]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429                                        struct inode *inode,
430                                        struct ext4_map_blocks *es_map,
431                                        struct ext4_map_blocks *map,
432                                        int flags)
433 {
434         int retval;
435
436         map->m_flags = 0;
437         /*
438          * There is a race window that the result is not the same.
439          * e.g. xfstests #223 when dioread_nolock enables.  The reason
440          * is that we lookup a block mapping in extent status tree with
441          * out taking i_data_sem.  So at the time the unwritten extent
442          * could be converted.
443          */
444         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445                 down_read((&EXT4_I(inode)->i_data_sem));
446         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448                                              EXT4_GET_BLOCKS_KEEP_SIZE);
449         } else {
450                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         }
453         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454                 up_read((&EXT4_I(inode)->i_data_sem));
455         /*
456          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457          * because it shouldn't be marked in es_map->m_flags.
458          */
459         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertion failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507         struct ext4_map_blocks orig_map;
508
509         memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512         map->m_flags = 0;
513         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
515                   (unsigned long) map->m_lblk);
516
517         /* Lookup extent status tree firstly */
518         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519                 ext4_es_lru_add(inode);
520                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521                         map->m_pblk = ext4_es_pblock(&es) +
522                                         map->m_lblk - es.es_lblk;
523                         map->m_flags |= ext4_es_is_written(&es) ?
524                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525                         retval = es.es_len - (map->m_lblk - es.es_lblk);
526                         if (retval > map->m_len)
527                                 retval = map->m_len;
528                         map->m_len = retval;
529                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530                         retval = 0;
531                 } else {
532                         BUG_ON(1);
533                 }
534 #ifdef ES_AGGRESSIVE_TEST
535                 ext4_map_blocks_es_recheck(handle, inode, map,
536                                            &orig_map, flags);
537 #endif
538                 goto found;
539         }
540
541         /*
542          * Try to see if we can get the block without requesting a new
543          * file system block.
544          */
545         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546                 down_read((&EXT4_I(inode)->i_data_sem));
547         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549                                              EXT4_GET_BLOCKS_KEEP_SIZE);
550         } else {
551                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552                                              EXT4_GET_BLOCKS_KEEP_SIZE);
553         }
554         if (retval > 0) {
555                 int ret;
556                 unsigned int status;
557
558                 if (unlikely(retval != map->m_len)) {
559                         ext4_warning(inode->i_sb,
560                                      "ES len assertion failed for inode "
561                                      "%lu: retval %d != map->m_len %d",
562                                      inode->i_ino, retval, map->m_len);
563                         WARN_ON(1);
564                 }
565
566                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569                     ext4_find_delalloc_range(inode, map->m_lblk,
570                                              map->m_lblk + map->m_len - 1))
571                         status |= EXTENT_STATUS_DELAYED;
572                 ret = ext4_es_insert_extent(inode, map->m_lblk,
573                                             map->m_len, map->m_pblk, status);
574                 if (ret < 0)
575                         retval = ret;
576         }
577         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578                 up_read((&EXT4_I(inode)->i_data_sem));
579
580 found:
581         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582                 int ret = check_block_validity(inode, map);
583                 if (ret != 0)
584                         return ret;
585         }
586
587         /* If it is only a block(s) look up */
588         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589                 return retval;
590
591         /*
592          * Returns if the blocks have already allocated
593          *
594          * Note that if blocks have been preallocated
595          * ext4_ext_get_block() returns the create = 0
596          * with buffer head unmapped.
597          */
598         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599                 return retval;
600
601         /*
602          * Here we clear m_flags because after allocating an new extent,
603          * it will be set again.
604          */
605         map->m_flags &= ~EXT4_MAP_FLAGS;
606
607         /*
608          * New blocks allocate and/or writing to uninitialized extent
609          * will possibly result in updating i_data, so we take
610          * the write lock of i_data_sem, and call get_blocks()
611          * with create == 1 flag.
612          */
613         down_write((&EXT4_I(inode)->i_data_sem));
614
615         /*
616          * if the caller is from delayed allocation writeout path
617          * we have already reserved fs blocks for allocation
618          * let the underlying get_block() function know to
619          * avoid double accounting
620          */
621         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
623         /*
624          * We need to check for EXT4 here because migrate
625          * could have changed the inode type in between
626          */
627         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
629         } else {
630                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
631
632                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633                         /*
634                          * We allocated new blocks which will result in
635                          * i_data's format changing.  Force the migrate
636                          * to fail by clearing migrate flags
637                          */
638                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639                 }
640
641                 /*
642                  * Update reserved blocks/metadata blocks after successful
643                  * block allocation which had been deferred till now. We don't
644                  * support fallocate for non extent files. So we can update
645                  * reserve space here.
646                  */
647                 if ((retval > 0) &&
648                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649                         ext4_da_update_reserve_space(inode, retval, 1);
650         }
651         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
653
654         if (retval > 0) {
655                 int ret;
656                 unsigned int status;
657
658                 if (unlikely(retval != map->m_len)) {
659                         ext4_warning(inode->i_sb,
660                                      "ES len assertion failed for inode "
661                                      "%lu: retval %d != map->m_len %d",
662                                      inode->i_ino, retval, map->m_len);
663                         WARN_ON(1);
664                 }
665
666                 /*
667                  * If the extent has been zeroed out, we don't need to update
668                  * extent status tree.
669                  */
670                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672                         if (ext4_es_is_written(&es))
673                                 goto has_zeroout;
674                 }
675                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678                     ext4_find_delalloc_range(inode, map->m_lblk,
679                                              map->m_lblk + map->m_len - 1))
680                         status |= EXTENT_STATUS_DELAYED;
681                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682                                             map->m_pblk, status);
683                 if (ret < 0)
684                         retval = ret;
685         }
686
687 has_zeroout:
688         up_write((&EXT4_I(inode)->i_data_sem));
689         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690                 int ret = check_block_validity(inode, map);
691                 if (ret != 0)
692                         return ret;
693         }
694         return retval;
695 }
696
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
699
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701                            struct buffer_head *bh, int flags)
702 {
703         handle_t *handle = ext4_journal_current_handle();
704         struct ext4_map_blocks map;
705         int ret = 0, started = 0;
706         int dio_credits;
707
708         if (ext4_has_inline_data(inode))
709                 return -ERANGE;
710
711         map.m_lblk = iblock;
712         map.m_len = bh->b_size >> inode->i_blkbits;
713
714         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715                 /* Direct IO write... */
716                 if (map.m_len > DIO_MAX_BLOCKS)
717                         map.m_len = DIO_MAX_BLOCKS;
718                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720                                             dio_credits);
721                 if (IS_ERR(handle)) {
722                         ret = PTR_ERR(handle);
723                         return ret;
724                 }
725                 started = 1;
726         }
727
728         ret = ext4_map_blocks(handle, inode, &map, flags);
729         if (ret > 0) {
730                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
731
732                 map_bh(bh, inode->i_sb, map.m_pblk);
733                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
734                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
735                         set_buffer_defer_completion(bh);
736                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737                 ret = 0;
738         }
739         if (started)
740                 ext4_journal_stop(handle);
741         return ret;
742 }
743
744 int ext4_get_block(struct inode *inode, sector_t iblock,
745                    struct buffer_head *bh, int create)
746 {
747         return _ext4_get_block(inode, iblock, bh,
748                                create ? EXT4_GET_BLOCKS_CREATE : 0);
749 }
750
751 /*
752  * `handle' can be NULL if create is zero
753  */
754 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
755                                 ext4_lblk_t block, int create, int *errp)
756 {
757         struct ext4_map_blocks map;
758         struct buffer_head *bh;
759         int fatal = 0, err;
760
761         J_ASSERT(handle != NULL || create == 0);
762
763         map.m_lblk = block;
764         map.m_len = 1;
765         err = ext4_map_blocks(handle, inode, &map,
766                               create ? EXT4_GET_BLOCKS_CREATE : 0);
767
768         /* ensure we send some value back into *errp */
769         *errp = 0;
770
771         if (create && err == 0)
772                 err = -ENOSPC;  /* should never happen */
773         if (err < 0)
774                 *errp = err;
775         if (err <= 0)
776                 return NULL;
777
778         bh = sb_getblk(inode->i_sb, map.m_pblk);
779         if (unlikely(!bh)) {
780                 *errp = -ENOMEM;
781                 return NULL;
782         }
783         if (map.m_flags & EXT4_MAP_NEW) {
784                 J_ASSERT(create != 0);
785                 J_ASSERT(handle != NULL);
786
787                 /*
788                  * Now that we do not always journal data, we should
789                  * keep in mind whether this should always journal the
790                  * new buffer as metadata.  For now, regular file
791                  * writes use ext4_get_block instead, so it's not a
792                  * problem.
793                  */
794                 lock_buffer(bh);
795                 BUFFER_TRACE(bh, "call get_create_access");
796                 fatal = ext4_journal_get_create_access(handle, bh);
797                 if (!fatal && !buffer_uptodate(bh)) {
798                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
799                         set_buffer_uptodate(bh);
800                 }
801                 unlock_buffer(bh);
802                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
803                 err = ext4_handle_dirty_metadata(handle, inode, bh);
804                 if (!fatal)
805                         fatal = err;
806         } else {
807                 BUFFER_TRACE(bh, "not a new buffer");
808         }
809         if (fatal) {
810                 *errp = fatal;
811                 brelse(bh);
812                 bh = NULL;
813         }
814         return bh;
815 }
816
817 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
818                                ext4_lblk_t block, int create, int *err)
819 {
820         struct buffer_head *bh;
821
822         bh = ext4_getblk(handle, inode, block, create, err);
823         if (!bh)
824                 return bh;
825         if (buffer_uptodate(bh))
826                 return bh;
827         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
828         wait_on_buffer(bh);
829         if (buffer_uptodate(bh))
830                 return bh;
831         put_bh(bh);
832         *err = -EIO;
833         return NULL;
834 }
835
836 int ext4_walk_page_buffers(handle_t *handle,
837                            struct buffer_head *head,
838                            unsigned from,
839                            unsigned to,
840                            int *partial,
841                            int (*fn)(handle_t *handle,
842                                      struct buffer_head *bh))
843 {
844         struct buffer_head *bh;
845         unsigned block_start, block_end;
846         unsigned blocksize = head->b_size;
847         int err, ret = 0;
848         struct buffer_head *next;
849
850         for (bh = head, block_start = 0;
851              ret == 0 && (bh != head || !block_start);
852              block_start = block_end, bh = next) {
853                 next = bh->b_this_page;
854                 block_end = block_start + blocksize;
855                 if (block_end <= from || block_start >= to) {
856                         if (partial && !buffer_uptodate(bh))
857                                 *partial = 1;
858                         continue;
859                 }
860                 err = (*fn)(handle, bh);
861                 if (!ret)
862                         ret = err;
863         }
864         return ret;
865 }
866
867 /*
868  * To preserve ordering, it is essential that the hole instantiation and
869  * the data write be encapsulated in a single transaction.  We cannot
870  * close off a transaction and start a new one between the ext4_get_block()
871  * and the commit_write().  So doing the jbd2_journal_start at the start of
872  * prepare_write() is the right place.
873  *
874  * Also, this function can nest inside ext4_writepage().  In that case, we
875  * *know* that ext4_writepage() has generated enough buffer credits to do the
876  * whole page.  So we won't block on the journal in that case, which is good,
877  * because the caller may be PF_MEMALLOC.
878  *
879  * By accident, ext4 can be reentered when a transaction is open via
880  * quota file writes.  If we were to commit the transaction while thus
881  * reentered, there can be a deadlock - we would be holding a quota
882  * lock, and the commit would never complete if another thread had a
883  * transaction open and was blocking on the quota lock - a ranking
884  * violation.
885  *
886  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
887  * will _not_ run commit under these circumstances because handle->h_ref
888  * is elevated.  We'll still have enough credits for the tiny quotafile
889  * write.
890  */
891 int do_journal_get_write_access(handle_t *handle,
892                                 struct buffer_head *bh)
893 {
894         int dirty = buffer_dirty(bh);
895         int ret;
896
897         if (!buffer_mapped(bh) || buffer_freed(bh))
898                 return 0;
899         /*
900          * __block_write_begin() could have dirtied some buffers. Clean
901          * the dirty bit as jbd2_journal_get_write_access() could complain
902          * otherwise about fs integrity issues. Setting of the dirty bit
903          * by __block_write_begin() isn't a real problem here as we clear
904          * the bit before releasing a page lock and thus writeback cannot
905          * ever write the buffer.
906          */
907         if (dirty)
908                 clear_buffer_dirty(bh);
909         ret = ext4_journal_get_write_access(handle, bh);
910         if (!ret && dirty)
911                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
912         return ret;
913 }
914
915 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
916                    struct buffer_head *bh_result, int create);
917 static int ext4_write_begin(struct file *file, struct address_space *mapping,
918                             loff_t pos, unsigned len, unsigned flags,
919                             struct page **pagep, void **fsdata)
920 {
921         struct inode *inode = mapping->host;
922         int ret, needed_blocks;
923         handle_t *handle;
924         int retries = 0;
925         struct page *page;
926         pgoff_t index;
927         unsigned from, to;
928
929         trace_ext4_write_begin(inode, pos, len, flags);
930         /*
931          * Reserve one block more for addition to orphan list in case
932          * we allocate blocks but write fails for some reason
933          */
934         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
935         index = pos >> PAGE_CACHE_SHIFT;
936         from = pos & (PAGE_CACHE_SIZE - 1);
937         to = from + len;
938
939         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
940                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
941                                                     flags, pagep);
942                 if (ret < 0)
943                         return ret;
944                 if (ret == 1)
945                         return 0;
946         }
947
948         /*
949          * grab_cache_page_write_begin() can take a long time if the
950          * system is thrashing due to memory pressure, or if the page
951          * is being written back.  So grab it first before we start
952          * the transaction handle.  This also allows us to allocate
953          * the page (if needed) without using GFP_NOFS.
954          */
955 retry_grab:
956         page = grab_cache_page_write_begin(mapping, index, flags);
957         if (!page)
958                 return -ENOMEM;
959         unlock_page(page);
960
961 retry_journal:
962         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
963         if (IS_ERR(handle)) {
964                 page_cache_release(page);
965                 return PTR_ERR(handle);
966         }
967
968         lock_page(page);
969         if (page->mapping != mapping) {
970                 /* The page got truncated from under us */
971                 unlock_page(page);
972                 page_cache_release(page);
973                 ext4_journal_stop(handle);
974                 goto retry_grab;
975         }
976         /* In case writeback began while the page was unlocked */
977         wait_for_stable_page(page);
978
979         if (ext4_should_dioread_nolock(inode))
980                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
981         else
982                 ret = __block_write_begin(page, pos, len, ext4_get_block);
983
984         if (!ret && ext4_should_journal_data(inode)) {
985                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
986                                              from, to, NULL,
987                                              do_journal_get_write_access);
988         }
989
990         if (ret) {
991                 unlock_page(page);
992                 /*
993                  * __block_write_begin may have instantiated a few blocks
994                  * outside i_size.  Trim these off again. Don't need
995                  * i_size_read because we hold i_mutex.
996                  *
997                  * Add inode to orphan list in case we crash before
998                  * truncate finishes
999                  */
1000                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1001                         ext4_orphan_add(handle, inode);
1002
1003                 ext4_journal_stop(handle);
1004                 if (pos + len > inode->i_size) {
1005                         ext4_truncate_failed_write(inode);
1006                         /*
1007                          * If truncate failed early the inode might
1008                          * still be on the orphan list; we need to
1009                          * make sure the inode is removed from the
1010                          * orphan list in that case.
1011                          */
1012                         if (inode->i_nlink)
1013                                 ext4_orphan_del(NULL, inode);
1014                 }
1015
1016                 if (ret == -ENOSPC &&
1017                     ext4_should_retry_alloc(inode->i_sb, &retries))
1018                         goto retry_journal;
1019                 page_cache_release(page);
1020                 return ret;
1021         }
1022         *pagep = page;
1023         return ret;
1024 }
1025
1026 /* For write_end() in data=journal mode */
1027 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1028 {
1029         int ret;
1030         if (!buffer_mapped(bh) || buffer_freed(bh))
1031                 return 0;
1032         set_buffer_uptodate(bh);
1033         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034         clear_buffer_meta(bh);
1035         clear_buffer_prio(bh);
1036         return ret;
1037 }
1038
1039 /*
1040  * We need to pick up the new inode size which generic_commit_write gave us
1041  * `file' can be NULL - eg, when called from page_symlink().
1042  *
1043  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1044  * buffers are managed internally.
1045  */
1046 static int ext4_write_end(struct file *file,
1047                           struct address_space *mapping,
1048                           loff_t pos, unsigned len, unsigned copied,
1049                           struct page *page, void *fsdata)
1050 {
1051         handle_t *handle = ext4_journal_current_handle();
1052         struct inode *inode = mapping->host;
1053         int ret = 0, ret2;
1054         int i_size_changed = 0;
1055
1056         trace_ext4_write_end(inode, pos, len, copied);
1057         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1058                 ret = ext4_jbd2_file_inode(handle, inode);
1059                 if (ret) {
1060                         unlock_page(page);
1061                         page_cache_release(page);
1062                         goto errout;
1063                 }
1064         }
1065
1066         if (ext4_has_inline_data(inode)) {
1067                 ret = ext4_write_inline_data_end(inode, pos, len,
1068                                                  copied, page);
1069                 if (ret < 0)
1070                         goto errout;
1071                 copied = ret;
1072         } else
1073                 copied = block_write_end(file, mapping, pos,
1074                                          len, copied, page, fsdata);
1075
1076         /*
1077          * No need to use i_size_read() here, the i_size
1078          * cannot change under us because we hole i_mutex.
1079          *
1080          * But it's important to update i_size while still holding page lock:
1081          * page writeout could otherwise come in and zero beyond i_size.
1082          */
1083         if (pos + copied > inode->i_size) {
1084                 i_size_write(inode, pos + copied);
1085                 i_size_changed = 1;
1086         }
1087
1088         if (pos + copied > EXT4_I(inode)->i_disksize) {
1089                 /* We need to mark inode dirty even if
1090                  * new_i_size is less that inode->i_size
1091                  * but greater than i_disksize. (hint delalloc)
1092                  */
1093                 ext4_update_i_disksize(inode, (pos + copied));
1094                 i_size_changed = 1;
1095         }
1096         unlock_page(page);
1097         page_cache_release(page);
1098
1099         /*
1100          * Don't mark the inode dirty under page lock. First, it unnecessarily
1101          * makes the holding time of page lock longer. Second, it forces lock
1102          * ordering of page lock and transaction start for journaling
1103          * filesystems.
1104          */
1105         if (i_size_changed)
1106                 ext4_mark_inode_dirty(handle, inode);
1107
1108         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1109                 /* if we have allocated more blocks and copied
1110                  * less. We will have blocks allocated outside
1111                  * inode->i_size. So truncate them
1112                  */
1113                 ext4_orphan_add(handle, inode);
1114 errout:
1115         ret2 = ext4_journal_stop(handle);
1116         if (!ret)
1117                 ret = ret2;
1118
1119         if (pos + len > inode->i_size) {
1120                 ext4_truncate_failed_write(inode);
1121                 /*
1122                  * If truncate failed early the inode might still be
1123                  * on the orphan list; we need to make sure the inode
1124                  * is removed from the orphan list in that case.
1125                  */
1126                 if (inode->i_nlink)
1127                         ext4_orphan_del(NULL, inode);
1128         }
1129
1130         return ret ? ret : copied;
1131 }
1132
1133 static int ext4_journalled_write_end(struct file *file,
1134                                      struct address_space *mapping,
1135                                      loff_t pos, unsigned len, unsigned copied,
1136                                      struct page *page, void *fsdata)
1137 {
1138         handle_t *handle = ext4_journal_current_handle();
1139         struct inode *inode = mapping->host;
1140         int ret = 0, ret2;
1141         int partial = 0;
1142         unsigned from, to;
1143         loff_t new_i_size;
1144
1145         trace_ext4_journalled_write_end(inode, pos, len, copied);
1146         from = pos & (PAGE_CACHE_SIZE - 1);
1147         to = from + len;
1148
1149         BUG_ON(!ext4_handle_valid(handle));
1150
1151         if (ext4_has_inline_data(inode))
1152                 copied = ext4_write_inline_data_end(inode, pos, len,
1153                                                     copied, page);
1154         else {
1155                 if (copied < len) {
1156                         if (!PageUptodate(page))
1157                                 copied = 0;
1158                         page_zero_new_buffers(page, from+copied, to);
1159                 }
1160
1161                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1162                                              to, &partial, write_end_fn);
1163                 if (!partial)
1164                         SetPageUptodate(page);
1165         }
1166         new_i_size = pos + copied;
1167         if (new_i_size > inode->i_size)
1168                 i_size_write(inode, pos+copied);
1169         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1170         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1171         if (new_i_size > EXT4_I(inode)->i_disksize) {
1172                 ext4_update_i_disksize(inode, new_i_size);
1173                 ret2 = ext4_mark_inode_dirty(handle, inode);
1174                 if (!ret)
1175                         ret = ret2;
1176         }
1177
1178         unlock_page(page);
1179         page_cache_release(page);
1180         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1181                 /* if we have allocated more blocks and copied
1182                  * less. We will have blocks allocated outside
1183                  * inode->i_size. So truncate them
1184                  */
1185                 ext4_orphan_add(handle, inode);
1186
1187         ret2 = ext4_journal_stop(handle);
1188         if (!ret)
1189                 ret = ret2;
1190         if (pos + len > inode->i_size) {
1191                 ext4_truncate_failed_write(inode);
1192                 /*
1193                  * If truncate failed early the inode might still be
1194                  * on the orphan list; we need to make sure the inode
1195                  * is removed from the orphan list in that case.
1196                  */
1197                 if (inode->i_nlink)
1198                         ext4_orphan_del(NULL, inode);
1199         }
1200
1201         return ret ? ret : copied;
1202 }
1203
1204 /*
1205  * Reserve a metadata for a single block located at lblock
1206  */
1207 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1208 {
1209         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1210         struct ext4_inode_info *ei = EXT4_I(inode);
1211         unsigned int md_needed;
1212         ext4_lblk_t save_last_lblock;
1213         int save_len;
1214
1215         /*
1216          * recalculate the amount of metadata blocks to reserve
1217          * in order to allocate nrblocks
1218          * worse case is one extent per block
1219          */
1220         spin_lock(&ei->i_block_reservation_lock);
1221         /*
1222          * ext4_calc_metadata_amount() has side effects, which we have
1223          * to be prepared undo if we fail to claim space.
1224          */
1225         save_len = ei->i_da_metadata_calc_len;
1226         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1227         md_needed = EXT4_NUM_B2C(sbi,
1228                                  ext4_calc_metadata_amount(inode, lblock));
1229         trace_ext4_da_reserve_space(inode, md_needed);
1230
1231         /*
1232          * We do still charge estimated metadata to the sb though;
1233          * we cannot afford to run out of free blocks.
1234          */
1235         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1236                 ei->i_da_metadata_calc_len = save_len;
1237                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1238                 spin_unlock(&ei->i_block_reservation_lock);
1239                 return -ENOSPC;
1240         }
1241         ei->i_reserved_meta_blocks += md_needed;
1242         spin_unlock(&ei->i_block_reservation_lock);
1243
1244         return 0;       /* success */
1245 }
1246
1247 /*
1248  * Reserve a single cluster located at lblock
1249  */
1250 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1251 {
1252         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1253         struct ext4_inode_info *ei = EXT4_I(inode);
1254         unsigned int md_needed;
1255         int ret;
1256         ext4_lblk_t save_last_lblock;
1257         int save_len;
1258
1259         /*
1260          * We will charge metadata quota at writeout time; this saves
1261          * us from metadata over-estimation, though we may go over by
1262          * a small amount in the end.  Here we just reserve for data.
1263          */
1264         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1265         if (ret)
1266                 return ret;
1267
1268         /*
1269          * recalculate the amount of metadata blocks to reserve
1270          * in order to allocate nrblocks
1271          * worse case is one extent per block
1272          */
1273         spin_lock(&ei->i_block_reservation_lock);
1274         /*
1275          * ext4_calc_metadata_amount() has side effects, which we have
1276          * to be prepared undo if we fail to claim space.
1277          */
1278         save_len = ei->i_da_metadata_calc_len;
1279         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1280         md_needed = EXT4_NUM_B2C(sbi,
1281                                  ext4_calc_metadata_amount(inode, lblock));
1282         trace_ext4_da_reserve_space(inode, md_needed);
1283
1284         /*
1285          * We do still charge estimated metadata to the sb though;
1286          * we cannot afford to run out of free blocks.
1287          */
1288         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1289                 ei->i_da_metadata_calc_len = save_len;
1290                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1291                 spin_unlock(&ei->i_block_reservation_lock);
1292                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1293                 return -ENOSPC;
1294         }
1295         ei->i_reserved_data_blocks++;
1296         ei->i_reserved_meta_blocks += md_needed;
1297         spin_unlock(&ei->i_block_reservation_lock);
1298
1299         return 0;       /* success */
1300 }
1301
1302 static void ext4_da_release_space(struct inode *inode, int to_free)
1303 {
1304         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1305         struct ext4_inode_info *ei = EXT4_I(inode);
1306
1307         if (!to_free)
1308                 return;         /* Nothing to release, exit */
1309
1310         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1311
1312         trace_ext4_da_release_space(inode, to_free);
1313         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1314                 /*
1315                  * if there aren't enough reserved blocks, then the
1316                  * counter is messed up somewhere.  Since this
1317                  * function is called from invalidate page, it's
1318                  * harmless to return without any action.
1319                  */
1320                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1321                          "ino %lu, to_free %d with only %d reserved "
1322                          "data blocks", inode->i_ino, to_free,
1323                          ei->i_reserved_data_blocks);
1324                 WARN_ON(1);
1325                 to_free = ei->i_reserved_data_blocks;
1326         }
1327         ei->i_reserved_data_blocks -= to_free;
1328
1329         if (ei->i_reserved_data_blocks == 0) {
1330                 /*
1331                  * We can release all of the reserved metadata blocks
1332                  * only when we have written all of the delayed
1333                  * allocation blocks.
1334                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1335                  * i_reserved_data_blocks, etc. refer to number of clusters.
1336                  */
1337                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1338                                    ei->i_reserved_meta_blocks);
1339                 ei->i_reserved_meta_blocks = 0;
1340                 ei->i_da_metadata_calc_len = 0;
1341         }
1342
1343         /* update fs dirty data blocks counter */
1344         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1345
1346         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1347
1348         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1349 }
1350
1351 static void ext4_da_page_release_reservation(struct page *page,
1352                                              unsigned int offset,
1353                                              unsigned int length)
1354 {
1355         int to_release = 0;
1356         struct buffer_head *head, *bh;
1357         unsigned int curr_off = 0;
1358         struct inode *inode = page->mapping->host;
1359         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1360         unsigned int stop = offset + length;
1361         int num_clusters;
1362         ext4_fsblk_t lblk;
1363
1364         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1365
1366         head = page_buffers(page);
1367         bh = head;
1368         do {
1369                 unsigned int next_off = curr_off + bh->b_size;
1370
1371                 if (next_off > stop)
1372                         break;
1373
1374                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1375                         to_release++;
1376                         clear_buffer_delay(bh);
1377                 }
1378                 curr_off = next_off;
1379         } while ((bh = bh->b_this_page) != head);
1380
1381         if (to_release) {
1382                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1383                 ext4_es_remove_extent(inode, lblk, to_release);
1384         }
1385
1386         /* If we have released all the blocks belonging to a cluster, then we
1387          * need to release the reserved space for that cluster. */
1388         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1389         while (num_clusters > 0) {
1390                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1391                         ((num_clusters - 1) << sbi->s_cluster_bits);
1392                 if (sbi->s_cluster_ratio == 1 ||
1393                     !ext4_find_delalloc_cluster(inode, lblk))
1394                         ext4_da_release_space(inode, 1);
1395
1396                 num_clusters--;
1397         }
1398 }
1399
1400 /*
1401  * Delayed allocation stuff
1402  */
1403
1404 struct mpage_da_data {
1405         struct inode *inode;
1406         struct writeback_control *wbc;
1407
1408         pgoff_t first_page;     /* The first page to write */
1409         pgoff_t next_page;      /* Current page to examine */
1410         pgoff_t last_page;      /* Last page to examine */
1411         /*
1412          * Extent to map - this can be after first_page because that can be
1413          * fully mapped. We somewhat abuse m_flags to store whether the extent
1414          * is delalloc or unwritten.
1415          */
1416         struct ext4_map_blocks map;
1417         struct ext4_io_submit io_submit;        /* IO submission data */
1418 };
1419
1420 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1421                                        bool invalidate)
1422 {
1423         int nr_pages, i;
1424         pgoff_t index, end;
1425         struct pagevec pvec;
1426         struct inode *inode = mpd->inode;
1427         struct address_space *mapping = inode->i_mapping;
1428
1429         /* This is necessary when next_page == 0. */
1430         if (mpd->first_page >= mpd->next_page)
1431                 return;
1432
1433         index = mpd->first_page;
1434         end   = mpd->next_page - 1;
1435         if (invalidate) {
1436                 ext4_lblk_t start, last;
1437                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1438                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1439                 ext4_es_remove_extent(inode, start, last - start + 1);
1440         }
1441
1442         pagevec_init(&pvec, 0);
1443         while (index <= end) {
1444                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1445                 if (nr_pages == 0)
1446                         break;
1447                 for (i = 0; i < nr_pages; i++) {
1448                         struct page *page = pvec.pages[i];
1449                         if (page->index > end)
1450                                 break;
1451                         BUG_ON(!PageLocked(page));
1452                         BUG_ON(PageWriteback(page));
1453                         if (invalidate) {
1454                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1455                                 ClearPageUptodate(page);
1456                         }
1457                         unlock_page(page);
1458                 }
1459                 index = pvec.pages[nr_pages - 1]->index + 1;
1460                 pagevec_release(&pvec);
1461         }
1462 }
1463
1464 static void ext4_print_free_blocks(struct inode *inode)
1465 {
1466         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1467         struct super_block *sb = inode->i_sb;
1468         struct ext4_inode_info *ei = EXT4_I(inode);
1469
1470         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1471                EXT4_C2B(EXT4_SB(inode->i_sb),
1472                         ext4_count_free_clusters(sb)));
1473         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1474         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1475                (long long) EXT4_C2B(EXT4_SB(sb),
1476                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1477         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1478                (long long) EXT4_C2B(EXT4_SB(sb),
1479                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1480         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1481         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1482                  ei->i_reserved_data_blocks);
1483         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1484                ei->i_reserved_meta_blocks);
1485         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1486                ei->i_allocated_meta_blocks);
1487         return;
1488 }
1489
1490 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1491 {
1492         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1493 }
1494
1495 /*
1496  * This function is grabs code from the very beginning of
1497  * ext4_map_blocks, but assumes that the caller is from delayed write
1498  * time. This function looks up the requested blocks and sets the
1499  * buffer delay bit under the protection of i_data_sem.
1500  */
1501 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1502                               struct ext4_map_blocks *map,
1503                               struct buffer_head *bh)
1504 {
1505         struct extent_status es;
1506         int retval;
1507         sector_t invalid_block = ~((sector_t) 0xffff);
1508 #ifdef ES_AGGRESSIVE_TEST
1509         struct ext4_map_blocks orig_map;
1510
1511         memcpy(&orig_map, map, sizeof(*map));
1512 #endif
1513
1514         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1515                 invalid_block = ~0;
1516
1517         map->m_flags = 0;
1518         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1519                   "logical block %lu\n", inode->i_ino, map->m_len,
1520                   (unsigned long) map->m_lblk);
1521
1522         /* Lookup extent status tree firstly */
1523         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1524                 ext4_es_lru_add(inode);
1525                 if (ext4_es_is_hole(&es)) {
1526                         retval = 0;
1527                         down_read((&EXT4_I(inode)->i_data_sem));
1528                         goto add_delayed;
1529                 }
1530
1531                 /*
1532                  * Delayed extent could be allocated by fallocate.
1533                  * So we need to check it.
1534                  */
1535                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1536                         map_bh(bh, inode->i_sb, invalid_block);
1537                         set_buffer_new(bh);
1538                         set_buffer_delay(bh);
1539                         return 0;
1540                 }
1541
1542                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1543                 retval = es.es_len - (iblock - es.es_lblk);
1544                 if (retval > map->m_len)
1545                         retval = map->m_len;
1546                 map->m_len = retval;
1547                 if (ext4_es_is_written(&es))
1548                         map->m_flags |= EXT4_MAP_MAPPED;
1549                 else if (ext4_es_is_unwritten(&es))
1550                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1551                 else
1552                         BUG_ON(1);
1553
1554 #ifdef ES_AGGRESSIVE_TEST
1555                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1556 #endif
1557                 return retval;
1558         }
1559
1560         /*
1561          * Try to see if we can get the block without requesting a new
1562          * file system block.
1563          */
1564         down_read((&EXT4_I(inode)->i_data_sem));
1565         if (ext4_has_inline_data(inode)) {
1566                 /*
1567                  * We will soon create blocks for this page, and let
1568                  * us pretend as if the blocks aren't allocated yet.
1569                  * In case of clusters, we have to handle the work
1570                  * of mapping from cluster so that the reserved space
1571                  * is calculated properly.
1572                  */
1573                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1574                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1575                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1576                 retval = 0;
1577         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1578                 retval = ext4_ext_map_blocks(NULL, inode, map,
1579                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1580         else
1581                 retval = ext4_ind_map_blocks(NULL, inode, map,
1582                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1583
1584 add_delayed:
1585         if (retval == 0) {
1586                 int ret;
1587                 /*
1588                  * XXX: __block_prepare_write() unmaps passed block,
1589                  * is it OK?
1590                  */
1591                 /*
1592                  * If the block was allocated from previously allocated cluster,
1593                  * then we don't need to reserve it again. However we still need
1594                  * to reserve metadata for every block we're going to write.
1595                  */
1596                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1597                         ret = ext4_da_reserve_space(inode, iblock);
1598                         if (ret) {
1599                                 /* not enough space to reserve */
1600                                 retval = ret;
1601                                 goto out_unlock;
1602                         }
1603                 } else {
1604                         ret = ext4_da_reserve_metadata(inode, iblock);
1605                         if (ret) {
1606                                 /* not enough space to reserve */
1607                                 retval = ret;
1608                                 goto out_unlock;
1609                         }
1610                 }
1611
1612                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1613                                             ~0, EXTENT_STATUS_DELAYED);
1614                 if (ret) {
1615                         retval = ret;
1616                         goto out_unlock;
1617                 }
1618
1619                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1620                  * and it should not appear on the bh->b_state.
1621                  */
1622                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1623
1624                 map_bh(bh, inode->i_sb, invalid_block);
1625                 set_buffer_new(bh);
1626                 set_buffer_delay(bh);
1627         } else if (retval > 0) {
1628                 int ret;
1629                 unsigned int status;
1630
1631                 if (unlikely(retval != map->m_len)) {
1632                         ext4_warning(inode->i_sb,
1633                                      "ES len assertion failed for inode "
1634                                      "%lu: retval %d != map->m_len %d",
1635                                      inode->i_ino, retval, map->m_len);
1636                         WARN_ON(1);
1637                 }
1638
1639                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1640                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1641                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1642                                             map->m_pblk, status);
1643                 if (ret != 0)
1644                         retval = ret;
1645         }
1646
1647 out_unlock:
1648         up_read((&EXT4_I(inode)->i_data_sem));
1649
1650         return retval;
1651 }
1652
1653 /*
1654  * This is a special get_blocks_t callback which is used by
1655  * ext4_da_write_begin().  It will either return mapped block or
1656  * reserve space for a single block.
1657  *
1658  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1659  * We also have b_blocknr = -1 and b_bdev initialized properly
1660  *
1661  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1662  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1663  * initialized properly.
1664  */
1665 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1666                            struct buffer_head *bh, int create)
1667 {
1668         struct ext4_map_blocks map;
1669         int ret = 0;
1670
1671         BUG_ON(create == 0);
1672         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1673
1674         map.m_lblk = iblock;
1675         map.m_len = 1;
1676
1677         /*
1678          * first, we need to know whether the block is allocated already
1679          * preallocated blocks are unmapped but should treated
1680          * the same as allocated blocks.
1681          */
1682         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1683         if (ret <= 0)
1684                 return ret;
1685
1686         map_bh(bh, inode->i_sb, map.m_pblk);
1687         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1688
1689         if (buffer_unwritten(bh)) {
1690                 /* A delayed write to unwritten bh should be marked
1691                  * new and mapped.  Mapped ensures that we don't do
1692                  * get_block multiple times when we write to the same
1693                  * offset and new ensures that we do proper zero out
1694                  * for partial write.
1695                  */
1696                 set_buffer_new(bh);
1697                 set_buffer_mapped(bh);
1698         }
1699         return 0;
1700 }
1701
1702 static int bget_one(handle_t *handle, struct buffer_head *bh)
1703 {
1704         get_bh(bh);
1705         return 0;
1706 }
1707
1708 static int bput_one(handle_t *handle, struct buffer_head *bh)
1709 {
1710         put_bh(bh);
1711         return 0;
1712 }
1713
1714 static int __ext4_journalled_writepage(struct page *page,
1715                                        unsigned int len)
1716 {
1717         struct address_space *mapping = page->mapping;
1718         struct inode *inode = mapping->host;
1719         struct buffer_head *page_bufs = NULL;
1720         handle_t *handle = NULL;
1721         int ret = 0, err = 0;
1722         int inline_data = ext4_has_inline_data(inode);
1723         struct buffer_head *inode_bh = NULL;
1724
1725         ClearPageChecked(page);
1726
1727         if (inline_data) {
1728                 BUG_ON(page->index != 0);
1729                 BUG_ON(len > ext4_get_max_inline_size(inode));
1730                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1731                 if (inode_bh == NULL)
1732                         goto out;
1733         } else {
1734                 page_bufs = page_buffers(page);
1735                 if (!page_bufs) {
1736                         BUG();
1737                         goto out;
1738                 }
1739                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1740                                        NULL, bget_one);
1741         }
1742         /* As soon as we unlock the page, it can go away, but we have
1743          * references to buffers so we are safe */
1744         unlock_page(page);
1745
1746         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1747                                     ext4_writepage_trans_blocks(inode));
1748         if (IS_ERR(handle)) {
1749                 ret = PTR_ERR(handle);
1750                 goto out;
1751         }
1752
1753         BUG_ON(!ext4_handle_valid(handle));
1754
1755         if (inline_data) {
1756                 ret = ext4_journal_get_write_access(handle, inode_bh);
1757
1758                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1759
1760         } else {
1761                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1762                                              do_journal_get_write_access);
1763
1764                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1765                                              write_end_fn);
1766         }
1767         if (ret == 0)
1768                 ret = err;
1769         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1770         err = ext4_journal_stop(handle);
1771         if (!ret)
1772                 ret = err;
1773
1774         if (!ext4_has_inline_data(inode))
1775                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1776                                        NULL, bput_one);
1777         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1778 out:
1779         brelse(inode_bh);
1780         return ret;
1781 }
1782
1783 /*
1784  * Note that we don't need to start a transaction unless we're journaling data
1785  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1786  * need to file the inode to the transaction's list in ordered mode because if
1787  * we are writing back data added by write(), the inode is already there and if
1788  * we are writing back data modified via mmap(), no one guarantees in which
1789  * transaction the data will hit the disk. In case we are journaling data, we
1790  * cannot start transaction directly because transaction start ranks above page
1791  * lock so we have to do some magic.
1792  *
1793  * This function can get called via...
1794  *   - ext4_writepages after taking page lock (have journal handle)
1795  *   - journal_submit_inode_data_buffers (no journal handle)
1796  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1797  *   - grab_page_cache when doing write_begin (have journal handle)
1798  *
1799  * We don't do any block allocation in this function. If we have page with
1800  * multiple blocks we need to write those buffer_heads that are mapped. This
1801  * is important for mmaped based write. So if we do with blocksize 1K
1802  * truncate(f, 1024);
1803  * a = mmap(f, 0, 4096);
1804  * a[0] = 'a';
1805  * truncate(f, 4096);
1806  * we have in the page first buffer_head mapped via page_mkwrite call back
1807  * but other buffer_heads would be unmapped but dirty (dirty done via the
1808  * do_wp_page). So writepage should write the first block. If we modify
1809  * the mmap area beyond 1024 we will again get a page_fault and the
1810  * page_mkwrite callback will do the block allocation and mark the
1811  * buffer_heads mapped.
1812  *
1813  * We redirty the page if we have any buffer_heads that is either delay or
1814  * unwritten in the page.
1815  *
1816  * We can get recursively called as show below.
1817  *
1818  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1819  *              ext4_writepage()
1820  *
1821  * But since we don't do any block allocation we should not deadlock.
1822  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1823  */
1824 static int ext4_writepage(struct page *page,
1825                           struct writeback_control *wbc)
1826 {
1827         int ret = 0;
1828         loff_t size;
1829         unsigned int len;
1830         struct buffer_head *page_bufs = NULL;
1831         struct inode *inode = page->mapping->host;
1832         struct ext4_io_submit io_submit;
1833
1834         trace_ext4_writepage(page);
1835         size = i_size_read(inode);
1836         if (page->index == size >> PAGE_CACHE_SHIFT)
1837                 len = size & ~PAGE_CACHE_MASK;
1838         else
1839                 len = PAGE_CACHE_SIZE;
1840
1841         page_bufs = page_buffers(page);
1842         /*
1843          * We cannot do block allocation or other extent handling in this
1844          * function. If there are buffers needing that, we have to redirty
1845          * the page. But we may reach here when we do a journal commit via
1846          * journal_submit_inode_data_buffers() and in that case we must write
1847          * allocated buffers to achieve data=ordered mode guarantees.
1848          */
1849         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1850                                    ext4_bh_delay_or_unwritten)) {
1851                 redirty_page_for_writepage(wbc, page);
1852                 if (current->flags & PF_MEMALLOC) {
1853                         /*
1854                          * For memory cleaning there's no point in writing only
1855                          * some buffers. So just bail out. Warn if we came here
1856                          * from direct reclaim.
1857                          */
1858                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1859                                                         == PF_MEMALLOC);
1860                         unlock_page(page);
1861                         return 0;
1862                 }
1863         }
1864
1865         if (PageChecked(page) && ext4_should_journal_data(inode))
1866                 /*
1867                  * It's mmapped pagecache.  Add buffers and journal it.  There
1868                  * doesn't seem much point in redirtying the page here.
1869                  */
1870                 return __ext4_journalled_writepage(page, len);
1871
1872         ext4_io_submit_init(&io_submit, wbc);
1873         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1874         if (!io_submit.io_end) {
1875                 redirty_page_for_writepage(wbc, page);
1876                 unlock_page(page);
1877                 return -ENOMEM;
1878         }
1879         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1880         ext4_io_submit(&io_submit);
1881         /* Drop io_end reference we got from init */
1882         ext4_put_io_end_defer(io_submit.io_end);
1883         return ret;
1884 }
1885
1886 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1887 {
1888         int len;
1889         loff_t size = i_size_read(mpd->inode);
1890         int err;
1891
1892         BUG_ON(page->index != mpd->first_page);
1893         if (page->index == size >> PAGE_CACHE_SHIFT)
1894                 len = size & ~PAGE_CACHE_MASK;
1895         else
1896                 len = PAGE_CACHE_SIZE;
1897         clear_page_dirty_for_io(page);
1898         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1899         if (!err)
1900                 mpd->wbc->nr_to_write--;
1901         mpd->first_page++;
1902
1903         return err;
1904 }
1905
1906 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1907
1908 /*
1909  * mballoc gives us at most this number of blocks...
1910  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1911  * The rest of mballoc seems to handle chunks up to full group size.
1912  */
1913 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1914
1915 /*
1916  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1917  *
1918  * @mpd - extent of blocks
1919  * @lblk - logical number of the block in the file
1920  * @bh - buffer head we want to add to the extent
1921  *
1922  * The function is used to collect contig. blocks in the same state. If the
1923  * buffer doesn't require mapping for writeback and we haven't started the
1924  * extent of buffers to map yet, the function returns 'true' immediately - the
1925  * caller can write the buffer right away. Otherwise the function returns true
1926  * if the block has been added to the extent, false if the block couldn't be
1927  * added.
1928  */
1929 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1930                                    struct buffer_head *bh)
1931 {
1932         struct ext4_map_blocks *map = &mpd->map;
1933
1934         /* Buffer that doesn't need mapping for writeback? */
1935         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1936             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1937                 /* So far no extent to map => we write the buffer right away */
1938                 if (map->m_len == 0)
1939                         return true;
1940                 return false;
1941         }
1942
1943         /* First block in the extent? */
1944         if (map->m_len == 0) {
1945                 map->m_lblk = lblk;
1946                 map->m_len = 1;
1947                 map->m_flags = bh->b_state & BH_FLAGS;
1948                 return true;
1949         }
1950
1951         /* Don't go larger than mballoc is willing to allocate */
1952         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1953                 return false;
1954
1955         /* Can we merge the block to our big extent? */
1956         if (lblk == map->m_lblk + map->m_len &&
1957             (bh->b_state & BH_FLAGS) == map->m_flags) {
1958                 map->m_len++;
1959                 return true;
1960         }
1961         return false;
1962 }
1963
1964 /*
1965  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1966  *
1967  * @mpd - extent of blocks for mapping
1968  * @head - the first buffer in the page
1969  * @bh - buffer we should start processing from
1970  * @lblk - logical number of the block in the file corresponding to @bh
1971  *
1972  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1973  * the page for IO if all buffers in this page were mapped and there's no
1974  * accumulated extent of buffers to map or add buffers in the page to the
1975  * extent of buffers to map. The function returns 1 if the caller can continue
1976  * by processing the next page, 0 if it should stop adding buffers to the
1977  * extent to map because we cannot extend it anymore. It can also return value
1978  * < 0 in case of error during IO submission.
1979  */
1980 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1981                                    struct buffer_head *head,
1982                                    struct buffer_head *bh,
1983                                    ext4_lblk_t lblk)
1984 {
1985         struct inode *inode = mpd->inode;
1986         int err;
1987         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1988                                                         >> inode->i_blkbits;
1989
1990         do {
1991                 BUG_ON(buffer_locked(bh));
1992
1993                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1994                         /* Found extent to map? */
1995                         if (mpd->map.m_len)
1996                                 return 0;
1997                         /* Everything mapped so far and we hit EOF */
1998                         break;
1999                 }
2000         } while (lblk++, (bh = bh->b_this_page) != head);
2001         /* So far everything mapped? Submit the page for IO. */
2002         if (mpd->map.m_len == 0) {
2003                 err = mpage_submit_page(mpd, head->b_page);
2004                 if (err < 0)
2005                         return err;
2006         }
2007         return lblk < blocks;
2008 }
2009
2010 /*
2011  * mpage_map_buffers - update buffers corresponding to changed extent and
2012  *                     submit fully mapped pages for IO
2013  *
2014  * @mpd - description of extent to map, on return next extent to map
2015  *
2016  * Scan buffers corresponding to changed extent (we expect corresponding pages
2017  * to be already locked) and update buffer state according to new extent state.
2018  * We map delalloc buffers to their physical location, clear unwritten bits,
2019  * and mark buffers as uninit when we perform writes to uninitialized extents
2020  * and do extent conversion after IO is finished. If the last page is not fully
2021  * mapped, we update @map to the next extent in the last page that needs
2022  * mapping. Otherwise we submit the page for IO.
2023  */
2024 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2025 {
2026         struct pagevec pvec;
2027         int nr_pages, i;
2028         struct inode *inode = mpd->inode;
2029         struct buffer_head *head, *bh;
2030         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2031         pgoff_t start, end;
2032         ext4_lblk_t lblk;
2033         sector_t pblock;
2034         int err;
2035
2036         start = mpd->map.m_lblk >> bpp_bits;
2037         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2038         lblk = start << bpp_bits;
2039         pblock = mpd->map.m_pblk;
2040
2041         pagevec_init(&pvec, 0);
2042         while (start <= end) {
2043                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2044                                           PAGEVEC_SIZE);
2045                 if (nr_pages == 0)
2046                         break;
2047                 for (i = 0; i < nr_pages; i++) {
2048                         struct page *page = pvec.pages[i];
2049
2050                         if (page->index > end)
2051                                 break;
2052                         /* Up to 'end' pages must be contiguous */
2053                         BUG_ON(page->index != start);
2054                         bh = head = page_buffers(page);
2055                         do {
2056                                 if (lblk < mpd->map.m_lblk)
2057                                         continue;
2058                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2059                                         /*
2060                                          * Buffer after end of mapped extent.
2061                                          * Find next buffer in the page to map.
2062                                          */
2063                                         mpd->map.m_len = 0;
2064                                         mpd->map.m_flags = 0;
2065                                         /*
2066                                          * FIXME: If dioread_nolock supports
2067                                          * blocksize < pagesize, we need to make
2068                                          * sure we add size mapped so far to
2069                                          * io_end->size as the following call
2070                                          * can submit the page for IO.
2071                                          */
2072                                         err = mpage_process_page_bufs(mpd, head,
2073                                                                       bh, lblk);
2074                                         pagevec_release(&pvec);
2075                                         if (err > 0)
2076                                                 err = 0;
2077                                         return err;
2078                                 }
2079                                 if (buffer_delay(bh)) {
2080                                         clear_buffer_delay(bh);
2081                                         bh->b_blocknr = pblock++;
2082                                 }
2083                                 clear_buffer_unwritten(bh);
2084                         } while (lblk++, (bh = bh->b_this_page) != head);
2085
2086                         /*
2087                          * FIXME: This is going to break if dioread_nolock
2088                          * supports blocksize < pagesize as we will try to
2089                          * convert potentially unmapped parts of inode.
2090                          */
2091                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2092                         /* Page fully mapped - let IO run! */
2093                         err = mpage_submit_page(mpd, page);
2094                         if (err < 0) {
2095                                 pagevec_release(&pvec);
2096                                 return err;
2097                         }
2098                         start++;
2099                 }
2100                 pagevec_release(&pvec);
2101         }
2102         /* Extent fully mapped and matches with page boundary. We are done. */
2103         mpd->map.m_len = 0;
2104         mpd->map.m_flags = 0;
2105         return 0;
2106 }
2107
2108 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2109 {
2110         struct inode *inode = mpd->inode;
2111         struct ext4_map_blocks *map = &mpd->map;
2112         int get_blocks_flags;
2113         int err;
2114
2115         trace_ext4_da_write_pages_extent(inode, map);
2116         /*
2117          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2118          * to convert an uninitialized extent to be initialized (in the case
2119          * where we have written into one or more preallocated blocks).  It is
2120          * possible that we're going to need more metadata blocks than
2121          * previously reserved. However we must not fail because we're in
2122          * writeback and there is nothing we can do about it so it might result
2123          * in data loss.  So use reserved blocks to allocate metadata if
2124          * possible.
2125          *
2126          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2127          * in question are delalloc blocks.  This affects functions in many
2128          * different parts of the allocation call path.  This flag exists
2129          * primarily because we don't want to change *many* call functions, so
2130          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2131          * once the inode's allocation semaphore is taken.
2132          */
2133         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2134                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2135         if (ext4_should_dioread_nolock(inode))
2136                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2137         if (map->m_flags & (1 << BH_Delay))
2138                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2139
2140         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2141         if (err < 0)
2142                 return err;
2143         if (map->m_flags & EXT4_MAP_UNINIT) {
2144                 if (!mpd->io_submit.io_end->handle &&
2145                     ext4_handle_valid(handle)) {
2146                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2147                         handle->h_rsv_handle = NULL;
2148                 }
2149                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2150         }
2151
2152         BUG_ON(map->m_len == 0);
2153         if (map->m_flags & EXT4_MAP_NEW) {
2154                 struct block_device *bdev = inode->i_sb->s_bdev;
2155                 int i;
2156
2157                 for (i = 0; i < map->m_len; i++)
2158                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2159         }
2160         return 0;
2161 }
2162
2163 /*
2164  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2165  *                               mpd->len and submit pages underlying it for IO
2166  *
2167  * @handle - handle for journal operations
2168  * @mpd - extent to map
2169  * @give_up_on_write - we set this to true iff there is a fatal error and there
2170  *                     is no hope of writing the data. The caller should discard
2171  *                     dirty pages to avoid infinite loops.
2172  *
2173  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2174  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2175  * them to initialized or split the described range from larger unwritten
2176  * extent. Note that we need not map all the described range since allocation
2177  * can return less blocks or the range is covered by more unwritten extents. We
2178  * cannot map more because we are limited by reserved transaction credits. On
2179  * the other hand we always make sure that the last touched page is fully
2180  * mapped so that it can be written out (and thus forward progress is
2181  * guaranteed). After mapping we submit all mapped pages for IO.
2182  */
2183 static int mpage_map_and_submit_extent(handle_t *handle,
2184                                        struct mpage_da_data *mpd,
2185                                        bool *give_up_on_write)
2186 {
2187         struct inode *inode = mpd->inode;
2188         struct ext4_map_blocks *map = &mpd->map;
2189         int err;
2190         loff_t disksize;
2191
2192         mpd->io_submit.io_end->offset =
2193                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2194         do {
2195                 err = mpage_map_one_extent(handle, mpd);
2196                 if (err < 0) {
2197                         struct super_block *sb = inode->i_sb;
2198
2199                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2200                                 goto invalidate_dirty_pages;
2201                         /*
2202                          * Let the uper layers retry transient errors.
2203                          * In the case of ENOSPC, if ext4_count_free_blocks()
2204                          * is non-zero, a commit should free up blocks.
2205                          */
2206                         if ((err == -ENOMEM) ||
2207                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2208                                 return err;
2209                         ext4_msg(sb, KERN_CRIT,
2210                                  "Delayed block allocation failed for "
2211                                  "inode %lu at logical offset %llu with"
2212                                  " max blocks %u with error %d",
2213                                  inode->i_ino,
2214                                  (unsigned long long)map->m_lblk,
2215                                  (unsigned)map->m_len, -err);
2216                         ext4_msg(sb, KERN_CRIT,
2217                                  "This should not happen!! Data will "
2218                                  "be lost\n");
2219                         if (err == -ENOSPC)
2220                                 ext4_print_free_blocks(inode);
2221                 invalidate_dirty_pages:
2222                         *give_up_on_write = true;
2223                         return err;
2224                 }
2225                 /*
2226                  * Update buffer state, submit mapped pages, and get us new
2227                  * extent to map
2228                  */
2229                 err = mpage_map_and_submit_buffers(mpd);
2230                 if (err < 0)
2231                         return err;
2232         } while (map->m_len);
2233
2234         /* Update on-disk size after IO is submitted */
2235         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2236         if (disksize > EXT4_I(inode)->i_disksize) {
2237                 int err2;
2238
2239                 ext4_wb_update_i_disksize(inode, disksize);
2240                 err2 = ext4_mark_inode_dirty(handle, inode);
2241                 if (err2)
2242                         ext4_error(inode->i_sb,
2243                                    "Failed to mark inode %lu dirty",
2244                                    inode->i_ino);
2245                 if (!err)
2246                         err = err2;
2247         }
2248         return err;
2249 }
2250
2251 /*
2252  * Calculate the total number of credits to reserve for one writepages
2253  * iteration. This is called from ext4_writepages(). We map an extent of
2254  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2255  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2256  * bpp - 1 blocks in bpp different extents.
2257  */
2258 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2259 {
2260         int bpp = ext4_journal_blocks_per_page(inode);
2261
2262         return ext4_meta_trans_blocks(inode,
2263                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2264 }
2265
2266 /*
2267  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2268  *                               and underlying extent to map
2269  *
2270  * @mpd - where to look for pages
2271  *
2272  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2273  * IO immediately. When we find a page which isn't mapped we start accumulating
2274  * extent of buffers underlying these pages that needs mapping (formed by
2275  * either delayed or unwritten buffers). We also lock the pages containing
2276  * these buffers. The extent found is returned in @mpd structure (starting at
2277  * mpd->lblk with length mpd->len blocks).
2278  *
2279  * Note that this function can attach bios to one io_end structure which are
2280  * neither logically nor physically contiguous. Although it may seem as an
2281  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2282  * case as we need to track IO to all buffers underlying a page in one io_end.
2283  */
2284 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2285 {
2286         struct address_space *mapping = mpd->inode->i_mapping;
2287         struct pagevec pvec;
2288         unsigned int nr_pages;
2289         long left = mpd->wbc->nr_to_write;
2290         pgoff_t index = mpd->first_page;
2291         pgoff_t end = mpd->last_page;
2292         int tag;
2293         int i, err = 0;
2294         int blkbits = mpd->inode->i_blkbits;
2295         ext4_lblk_t lblk;
2296         struct buffer_head *head;
2297
2298         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2299                 tag = PAGECACHE_TAG_TOWRITE;
2300         else
2301                 tag = PAGECACHE_TAG_DIRTY;
2302
2303         pagevec_init(&pvec, 0);
2304         mpd->map.m_len = 0;
2305         mpd->next_page = index;
2306         while (index <= end) {
2307                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2308                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2309                 if (nr_pages == 0)
2310                         goto out;
2311
2312                 for (i = 0; i < nr_pages; i++) {
2313                         struct page *page = pvec.pages[i];
2314
2315                         /*
2316                          * At this point, the page may be truncated or
2317                          * invalidated (changing page->mapping to NULL), or
2318                          * even swizzled back from swapper_space to tmpfs file
2319                          * mapping. However, page->index will not change
2320                          * because we have a reference on the page.
2321                          */
2322                         if (page->index > end)
2323                                 goto out;
2324
2325                         /*
2326                          * Accumulated enough dirty pages? This doesn't apply
2327                          * to WB_SYNC_ALL mode. For integrity sync we have to
2328                          * keep going because someone may be concurrently
2329                          * dirtying pages, and we might have synced a lot of
2330                          * newly appeared dirty pages, but have not synced all
2331                          * of the old dirty pages.
2332                          */
2333                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2334                                 goto out;
2335
2336                         /* If we can't merge this page, we are done. */
2337                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2338                                 goto out;
2339
2340                         lock_page(page);
2341                         /*
2342                          * If the page is no longer dirty, or its mapping no
2343                          * longer corresponds to inode we are writing (which
2344                          * means it has been truncated or invalidated), or the
2345                          * page is already under writeback and we are not doing
2346                          * a data integrity writeback, skip the page
2347                          */
2348                         if (!PageDirty(page) ||
2349                             (PageWriteback(page) &&
2350                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2351                             unlikely(page->mapping != mapping)) {
2352                                 unlock_page(page);
2353                                 continue;
2354                         }
2355
2356                         wait_on_page_writeback(page);
2357                         BUG_ON(PageWriteback(page));
2358
2359                         if (mpd->map.m_len == 0)
2360                                 mpd->first_page = page->index;
2361                         mpd->next_page = page->index + 1;
2362                         /* Add all dirty buffers to mpd */
2363                         lblk = ((ext4_lblk_t)page->index) <<
2364                                 (PAGE_CACHE_SHIFT - blkbits);
2365                         head = page_buffers(page);
2366                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2367                         if (err <= 0)
2368                                 goto out;
2369                         err = 0;
2370                         left--;
2371                 }
2372                 pagevec_release(&pvec);
2373                 cond_resched();
2374         }
2375         return 0;
2376 out:
2377         pagevec_release(&pvec);
2378         return err;
2379 }
2380
2381 static int __writepage(struct page *page, struct writeback_control *wbc,
2382                        void *data)
2383 {
2384         struct address_space *mapping = data;
2385         int ret = ext4_writepage(page, wbc);
2386         mapping_set_error(mapping, ret);
2387         return ret;
2388 }
2389
2390 static int ext4_writepages(struct address_space *mapping,
2391                            struct writeback_control *wbc)
2392 {
2393         pgoff_t writeback_index = 0;
2394         long nr_to_write = wbc->nr_to_write;
2395         int range_whole = 0;
2396         int cycled = 1;
2397         handle_t *handle = NULL;
2398         struct mpage_da_data mpd;
2399         struct inode *inode = mapping->host;
2400         int needed_blocks, rsv_blocks = 0, ret = 0;
2401         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2402         bool done;
2403         struct blk_plug plug;
2404         bool give_up_on_write = false;
2405
2406         trace_ext4_writepages(inode, wbc);
2407
2408         /*
2409          * No pages to write? This is mainly a kludge to avoid starting
2410          * a transaction for special inodes like journal inode on last iput()
2411          * because that could violate lock ordering on umount
2412          */
2413         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2414                 goto out_writepages;
2415
2416         if (ext4_should_journal_data(inode)) {
2417                 struct blk_plug plug;
2418
2419                 blk_start_plug(&plug);
2420                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2421                 blk_finish_plug(&plug);
2422                 goto out_writepages;
2423         }
2424
2425         /*
2426          * If the filesystem has aborted, it is read-only, so return
2427          * right away instead of dumping stack traces later on that
2428          * will obscure the real source of the problem.  We test
2429          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2430          * the latter could be true if the filesystem is mounted
2431          * read-only, and in that case, ext4_writepages should
2432          * *never* be called, so if that ever happens, we would want
2433          * the stack trace.
2434          */
2435         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2436                 ret = -EROFS;
2437                 goto out_writepages;
2438         }
2439
2440         if (ext4_should_dioread_nolock(inode)) {
2441                 /*
2442                  * We may need to convert up to one extent per block in
2443                  * the page and we may dirty the inode.
2444                  */
2445                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2446         }
2447
2448         /*
2449          * If we have inline data and arrive here, it means that
2450          * we will soon create the block for the 1st page, so
2451          * we'd better clear the inline data here.
2452          */
2453         if (ext4_has_inline_data(inode)) {
2454                 /* Just inode will be modified... */
2455                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2456                 if (IS_ERR(handle)) {
2457                         ret = PTR_ERR(handle);
2458                         goto out_writepages;
2459                 }
2460                 BUG_ON(ext4_test_inode_state(inode,
2461                                 EXT4_STATE_MAY_INLINE_DATA));
2462                 ext4_destroy_inline_data(handle, inode);
2463                 ext4_journal_stop(handle);
2464         }
2465
2466         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2467                 range_whole = 1;
2468
2469         if (wbc->range_cyclic) {
2470                 writeback_index = mapping->writeback_index;
2471                 if (writeback_index)
2472                         cycled = 0;
2473                 mpd.first_page = writeback_index;
2474                 mpd.last_page = -1;
2475         } else {
2476                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2477                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2478         }
2479
2480         mpd.inode = inode;
2481         mpd.wbc = wbc;
2482         ext4_io_submit_init(&mpd.io_submit, wbc);
2483 retry:
2484         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2485                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2486         done = false;
2487         blk_start_plug(&plug);
2488         while (!done && mpd.first_page <= mpd.last_page) {
2489                 /* For each extent of pages we use new io_end */
2490                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2491                 if (!mpd.io_submit.io_end) {
2492                         ret = -ENOMEM;
2493                         break;
2494                 }
2495
2496                 /*
2497                  * We have two constraints: We find one extent to map and we
2498                  * must always write out whole page (makes a difference when
2499                  * blocksize < pagesize) so that we don't block on IO when we
2500                  * try to write out the rest of the page. Journalled mode is
2501                  * not supported by delalloc.
2502                  */
2503                 BUG_ON(ext4_should_journal_data(inode));
2504                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2505
2506                 /* start a new transaction */
2507                 handle = ext4_journal_start_with_reserve(inode,
2508                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2509                 if (IS_ERR(handle)) {
2510                         ret = PTR_ERR(handle);
2511                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2512                                "%ld pages, ino %lu; err %d", __func__,
2513                                 wbc->nr_to_write, inode->i_ino, ret);
2514                         /* Release allocated io_end */
2515                         ext4_put_io_end(mpd.io_submit.io_end);
2516                         break;
2517                 }
2518
2519                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2520                 ret = mpage_prepare_extent_to_map(&mpd);
2521                 if (!ret) {
2522                         if (mpd.map.m_len)
2523                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2524                                         &give_up_on_write);
2525                         else {
2526                                 /*
2527                                  * We scanned the whole range (or exhausted
2528                                  * nr_to_write), submitted what was mapped and
2529                                  * didn't find anything needing mapping. We are
2530                                  * done.
2531                                  */
2532                                 done = true;
2533                         }
2534                 }
2535                 ext4_journal_stop(handle);
2536                 /* Submit prepared bio */
2537                 ext4_io_submit(&mpd.io_submit);
2538                 /* Unlock pages we didn't use */
2539                 mpage_release_unused_pages(&mpd, give_up_on_write);
2540                 /* Drop our io_end reference we got from init */
2541                 ext4_put_io_end(mpd.io_submit.io_end);
2542
2543                 if (ret == -ENOSPC && sbi->s_journal) {
2544                         /*
2545                          * Commit the transaction which would
2546                          * free blocks released in the transaction
2547                          * and try again
2548                          */
2549                         jbd2_journal_force_commit_nested(sbi->s_journal);
2550                         ret = 0;
2551                         continue;
2552                 }
2553                 /* Fatal error - ENOMEM, EIO... */
2554                 if (ret)
2555                         break;
2556         }
2557         blk_finish_plug(&plug);
2558         if (!ret && !cycled && wbc->nr_to_write > 0) {
2559                 cycled = 1;
2560                 mpd.last_page = writeback_index - 1;
2561                 mpd.first_page = 0;
2562                 goto retry;
2563         }
2564
2565         /* Update index */
2566         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2567                 /*
2568                  * Set the writeback_index so that range_cyclic
2569                  * mode will write it back later
2570                  */
2571                 mapping->writeback_index = mpd.first_page;
2572
2573 out_writepages:
2574         trace_ext4_writepages_result(inode, wbc, ret,
2575                                      nr_to_write - wbc->nr_to_write);
2576         return ret;
2577 }
2578
2579 static int ext4_nonda_switch(struct super_block *sb)
2580 {
2581         s64 free_clusters, dirty_clusters;
2582         struct ext4_sb_info *sbi = EXT4_SB(sb);
2583
2584         /*
2585          * switch to non delalloc mode if we are running low
2586          * on free block. The free block accounting via percpu
2587          * counters can get slightly wrong with percpu_counter_batch getting
2588          * accumulated on each CPU without updating global counters
2589          * Delalloc need an accurate free block accounting. So switch
2590          * to non delalloc when we are near to error range.
2591          */
2592         free_clusters =
2593                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2594         dirty_clusters =
2595                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2596         /*
2597          * Start pushing delalloc when 1/2 of free blocks are dirty.
2598          */
2599         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2600                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2601
2602         if (2 * free_clusters < 3 * dirty_clusters ||
2603             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2604                 /*
2605                  * free block count is less than 150% of dirty blocks
2606                  * or free blocks is less than watermark
2607                  */
2608                 return 1;
2609         }
2610         return 0;
2611 }
2612
2613 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2614                                loff_t pos, unsigned len, unsigned flags,
2615                                struct page **pagep, void **fsdata)
2616 {
2617         int ret, retries = 0;
2618         struct page *page;
2619         pgoff_t index;
2620         struct inode *inode = mapping->host;
2621         handle_t *handle;
2622
2623         index = pos >> PAGE_CACHE_SHIFT;
2624
2625         if (ext4_nonda_switch(inode->i_sb)) {
2626                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2627                 return ext4_write_begin(file, mapping, pos,
2628                                         len, flags, pagep, fsdata);
2629         }
2630         *fsdata = (void *)0;
2631         trace_ext4_da_write_begin(inode, pos, len, flags);
2632
2633         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2634                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2635                                                       pos, len, flags,
2636                                                       pagep, fsdata);
2637                 if (ret < 0)
2638                         return ret;
2639                 if (ret == 1)
2640                         return 0;
2641         }
2642
2643         /*
2644          * grab_cache_page_write_begin() can take a long time if the
2645          * system is thrashing due to memory pressure, or if the page
2646          * is being written back.  So grab it first before we start
2647          * the transaction handle.  This also allows us to allocate
2648          * the page (if needed) without using GFP_NOFS.
2649          */
2650 retry_grab:
2651         page = grab_cache_page_write_begin(mapping, index, flags);
2652         if (!page)
2653                 return -ENOMEM;
2654         unlock_page(page);
2655
2656         /*
2657          * With delayed allocation, we don't log the i_disksize update
2658          * if there is delayed block allocation. But we still need
2659          * to journalling the i_disksize update if writes to the end
2660          * of file which has an already mapped buffer.
2661          */
2662 retry_journal:
2663         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2664         if (IS_ERR(handle)) {
2665                 page_cache_release(page);
2666                 return PTR_ERR(handle);
2667         }
2668
2669         lock_page(page);
2670         if (page->mapping != mapping) {
2671                 /* The page got truncated from under us */
2672                 unlock_page(page);
2673                 page_cache_release(page);
2674                 ext4_journal_stop(handle);
2675                 goto retry_grab;
2676         }
2677         /* In case writeback began while the page was unlocked */
2678         wait_for_stable_page(page);
2679
2680         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2681         if (ret < 0) {
2682                 unlock_page(page);
2683                 ext4_journal_stop(handle);
2684                 /*
2685                  * block_write_begin may have instantiated a few blocks
2686                  * outside i_size.  Trim these off again. Don't need
2687                  * i_size_read because we hold i_mutex.
2688                  */
2689                 if (pos + len > inode->i_size)
2690                         ext4_truncate_failed_write(inode);
2691
2692                 if (ret == -ENOSPC &&
2693                     ext4_should_retry_alloc(inode->i_sb, &retries))
2694                         goto retry_journal;
2695
2696                 page_cache_release(page);
2697                 return ret;
2698         }
2699
2700         *pagep = page;
2701         return ret;
2702 }
2703
2704 /*
2705  * Check if we should update i_disksize
2706  * when write to the end of file but not require block allocation
2707  */
2708 static int ext4_da_should_update_i_disksize(struct page *page,
2709                                             unsigned long offset)
2710 {
2711         struct buffer_head *bh;
2712         struct inode *inode = page->mapping->host;
2713         unsigned int idx;
2714         int i;
2715
2716         bh = page_buffers(page);
2717         idx = offset >> inode->i_blkbits;
2718
2719         for (i = 0; i < idx; i++)
2720                 bh = bh->b_this_page;
2721
2722         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2723                 return 0;
2724         return 1;
2725 }
2726
2727 static int ext4_da_write_end(struct file *file,
2728                              struct address_space *mapping,
2729                              loff_t pos, unsigned len, unsigned copied,
2730                              struct page *page, void *fsdata)
2731 {
2732         struct inode *inode = mapping->host;
2733         int ret = 0, ret2;
2734         handle_t *handle = ext4_journal_current_handle();
2735         loff_t new_i_size;
2736         unsigned long start, end;
2737         int write_mode = (int)(unsigned long)fsdata;
2738
2739         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2740                 return ext4_write_end(file, mapping, pos,
2741                                       len, copied, page, fsdata);
2742
2743         trace_ext4_da_write_end(inode, pos, len, copied);
2744         start = pos & (PAGE_CACHE_SIZE - 1);
2745         end = start + copied - 1;
2746
2747         /*
2748          * generic_write_end() will run mark_inode_dirty() if i_size
2749          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2750          * into that.
2751          */
2752         new_i_size = pos + copied;
2753         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2754                 if (ext4_has_inline_data(inode) ||
2755                     ext4_da_should_update_i_disksize(page, end)) {
2756                         down_write(&EXT4_I(inode)->i_data_sem);
2757                         if (new_i_size > EXT4_I(inode)->i_disksize)
2758                                 EXT4_I(inode)->i_disksize = new_i_size;
2759                         up_write(&EXT4_I(inode)->i_data_sem);
2760                         /* We need to mark inode dirty even if
2761                          * new_i_size is less that inode->i_size
2762                          * bu greater than i_disksize.(hint delalloc)
2763                          */
2764                         ext4_mark_inode_dirty(handle, inode);
2765                 }
2766         }
2767
2768         if (write_mode != CONVERT_INLINE_DATA &&
2769             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2770             ext4_has_inline_data(inode))
2771                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2772                                                      page);
2773         else
2774                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2775                                                         page, fsdata);
2776
2777         copied = ret2;
2778         if (ret2 < 0)
2779                 ret = ret2;
2780         ret2 = ext4_journal_stop(handle);
2781         if (!ret)
2782                 ret = ret2;
2783
2784         return ret ? ret : copied;
2785 }
2786
2787 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2788                                    unsigned int length)
2789 {
2790         /*
2791          * Drop reserved blocks
2792          */
2793         BUG_ON(!PageLocked(page));
2794         if (!page_has_buffers(page))
2795                 goto out;
2796
2797         ext4_da_page_release_reservation(page, offset, length);
2798
2799 out:
2800         ext4_invalidatepage(page, offset, length);
2801
2802         return;
2803 }
2804
2805 /*
2806  * Force all delayed allocation blocks to be allocated for a given inode.
2807  */
2808 int ext4_alloc_da_blocks(struct inode *inode)
2809 {
2810         trace_ext4_alloc_da_blocks(inode);
2811
2812         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2813             !EXT4_I(inode)->i_reserved_meta_blocks)
2814                 return 0;
2815
2816         /*
2817          * We do something simple for now.  The filemap_flush() will
2818          * also start triggering a write of the data blocks, which is
2819          * not strictly speaking necessary (and for users of
2820          * laptop_mode, not even desirable).  However, to do otherwise
2821          * would require replicating code paths in:
2822          *
2823          * ext4_writepages() ->
2824          *    write_cache_pages() ---> (via passed in callback function)
2825          *        __mpage_da_writepage() -->
2826          *           mpage_add_bh_to_extent()
2827          *           mpage_da_map_blocks()
2828          *
2829          * The problem is that write_cache_pages(), located in
2830          * mm/page-writeback.c, marks pages clean in preparation for
2831          * doing I/O, which is not desirable if we're not planning on
2832          * doing I/O at all.
2833          *
2834          * We could call write_cache_pages(), and then redirty all of
2835          * the pages by calling redirty_page_for_writepage() but that
2836          * would be ugly in the extreme.  So instead we would need to
2837          * replicate parts of the code in the above functions,
2838          * simplifying them because we wouldn't actually intend to
2839          * write out the pages, but rather only collect contiguous
2840          * logical block extents, call the multi-block allocator, and
2841          * then update the buffer heads with the block allocations.
2842          *
2843          * For now, though, we'll cheat by calling filemap_flush(),
2844          * which will map the blocks, and start the I/O, but not
2845          * actually wait for the I/O to complete.
2846          */
2847         return filemap_flush(inode->i_mapping);
2848 }
2849
2850 /*
2851  * bmap() is special.  It gets used by applications such as lilo and by
2852  * the swapper to find the on-disk block of a specific piece of data.
2853  *
2854  * Naturally, this is dangerous if the block concerned is still in the
2855  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2856  * filesystem and enables swap, then they may get a nasty shock when the
2857  * data getting swapped to that swapfile suddenly gets overwritten by
2858  * the original zero's written out previously to the journal and
2859  * awaiting writeback in the kernel's buffer cache.
2860  *
2861  * So, if we see any bmap calls here on a modified, data-journaled file,
2862  * take extra steps to flush any blocks which might be in the cache.
2863  */
2864 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2865 {
2866         struct inode *inode = mapping->host;
2867         journal_t *journal;
2868         int err;
2869
2870         /*
2871          * We can get here for an inline file via the FIBMAP ioctl
2872          */
2873         if (ext4_has_inline_data(inode))
2874                 return 0;
2875
2876         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2877                         test_opt(inode->i_sb, DELALLOC)) {
2878                 /*
2879                  * With delalloc we want to sync the file
2880                  * so that we can make sure we allocate
2881                  * blocks for file
2882                  */
2883                 filemap_write_and_wait(mapping);
2884         }
2885
2886         if (EXT4_JOURNAL(inode) &&
2887             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2888                 /*
2889                  * This is a REALLY heavyweight approach, but the use of
2890                  * bmap on dirty files is expected to be extremely rare:
2891                  * only if we run lilo or swapon on a freshly made file
2892                  * do we expect this to happen.
2893                  *
2894                  * (bmap requires CAP_SYS_RAWIO so this does not
2895                  * represent an unprivileged user DOS attack --- we'd be
2896                  * in trouble if mortal users could trigger this path at
2897                  * will.)
2898                  *
2899                  * NB. EXT4_STATE_JDATA is not set on files other than
2900                  * regular files.  If somebody wants to bmap a directory
2901                  * or symlink and gets confused because the buffer
2902                  * hasn't yet been flushed to disk, they deserve
2903                  * everything they get.
2904                  */
2905
2906                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2907                 journal = EXT4_JOURNAL(inode);
2908                 jbd2_journal_lock_updates(journal);
2909                 err = jbd2_journal_flush(journal);
2910                 jbd2_journal_unlock_updates(journal);
2911
2912                 if (err)
2913                         return 0;
2914         }
2915
2916         return generic_block_bmap(mapping, block, ext4_get_block);
2917 }
2918
2919 static int ext4_readpage(struct file *file, struct page *page)
2920 {
2921         int ret = -EAGAIN;
2922         struct inode *inode = page->mapping->host;
2923
2924         trace_ext4_readpage(page);
2925
2926         if (ext4_has_inline_data(inode))
2927                 ret = ext4_readpage_inline(inode, page);
2928
2929         if (ret == -EAGAIN)
2930                 return mpage_readpage(page, ext4_get_block);
2931
2932         return ret;
2933 }
2934
2935 static int
2936 ext4_readpages(struct file *file, struct address_space *mapping,
2937                 struct list_head *pages, unsigned nr_pages)
2938 {
2939         struct inode *inode = mapping->host;
2940
2941         /* If the file has inline data, no need to do readpages. */
2942         if (ext4_has_inline_data(inode))
2943                 return 0;
2944
2945         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2946 }
2947
2948 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2949                                 unsigned int length)
2950 {
2951         trace_ext4_invalidatepage(page, offset, length);
2952
2953         /* No journalling happens on data buffers when this function is used */
2954         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2955
2956         block_invalidatepage(page, offset, length);
2957 }
2958
2959 static int __ext4_journalled_invalidatepage(struct page *page,
2960                                             unsigned int offset,
2961                                             unsigned int length)
2962 {
2963         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2964
2965         trace_ext4_journalled_invalidatepage(page, offset, length);
2966
2967         /*
2968          * If it's a full truncate we just forget about the pending dirtying
2969          */
2970         if (offset == 0 && length == PAGE_CACHE_SIZE)
2971                 ClearPageChecked(page);
2972
2973         return jbd2_journal_invalidatepage(journal, page, offset, length);
2974 }
2975
2976 /* Wrapper for aops... */
2977 static void ext4_journalled_invalidatepage(struct page *page,
2978                                            unsigned int offset,
2979                                            unsigned int length)
2980 {
2981         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2982 }
2983
2984 static int ext4_releasepage(struct page *page, gfp_t wait)
2985 {
2986         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2987
2988         trace_ext4_releasepage(page);
2989
2990         /* Page has dirty journalled data -> cannot release */
2991         if (PageChecked(page))
2992                 return 0;
2993         if (journal)
2994                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2995         else
2996                 return try_to_free_buffers(page);
2997 }
2998
2999 /*
3000  * ext4_get_block used when preparing for a DIO write or buffer write.
3001  * We allocate an uinitialized extent if blocks haven't been allocated.
3002  * The extent will be converted to initialized after the IO is complete.
3003  */
3004 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3005                    struct buffer_head *bh_result, int create)
3006 {
3007         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3008                    inode->i_ino, create);
3009         return _ext4_get_block(inode, iblock, bh_result,
3010                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3011 }
3012
3013 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3014                    struct buffer_head *bh_result, int create)
3015 {
3016         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3017                    inode->i_ino, create);
3018         return _ext4_get_block(inode, iblock, bh_result,
3019                                EXT4_GET_BLOCKS_NO_LOCK);
3020 }
3021
3022 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3023                             ssize_t size, void *private)
3024 {
3025         ext4_io_end_t *io_end = iocb->private;
3026
3027         /* if not async direct IO just return */
3028         if (!io_end)
3029                 return;
3030
3031         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3032                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3033                   iocb->private, io_end->inode->i_ino, iocb, offset,
3034                   size);
3035
3036         iocb->private = NULL;
3037         io_end->offset = offset;
3038         io_end->size = size;
3039         ext4_put_io_end(io_end);
3040 }
3041
3042 /*
3043  * For ext4 extent files, ext4 will do direct-io write to holes,
3044  * preallocated extents, and those write extend the file, no need to
3045  * fall back to buffered IO.
3046  *
3047  * For holes, we fallocate those blocks, mark them as uninitialized
3048  * If those blocks were preallocated, we mark sure they are split, but
3049  * still keep the range to write as uninitialized.
3050  *
3051  * The unwritten extents will be converted to written when DIO is completed.
3052  * For async direct IO, since the IO may still pending when return, we
3053  * set up an end_io call back function, which will do the conversion
3054  * when async direct IO completed.
3055  *
3056  * If the O_DIRECT write will extend the file then add this inode to the
3057  * orphan list.  So recovery will truncate it back to the original size
3058  * if the machine crashes during the write.
3059  *
3060  */
3061 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3062                               const struct iovec *iov, loff_t offset,
3063                               unsigned long nr_segs)
3064 {
3065         struct file *file = iocb->ki_filp;
3066         struct inode *inode = file->f_mapping->host;
3067         ssize_t ret;
3068         size_t count = iov_length(iov, nr_segs);
3069         int overwrite = 0;
3070         get_block_t *get_block_func = NULL;
3071         int dio_flags = 0;
3072         loff_t final_size = offset + count;
3073         ext4_io_end_t *io_end = NULL;
3074
3075         /* Use the old path for reads and writes beyond i_size. */
3076         if (rw != WRITE || final_size > inode->i_size)
3077                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3078
3079         BUG_ON(iocb->private == NULL);
3080
3081         /*
3082          * Make all waiters for direct IO properly wait also for extent
3083          * conversion. This also disallows race between truncate() and
3084          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3085          */
3086         if (rw == WRITE)
3087                 atomic_inc(&inode->i_dio_count);
3088
3089         /* If we do a overwrite dio, i_mutex locking can be released */
3090         overwrite = *((int *)iocb->private);
3091
3092         if (overwrite) {
3093                 down_read(&EXT4_I(inode)->i_data_sem);
3094                 mutex_unlock(&inode->i_mutex);
3095         }
3096
3097         /*
3098          * We could direct write to holes and fallocate.
3099          *
3100          * Allocated blocks to fill the hole are marked as
3101          * uninitialized to prevent parallel buffered read to expose
3102          * the stale data before DIO complete the data IO.
3103          *
3104          * As to previously fallocated extents, ext4 get_block will
3105          * just simply mark the buffer mapped but still keep the
3106          * extents uninitialized.
3107          *
3108          * For non AIO case, we will convert those unwritten extents
3109          * to written after return back from blockdev_direct_IO.
3110          *
3111          * For async DIO, the conversion needs to be deferred when the
3112          * IO is completed. The ext4 end_io callback function will be
3113          * called to take care of the conversion work.  Here for async
3114          * case, we allocate an io_end structure to hook to the iocb.
3115          */
3116         iocb->private = NULL;
3117         ext4_inode_aio_set(inode, NULL);
3118         if (!is_sync_kiocb(iocb)) {
3119                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3120                 if (!io_end) {
3121                         ret = -ENOMEM;
3122                         goto retake_lock;
3123                 }
3124                 /*
3125                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3126                  */
3127                 iocb->private = ext4_get_io_end(io_end);
3128                 /*
3129                  * we save the io structure for current async direct
3130                  * IO, so that later ext4_map_blocks() could flag the
3131                  * io structure whether there is a unwritten extents
3132                  * needs to be converted when IO is completed.
3133                  */
3134                 ext4_inode_aio_set(inode, io_end);
3135         }
3136
3137         if (overwrite) {
3138                 get_block_func = ext4_get_block_write_nolock;
3139         } else {
3140                 get_block_func = ext4_get_block_write;
3141                 dio_flags = DIO_LOCKING;
3142         }
3143         ret = __blockdev_direct_IO(rw, iocb, inode,
3144                                    inode->i_sb->s_bdev, iov,
3145                                    offset, nr_segs,
3146                                    get_block_func,
3147                                    ext4_end_io_dio,
3148                                    NULL,
3149                                    dio_flags);
3150
3151         /*
3152          * Put our reference to io_end. This can free the io_end structure e.g.
3153          * in sync IO case or in case of error. It can even perform extent
3154          * conversion if all bios we submitted finished before we got here.
3155          * Note that in that case iocb->private can be already set to NULL
3156          * here.
3157          */
3158         if (io_end) {
3159                 ext4_inode_aio_set(inode, NULL);
3160                 ext4_put_io_end(io_end);
3161                 /*
3162                  * When no IO was submitted ext4_end_io_dio() was not
3163                  * called so we have to put iocb's reference.
3164                  */
3165                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3166                         WARN_ON(iocb->private != io_end);
3167                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3168                         ext4_put_io_end(io_end);
3169                         iocb->private = NULL;
3170                 }
3171         }
3172         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3173                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3174                 int err;
3175                 /*
3176                  * for non AIO case, since the IO is already
3177                  * completed, we could do the conversion right here
3178                  */
3179                 err = ext4_convert_unwritten_extents(NULL, inode,
3180                                                      offset, ret);
3181                 if (err < 0)
3182                         ret = err;
3183                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3184         }
3185
3186 retake_lock:
3187         if (rw == WRITE)
3188                 inode_dio_done(inode);
3189         /* take i_mutex locking again if we do a ovewrite dio */
3190         if (overwrite) {
3191                 up_read(&EXT4_I(inode)->i_data_sem);
3192                 mutex_lock(&inode->i_mutex);
3193         }
3194
3195         return ret;
3196 }
3197
3198 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3199                               const struct iovec *iov, loff_t offset,
3200                               unsigned long nr_segs)
3201 {
3202         struct file *file = iocb->ki_filp;
3203         struct inode *inode = file->f_mapping->host;
3204         ssize_t ret;
3205
3206         /*
3207          * If we are doing data journalling we don't support O_DIRECT
3208          */
3209         if (ext4_should_journal_data(inode))
3210                 return 0;
3211
3212         /* Let buffer I/O handle the inline data case. */
3213         if (ext4_has_inline_data(inode))
3214                 return 0;
3215
3216         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3217         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3218                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3219         else
3220                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3221         trace_ext4_direct_IO_exit(inode, offset,
3222                                 iov_length(iov, nr_segs), rw, ret);
3223         return ret;
3224 }
3225
3226 /*
3227  * Pages can be marked dirty completely asynchronously from ext4's journalling
3228  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3229  * much here because ->set_page_dirty is called under VFS locks.  The page is
3230  * not necessarily locked.
3231  *
3232  * We cannot just dirty the page and leave attached buffers clean, because the
3233  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3234  * or jbddirty because all the journalling code will explode.
3235  *
3236  * So what we do is to mark the page "pending dirty" and next time writepage
3237  * is called, propagate that into the buffers appropriately.
3238  */
3239 static int ext4_journalled_set_page_dirty(struct page *page)
3240 {
3241         SetPageChecked(page);
3242         return __set_page_dirty_nobuffers(page);
3243 }
3244
3245 static const struct address_space_operations ext4_aops = {
3246         .readpage               = ext4_readpage,
3247         .readpages              = ext4_readpages,
3248         .writepage              = ext4_writepage,
3249         .writepages             = ext4_writepages,
3250         .write_begin            = ext4_write_begin,
3251         .write_end              = ext4_write_end,
3252         .bmap                   = ext4_bmap,
3253         .invalidatepage         = ext4_invalidatepage,
3254         .releasepage            = ext4_releasepage,
3255         .direct_IO              = ext4_direct_IO,
3256         .migratepage            = buffer_migrate_page,
3257         .is_partially_uptodate  = block_is_partially_uptodate,
3258         .error_remove_page      = generic_error_remove_page,
3259 };
3260
3261 static const struct address_space_operations ext4_journalled_aops = {
3262         .readpage               = ext4_readpage,
3263         .readpages              = ext4_readpages,
3264         .writepage              = ext4_writepage,
3265         .writepages             = ext4_writepages,
3266         .write_begin            = ext4_write_begin,
3267         .write_end              = ext4_journalled_write_end,
3268         .set_page_dirty         = ext4_journalled_set_page_dirty,
3269         .bmap                   = ext4_bmap,
3270         .invalidatepage         = ext4_journalled_invalidatepage,
3271         .releasepage            = ext4_releasepage,
3272         .direct_IO              = ext4_direct_IO,
3273         .is_partially_uptodate  = block_is_partially_uptodate,
3274         .error_remove_page      = generic_error_remove_page,
3275 };
3276
3277 static const struct address_space_operations ext4_da_aops = {
3278         .readpage               = ext4_readpage,
3279         .readpages              = ext4_readpages,
3280         .writepage              = ext4_writepage,
3281         .writepages             = ext4_writepages,
3282         .write_begin            = ext4_da_write_begin,
3283         .write_end              = ext4_da_write_end,
3284         .bmap                   = ext4_bmap,
3285         .invalidatepage         = ext4_da_invalidatepage,
3286         .releasepage            = ext4_releasepage,
3287         .direct_IO              = ext4_direct_IO,
3288         .migratepage            = buffer_migrate_page,
3289         .is_partially_uptodate  = block_is_partially_uptodate,
3290         .error_remove_page      = generic_error_remove_page,
3291 };
3292
3293 void ext4_set_aops(struct inode *inode)
3294 {
3295         switch (ext4_inode_journal_mode(inode)) {
3296         case EXT4_INODE_ORDERED_DATA_MODE:
3297                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3298                 break;
3299         case EXT4_INODE_WRITEBACK_DATA_MODE:
3300                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3301                 break;
3302         case EXT4_INODE_JOURNAL_DATA_MODE:
3303                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3304                 return;
3305         default:
3306                 BUG();
3307         }
3308         if (test_opt(inode->i_sb, DELALLOC))
3309                 inode->i_mapping->a_ops = &ext4_da_aops;
3310         else
3311                 inode->i_mapping->a_ops = &ext4_aops;
3312 }
3313
3314 /*
3315  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3316  * up to the end of the block which corresponds to `from'.
3317  * This required during truncate. We need to physically zero the tail end
3318  * of that block so it doesn't yield old data if the file is later grown.
3319  */
3320 int ext4_block_truncate_page(handle_t *handle,
3321                 struct address_space *mapping, loff_t from)
3322 {
3323         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3324         unsigned length;
3325         unsigned blocksize;
3326         struct inode *inode = mapping->host;
3327
3328         blocksize = inode->i_sb->s_blocksize;
3329         length = blocksize - (offset & (blocksize - 1));
3330
3331         return ext4_block_zero_page_range(handle, mapping, from, length);
3332 }
3333
3334 /*
3335  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3336  * starting from file offset 'from'.  The range to be zero'd must
3337  * be contained with in one block.  If the specified range exceeds
3338  * the end of the block it will be shortened to end of the block
3339  * that cooresponds to 'from'
3340  */
3341 int ext4_block_zero_page_range(handle_t *handle,
3342                 struct address_space *mapping, loff_t from, loff_t length)
3343 {
3344         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3345         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3346         unsigned blocksize, max, pos;
3347         ext4_lblk_t iblock;
3348         struct inode *inode = mapping->host;
3349         struct buffer_head *bh;
3350         struct page *page;
3351         int err = 0;
3352
3353         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3354                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3355         if (!page)
3356                 return -ENOMEM;
3357
3358         blocksize = inode->i_sb->s_blocksize;
3359         max = blocksize - (offset & (blocksize - 1));
3360
3361         /*
3362          * correct length if it does not fall between
3363          * 'from' and the end of the block
3364          */
3365         if (length > max || length < 0)
3366                 length = max;
3367
3368         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3369
3370         if (!page_has_buffers(page))
3371                 create_empty_buffers(page, blocksize, 0);
3372
3373         /* Find the buffer that contains "offset" */
3374         bh = page_buffers(page);
3375         pos = blocksize;
3376         while (offset >= pos) {
3377                 bh = bh->b_this_page;
3378                 iblock++;
3379                 pos += blocksize;
3380         }
3381         if (buffer_freed(bh)) {
3382                 BUFFER_TRACE(bh, "freed: skip");
3383                 goto unlock;
3384         }
3385         if (!buffer_mapped(bh)) {
3386                 BUFFER_TRACE(bh, "unmapped");
3387                 ext4_get_block(inode, iblock, bh, 0);
3388                 /* unmapped? It's a hole - nothing to do */
3389                 if (!buffer_mapped(bh)) {
3390                         BUFFER_TRACE(bh, "still unmapped");
3391                         goto unlock;
3392                 }
3393         }
3394
3395         /* Ok, it's mapped. Make sure it's up-to-date */
3396         if (PageUptodate(page))
3397                 set_buffer_uptodate(bh);
3398
3399         if (!buffer_uptodate(bh)) {
3400                 err = -EIO;
3401                 ll_rw_block(READ, 1, &bh);
3402                 wait_on_buffer(bh);
3403                 /* Uhhuh. Read error. Complain and punt. */
3404                 if (!buffer_uptodate(bh))
3405                         goto unlock;
3406         }
3407         if (ext4_should_journal_data(inode)) {
3408                 BUFFER_TRACE(bh, "get write access");
3409                 err = ext4_journal_get_write_access(handle, bh);
3410                 if (err)
3411                         goto unlock;
3412         }
3413         zero_user(page, offset, length);
3414         BUFFER_TRACE(bh, "zeroed end of block");
3415
3416         if (ext4_should_journal_data(inode)) {
3417                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3418         } else {
3419                 err = 0;
3420                 mark_buffer_dirty(bh);
3421                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3422                         err = ext4_jbd2_file_inode(handle, inode);
3423         }
3424
3425 unlock:
3426         unlock_page(page);
3427         page_cache_release(page);
3428         return err;
3429 }
3430
3431 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3432                              loff_t lstart, loff_t length)
3433 {
3434         struct super_block *sb = inode->i_sb;
3435         struct address_space *mapping = inode->i_mapping;
3436         unsigned partial_start, partial_end;
3437         ext4_fsblk_t start, end;
3438         loff_t byte_end = (lstart + length - 1);
3439         int err = 0;
3440
3441         partial_start = lstart & (sb->s_blocksize - 1);
3442         partial_end = byte_end & (sb->s_blocksize - 1);
3443
3444         start = lstart >> sb->s_blocksize_bits;
3445         end = byte_end >> sb->s_blocksize_bits;
3446
3447         /* Handle partial zero within the single block */
3448         if (start == end &&
3449             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3450                 err = ext4_block_zero_page_range(handle, mapping,
3451                                                  lstart, length);
3452                 return err;
3453         }
3454         /* Handle partial zero out on the start of the range */
3455         if (partial_start) {
3456                 err = ext4_block_zero_page_range(handle, mapping,
3457                                                  lstart, sb->s_blocksize);
3458                 if (err)
3459                         return err;
3460         }
3461         /* Handle partial zero out on the end of the range */
3462         if (partial_end != sb->s_blocksize - 1)
3463                 err = ext4_block_zero_page_range(handle, mapping,
3464                                                  byte_end - partial_end,
3465                                                  partial_end + 1);
3466         return err;
3467 }
3468
3469 int ext4_can_truncate(struct inode *inode)
3470 {
3471         if (S_ISREG(inode->i_mode))
3472                 return 1;
3473         if (S_ISDIR(inode->i_mode))
3474                 return 1;
3475         if (S_ISLNK(inode->i_mode))
3476                 return !ext4_inode_is_fast_symlink(inode);
3477         return 0;
3478 }
3479
3480 /*
3481  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3482  * associated with the given offset and length
3483  *
3484  * @inode:  File inode
3485  * @offset: The offset where the hole will begin
3486  * @len:    The length of the hole
3487  *
3488  * Returns: 0 on success or negative on failure
3489  */
3490
3491 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3492 {
3493         struct super_block *sb = inode->i_sb;
3494         ext4_lblk_t first_block, stop_block;
3495         struct address_space *mapping = inode->i_mapping;
3496         loff_t first_block_offset, last_block_offset;
3497         handle_t *handle;
3498         unsigned int credits;
3499         int ret = 0;
3500
3501         if (!S_ISREG(inode->i_mode))
3502                 return -EOPNOTSUPP;
3503
3504         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3505                 /* TODO: Add support for bigalloc file systems */
3506                 return -EOPNOTSUPP;
3507         }
3508
3509         trace_ext4_punch_hole(inode, offset, length);
3510
3511         /*
3512          * Write out all dirty pages to avoid race conditions
3513          * Then release them.
3514          */
3515         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3516                 ret = filemap_write_and_wait_range(mapping, offset,
3517                                                    offset + length - 1);
3518                 if (ret)
3519                         return ret;
3520         }
3521
3522         mutex_lock(&inode->i_mutex);
3523         /* It's not possible punch hole on append only file */
3524         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3525                 ret = -EPERM;
3526                 goto out_mutex;
3527         }
3528         if (IS_SWAPFILE(inode)) {
3529                 ret = -ETXTBSY;
3530                 goto out_mutex;
3531         }
3532
3533         /* No need to punch hole beyond i_size */
3534         if (offset >= inode->i_size)
3535                 goto out_mutex;
3536
3537         /*
3538          * If the hole extends beyond i_size, set the hole
3539          * to end after the page that contains i_size
3540          */
3541         if (offset + length > inode->i_size) {
3542                 length = inode->i_size +
3543                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3544                    offset;
3545         }
3546
3547         if (offset & (sb->s_blocksize - 1) ||
3548             (offset + length) & (sb->s_blocksize - 1)) {
3549                 /*
3550                  * Attach jinode to inode for jbd2 if we do any zeroing of
3551                  * partial block
3552                  */
3553                 ret = ext4_inode_attach_jinode(inode);
3554                 if (ret < 0)
3555                         goto out_mutex;
3556
3557         }
3558
3559         first_block_offset = round_up(offset, sb->s_blocksize);
3560         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3561
3562         /* Now release the pages and zero block aligned part of pages*/
3563         if (last_block_offset > first_block_offset)
3564                 truncate_pagecache_range(inode, first_block_offset,
3565                                          last_block_offset);
3566
3567         /* Wait all existing dio workers, newcomers will block on i_mutex */
3568         ext4_inode_block_unlocked_dio(inode);
3569         inode_dio_wait(inode);
3570
3571         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3572                 credits = ext4_writepage_trans_blocks(inode);
3573         else
3574                 credits = ext4_blocks_for_truncate(inode);
3575         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3576         if (IS_ERR(handle)) {
3577                 ret = PTR_ERR(handle);
3578                 ext4_std_error(sb, ret);
3579                 goto out_dio;
3580         }
3581
3582         ret = ext4_zero_partial_blocks(handle, inode, offset,
3583                                        length);
3584         if (ret)
3585                 goto out_stop;
3586
3587         first_block = (offset + sb->s_blocksize - 1) >>
3588                 EXT4_BLOCK_SIZE_BITS(sb);
3589         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3590
3591         /* If there are no blocks to remove, return now */
3592         if (first_block >= stop_block)
3593                 goto out_stop;
3594
3595         down_write(&EXT4_I(inode)->i_data_sem);
3596         ext4_discard_preallocations(inode);
3597
3598         ret = ext4_es_remove_extent(inode, first_block,
3599                                     stop_block - first_block);
3600         if (ret) {
3601                 up_write(&EXT4_I(inode)->i_data_sem);
3602                 goto out_stop;
3603         }
3604
3605         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3606                 ret = ext4_ext_remove_space(inode, first_block,
3607                                             stop_block - 1);
3608         else
3609                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3610                                             stop_block);
3611
3612         ext4_discard_preallocations(inode);
3613         up_write(&EXT4_I(inode)->i_data_sem);
3614         if (IS_SYNC(inode))
3615                 ext4_handle_sync(handle);
3616         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3617         ext4_mark_inode_dirty(handle, inode);
3618 out_stop:
3619         ext4_journal_stop(handle);
3620 out_dio:
3621         ext4_inode_resume_unlocked_dio(inode);
3622 out_mutex:
3623         mutex_unlock(&inode->i_mutex);
3624         return ret;
3625 }
3626
3627 int ext4_inode_attach_jinode(struct inode *inode)
3628 {
3629         struct ext4_inode_info *ei = EXT4_I(inode);
3630         struct jbd2_inode *jinode;
3631
3632         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3633                 return 0;
3634
3635         jinode = jbd2_alloc_inode(GFP_KERNEL);
3636         spin_lock(&inode->i_lock);
3637         if (!ei->jinode) {
3638                 if (!jinode) {
3639                         spin_unlock(&inode->i_lock);
3640                         return -ENOMEM;
3641                 }
3642                 ei->jinode = jinode;
3643                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3644                 jinode = NULL;
3645         }
3646         spin_unlock(&inode->i_lock);
3647         if (unlikely(jinode != NULL))
3648                 jbd2_free_inode(jinode);
3649         return 0;
3650 }
3651
3652 /*
3653  * ext4_truncate()
3654  *
3655  * We block out ext4_get_block() block instantiations across the entire
3656  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3657  * simultaneously on behalf of the same inode.
3658  *
3659  * As we work through the truncate and commit bits of it to the journal there
3660  * is one core, guiding principle: the file's tree must always be consistent on
3661  * disk.  We must be able to restart the truncate after a crash.
3662  *
3663  * The file's tree may be transiently inconsistent in memory (although it
3664  * probably isn't), but whenever we close off and commit a journal transaction,
3665  * the contents of (the filesystem + the journal) must be consistent and
3666  * restartable.  It's pretty simple, really: bottom up, right to left (although
3667  * left-to-right works OK too).
3668  *
3669  * Note that at recovery time, journal replay occurs *before* the restart of
3670  * truncate against the orphan inode list.
3671  *
3672  * The committed inode has the new, desired i_size (which is the same as
3673  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3674  * that this inode's truncate did not complete and it will again call
3675  * ext4_truncate() to have another go.  So there will be instantiated blocks
3676  * to the right of the truncation point in a crashed ext4 filesystem.  But
3677  * that's fine - as long as they are linked from the inode, the post-crash
3678  * ext4_truncate() run will find them and release them.
3679  */
3680 void ext4_truncate(struct inode *inode)
3681 {
3682         struct ext4_inode_info *ei = EXT4_I(inode);
3683         unsigned int credits;
3684         handle_t *handle;
3685         struct address_space *mapping = inode->i_mapping;
3686
3687         /*
3688          * There is a possibility that we're either freeing the inode
3689          * or it completely new indode. In those cases we might not
3690          * have i_mutex locked because it's not necessary.
3691          */
3692         if (!(inode->i_state & (I_NEW|I_FREEING)))
3693                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3694         trace_ext4_truncate_enter(inode);
3695
3696         if (!ext4_can_truncate(inode))
3697                 return;
3698
3699         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3700
3701         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3702                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3703
3704         if (ext4_has_inline_data(inode)) {
3705                 int has_inline = 1;
3706
3707                 ext4_inline_data_truncate(inode, &has_inline);
3708                 if (has_inline)
3709                         return;
3710         }
3711
3712         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3713         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3714                 if (ext4_inode_attach_jinode(inode) < 0)
3715                         return;
3716         }
3717
3718         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3719                 credits = ext4_writepage_trans_blocks(inode);
3720         else
3721                 credits = ext4_blocks_for_truncate(inode);
3722
3723         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3724         if (IS_ERR(handle)) {
3725                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3726                 return;
3727         }
3728
3729         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3730                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3731
3732         /*
3733          * We add the inode to the orphan list, so that if this
3734          * truncate spans multiple transactions, and we crash, we will
3735          * resume the truncate when the filesystem recovers.  It also
3736          * marks the inode dirty, to catch the new size.
3737          *
3738          * Implication: the file must always be in a sane, consistent
3739          * truncatable state while each transaction commits.
3740          */
3741         if (ext4_orphan_add(handle, inode))
3742                 goto out_stop;
3743
3744         down_write(&EXT4_I(inode)->i_data_sem);
3745
3746         ext4_discard_preallocations(inode);
3747
3748         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3749                 ext4_ext_truncate(handle, inode);
3750         else
3751                 ext4_ind_truncate(handle, inode);
3752
3753         up_write(&ei->i_data_sem);
3754
3755         if (IS_SYNC(inode))
3756                 ext4_handle_sync(handle);
3757
3758 out_stop:
3759         /*
3760          * If this was a simple ftruncate() and the file will remain alive,
3761          * then we need to clear up the orphan record which we created above.
3762          * However, if this was a real unlink then we were called by
3763          * ext4_delete_inode(), and we allow that function to clean up the
3764          * orphan info for us.
3765          */
3766         if (inode->i_nlink)
3767                 ext4_orphan_del(handle, inode);
3768
3769         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3770         ext4_mark_inode_dirty(handle, inode);
3771         ext4_journal_stop(handle);
3772
3773         trace_ext4_truncate_exit(inode);
3774 }
3775
3776 /*
3777  * ext4_get_inode_loc returns with an extra refcount against the inode's
3778  * underlying buffer_head on success. If 'in_mem' is true, we have all
3779  * data in memory that is needed to recreate the on-disk version of this
3780  * inode.
3781  */
3782 static int __ext4_get_inode_loc(struct inode *inode,
3783                                 struct ext4_iloc *iloc, int in_mem)
3784 {
3785         struct ext4_group_desc  *gdp;
3786         struct buffer_head      *bh;
3787         struct super_block      *sb = inode->i_sb;
3788         ext4_fsblk_t            block;
3789         int                     inodes_per_block, inode_offset;
3790
3791         iloc->bh = NULL;
3792         if (!ext4_valid_inum(sb, inode->i_ino))
3793                 return -EIO;
3794
3795         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3796         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3797         if (!gdp)
3798                 return -EIO;
3799
3800         /*
3801          * Figure out the offset within the block group inode table
3802          */
3803         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3804         inode_offset = ((inode->i_ino - 1) %
3805                         EXT4_INODES_PER_GROUP(sb));
3806         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3807         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3808
3809         bh = sb_getblk(sb, block);
3810         if (unlikely(!bh))
3811                 return -ENOMEM;
3812         if (!buffer_uptodate(bh)) {
3813                 lock_buffer(bh);
3814
3815                 /*
3816                  * If the buffer has the write error flag, we have failed
3817                  * to write out another inode in the same block.  In this
3818                  * case, we don't have to read the block because we may
3819                  * read the old inode data successfully.
3820                  */
3821                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3822                         set_buffer_uptodate(bh);
3823
3824                 if (buffer_uptodate(bh)) {
3825                         /* someone brought it uptodate while we waited */
3826                         unlock_buffer(bh);
3827                         goto has_buffer;
3828                 }
3829
3830                 /*
3831                  * If we have all information of the inode in memory and this
3832                  * is the only valid inode in the block, we need not read the
3833                  * block.
3834                  */
3835                 if (in_mem) {
3836                         struct buffer_head *bitmap_bh;
3837                         int i, start;
3838
3839                         start = inode_offset & ~(inodes_per_block - 1);
3840
3841                         /* Is the inode bitmap in cache? */
3842                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3843                         if (unlikely(!bitmap_bh))
3844                                 goto make_io;
3845
3846                         /*
3847                          * If the inode bitmap isn't in cache then the
3848                          * optimisation may end up performing two reads instead
3849                          * of one, so skip it.
3850                          */
3851                         if (!buffer_uptodate(bitmap_bh)) {
3852                                 brelse(bitmap_bh);
3853                                 goto make_io;
3854                         }
3855                         for (i = start; i < start + inodes_per_block; i++) {
3856                                 if (i == inode_offset)
3857                                         continue;
3858                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3859                                         break;
3860                         }
3861                         brelse(bitmap_bh);
3862                         if (i == start + inodes_per_block) {
3863                                 /* all other inodes are free, so skip I/O */
3864                                 memset(bh->b_data, 0, bh->b_size);
3865                                 set_buffer_uptodate(bh);
3866                                 unlock_buffer(bh);
3867                                 goto has_buffer;
3868                         }
3869                 }
3870
3871 make_io:
3872                 /*
3873                  * If we need to do any I/O, try to pre-readahead extra
3874                  * blocks from the inode table.
3875                  */
3876                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3877                         ext4_fsblk_t b, end, table;
3878                         unsigned num;
3879                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3880
3881                         table = ext4_inode_table(sb, gdp);
3882                         /* s_inode_readahead_blks is always a power of 2 */
3883                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3884                         if (table > b)
3885                                 b = table;
3886                         end = b + ra_blks;
3887                         num = EXT4_INODES_PER_GROUP(sb);
3888                         if (ext4_has_group_desc_csum(sb))
3889                                 num -= ext4_itable_unused_count(sb, gdp);
3890                         table += num / inodes_per_block;
3891                         if (end > table)
3892                                 end = table;
3893                         while (b <= end)
3894                                 sb_breadahead(sb, b++);
3895                 }
3896
3897                 /*
3898                  * There are other valid inodes in the buffer, this inode
3899                  * has in-inode xattrs, or we don't have this inode in memory.
3900                  * Read the block from disk.
3901                  */
3902                 trace_ext4_load_inode(inode);
3903                 get_bh(bh);
3904                 bh->b_end_io = end_buffer_read_sync;
3905                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3906                 wait_on_buffer(bh);
3907                 if (!buffer_uptodate(bh)) {
3908                         EXT4_ERROR_INODE_BLOCK(inode, block,
3909                                                "unable to read itable block");
3910                         brelse(bh);
3911                         return -EIO;
3912                 }
3913         }
3914 has_buffer:
3915         iloc->bh = bh;
3916         return 0;
3917 }
3918
3919 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3920 {
3921         /* We have all inode data except xattrs in memory here. */
3922         return __ext4_get_inode_loc(inode, iloc,
3923                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3924 }
3925
3926 void ext4_set_inode_flags(struct inode *inode)
3927 {
3928         unsigned int flags = EXT4_I(inode)->i_flags;
3929
3930         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3931         if (flags & EXT4_SYNC_FL)
3932                 inode->i_flags |= S_SYNC;
3933         if (flags & EXT4_APPEND_FL)
3934                 inode->i_flags |= S_APPEND;
3935         if (flags & EXT4_IMMUTABLE_FL)
3936                 inode->i_flags |= S_IMMUTABLE;
3937         if (flags & EXT4_NOATIME_FL)
3938                 inode->i_flags |= S_NOATIME;
3939         if (flags & EXT4_DIRSYNC_FL)
3940                 inode->i_flags |= S_DIRSYNC;
3941 }
3942
3943 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3944 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3945 {
3946         unsigned int vfs_fl;
3947         unsigned long old_fl, new_fl;
3948
3949         do {
3950                 vfs_fl = ei->vfs_inode.i_flags;
3951                 old_fl = ei->i_flags;
3952                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3953                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3954                                 EXT4_DIRSYNC_FL);
3955                 if (vfs_fl & S_SYNC)
3956                         new_fl |= EXT4_SYNC_FL;
3957                 if (vfs_fl & S_APPEND)
3958                         new_fl |= EXT4_APPEND_FL;
3959                 if (vfs_fl & S_IMMUTABLE)
3960                         new_fl |= EXT4_IMMUTABLE_FL;
3961                 if (vfs_fl & S_NOATIME)
3962                         new_fl |= EXT4_NOATIME_FL;
3963                 if (vfs_fl & S_DIRSYNC)
3964                         new_fl |= EXT4_DIRSYNC_FL;
3965         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3966 }
3967
3968 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3969                                   struct ext4_inode_info *ei)
3970 {
3971         blkcnt_t i_blocks ;
3972         struct inode *inode = &(ei->vfs_inode);
3973         struct super_block *sb = inode->i_sb;
3974
3975         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3976                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3977                 /* we are using combined 48 bit field */
3978                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3979                                         le32_to_cpu(raw_inode->i_blocks_lo);
3980                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3981                         /* i_blocks represent file system block size */
3982                         return i_blocks  << (inode->i_blkbits - 9);
3983                 } else {
3984                         return i_blocks;
3985                 }
3986         } else {
3987                 return le32_to_cpu(raw_inode->i_blocks_lo);
3988         }
3989 }
3990
3991 static inline void ext4_iget_extra_inode(struct inode *inode,
3992                                          struct ext4_inode *raw_inode,
3993                                          struct ext4_inode_info *ei)
3994 {
3995         __le32 *magic = (void *)raw_inode +
3996                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3997         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3998                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3999                 ext4_find_inline_data_nolock(inode);
4000         } else
4001                 EXT4_I(inode)->i_inline_off = 0;
4002 }
4003
4004 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4005 {
4006         struct ext4_iloc iloc;
4007         struct ext4_inode *raw_inode;
4008         struct ext4_inode_info *ei;
4009         struct inode *inode;
4010         journal_t *journal = EXT4_SB(sb)->s_journal;
4011         long ret;
4012         int block;
4013         uid_t i_uid;
4014         gid_t i_gid;
4015
4016         inode = iget_locked(sb, ino);
4017         if (!inode)
4018                 return ERR_PTR(-ENOMEM);
4019         if (!(inode->i_state & I_NEW))
4020                 return inode;
4021
4022         ei = EXT4_I(inode);
4023         iloc.bh = NULL;
4024
4025         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4026         if (ret < 0)
4027                 goto bad_inode;
4028         raw_inode = ext4_raw_inode(&iloc);
4029
4030         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4031                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4032                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4033                     EXT4_INODE_SIZE(inode->i_sb)) {
4034                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4035                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4036                                 EXT4_INODE_SIZE(inode->i_sb));
4037                         ret = -EIO;
4038                         goto bad_inode;
4039                 }
4040         } else
4041                 ei->i_extra_isize = 0;
4042
4043         /* Precompute checksum seed for inode metadata */
4044         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4045                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4046                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4047                 __u32 csum;
4048                 __le32 inum = cpu_to_le32(inode->i_ino);
4049                 __le32 gen = raw_inode->i_generation;
4050                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4051                                    sizeof(inum));
4052                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4053                                               sizeof(gen));
4054         }
4055
4056         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4057                 EXT4_ERROR_INODE(inode, "checksum invalid");
4058                 ret = -EIO;
4059                 goto bad_inode;
4060         }
4061
4062         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4063         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4064         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4065         if (!(test_opt(inode->i_sb, NO_UID32))) {
4066                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4067                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4068         }
4069         i_uid_write(inode, i_uid);
4070         i_gid_write(inode, i_gid);
4071         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4072
4073         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4074         ei->i_inline_off = 0;
4075         ei->i_dir_start_lookup = 0;
4076         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4077         /* We now have enough fields to check if the inode was active or not.
4078          * This is needed because nfsd might try to access dead inodes
4079          * the test is that same one that e2fsck uses
4080          * NeilBrown 1999oct15
4081          */
4082         if (inode->i_nlink == 0) {
4083                 if ((inode->i_mode == 0 ||
4084                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4085                     ino != EXT4_BOOT_LOADER_INO) {
4086                         /* this inode is deleted */
4087                         ret = -ESTALE;
4088                         goto bad_inode;
4089                 }
4090                 /* The only unlinked inodes we let through here have
4091                  * valid i_mode and are being read by the orphan
4092                  * recovery code: that's fine, we're about to complete
4093                  * the process of deleting those.
4094                  * OR it is the EXT4_BOOT_LOADER_INO which is
4095                  * not initialized on a new filesystem. */
4096         }
4097         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4098         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4099         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4100         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4101                 ei->i_file_acl |=
4102                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4103         inode->i_size = ext4_isize(raw_inode);
4104         ei->i_disksize = inode->i_size;
4105 #ifdef CONFIG_QUOTA
4106         ei->i_reserved_quota = 0;
4107 #endif
4108         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4109         ei->i_block_group = iloc.block_group;
4110         ei->i_last_alloc_group = ~0;
4111         /*
4112          * NOTE! The in-memory inode i_data array is in little-endian order
4113          * even on big-endian machines: we do NOT byteswap the block numbers!
4114          */
4115         for (block = 0; block < EXT4_N_BLOCKS; block++)
4116                 ei->i_data[block] = raw_inode->i_block[block];
4117         INIT_LIST_HEAD(&ei->i_orphan);
4118
4119         /*
4120          * Set transaction id's of transactions that have to be committed
4121          * to finish f[data]sync. We set them to currently running transaction
4122          * as we cannot be sure that the inode or some of its metadata isn't
4123          * part of the transaction - the inode could have been reclaimed and
4124          * now it is reread from disk.
4125          */
4126         if (journal) {
4127                 transaction_t *transaction;
4128                 tid_t tid;
4129
4130                 read_lock(&journal->j_state_lock);
4131                 if (journal->j_running_transaction)
4132                         transaction = journal->j_running_transaction;
4133                 else
4134                         transaction = journal->j_committing_transaction;
4135                 if (transaction)
4136                         tid = transaction->t_tid;
4137                 else
4138                         tid = journal->j_commit_sequence;
4139                 read_unlock(&journal->j_state_lock);
4140                 ei->i_sync_tid = tid;
4141                 ei->i_datasync_tid = tid;
4142         }
4143
4144         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4145                 if (ei->i_extra_isize == 0) {
4146                         /* The extra space is currently unused. Use it. */
4147                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4148                                             EXT4_GOOD_OLD_INODE_SIZE;
4149                 } else {
4150                         ext4_iget_extra_inode(inode, raw_inode, ei);
4151                 }
4152         }
4153
4154         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4155         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4156         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4157         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4158
4159         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4160         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4161                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4162                         inode->i_version |=
4163                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4164         }
4165
4166         ret = 0;
4167         if (ei->i_file_acl &&
4168             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4169                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4170                                  ei->i_file_acl);
4171                 ret = -EIO;
4172                 goto bad_inode;
4173         } else if (!ext4_has_inline_data(inode)) {
4174                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4175                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4176                             (S_ISLNK(inode->i_mode) &&
4177                              !ext4_inode_is_fast_symlink(inode))))
4178                                 /* Validate extent which is part of inode */
4179                                 ret = ext4_ext_check_inode(inode);
4180                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4181                            (S_ISLNK(inode->i_mode) &&
4182                             !ext4_inode_is_fast_symlink(inode))) {
4183                         /* Validate block references which are part of inode */
4184                         ret = ext4_ind_check_inode(inode);
4185                 }
4186         }
4187         if (ret)
4188                 goto bad_inode;
4189
4190         if (S_ISREG(inode->i_mode)) {
4191                 inode->i_op = &ext4_file_inode_operations;
4192                 inode->i_fop = &ext4_file_operations;
4193                 ext4_set_aops(inode);
4194         } else if (S_ISDIR(inode->i_mode)) {
4195                 inode->i_op = &ext4_dir_inode_operations;
4196                 inode->i_fop = &ext4_dir_operations;
4197         } else if (S_ISLNK(inode->i_mode)) {
4198                 if (ext4_inode_is_fast_symlink(inode)) {
4199                         inode->i_op = &ext4_fast_symlink_inode_operations;
4200                         nd_terminate_link(ei->i_data, inode->i_size,
4201                                 sizeof(ei->i_data) - 1);
4202                 } else {
4203                         inode->i_op = &ext4_symlink_inode_operations;
4204                         ext4_set_aops(inode);
4205                 }
4206         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4207               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4208                 inode->i_op = &ext4_special_inode_operations;
4209                 if (raw_inode->i_block[0])
4210                         init_special_inode(inode, inode->i_mode,
4211                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4212                 else
4213                         init_special_inode(inode, inode->i_mode,
4214                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4215         } else if (ino == EXT4_BOOT_LOADER_INO) {
4216                 make_bad_inode(inode);
4217         } else {
4218                 ret = -EIO;
4219                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4220                 goto bad_inode;
4221         }
4222         brelse(iloc.bh);
4223         ext4_set_inode_flags(inode);
4224         unlock_new_inode(inode);
4225         return inode;
4226
4227 bad_inode:
4228         brelse(iloc.bh);
4229         iget_failed(inode);
4230         return ERR_PTR(ret);
4231 }
4232
4233 static int ext4_inode_blocks_set(handle_t *handle,
4234                                 struct ext4_inode *raw_inode,
4235                                 struct ext4_inode_info *ei)
4236 {
4237         struct inode *inode = &(ei->vfs_inode);
4238         u64 i_blocks = inode->i_blocks;
4239         struct super_block *sb = inode->i_sb;
4240
4241         if (i_blocks <= ~0U) {
4242                 /*
4243                  * i_blocks can be represented in a 32 bit variable
4244                  * as multiple of 512 bytes
4245                  */
4246                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4247                 raw_inode->i_blocks_high = 0;
4248                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4249                 return 0;
4250         }
4251         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4252                 return -EFBIG;
4253
4254         if (i_blocks <= 0xffffffffffffULL) {
4255                 /*
4256                  * i_blocks can be represented in a 48 bit variable
4257                  * as multiple of 512 bytes
4258                  */
4259                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4260                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4261                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4262         } else {
4263                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4264                 /* i_block is stored in file system block size */
4265                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4266                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4267                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4268         }
4269         return 0;
4270 }
4271
4272 /*
4273  * Post the struct inode info into an on-disk inode location in the
4274  * buffer-cache.  This gobbles the caller's reference to the
4275  * buffer_head in the inode location struct.
4276  *
4277  * The caller must have write access to iloc->bh.
4278  */
4279 static int ext4_do_update_inode(handle_t *handle,
4280                                 struct inode *inode,
4281                                 struct ext4_iloc *iloc)
4282 {
4283         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4284         struct ext4_inode_info *ei = EXT4_I(inode);
4285         struct buffer_head *bh = iloc->bh;
4286         int err = 0, rc, block;
4287         int need_datasync = 0;
4288         uid_t i_uid;
4289         gid_t i_gid;
4290
4291         /* For fields not not tracking in the in-memory inode,
4292          * initialise them to zero for new inodes. */
4293         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4294                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4295
4296         ext4_get_inode_flags(ei);
4297         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4298         i_uid = i_uid_read(inode);
4299         i_gid = i_gid_read(inode);
4300         if (!(test_opt(inode->i_sb, NO_UID32))) {
4301                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4302                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4303 /*
4304  * Fix up interoperability with old kernels. Otherwise, old inodes get
4305  * re-used with the upper 16 bits of the uid/gid intact
4306  */
4307                 if (!ei->i_dtime) {
4308                         raw_inode->i_uid_high =
4309                                 cpu_to_le16(high_16_bits(i_uid));
4310                         raw_inode->i_gid_high =
4311                                 cpu_to_le16(high_16_bits(i_gid));
4312                 } else {
4313                         raw_inode->i_uid_high = 0;
4314                         raw_inode->i_gid_high = 0;
4315                 }
4316         } else {
4317                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4318                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4319                 raw_inode->i_uid_high = 0;
4320                 raw_inode->i_gid_high = 0;
4321         }
4322         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4323
4324         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4325         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4326         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4327         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4328
4329         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4330                 goto out_brelse;
4331         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4332         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4333         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4334             cpu_to_le32(EXT4_OS_HURD))
4335                 raw_inode->i_file_acl_high =
4336                         cpu_to_le16(ei->i_file_acl >> 32);
4337         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4338         if (ei->i_disksize != ext4_isize(raw_inode)) {
4339                 ext4_isize_set(raw_inode, ei->i_disksize);
4340                 need_datasync = 1;
4341         }
4342         if (ei->i_disksize > 0x7fffffffULL) {
4343                 struct super_block *sb = inode->i_sb;
4344                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4345                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4346                                 EXT4_SB(sb)->s_es->s_rev_level ==
4347                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4348                         /* If this is the first large file
4349                          * created, add a flag to the superblock.
4350                          */
4351                         err = ext4_journal_get_write_access(handle,
4352                                         EXT4_SB(sb)->s_sbh);
4353                         if (err)
4354                                 goto out_brelse;
4355                         ext4_update_dynamic_rev(sb);
4356                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4357                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4358                         ext4_handle_sync(handle);
4359                         err = ext4_handle_dirty_super(handle, sb);
4360                 }
4361         }
4362         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4363         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4364                 if (old_valid_dev(inode->i_rdev)) {
4365                         raw_inode->i_block[0] =
4366                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4367                         raw_inode->i_block[1] = 0;
4368                 } else {
4369                         raw_inode->i_block[0] = 0;
4370                         raw_inode->i_block[1] =
4371                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4372                         raw_inode->i_block[2] = 0;
4373                 }
4374         } else if (!ext4_has_inline_data(inode)) {
4375                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4376                         raw_inode->i_block[block] = ei->i_data[block];
4377         }
4378
4379         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4380         if (ei->i_extra_isize) {
4381                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4382                         raw_inode->i_version_hi =
4383                         cpu_to_le32(inode->i_version >> 32);
4384                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4385         }
4386
4387         ext4_inode_csum_set(inode, raw_inode, ei);
4388
4389         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4390         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4391         if (!err)
4392                 err = rc;
4393         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4394
4395         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4396 out_brelse:
4397         brelse(bh);
4398         ext4_std_error(inode->i_sb, err);
4399         return err;
4400 }
4401
4402 /*
4403  * ext4_write_inode()
4404  *
4405  * We are called from a few places:
4406  *
4407  * - Within generic_file_write() for O_SYNC files.
4408  *   Here, there will be no transaction running. We wait for any running
4409  *   transaction to commit.
4410  *
4411  * - Within sys_sync(), kupdate and such.
4412  *   We wait on commit, if tol to.
4413  *
4414  * - Within prune_icache() (PF_MEMALLOC == true)
4415  *   Here we simply return.  We can't afford to block kswapd on the
4416  *   journal commit.
4417  *
4418  * In all cases it is actually safe for us to return without doing anything,
4419  * because the inode has been copied into a raw inode buffer in
4420  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4421  * knfsd.
4422  *
4423  * Note that we are absolutely dependent upon all inode dirtiers doing the
4424  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4425  * which we are interested.
4426  *
4427  * It would be a bug for them to not do this.  The code:
4428  *
4429  *      mark_inode_dirty(inode)
4430  *      stuff();
4431  *      inode->i_size = expr;
4432  *
4433  * is in error because a kswapd-driven write_inode() could occur while
4434  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4435  * will no longer be on the superblock's dirty inode list.
4436  */
4437 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4438 {
4439         int err;
4440
4441         if (current->flags & PF_MEMALLOC)
4442                 return 0;
4443
4444         if (EXT4_SB(inode->i_sb)->s_journal) {
4445                 if (ext4_journal_current_handle()) {
4446                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4447                         dump_stack();
4448                         return -EIO;
4449                 }
4450
4451                 if (wbc->sync_mode != WB_SYNC_ALL)
4452                         return 0;
4453
4454                 err = ext4_force_commit(inode->i_sb);
4455         } else {
4456                 struct ext4_iloc iloc;
4457
4458                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4459                 if (err)
4460                         return err;
4461                 if (wbc->sync_mode == WB_SYNC_ALL)
4462                         sync_dirty_buffer(iloc.bh);
4463                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4464                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4465                                          "IO error syncing inode");
4466                         err = -EIO;
4467                 }
4468                 brelse(iloc.bh);
4469         }
4470         return err;
4471 }
4472
4473 /*
4474  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4475  * buffers that are attached to a page stradding i_size and are undergoing
4476  * commit. In that case we have to wait for commit to finish and try again.
4477  */
4478 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4479 {
4480         struct page *page;
4481         unsigned offset;
4482         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4483         tid_t commit_tid = 0;
4484         int ret;
4485
4486         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4487         /*
4488          * All buffers in the last page remain valid? Then there's nothing to
4489          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4490          * blocksize case
4491          */
4492         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4493                 return;
4494         while (1) {
4495                 page = find_lock_page(inode->i_mapping,
4496                                       inode->i_size >> PAGE_CACHE_SHIFT);
4497                 if (!page)
4498                         return;
4499                 ret = __ext4_journalled_invalidatepage(page, offset,
4500                                                 PAGE_CACHE_SIZE - offset);
4501                 unlock_page(page);
4502                 page_cache_release(page);
4503                 if (ret != -EBUSY)
4504                         return;
4505                 commit_tid = 0;
4506                 read_lock(&journal->j_state_lock);
4507                 if (journal->j_committing_transaction)
4508                         commit_tid = journal->j_committing_transaction->t_tid;
4509                 read_unlock(&journal->j_state_lock);
4510                 if (commit_tid)
4511                         jbd2_log_wait_commit(journal, commit_tid);
4512         }
4513 }
4514
4515 /*
4516  * ext4_setattr()
4517  *
4518  * Called from notify_change.
4519  *
4520  * We want to trap VFS attempts to truncate the file as soon as
4521  * possible.  In particular, we want to make sure that when the VFS
4522  * shrinks i_size, we put the inode on the orphan list and modify
4523  * i_disksize immediately, so that during the subsequent flushing of
4524  * dirty pages and freeing of disk blocks, we can guarantee that any
4525  * commit will leave the blocks being flushed in an unused state on
4526  * disk.  (On recovery, the inode will get truncated and the blocks will
4527  * be freed, so we have a strong guarantee that no future commit will
4528  * leave these blocks visible to the user.)
4529  *
4530  * Another thing we have to assure is that if we are in ordered mode
4531  * and inode is still attached to the committing transaction, we must
4532  * we start writeout of all the dirty pages which are being truncated.
4533  * This way we are sure that all the data written in the previous
4534  * transaction are already on disk (truncate waits for pages under
4535  * writeback).
4536  *
4537  * Called with inode->i_mutex down.
4538  */
4539 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4540 {
4541         struct inode *inode = dentry->d_inode;
4542         int error, rc = 0;
4543         int orphan = 0;
4544         const unsigned int ia_valid = attr->ia_valid;
4545
4546         error = inode_change_ok(inode, attr);
4547         if (error)
4548                 return error;
4549
4550         if (is_quota_modification(inode, attr))
4551                 dquot_initialize(inode);
4552         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4553             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4554                 handle_t *handle;
4555
4556                 /* (user+group)*(old+new) structure, inode write (sb,
4557                  * inode block, ? - but truncate inode update has it) */
4558                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4559                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4560                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4561                 if (IS_ERR(handle)) {
4562                         error = PTR_ERR(handle);
4563                         goto err_out;
4564                 }
4565                 error = dquot_transfer(inode, attr);
4566                 if (error) {
4567                         ext4_journal_stop(handle);
4568                         return error;
4569                 }
4570                 /* Update corresponding info in inode so that everything is in
4571                  * one transaction */
4572                 if (attr->ia_valid & ATTR_UID)
4573                         inode->i_uid = attr->ia_uid;
4574                 if (attr->ia_valid & ATTR_GID)
4575                         inode->i_gid = attr->ia_gid;
4576                 error = ext4_mark_inode_dirty(handle, inode);
4577                 ext4_journal_stop(handle);
4578         }
4579
4580         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4581                 handle_t *handle;
4582
4583                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4584                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4585
4586                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4587                                 return -EFBIG;
4588                 }
4589
4590                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4591                         inode_inc_iversion(inode);
4592
4593                 if (S_ISREG(inode->i_mode) &&
4594                     (attr->ia_size < inode->i_size)) {
4595                         if (ext4_should_order_data(inode)) {
4596                                 error = ext4_begin_ordered_truncate(inode,
4597                                                             attr->ia_size);
4598                                 if (error)
4599                                         goto err_out;
4600                         }
4601                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4602                         if (IS_ERR(handle)) {
4603                                 error = PTR_ERR(handle);
4604                                 goto err_out;
4605                         }
4606                         if (ext4_handle_valid(handle)) {
4607                                 error = ext4_orphan_add(handle, inode);
4608                                 orphan = 1;
4609                         }
4610                         down_write(&EXT4_I(inode)->i_data_sem);
4611                         EXT4_I(inode)->i_disksize = attr->ia_size;
4612                         rc = ext4_mark_inode_dirty(handle, inode);
4613                         if (!error)
4614                                 error = rc;
4615                         /*
4616                          * We have to update i_size under i_data_sem together
4617                          * with i_disksize to avoid races with writeback code
4618                          * running ext4_wb_update_i_disksize().
4619                          */
4620                         if (!error)
4621                                 i_size_write(inode, attr->ia_size);
4622                         up_write(&EXT4_I(inode)->i_data_sem);
4623                         ext4_journal_stop(handle);
4624                         if (error) {
4625                                 ext4_orphan_del(NULL, inode);
4626                                 goto err_out;
4627                         }
4628                 } else
4629                         i_size_write(inode, attr->ia_size);
4630
4631                 /*
4632                  * Blocks are going to be removed from the inode. Wait
4633                  * for dio in flight.  Temporarily disable
4634                  * dioread_nolock to prevent livelock.
4635                  */
4636                 if (orphan) {
4637                         if (!ext4_should_journal_data(inode)) {
4638                                 ext4_inode_block_unlocked_dio(inode);
4639                                 inode_dio_wait(inode);
4640                                 ext4_inode_resume_unlocked_dio(inode);
4641                         } else
4642                                 ext4_wait_for_tail_page_commit(inode);
4643                 }
4644                 /*
4645                  * Truncate pagecache after we've waited for commit
4646                  * in data=journal mode to make pages freeable.
4647                  */
4648                         truncate_pagecache(inode, inode->i_size);
4649         }
4650         /*
4651          * We want to call ext4_truncate() even if attr->ia_size ==
4652          * inode->i_size for cases like truncation of fallocated space
4653          */
4654         if (attr->ia_valid & ATTR_SIZE)
4655                 ext4_truncate(inode);
4656
4657         if (!rc) {
4658                 setattr_copy(inode, attr);
4659                 mark_inode_dirty(inode);
4660         }
4661
4662         /*
4663          * If the call to ext4_truncate failed to get a transaction handle at
4664          * all, we need to clean up the in-core orphan list manually.
4665          */
4666         if (orphan && inode->i_nlink)
4667                 ext4_orphan_del(NULL, inode);
4668
4669         if (!rc && (ia_valid & ATTR_MODE))
4670                 rc = posix_acl_chmod(inode, inode->i_mode);
4671
4672 err_out:
4673         ext4_std_error(inode->i_sb, error);
4674         if (!error)
4675                 error = rc;
4676         return error;
4677 }
4678
4679 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4680                  struct kstat *stat)
4681 {
4682         struct inode *inode;
4683         unsigned long long delalloc_blocks;
4684
4685         inode = dentry->d_inode;
4686         generic_fillattr(inode, stat);
4687
4688         /*
4689          * If there is inline data in the inode, the inode will normally not
4690          * have data blocks allocated (it may have an external xattr block).
4691          * Report at least one sector for such files, so tools like tar, rsync,
4692          * others doen't incorrectly think the file is completely sparse.
4693          */
4694         if (unlikely(ext4_has_inline_data(inode)))
4695                 stat->blocks += (stat->size + 511) >> 9;
4696
4697         /*
4698          * We can't update i_blocks if the block allocation is delayed
4699          * otherwise in the case of system crash before the real block
4700          * allocation is done, we will have i_blocks inconsistent with
4701          * on-disk file blocks.
4702          * We always keep i_blocks updated together with real
4703          * allocation. But to not confuse with user, stat
4704          * will return the blocks that include the delayed allocation
4705          * blocks for this file.
4706          */
4707         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4708                                    EXT4_I(inode)->i_reserved_data_blocks);
4709         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4710         return 0;
4711 }
4712
4713 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4714                                    int pextents)
4715 {
4716         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4717                 return ext4_ind_trans_blocks(inode, lblocks);
4718         return ext4_ext_index_trans_blocks(inode, pextents);
4719 }
4720
4721 /*
4722  * Account for index blocks, block groups bitmaps and block group
4723  * descriptor blocks if modify datablocks and index blocks
4724  * worse case, the indexs blocks spread over different block groups
4725  *
4726  * If datablocks are discontiguous, they are possible to spread over
4727  * different block groups too. If they are contiguous, with flexbg,
4728  * they could still across block group boundary.
4729  *
4730  * Also account for superblock, inode, quota and xattr blocks
4731  */
4732 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4733                                   int pextents)
4734 {
4735         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4736         int gdpblocks;
4737         int idxblocks;
4738         int ret = 0;
4739
4740         /*
4741          * How many index blocks need to touch to map @lblocks logical blocks
4742          * to @pextents physical extents?
4743          */
4744         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4745
4746         ret = idxblocks;
4747
4748         /*
4749          * Now let's see how many group bitmaps and group descriptors need
4750          * to account
4751          */
4752         groups = idxblocks + pextents;
4753         gdpblocks = groups;
4754         if (groups > ngroups)
4755                 groups = ngroups;
4756         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4757                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4758
4759         /* bitmaps and block group descriptor blocks */
4760         ret += groups + gdpblocks;
4761
4762         /* Blocks for super block, inode, quota and xattr blocks */
4763         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4764
4765         return ret;
4766 }
4767
4768 /*
4769  * Calculate the total number of credits to reserve to fit
4770  * the modification of a single pages into a single transaction,
4771  * which may include multiple chunks of block allocations.
4772  *
4773  * This could be called via ext4_write_begin()
4774  *
4775  * We need to consider the worse case, when
4776  * one new block per extent.
4777  */
4778 int ext4_writepage_trans_blocks(struct inode *inode)
4779 {
4780         int bpp = ext4_journal_blocks_per_page(inode);
4781         int ret;
4782
4783         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4784
4785         /* Account for data blocks for journalled mode */
4786         if (ext4_should_journal_data(inode))
4787                 ret += bpp;
4788         return ret;
4789 }
4790
4791 /*
4792  * Calculate the journal credits for a chunk of data modification.
4793  *
4794  * This is called from DIO, fallocate or whoever calling
4795  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4796  *
4797  * journal buffers for data blocks are not included here, as DIO
4798  * and fallocate do no need to journal data buffers.
4799  */
4800 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4801 {
4802         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4803 }
4804
4805 /*
4806  * The caller must have previously called ext4_reserve_inode_write().
4807  * Give this, we know that the caller already has write access to iloc->bh.
4808  */
4809 int ext4_mark_iloc_dirty(handle_t *handle,
4810                          struct inode *inode, struct ext4_iloc *iloc)
4811 {
4812         int err = 0;
4813
4814         if (IS_I_VERSION(inode))
4815                 inode_inc_iversion(inode);
4816
4817         /* the do_update_inode consumes one bh->b_count */
4818         get_bh(iloc->bh);
4819
4820         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4821         err = ext4_do_update_inode(handle, inode, iloc);
4822         put_bh(iloc->bh);
4823         return err;
4824 }
4825
4826 /*
4827  * On success, We end up with an outstanding reference count against
4828  * iloc->bh.  This _must_ be cleaned up later.
4829  */
4830
4831 int
4832 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4833                          struct ext4_iloc *iloc)
4834 {
4835         int err;
4836
4837         err = ext4_get_inode_loc(inode, iloc);
4838         if (!err) {
4839                 BUFFER_TRACE(iloc->bh, "get_write_access");
4840                 err = ext4_journal_get_write_access(handle, iloc->bh);
4841                 if (err) {
4842                         brelse(iloc->bh);
4843                         iloc->bh = NULL;
4844                 }
4845         }
4846         ext4_std_error(inode->i_sb, err);
4847         return err;
4848 }
4849
4850 /*
4851  * Expand an inode by new_extra_isize bytes.
4852  * Returns 0 on success or negative error number on failure.
4853  */
4854 static int ext4_expand_extra_isize(struct inode *inode,
4855                                    unsigned int new_extra_isize,
4856                                    struct ext4_iloc iloc,
4857                                    handle_t *handle)
4858 {
4859         struct ext4_inode *raw_inode;
4860         struct ext4_xattr_ibody_header *header;
4861
4862         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4863                 return 0;
4864
4865         raw_inode = ext4_raw_inode(&iloc);
4866
4867         header = IHDR(inode, raw_inode);
4868
4869         /* No extended attributes present */
4870         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4871             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4872                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4873                         new_extra_isize);
4874                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4875                 return 0;
4876         }
4877
4878         /* try to expand with EAs present */
4879         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4880                                           raw_inode, handle);
4881 }
4882
4883 /*
4884  * What we do here is to mark the in-core inode as clean with respect to inode
4885  * dirtiness (it may still be data-dirty).
4886  * This means that the in-core inode may be reaped by prune_icache
4887  * without having to perform any I/O.  This is a very good thing,
4888  * because *any* task may call prune_icache - even ones which
4889  * have a transaction open against a different journal.
4890  *
4891  * Is this cheating?  Not really.  Sure, we haven't written the
4892  * inode out, but prune_icache isn't a user-visible syncing function.
4893  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4894  * we start and wait on commits.
4895  */
4896 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4897 {
4898         struct ext4_iloc iloc;
4899         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4900         static unsigned int mnt_count;
4901         int err, ret;
4902
4903         might_sleep();
4904         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4905         err = ext4_reserve_inode_write(handle, inode, &iloc);
4906         if (ext4_handle_valid(handle) &&
4907             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4908             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4909                 /*
4910                  * We need extra buffer credits since we may write into EA block
4911                  * with this same handle. If journal_extend fails, then it will
4912                  * only result in a minor loss of functionality for that inode.
4913                  * If this is felt to be critical, then e2fsck should be run to
4914                  * force a large enough s_min_extra_isize.
4915                  */
4916                 if ((jbd2_journal_extend(handle,
4917                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4918                         ret = ext4_expand_extra_isize(inode,
4919                                                       sbi->s_want_extra_isize,
4920                                                       iloc, handle);
4921                         if (ret) {
4922                                 ext4_set_inode_state(inode,
4923                                                      EXT4_STATE_NO_EXPAND);
4924                                 if (mnt_count !=
4925                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4926                                         ext4_warning(inode->i_sb,
4927                                         "Unable to expand inode %lu. Delete"
4928                                         " some EAs or run e2fsck.",
4929                                         inode->i_ino);
4930                                         mnt_count =
4931                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4932                                 }
4933                         }
4934                 }
4935         }
4936         if (!err)
4937                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4938         return err;
4939 }
4940
4941 /*
4942  * ext4_dirty_inode() is called from __mark_inode_dirty()
4943  *
4944  * We're really interested in the case where a file is being extended.
4945  * i_size has been changed by generic_commit_write() and we thus need
4946  * to include the updated inode in the current transaction.
4947  *
4948  * Also, dquot_alloc_block() will always dirty the inode when blocks
4949  * are allocated to the file.
4950  *
4951  * If the inode is marked synchronous, we don't honour that here - doing
4952  * so would cause a commit on atime updates, which we don't bother doing.
4953  * We handle synchronous inodes at the highest possible level.
4954  */
4955 void ext4_dirty_inode(struct inode *inode, int flags)
4956 {
4957         handle_t *handle;
4958
4959         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4960         if (IS_ERR(handle))
4961                 goto out;
4962
4963         ext4_mark_inode_dirty(handle, inode);
4964
4965         ext4_journal_stop(handle);
4966 out:
4967         return;
4968 }
4969
4970 #if 0
4971 /*
4972  * Bind an inode's backing buffer_head into this transaction, to prevent
4973  * it from being flushed to disk early.  Unlike
4974  * ext4_reserve_inode_write, this leaves behind no bh reference and
4975  * returns no iloc structure, so the caller needs to repeat the iloc
4976  * lookup to mark the inode dirty later.
4977  */
4978 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4979 {
4980         struct ext4_iloc iloc;
4981
4982         int err = 0;
4983         if (handle) {
4984                 err = ext4_get_inode_loc(inode, &iloc);
4985                 if (!err) {
4986                         BUFFER_TRACE(iloc.bh, "get_write_access");
4987                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4988                         if (!err)
4989                                 err = ext4_handle_dirty_metadata(handle,
4990                                                                  NULL,
4991                                                                  iloc.bh);
4992                         brelse(iloc.bh);
4993                 }
4994         }
4995         ext4_std_error(inode->i_sb, err);
4996         return err;
4997 }
4998 #endif
4999
5000 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5001 {
5002         journal_t *journal;
5003         handle_t *handle;
5004         int err;
5005
5006         /*
5007          * We have to be very careful here: changing a data block's
5008          * journaling status dynamically is dangerous.  If we write a
5009          * data block to the journal, change the status and then delete
5010          * that block, we risk forgetting to revoke the old log record
5011          * from the journal and so a subsequent replay can corrupt data.
5012          * So, first we make sure that the journal is empty and that
5013          * nobody is changing anything.
5014          */
5015
5016         journal = EXT4_JOURNAL(inode);
5017         if (!journal)
5018                 return 0;
5019         if (is_journal_aborted(journal))
5020                 return -EROFS;
5021         /* We have to allocate physical blocks for delalloc blocks
5022          * before flushing journal. otherwise delalloc blocks can not
5023          * be allocated any more. even more truncate on delalloc blocks
5024          * could trigger BUG by flushing delalloc blocks in journal.
5025          * There is no delalloc block in non-journal data mode.
5026          */
5027         if (val && test_opt(inode->i_sb, DELALLOC)) {
5028                 err = ext4_alloc_da_blocks(inode);
5029                 if (err < 0)
5030                         return err;
5031         }
5032
5033         /* Wait for all existing dio workers */
5034         ext4_inode_block_unlocked_dio(inode);
5035         inode_dio_wait(inode);
5036
5037         jbd2_journal_lock_updates(journal);
5038
5039         /*
5040          * OK, there are no updates running now, and all cached data is
5041          * synced to disk.  We are now in a completely consistent state
5042          * which doesn't have anything in the journal, and we know that
5043          * no filesystem updates are running, so it is safe to modify
5044          * the inode's in-core data-journaling state flag now.
5045          */
5046
5047         if (val)
5048                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5049         else {
5050                 jbd2_journal_flush(journal);
5051                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5052         }
5053         ext4_set_aops(inode);
5054
5055         jbd2_journal_unlock_updates(journal);
5056         ext4_inode_resume_unlocked_dio(inode);
5057
5058         /* Finally we can mark the inode as dirty. */
5059
5060         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5061         if (IS_ERR(handle))
5062                 return PTR_ERR(handle);
5063
5064         err = ext4_mark_inode_dirty(handle, inode);
5065         ext4_handle_sync(handle);
5066         ext4_journal_stop(handle);
5067         ext4_std_error(inode->i_sb, err);
5068
5069         return err;
5070 }
5071
5072 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5073 {
5074         return !buffer_mapped(bh);
5075 }
5076
5077 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5078 {
5079         struct page *page = vmf->page;
5080         loff_t size;
5081         unsigned long len;
5082         int ret;
5083         struct file *file = vma->vm_file;
5084         struct inode *inode = file_inode(file);
5085         struct address_space *mapping = inode->i_mapping;
5086         handle_t *handle;
5087         get_block_t *get_block;
5088         int retries = 0;
5089
5090         sb_start_pagefault(inode->i_sb);
5091         file_update_time(vma->vm_file);
5092         /* Delalloc case is easy... */
5093         if (test_opt(inode->i_sb, DELALLOC) &&
5094             !ext4_should_journal_data(inode) &&
5095             !ext4_nonda_switch(inode->i_sb)) {
5096                 do {
5097                         ret = __block_page_mkwrite(vma, vmf,
5098                                                    ext4_da_get_block_prep);
5099                 } while (ret == -ENOSPC &&
5100                        ext4_should_retry_alloc(inode->i_sb, &retries));
5101                 goto out_ret;
5102         }
5103
5104         lock_page(page);
5105         size = i_size_read(inode);
5106         /* Page got truncated from under us? */
5107         if (page->mapping != mapping || page_offset(page) > size) {
5108                 unlock_page(page);
5109                 ret = VM_FAULT_NOPAGE;
5110                 goto out;
5111         }
5112
5113         if (page->index == size >> PAGE_CACHE_SHIFT)
5114                 len = size & ~PAGE_CACHE_MASK;
5115         else
5116                 len = PAGE_CACHE_SIZE;
5117         /*
5118          * Return if we have all the buffers mapped. This avoids the need to do
5119          * journal_start/journal_stop which can block and take a long time
5120          */
5121         if (page_has_buffers(page)) {
5122                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5123                                             0, len, NULL,
5124                                             ext4_bh_unmapped)) {
5125                         /* Wait so that we don't change page under IO */
5126                         wait_for_stable_page(page);
5127                         ret = VM_FAULT_LOCKED;
5128                         goto out;
5129                 }
5130         }
5131         unlock_page(page);
5132         /* OK, we need to fill the hole... */
5133         if (ext4_should_dioread_nolock(inode))
5134                 get_block = ext4_get_block_write;
5135         else
5136                 get_block = ext4_get_block;
5137 retry_alloc:
5138         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5139                                     ext4_writepage_trans_blocks(inode));
5140         if (IS_ERR(handle)) {
5141                 ret = VM_FAULT_SIGBUS;
5142                 goto out;
5143         }
5144         ret = __block_page_mkwrite(vma, vmf, get_block);
5145         if (!ret && ext4_should_journal_data(inode)) {
5146                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5147                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5148                         unlock_page(page);
5149                         ret = VM_FAULT_SIGBUS;
5150                         ext4_journal_stop(handle);
5151                         goto out;
5152                 }
5153                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5154         }
5155         ext4_journal_stop(handle);
5156         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5157                 goto retry_alloc;
5158 out_ret:
5159         ret = block_page_mkwrite_return(ret);
5160 out:
5161         sb_end_pagefault(inode->i_sb);
5162         return ret;
5163 }