]> Pileus Git - ~andy/linux/blob - fs/jbd2/journal.c
ed10991ab0060c5fac4ed580301591f6996965ca
[~andy/linux] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 /* Checksumming functions */
107 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
108 {
109         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
110                 return 1;
111
112         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
113 }
114
115 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
116 {
117         __u32 csum, old_csum;
118
119         old_csum = sb->s_checksum;
120         sb->s_checksum = 0;
121         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
122         sb->s_checksum = old_csum;
123
124         return cpu_to_be32(csum);
125 }
126
127 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
128 {
129         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
130                 return 1;
131
132         return sb->s_checksum == jbd2_superblock_csum(j, sb);
133 }
134
135 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
136 {
137         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
138                 return;
139
140         sb->s_checksum = jbd2_superblock_csum(j, sb);
141 }
142
143 /*
144  * Helper function used to manage commit timeouts
145  */
146
147 static void commit_timeout(unsigned long __data)
148 {
149         struct task_struct * p = (struct task_struct *) __data;
150
151         wake_up_process(p);
152 }
153
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk.
163  *
164  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
165  *    of the data in that part of the log has been rewritten elsewhere on
166  *    the disk.  Flushing these old buffers to reclaim space in the log is
167  *    known as checkpointing, and this thread is responsible for that job.
168  */
169
170 static int kjournald2(void *arg)
171 {
172         journal_t *journal = arg;
173         transaction_t *transaction;
174
175         /*
176          * Set up an interval timer which can be used to trigger a commit wakeup
177          * after the commit interval expires
178          */
179         setup_timer(&journal->j_commit_timer, commit_timeout,
180                         (unsigned long)current);
181
182         set_freezable();
183
184         /* Record that the journal thread is running */
185         journal->j_task = current;
186         wake_up(&journal->j_wait_done_commit);
187
188         /*
189          * And now, wait forever for commit wakeup events.
190          */
191         write_lock(&journal->j_state_lock);
192
193 loop:
194         if (journal->j_flags & JBD2_UNMOUNT)
195                 goto end_loop;
196
197         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
198                 journal->j_commit_sequence, journal->j_commit_request);
199
200         if (journal->j_commit_sequence != journal->j_commit_request) {
201                 jbd_debug(1, "OK, requests differ\n");
202                 write_unlock(&journal->j_state_lock);
203                 del_timer_sync(&journal->j_commit_timer);
204                 jbd2_journal_commit_transaction(journal);
205                 write_lock(&journal->j_state_lock);
206                 goto loop;
207         }
208
209         wake_up(&journal->j_wait_done_commit);
210         if (freezing(current)) {
211                 /*
212                  * The simpler the better. Flushing journal isn't a
213                  * good idea, because that depends on threads that may
214                  * be already stopped.
215                  */
216                 jbd_debug(1, "Now suspending kjournald2\n");
217                 write_unlock(&journal->j_state_lock);
218                 try_to_freeze();
219                 write_lock(&journal->j_state_lock);
220         } else {
221                 /*
222                  * We assume on resume that commits are already there,
223                  * so we don't sleep
224                  */
225                 DEFINE_WAIT(wait);
226                 int should_sleep = 1;
227
228                 prepare_to_wait(&journal->j_wait_commit, &wait,
229                                 TASK_INTERRUPTIBLE);
230                 if (journal->j_commit_sequence != journal->j_commit_request)
231                         should_sleep = 0;
232                 transaction = journal->j_running_transaction;
233                 if (transaction && time_after_eq(jiffies,
234                                                 transaction->t_expires))
235                         should_sleep = 0;
236                 if (journal->j_flags & JBD2_UNMOUNT)
237                         should_sleep = 0;
238                 if (should_sleep) {
239                         write_unlock(&journal->j_state_lock);
240                         schedule();
241                         write_lock(&journal->j_state_lock);
242                 }
243                 finish_wait(&journal->j_wait_commit, &wait);
244         }
245
246         jbd_debug(1, "kjournald2 wakes\n");
247
248         /*
249          * Were we woken up by a commit wakeup event?
250          */
251         transaction = journal->j_running_transaction;
252         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
253                 journal->j_commit_request = transaction->t_tid;
254                 jbd_debug(1, "woke because of timeout\n");
255         }
256         goto loop;
257
258 end_loop:
259         write_unlock(&journal->j_state_lock);
260         del_timer_sync(&journal->j_commit_timer);
261         journal->j_task = NULL;
262         wake_up(&journal->j_wait_done_commit);
263         jbd_debug(1, "Journal thread exiting.\n");
264         return 0;
265 }
266
267 static int jbd2_journal_start_thread(journal_t *journal)
268 {
269         struct task_struct *t;
270
271         t = kthread_run(kjournald2, journal, "jbd2/%s",
272                         journal->j_devname);
273         if (IS_ERR(t))
274                 return PTR_ERR(t);
275
276         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
277         return 0;
278 }
279
280 static void journal_kill_thread(journal_t *journal)
281 {
282         write_lock(&journal->j_state_lock);
283         journal->j_flags |= JBD2_UNMOUNT;
284
285         while (journal->j_task) {
286                 wake_up(&journal->j_wait_commit);
287                 write_unlock(&journal->j_state_lock);
288                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
289                 write_lock(&journal->j_state_lock);
290         }
291         write_unlock(&journal->j_state_lock);
292 }
293
294 /*
295  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296  *
297  * Writes a metadata buffer to a given disk block.  The actual IO is not
298  * performed but a new buffer_head is constructed which labels the data
299  * to be written with the correct destination disk block.
300  *
301  * Any magic-number escaping which needs to be done will cause a
302  * copy-out here.  If the buffer happens to start with the
303  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304  * magic number is only written to the log for descripter blocks.  In
305  * this case, we copy the data and replace the first word with 0, and we
306  * return a result code which indicates that this buffer needs to be
307  * marked as an escaped buffer in the corresponding log descriptor
308  * block.  The missing word can then be restored when the block is read
309  * during recovery.
310  *
311  * If the source buffer has already been modified by a new transaction
312  * since we took the last commit snapshot, we use the frozen copy of
313  * that data for IO.  If we end up using the existing buffer_head's data
314  * for the write, then we *have* to lock the buffer to prevent anyone
315  * else from using and possibly modifying it while the IO is in
316  * progress.
317  *
318  * The function returns a pointer to the buffer_heads to be used for IO.
319  *
320  * We assume that the journal has already been locked in this function.
321  *
322  * Return value:
323  *  <0: Error
324  * >=0: Finished OK
325  *
326  * On success:
327  * Bit 0 set == escape performed on the data
328  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
329  */
330
331 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
332                                   struct journal_head  *jh_in,
333                                   struct journal_head **jh_out,
334                                   unsigned long long blocknr)
335 {
336         int need_copy_out = 0;
337         int done_copy_out = 0;
338         int do_escape = 0;
339         char *mapped_data;
340         struct buffer_head *new_bh;
341         struct journal_head *new_jh;
342         struct page *new_page;
343         unsigned int new_offset;
344         struct buffer_head *bh_in = jh2bh(jh_in);
345         journal_t *journal = transaction->t_journal;
346
347         /*
348          * The buffer really shouldn't be locked: only the current committing
349          * transaction is allowed to write it, so nobody else is allowed
350          * to do any IO.
351          *
352          * akpm: except if we're journalling data, and write() output is
353          * also part of a shared mapping, and another thread has
354          * decided to launch a writepage() against this buffer.
355          */
356         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
357
358 retry_alloc:
359         new_bh = alloc_buffer_head(GFP_NOFS);
360         if (!new_bh) {
361                 /*
362                  * Failure is not an option, but __GFP_NOFAIL is going
363                  * away; so we retry ourselves here.
364                  */
365                 congestion_wait(BLK_RW_ASYNC, HZ/50);
366                 goto retry_alloc;
367         }
368
369         /* keep subsequent assertions sane */
370         new_bh->b_state = 0;
371         init_buffer(new_bh, NULL, NULL);
372         atomic_set(&new_bh->b_count, 1);
373         new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
374
375         /*
376          * If a new transaction has already done a buffer copy-out, then
377          * we use that version of the data for the commit.
378          */
379         jbd_lock_bh_state(bh_in);
380 repeat:
381         if (jh_in->b_frozen_data) {
382                 done_copy_out = 1;
383                 new_page = virt_to_page(jh_in->b_frozen_data);
384                 new_offset = offset_in_page(jh_in->b_frozen_data);
385         } else {
386                 new_page = jh2bh(jh_in)->b_page;
387                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
388         }
389
390         mapped_data = kmap_atomic(new_page);
391         /*
392          * Fire data frozen trigger if data already wasn't frozen.  Do this
393          * before checking for escaping, as the trigger may modify the magic
394          * offset.  If a copy-out happens afterwards, it will have the correct
395          * data in the buffer.
396          */
397         if (!done_copy_out)
398                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
399                                            jh_in->b_triggers);
400
401         /*
402          * Check for escaping
403          */
404         if (*((__be32 *)(mapped_data + new_offset)) ==
405                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
406                 need_copy_out = 1;
407                 do_escape = 1;
408         }
409         kunmap_atomic(mapped_data);
410
411         /*
412          * Do we need to do a data copy?
413          */
414         if (need_copy_out && !done_copy_out) {
415                 char *tmp;
416
417                 jbd_unlock_bh_state(bh_in);
418                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
419                 if (!tmp) {
420                         jbd2_journal_put_journal_head(new_jh);
421                         return -ENOMEM;
422                 }
423                 jbd_lock_bh_state(bh_in);
424                 if (jh_in->b_frozen_data) {
425                         jbd2_free(tmp, bh_in->b_size);
426                         goto repeat;
427                 }
428
429                 jh_in->b_frozen_data = tmp;
430                 mapped_data = kmap_atomic(new_page);
431                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
432                 kunmap_atomic(mapped_data);
433
434                 new_page = virt_to_page(tmp);
435                 new_offset = offset_in_page(tmp);
436                 done_copy_out = 1;
437
438                 /*
439                  * This isn't strictly necessary, as we're using frozen
440                  * data for the escaping, but it keeps consistency with
441                  * b_frozen_data usage.
442                  */
443                 jh_in->b_frozen_triggers = jh_in->b_triggers;
444         }
445
446         /*
447          * Did we need to do an escaping?  Now we've done all the
448          * copying, we can finally do so.
449          */
450         if (do_escape) {
451                 mapped_data = kmap_atomic(new_page);
452                 *((unsigned int *)(mapped_data + new_offset)) = 0;
453                 kunmap_atomic(mapped_data);
454         }
455
456         set_bh_page(new_bh, new_page, new_offset);
457         new_jh->b_transaction = NULL;
458         new_bh->b_size = jh2bh(jh_in)->b_size;
459         new_bh->b_bdev = transaction->t_journal->j_dev;
460         new_bh->b_blocknr = blocknr;
461         set_buffer_mapped(new_bh);
462         set_buffer_dirty(new_bh);
463
464         *jh_out = new_jh;
465
466         /*
467          * The to-be-written buffer needs to get moved to the io queue,
468          * and the original buffer whose contents we are shadowing or
469          * copying is moved to the transaction's shadow queue.
470          */
471         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
472         spin_lock(&journal->j_list_lock);
473         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
474         spin_unlock(&journal->j_list_lock);
475         jbd_unlock_bh_state(bh_in);
476
477         JBUFFER_TRACE(new_jh, "file as BJ_IO");
478         jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
479
480         return do_escape | (done_copy_out << 1);
481 }
482
483 /*
484  * Allocation code for the journal file.  Manage the space left in the
485  * journal, so that we can begin checkpointing when appropriate.
486  */
487
488 /*
489  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
490  *
491  * Called with the journal already locked.
492  *
493  * Called under j_state_lock
494  */
495
496 int __jbd2_log_space_left(journal_t *journal)
497 {
498         int left = journal->j_free;
499
500         /* assert_spin_locked(&journal->j_state_lock); */
501
502         /*
503          * Be pessimistic here about the number of those free blocks which
504          * might be required for log descriptor control blocks.
505          */
506
507 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
508
509         left -= MIN_LOG_RESERVED_BLOCKS;
510
511         if (left <= 0)
512                 return 0;
513         left -= (left >> 3);
514         return left;
515 }
516
517 /*
518  * Called with j_state_lock locked for writing.
519  * Returns true if a transaction commit was started.
520  */
521 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
522 {
523         /* Return if the txn has already requested to be committed */
524         if (journal->j_commit_request == target)
525                 return 0;
526
527         /*
528          * The only transaction we can possibly wait upon is the
529          * currently running transaction (if it exists).  Otherwise,
530          * the target tid must be an old one.
531          */
532         if (journal->j_running_transaction &&
533             journal->j_running_transaction->t_tid == target) {
534                 /*
535                  * We want a new commit: OK, mark the request and wakeup the
536                  * commit thread.  We do _not_ do the commit ourselves.
537                  */
538
539                 journal->j_commit_request = target;
540                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
541                           journal->j_commit_request,
542                           journal->j_commit_sequence);
543                 journal->j_running_transaction->t_requested = jiffies;
544                 wake_up(&journal->j_wait_commit);
545                 return 1;
546         } else if (!tid_geq(journal->j_commit_request, target))
547                 /* This should never happen, but if it does, preserve
548                    the evidence before kjournald goes into a loop and
549                    increments j_commit_sequence beyond all recognition. */
550                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
551                           journal->j_commit_request,
552                           journal->j_commit_sequence,
553                           target, journal->j_running_transaction ? 
554                           journal->j_running_transaction->t_tid : 0);
555         return 0;
556 }
557
558 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
559 {
560         int ret;
561
562         write_lock(&journal->j_state_lock);
563         ret = __jbd2_log_start_commit(journal, tid);
564         write_unlock(&journal->j_state_lock);
565         return ret;
566 }
567
568 /*
569  * Force and wait upon a commit if the calling process is not within
570  * transaction.  This is used for forcing out undo-protected data which contains
571  * bitmaps, when the fs is running out of space.
572  *
573  * We can only force the running transaction if we don't have an active handle;
574  * otherwise, we will deadlock.
575  *
576  * Returns true if a transaction was started.
577  */
578 int jbd2_journal_force_commit_nested(journal_t *journal)
579 {
580         transaction_t *transaction = NULL;
581         tid_t tid;
582         int need_to_start = 0;
583
584         read_lock(&journal->j_state_lock);
585         if (journal->j_running_transaction && !current->journal_info) {
586                 transaction = journal->j_running_transaction;
587                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
588                         need_to_start = 1;
589         } else if (journal->j_committing_transaction)
590                 transaction = journal->j_committing_transaction;
591
592         if (!transaction) {
593                 read_unlock(&journal->j_state_lock);
594                 return 0;       /* Nothing to retry */
595         }
596
597         tid = transaction->t_tid;
598         read_unlock(&journal->j_state_lock);
599         if (need_to_start)
600                 jbd2_log_start_commit(journal, tid);
601         jbd2_log_wait_commit(journal, tid);
602         return 1;
603 }
604
605 /*
606  * Start a commit of the current running transaction (if any).  Returns true
607  * if a transaction is going to be committed (or is currently already
608  * committing), and fills its tid in at *ptid
609  */
610 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
611 {
612         int ret = 0;
613
614         write_lock(&journal->j_state_lock);
615         if (journal->j_running_transaction) {
616                 tid_t tid = journal->j_running_transaction->t_tid;
617
618                 __jbd2_log_start_commit(journal, tid);
619                 /* There's a running transaction and we've just made sure
620                  * it's commit has been scheduled. */
621                 if (ptid)
622                         *ptid = tid;
623                 ret = 1;
624         } else if (journal->j_committing_transaction) {
625                 /*
626                  * If commit has been started, then we have to wait for
627                  * completion of that transaction.
628                  */
629                 if (ptid)
630                         *ptid = journal->j_committing_transaction->t_tid;
631                 ret = 1;
632         }
633         write_unlock(&journal->j_state_lock);
634         return ret;
635 }
636
637 /*
638  * Return 1 if a given transaction has not yet sent barrier request
639  * connected with a transaction commit. If 0 is returned, transaction
640  * may or may not have sent the barrier. Used to avoid sending barrier
641  * twice in common cases.
642  */
643 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
644 {
645         int ret = 0;
646         transaction_t *commit_trans;
647
648         if (!(journal->j_flags & JBD2_BARRIER))
649                 return 0;
650         read_lock(&journal->j_state_lock);
651         /* Transaction already committed? */
652         if (tid_geq(journal->j_commit_sequence, tid))
653                 goto out;
654         commit_trans = journal->j_committing_transaction;
655         if (!commit_trans || commit_trans->t_tid != tid) {
656                 ret = 1;
657                 goto out;
658         }
659         /*
660          * Transaction is being committed and we already proceeded to
661          * submitting a flush to fs partition?
662          */
663         if (journal->j_fs_dev != journal->j_dev) {
664                 if (!commit_trans->t_need_data_flush ||
665                     commit_trans->t_state >= T_COMMIT_DFLUSH)
666                         goto out;
667         } else {
668                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
669                         goto out;
670         }
671         ret = 1;
672 out:
673         read_unlock(&journal->j_state_lock);
674         return ret;
675 }
676 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
677
678 /*
679  * Wait for a specified commit to complete.
680  * The caller may not hold the journal lock.
681  */
682 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
683 {
684         int err = 0;
685
686         read_lock(&journal->j_state_lock);
687 #ifdef CONFIG_JBD2_DEBUG
688         if (!tid_geq(journal->j_commit_request, tid)) {
689                 printk(KERN_EMERG
690                        "%s: error: j_commit_request=%d, tid=%d\n",
691                        __func__, journal->j_commit_request, tid);
692         }
693 #endif
694         while (tid_gt(tid, journal->j_commit_sequence)) {
695                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
696                                   tid, journal->j_commit_sequence);
697                 wake_up(&journal->j_wait_commit);
698                 read_unlock(&journal->j_state_lock);
699                 wait_event(journal->j_wait_done_commit,
700                                 !tid_gt(tid, journal->j_commit_sequence));
701                 read_lock(&journal->j_state_lock);
702         }
703         read_unlock(&journal->j_state_lock);
704
705         if (unlikely(is_journal_aborted(journal))) {
706                 printk(KERN_EMERG "journal commit I/O error\n");
707                 err = -EIO;
708         }
709         return err;
710 }
711
712 /*
713  * Log buffer allocation routines:
714  */
715
716 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
717 {
718         unsigned long blocknr;
719
720         write_lock(&journal->j_state_lock);
721         J_ASSERT(journal->j_free > 1);
722
723         blocknr = journal->j_head;
724         journal->j_head++;
725         journal->j_free--;
726         if (journal->j_head == journal->j_last)
727                 journal->j_head = journal->j_first;
728         write_unlock(&journal->j_state_lock);
729         return jbd2_journal_bmap(journal, blocknr, retp);
730 }
731
732 /*
733  * Conversion of logical to physical block numbers for the journal
734  *
735  * On external journals the journal blocks are identity-mapped, so
736  * this is a no-op.  If needed, we can use j_blk_offset - everything is
737  * ready.
738  */
739 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
740                  unsigned long long *retp)
741 {
742         int err = 0;
743         unsigned long long ret;
744
745         if (journal->j_inode) {
746                 ret = bmap(journal->j_inode, blocknr);
747                 if (ret)
748                         *retp = ret;
749                 else {
750                         printk(KERN_ALERT "%s: journal block not found "
751                                         "at offset %lu on %s\n",
752                                __func__, blocknr, journal->j_devname);
753                         err = -EIO;
754                         __journal_abort_soft(journal, err);
755                 }
756         } else {
757                 *retp = blocknr; /* +journal->j_blk_offset */
758         }
759         return err;
760 }
761
762 /*
763  * We play buffer_head aliasing tricks to write data/metadata blocks to
764  * the journal without copying their contents, but for journal
765  * descriptor blocks we do need to generate bona fide buffers.
766  *
767  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
768  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
769  * But we don't bother doing that, so there will be coherency problems with
770  * mmaps of blockdevs which hold live JBD-controlled filesystems.
771  */
772 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
773 {
774         struct buffer_head *bh;
775         unsigned long long blocknr;
776         int err;
777
778         err = jbd2_journal_next_log_block(journal, &blocknr);
779
780         if (err)
781                 return NULL;
782
783         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
784         if (!bh)
785                 return NULL;
786         lock_buffer(bh);
787         memset(bh->b_data, 0, journal->j_blocksize);
788         set_buffer_uptodate(bh);
789         unlock_buffer(bh);
790         BUFFER_TRACE(bh, "return this buffer");
791         return jbd2_journal_add_journal_head(bh);
792 }
793
794 /*
795  * Return tid of the oldest transaction in the journal and block in the journal
796  * where the transaction starts.
797  *
798  * If the journal is now empty, return which will be the next transaction ID
799  * we will write and where will that transaction start.
800  *
801  * The return value is 0 if journal tail cannot be pushed any further, 1 if
802  * it can.
803  */
804 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
805                               unsigned long *block)
806 {
807         transaction_t *transaction;
808         int ret;
809
810         read_lock(&journal->j_state_lock);
811         spin_lock(&journal->j_list_lock);
812         transaction = journal->j_checkpoint_transactions;
813         if (transaction) {
814                 *tid = transaction->t_tid;
815                 *block = transaction->t_log_start;
816         } else if ((transaction = journal->j_committing_transaction) != NULL) {
817                 *tid = transaction->t_tid;
818                 *block = transaction->t_log_start;
819         } else if ((transaction = journal->j_running_transaction) != NULL) {
820                 *tid = transaction->t_tid;
821                 *block = journal->j_head;
822         } else {
823                 *tid = journal->j_transaction_sequence;
824                 *block = journal->j_head;
825         }
826         ret = tid_gt(*tid, journal->j_tail_sequence);
827         spin_unlock(&journal->j_list_lock);
828         read_unlock(&journal->j_state_lock);
829
830         return ret;
831 }
832
833 /*
834  * Update information in journal structure and in on disk journal superblock
835  * about log tail. This function does not check whether information passed in
836  * really pushes log tail further. It's responsibility of the caller to make
837  * sure provided log tail information is valid (e.g. by holding
838  * j_checkpoint_mutex all the time between computing log tail and calling this
839  * function as is the case with jbd2_cleanup_journal_tail()).
840  *
841  * Requires j_checkpoint_mutex
842  */
843 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
844 {
845         unsigned long freed;
846
847         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
848
849         /*
850          * We cannot afford for write to remain in drive's caches since as
851          * soon as we update j_tail, next transaction can start reusing journal
852          * space and if we lose sb update during power failure we'd replay
853          * old transaction with possibly newly overwritten data.
854          */
855         jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
856         write_lock(&journal->j_state_lock);
857         freed = block - journal->j_tail;
858         if (block < journal->j_tail)
859                 freed += journal->j_last - journal->j_first;
860
861         trace_jbd2_update_log_tail(journal, tid, block, freed);
862         jbd_debug(1,
863                   "Cleaning journal tail from %d to %d (offset %lu), "
864                   "freeing %lu\n",
865                   journal->j_tail_sequence, tid, block, freed);
866
867         journal->j_free += freed;
868         journal->j_tail_sequence = tid;
869         journal->j_tail = block;
870         write_unlock(&journal->j_state_lock);
871 }
872
873 /*
874  * This is a variaon of __jbd2_update_log_tail which checks for validity of
875  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
876  * with other threads updating log tail.
877  */
878 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
879 {
880         mutex_lock(&journal->j_checkpoint_mutex);
881         if (tid_gt(tid, journal->j_tail_sequence))
882                 __jbd2_update_log_tail(journal, tid, block);
883         mutex_unlock(&journal->j_checkpoint_mutex);
884 }
885
886 struct jbd2_stats_proc_session {
887         journal_t *journal;
888         struct transaction_stats_s *stats;
889         int start;
890         int max;
891 };
892
893 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
894 {
895         return *pos ? NULL : SEQ_START_TOKEN;
896 }
897
898 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
899 {
900         return NULL;
901 }
902
903 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
904 {
905         struct jbd2_stats_proc_session *s = seq->private;
906
907         if (v != SEQ_START_TOKEN)
908                 return 0;
909         seq_printf(seq, "%lu transactions (%lu requested), "
910                    "each up to %u blocks\n",
911                    s->stats->ts_tid, s->stats->ts_requested,
912                    s->journal->j_max_transaction_buffers);
913         if (s->stats->ts_tid == 0)
914                 return 0;
915         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
916             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
917         seq_printf(seq, "  %ums request delay\n",
918             (s->stats->ts_requested == 0) ? 0 :
919             jiffies_to_msecs(s->stats->run.rs_request_delay /
920                              s->stats->ts_requested));
921         seq_printf(seq, "  %ums running transaction\n",
922             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
923         seq_printf(seq, "  %ums transaction was being locked\n",
924             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
925         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
926             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
927         seq_printf(seq, "  %ums logging transaction\n",
928             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
929         seq_printf(seq, "  %lluus average transaction commit time\n",
930                    div_u64(s->journal->j_average_commit_time, 1000));
931         seq_printf(seq, "  %lu handles per transaction\n",
932             s->stats->run.rs_handle_count / s->stats->ts_tid);
933         seq_printf(seq, "  %lu blocks per transaction\n",
934             s->stats->run.rs_blocks / s->stats->ts_tid);
935         seq_printf(seq, "  %lu logged blocks per transaction\n",
936             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
937         return 0;
938 }
939
940 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
941 {
942 }
943
944 static const struct seq_operations jbd2_seq_info_ops = {
945         .start  = jbd2_seq_info_start,
946         .next   = jbd2_seq_info_next,
947         .stop   = jbd2_seq_info_stop,
948         .show   = jbd2_seq_info_show,
949 };
950
951 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
952 {
953         journal_t *journal = PDE(inode)->data;
954         struct jbd2_stats_proc_session *s;
955         int rc, size;
956
957         s = kmalloc(sizeof(*s), GFP_KERNEL);
958         if (s == NULL)
959                 return -ENOMEM;
960         size = sizeof(struct transaction_stats_s);
961         s->stats = kmalloc(size, GFP_KERNEL);
962         if (s->stats == NULL) {
963                 kfree(s);
964                 return -ENOMEM;
965         }
966         spin_lock(&journal->j_history_lock);
967         memcpy(s->stats, &journal->j_stats, size);
968         s->journal = journal;
969         spin_unlock(&journal->j_history_lock);
970
971         rc = seq_open(file, &jbd2_seq_info_ops);
972         if (rc == 0) {
973                 struct seq_file *m = file->private_data;
974                 m->private = s;
975         } else {
976                 kfree(s->stats);
977                 kfree(s);
978         }
979         return rc;
980
981 }
982
983 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
984 {
985         struct seq_file *seq = file->private_data;
986         struct jbd2_stats_proc_session *s = seq->private;
987         kfree(s->stats);
988         kfree(s);
989         return seq_release(inode, file);
990 }
991
992 static const struct file_operations jbd2_seq_info_fops = {
993         .owner          = THIS_MODULE,
994         .open           = jbd2_seq_info_open,
995         .read           = seq_read,
996         .llseek         = seq_lseek,
997         .release        = jbd2_seq_info_release,
998 };
999
1000 static struct proc_dir_entry *proc_jbd2_stats;
1001
1002 static void jbd2_stats_proc_init(journal_t *journal)
1003 {
1004         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1005         if (journal->j_proc_entry) {
1006                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1007                                  &jbd2_seq_info_fops, journal);
1008         }
1009 }
1010
1011 static void jbd2_stats_proc_exit(journal_t *journal)
1012 {
1013         remove_proc_entry("info", journal->j_proc_entry);
1014         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1015 }
1016
1017 /*
1018  * Management for journal control blocks: functions to create and
1019  * destroy journal_t structures, and to initialise and read existing
1020  * journal blocks from disk.  */
1021
1022 /* First: create and setup a journal_t object in memory.  We initialise
1023  * very few fields yet: that has to wait until we have created the
1024  * journal structures from from scratch, or loaded them from disk. */
1025
1026 static journal_t * journal_init_common (void)
1027 {
1028         journal_t *journal;
1029         int err;
1030
1031         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1032         if (!journal)
1033                 return NULL;
1034
1035         init_waitqueue_head(&journal->j_wait_transaction_locked);
1036         init_waitqueue_head(&journal->j_wait_logspace);
1037         init_waitqueue_head(&journal->j_wait_done_commit);
1038         init_waitqueue_head(&journal->j_wait_checkpoint);
1039         init_waitqueue_head(&journal->j_wait_commit);
1040         init_waitqueue_head(&journal->j_wait_updates);
1041         mutex_init(&journal->j_barrier);
1042         mutex_init(&journal->j_checkpoint_mutex);
1043         spin_lock_init(&journal->j_revoke_lock);
1044         spin_lock_init(&journal->j_list_lock);
1045         rwlock_init(&journal->j_state_lock);
1046
1047         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1048         journal->j_min_batch_time = 0;
1049         journal->j_max_batch_time = 15000; /* 15ms */
1050
1051         /* The journal is marked for error until we succeed with recovery! */
1052         journal->j_flags = JBD2_ABORT;
1053
1054         /* Set up a default-sized revoke table for the new mount. */
1055         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1056         if (err) {
1057                 kfree(journal);
1058                 return NULL;
1059         }
1060
1061         spin_lock_init(&journal->j_history_lock);
1062
1063         return journal;
1064 }
1065
1066 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1067  *
1068  * Create a journal structure assigned some fixed set of disk blocks to
1069  * the journal.  We don't actually touch those disk blocks yet, but we
1070  * need to set up all of the mapping information to tell the journaling
1071  * system where the journal blocks are.
1072  *
1073  */
1074
1075 /**
1076  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1077  *  @bdev: Block device on which to create the journal
1078  *  @fs_dev: Device which hold journalled filesystem for this journal.
1079  *  @start: Block nr Start of journal.
1080  *  @len:  Length of the journal in blocks.
1081  *  @blocksize: blocksize of journalling device
1082  *
1083  *  Returns: a newly created journal_t *
1084  *
1085  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1086  *  range of blocks on an arbitrary block device.
1087  *
1088  */
1089 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1090                         struct block_device *fs_dev,
1091                         unsigned long long start, int len, int blocksize)
1092 {
1093         journal_t *journal = journal_init_common();
1094         struct buffer_head *bh;
1095         char *p;
1096         int n;
1097
1098         if (!journal)
1099                 return NULL;
1100
1101         /* journal descriptor can store up to n blocks -bzzz */
1102         journal->j_blocksize = blocksize;
1103         journal->j_dev = bdev;
1104         journal->j_fs_dev = fs_dev;
1105         journal->j_blk_offset = start;
1106         journal->j_maxlen = len;
1107         bdevname(journal->j_dev, journal->j_devname);
1108         p = journal->j_devname;
1109         while ((p = strchr(p, '/')))
1110                 *p = '!';
1111         jbd2_stats_proc_init(journal);
1112         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1113         journal->j_wbufsize = n;
1114         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1115         if (!journal->j_wbuf) {
1116                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1117                         __func__);
1118                 goto out_err;
1119         }
1120
1121         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1122         if (!bh) {
1123                 printk(KERN_ERR
1124                        "%s: Cannot get buffer for journal superblock\n",
1125                        __func__);
1126                 goto out_err;
1127         }
1128         journal->j_sb_buffer = bh;
1129         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1130
1131         return journal;
1132 out_err:
1133         kfree(journal->j_wbuf);
1134         jbd2_stats_proc_exit(journal);
1135         kfree(journal);
1136         return NULL;
1137 }
1138
1139 /**
1140  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1141  *  @inode: An inode to create the journal in
1142  *
1143  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1144  * the journal.  The inode must exist already, must support bmap() and
1145  * must have all data blocks preallocated.
1146  */
1147 journal_t * jbd2_journal_init_inode (struct inode *inode)
1148 {
1149         struct buffer_head *bh;
1150         journal_t *journal = journal_init_common();
1151         char *p;
1152         int err;
1153         int n;
1154         unsigned long long blocknr;
1155
1156         if (!journal)
1157                 return NULL;
1158
1159         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1160         journal->j_inode = inode;
1161         bdevname(journal->j_dev, journal->j_devname);
1162         p = journal->j_devname;
1163         while ((p = strchr(p, '/')))
1164                 *p = '!';
1165         p = journal->j_devname + strlen(journal->j_devname);
1166         sprintf(p, "-%lu", journal->j_inode->i_ino);
1167         jbd_debug(1,
1168                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1169                   journal, inode->i_sb->s_id, inode->i_ino,
1170                   (long long) inode->i_size,
1171                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1172
1173         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1174         journal->j_blocksize = inode->i_sb->s_blocksize;
1175         jbd2_stats_proc_init(journal);
1176
1177         /* journal descriptor can store up to n blocks -bzzz */
1178         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1179         journal->j_wbufsize = n;
1180         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1181         if (!journal->j_wbuf) {
1182                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1183                         __func__);
1184                 goto out_err;
1185         }
1186
1187         err = jbd2_journal_bmap(journal, 0, &blocknr);
1188         /* If that failed, give up */
1189         if (err) {
1190                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1191                        __func__);
1192                 goto out_err;
1193         }
1194
1195         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1196         if (!bh) {
1197                 printk(KERN_ERR
1198                        "%s: Cannot get buffer for journal superblock\n",
1199                        __func__);
1200                 goto out_err;
1201         }
1202         journal->j_sb_buffer = bh;
1203         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1204
1205         return journal;
1206 out_err:
1207         kfree(journal->j_wbuf);
1208         jbd2_stats_proc_exit(journal);
1209         kfree(journal);
1210         return NULL;
1211 }
1212
1213 /*
1214  * If the journal init or create aborts, we need to mark the journal
1215  * superblock as being NULL to prevent the journal destroy from writing
1216  * back a bogus superblock.
1217  */
1218 static void journal_fail_superblock (journal_t *journal)
1219 {
1220         struct buffer_head *bh = journal->j_sb_buffer;
1221         brelse(bh);
1222         journal->j_sb_buffer = NULL;
1223 }
1224
1225 /*
1226  * Given a journal_t structure, initialise the various fields for
1227  * startup of a new journaling session.  We use this both when creating
1228  * a journal, and after recovering an old journal to reset it for
1229  * subsequent use.
1230  */
1231
1232 static int journal_reset(journal_t *journal)
1233 {
1234         journal_superblock_t *sb = journal->j_superblock;
1235         unsigned long long first, last;
1236
1237         first = be32_to_cpu(sb->s_first);
1238         last = be32_to_cpu(sb->s_maxlen);
1239         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1240                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1241                        first, last);
1242                 journal_fail_superblock(journal);
1243                 return -EINVAL;
1244         }
1245
1246         journal->j_first = first;
1247         journal->j_last = last;
1248
1249         journal->j_head = first;
1250         journal->j_tail = first;
1251         journal->j_free = last - first;
1252
1253         journal->j_tail_sequence = journal->j_transaction_sequence;
1254         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1255         journal->j_commit_request = journal->j_commit_sequence;
1256
1257         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1258
1259         /*
1260          * As a special case, if the on-disk copy is already marked as needing
1261          * no recovery (s_start == 0), then we can safely defer the superblock
1262          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1263          * attempting a write to a potential-readonly device.
1264          */
1265         if (sb->s_start == 0) {
1266                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1267                         "(start %ld, seq %d, errno %d)\n",
1268                         journal->j_tail, journal->j_tail_sequence,
1269                         journal->j_errno);
1270                 journal->j_flags |= JBD2_FLUSHED;
1271         } else {
1272                 /* Lock here to make assertions happy... */
1273                 mutex_lock(&journal->j_checkpoint_mutex);
1274                 /*
1275                  * Update log tail information. We use WRITE_FUA since new
1276                  * transaction will start reusing journal space and so we
1277                  * must make sure information about current log tail is on
1278                  * disk before that.
1279                  */
1280                 jbd2_journal_update_sb_log_tail(journal,
1281                                                 journal->j_tail_sequence,
1282                                                 journal->j_tail,
1283                                                 WRITE_FUA);
1284                 mutex_unlock(&journal->j_checkpoint_mutex);
1285         }
1286         return jbd2_journal_start_thread(journal);
1287 }
1288
1289 static void jbd2_write_superblock(journal_t *journal, int write_op)
1290 {
1291         struct buffer_head *bh = journal->j_sb_buffer;
1292         int ret;
1293
1294         trace_jbd2_write_superblock(journal, write_op);
1295         if (!(journal->j_flags & JBD2_BARRIER))
1296                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1297         lock_buffer(bh);
1298         if (buffer_write_io_error(bh)) {
1299                 /*
1300                  * Oh, dear.  A previous attempt to write the journal
1301                  * superblock failed.  This could happen because the
1302                  * USB device was yanked out.  Or it could happen to
1303                  * be a transient write error and maybe the block will
1304                  * be remapped.  Nothing we can do but to retry the
1305                  * write and hope for the best.
1306                  */
1307                 printk(KERN_ERR "JBD2: previous I/O error detected "
1308                        "for journal superblock update for %s.\n",
1309                        journal->j_devname);
1310                 clear_buffer_write_io_error(bh);
1311                 set_buffer_uptodate(bh);
1312         }
1313         get_bh(bh);
1314         bh->b_end_io = end_buffer_write_sync;
1315         ret = submit_bh(write_op, bh);
1316         wait_on_buffer(bh);
1317         if (buffer_write_io_error(bh)) {
1318                 clear_buffer_write_io_error(bh);
1319                 set_buffer_uptodate(bh);
1320                 ret = -EIO;
1321         }
1322         if (ret) {
1323                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1324                        "journal superblock for %s.\n", ret,
1325                        journal->j_devname);
1326         }
1327 }
1328
1329 /**
1330  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1331  * @journal: The journal to update.
1332  * @tail_tid: TID of the new transaction at the tail of the log
1333  * @tail_block: The first block of the transaction at the tail of the log
1334  * @write_op: With which operation should we write the journal sb
1335  *
1336  * Update a journal's superblock information about log tail and write it to
1337  * disk, waiting for the IO to complete.
1338  */
1339 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1340                                      unsigned long tail_block, int write_op)
1341 {
1342         journal_superblock_t *sb = journal->j_superblock;
1343
1344         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1345         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1346                   tail_block, tail_tid);
1347
1348         sb->s_sequence = cpu_to_be32(tail_tid);
1349         sb->s_start    = cpu_to_be32(tail_block);
1350
1351         jbd2_write_superblock(journal, write_op);
1352
1353         /* Log is no longer empty */
1354         write_lock(&journal->j_state_lock);
1355         WARN_ON(!sb->s_sequence);
1356         journal->j_flags &= ~JBD2_FLUSHED;
1357         write_unlock(&journal->j_state_lock);
1358 }
1359
1360 /**
1361  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1362  * @journal: The journal to update.
1363  *
1364  * Update a journal's dynamic superblock fields to show that journal is empty.
1365  * Write updated superblock to disk waiting for IO to complete.
1366  */
1367 static void jbd2_mark_journal_empty(journal_t *journal)
1368 {
1369         journal_superblock_t *sb = journal->j_superblock;
1370
1371         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1372         read_lock(&journal->j_state_lock);
1373         /* Is it already empty? */
1374         if (sb->s_start == 0) {
1375                 read_unlock(&journal->j_state_lock);
1376                 return;
1377         }
1378         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1379                   journal->j_tail_sequence);
1380
1381         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1382         sb->s_start    = cpu_to_be32(0);
1383         read_unlock(&journal->j_state_lock);
1384
1385         jbd2_write_superblock(journal, WRITE_FUA);
1386
1387         /* Log is no longer empty */
1388         write_lock(&journal->j_state_lock);
1389         journal->j_flags |= JBD2_FLUSHED;
1390         write_unlock(&journal->j_state_lock);
1391 }
1392
1393
1394 /**
1395  * jbd2_journal_update_sb_errno() - Update error in the journal.
1396  * @journal: The journal to update.
1397  *
1398  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1399  * to complete.
1400  */
1401 void jbd2_journal_update_sb_errno(journal_t *journal)
1402 {
1403         journal_superblock_t *sb = journal->j_superblock;
1404
1405         read_lock(&journal->j_state_lock);
1406         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1407                   journal->j_errno);
1408         sb->s_errno    = cpu_to_be32(journal->j_errno);
1409         jbd2_superblock_csum_set(journal, sb);
1410         read_unlock(&journal->j_state_lock);
1411
1412         jbd2_write_superblock(journal, WRITE_SYNC);
1413 }
1414 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1415
1416 /*
1417  * Read the superblock for a given journal, performing initial
1418  * validation of the format.
1419  */
1420 static int journal_get_superblock(journal_t *journal)
1421 {
1422         struct buffer_head *bh;
1423         journal_superblock_t *sb;
1424         int err = -EIO;
1425
1426         bh = journal->j_sb_buffer;
1427
1428         J_ASSERT(bh != NULL);
1429         if (!buffer_uptodate(bh)) {
1430                 ll_rw_block(READ, 1, &bh);
1431                 wait_on_buffer(bh);
1432                 if (!buffer_uptodate(bh)) {
1433                         printk(KERN_ERR
1434                                 "JBD2: IO error reading journal superblock\n");
1435                         goto out;
1436                 }
1437         }
1438
1439         if (buffer_verified(bh))
1440                 return 0;
1441
1442         sb = journal->j_superblock;
1443
1444         err = -EINVAL;
1445
1446         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1447             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1448                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1449                 goto out;
1450         }
1451
1452         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1453         case JBD2_SUPERBLOCK_V1:
1454                 journal->j_format_version = 1;
1455                 break;
1456         case JBD2_SUPERBLOCK_V2:
1457                 journal->j_format_version = 2;
1458                 break;
1459         default:
1460                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1461                 goto out;
1462         }
1463
1464         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1465                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1466         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1467                 printk(KERN_WARNING "JBD2: journal file too short\n");
1468                 goto out;
1469         }
1470
1471         if (be32_to_cpu(sb->s_first) == 0 ||
1472             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1473                 printk(KERN_WARNING
1474                         "JBD2: Invalid start block of journal: %u\n",
1475                         be32_to_cpu(sb->s_first));
1476                 goto out;
1477         }
1478
1479         if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1480             JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1481                 /* Can't have checksum v1 and v2 on at the same time! */
1482                 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1483                        "at the same time!\n");
1484                 goto out;
1485         }
1486
1487         if (!jbd2_verify_csum_type(journal, sb)) {
1488                 printk(KERN_ERR "JBD: Unknown checksum type\n");
1489                 goto out;
1490         }
1491
1492         /* Load the checksum driver */
1493         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1494                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1495                 if (IS_ERR(journal->j_chksum_driver)) {
1496                         printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1497                         err = PTR_ERR(journal->j_chksum_driver);
1498                         journal->j_chksum_driver = NULL;
1499                         goto out;
1500                 }
1501         }
1502
1503         /* Check superblock checksum */
1504         if (!jbd2_superblock_csum_verify(journal, sb)) {
1505                 printk(KERN_ERR "JBD: journal checksum error\n");
1506                 goto out;
1507         }
1508
1509         /* Precompute checksum seed for all metadata */
1510         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1511                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1512                                                    sizeof(sb->s_uuid));
1513
1514         set_buffer_verified(bh);
1515
1516         return 0;
1517
1518 out:
1519         journal_fail_superblock(journal);
1520         return err;
1521 }
1522
1523 /*
1524  * Load the on-disk journal superblock and read the key fields into the
1525  * journal_t.
1526  */
1527
1528 static int load_superblock(journal_t *journal)
1529 {
1530         int err;
1531         journal_superblock_t *sb;
1532
1533         err = journal_get_superblock(journal);
1534         if (err)
1535                 return err;
1536
1537         sb = journal->j_superblock;
1538
1539         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1540         journal->j_tail = be32_to_cpu(sb->s_start);
1541         journal->j_first = be32_to_cpu(sb->s_first);
1542         journal->j_last = be32_to_cpu(sb->s_maxlen);
1543         journal->j_errno = be32_to_cpu(sb->s_errno);
1544
1545         return 0;
1546 }
1547
1548
1549 /**
1550  * int jbd2_journal_load() - Read journal from disk.
1551  * @journal: Journal to act on.
1552  *
1553  * Given a journal_t structure which tells us which disk blocks contain
1554  * a journal, read the journal from disk to initialise the in-memory
1555  * structures.
1556  */
1557 int jbd2_journal_load(journal_t *journal)
1558 {
1559         int err;
1560         journal_superblock_t *sb;
1561
1562         err = load_superblock(journal);
1563         if (err)
1564                 return err;
1565
1566         sb = journal->j_superblock;
1567         /* If this is a V2 superblock, then we have to check the
1568          * features flags on it. */
1569
1570         if (journal->j_format_version >= 2) {
1571                 if ((sb->s_feature_ro_compat &
1572                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1573                     (sb->s_feature_incompat &
1574                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1575                         printk(KERN_WARNING
1576                                 "JBD2: Unrecognised features on journal\n");
1577                         return -EINVAL;
1578                 }
1579         }
1580
1581         /*
1582          * Create a slab for this blocksize
1583          */
1584         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1585         if (err)
1586                 return err;
1587
1588         /* Let the recovery code check whether it needs to recover any
1589          * data from the journal. */
1590         if (jbd2_journal_recover(journal))
1591                 goto recovery_error;
1592
1593         if (journal->j_failed_commit) {
1594                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1595                        "is corrupt.\n", journal->j_failed_commit,
1596                        journal->j_devname);
1597                 return -EIO;
1598         }
1599
1600         /* OK, we've finished with the dynamic journal bits:
1601          * reinitialise the dynamic contents of the superblock in memory
1602          * and reset them on disk. */
1603         if (journal_reset(journal))
1604                 goto recovery_error;
1605
1606         journal->j_flags &= ~JBD2_ABORT;
1607         journal->j_flags |= JBD2_LOADED;
1608         return 0;
1609
1610 recovery_error:
1611         printk(KERN_WARNING "JBD2: recovery failed\n");
1612         return -EIO;
1613 }
1614
1615 /**
1616  * void jbd2_journal_destroy() - Release a journal_t structure.
1617  * @journal: Journal to act on.
1618  *
1619  * Release a journal_t structure once it is no longer in use by the
1620  * journaled object.
1621  * Return <0 if we couldn't clean up the journal.
1622  */
1623 int jbd2_journal_destroy(journal_t *journal)
1624 {
1625         int err = 0;
1626
1627         /* Wait for the commit thread to wake up and die. */
1628         journal_kill_thread(journal);
1629
1630         /* Force a final log commit */
1631         if (journal->j_running_transaction)
1632                 jbd2_journal_commit_transaction(journal);
1633
1634         /* Force any old transactions to disk */
1635
1636         /* Totally anal locking here... */
1637         spin_lock(&journal->j_list_lock);
1638         while (journal->j_checkpoint_transactions != NULL) {
1639                 spin_unlock(&journal->j_list_lock);
1640                 mutex_lock(&journal->j_checkpoint_mutex);
1641                 jbd2_log_do_checkpoint(journal);
1642                 mutex_unlock(&journal->j_checkpoint_mutex);
1643                 spin_lock(&journal->j_list_lock);
1644         }
1645
1646         J_ASSERT(journal->j_running_transaction == NULL);
1647         J_ASSERT(journal->j_committing_transaction == NULL);
1648         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1649         spin_unlock(&journal->j_list_lock);
1650
1651         if (journal->j_sb_buffer) {
1652                 if (!is_journal_aborted(journal)) {
1653                         mutex_lock(&journal->j_checkpoint_mutex);
1654                         jbd2_mark_journal_empty(journal);
1655                         mutex_unlock(&journal->j_checkpoint_mutex);
1656                 } else
1657                         err = -EIO;
1658                 brelse(journal->j_sb_buffer);
1659         }
1660
1661         if (journal->j_proc_entry)
1662                 jbd2_stats_proc_exit(journal);
1663         if (journal->j_inode)
1664                 iput(journal->j_inode);
1665         if (journal->j_revoke)
1666                 jbd2_journal_destroy_revoke(journal);
1667         if (journal->j_chksum_driver)
1668                 crypto_free_shash(journal->j_chksum_driver);
1669         kfree(journal->j_wbuf);
1670         kfree(journal);
1671
1672         return err;
1673 }
1674
1675
1676 /**
1677  *int jbd2_journal_check_used_features () - Check if features specified are used.
1678  * @journal: Journal to check.
1679  * @compat: bitmask of compatible features
1680  * @ro: bitmask of features that force read-only mount
1681  * @incompat: bitmask of incompatible features
1682  *
1683  * Check whether the journal uses all of a given set of
1684  * features.  Return true (non-zero) if it does.
1685  **/
1686
1687 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1688                                  unsigned long ro, unsigned long incompat)
1689 {
1690         journal_superblock_t *sb;
1691
1692         if (!compat && !ro && !incompat)
1693                 return 1;
1694         /* Load journal superblock if it is not loaded yet. */
1695         if (journal->j_format_version == 0 &&
1696             journal_get_superblock(journal) != 0)
1697                 return 0;
1698         if (journal->j_format_version == 1)
1699                 return 0;
1700
1701         sb = journal->j_superblock;
1702
1703         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1704             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1705             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1706                 return 1;
1707
1708         return 0;
1709 }
1710
1711 /**
1712  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1713  * @journal: Journal to check.
1714  * @compat: bitmask of compatible features
1715  * @ro: bitmask of features that force read-only mount
1716  * @incompat: bitmask of incompatible features
1717  *
1718  * Check whether the journaling code supports the use of
1719  * all of a given set of features on this journal.  Return true
1720  * (non-zero) if it can. */
1721
1722 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1723                                       unsigned long ro, unsigned long incompat)
1724 {
1725         if (!compat && !ro && !incompat)
1726                 return 1;
1727
1728         /* We can support any known requested features iff the
1729          * superblock is in version 2.  Otherwise we fail to support any
1730          * extended sb features. */
1731
1732         if (journal->j_format_version != 2)
1733                 return 0;
1734
1735         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1736             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1737             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1738                 return 1;
1739
1740         return 0;
1741 }
1742
1743 /**
1744  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1745  * @journal: Journal to act on.
1746  * @compat: bitmask of compatible features
1747  * @ro: bitmask of features that force read-only mount
1748  * @incompat: bitmask of incompatible features
1749  *
1750  * Mark a given journal feature as present on the
1751  * superblock.  Returns true if the requested features could be set.
1752  *
1753  */
1754
1755 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1756                           unsigned long ro, unsigned long incompat)
1757 {
1758 #define INCOMPAT_FEATURE_ON(f) \
1759                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1760 #define COMPAT_FEATURE_ON(f) \
1761                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1762         journal_superblock_t *sb;
1763
1764         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1765                 return 1;
1766
1767         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1768                 return 0;
1769
1770         /* Asking for checksumming v2 and v1?  Only give them v2. */
1771         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1772             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1773                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1774
1775         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1776                   compat, ro, incompat);
1777
1778         sb = journal->j_superblock;
1779
1780         /* If enabling v2 checksums, update superblock */
1781         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1782                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1783                 sb->s_feature_compat &=
1784                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1785
1786                 /* Load the checksum driver */
1787                 if (journal->j_chksum_driver == NULL) {
1788                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1789                                                                       0, 0);
1790                         if (IS_ERR(journal->j_chksum_driver)) {
1791                                 printk(KERN_ERR "JBD: Cannot load crc32c "
1792                                        "driver.\n");
1793                                 journal->j_chksum_driver = NULL;
1794                                 return 0;
1795                         }
1796                 }
1797
1798                 /* Precompute checksum seed for all metadata */
1799                 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1800                                               JBD2_FEATURE_INCOMPAT_CSUM_V2))
1801                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1802                                                            sb->s_uuid,
1803                                                            sizeof(sb->s_uuid));
1804         }
1805
1806         /* If enabling v1 checksums, downgrade superblock */
1807         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1808                 sb->s_feature_incompat &=
1809                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1810
1811         sb->s_feature_compat    |= cpu_to_be32(compat);
1812         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1813         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1814
1815         return 1;
1816 #undef COMPAT_FEATURE_ON
1817 #undef INCOMPAT_FEATURE_ON
1818 }
1819
1820 /*
1821  * jbd2_journal_clear_features () - Clear a given journal feature in the
1822  *                                  superblock
1823  * @journal: Journal to act on.
1824  * @compat: bitmask of compatible features
1825  * @ro: bitmask of features that force read-only mount
1826  * @incompat: bitmask of incompatible features
1827  *
1828  * Clear a given journal feature as present on the
1829  * superblock.
1830  */
1831 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1832                                 unsigned long ro, unsigned long incompat)
1833 {
1834         journal_superblock_t *sb;
1835
1836         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1837                   compat, ro, incompat);
1838
1839         sb = journal->j_superblock;
1840
1841         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1842         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1843         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1844 }
1845 EXPORT_SYMBOL(jbd2_journal_clear_features);
1846
1847 /**
1848  * int jbd2_journal_flush () - Flush journal
1849  * @journal: Journal to act on.
1850  *
1851  * Flush all data for a given journal to disk and empty the journal.
1852  * Filesystems can use this when remounting readonly to ensure that
1853  * recovery does not need to happen on remount.
1854  */
1855
1856 int jbd2_journal_flush(journal_t *journal)
1857 {
1858         int err = 0;
1859         transaction_t *transaction = NULL;
1860
1861         write_lock(&journal->j_state_lock);
1862
1863         /* Force everything buffered to the log... */
1864         if (journal->j_running_transaction) {
1865                 transaction = journal->j_running_transaction;
1866                 __jbd2_log_start_commit(journal, transaction->t_tid);
1867         } else if (journal->j_committing_transaction)
1868                 transaction = journal->j_committing_transaction;
1869
1870         /* Wait for the log commit to complete... */
1871         if (transaction) {
1872                 tid_t tid = transaction->t_tid;
1873
1874                 write_unlock(&journal->j_state_lock);
1875                 jbd2_log_wait_commit(journal, tid);
1876         } else {
1877                 write_unlock(&journal->j_state_lock);
1878         }
1879
1880         /* ...and flush everything in the log out to disk. */
1881         spin_lock(&journal->j_list_lock);
1882         while (!err && journal->j_checkpoint_transactions != NULL) {
1883                 spin_unlock(&journal->j_list_lock);
1884                 mutex_lock(&journal->j_checkpoint_mutex);
1885                 err = jbd2_log_do_checkpoint(journal);
1886                 mutex_unlock(&journal->j_checkpoint_mutex);
1887                 spin_lock(&journal->j_list_lock);
1888         }
1889         spin_unlock(&journal->j_list_lock);
1890
1891         if (is_journal_aborted(journal))
1892                 return -EIO;
1893
1894         mutex_lock(&journal->j_checkpoint_mutex);
1895         jbd2_cleanup_journal_tail(journal);
1896
1897         /* Finally, mark the journal as really needing no recovery.
1898          * This sets s_start==0 in the underlying superblock, which is
1899          * the magic code for a fully-recovered superblock.  Any future
1900          * commits of data to the journal will restore the current
1901          * s_start value. */
1902         jbd2_mark_journal_empty(journal);
1903         mutex_unlock(&journal->j_checkpoint_mutex);
1904         write_lock(&journal->j_state_lock);
1905         J_ASSERT(!journal->j_running_transaction);
1906         J_ASSERT(!journal->j_committing_transaction);
1907         J_ASSERT(!journal->j_checkpoint_transactions);
1908         J_ASSERT(journal->j_head == journal->j_tail);
1909         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1910         write_unlock(&journal->j_state_lock);
1911         return 0;
1912 }
1913
1914 /**
1915  * int jbd2_journal_wipe() - Wipe journal contents
1916  * @journal: Journal to act on.
1917  * @write: flag (see below)
1918  *
1919  * Wipe out all of the contents of a journal, safely.  This will produce
1920  * a warning if the journal contains any valid recovery information.
1921  * Must be called between journal_init_*() and jbd2_journal_load().
1922  *
1923  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1924  * we merely suppress recovery.
1925  */
1926
1927 int jbd2_journal_wipe(journal_t *journal, int write)
1928 {
1929         int err = 0;
1930
1931         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1932
1933         err = load_superblock(journal);
1934         if (err)
1935                 return err;
1936
1937         if (!journal->j_tail)
1938                 goto no_recovery;
1939
1940         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1941                 write ? "Clearing" : "Ignoring");
1942
1943         err = jbd2_journal_skip_recovery(journal);
1944         if (write) {
1945                 /* Lock to make assertions happy... */
1946                 mutex_lock(&journal->j_checkpoint_mutex);
1947                 jbd2_mark_journal_empty(journal);
1948                 mutex_unlock(&journal->j_checkpoint_mutex);
1949         }
1950
1951  no_recovery:
1952         return err;
1953 }
1954
1955 /*
1956  * Journal abort has very specific semantics, which we describe
1957  * for journal abort.
1958  *
1959  * Two internal functions, which provide abort to the jbd layer
1960  * itself are here.
1961  */
1962
1963 /*
1964  * Quick version for internal journal use (doesn't lock the journal).
1965  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1966  * and don't attempt to make any other journal updates.
1967  */
1968 void __jbd2_journal_abort_hard(journal_t *journal)
1969 {
1970         transaction_t *transaction;
1971
1972         if (journal->j_flags & JBD2_ABORT)
1973                 return;
1974
1975         printk(KERN_ERR "Aborting journal on device %s.\n",
1976                journal->j_devname);
1977
1978         write_lock(&journal->j_state_lock);
1979         journal->j_flags |= JBD2_ABORT;
1980         transaction = journal->j_running_transaction;
1981         if (transaction)
1982                 __jbd2_log_start_commit(journal, transaction->t_tid);
1983         write_unlock(&journal->j_state_lock);
1984 }
1985
1986 /* Soft abort: record the abort error status in the journal superblock,
1987  * but don't do any other IO. */
1988 static void __journal_abort_soft (journal_t *journal, int errno)
1989 {
1990         if (journal->j_flags & JBD2_ABORT)
1991                 return;
1992
1993         if (!journal->j_errno)
1994                 journal->j_errno = errno;
1995
1996         __jbd2_journal_abort_hard(journal);
1997
1998         if (errno)
1999                 jbd2_journal_update_sb_errno(journal);
2000 }
2001
2002 /**
2003  * void jbd2_journal_abort () - Shutdown the journal immediately.
2004  * @journal: the journal to shutdown.
2005  * @errno:   an error number to record in the journal indicating
2006  *           the reason for the shutdown.
2007  *
2008  * Perform a complete, immediate shutdown of the ENTIRE
2009  * journal (not of a single transaction).  This operation cannot be
2010  * undone without closing and reopening the journal.
2011  *
2012  * The jbd2_journal_abort function is intended to support higher level error
2013  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2014  * mode.
2015  *
2016  * Journal abort has very specific semantics.  Any existing dirty,
2017  * unjournaled buffers in the main filesystem will still be written to
2018  * disk by bdflush, but the journaling mechanism will be suspended
2019  * immediately and no further transaction commits will be honoured.
2020  *
2021  * Any dirty, journaled buffers will be written back to disk without
2022  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2023  * filesystem, but we _do_ attempt to leave as much data as possible
2024  * behind for fsck to use for cleanup.
2025  *
2026  * Any attempt to get a new transaction handle on a journal which is in
2027  * ABORT state will just result in an -EROFS error return.  A
2028  * jbd2_journal_stop on an existing handle will return -EIO if we have
2029  * entered abort state during the update.
2030  *
2031  * Recursive transactions are not disturbed by journal abort until the
2032  * final jbd2_journal_stop, which will receive the -EIO error.
2033  *
2034  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2035  * which will be recorded (if possible) in the journal superblock.  This
2036  * allows a client to record failure conditions in the middle of a
2037  * transaction without having to complete the transaction to record the
2038  * failure to disk.  ext3_error, for example, now uses this
2039  * functionality.
2040  *
2041  * Errors which originate from within the journaling layer will NOT
2042  * supply an errno; a null errno implies that absolutely no further
2043  * writes are done to the journal (unless there are any already in
2044  * progress).
2045  *
2046  */
2047
2048 void jbd2_journal_abort(journal_t *journal, int errno)
2049 {
2050         __journal_abort_soft(journal, errno);
2051 }
2052
2053 /**
2054  * int jbd2_journal_errno () - returns the journal's error state.
2055  * @journal: journal to examine.
2056  *
2057  * This is the errno number set with jbd2_journal_abort(), the last
2058  * time the journal was mounted - if the journal was stopped
2059  * without calling abort this will be 0.
2060  *
2061  * If the journal has been aborted on this mount time -EROFS will
2062  * be returned.
2063  */
2064 int jbd2_journal_errno(journal_t *journal)
2065 {
2066         int err;
2067
2068         read_lock(&journal->j_state_lock);
2069         if (journal->j_flags & JBD2_ABORT)
2070                 err = -EROFS;
2071         else
2072                 err = journal->j_errno;
2073         read_unlock(&journal->j_state_lock);
2074         return err;
2075 }
2076
2077 /**
2078  * int jbd2_journal_clear_err () - clears the journal's error state
2079  * @journal: journal to act on.
2080  *
2081  * An error must be cleared or acked to take a FS out of readonly
2082  * mode.
2083  */
2084 int jbd2_journal_clear_err(journal_t *journal)
2085 {
2086         int err = 0;
2087
2088         write_lock(&journal->j_state_lock);
2089         if (journal->j_flags & JBD2_ABORT)
2090                 err = -EROFS;
2091         else
2092                 journal->j_errno = 0;
2093         write_unlock(&journal->j_state_lock);
2094         return err;
2095 }
2096
2097 /**
2098  * void jbd2_journal_ack_err() - Ack journal err.
2099  * @journal: journal to act on.
2100  *
2101  * An error must be cleared or acked to take a FS out of readonly
2102  * mode.
2103  */
2104 void jbd2_journal_ack_err(journal_t *journal)
2105 {
2106         write_lock(&journal->j_state_lock);
2107         if (journal->j_errno)
2108                 journal->j_flags |= JBD2_ACK_ERR;
2109         write_unlock(&journal->j_state_lock);
2110 }
2111
2112 int jbd2_journal_blocks_per_page(struct inode *inode)
2113 {
2114         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2115 }
2116
2117 /*
2118  * helper functions to deal with 32 or 64bit block numbers.
2119  */
2120 size_t journal_tag_bytes(journal_t *journal)
2121 {
2122         journal_block_tag_t tag;
2123         size_t x = 0;
2124
2125         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2126                 x += sizeof(tag.t_checksum);
2127
2128         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2129                 return x + JBD2_TAG_SIZE64;
2130         else
2131                 return x + JBD2_TAG_SIZE32;
2132 }
2133
2134 /*
2135  * JBD memory management
2136  *
2137  * These functions are used to allocate block-sized chunks of memory
2138  * used for making copies of buffer_head data.  Very often it will be
2139  * page-sized chunks of data, but sometimes it will be in
2140  * sub-page-size chunks.  (For example, 16k pages on Power systems
2141  * with a 4k block file system.)  For blocks smaller than a page, we
2142  * use a SLAB allocator.  There are slab caches for each block size,
2143  * which are allocated at mount time, if necessary, and we only free
2144  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2145  * this reason we don't need to a mutex to protect access to
2146  * jbd2_slab[] allocating or releasing memory; only in
2147  * jbd2_journal_create_slab().
2148  */
2149 #define JBD2_MAX_SLABS 8
2150 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2151
2152 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2153         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2154         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2155 };
2156
2157
2158 static void jbd2_journal_destroy_slabs(void)
2159 {
2160         int i;
2161
2162         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2163                 if (jbd2_slab[i])
2164                         kmem_cache_destroy(jbd2_slab[i]);
2165                 jbd2_slab[i] = NULL;
2166         }
2167 }
2168
2169 static int jbd2_journal_create_slab(size_t size)
2170 {
2171         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2172         int i = order_base_2(size) - 10;
2173         size_t slab_size;
2174
2175         if (size == PAGE_SIZE)
2176                 return 0;
2177
2178         if (i >= JBD2_MAX_SLABS)
2179                 return -EINVAL;
2180
2181         if (unlikely(i < 0))
2182                 i = 0;
2183         mutex_lock(&jbd2_slab_create_mutex);
2184         if (jbd2_slab[i]) {
2185                 mutex_unlock(&jbd2_slab_create_mutex);
2186                 return 0;       /* Already created */
2187         }
2188
2189         slab_size = 1 << (i+10);
2190         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2191                                          slab_size, 0, NULL);
2192         mutex_unlock(&jbd2_slab_create_mutex);
2193         if (!jbd2_slab[i]) {
2194                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2195                 return -ENOMEM;
2196         }
2197         return 0;
2198 }
2199
2200 static struct kmem_cache *get_slab(size_t size)
2201 {
2202         int i = order_base_2(size) - 10;
2203
2204         BUG_ON(i >= JBD2_MAX_SLABS);
2205         if (unlikely(i < 0))
2206                 i = 0;
2207         BUG_ON(jbd2_slab[i] == NULL);
2208         return jbd2_slab[i];
2209 }
2210
2211 void *jbd2_alloc(size_t size, gfp_t flags)
2212 {
2213         void *ptr;
2214
2215         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2216
2217         flags |= __GFP_REPEAT;
2218         if (size == PAGE_SIZE)
2219                 ptr = (void *)__get_free_pages(flags, 0);
2220         else if (size > PAGE_SIZE) {
2221                 int order = get_order(size);
2222
2223                 if (order < 3)
2224                         ptr = (void *)__get_free_pages(flags, order);
2225                 else
2226                         ptr = vmalloc(size);
2227         } else
2228                 ptr = kmem_cache_alloc(get_slab(size), flags);
2229
2230         /* Check alignment; SLUB has gotten this wrong in the past,
2231          * and this can lead to user data corruption! */
2232         BUG_ON(((unsigned long) ptr) & (size-1));
2233
2234         return ptr;
2235 }
2236
2237 void jbd2_free(void *ptr, size_t size)
2238 {
2239         if (size == PAGE_SIZE) {
2240                 free_pages((unsigned long)ptr, 0);
2241                 return;
2242         }
2243         if (size > PAGE_SIZE) {
2244                 int order = get_order(size);
2245
2246                 if (order < 3)
2247                         free_pages((unsigned long)ptr, order);
2248                 else
2249                         vfree(ptr);
2250                 return;
2251         }
2252         kmem_cache_free(get_slab(size), ptr);
2253 };
2254
2255 /*
2256  * Journal_head storage management
2257  */
2258 static struct kmem_cache *jbd2_journal_head_cache;
2259 #ifdef CONFIG_JBD2_DEBUG
2260 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2261 #endif
2262
2263 static int jbd2_journal_init_journal_head_cache(void)
2264 {
2265         int retval;
2266
2267         J_ASSERT(jbd2_journal_head_cache == NULL);
2268         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2269                                 sizeof(struct journal_head),
2270                                 0,              /* offset */
2271                                 SLAB_TEMPORARY, /* flags */
2272                                 NULL);          /* ctor */
2273         retval = 0;
2274         if (!jbd2_journal_head_cache) {
2275                 retval = -ENOMEM;
2276                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2277         }
2278         return retval;
2279 }
2280
2281 static void jbd2_journal_destroy_journal_head_cache(void)
2282 {
2283         if (jbd2_journal_head_cache) {
2284                 kmem_cache_destroy(jbd2_journal_head_cache);
2285                 jbd2_journal_head_cache = NULL;
2286         }
2287 }
2288
2289 /*
2290  * journal_head splicing and dicing
2291  */
2292 static struct journal_head *journal_alloc_journal_head(void)
2293 {
2294         struct journal_head *ret;
2295
2296 #ifdef CONFIG_JBD2_DEBUG
2297         atomic_inc(&nr_journal_heads);
2298 #endif
2299         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2300         if (!ret) {
2301                 jbd_debug(1, "out of memory for journal_head\n");
2302                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2303                 while (!ret) {
2304                         yield();
2305                         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2306                 }
2307         }
2308         return ret;
2309 }
2310
2311 static void journal_free_journal_head(struct journal_head *jh)
2312 {
2313 #ifdef CONFIG_JBD2_DEBUG
2314         atomic_dec(&nr_journal_heads);
2315         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2316 #endif
2317         kmem_cache_free(jbd2_journal_head_cache, jh);
2318 }
2319
2320 /*
2321  * A journal_head is attached to a buffer_head whenever JBD has an
2322  * interest in the buffer.
2323  *
2324  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2325  * is set.  This bit is tested in core kernel code where we need to take
2326  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2327  * there.
2328  *
2329  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2330  *
2331  * When a buffer has its BH_JBD bit set it is immune from being released by
2332  * core kernel code, mainly via ->b_count.
2333  *
2334  * A journal_head is detached from its buffer_head when the journal_head's
2335  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2336  * transaction (b_cp_transaction) hold their references to b_jcount.
2337  *
2338  * Various places in the kernel want to attach a journal_head to a buffer_head
2339  * _before_ attaching the journal_head to a transaction.  To protect the
2340  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2341  * journal_head's b_jcount refcount by one.  The caller must call
2342  * jbd2_journal_put_journal_head() to undo this.
2343  *
2344  * So the typical usage would be:
2345  *
2346  *      (Attach a journal_head if needed.  Increments b_jcount)
2347  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2348  *      ...
2349  *      (Get another reference for transaction)
2350  *      jbd2_journal_grab_journal_head(bh);
2351  *      jh->b_transaction = xxx;
2352  *      (Put original reference)
2353  *      jbd2_journal_put_journal_head(jh);
2354  */
2355
2356 /*
2357  * Give a buffer_head a journal_head.
2358  *
2359  * May sleep.
2360  */
2361 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2362 {
2363         struct journal_head *jh;
2364         struct journal_head *new_jh = NULL;
2365
2366 repeat:
2367         if (!buffer_jbd(bh)) {
2368                 new_jh = journal_alloc_journal_head();
2369                 memset(new_jh, 0, sizeof(*new_jh));
2370         }
2371
2372         jbd_lock_bh_journal_head(bh);
2373         if (buffer_jbd(bh)) {
2374                 jh = bh2jh(bh);
2375         } else {
2376                 J_ASSERT_BH(bh,
2377                         (atomic_read(&bh->b_count) > 0) ||
2378                         (bh->b_page && bh->b_page->mapping));
2379
2380                 if (!new_jh) {
2381                         jbd_unlock_bh_journal_head(bh);
2382                         goto repeat;
2383                 }
2384
2385                 jh = new_jh;
2386                 new_jh = NULL;          /* We consumed it */
2387                 set_buffer_jbd(bh);
2388                 bh->b_private = jh;
2389                 jh->b_bh = bh;
2390                 get_bh(bh);
2391                 BUFFER_TRACE(bh, "added journal_head");
2392         }
2393         jh->b_jcount++;
2394         jbd_unlock_bh_journal_head(bh);
2395         if (new_jh)
2396                 journal_free_journal_head(new_jh);
2397         return bh->b_private;
2398 }
2399
2400 /*
2401  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2402  * having a journal_head, return NULL
2403  */
2404 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2405 {
2406         struct journal_head *jh = NULL;
2407
2408         jbd_lock_bh_journal_head(bh);
2409         if (buffer_jbd(bh)) {
2410                 jh = bh2jh(bh);
2411                 jh->b_jcount++;
2412         }
2413         jbd_unlock_bh_journal_head(bh);
2414         return jh;
2415 }
2416
2417 static void __journal_remove_journal_head(struct buffer_head *bh)
2418 {
2419         struct journal_head *jh = bh2jh(bh);
2420
2421         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2422         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2423         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2424         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2425         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2426         J_ASSERT_BH(bh, buffer_jbd(bh));
2427         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2428         BUFFER_TRACE(bh, "remove journal_head");
2429         if (jh->b_frozen_data) {
2430                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2431                 jbd2_free(jh->b_frozen_data, bh->b_size);
2432         }
2433         if (jh->b_committed_data) {
2434                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2435                 jbd2_free(jh->b_committed_data, bh->b_size);
2436         }
2437         bh->b_private = NULL;
2438         jh->b_bh = NULL;        /* debug, really */
2439         clear_buffer_jbd(bh);
2440         journal_free_journal_head(jh);
2441 }
2442
2443 /*
2444  * Drop a reference on the passed journal_head.  If it fell to zero then
2445  * release the journal_head from the buffer_head.
2446  */
2447 void jbd2_journal_put_journal_head(struct journal_head *jh)
2448 {
2449         struct buffer_head *bh = jh2bh(jh);
2450
2451         jbd_lock_bh_journal_head(bh);
2452         J_ASSERT_JH(jh, jh->b_jcount > 0);
2453         --jh->b_jcount;
2454         if (!jh->b_jcount) {
2455                 __journal_remove_journal_head(bh);
2456                 jbd_unlock_bh_journal_head(bh);
2457                 __brelse(bh);
2458         } else
2459                 jbd_unlock_bh_journal_head(bh);
2460 }
2461
2462 /*
2463  * Initialize jbd inode head
2464  */
2465 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2466 {
2467         jinode->i_transaction = NULL;
2468         jinode->i_next_transaction = NULL;
2469         jinode->i_vfs_inode = inode;
2470         jinode->i_flags = 0;
2471         INIT_LIST_HEAD(&jinode->i_list);
2472 }
2473
2474 /*
2475  * Function to be called before we start removing inode from memory (i.e.,
2476  * clear_inode() is a fine place to be called from). It removes inode from
2477  * transaction's lists.
2478  */
2479 void jbd2_journal_release_jbd_inode(journal_t *journal,
2480                                     struct jbd2_inode *jinode)
2481 {
2482         if (!journal)
2483                 return;
2484 restart:
2485         spin_lock(&journal->j_list_lock);
2486         /* Is commit writing out inode - we have to wait */
2487         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2488                 wait_queue_head_t *wq;
2489                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2490                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2491                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2492                 spin_unlock(&journal->j_list_lock);
2493                 schedule();
2494                 finish_wait(wq, &wait.wait);
2495                 goto restart;
2496         }
2497
2498         if (jinode->i_transaction) {
2499                 list_del(&jinode->i_list);
2500                 jinode->i_transaction = NULL;
2501         }
2502         spin_unlock(&journal->j_list_lock);
2503 }
2504
2505
2506 #ifdef CONFIG_PROC_FS
2507
2508 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2509
2510 static void __init jbd2_create_jbd_stats_proc_entry(void)
2511 {
2512         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2513 }
2514
2515 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2516 {
2517         if (proc_jbd2_stats)
2518                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2519 }
2520
2521 #else
2522
2523 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2524 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2525
2526 #endif
2527
2528 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2529
2530 static int __init jbd2_journal_init_handle_cache(void)
2531 {
2532         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2533         if (jbd2_handle_cache == NULL) {
2534                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2535                 return -ENOMEM;
2536         }
2537         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2538         if (jbd2_inode_cache == NULL) {
2539                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2540                 kmem_cache_destroy(jbd2_handle_cache);
2541                 return -ENOMEM;
2542         }
2543         return 0;
2544 }
2545
2546 static void jbd2_journal_destroy_handle_cache(void)
2547 {
2548         if (jbd2_handle_cache)
2549                 kmem_cache_destroy(jbd2_handle_cache);
2550         if (jbd2_inode_cache)
2551                 kmem_cache_destroy(jbd2_inode_cache);
2552
2553 }
2554
2555 /*
2556  * Module startup and shutdown
2557  */
2558
2559 static int __init journal_init_caches(void)
2560 {
2561         int ret;
2562
2563         ret = jbd2_journal_init_revoke_caches();
2564         if (ret == 0)
2565                 ret = jbd2_journal_init_journal_head_cache();
2566         if (ret == 0)
2567                 ret = jbd2_journal_init_handle_cache();
2568         if (ret == 0)
2569                 ret = jbd2_journal_init_transaction_cache();
2570         return ret;
2571 }
2572
2573 static void jbd2_journal_destroy_caches(void)
2574 {
2575         jbd2_journal_destroy_revoke_caches();
2576         jbd2_journal_destroy_journal_head_cache();
2577         jbd2_journal_destroy_handle_cache();
2578         jbd2_journal_destroy_transaction_cache();
2579         jbd2_journal_destroy_slabs();
2580 }
2581
2582 static int __init journal_init(void)
2583 {
2584         int ret;
2585
2586         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2587
2588         ret = journal_init_caches();
2589         if (ret == 0) {
2590                 jbd2_create_jbd_stats_proc_entry();
2591         } else {
2592                 jbd2_journal_destroy_caches();
2593         }
2594         return ret;
2595 }
2596
2597 static void __exit journal_exit(void)
2598 {
2599 #ifdef CONFIG_JBD2_DEBUG
2600         int n = atomic_read(&nr_journal_heads);
2601         if (n)
2602                 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2603 #endif
2604         jbd2_remove_jbd_stats_proc_entry();
2605         jbd2_journal_destroy_caches();
2606 }
2607
2608 MODULE_LICENSE("GPL");
2609 module_init(journal_init);
2610 module_exit(journal_exit);
2611