]> Pileus Git - ~andy/linux/blob - fs/fs-writeback.c
writeback: Do not sort b_io list only because of block device inode
[~andy/linux] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include "internal.h"
30
31 /*
32  * 4MB minimal write chunk size
33  */
34 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
35
36 /*
37  * Passed into wb_writeback(), essentially a subset of writeback_control
38  */
39 struct wb_writeback_work {
40         long nr_pages;
41         struct super_block *sb;
42         unsigned long *older_than_this;
43         enum writeback_sync_modes sync_mode;
44         unsigned int tagged_writepages:1;
45         unsigned int for_kupdate:1;
46         unsigned int range_cyclic:1;
47         unsigned int for_background:1;
48         enum wb_reason reason;          /* why was writeback initiated? */
49
50         struct list_head list;          /* pending work list */
51         struct completion *done;        /* set if the caller waits */
52 };
53
54 /**
55  * writeback_in_progress - determine whether there is writeback in progress
56  * @bdi: the device's backing_dev_info structure.
57  *
58  * Determine whether there is writeback waiting to be handled against a
59  * backing device.
60  */
61 int writeback_in_progress(struct backing_dev_info *bdi)
62 {
63         return test_bit(BDI_writeback_running, &bdi->state);
64 }
65 EXPORT_SYMBOL(writeback_in_progress);
66
67 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
68 {
69         struct super_block *sb = inode->i_sb;
70
71         if (sb_is_blkdev_sb(sb))
72                 return inode->i_mapping->backing_dev_info;
73
74         return sb->s_bdi;
75 }
76
77 static inline struct inode *wb_inode(struct list_head *head)
78 {
79         return list_entry(head, struct inode, i_wb_list);
80 }
81
82 /*
83  * Include the creation of the trace points after defining the
84  * wb_writeback_work structure and inline functions so that the definition
85  * remains local to this file.
86  */
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/writeback.h>
89
90 static void bdi_queue_work(struct backing_dev_info *bdi,
91                            struct wb_writeback_work *work)
92 {
93         trace_writeback_queue(bdi, work);
94
95         spin_lock_bh(&bdi->wb_lock);
96         list_add_tail(&work->list, &bdi->work_list);
97         spin_unlock_bh(&bdi->wb_lock);
98
99         mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
100 }
101
102 static void
103 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
104                       bool range_cyclic, enum wb_reason reason)
105 {
106         struct wb_writeback_work *work;
107
108         /*
109          * This is WB_SYNC_NONE writeback, so if allocation fails just
110          * wakeup the thread for old dirty data writeback
111          */
112         work = kzalloc(sizeof(*work), GFP_ATOMIC);
113         if (!work) {
114                 trace_writeback_nowork(bdi);
115                 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
116                 return;
117         }
118
119         work->sync_mode = WB_SYNC_NONE;
120         work->nr_pages  = nr_pages;
121         work->range_cyclic = range_cyclic;
122         work->reason    = reason;
123
124         bdi_queue_work(bdi, work);
125 }
126
127 /**
128  * bdi_start_writeback - start writeback
129  * @bdi: the backing device to write from
130  * @nr_pages: the number of pages to write
131  * @reason: reason why some writeback work was initiated
132  *
133  * Description:
134  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
135  *   started when this function returns, we make no guarantees on
136  *   completion. Caller need not hold sb s_umount semaphore.
137  *
138  */
139 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
140                         enum wb_reason reason)
141 {
142         __bdi_start_writeback(bdi, nr_pages, true, reason);
143 }
144
145 /**
146  * bdi_start_background_writeback - start background writeback
147  * @bdi: the backing device to write from
148  *
149  * Description:
150  *   This makes sure WB_SYNC_NONE background writeback happens. When
151  *   this function returns, it is only guaranteed that for given BDI
152  *   some IO is happening if we are over background dirty threshold.
153  *   Caller need not hold sb s_umount semaphore.
154  */
155 void bdi_start_background_writeback(struct backing_dev_info *bdi)
156 {
157         /*
158          * We just wake up the flusher thread. It will perform background
159          * writeback as soon as there is no other work to do.
160          */
161         trace_writeback_wake_background(bdi);
162         mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
163 }
164
165 /*
166  * Remove the inode from the writeback list it is on.
167  */
168 void inode_wb_list_del(struct inode *inode)
169 {
170         struct backing_dev_info *bdi = inode_to_bdi(inode);
171
172         spin_lock(&bdi->wb.list_lock);
173         list_del_init(&inode->i_wb_list);
174         spin_unlock(&bdi->wb.list_lock);
175 }
176
177 /*
178  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
179  * furthest end of its superblock's dirty-inode list.
180  *
181  * Before stamping the inode's ->dirtied_when, we check to see whether it is
182  * already the most-recently-dirtied inode on the b_dirty list.  If that is
183  * the case then the inode must have been redirtied while it was being written
184  * out and we don't reset its dirtied_when.
185  */
186 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
187 {
188         assert_spin_locked(&wb->list_lock);
189         if (!list_empty(&wb->b_dirty)) {
190                 struct inode *tail;
191
192                 tail = wb_inode(wb->b_dirty.next);
193                 if (time_before(inode->dirtied_when, tail->dirtied_when))
194                         inode->dirtied_when = jiffies;
195         }
196         list_move(&inode->i_wb_list, &wb->b_dirty);
197 }
198
199 /*
200  * requeue inode for re-scanning after bdi->b_io list is exhausted.
201  */
202 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
203 {
204         assert_spin_locked(&wb->list_lock);
205         list_move(&inode->i_wb_list, &wb->b_more_io);
206 }
207
208 static void inode_sync_complete(struct inode *inode)
209 {
210         inode->i_state &= ~I_SYNC;
211         /* If inode is clean an unused, put it into LRU now... */
212         inode_add_lru(inode);
213         /* Waiters must see I_SYNC cleared before being woken up */
214         smp_mb();
215         wake_up_bit(&inode->i_state, __I_SYNC);
216 }
217
218 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
219 {
220         bool ret = time_after(inode->dirtied_when, t);
221 #ifndef CONFIG_64BIT
222         /*
223          * For inodes being constantly redirtied, dirtied_when can get stuck.
224          * It _appears_ to be in the future, but is actually in distant past.
225          * This test is necessary to prevent such wrapped-around relative times
226          * from permanently stopping the whole bdi writeback.
227          */
228         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
229 #endif
230         return ret;
231 }
232
233 /*
234  * Move expired (dirtied before work->older_than_this) dirty inodes from
235  * @delaying_queue to @dispatch_queue.
236  */
237 static int move_expired_inodes(struct list_head *delaying_queue,
238                                struct list_head *dispatch_queue,
239                                struct wb_writeback_work *work)
240 {
241         LIST_HEAD(tmp);
242         struct list_head *pos, *node;
243         struct super_block *sb = NULL;
244         struct inode *inode;
245         int do_sb_sort = 0;
246         int moved = 0;
247
248         while (!list_empty(delaying_queue)) {
249                 inode = wb_inode(delaying_queue->prev);
250                 if (work->older_than_this &&
251                     inode_dirtied_after(inode, *work->older_than_this))
252                         break;
253                 list_move(&inode->i_wb_list, &tmp);
254                 moved++;
255                 if (sb_is_blkdev_sb(inode->i_sb))
256                         continue;
257                 if (sb && sb != inode->i_sb)
258                         do_sb_sort = 1;
259                 sb = inode->i_sb;
260         }
261
262         /* just one sb in list, splice to dispatch_queue and we're done */
263         if (!do_sb_sort) {
264                 list_splice(&tmp, dispatch_queue);
265                 goto out;
266         }
267
268         /* Move inodes from one superblock together */
269         while (!list_empty(&tmp)) {
270                 sb = wb_inode(tmp.prev)->i_sb;
271                 list_for_each_prev_safe(pos, node, &tmp) {
272                         inode = wb_inode(pos);
273                         if (inode->i_sb == sb)
274                                 list_move(&inode->i_wb_list, dispatch_queue);
275                 }
276         }
277 out:
278         return moved;
279 }
280
281 /*
282  * Queue all expired dirty inodes for io, eldest first.
283  * Before
284  *         newly dirtied     b_dirty    b_io    b_more_io
285  *         =============>    gf         edc     BA
286  * After
287  *         newly dirtied     b_dirty    b_io    b_more_io
288  *         =============>    g          fBAedc
289  *                                           |
290  *                                           +--> dequeue for IO
291  */
292 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
293 {
294         int moved;
295         assert_spin_locked(&wb->list_lock);
296         list_splice_init(&wb->b_more_io, &wb->b_io);
297         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
298         trace_writeback_queue_io(wb, work, moved);
299 }
300
301 static int write_inode(struct inode *inode, struct writeback_control *wbc)
302 {
303         int ret;
304
305         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
306                 trace_writeback_write_inode_start(inode, wbc);
307                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
308                 trace_writeback_write_inode(inode, wbc);
309                 return ret;
310         }
311         return 0;
312 }
313
314 /*
315  * Wait for writeback on an inode to complete. Called with i_lock held.
316  * Caller must make sure inode cannot go away when we drop i_lock.
317  */
318 static void __inode_wait_for_writeback(struct inode *inode)
319         __releases(inode->i_lock)
320         __acquires(inode->i_lock)
321 {
322         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
323         wait_queue_head_t *wqh;
324
325         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
326         while (inode->i_state & I_SYNC) {
327                 spin_unlock(&inode->i_lock);
328                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
329                 spin_lock(&inode->i_lock);
330         }
331 }
332
333 /*
334  * Wait for writeback on an inode to complete. Caller must have inode pinned.
335  */
336 void inode_wait_for_writeback(struct inode *inode)
337 {
338         spin_lock(&inode->i_lock);
339         __inode_wait_for_writeback(inode);
340         spin_unlock(&inode->i_lock);
341 }
342
343 /*
344  * Sleep until I_SYNC is cleared. This function must be called with i_lock
345  * held and drops it. It is aimed for callers not holding any inode reference
346  * so once i_lock is dropped, inode can go away.
347  */
348 static void inode_sleep_on_writeback(struct inode *inode)
349         __releases(inode->i_lock)
350 {
351         DEFINE_WAIT(wait);
352         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
353         int sleep;
354
355         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
356         sleep = inode->i_state & I_SYNC;
357         spin_unlock(&inode->i_lock);
358         if (sleep)
359                 schedule();
360         finish_wait(wqh, &wait);
361 }
362
363 /*
364  * Find proper writeback list for the inode depending on its current state and
365  * possibly also change of its state while we were doing writeback.  Here we
366  * handle things such as livelock prevention or fairness of writeback among
367  * inodes. This function can be called only by flusher thread - noone else
368  * processes all inodes in writeback lists and requeueing inodes behind flusher
369  * thread's back can have unexpected consequences.
370  */
371 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
372                           struct writeback_control *wbc)
373 {
374         if (inode->i_state & I_FREEING)
375                 return;
376
377         /*
378          * Sync livelock prevention. Each inode is tagged and synced in one
379          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
380          * the dirty time to prevent enqueue and sync it again.
381          */
382         if ((inode->i_state & I_DIRTY) &&
383             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
384                 inode->dirtied_when = jiffies;
385
386         if (wbc->pages_skipped) {
387                 /*
388                  * writeback is not making progress due to locked
389                  * buffers. Skip this inode for now.
390                  */
391                 redirty_tail(inode, wb);
392                 return;
393         }
394
395         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
396                 /*
397                  * We didn't write back all the pages.  nfs_writepages()
398                  * sometimes bales out without doing anything.
399                  */
400                 if (wbc->nr_to_write <= 0) {
401                         /* Slice used up. Queue for next turn. */
402                         requeue_io(inode, wb);
403                 } else {
404                         /*
405                          * Writeback blocked by something other than
406                          * congestion. Delay the inode for some time to
407                          * avoid spinning on the CPU (100% iowait)
408                          * retrying writeback of the dirty page/inode
409                          * that cannot be performed immediately.
410                          */
411                         redirty_tail(inode, wb);
412                 }
413         } else if (inode->i_state & I_DIRTY) {
414                 /*
415                  * Filesystems can dirty the inode during writeback operations,
416                  * such as delayed allocation during submission or metadata
417                  * updates after data IO completion.
418                  */
419                 redirty_tail(inode, wb);
420         } else {
421                 /* The inode is clean. Remove from writeback lists. */
422                 list_del_init(&inode->i_wb_list);
423         }
424 }
425
426 /*
427  * Write out an inode and its dirty pages. Do not update the writeback list
428  * linkage. That is left to the caller. The caller is also responsible for
429  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
430  */
431 static int
432 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
433 {
434         struct address_space *mapping = inode->i_mapping;
435         long nr_to_write = wbc->nr_to_write;
436         unsigned dirty;
437         int ret;
438
439         WARN_ON(!(inode->i_state & I_SYNC));
440
441         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
442
443         ret = do_writepages(mapping, wbc);
444
445         /*
446          * Make sure to wait on the data before writing out the metadata.
447          * This is important for filesystems that modify metadata on data
448          * I/O completion.
449          */
450         if (wbc->sync_mode == WB_SYNC_ALL) {
451                 int err = filemap_fdatawait(mapping);
452                 if (ret == 0)
453                         ret = err;
454         }
455
456         /*
457          * Some filesystems may redirty the inode during the writeback
458          * due to delalloc, clear dirty metadata flags right before
459          * write_inode()
460          */
461         spin_lock(&inode->i_lock);
462         /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
463         if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
464                 inode->i_state &= ~I_DIRTY_PAGES;
465         dirty = inode->i_state & I_DIRTY;
466         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
467         spin_unlock(&inode->i_lock);
468         /* Don't write the inode if only I_DIRTY_PAGES was set */
469         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
470                 int err = write_inode(inode, wbc);
471                 if (ret == 0)
472                         ret = err;
473         }
474         trace_writeback_single_inode(inode, wbc, nr_to_write);
475         return ret;
476 }
477
478 /*
479  * Write out an inode's dirty pages. Either the caller has an active reference
480  * on the inode or the inode has I_WILL_FREE set.
481  *
482  * This function is designed to be called for writing back one inode which
483  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
484  * and does more profound writeback list handling in writeback_sb_inodes().
485  */
486 static int
487 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
488                        struct writeback_control *wbc)
489 {
490         int ret = 0;
491
492         spin_lock(&inode->i_lock);
493         if (!atomic_read(&inode->i_count))
494                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
495         else
496                 WARN_ON(inode->i_state & I_WILL_FREE);
497
498         if (inode->i_state & I_SYNC) {
499                 if (wbc->sync_mode != WB_SYNC_ALL)
500                         goto out;
501                 /*
502                  * It's a data-integrity sync. We must wait. Since callers hold
503                  * inode reference or inode has I_WILL_FREE set, it cannot go
504                  * away under us.
505                  */
506                 __inode_wait_for_writeback(inode);
507         }
508         WARN_ON(inode->i_state & I_SYNC);
509         /*
510          * Skip inode if it is clean. We don't want to mess with writeback
511          * lists in this function since flusher thread may be doing for example
512          * sync in parallel and if we move the inode, it could get skipped. So
513          * here we make sure inode is on some writeback list and leave it there
514          * unless we have completely cleaned the inode.
515          */
516         if (!(inode->i_state & I_DIRTY))
517                 goto out;
518         inode->i_state |= I_SYNC;
519         spin_unlock(&inode->i_lock);
520
521         ret = __writeback_single_inode(inode, wbc);
522
523         spin_lock(&wb->list_lock);
524         spin_lock(&inode->i_lock);
525         /*
526          * If inode is clean, remove it from writeback lists. Otherwise don't
527          * touch it. See comment above for explanation.
528          */
529         if (!(inode->i_state & I_DIRTY))
530                 list_del_init(&inode->i_wb_list);
531         spin_unlock(&wb->list_lock);
532         inode_sync_complete(inode);
533 out:
534         spin_unlock(&inode->i_lock);
535         return ret;
536 }
537
538 static long writeback_chunk_size(struct backing_dev_info *bdi,
539                                  struct wb_writeback_work *work)
540 {
541         long pages;
542
543         /*
544          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
545          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
546          * here avoids calling into writeback_inodes_wb() more than once.
547          *
548          * The intended call sequence for WB_SYNC_ALL writeback is:
549          *
550          *      wb_writeback()
551          *          writeback_sb_inodes()       <== called only once
552          *              write_cache_pages()     <== called once for each inode
553          *                   (quickly) tag currently dirty pages
554          *                   (maybe slowly) sync all tagged pages
555          */
556         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
557                 pages = LONG_MAX;
558         else {
559                 pages = min(bdi->avg_write_bandwidth / 2,
560                             global_dirty_limit / DIRTY_SCOPE);
561                 pages = min(pages, work->nr_pages);
562                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
563                                    MIN_WRITEBACK_PAGES);
564         }
565
566         return pages;
567 }
568
569 /*
570  * Write a portion of b_io inodes which belong to @sb.
571  *
572  * Return the number of pages and/or inodes written.
573  */
574 static long writeback_sb_inodes(struct super_block *sb,
575                                 struct bdi_writeback *wb,
576                                 struct wb_writeback_work *work)
577 {
578         struct writeback_control wbc = {
579                 .sync_mode              = work->sync_mode,
580                 .tagged_writepages      = work->tagged_writepages,
581                 .for_kupdate            = work->for_kupdate,
582                 .for_background         = work->for_background,
583                 .range_cyclic           = work->range_cyclic,
584                 .range_start            = 0,
585                 .range_end              = LLONG_MAX,
586         };
587         unsigned long start_time = jiffies;
588         long write_chunk;
589         long wrote = 0;  /* count both pages and inodes */
590
591         while (!list_empty(&wb->b_io)) {
592                 struct inode *inode = wb_inode(wb->b_io.prev);
593
594                 if (inode->i_sb != sb) {
595                         if (work->sb) {
596                                 /*
597                                  * We only want to write back data for this
598                                  * superblock, move all inodes not belonging
599                                  * to it back onto the dirty list.
600                                  */
601                                 redirty_tail(inode, wb);
602                                 continue;
603                         }
604
605                         /*
606                          * The inode belongs to a different superblock.
607                          * Bounce back to the caller to unpin this and
608                          * pin the next superblock.
609                          */
610                         break;
611                 }
612
613                 /*
614                  * Don't bother with new inodes or inodes being freed, first
615                  * kind does not need periodic writeout yet, and for the latter
616                  * kind writeout is handled by the freer.
617                  */
618                 spin_lock(&inode->i_lock);
619                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
620                         spin_unlock(&inode->i_lock);
621                         redirty_tail(inode, wb);
622                         continue;
623                 }
624                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
625                         /*
626                          * If this inode is locked for writeback and we are not
627                          * doing writeback-for-data-integrity, move it to
628                          * b_more_io so that writeback can proceed with the
629                          * other inodes on s_io.
630                          *
631                          * We'll have another go at writing back this inode
632                          * when we completed a full scan of b_io.
633                          */
634                         spin_unlock(&inode->i_lock);
635                         requeue_io(inode, wb);
636                         trace_writeback_sb_inodes_requeue(inode);
637                         continue;
638                 }
639                 spin_unlock(&wb->list_lock);
640
641                 /*
642                  * We already requeued the inode if it had I_SYNC set and we
643                  * are doing WB_SYNC_NONE writeback. So this catches only the
644                  * WB_SYNC_ALL case.
645                  */
646                 if (inode->i_state & I_SYNC) {
647                         /* Wait for I_SYNC. This function drops i_lock... */
648                         inode_sleep_on_writeback(inode);
649                         /* Inode may be gone, start again */
650                         spin_lock(&wb->list_lock);
651                         continue;
652                 }
653                 inode->i_state |= I_SYNC;
654                 spin_unlock(&inode->i_lock);
655
656                 write_chunk = writeback_chunk_size(wb->bdi, work);
657                 wbc.nr_to_write = write_chunk;
658                 wbc.pages_skipped = 0;
659
660                 /*
661                  * We use I_SYNC to pin the inode in memory. While it is set
662                  * evict_inode() will wait so the inode cannot be freed.
663                  */
664                 __writeback_single_inode(inode, &wbc);
665
666                 work->nr_pages -= write_chunk - wbc.nr_to_write;
667                 wrote += write_chunk - wbc.nr_to_write;
668                 spin_lock(&wb->list_lock);
669                 spin_lock(&inode->i_lock);
670                 if (!(inode->i_state & I_DIRTY))
671                         wrote++;
672                 requeue_inode(inode, wb, &wbc);
673                 inode_sync_complete(inode);
674                 spin_unlock(&inode->i_lock);
675                 cond_resched_lock(&wb->list_lock);
676                 /*
677                  * bail out to wb_writeback() often enough to check
678                  * background threshold and other termination conditions.
679                  */
680                 if (wrote) {
681                         if (time_is_before_jiffies(start_time + HZ / 10UL))
682                                 break;
683                         if (work->nr_pages <= 0)
684                                 break;
685                 }
686         }
687         return wrote;
688 }
689
690 static long __writeback_inodes_wb(struct bdi_writeback *wb,
691                                   struct wb_writeback_work *work)
692 {
693         unsigned long start_time = jiffies;
694         long wrote = 0;
695
696         while (!list_empty(&wb->b_io)) {
697                 struct inode *inode = wb_inode(wb->b_io.prev);
698                 struct super_block *sb = inode->i_sb;
699
700                 if (!grab_super_passive(sb)) {
701                         /*
702                          * grab_super_passive() may fail consistently due to
703                          * s_umount being grabbed by someone else. Don't use
704                          * requeue_io() to avoid busy retrying the inode/sb.
705                          */
706                         redirty_tail(inode, wb);
707                         continue;
708                 }
709                 wrote += writeback_sb_inodes(sb, wb, work);
710                 drop_super(sb);
711
712                 /* refer to the same tests at the end of writeback_sb_inodes */
713                 if (wrote) {
714                         if (time_is_before_jiffies(start_time + HZ / 10UL))
715                                 break;
716                         if (work->nr_pages <= 0)
717                                 break;
718                 }
719         }
720         /* Leave any unwritten inodes on b_io */
721         return wrote;
722 }
723
724 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
725                                 enum wb_reason reason)
726 {
727         struct wb_writeback_work work = {
728                 .nr_pages       = nr_pages,
729                 .sync_mode      = WB_SYNC_NONE,
730                 .range_cyclic   = 1,
731                 .reason         = reason,
732         };
733
734         spin_lock(&wb->list_lock);
735         if (list_empty(&wb->b_io))
736                 queue_io(wb, &work);
737         __writeback_inodes_wb(wb, &work);
738         spin_unlock(&wb->list_lock);
739
740         return nr_pages - work.nr_pages;
741 }
742
743 static bool over_bground_thresh(struct backing_dev_info *bdi)
744 {
745         unsigned long background_thresh, dirty_thresh;
746
747         global_dirty_limits(&background_thresh, &dirty_thresh);
748
749         if (global_page_state(NR_FILE_DIRTY) +
750             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
751                 return true;
752
753         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
754                                 bdi_dirty_limit(bdi, background_thresh))
755                 return true;
756
757         return false;
758 }
759
760 /*
761  * Called under wb->list_lock. If there are multiple wb per bdi,
762  * only the flusher working on the first wb should do it.
763  */
764 static void wb_update_bandwidth(struct bdi_writeback *wb,
765                                 unsigned long start_time)
766 {
767         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
768 }
769
770 /*
771  * Explicit flushing or periodic writeback of "old" data.
772  *
773  * Define "old": the first time one of an inode's pages is dirtied, we mark the
774  * dirtying-time in the inode's address_space.  So this periodic writeback code
775  * just walks the superblock inode list, writing back any inodes which are
776  * older than a specific point in time.
777  *
778  * Try to run once per dirty_writeback_interval.  But if a writeback event
779  * takes longer than a dirty_writeback_interval interval, then leave a
780  * one-second gap.
781  *
782  * older_than_this takes precedence over nr_to_write.  So we'll only write back
783  * all dirty pages if they are all attached to "old" mappings.
784  */
785 static long wb_writeback(struct bdi_writeback *wb,
786                          struct wb_writeback_work *work)
787 {
788         unsigned long wb_start = jiffies;
789         long nr_pages = work->nr_pages;
790         unsigned long oldest_jif;
791         struct inode *inode;
792         long progress;
793
794         oldest_jif = jiffies;
795         work->older_than_this = &oldest_jif;
796
797         spin_lock(&wb->list_lock);
798         for (;;) {
799                 /*
800                  * Stop writeback when nr_pages has been consumed
801                  */
802                 if (work->nr_pages <= 0)
803                         break;
804
805                 /*
806                  * Background writeout and kupdate-style writeback may
807                  * run forever. Stop them if there is other work to do
808                  * so that e.g. sync can proceed. They'll be restarted
809                  * after the other works are all done.
810                  */
811                 if ((work->for_background || work->for_kupdate) &&
812                     !list_empty(&wb->bdi->work_list))
813                         break;
814
815                 /*
816                  * For background writeout, stop when we are below the
817                  * background dirty threshold
818                  */
819                 if (work->for_background && !over_bground_thresh(wb->bdi))
820                         break;
821
822                 /*
823                  * Kupdate and background works are special and we want to
824                  * include all inodes that need writing. Livelock avoidance is
825                  * handled by these works yielding to any other work so we are
826                  * safe.
827                  */
828                 if (work->for_kupdate) {
829                         oldest_jif = jiffies -
830                                 msecs_to_jiffies(dirty_expire_interval * 10);
831                 } else if (work->for_background)
832                         oldest_jif = jiffies;
833
834                 trace_writeback_start(wb->bdi, work);
835                 if (list_empty(&wb->b_io))
836                         queue_io(wb, work);
837                 if (work->sb)
838                         progress = writeback_sb_inodes(work->sb, wb, work);
839                 else
840                         progress = __writeback_inodes_wb(wb, work);
841                 trace_writeback_written(wb->bdi, work);
842
843                 wb_update_bandwidth(wb, wb_start);
844
845                 /*
846                  * Did we write something? Try for more
847                  *
848                  * Dirty inodes are moved to b_io for writeback in batches.
849                  * The completion of the current batch does not necessarily
850                  * mean the overall work is done. So we keep looping as long
851                  * as made some progress on cleaning pages or inodes.
852                  */
853                 if (progress)
854                         continue;
855                 /*
856                  * No more inodes for IO, bail
857                  */
858                 if (list_empty(&wb->b_more_io))
859                         break;
860                 /*
861                  * Nothing written. Wait for some inode to
862                  * become available for writeback. Otherwise
863                  * we'll just busyloop.
864                  */
865                 if (!list_empty(&wb->b_more_io))  {
866                         trace_writeback_wait(wb->bdi, work);
867                         inode = wb_inode(wb->b_more_io.prev);
868                         spin_lock(&inode->i_lock);
869                         spin_unlock(&wb->list_lock);
870                         /* This function drops i_lock... */
871                         inode_sleep_on_writeback(inode);
872                         spin_lock(&wb->list_lock);
873                 }
874         }
875         spin_unlock(&wb->list_lock);
876
877         return nr_pages - work->nr_pages;
878 }
879
880 /*
881  * Return the next wb_writeback_work struct that hasn't been processed yet.
882  */
883 static struct wb_writeback_work *
884 get_next_work_item(struct backing_dev_info *bdi)
885 {
886         struct wb_writeback_work *work = NULL;
887
888         spin_lock_bh(&bdi->wb_lock);
889         if (!list_empty(&bdi->work_list)) {
890                 work = list_entry(bdi->work_list.next,
891                                   struct wb_writeback_work, list);
892                 list_del_init(&work->list);
893         }
894         spin_unlock_bh(&bdi->wb_lock);
895         return work;
896 }
897
898 /*
899  * Add in the number of potentially dirty inodes, because each inode
900  * write can dirty pagecache in the underlying blockdev.
901  */
902 static unsigned long get_nr_dirty_pages(void)
903 {
904         return global_page_state(NR_FILE_DIRTY) +
905                 global_page_state(NR_UNSTABLE_NFS) +
906                 get_nr_dirty_inodes();
907 }
908
909 static long wb_check_background_flush(struct bdi_writeback *wb)
910 {
911         if (over_bground_thresh(wb->bdi)) {
912
913                 struct wb_writeback_work work = {
914                         .nr_pages       = LONG_MAX,
915                         .sync_mode      = WB_SYNC_NONE,
916                         .for_background = 1,
917                         .range_cyclic   = 1,
918                         .reason         = WB_REASON_BACKGROUND,
919                 };
920
921                 return wb_writeback(wb, &work);
922         }
923
924         return 0;
925 }
926
927 static long wb_check_old_data_flush(struct bdi_writeback *wb)
928 {
929         unsigned long expired;
930         long nr_pages;
931
932         /*
933          * When set to zero, disable periodic writeback
934          */
935         if (!dirty_writeback_interval)
936                 return 0;
937
938         expired = wb->last_old_flush +
939                         msecs_to_jiffies(dirty_writeback_interval * 10);
940         if (time_before(jiffies, expired))
941                 return 0;
942
943         wb->last_old_flush = jiffies;
944         nr_pages = get_nr_dirty_pages();
945
946         if (nr_pages) {
947                 struct wb_writeback_work work = {
948                         .nr_pages       = nr_pages,
949                         .sync_mode      = WB_SYNC_NONE,
950                         .for_kupdate    = 1,
951                         .range_cyclic   = 1,
952                         .reason         = WB_REASON_PERIODIC,
953                 };
954
955                 return wb_writeback(wb, &work);
956         }
957
958         return 0;
959 }
960
961 /*
962  * Retrieve work items and do the writeback they describe
963  */
964 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
965 {
966         struct backing_dev_info *bdi = wb->bdi;
967         struct wb_writeback_work *work;
968         long wrote = 0;
969
970         set_bit(BDI_writeback_running, &wb->bdi->state);
971         while ((work = get_next_work_item(bdi)) != NULL) {
972                 /*
973                  * Override sync mode, in case we must wait for completion
974                  * because this thread is exiting now.
975                  */
976                 if (force_wait)
977                         work->sync_mode = WB_SYNC_ALL;
978
979                 trace_writeback_exec(bdi, work);
980
981                 wrote += wb_writeback(wb, work);
982
983                 /*
984                  * Notify the caller of completion if this is a synchronous
985                  * work item, otherwise just free it.
986                  */
987                 if (work->done)
988                         complete(work->done);
989                 else
990                         kfree(work);
991         }
992
993         /*
994          * Check for periodic writeback, kupdated() style
995          */
996         wrote += wb_check_old_data_flush(wb);
997         wrote += wb_check_background_flush(wb);
998         clear_bit(BDI_writeback_running, &wb->bdi->state);
999
1000         return wrote;
1001 }
1002
1003 /*
1004  * Handle writeback of dirty data for the device backed by this bdi. Also
1005  * reschedules periodically and does kupdated style flushing.
1006  */
1007 void bdi_writeback_workfn(struct work_struct *work)
1008 {
1009         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1010                                                 struct bdi_writeback, dwork);
1011         struct backing_dev_info *bdi = wb->bdi;
1012         long pages_written;
1013
1014         set_worker_desc("flush-%s", dev_name(bdi->dev));
1015         current->flags |= PF_SWAPWRITE;
1016
1017         if (likely(!current_is_workqueue_rescuer() ||
1018                    list_empty(&bdi->bdi_list))) {
1019                 /*
1020                  * The normal path.  Keep writing back @bdi until its
1021                  * work_list is empty.  Note that this path is also taken
1022                  * if @bdi is shutting down even when we're running off the
1023                  * rescuer as work_list needs to be drained.
1024                  */
1025                 do {
1026                         pages_written = wb_do_writeback(wb, 0);
1027                         trace_writeback_pages_written(pages_written);
1028                 } while (!list_empty(&bdi->work_list));
1029         } else {
1030                 /*
1031                  * bdi_wq can't get enough workers and we're running off
1032                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1033                  * enough for efficient IO.
1034                  */
1035                 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1036                                                     WB_REASON_FORKER_THREAD);
1037                 trace_writeback_pages_written(pages_written);
1038         }
1039
1040         if (!list_empty(&bdi->work_list) ||
1041             (wb_has_dirty_io(wb) && dirty_writeback_interval))
1042                 queue_delayed_work(bdi_wq, &wb->dwork,
1043                         msecs_to_jiffies(dirty_writeback_interval * 10));
1044
1045         current->flags &= ~PF_SWAPWRITE;
1046 }
1047
1048 /*
1049  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1050  * the whole world.
1051  */
1052 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1053 {
1054         struct backing_dev_info *bdi;
1055
1056         if (!nr_pages) {
1057                 nr_pages = global_page_state(NR_FILE_DIRTY) +
1058                                 global_page_state(NR_UNSTABLE_NFS);
1059         }
1060
1061         rcu_read_lock();
1062         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1063                 if (!bdi_has_dirty_io(bdi))
1064                         continue;
1065                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1066         }
1067         rcu_read_unlock();
1068 }
1069
1070 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1071 {
1072         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1073                 struct dentry *dentry;
1074                 const char *name = "?";
1075
1076                 dentry = d_find_alias(inode);
1077                 if (dentry) {
1078                         spin_lock(&dentry->d_lock);
1079                         name = (const char *) dentry->d_name.name;
1080                 }
1081                 printk(KERN_DEBUG
1082                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1083                        current->comm, task_pid_nr(current), inode->i_ino,
1084                        name, inode->i_sb->s_id);
1085                 if (dentry) {
1086                         spin_unlock(&dentry->d_lock);
1087                         dput(dentry);
1088                 }
1089         }
1090 }
1091
1092 /**
1093  *      __mark_inode_dirty -    internal function
1094  *      @inode: inode to mark
1095  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1096  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1097  *      mark_inode_dirty_sync.
1098  *
1099  * Put the inode on the super block's dirty list.
1100  *
1101  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1102  * dirty list only if it is hashed or if it refers to a blockdev.
1103  * If it was not hashed, it will never be added to the dirty list
1104  * even if it is later hashed, as it will have been marked dirty already.
1105  *
1106  * In short, make sure you hash any inodes _before_ you start marking
1107  * them dirty.
1108  *
1109  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1110  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1111  * the kernel-internal blockdev inode represents the dirtying time of the
1112  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1113  * page->mapping->host, so the page-dirtying time is recorded in the internal
1114  * blockdev inode.
1115  */
1116 void __mark_inode_dirty(struct inode *inode, int flags)
1117 {
1118         struct super_block *sb = inode->i_sb;
1119         struct backing_dev_info *bdi = NULL;
1120
1121         /*
1122          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1123          * dirty the inode itself
1124          */
1125         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1126                 trace_writeback_dirty_inode_start(inode, flags);
1127
1128                 if (sb->s_op->dirty_inode)
1129                         sb->s_op->dirty_inode(inode, flags);
1130
1131                 trace_writeback_dirty_inode(inode, flags);
1132         }
1133
1134         /*
1135          * make sure that changes are seen by all cpus before we test i_state
1136          * -- mikulas
1137          */
1138         smp_mb();
1139
1140         /* avoid the locking if we can */
1141         if ((inode->i_state & flags) == flags)
1142                 return;
1143
1144         if (unlikely(block_dump))
1145                 block_dump___mark_inode_dirty(inode);
1146
1147         spin_lock(&inode->i_lock);
1148         if ((inode->i_state & flags) != flags) {
1149                 const int was_dirty = inode->i_state & I_DIRTY;
1150
1151                 inode->i_state |= flags;
1152
1153                 /*
1154                  * If the inode is being synced, just update its dirty state.
1155                  * The unlocker will place the inode on the appropriate
1156                  * superblock list, based upon its state.
1157                  */
1158                 if (inode->i_state & I_SYNC)
1159                         goto out_unlock_inode;
1160
1161                 /*
1162                  * Only add valid (hashed) inodes to the superblock's
1163                  * dirty list.  Add blockdev inodes as well.
1164                  */
1165                 if (!S_ISBLK(inode->i_mode)) {
1166                         if (inode_unhashed(inode))
1167                                 goto out_unlock_inode;
1168                 }
1169                 if (inode->i_state & I_FREEING)
1170                         goto out_unlock_inode;
1171
1172                 /*
1173                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1174                  * reposition it (that would break b_dirty time-ordering).
1175                  */
1176                 if (!was_dirty) {
1177                         bool wakeup_bdi = false;
1178                         bdi = inode_to_bdi(inode);
1179
1180                         if (bdi_cap_writeback_dirty(bdi)) {
1181                                 WARN(!test_bit(BDI_registered, &bdi->state),
1182                                      "bdi-%s not registered\n", bdi->name);
1183
1184                                 /*
1185                                  * If this is the first dirty inode for this
1186                                  * bdi, we have to wake-up the corresponding
1187                                  * bdi thread to make sure background
1188                                  * write-back happens later.
1189                                  */
1190                                 if (!wb_has_dirty_io(&bdi->wb))
1191                                         wakeup_bdi = true;
1192                         }
1193
1194                         spin_unlock(&inode->i_lock);
1195                         spin_lock(&bdi->wb.list_lock);
1196                         inode->dirtied_when = jiffies;
1197                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1198                         spin_unlock(&bdi->wb.list_lock);
1199
1200                         if (wakeup_bdi)
1201                                 bdi_wakeup_thread_delayed(bdi);
1202                         return;
1203                 }
1204         }
1205 out_unlock_inode:
1206         spin_unlock(&inode->i_lock);
1207
1208 }
1209 EXPORT_SYMBOL(__mark_inode_dirty);
1210
1211 static void wait_sb_inodes(struct super_block *sb)
1212 {
1213         struct inode *inode, *old_inode = NULL;
1214
1215         /*
1216          * We need to be protected against the filesystem going from
1217          * r/o to r/w or vice versa.
1218          */
1219         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1220
1221         spin_lock(&inode_sb_list_lock);
1222
1223         /*
1224          * Data integrity sync. Must wait for all pages under writeback,
1225          * because there may have been pages dirtied before our sync
1226          * call, but which had writeout started before we write it out.
1227          * In which case, the inode may not be on the dirty list, but
1228          * we still have to wait for that writeout.
1229          */
1230         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1231                 struct address_space *mapping = inode->i_mapping;
1232
1233                 spin_lock(&inode->i_lock);
1234                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1235                     (mapping->nrpages == 0)) {
1236                         spin_unlock(&inode->i_lock);
1237                         continue;
1238                 }
1239                 __iget(inode);
1240                 spin_unlock(&inode->i_lock);
1241                 spin_unlock(&inode_sb_list_lock);
1242
1243                 /*
1244                  * We hold a reference to 'inode' so it couldn't have been
1245                  * removed from s_inodes list while we dropped the
1246                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1247                  * be holding the last reference and we cannot iput it under
1248                  * inode_sb_list_lock. So we keep the reference and iput it
1249                  * later.
1250                  */
1251                 iput(old_inode);
1252                 old_inode = inode;
1253
1254                 filemap_fdatawait(mapping);
1255
1256                 cond_resched();
1257
1258                 spin_lock(&inode_sb_list_lock);
1259         }
1260         spin_unlock(&inode_sb_list_lock);
1261         iput(old_inode);
1262 }
1263
1264 /**
1265  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1266  * @sb: the superblock
1267  * @nr: the number of pages to write
1268  * @reason: reason why some writeback work initiated
1269  *
1270  * Start writeback on some inodes on this super_block. No guarantees are made
1271  * on how many (if any) will be written, and this function does not wait
1272  * for IO completion of submitted IO.
1273  */
1274 void writeback_inodes_sb_nr(struct super_block *sb,
1275                             unsigned long nr,
1276                             enum wb_reason reason)
1277 {
1278         DECLARE_COMPLETION_ONSTACK(done);
1279         struct wb_writeback_work work = {
1280                 .sb                     = sb,
1281                 .sync_mode              = WB_SYNC_NONE,
1282                 .tagged_writepages      = 1,
1283                 .done                   = &done,
1284                 .nr_pages               = nr,
1285                 .reason                 = reason,
1286         };
1287
1288         if (sb->s_bdi == &noop_backing_dev_info)
1289                 return;
1290         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1291         bdi_queue_work(sb->s_bdi, &work);
1292         wait_for_completion(&done);
1293 }
1294 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1295
1296 /**
1297  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1298  * @sb: the superblock
1299  * @reason: reason why some writeback work was initiated
1300  *
1301  * Start writeback on some inodes on this super_block. No guarantees are made
1302  * on how many (if any) will be written, and this function does not wait
1303  * for IO completion of submitted IO.
1304  */
1305 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1306 {
1307         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1308 }
1309 EXPORT_SYMBOL(writeback_inodes_sb);
1310
1311 /**
1312  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1313  * @sb: the superblock
1314  * @nr: the number of pages to write
1315  * @reason: the reason of writeback
1316  *
1317  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1318  * Returns 1 if writeback was started, 0 if not.
1319  */
1320 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1321                                   unsigned long nr,
1322                                   enum wb_reason reason)
1323 {
1324         if (writeback_in_progress(sb->s_bdi))
1325                 return 1;
1326
1327         if (!down_read_trylock(&sb->s_umount))
1328                 return 0;
1329
1330         writeback_inodes_sb_nr(sb, nr, reason);
1331         up_read(&sb->s_umount);
1332         return 1;
1333 }
1334 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1335
1336 /**
1337  * try_to_writeback_inodes_sb - try to start writeback if none underway
1338  * @sb: the superblock
1339  * @reason: reason why some writeback work was initiated
1340  *
1341  * Implement by try_to_writeback_inodes_sb_nr()
1342  * Returns 1 if writeback was started, 0 if not.
1343  */
1344 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1345 {
1346         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1347 }
1348 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1349
1350 /**
1351  * sync_inodes_sb       -       sync sb inode pages
1352  * @sb: the superblock
1353  *
1354  * This function writes and waits on any dirty inode belonging to this
1355  * super_block.
1356  */
1357 void sync_inodes_sb(struct super_block *sb)
1358 {
1359         DECLARE_COMPLETION_ONSTACK(done);
1360         struct wb_writeback_work work = {
1361                 .sb             = sb,
1362                 .sync_mode      = WB_SYNC_ALL,
1363                 .nr_pages       = LONG_MAX,
1364                 .range_cyclic   = 0,
1365                 .done           = &done,
1366                 .reason         = WB_REASON_SYNC,
1367         };
1368
1369         /* Nothing to do? */
1370         if (sb->s_bdi == &noop_backing_dev_info)
1371                 return;
1372         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1373
1374         bdi_queue_work(sb->s_bdi, &work);
1375         wait_for_completion(&done);
1376
1377         wait_sb_inodes(sb);
1378 }
1379 EXPORT_SYMBOL(sync_inodes_sb);
1380
1381 /**
1382  * write_inode_now      -       write an inode to disk
1383  * @inode: inode to write to disk
1384  * @sync: whether the write should be synchronous or not
1385  *
1386  * This function commits an inode to disk immediately if it is dirty. This is
1387  * primarily needed by knfsd.
1388  *
1389  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1390  */
1391 int write_inode_now(struct inode *inode, int sync)
1392 {
1393         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1394         struct writeback_control wbc = {
1395                 .nr_to_write = LONG_MAX,
1396                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1397                 .range_start = 0,
1398                 .range_end = LLONG_MAX,
1399         };
1400
1401         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1402                 wbc.nr_to_write = 0;
1403
1404         might_sleep();
1405         return writeback_single_inode(inode, wb, &wbc);
1406 }
1407 EXPORT_SYMBOL(write_inode_now);
1408
1409 /**
1410  * sync_inode - write an inode and its pages to disk.
1411  * @inode: the inode to sync
1412  * @wbc: controls the writeback mode
1413  *
1414  * sync_inode() will write an inode and its pages to disk.  It will also
1415  * correctly update the inode on its superblock's dirty inode lists and will
1416  * update inode->i_state.
1417  *
1418  * The caller must have a ref on the inode.
1419  */
1420 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1421 {
1422         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1423 }
1424 EXPORT_SYMBOL(sync_inode);
1425
1426 /**
1427  * sync_inode_metadata - write an inode to disk
1428  * @inode: the inode to sync
1429  * @wait: wait for I/O to complete.
1430  *
1431  * Write an inode to disk and adjust its dirty state after completion.
1432  *
1433  * Note: only writes the actual inode, no associated data or other metadata.
1434  */
1435 int sync_inode_metadata(struct inode *inode, int wait)
1436 {
1437         struct writeback_control wbc = {
1438                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1439                 .nr_to_write = 0, /* metadata-only */
1440         };
1441
1442         return sync_inode(inode, &wbc);
1443 }
1444 EXPORT_SYMBOL(sync_inode_metadata);