happen) --Mark */
420 int walk_page_buffers(  handle_t *handle,
421                         struct buffer_head *head,
422                         unsigned from,
423                         unsigned to,
424                         int *partial,
425                         int (*fn)(      handle_t *handle,
426                                         struct buffer_head *bh))
427 {
428         struct buffer_head *bh;
429         unsigned block_start, block_end;
430         unsigned blocksize = head->b_size;
431         int err, ret = 0;
432         struct buffer_head *next;
433
434         for (   bh = head, block_start = 0;
435                 ret == 0 && (bh != head || !block_start);
436                 block_start = block_end, bh = next)
437         {
438                 next = bh->b_this_page;
439                 block_end = block_start + blocksize;
440                 if (block_end <= from || block_start >= to) {
441                         if (partial && !buffer_uptodate(bh))
442                                 *partial = 1;
443                         continue;
444                 }
445                 err = (*fn)(handle, bh);
446                 if (!ret)
447                         ret = err;
448         }
449         return ret;
450 }
451
452 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
453 {
454         sector_t status;
455         u64 p_blkno = 0;
456         int err = 0;
457         struct inode *inode = mapping->host;
458
459         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
460                          (unsigned long long)block);
461
462         /* We don't need to lock journal system files, since they aren't
463          * accessed concurrently from multiple nodes.
464          */
465         if (!INODE_JOURNAL(inode)) {
466                 err = ocfs2_inode_lock(inode, NULL, 0);
467                 if (err) {
468                         if (err != -ENOENT)
469                                 mlog_errno(err);
470                         goto bail;
471                 }
472                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
473         }
474
475         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
476                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
477                                                   NULL);
478
479         if (!INODE_JOURNAL(inode)) {
480                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
481                 ocfs2_inode_unlock(inode, 0);
482         }
483
484         if (err) {
485                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
486                      (unsigned long long)block);
487                 mlog_errno(err);
488                 goto bail;
489         }
490
491 bail:
492         status = err ? 0 : p_blkno;
493
494         return status;
495 }
496
497 /*
498  * TODO: Make this into a generic get_blocks function.
499  *
500  * From do_direct_io in direct-io.c:
501  *  "So what we do is to permit the ->get_blocks function to populate
502  *   bh.b_size with the size of IO which is permitted at this offset and
503  *   this i_blkbits."
504  *
505  * This function is called directly from get_more_blocks in direct-io.c.
506  *
507  * called like this: dio->get_blocks(dio->inode, fs_startblk,
508  *                                      fs_count, map_bh, dio->rw == WRITE);
509  *
510  * Note that we never bother to allocate blocks here, and thus ignore the
511  * create argument.
512  */
513 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
514                                      struct buffer_head *bh_result, int create)
515 {
516         int ret;
517         u64 p_blkno, inode_blocks, contig_blocks;
518         unsigned int ext_flags;
519         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
520         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
521
522         /* This function won't even be called if the request isn't all
523          * nicely aligned and of the right size, so there's no need
524          * for us to check any of that. */
525
526         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
527
528         /* This figures out the size of the next contiguous block, and
529          * our logical offset */
530         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
531                                           &contig_blocks, &ext_flags);
532         if (ret) {
533                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
534                      (unsigned long long)iblock);
535                 ret = -EIO;
536                 goto bail;
537         }
538
539         /* We should already CoW the refcounted extent in case of create. */
540         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
541
542         /*
543          * get_more_blocks() expects us to describe a hole by clearing
544          * the mapped bit on bh_result().
545          *
546          * Consider an unwritten extent as a hole.
547          */
548         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
549                 map_bh(bh_result, inode->i_sb, p_blkno);
550         else
551                 clear_buffer_mapped(bh_result);
552
553         /* make sure we don't map more than max_blocks blocks here as
554            that's all the kernel will handle at this point. */
555         if (max_blocks < contig_blocks)
556                 contig_blocks = max_blocks;
557         bh_result->b_size = contig_blocks << blocksize_bits;
558 bail:
559         return ret;
560 }
561
562 /*
563  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
564  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
565  * to protect io on one node from truncation on another.
566  */
567 static void ocfs2_dio_end_io(struct kiocb *iocb,
568                              loff_t offset,
569                              ssize_t bytes,
570                              void *private)
571 {
572         struct inode *inode = file_inode(iocb->ki_filp);
573         int level;
574         wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
575
576         /* this io's submitter should not have unlocked this before we could */
577         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
578
579         if (ocfs2_iocb_is_sem_locked(iocb))
580                 ocfs2_iocb_clear_sem_locked(iocb);
581
582         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583                 ocfs2_iocb_clear_unaligned_aio(iocb);
584
585                 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586                     waitqueue_active(wq)) {
587                         wake_up_all(wq);
588                 }
589         }
590
591         ocfs2_iocb_clear_rw_locked(iocb);
592
593         level = ocfs2_iocb_rw_locked_level(iocb);
594         ocfs2_rw_unlock(inode, level);
595 }
596
597 static int ocfs2_releasepage(struct page *page, gfp_t wait)
598 {
599         if (!page_has_buffers(page))
600                 return 0;
601         return try_to_free_buffers(page);
602 }
603
604 static ssize_t ocfs2_direct_IO(int rw,
605                                struct kiocb *iocb,
606                                const struct iovec *iov,
607                                loff_t offset,
608                                unsigned long nr_segs)
609 {
610         struct file *file = iocb->ki_filp;
611         struct inode *inode = file_inode(file)->i_mapping->host;
612
613         /*
614          * Fallback to buffered I/O if we see an inode without
615          * extents.
616          */
617         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
618                 return 0;
619
620         /* Fallback to buffered I/O if we are appending. */
621         if (i_size_read(inode) <= offset)
622                 return 0;
623
624         return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
625                                     iov, offset, nr_segs,
626                                     ocfs2_direct_IO_get_blocks,
627                                     ocfs2_dio_end_io, NULL, 0);
628 }
629
630 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
631                                             u32 cpos,
632                                             unsigned int *start,
633                                             unsigned int *end)
634 {
635         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
636
637         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
638                 unsigned int cpp;
639
640                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
641
642                 cluster_start = cpos % cpp;
643                 cluster_start = cluster_start << osb->s_clustersize_bits;
644
645                 cluster_end = cluster_start + osb->s_clustersize;
646         }
647
648         BUG_ON(cluster_start > PAGE_SIZE);
649         BUG_ON(cluster_end > PAGE_SIZE);
650
651         if (start)
652                 *start = cluster_start;
653         if (end)
654                 *end = cluster_end;
655 }
656
657 /*
658  * 'from' and 'to' are the region in the page to avoid zeroing.
659  *
660  * If pagesize > clustersize, this function will avoid zeroing outside
661  * of the cluster boundary.
662  *
663  * from == to == 0 is code for "zero the entire cluster region"
664  */
665 static void ocfs2_clear_page_regions(struct page *page,
666                                      struct ocfs2_super *osb, u32 cpos,
667                                      unsigned from, unsigned to)
668 {
669         void *kaddr;
670         unsigned int cluster_start, cluster_end;
671
672         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
673
674         kaddr = kmap_atomic(page);
675
676         if (from || to) {
677                 if (from > cluster_start)
678                         memset(kaddr + cluster_start, 0, from - cluster_start);
679                 if (to < cluster_end)
680                         memset(kaddr + to, 0, cluster_end - to);
681         } else {
682                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
683         }
684
685         kunmap_atomic(kaddr);
686 }
687
688 /*
689  * Nonsparse file systems fully allocate before we get to the write
690  * code. This prevents ocfs2_write() from tagging the write as an
691  * allocating one, which means ocfs2_map_page_blocks() might try to
692  * read-in the blocks at the tail of our file. Avoid reading them by
693  * testing i_size against each block offset.
694  */
695 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
696                                  unsigned int block_start)
697 {
698         u64 offset = page_offset(page) + block_start;
699
700         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
701                 return 1;
702
703         if (i_size_read(inode) > offset)
704                 return 1;
705
706         return 0;
707 }
708
709 /*
710  * Some of this taken from __block_write_begin(). We already have our
711  * mapping by now though, and the entire write will be allocating or
712  * it won't, so not much need to use BH_New.
713  *
714  * This will also skip zeroing, which is handled externally.
715  */
716 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
717                           struct inode *inode, unsigned int from,
718                           unsigned int to, int new)
719 {
720         int ret = 0;
721         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
722         unsigned int block_end, block_start;
723         unsigned int bsize = 1 << inode->i_blkbits;
724
725         if (!page_has_buffers(page))
726                 create_empty_buffers(page, bsize, 0);
727
728         head = page_buffers(page);
729         for (bh = head, block_start = 0; bh != head || !block_start;
730              bh = bh->b_this_page, block_start += bsize) {
731                 block_end = block_start + bsize;
732
733                 clear_buffer_new(bh);
734
735                 /*
736                  * Ignore blocks outside of our i/o range -
737                  * they may belong to unallocated clusters.
738                  */
739                 if (block_start >= to || block_end <= from) {
740                         if (PageUptodate(page))
741                                 set_buffer_uptodate(bh);
742                         continue;
743                 }
744
745                 /*
746                  * For an allocating write with cluster size >= page
747                  * size, we always write the entire page.
748                  */
749                 if (new)
750                         set_buffer_new(bh);
751
752                 if (!buffer_mapped(bh)) {
753                         map_bh(bh, inode->i_sb, *p_blkno);
754                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
755                 }
756
757                 if (PageUptodate(page)) {
758                         if (!buffer_uptodate(bh))
759                                 set_buffer_uptodate(bh);
760                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
761                            !buffer_new(bh) &&
762                            ocfs2_should_read_blk(inode, page, block_start) &&
763                            (block_start < from || block_end > to)) {
764                         ll_rw_block(READ, 1, &bh);
765                         *wait_bh++=bh;
766                 }
767
768                 *p_blkno = *p_blkno + 1;
769         }
770
771         /*
772          * If we issued read requests - let them complete.
773          */
774         while(wait_bh > wait) {
775                 wait_on_buffer(*--wait_bh);
776                 if (!buffer_uptodate(*wait_bh))
777                         ret = -EIO;
778         }
779
780         if (ret == 0 || !new)
781                 return ret;
782
783         /*
784          * If we get -EIO above, zero out any newly allocated blocks
785          * to avoid exposing stale data.
786          */
787         bh = head;
788         block_start = 0;
789         do {
790                 block_end = block_start + bsize;
791                 if (block_end <= from)
792                         goto next_bh;
793                 if (block_start >= to)
794                         break;
795
796                 zero_user(page, block_start, bh->b_size);
797                 set_buffer_uptodate(bh);
798                 mark_buffer_dirty(bh);
799
800 next_bh:
801                 block_start = block_end;
802                 bh = bh->b_this_page;
803         } while (bh != head);
804
805         return ret;
806 }
807
808 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
809 #define OCFS2_MAX_CTXT_PAGES    1
810 #else
811 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
812 #endif
813
814 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
815
816 /*
817  * Describe the state of a single cluster to be written to.
818  */
819 struct ocfs2_write_cluster_desc {
820         u32             c_cpos;
821         u32             c_phys;
822         /*
823          * Give this a unique field because c_phys eventually gets
824          * filled.
825          */
826         unsigned        c_new;
827         unsigned        c_unwritten;
828         unsigned        c_needs_zero;
829 };
830
831 struct ocfs2_write_ctxt {
832         /* Logical cluster position / len of write */
833         u32                             w_cpos;
834         u32                             w_clen;
835
836         /* First cluster allocated in a nonsparse extend */
837         u32                             w_first_new_cpos;
838
839         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
840
841         /*
842          * This is true if page_size > cluster_size.
843          *
844          * It triggers a set of special cases during write which might
845          * have to deal with allocating writes to partial pages.
846          */
847         unsigned int                    w_large_pages;
848
849         /*
850          * Pages involved in this write.
851          *
852          * w_target_page is the page being written to by the user.
853          *
854          * w_pages is an array of pages which always contains
855          * w_target_page, and in the case of an allocating write with
856          * page_size < cluster size, it will contain zero'd and mapped
857          * pages adjacent to w_target_page which need to be written
858          * out in so that future reads from that region will get
859          * zero's.
860          */
861         unsigned int                    w_num_pages;
862         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
863         struct page                     *w_target_page;
864
865         /*
866          * w_target_locked is used for page_mkwrite path indicating no unlocking
867          * against w_target_page in ocfs2_write_end_nolock.
868          */
869         unsigned int                    w_target_locked:1;
870
871         /*
872          * ocfs2_write_end() uses this to know what the real range to
873          * write in the target should be.
874          */
875         unsigned int                    w_target_from;
876         unsigned int                    w_target_to;
877
878         /*
879          * We could use journal_current_handle() but this is cleaner,
880          * IMHO -Mark
881          */
882         handle_t                        *w_handle;
883
884         struct buffer_head              *w_di_bh;
885
886         struct ocfs2_cached_dealloc_ctxt w_dealloc;
887 };
888
889 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
890 {
891         int i;
892
893         for(i = 0; i < num_pages; i++) {
894                 if (pages[i]) {
895                         unlock_page(pages[i]);
896                         mark_page_accessed(pages[i]);
897                         page_cache_release(pages[i]);
898                 }
899         }
900 }
901
902 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
903 {
904         int i;
905
906         /*
907          * w_target_locked is only set to true in the page_mkwrite() case.
908          * The intent is to allow us to lock the target page from write_begin()
909          * to write_end(). The caller must hold a ref on w_target_page.
910          */
911         if (wc->w_target_locked) {
912                 BUG_ON(!wc->w_target_page);
913                 for (i = 0; i < wc->w_num_pages; i++) {
914                         if (wc->w_target_page == wc->w_pages[i]) {
915                                 wc->w_pages[i] = NULL;
916                                 break;
917                         }
918                 }
919                 mark_page_accessed(wc->w_target_page);
920                 page_cache_release(wc->w_target_page);
921         }
922         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
923
924         brelse(wc->w_di_bh);
925         kfree(wc);
926 }
927
928 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
929                                   struct ocfs2_super *osb, loff_t pos,
930                                   unsigned len, struct buffer_head *di_bh)
931 {
932         u32 cend;
933         struct ocfs2_write_ctxt *wc;
934
935         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
936         if (!wc)
937                 return -ENOMEM;
938
939         wc->w_cpos = pos >> osb->s_clustersize_bits;
940         wc->w_first_new_cpos = UINT_MAX;
941         cend = (pos + len - 1) >> osb->s_clustersize_bits;
942         wc->w_clen = cend - wc->w_cpos + 1;
943         get_bh(di_bh);
944         wc->w_di_bh = di_bh;
945
946         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
947                 wc->w_large_pages = 1;
948         else
949                 wc->w_large_pages = 0;
950
951         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
952
953         *wcp = wc;
954
955         return 0;
956 }
957
958 /*
959  * If a page has any new buffers, zero them out here, and mark them uptodate
960  * and dirty so they'll be written out (in order to prevent uninitialised
961  * block data from leaking). And clear the new bit.
962  */
963 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
964 {
965         unsigned int block_start, block_end;
966         struct buffer_head *head, *bh;
967
968         BUG_ON(!PageLocked(page));
969         if (!page_has_buffers(page))
970                 return;
971
972         bh = head = page_buffers(page);
973         block_start = 0;
974         do {
975                 block_end = block_start + bh->b_size;
976
977                 if (buffer_new(bh)) {
978                         if (block_end > from && block_start < to) {
979                                 if (!PageUptodate(page)) {
980                                         unsigned start, end;
981
982                                         start = max(from, block_start);
983                                         end = min(to, block_end);
984
985                                         zero_user_segment(page, start, end);
986                                         set_buffer_uptodate(bh);
987                                 }
988
989                                 clear_buffer_new(bh);
990                                 mark_buffer_dirty(bh);
991                         }
992                 }
993
994                 block_start = block_end;
995                 bh = bh->b_this_page;
996         } while (bh != head);
997 }
998
999 /*
1000  * Only called when we have a failure during allocating write to write
1001  * zero's to the newly allocated region.
1002  */
1003 static void ocfs2_write_failure(struct inode *inode,
1004                                 struct ocfs2_write_ctxt *wc,
1005                                 loff_t user_pos, unsigned user_len)
1006 {
1007         int i;
1008         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1009                 to = user_pos + user_len;
1010         struct page *tmppage;
1011
1012         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1013
1014         for(i = 0; i < wc->w_num_pages; i++) {
1015                 tmppage = wc->w_pages[i];
1016
1017                 if (page_has_buffers(tmppage)) {
1018                         if (ocfs2_should_order_data(inode))
1019                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1020
1021                         block_commit_write(tmppage, from, to);
1022                 }
1023         }
1024 }
1025
1026 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1027                                         struct ocfs2_write_ctxt *wc,
1028                                         struct page *page, u32 cpos,
1029                                         loff_t user_pos, unsigned user_len,
1030                                         int new)
1031 {
1032         int ret;
1033         unsigned int map_from = 0, map_to = 0;
1034         unsigned int cluster_start, cluster_end;
1035         unsigned int user_data_from = 0, user_data_to = 0;
1036
1037         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1038                                         &cluster_start, &cluster_end);
1039
1040         /* treat the write as new if the a hole/lseek spanned across
1041          * the page boundary.
1042          */
1043         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1044                         (page_offset(page) <= user_pos));
1045
1046         if (page == wc->w_target_page) {
1047                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1048                 map_to = map_from + user_len;
1049
1050                 if (new)
1051                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1052                                                     cluster_start, cluster_end,
1053                                                     new);
1054                 else
1055                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1056                                                     map_from, map_to, new);
1057                 if (ret) {
1058                         mlog_errno(ret);
1059                         goto out;
1060                 }
1061
1062                 user_data_from = map_from;
1063                 user_data_to = map_to;
1064                 if (new) {
1065                         map_from = cluster_start;
1066                         map_to = cluster_end;
1067                 }
1068         } else {
1069                 /*
1070                  * If we haven't allocated the new page yet, we
1071                  * shouldn't be writing it out without copying user
1072                  * data. This is likely a math error from the caller.
1073                  */
1074                 BUG_ON(!new);
1075
1076                 map_from = cluster_start;
1077                 map_to = cluster_end;
1078
1079                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1080                                             cluster_start, cluster_end, new);
1081                 if (ret) {
1082                         mlog_errno(ret);
1083                         goto out;
1084                 }
1085         }
1086
1087         /*
1088          * Parts of newly allocated pages need to be zero'd.
1089          *
1090          * Above, we have also rewritten 'to' and 'from' - as far as
1091          * the rest of the function is concerned, the entire cluster
1092          * range inside of a page needs to be written.
1093          *
1094          * We can skip this if the page is up to date - it's already
1095          * been zero'd from being read in as a hole.
1096          */
1097         if (new && !PageUptodate(page))
1098                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1099                                          cpos, user_data_from, user_data_to);
1100
1101         flush_dcache_page(page);
1102
1103 out:
1104         return ret;
1105 }
1106
1107 /*
1108  * This function will only grab one clusters worth of pages.
1109  */
1110 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1111                                       struct ocfs2_write_ctxt *wc,
1112                                       u32 cpos, loff_t user_pos,
1113                                       unsigned user_len, int new,
1114                                       struct page *mmap_page)
1115 {
1116         int ret = 0, i;
1117         unsigned long start, target_index, end_index, index;
1118         struct inode *inode = mapping->host;
1119         loff_t last_byte;
1120
1121         target_index = user_pos >> PAGE_CACHE_SHIFT;
1122
1123         /*
1124          * Figure out how many pages we'll be manipulating here. For
1125          * non allocating write, we just change the one
1126          * page. Otherwise, we'll need a whole clusters worth.  If we're
1127          * writing past i_size, we only need enough pages to cover the
1128          * last page of the write.
1129          */
1130         if (new) {
1131                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1132                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1133                 /*
1134                  * We need the index *past* the last page we could possibly
1135                  * touch.  This is the page past the end of the write or
1136                  * i_size, whichever is greater.
1137                  */
1138                 last_byte = max(user_pos + user_len, i_size_read(inode));
1139                 BUG_ON(last_byte < 1);
1140                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1141                 if ((start + wc->w_num_pages) > end_index)
1142                         wc->w_num_pages = end_index - start;
1143         } else {
1144                 wc->w_num_pages = 1;
1145                 start = target_index;
1146         }
1147
1148         for(i = 0; i < wc->w_num_pages; i++) {
1149                 index = start + i;
1150
1151                 if (index == target_index && mmap_page) {
1152                         /*
1153                          * ocfs2_pagemkwrite() is a little different
1154                          * and wants us to directly use the page
1155                          * passed in.
1156                          */
1157                         lock_page(mmap_page);
1158
1159                         /* Exit and let the caller retry */
1160                         if (mmap_page->mapping != mapping) {
1161                                 WARN_ON(mmap_page->mapping);
1162                                 unlock_page(mmap_page);
1163                                 ret = -EAGAIN;
1164                                 goto out;
1165                         }
1166
1167                         page_cache_get(mmap_page);
1168                         wc->w_pages[i] = mmap_page;
1169                         wc->w_target_locked = true;
1170                 } else {
1171                         wc->w_pages[i] = find_or_create_page(mapping, index,
1172                                                              GFP_NOFS);
1173                         if (!wc->w_pages[i]) {
1174                                 ret = -ENOMEM;
1175                                 mlog_errno(ret);
1176                                 goto out;
1177                         }
1178                 }
1179                 wait_for_stable_page(wc->w_pages[i]);
1180
1181                 if (index == target_index)
1182                         wc->w_target_page = wc->w_pages[i];
1183         }
1184 out:
1185         if (ret)
1186                 wc->w_target_locked = false;
1187         return ret;
1188 }
1189
1190 /*
1191  * Prepare a single cluster for write one cluster into the file.
1192  */
1193 static int ocfs2_write_cluster(struct address_space *mapping,
1194                                u32 phys, unsigned int unwritten,
1195                                unsigned int should_zero,
1196                                struct ocfs2_alloc_context *data_ac,
1197                                struct ocfs2_alloc_context *meta_ac,
1198                                struct ocfs2_write_ctxt *wc, u32 cpos,
1199                                loff_t user_pos, unsigned user_len)
1200 {
1201         int ret, i, new;
1202         u64 v_blkno, p_blkno;
1203         struct inode *inode = mapping->host;
1204         struct ocfs2_extent_tree et;
1205
1206         new = phys == 0 ? 1 : 0;
1207         if (new) {
1208                 u32 tmp_pos;
1209
1210                 /*
1211                  * This is safe to call with the page locks - it won't take
1212                  * any additional semaphores or cluster locks.
1213                  */
1214                 tmp_pos = cpos;
1215                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1216                                            &tmp_pos, 1, 0, wc->w_di_bh,
1217                                            wc->w_handle, data_ac,
1218                                            meta_ac, NULL);
1219                 /*
1220                  * This shouldn't happen because we must have already
1221                  * calculated the correct meta data allocation required. The
1222                  * internal tree allocation code should know how to increase
1223                  * transaction credits itself.
1224                  *
1225                  * If need be, we could handle -EAGAIN for a
1226                  * RESTART_TRANS here.
1227                  */
1228                 mlog_bug_on_msg(ret == -EAGAIN,
1229                                 "Inode %llu: EAGAIN return during allocation.\n",
1230                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1231                 if (ret < 0) {
1232                         mlog_errno(ret);
1233                         goto out;
1234                 }
1235         } else if (unwritten) {
1236                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1237                                               wc->w_di_bh);
1238                 ret = ocfs2_mark_extent_written(inode, &et,
1239                                                 wc->w_handle, cpos, 1, phys,
1240                                                 meta_ac, &wc->w_dealloc);
1241                 if (ret < 0) {
1242                         mlog_errno(ret);
1243                         goto out;
1244                 }
1245         }
1246
1247         if (should_zero)
1248                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1249         else
1250                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1251
1252         /*
1253          * The only reason this should fail is due to an inability to
1254          * find the extent added.
1255          */
1256         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1257                                           NULL);
1258         if (ret < 0) {
1259                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1260                             "at logical block %llu",
1261                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1262                             (unsigned long long)v_blkno);
1263                 goto out;
1264         }
1265
1266         BUG_ON(p_blkno == 0);
1267
1268         for(i = 0; i < wc->w_num_pages; i++) {
1269                 int tmpret;
1270
1271                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1272                                                       wc->w_pages[i], cpos,
1273                                                       user_pos, user_len,
1274                                                       should_zero);
1275                 if (tmpret) {
1276                         mlog_errno(tmpret);
1277                         if (ret == 0)
1278                                 ret = tmpret;
1279                 }
1280         }
1281
1282         /*
1283          * We only have cleanup to do in case of allocating write.
1284          */
1285         if (ret && new)
1286                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1287
1288 out:
1289
1290         return ret;
1291 }
1292
1293 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1294                                        struct ocfs2_alloc_context *data_ac,
1295                                        struct ocfs2_alloc_context *meta_ac,
1296                                        struct ocfs2_write_ctxt *wc,
1297                                        loff_t pos, unsigned len)
1298 {
1299         int ret, i;
1300         loff_t cluster_off;
1301         unsigned int local_len = len;
1302         struct ocfs2_write_cluster_desc *desc;
1303         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1304
1305         for (i = 0; i < wc->w_clen; i++) {
1306                 desc = &wc->w_desc[i];
1307
1308                 /*
1309                  * We have to make sure that the total write passed in
1310                  * doesn't extend past a single cluster.
1311                  */
1312                 local_len = len;
1313                 cluster_off = pos & (osb->s_clustersize - 1);
1314                 if ((cluster_off + local_len) > osb->s_clustersize)
1315                         local_len = osb->s_clustersize - cluster_off;
1316
1317                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1318                                           desc->c_unwritten,
1319                                           desc->c_needs_zero,
1320                                           data_ac, meta_ac,
1321                                           wc, desc->c_cpos, pos, local_len);
1322                 if (ret) {
1323                         mlog_errno(ret);
1324                         goto out;
1325                 }
1326
1327                 len -= local_len;
1328                 pos += local_len;
1329         }
1330
1331         ret = 0;
1332 out:
1333         return ret;
1334 }
1335
1336 /*
1337  * ocfs2_write_end() wants to know which parts of the target page it
1338  * should complete the write on. It's easiest to compute them ahead of
1339  * time when a more complete view of the write is available.
1340  */
1341 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1342                                         struct ocfs2_write_ctxt *wc,
1343                                         loff_t pos, unsigned len, int alloc)
1344 {
1345         struct ocfs2_write_cluster_desc *desc;
1346
1347         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1348         wc->w_target_to = wc->w_target_from + len;
1349
1350         if (alloc == 0)
1351                 return;
1352
1353         /*
1354          * Allocating write - we may have different boundaries based
1355          * on page size and cluster size.
1356          *
1357          * NOTE: We can no longer compute one value from the other as
1358          * the actual write length and user provided length may be
1359          * different.
1360          */
1361
1362         if (wc->w_large_pages) {
1363                 /*
1364                  * We only care about the 1st and last cluster within
1365                  * our range and whether they should be zero'd or not. Either
1366                  * value may be extended out to the start/end of a
1367                  * newly allocated cluster.
1368                  */
1369                 desc = &wc->w_desc[0];
1370                 if (desc->c_needs_zero)
1371                         ocfs2_figure_cluster_boundaries(osb,
1372                                                         desc->c_cpos,
1373                                                         &wc->w_target_from,
1374                                                         NULL);
1375
1376                 desc = &wc->w_desc[wc->w_clen - 1];
1377                 if (desc->c_needs_zero)
1378                         ocfs2_figure_cluster_boundaries(osb,
1379                                                         desc->c_cpos,
1380                                                         NULL,
1381                                                         &wc->w_target_to);
1382         } else {
1383                 wc->w_target_from = 0;
1384                 wc->w_target_to = PAGE_CACHE_SIZE;
1385         }
1386 }
1387
1388 /*
1389  * Populate each single-cluster write descriptor in the write context
1390  * with information about the i/o to be done.
1391  *
1392  * Returns the number of clusters that will have to be allocated, as
1393  * well as a worst case estimate of the number of extent records that
1394  * would have to be created during a write to an unwritten region.
1395  */
1396 static int ocfs2_populate_write_desc(struct inode *inode,
1397                                      struct ocfs2_write_ctxt *wc,
1398                                      unsigned int *clusters_to_alloc,
1399                                      unsigned int *extents_to_split)
1400 {
1401         int ret;
1402         struct ocfs2_write_cluster_desc *desc;
1403         unsigned int num_clusters = 0;
1404         unsigned int ext_flags = 0;
1405         u32 phys = 0;
1406         int i;
1407
1408         *clusters_to_alloc = 0;
1409         *extents_to_split = 0;
1410
1411         for (i = 0; i < wc->w_clen; i++) {
1412                 desc = &wc->w_desc[i];
1413                 desc->c_cpos = wc->w_cpos + i;
1414
1415                 if (num_clusters == 0) {
1416                         /*
1417                          * Need to look up the next extent record.
1418                          */
1419                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1420                                                  &num_clusters, &ext_flags);
1421                         if (ret) {
1422                                 mlog_errno(ret);
1423                                 goto out;
1424                         }
1425
1426                         /* We should already CoW the refcountd extent. */
1427                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1428
1429                         /*
1430                          * Assume worst case - that we're writing in
1431                          * the middle of the extent.
1432                          *
1433                          * We can assume that the write proceeds from
1434                          * left to right, in which case the extent
1435                          * insert code is smart enough to coalesce the
1436                          * next splits into the previous records created.
1437                          */
1438                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1439                                 *extents_to_split = *extents_to_split + 2;
1440                 } else if (phys) {
1441                         /*
1442                          * Only increment phys if it doesn't describe
1443                          * a hole.
1444                          */
1445                         phys++;
1446                 }
1447
1448                 /*
1449                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1450                  * file that got extended.  w_first_new_cpos tells us
1451                  * where the newly allocated clusters are so we can
1452                  * zero them.
1453                  */
1454                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1455                         BUG_ON(phys == 0);
1456                         desc->c_needs_zero = 1;
1457                 }
1458
1459                 desc->c_phys = phys;
1460                 if (phys == 0) {
1461                         desc->c_new = 1;
1462                         desc->c_needs_zero = 1;
1463                         *clusters_to_alloc = *clusters_to_alloc + 1;
1464                 }
1465
1466                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1467                         desc->c_unwritten = 1;
1468                         desc->c_needs_zero = 1;
1469                 }
1470
1471                 num_clusters--;
1472         }
1473
1474         ret = 0;
1475 out:
1476         return ret;
1477 }
1478
1479 static int ocfs2_write_begin_inline(struct address_space *mapping,
1480                                     struct inode *inode,
1481                                     struct ocfs2_write_ctxt *wc)
1482 {
1483         int ret;
1484         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1485         struct page *page;
1486         handle_t *handle;
1487         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1488
1489         page = find_or_create_page(mapping, 0, GFP_NOFS);
1490         if (!page) {
1491                 ret = -ENOMEM;
1492                 mlog_errno(ret);
1493                 goto out;
1494         }
1495         /*
1496          * If we don't set w_num_pages then this page won't get unlocked
1497          * and freed on cleanup of the write context.
1498          */
1499         wc->w_pages[0] = wc->w_target_page = page;
1500         wc->w_num_pages = 1;
1501
1502         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1503         if (IS_ERR(handle)) {
1504                 ret = PTR_ERR(handle);
1505                 mlog_errno(ret);
1506                 goto out;
1507         }
1508
1509         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1510                                       OCFS2_JOURNAL_ACCESS_WRITE);
1511         if (ret) {
1512                 ocfs2_commit_trans(osb, handle);
1513
1514                 mlog_errno(ret);
1515                 goto out;
1516         }
1517
1518         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1519                 ocfs2_set_inode_data_inline(inode, di);
1520
1521         if (!PageUptodate(page)) {
1522                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1523                 if (ret) {
1524                         ocfs2_commit_trans(osb, handle);
1525
1526                         goto out;
1527                 }
1528         }
1529
1530         wc->w_handle = handle;
1531 out:
1532         return ret;
1533 }
1534
1535 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1536 {
1537         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1538
1539         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1540                 return 1;
1541         return 0;
1542 }
1543
1544 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1545                                           struct inode *inode, loff_t pos,
1546                                           unsigned len, struct page *mmap_page,
1547                                           struct ocfs2_write_ctxt *wc)
1548 {
1549         int ret, written = 0;
1550         loff_t end = pos + len;
1551         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1552         struct ocfs2_dinode *di = NULL;
1553
1554         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1555                                              len, (unsigned long long)pos,
1556                                              oi->ip_dyn_features);
1557
1558         /*
1559          * Handle inodes which already have inline data 1st.
1560          */
1561         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1562                 if (mmap_page == NULL &&
1563                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1564                         goto do_inline_write;
1565
1566                 /*
1567                  * The write won't fit - we have to give this inode an
1568                  * inline extent list now.
1569                  */
1570                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1571                 if (ret)
1572                         mlog_errno(ret);
1573                 goto out;
1574         }
1575
1576         /*
1577          * Check whether the inode can accept inline data.
1578          */
1579         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1580                 return 0;
1581
1582         /*
1583          * Check whether the write can fit.
1584          */
1585         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1586         if (mmap_page ||
1587             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1588                 return 0;
1589
1590 do_inline_write:
1591         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1592         if (ret) {
1593                 mlog_errno(ret);
1594                 goto out;
1595         }
1596
1597         /*
1598          * This signals to the caller that the data can be written
1599          * inline.
1600          */
1601         written = 1;
1602 out:
1603         return written ? written : ret;
1604 }
1605
1606 /*
1607  * This function only does anything for file systems which can't
1608  * handle sparse files.
1609  *
1610  * What we want to do here is fill in any hole between the current end
1611  * of allocation and the end of our write. That way the rest of the
1612  * write path can treat it as an non-allocating write, which has no
1613  * special case code for sparse/nonsparse files.
1614  */
1615 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1616                                         struct buffer_head *di_bh,
1617                                         loff_t pos, unsigned len,
1618                                         struct ocfs2_write_ctxt *wc)
1619 {
1620         int ret;
1621         loff_t newsize = pos + len;
1622
1623         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1624
1625         if (newsize <= i_size_read(inode))
1626                 return 0;
1627
1628         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1629         if (ret)
1630                 mlog_errno(ret);
1631
1632         wc->w_first_new_cpos =
1633                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1634
1635         return ret;
1636 }
1637
1638 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1639                            loff_t pos)
1640 {
1641         int ret = 0;
1642
1643         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1644         if (pos > i_size_read(inode))
1645                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1646
1647         return ret;
1648 }
1649
1650 /*
1651  * Try to flush truncate logs if we can free enough clusters from it.
1652  * As for return value, "< 0" means error, "0" no space and "1" means
1653  * we have freed enough spaces and let the caller try to allocate again.
1654  */
1655 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1656                                           unsigned int needed)
1657 {
1658         tid_t target;
1659         int ret = 0;
1660         unsigned int truncated_clusters;
1661
1662         mutex_lock(&osb->osb_tl_inode->i_mutex);
1663         truncated_clusters = osb->truncated_clusters;
1664         mutex_unlock(&osb->osb_tl_inode->i_mutex);
1665
1666         /*
1667          * Check whether we can succeed in allocating if we free
1668          * the truncate log.
1669          */
1670         if (truncated_clusters < needed)
1671                 goto out;
1672
1673         ret = ocfs2_flush_truncate_log(osb);
1674         if (ret) {
1675                 mlog_errno(ret);
1676                 goto out;
1677         }
1678
1679         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1680                 jbd2_log_wait_commit(osb->journal->j_journal, target);
1681                 ret = 1;
1682         }
1683 out:
1684         return ret;
1685 }
1686
1687 int ocfs2_write_begin_nolock(struct file *filp,
1688                              struct address_space *mapping,
1689                              loff_t pos, unsigned len, unsigned flags,
1690                              struct page **pagep, void **fsdata,
1691                              struct buffer_head *di_bh, struct page *mmap_page)
1692 {
1693         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1694         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1695         struct ocfs2_write_ctxt *wc;
1696         struct inode *inode = mapping->host;
1697         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1698         struct ocfs2_dinode *di;
1699         struct ocfs2_alloc_context *data_ac = NULL;
1700         struct ocfs2_alloc_context *meta_ac = NULL;
1701         handle_t *handle;
1702         struct ocfs2_extent_tree et;
1703         int try_free = 1, ret1;
1704
1705 try_again:
1706         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1707         if (ret) {
1708                 mlog_errno(ret);
1709                 return ret;
1710         }
1711
1712         if (ocfs2_supports_inline_data(osb)) {
1713                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1714                                                      mmap_page, wc);
1715                 if (ret == 1) {
1716                         ret = 0;
1717                         goto success;
1718                 }
1719                 if (ret < 0) {
1720                         mlog_errno(ret);
1721                         goto out;
1722                 }
1723         }
1724
1725         if (ocfs2_sparse_alloc(osb))
1726                 ret = ocfs2_zero_tail(inode, di_bh, pos);
1727         else
1728                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1729                                                    wc);
1730         if (ret) {
1731                 mlog_errno(ret);
1732                 goto out;
1733         }
1734
1735         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1736         if (ret < 0) {
1737                 mlog_errno(ret);
1738                 goto out;
1739         } else if (ret == 1) {
1740                 clusters_need = wc->w_clen;
1741                 ret = ocfs2_refcount_cow(inode, di_bh,
1742                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1743                 if (ret) {
1744                         mlog_errno(ret);
1745                         goto out;
1746                 }
1747         }
1748
1749         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1750                                         &extents_to_split);
1751         if (ret) {
1752                 mlog_errno(ret);
1753                 goto out;
1754         }
1755         clusters_need += clusters_to_alloc;
1756
1757         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1758
1759         trace_ocfs2_write_begin_nolock(
1760                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1761                         (long long)i_size_read(inode),
1762                         le32_to_cpu(di->i_clusters),
1763                         pos, len, flags, mmap_page,
1764                         clusters_to_alloc, extents_to_split);
1765
1766         /*
1767          * We set w_target_from, w_target_to here so that
1768          * ocfs2_write_end() knows which range in the target page to
1769          * write out. An allocation requires that we write the entire
1770          * cluster range.
1771          */
1772         if (clusters_to_alloc || extents_to_split) {
1773                 /*
1774                  * XXX: We are stretching the limits of
1775                  * ocfs2_lock_allocators(). It greatly over-estimates
1776                  * the work to be done.
1777                  */
1778                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1779                                               wc->w_di_bh);
1780                 ret = ocfs2_lock_allocators(inode, &et,
1781                                             clusters_to_alloc, extents_to_split,
1782                                             &data_ac, &meta_ac);
1783                 if (ret) {
1784                         mlog_errno(ret);
1785                         goto out;
1786                 }
1787
1788                 if (data_ac)
1789                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1790
1791                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1792                                                     &di->id2.i_list);
1793
1794         }
1795
1796         /*
1797          * We have to zero sparse allocated clusters, unwritten extent clusters,
1798          * and non-sparse clusters we just extended.  For non-sparse writes,
1799          * we know zeros will only be needed in the first and/or last cluster.
1800          */
1801         if (clusters_to_alloc || extents_to_split ||
1802             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1803                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1804                 cluster_of_pages = 1;
1805         else
1806                 cluster_of_pages = 0;
1807
1808         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1809
1810         handle = ocfs2_start_trans(osb, credits);
1811         if (IS_ERR(handle)) {
1812                 ret = PTR_ERR(handle);
1813                 mlog_errno(ret);
1814                 goto out;
1815         }
1816
1817         wc->w_handle = handle;
1818
1819         if (clusters_to_alloc) {
1820                 ret = dquot_alloc_space_nodirty(inode,
1821                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1822                 if (ret)
1823                         goto out_commit;
1824         }
1825         /*
1826          * We don't want this to fail in ocfs2_write_end(), so do it
1827          * here.
1828          */
1829         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1830                                       OCFS2_JOURNAL_ACCESS_WRITE);
1831         if (ret) {
1832                 mlog_errno(ret);
1833                 goto out_quota;
1834         }
1835
1836         /*
1837          * Fill our page array first. That way we've grabbed enough so
1838          * that we can zero and flush if we error after adding the
1839          * extent.
1840          */
1841         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1842                                          cluster_of_pages, mmap_page);
1843         if (ret && ret != -EAGAIN) {
1844                 mlog_errno(ret);
1845                 goto out_quota;
1846         }
1847
1848         /*
1849          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1850          * the target page. In this case, we exit with no error and no target
1851          * page. This will trigger the caller, page_mkwrite(), to re-try
1852          * the operation.
1853          */
1854         if (ret == -EAGAIN) {
1855                 BUG_ON(wc->w_target_page);
1856                 ret = 0;
1857                 goto out_quota;
1858         }
1859
1860         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1861                                           len);
1862         if (ret) {
1863                 mlog_errno(ret);
1864                 goto out_quota;
1865         }
1866
1867         if (data_ac)
1868                 ocfs2_free_alloc_context(data_ac);
1869         if (meta_ac)
1870                 ocfs2_free_alloc_context(meta_ac);
1871
1872 success:
1873         *pagep = wc->w_target_page;
1874         *fsdata = wc;
1875         return 0;
1876 out_quota:
1877         if (clusters_to_alloc)
1878                 dquot_free_space(inode,
1879                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1880 out_commit:
1881         ocfs2_commit_trans(osb, handle);
1882
1883 out:
1884         ocfs2_free_write_ctxt(wc);
1885
1886         if (data_ac) {
1887                 ocfs2_free_alloc_context(data_ac);
1888                 data_ac = NULL;
1889         }
1890         if (meta_ac) {
1891                 ocfs2_free_alloc_context(meta_ac);
1892                 meta_ac = NULL;
1893         }
1894
1895         if (ret == -ENOSPC && try_free) {
1896                 /*
1897                  * Try to free some truncate log so that we can have enough
1898                  * clusters to allocate.
1899                  */
1900                 try_free = 0;
1901
1902                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1903                 if (ret1 == 1)
1904                         goto try_again;
1905
1906                 if (ret1 < 0)
1907                         mlog_errno(ret1);
1908         }
1909
1910         return ret;
1911 }
1912
1913 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1914                              loff_t pos, unsigned len, unsigned flags,
1915                              struct page **pagep, void **fsdata)
1916 {
1917         int ret;
1918         struct buffer_head *di_bh = NULL;
1919         struct inode *inode = mapping->host;
1920
1921         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1922         if (ret) {
1923                 mlog_errno(ret);
1924                 return ret;
1925         }
1926
1927         /*
1928          * Take alloc sem here to prevent concurrent lookups. That way
1929          * the mapping, zeroing and tree manipulation within
1930          * ocfs2_write() will be safe against ->readpage(). This
1931          * should also serve to lock out allocation from a shared
1932          * writeable region.
1933          */
1934         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1935
1936         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1937                                        fsdata, di_bh, NULL);
1938         if (ret) {
1939                 mlog_errno(ret);
1940                 goto out_fail;
1941         }
1942
1943         brelse(di_bh);
1944
1945         return 0;
1946
1947 out_fail:
1948         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1949
1950         brelse(di_bh);
1951         ocfs2_inode_unlock(inode, 1);
1952
1953         return ret;
1954 }
1955
1956 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1957                                    unsigned len, unsigned *copied,
1958                                    struct ocfs2_dinode *di,
1959                                    struct ocfs2_write_ctxt *wc)
1960 {
1961         void *kaddr;
1962
1963         if (unlikely(*copied < len)) {
1964                 if (!PageUptodate(wc->w_target_page)) {
1965                         *copied = 0;
1966                         return;
1967                 }
1968         }
1969
1970         kaddr = kmap_atomic(wc->w_target_page);
1971         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1972         kunmap_atomic(kaddr);
1973
1974         trace_ocfs2_write_end_inline(
1975              (unsigned long long)OCFS2_I(inode)->ip_blkno,
1976              (unsigned long long)pos, *copied,
1977              le16_to_cpu(di->id2.i_data.id_count),
1978              le16_to_cpu(di->i_dyn_features));
1979 }
1980
1981 int ocfs2_write_end_nolock(struct address_space *mapping,
1982                            loff_t pos, unsigned len, unsigned copied,
1983                            struct page *page, void *fsdata)
1984 {
1985         int i;
1986         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1987         struct inode *inode = mapping->host;
1988         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1989         struct ocfs2_write_ctxt *wc = fsdata;
1990         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1991         handle_t *handle = wc->w_handle;
1992         struct page *tmppage;
1993
1994         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1995                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1996                 goto out_write_size;
1997         }
1998
1999         if (unlikely(copied < len)) {
2000                 if (!PageUptodate(wc->w_target_page))
2001                         copied = 0;
2002
2003                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2004                                        start+len);
2005         }
2006         flush_dcache_page(wc->w_target_page);
2007
2008         for(i = 0; i < wc->w_num_pages; i++) {
2009                 tmppage = wc->w_pages[i];
2010
2011                 if (tmppage == wc->w_target_page) {
2012                         from = wc->w_target_from;
2013                         to = wc->w_target_to;
2014
2015                         BUG_ON(from > PAGE_CACHE_SIZE ||
2016                                to > PAGE_CACHE_SIZE ||
2017                                to < from);
2018                 } else {
2019                         /*
2020                          * Pages adjacent to the target (if any) imply
2021                          * a hole-filling write in which case we want
2022                          * to flush their entire range.
2023                          */
2024                         from = 0;
2025                         to = PAGE_CACHE_SIZE;
2026                 }
2027
2028                 if (page_has_buffers(tmppage)) {
2029                         if (ocfs2_should_order_data(inode))
2030                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2031                         block_commit_write(tmppage, from, to);
2032                 }
2033         }
2034
2035 out_write_size:
2036         pos += copied;
2037         if (pos > i_size_read(inode)) {
2038                 i_size_write(inode, pos);
2039                 mark_inode_dirty(inode);
2040         }
2041         inode->i_blocks = ocfs2_inode_sector_count(inode);
2042         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2043         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2044         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2045         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2046         ocfs2_journal_dirty(handle, wc->w_di_bh);
2047
2048         ocfs2_commit_trans(osb, handle);
2049
2050         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2051
2052         ocfs2_free_write_ctxt(wc);
2053
2054         return copied;
2055 }
2056
2057 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2058                            loff_t pos, unsigned len, unsigned copied,
2059                            struct page *page, void *fsdata)
2060 {
2061         int ret;
2062         struct inode *inode = mapping->host;
2063
2064         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2065
2066         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2067         ocfs2_inode_unlock(inode, 1);
2068
2069         return ret;
2070 }
2071
2072 const struct address_space_operations ocfs2_aops = {
2073         .readpage               = ocfs2_readpage,
2074         .readpages              = ocfs2_readpages,
2075         .writepage              = ocfs2_writepage,
2076         .write_begin            = ocfs2_write_begin,
2077         .write_end              = ocfs2_write_end,
2078         .bmap                   = ocfs2_bmap,
2079         .direct_IO              = ocfs2_direct_IO,
2080         .invalidatepage         = block_invalidatepage,
2081         .releasepage            = ocfs2_releasepage,
2082         .migratepage            = buffer_migrate_page,
2083         .is_partially_uptodate  = block_is_partially_uptodate,
2084         .error_remove_page      = generic_error_remove_page,
2085 };