]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
ext4: fix lost truncate due to race with writeback
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429                                        struct inode *inode,
430                                        struct ext4_map_blocks *es_map,
431                                        struct ext4_map_blocks *map,
432                                        int flags)
433 {
434         int retval;
435
436         map->m_flags = 0;
437         /*
438          * There is a race window that the result is not the same.
439          * e.g. xfstests #223 when dioread_nolock enables.  The reason
440          * is that we lookup a block mapping in extent status tree with
441          * out taking i_data_sem.  So at the time the unwritten extent
442          * could be converted.
443          */
444         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445                 down_read((&EXT4_I(inode)->i_data_sem));
446         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448                                              EXT4_GET_BLOCKS_KEEP_SIZE);
449         } else {
450                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         }
453         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454                 up_read((&EXT4_I(inode)->i_data_sem));
455         /*
456          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457          * because it shouldn't be marked in es_map->m_flags.
458          */
459         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertion failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507         struct ext4_map_blocks orig_map;
508
509         memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512         map->m_flags = 0;
513         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
515                   (unsigned long) map->m_lblk);
516
517         /* Lookup extent status tree firstly */
518         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519                 ext4_es_lru_add(inode);
520                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521                         map->m_pblk = ext4_es_pblock(&es) +
522                                         map->m_lblk - es.es_lblk;
523                         map->m_flags |= ext4_es_is_written(&es) ?
524                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525                         retval = es.es_len - (map->m_lblk - es.es_lblk);
526                         if (retval > map->m_len)
527                                 retval = map->m_len;
528                         map->m_len = retval;
529                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530                         retval = 0;
531                 } else {
532                         BUG_ON(1);
533                 }
534 #ifdef ES_AGGRESSIVE_TEST
535                 ext4_map_blocks_es_recheck(handle, inode, map,
536                                            &orig_map, flags);
537 #endif
538                 goto found;
539         }
540
541         /*
542          * Try to see if we can get the block without requesting a new
543          * file system block.
544          */
545         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546                 down_read((&EXT4_I(inode)->i_data_sem));
547         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549                                              EXT4_GET_BLOCKS_KEEP_SIZE);
550         } else {
551                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552                                              EXT4_GET_BLOCKS_KEEP_SIZE);
553         }
554         if (retval > 0) {
555                 int ret;
556                 unsigned int status;
557
558                 if (unlikely(retval != map->m_len)) {
559                         ext4_warning(inode->i_sb,
560                                      "ES len assertion failed for inode "
561                                      "%lu: retval %d != map->m_len %d",
562                                      inode->i_ino, retval, map->m_len);
563                         WARN_ON(1);
564                 }
565
566                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569                     ext4_find_delalloc_range(inode, map->m_lblk,
570                                              map->m_lblk + map->m_len - 1))
571                         status |= EXTENT_STATUS_DELAYED;
572                 ret = ext4_es_insert_extent(inode, map->m_lblk,
573                                             map->m_len, map->m_pblk, status);
574                 if (ret < 0)
575                         retval = ret;
576         }
577         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578                 up_read((&EXT4_I(inode)->i_data_sem));
579
580 found:
581         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582                 int ret = check_block_validity(inode, map);
583                 if (ret != 0)
584                         return ret;
585         }
586
587         /* If it is only a block(s) look up */
588         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589                 return retval;
590
591         /*
592          * Returns if the blocks have already allocated
593          *
594          * Note that if blocks have been preallocated
595          * ext4_ext_get_block() returns the create = 0
596          * with buffer head unmapped.
597          */
598         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599                 return retval;
600
601         /*
602          * Here we clear m_flags because after allocating an new extent,
603          * it will be set again.
604          */
605         map->m_flags &= ~EXT4_MAP_FLAGS;
606
607         /*
608          * New blocks allocate and/or writing to uninitialized extent
609          * will possibly result in updating i_data, so we take
610          * the write lock of i_data_sem, and call get_blocks()
611          * with create == 1 flag.
612          */
613         down_write((&EXT4_I(inode)->i_data_sem));
614
615         /*
616          * if the caller is from delayed allocation writeout path
617          * we have already reserved fs blocks for allocation
618          * let the underlying get_block() function know to
619          * avoid double accounting
620          */
621         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
623         /*
624          * We need to check for EXT4 here because migrate
625          * could have changed the inode type in between
626          */
627         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
629         } else {
630                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
631
632                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633                         /*
634                          * We allocated new blocks which will result in
635                          * i_data's format changing.  Force the migrate
636                          * to fail by clearing migrate flags
637                          */
638                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639                 }
640
641                 /*
642                  * Update reserved blocks/metadata blocks after successful
643                  * block allocation which had been deferred till now. We don't
644                  * support fallocate for non extent files. So we can update
645                  * reserve space here.
646                  */
647                 if ((retval > 0) &&
648                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649                         ext4_da_update_reserve_space(inode, retval, 1);
650         }
651         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
653
654         if (retval > 0) {
655                 int ret;
656                 unsigned int status;
657
658                 if (unlikely(retval != map->m_len)) {
659                         ext4_warning(inode->i_sb,
660                                      "ES len assertion failed for inode "
661                                      "%lu: retval %d != map->m_len %d",
662                                      inode->i_ino, retval, map->m_len);
663                         WARN_ON(1);
664                 }
665
666                 /*
667                  * If the extent has been zeroed out, we don't need to update
668                  * extent status tree.
669                  */
670                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672                         if (ext4_es_is_written(&es))
673                                 goto has_zeroout;
674                 }
675                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678                     ext4_find_delalloc_range(inode, map->m_lblk,
679                                              map->m_lblk + map->m_len - 1))
680                         status |= EXTENT_STATUS_DELAYED;
681                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682                                             map->m_pblk, status);
683                 if (ret < 0)
684                         retval = ret;
685         }
686
687 has_zeroout:
688         up_write((&EXT4_I(inode)->i_data_sem));
689         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690                 int ret = check_block_validity(inode, map);
691                 if (ret != 0)
692                         return ret;
693         }
694         return retval;
695 }
696
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
699
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701                            struct buffer_head *bh, int flags)
702 {
703         handle_t *handle = ext4_journal_current_handle();
704         struct ext4_map_blocks map;
705         int ret = 0, started = 0;
706         int dio_credits;
707
708         if (ext4_has_inline_data(inode))
709                 return -ERANGE;
710
711         map.m_lblk = iblock;
712         map.m_len = bh->b_size >> inode->i_blkbits;
713
714         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715                 /* Direct IO write... */
716                 if (map.m_len > DIO_MAX_BLOCKS)
717                         map.m_len = DIO_MAX_BLOCKS;
718                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720                                             dio_credits);
721                 if (IS_ERR(handle)) {
722                         ret = PTR_ERR(handle);
723                         return ret;
724                 }
725                 started = 1;
726         }
727
728         ret = ext4_map_blocks(handle, inode, &map, flags);
729         if (ret > 0) {
730                 map_bh(bh, inode->i_sb, map.m_pblk);
731                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
732                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
733                 ret = 0;
734         }
735         if (started)
736                 ext4_journal_stop(handle);
737         return ret;
738 }
739
740 int ext4_get_block(struct inode *inode, sector_t iblock,
741                    struct buffer_head *bh, int create)
742 {
743         return _ext4_get_block(inode, iblock, bh,
744                                create ? EXT4_GET_BLOCKS_CREATE : 0);
745 }
746
747 /*
748  * `handle' can be NULL if create is zero
749  */
750 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
751                                 ext4_lblk_t block, int create, int *errp)
752 {
753         struct ext4_map_blocks map;
754         struct buffer_head *bh;
755         int fatal = 0, err;
756
757         J_ASSERT(handle != NULL || create == 0);
758
759         map.m_lblk = block;
760         map.m_len = 1;
761         err = ext4_map_blocks(handle, inode, &map,
762                               create ? EXT4_GET_BLOCKS_CREATE : 0);
763
764         /* ensure we send some value back into *errp */
765         *errp = 0;
766
767         if (create && err == 0)
768                 err = -ENOSPC;  /* should never happen */
769         if (err < 0)
770                 *errp = err;
771         if (err <= 0)
772                 return NULL;
773
774         bh = sb_getblk(inode->i_sb, map.m_pblk);
775         if (unlikely(!bh)) {
776                 *errp = -ENOMEM;
777                 return NULL;
778         }
779         if (map.m_flags & EXT4_MAP_NEW) {
780                 J_ASSERT(create != 0);
781                 J_ASSERT(handle != NULL);
782
783                 /*
784                  * Now that we do not always journal data, we should
785                  * keep in mind whether this should always journal the
786                  * new buffer as metadata.  For now, regular file
787                  * writes use ext4_get_block instead, so it's not a
788                  * problem.
789                  */
790                 lock_buffer(bh);
791                 BUFFER_TRACE(bh, "call get_create_access");
792                 fatal = ext4_journal_get_create_access(handle, bh);
793                 if (!fatal && !buffer_uptodate(bh)) {
794                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
795                         set_buffer_uptodate(bh);
796                 }
797                 unlock_buffer(bh);
798                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
799                 err = ext4_handle_dirty_metadata(handle, inode, bh);
800                 if (!fatal)
801                         fatal = err;
802         } else {
803                 BUFFER_TRACE(bh, "not a new buffer");
804         }
805         if (fatal) {
806                 *errp = fatal;
807                 brelse(bh);
808                 bh = NULL;
809         }
810         return bh;
811 }
812
813 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
814                                ext4_lblk_t block, int create, int *err)
815 {
816         struct buffer_head *bh;
817
818         bh = ext4_getblk(handle, inode, block, create, err);
819         if (!bh)
820                 return bh;
821         if (buffer_uptodate(bh))
822                 return bh;
823         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
824         wait_on_buffer(bh);
825         if (buffer_uptodate(bh))
826                 return bh;
827         put_bh(bh);
828         *err = -EIO;
829         return NULL;
830 }
831
832 int ext4_walk_page_buffers(handle_t *handle,
833                            struct buffer_head *head,
834                            unsigned from,
835                            unsigned to,
836                            int *partial,
837                            int (*fn)(handle_t *handle,
838                                      struct buffer_head *bh))
839 {
840         struct buffer_head *bh;
841         unsigned block_start, block_end;
842         unsigned blocksize = head->b_size;
843         int err, ret = 0;
844         struct buffer_head *next;
845
846         for (bh = head, block_start = 0;
847              ret == 0 && (bh != head || !block_start);
848              block_start = block_end, bh = next) {
849                 next = bh->b_this_page;
850                 block_end = block_start + blocksize;
851                 if (block_end <= from || block_start >= to) {
852                         if (partial && !buffer_uptodate(bh))
853                                 *partial = 1;
854                         continue;
855                 }
856                 err = (*fn)(handle, bh);
857                 if (!ret)
858                         ret = err;
859         }
860         return ret;
861 }
862
863 /*
864  * To preserve ordering, it is essential that the hole instantiation and
865  * the data write be encapsulated in a single transaction.  We cannot
866  * close off a transaction and start a new one between the ext4_get_block()
867  * and the commit_write().  So doing the jbd2_journal_start at the start of
868  * prepare_write() is the right place.
869  *
870  * Also, this function can nest inside ext4_writepage().  In that case, we
871  * *know* that ext4_writepage() has generated enough buffer credits to do the
872  * whole page.  So we won't block on the journal in that case, which is good,
873  * because the caller may be PF_MEMALLOC.
874  *
875  * By accident, ext4 can be reentered when a transaction is open via
876  * quota file writes.  If we were to commit the transaction while thus
877  * reentered, there can be a deadlock - we would be holding a quota
878  * lock, and the commit would never complete if another thread had a
879  * transaction open and was blocking on the quota lock - a ranking
880  * violation.
881  *
882  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
883  * will _not_ run commit under these circumstances because handle->h_ref
884  * is elevated.  We'll still have enough credits for the tiny quotafile
885  * write.
886  */
887 int do_journal_get_write_access(handle_t *handle,
888                                 struct buffer_head *bh)
889 {
890         int dirty = buffer_dirty(bh);
891         int ret;
892
893         if (!buffer_mapped(bh) || buffer_freed(bh))
894                 return 0;
895         /*
896          * __block_write_begin() could have dirtied some buffers. Clean
897          * the dirty bit as jbd2_journal_get_write_access() could complain
898          * otherwise about fs integrity issues. Setting of the dirty bit
899          * by __block_write_begin() isn't a real problem here as we clear
900          * the bit before releasing a page lock and thus writeback cannot
901          * ever write the buffer.
902          */
903         if (dirty)
904                 clear_buffer_dirty(bh);
905         ret = ext4_journal_get_write_access(handle, bh);
906         if (!ret && dirty)
907                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
908         return ret;
909 }
910
911 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
912                    struct buffer_head *bh_result, int create);
913 static int ext4_write_begin(struct file *file, struct address_space *mapping,
914                             loff_t pos, unsigned len, unsigned flags,
915                             struct page **pagep, void **fsdata)
916 {
917         struct inode *inode = mapping->host;
918         int ret, needed_blocks;
919         handle_t *handle;
920         int retries = 0;
921         struct page *page;
922         pgoff_t index;
923         unsigned from, to;
924
925         trace_ext4_write_begin(inode, pos, len, flags);
926         /*
927          * Reserve one block more for addition to orphan list in case
928          * we allocate blocks but write fails for some reason
929          */
930         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
931         index = pos >> PAGE_CACHE_SHIFT;
932         from = pos & (PAGE_CACHE_SIZE - 1);
933         to = from + len;
934
935         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
936                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
937                                                     flags, pagep);
938                 if (ret < 0)
939                         return ret;
940                 if (ret == 1)
941                         return 0;
942         }
943
944         /*
945          * grab_cache_page_write_begin() can take a long time if the
946          * system is thrashing due to memory pressure, or if the page
947          * is being written back.  So grab it first before we start
948          * the transaction handle.  This also allows us to allocate
949          * the page (if needed) without using GFP_NOFS.
950          */
951 retry_grab:
952         page = grab_cache_page_write_begin(mapping, index, flags);
953         if (!page)
954                 return -ENOMEM;
955         unlock_page(page);
956
957 retry_journal:
958         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
959         if (IS_ERR(handle)) {
960                 page_cache_release(page);
961                 return PTR_ERR(handle);
962         }
963
964         lock_page(page);
965         if (page->mapping != mapping) {
966                 /* The page got truncated from under us */
967                 unlock_page(page);
968                 page_cache_release(page);
969                 ext4_journal_stop(handle);
970                 goto retry_grab;
971         }
972         wait_on_page_writeback(page);
973
974         if (ext4_should_dioread_nolock(inode))
975                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
976         else
977                 ret = __block_write_begin(page, pos, len, ext4_get_block);
978
979         if (!ret && ext4_should_journal_data(inode)) {
980                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
981                                              from, to, NULL,
982                                              do_journal_get_write_access);
983         }
984
985         if (ret) {
986                 unlock_page(page);
987                 /*
988                  * __block_write_begin may have instantiated a few blocks
989                  * outside i_size.  Trim these off again. Don't need
990                  * i_size_read because we hold i_mutex.
991                  *
992                  * Add inode to orphan list in case we crash before
993                  * truncate finishes
994                  */
995                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
996                         ext4_orphan_add(handle, inode);
997
998                 ext4_journal_stop(handle);
999                 if (pos + len > inode->i_size) {
1000                         ext4_truncate_failed_write(inode);
1001                         /*
1002                          * If truncate failed early the inode might
1003                          * still be on the orphan list; we need to
1004                          * make sure the inode is removed from the
1005                          * orphan list in that case.
1006                          */
1007                         if (inode->i_nlink)
1008                                 ext4_orphan_del(NULL, inode);
1009                 }
1010
1011                 if (ret == -ENOSPC &&
1012                     ext4_should_retry_alloc(inode->i_sb, &retries))
1013                         goto retry_journal;
1014                 page_cache_release(page);
1015                 return ret;
1016         }
1017         *pagep = page;
1018         return ret;
1019 }
1020
1021 /* For write_end() in data=journal mode */
1022 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1023 {
1024         int ret;
1025         if (!buffer_mapped(bh) || buffer_freed(bh))
1026                 return 0;
1027         set_buffer_uptodate(bh);
1028         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1029         clear_buffer_meta(bh);
1030         clear_buffer_prio(bh);
1031         return ret;
1032 }
1033
1034 /*
1035  * We need to pick up the new inode size which generic_commit_write gave us
1036  * `file' can be NULL - eg, when called from page_symlink().
1037  *
1038  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1039  * buffers are managed internally.
1040  */
1041 static int ext4_write_end(struct file *file,
1042                           struct address_space *mapping,
1043                           loff_t pos, unsigned len, unsigned copied,
1044                           struct page *page, void *fsdata)
1045 {
1046         handle_t *handle = ext4_journal_current_handle();
1047         struct inode *inode = mapping->host;
1048         int ret = 0, ret2;
1049         int i_size_changed = 0;
1050
1051         trace_ext4_write_end(inode, pos, len, copied);
1052         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1053                 ret = ext4_jbd2_file_inode(handle, inode);
1054                 if (ret) {
1055                         unlock_page(page);
1056                         page_cache_release(page);
1057                         goto errout;
1058                 }
1059         }
1060
1061         if (ext4_has_inline_data(inode)) {
1062                 ret = ext4_write_inline_data_end(inode, pos, len,
1063                                                  copied, page);
1064                 if (ret < 0)
1065                         goto errout;
1066                 copied = ret;
1067         } else
1068                 copied = block_write_end(file, mapping, pos,
1069                                          len, copied, page, fsdata);
1070
1071         /*
1072          * No need to use i_size_read() here, the i_size
1073          * cannot change under us because we hole i_mutex.
1074          *
1075          * But it's important to update i_size while still holding page lock:
1076          * page writeout could otherwise come in and zero beyond i_size.
1077          */
1078         if (pos + copied > inode->i_size) {
1079                 i_size_write(inode, pos + copied);
1080                 i_size_changed = 1;
1081         }
1082
1083         if (pos + copied > EXT4_I(inode)->i_disksize) {
1084                 /* We need to mark inode dirty even if
1085                  * new_i_size is less that inode->i_size
1086                  * but greater than i_disksize. (hint delalloc)
1087                  */
1088                 ext4_update_i_disksize(inode, (pos + copied));
1089                 i_size_changed = 1;
1090         }
1091         unlock_page(page);
1092         page_cache_release(page);
1093
1094         /*
1095          * Don't mark the inode dirty under page lock. First, it unnecessarily
1096          * makes the holding time of page lock longer. Second, it forces lock
1097          * ordering of page lock and transaction start for journaling
1098          * filesystems.
1099          */
1100         if (i_size_changed)
1101                 ext4_mark_inode_dirty(handle, inode);
1102
1103         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1104                 /* if we have allocated more blocks and copied
1105                  * less. We will have blocks allocated outside
1106                  * inode->i_size. So truncate them
1107                  */
1108                 ext4_orphan_add(handle, inode);
1109 errout:
1110         ret2 = ext4_journal_stop(handle);
1111         if (!ret)
1112                 ret = ret2;
1113
1114         if (pos + len > inode->i_size) {
1115                 ext4_truncate_failed_write(inode);
1116                 /*
1117                  * If truncate failed early the inode might still be
1118                  * on the orphan list; we need to make sure the inode
1119                  * is removed from the orphan list in that case.
1120                  */
1121                 if (inode->i_nlink)
1122                         ext4_orphan_del(NULL, inode);
1123         }
1124
1125         return ret ? ret : copied;
1126 }
1127
1128 static int ext4_journalled_write_end(struct file *file,
1129                                      struct address_space *mapping,
1130                                      loff_t pos, unsigned len, unsigned copied,
1131                                      struct page *page, void *fsdata)
1132 {
1133         handle_t *handle = ext4_journal_current_handle();
1134         struct inode *inode = mapping->host;
1135         int ret = 0, ret2;
1136         int partial = 0;
1137         unsigned from, to;
1138         loff_t new_i_size;
1139
1140         trace_ext4_journalled_write_end(inode, pos, len, copied);
1141         from = pos & (PAGE_CACHE_SIZE - 1);
1142         to = from + len;
1143
1144         BUG_ON(!ext4_handle_valid(handle));
1145
1146         if (ext4_has_inline_data(inode))
1147                 copied = ext4_write_inline_data_end(inode, pos, len,
1148                                                     copied, page);
1149         else {
1150                 if (copied < len) {
1151                         if (!PageUptodate(page))
1152                                 copied = 0;
1153                         page_zero_new_buffers(page, from+copied, to);
1154                 }
1155
1156                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1157                                              to, &partial, write_end_fn);
1158                 if (!partial)
1159                         SetPageUptodate(page);
1160         }
1161         new_i_size = pos + copied;
1162         if (new_i_size > inode->i_size)
1163                 i_size_write(inode, pos+copied);
1164         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1165         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1166         if (new_i_size > EXT4_I(inode)->i_disksize) {
1167                 ext4_update_i_disksize(inode, new_i_size);
1168                 ret2 = ext4_mark_inode_dirty(handle, inode);
1169                 if (!ret)
1170                         ret = ret2;
1171         }
1172
1173         unlock_page(page);
1174         page_cache_release(page);
1175         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1176                 /* if we have allocated more blocks and copied
1177                  * less. We will have blocks allocated outside
1178                  * inode->i_size. So truncate them
1179                  */
1180                 ext4_orphan_add(handle, inode);
1181
1182         ret2 = ext4_journal_stop(handle);
1183         if (!ret)
1184                 ret = ret2;
1185         if (pos + len > inode->i_size) {
1186                 ext4_truncate_failed_write(inode);
1187                 /*
1188                  * If truncate failed early the inode might still be
1189                  * on the orphan list; we need to make sure the inode
1190                  * is removed from the orphan list in that case.
1191                  */
1192                 if (inode->i_nlink)
1193                         ext4_orphan_del(NULL, inode);
1194         }
1195
1196         return ret ? ret : copied;
1197 }
1198
1199 /*
1200  * Reserve a metadata for a single block located at lblock
1201  */
1202 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1203 {
1204         int retries = 0;
1205         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1206         struct ext4_inode_info *ei = EXT4_I(inode);
1207         unsigned int md_needed;
1208         ext4_lblk_t save_last_lblock;
1209         int save_len;
1210
1211         /*
1212          * recalculate the amount of metadata blocks to reserve
1213          * in order to allocate nrblocks
1214          * worse case is one extent per block
1215          */
1216 repeat:
1217         spin_lock(&ei->i_block_reservation_lock);
1218         /*
1219          * ext4_calc_metadata_amount() has side effects, which we have
1220          * to be prepared undo if we fail to claim space.
1221          */
1222         save_len = ei->i_da_metadata_calc_len;
1223         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1224         md_needed = EXT4_NUM_B2C(sbi,
1225                                  ext4_calc_metadata_amount(inode, lblock));
1226         trace_ext4_da_reserve_space(inode, md_needed);
1227
1228         /*
1229          * We do still charge estimated metadata to the sb though;
1230          * we cannot afford to run out of free blocks.
1231          */
1232         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1233                 ei->i_da_metadata_calc_len = save_len;
1234                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1235                 spin_unlock(&ei->i_block_reservation_lock);
1236                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1237                         cond_resched();
1238                         goto repeat;
1239                 }
1240                 return -ENOSPC;
1241         }
1242         ei->i_reserved_meta_blocks += md_needed;
1243         spin_unlock(&ei->i_block_reservation_lock);
1244
1245         return 0;       /* success */
1246 }
1247
1248 /*
1249  * Reserve a single cluster located at lblock
1250  */
1251 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1252 {
1253         int retries = 0;
1254         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1255         struct ext4_inode_info *ei = EXT4_I(inode);
1256         unsigned int md_needed;
1257         int ret;
1258         ext4_lblk_t save_last_lblock;
1259         int save_len;
1260
1261         /*
1262          * We will charge metadata quota at writeout time; this saves
1263          * us from metadata over-estimation, though we may go over by
1264          * a small amount in the end.  Here we just reserve for data.
1265          */
1266         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1267         if (ret)
1268                 return ret;
1269
1270         /*
1271          * recalculate the amount of metadata blocks to reserve
1272          * in order to allocate nrblocks
1273          * worse case is one extent per block
1274          */
1275 repeat:
1276         spin_lock(&ei->i_block_reservation_lock);
1277         /*
1278          * ext4_calc_metadata_amount() has side effects, which we have
1279          * to be prepared undo if we fail to claim space.
1280          */
1281         save_len = ei->i_da_metadata_calc_len;
1282         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1283         md_needed = EXT4_NUM_B2C(sbi,
1284                                  ext4_calc_metadata_amount(inode, lblock));
1285         trace_ext4_da_reserve_space(inode, md_needed);
1286
1287         /*
1288          * We do still charge estimated metadata to the sb though;
1289          * we cannot afford to run out of free blocks.
1290          */
1291         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1292                 ei->i_da_metadata_calc_len = save_len;
1293                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1294                 spin_unlock(&ei->i_block_reservation_lock);
1295                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1296                         cond_resched();
1297                         goto repeat;
1298                 }
1299                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1300                 return -ENOSPC;
1301         }
1302         ei->i_reserved_data_blocks++;
1303         ei->i_reserved_meta_blocks += md_needed;
1304         spin_unlock(&ei->i_block_reservation_lock);
1305
1306         return 0;       /* success */
1307 }
1308
1309 static void ext4_da_release_space(struct inode *inode, int to_free)
1310 {
1311         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1312         struct ext4_inode_info *ei = EXT4_I(inode);
1313
1314         if (!to_free)
1315                 return;         /* Nothing to release, exit */
1316
1317         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1318
1319         trace_ext4_da_release_space(inode, to_free);
1320         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1321                 /*
1322                  * if there aren't enough reserved blocks, then the
1323                  * counter is messed up somewhere.  Since this
1324                  * function is called from invalidate page, it's
1325                  * harmless to return without any action.
1326                  */
1327                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1328                          "ino %lu, to_free %d with only %d reserved "
1329                          "data blocks", inode->i_ino, to_free,
1330                          ei->i_reserved_data_blocks);
1331                 WARN_ON(1);
1332                 to_free = ei->i_reserved_data_blocks;
1333         }
1334         ei->i_reserved_data_blocks -= to_free;
1335
1336         if (ei->i_reserved_data_blocks == 0) {
1337                 /*
1338                  * We can release all of the reserved metadata blocks
1339                  * only when we have written all of the delayed
1340                  * allocation blocks.
1341                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1342                  * i_reserved_data_blocks, etc. refer to number of clusters.
1343                  */
1344                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1345                                    ei->i_reserved_meta_blocks);
1346                 ei->i_reserved_meta_blocks = 0;
1347                 ei->i_da_metadata_calc_len = 0;
1348         }
1349
1350         /* update fs dirty data blocks counter */
1351         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1352
1353         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1354
1355         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1356 }
1357
1358 static void ext4_da_page_release_reservation(struct page *page,
1359                                              unsigned int offset,
1360                                              unsigned int length)
1361 {
1362         int to_release = 0;
1363         struct buffer_head *head, *bh;
1364         unsigned int curr_off = 0;
1365         struct inode *inode = page->mapping->host;
1366         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1367         unsigned int stop = offset + length;
1368         int num_clusters;
1369         ext4_fsblk_t lblk;
1370
1371         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1372
1373         head = page_buffers(page);
1374         bh = head;
1375         do {
1376                 unsigned int next_off = curr_off + bh->b_size;
1377
1378                 if (next_off > stop)
1379                         break;
1380
1381                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1382                         to_release++;
1383                         clear_buffer_delay(bh);
1384                 }
1385                 curr_off = next_off;
1386         } while ((bh = bh->b_this_page) != head);
1387
1388         if (to_release) {
1389                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1390                 ext4_es_remove_extent(inode, lblk, to_release);
1391         }
1392
1393         /* If we have released all the blocks belonging to a cluster, then we
1394          * need to release the reserved space for that cluster. */
1395         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1396         while (num_clusters > 0) {
1397                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1398                         ((num_clusters - 1) << sbi->s_cluster_bits);
1399                 if (sbi->s_cluster_ratio == 1 ||
1400                     !ext4_find_delalloc_cluster(inode, lblk))
1401                         ext4_da_release_space(inode, 1);
1402
1403                 num_clusters--;
1404         }
1405 }
1406
1407 /*
1408  * Delayed allocation stuff
1409  */
1410
1411 struct mpage_da_data {
1412         struct inode *inode;
1413         struct writeback_control *wbc;
1414
1415         pgoff_t first_page;     /* The first page to write */
1416         pgoff_t next_page;      /* Current page to examine */
1417         pgoff_t last_page;      /* Last page to examine */
1418         /*
1419          * Extent to map - this can be after first_page because that can be
1420          * fully mapped. We somewhat abuse m_flags to store whether the extent
1421          * is delalloc or unwritten.
1422          */
1423         struct ext4_map_blocks map;
1424         struct ext4_io_submit io_submit;        /* IO submission data */
1425 };
1426
1427 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1428                                        bool invalidate)
1429 {
1430         int nr_pages, i;
1431         pgoff_t index, end;
1432         struct pagevec pvec;
1433         struct inode *inode = mpd->inode;
1434         struct address_space *mapping = inode->i_mapping;
1435
1436         /* This is necessary when next_page == 0. */
1437         if (mpd->first_page >= mpd->next_page)
1438                 return;
1439
1440         index = mpd->first_page;
1441         end   = mpd->next_page - 1;
1442         if (invalidate) {
1443                 ext4_lblk_t start, last;
1444                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1446                 ext4_es_remove_extent(inode, start, last - start + 1);
1447         }
1448
1449         pagevec_init(&pvec, 0);
1450         while (index <= end) {
1451                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1452                 if (nr_pages == 0)
1453                         break;
1454                 for (i = 0; i < nr_pages; i++) {
1455                         struct page *page = pvec.pages[i];
1456                         if (page->index > end)
1457                                 break;
1458                         BUG_ON(!PageLocked(page));
1459                         BUG_ON(PageWriteback(page));
1460                         if (invalidate) {
1461                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1462                                 ClearPageUptodate(page);
1463                         }
1464                         unlock_page(page);
1465                 }
1466                 index = pvec.pages[nr_pages - 1]->index + 1;
1467                 pagevec_release(&pvec);
1468         }
1469 }
1470
1471 static void ext4_print_free_blocks(struct inode *inode)
1472 {
1473         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474         struct super_block *sb = inode->i_sb;
1475         struct ext4_inode_info *ei = EXT4_I(inode);
1476
1477         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1478                EXT4_C2B(EXT4_SB(inode->i_sb),
1479                         ext4_count_free_clusters(sb)));
1480         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1481         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1482                (long long) EXT4_C2B(EXT4_SB(sb),
1483                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1484         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1485                (long long) EXT4_C2B(EXT4_SB(sb),
1486                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1487         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1488         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1489                  ei->i_reserved_data_blocks);
1490         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1491                ei->i_reserved_meta_blocks);
1492         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1493                ei->i_allocated_meta_blocks);
1494         return;
1495 }
1496
1497 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1498 {
1499         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1500 }
1501
1502 /*
1503  * This function is grabs code from the very beginning of
1504  * ext4_map_blocks, but assumes that the caller is from delayed write
1505  * time. This function looks up the requested blocks and sets the
1506  * buffer delay bit under the protection of i_data_sem.
1507  */
1508 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1509                               struct ext4_map_blocks *map,
1510                               struct buffer_head *bh)
1511 {
1512         struct extent_status es;
1513         int retval;
1514         sector_t invalid_block = ~((sector_t) 0xffff);
1515 #ifdef ES_AGGRESSIVE_TEST
1516         struct ext4_map_blocks orig_map;
1517
1518         memcpy(&orig_map, map, sizeof(*map));
1519 #endif
1520
1521         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1522                 invalid_block = ~0;
1523
1524         map->m_flags = 0;
1525         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1526                   "logical block %lu\n", inode->i_ino, map->m_len,
1527                   (unsigned long) map->m_lblk);
1528
1529         /* Lookup extent status tree firstly */
1530         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1531                 ext4_es_lru_add(inode);
1532                 if (ext4_es_is_hole(&es)) {
1533                         retval = 0;
1534                         down_read((&EXT4_I(inode)->i_data_sem));
1535                         goto add_delayed;
1536                 }
1537
1538                 /*
1539                  * Delayed extent could be allocated by fallocate.
1540                  * So we need to check it.
1541                  */
1542                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1543                         map_bh(bh, inode->i_sb, invalid_block);
1544                         set_buffer_new(bh);
1545                         set_buffer_delay(bh);
1546                         return 0;
1547                 }
1548
1549                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1550                 retval = es.es_len - (iblock - es.es_lblk);
1551                 if (retval > map->m_len)
1552                         retval = map->m_len;
1553                 map->m_len = retval;
1554                 if (ext4_es_is_written(&es))
1555                         map->m_flags |= EXT4_MAP_MAPPED;
1556                 else if (ext4_es_is_unwritten(&es))
1557                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1558                 else
1559                         BUG_ON(1);
1560
1561 #ifdef ES_AGGRESSIVE_TEST
1562                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1563 #endif
1564                 return retval;
1565         }
1566
1567         /*
1568          * Try to see if we can get the block without requesting a new
1569          * file system block.
1570          */
1571         down_read((&EXT4_I(inode)->i_data_sem));
1572         if (ext4_has_inline_data(inode)) {
1573                 /*
1574                  * We will soon create blocks for this page, and let
1575                  * us pretend as if the blocks aren't allocated yet.
1576                  * In case of clusters, we have to handle the work
1577                  * of mapping from cluster so that the reserved space
1578                  * is calculated properly.
1579                  */
1580                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1581                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1582                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1583                 retval = 0;
1584         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1585                 retval = ext4_ext_map_blocks(NULL, inode, map,
1586                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1587         else
1588                 retval = ext4_ind_map_blocks(NULL, inode, map,
1589                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1590
1591 add_delayed:
1592         if (retval == 0) {
1593                 int ret;
1594                 /*
1595                  * XXX: __block_prepare_write() unmaps passed block,
1596                  * is it OK?
1597                  */
1598                 /*
1599                  * If the block was allocated from previously allocated cluster,
1600                  * then we don't need to reserve it again. However we still need
1601                  * to reserve metadata for every block we're going to write.
1602                  */
1603                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1604                         ret = ext4_da_reserve_space(inode, iblock);
1605                         if (ret) {
1606                                 /* not enough space to reserve */
1607                                 retval = ret;
1608                                 goto out_unlock;
1609                         }
1610                 } else {
1611                         ret = ext4_da_reserve_metadata(inode, iblock);
1612                         if (ret) {
1613                                 /* not enough space to reserve */
1614                                 retval = ret;
1615                                 goto out_unlock;
1616                         }
1617                 }
1618
1619                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1620                                             ~0, EXTENT_STATUS_DELAYED);
1621                 if (ret) {
1622                         retval = ret;
1623                         goto out_unlock;
1624                 }
1625
1626                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1627                  * and it should not appear on the bh->b_state.
1628                  */
1629                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1630
1631                 map_bh(bh, inode->i_sb, invalid_block);
1632                 set_buffer_new(bh);
1633                 set_buffer_delay(bh);
1634         } else if (retval > 0) {
1635                 int ret;
1636                 unsigned int status;
1637
1638                 if (unlikely(retval != map->m_len)) {
1639                         ext4_warning(inode->i_sb,
1640                                      "ES len assertion failed for inode "
1641                                      "%lu: retval %d != map->m_len %d",
1642                                      inode->i_ino, retval, map->m_len);
1643                         WARN_ON(1);
1644                 }
1645
1646                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1647                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1648                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1649                                             map->m_pblk, status);
1650                 if (ret != 0)
1651                         retval = ret;
1652         }
1653
1654 out_unlock:
1655         up_read((&EXT4_I(inode)->i_data_sem));
1656
1657         return retval;
1658 }
1659
1660 /*
1661  * This is a special get_blocks_t callback which is used by
1662  * ext4_da_write_begin().  It will either return mapped block or
1663  * reserve space for a single block.
1664  *
1665  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1666  * We also have b_blocknr = -1 and b_bdev initialized properly
1667  *
1668  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1669  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1670  * initialized properly.
1671  */
1672 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1673                            struct buffer_head *bh, int create)
1674 {
1675         struct ext4_map_blocks map;
1676         int ret = 0;
1677
1678         BUG_ON(create == 0);
1679         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1680
1681         map.m_lblk = iblock;
1682         map.m_len = 1;
1683
1684         /*
1685          * first, we need to know whether the block is allocated already
1686          * preallocated blocks are unmapped but should treated
1687          * the same as allocated blocks.
1688          */
1689         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1690         if (ret <= 0)
1691                 return ret;
1692
1693         map_bh(bh, inode->i_sb, map.m_pblk);
1694         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1695
1696         if (buffer_unwritten(bh)) {
1697                 /* A delayed write to unwritten bh should be marked
1698                  * new and mapped.  Mapped ensures that we don't do
1699                  * get_block multiple times when we write to the same
1700                  * offset and new ensures that we do proper zero out
1701                  * for partial write.
1702                  */
1703                 set_buffer_new(bh);
1704                 set_buffer_mapped(bh);
1705         }
1706         return 0;
1707 }
1708
1709 static int bget_one(handle_t *handle, struct buffer_head *bh)
1710 {
1711         get_bh(bh);
1712         return 0;
1713 }
1714
1715 static int bput_one(handle_t *handle, struct buffer_head *bh)
1716 {
1717         put_bh(bh);
1718         return 0;
1719 }
1720
1721 static int __ext4_journalled_writepage(struct page *page,
1722                                        unsigned int len)
1723 {
1724         struct address_space *mapping = page->mapping;
1725         struct inode *inode = mapping->host;
1726         struct buffer_head *page_bufs = NULL;
1727         handle_t *handle = NULL;
1728         int ret = 0, err = 0;
1729         int inline_data = ext4_has_inline_data(inode);
1730         struct buffer_head *inode_bh = NULL;
1731
1732         ClearPageChecked(page);
1733
1734         if (inline_data) {
1735                 BUG_ON(page->index != 0);
1736                 BUG_ON(len > ext4_get_max_inline_size(inode));
1737                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1738                 if (inode_bh == NULL)
1739                         goto out;
1740         } else {
1741                 page_bufs = page_buffers(page);
1742                 if (!page_bufs) {
1743                         BUG();
1744                         goto out;
1745                 }
1746                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1747                                        NULL, bget_one);
1748         }
1749         /* As soon as we unlock the page, it can go away, but we have
1750          * references to buffers so we are safe */
1751         unlock_page(page);
1752
1753         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1754                                     ext4_writepage_trans_blocks(inode));
1755         if (IS_ERR(handle)) {
1756                 ret = PTR_ERR(handle);
1757                 goto out;
1758         }
1759
1760         BUG_ON(!ext4_handle_valid(handle));
1761
1762         if (inline_data) {
1763                 ret = ext4_journal_get_write_access(handle, inode_bh);
1764
1765                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1766
1767         } else {
1768                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1769                                              do_journal_get_write_access);
1770
1771                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1772                                              write_end_fn);
1773         }
1774         if (ret == 0)
1775                 ret = err;
1776         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1777         err = ext4_journal_stop(handle);
1778         if (!ret)
1779                 ret = err;
1780
1781         if (!ext4_has_inline_data(inode))
1782                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1783                                        NULL, bput_one);
1784         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1785 out:
1786         brelse(inode_bh);
1787         return ret;
1788 }
1789
1790 /*
1791  * Note that we don't need to start a transaction unless we're journaling data
1792  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1793  * need to file the inode to the transaction's list in ordered mode because if
1794  * we are writing back data added by write(), the inode is already there and if
1795  * we are writing back data modified via mmap(), no one guarantees in which
1796  * transaction the data will hit the disk. In case we are journaling data, we
1797  * cannot start transaction directly because transaction start ranks above page
1798  * lock so we have to do some magic.
1799  *
1800  * This function can get called via...
1801  *   - ext4_writepages after taking page lock (have journal handle)
1802  *   - journal_submit_inode_data_buffers (no journal handle)
1803  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1804  *   - grab_page_cache when doing write_begin (have journal handle)
1805  *
1806  * We don't do any block allocation in this function. If we have page with
1807  * multiple blocks we need to write those buffer_heads that are mapped. This
1808  * is important for mmaped based write. So if we do with blocksize 1K
1809  * truncate(f, 1024);
1810  * a = mmap(f, 0, 4096);
1811  * a[0] = 'a';
1812  * truncate(f, 4096);
1813  * we have in the page first buffer_head mapped via page_mkwrite call back
1814  * but other buffer_heads would be unmapped but dirty (dirty done via the
1815  * do_wp_page). So writepage should write the first block. If we modify
1816  * the mmap area beyond 1024 we will again get a page_fault and the
1817  * page_mkwrite callback will do the block allocation and mark the
1818  * buffer_heads mapped.
1819  *
1820  * We redirty the page if we have any buffer_heads that is either delay or
1821  * unwritten in the page.
1822  *
1823  * We can get recursively called as show below.
1824  *
1825  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1826  *              ext4_writepage()
1827  *
1828  * But since we don't do any block allocation we should not deadlock.
1829  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1830  */
1831 static int ext4_writepage(struct page *page,
1832                           struct writeback_control *wbc)
1833 {
1834         int ret = 0;
1835         loff_t size;
1836         unsigned int len;
1837         struct buffer_head *page_bufs = NULL;
1838         struct inode *inode = page->mapping->host;
1839         struct ext4_io_submit io_submit;
1840
1841         trace_ext4_writepage(page);
1842         size = i_size_read(inode);
1843         if (page->index == size >> PAGE_CACHE_SHIFT)
1844                 len = size & ~PAGE_CACHE_MASK;
1845         else
1846                 len = PAGE_CACHE_SIZE;
1847
1848         page_bufs = page_buffers(page);
1849         /*
1850          * We cannot do block allocation or other extent handling in this
1851          * function. If there are buffers needing that, we have to redirty
1852          * the page. But we may reach here when we do a journal commit via
1853          * journal_submit_inode_data_buffers() and in that case we must write
1854          * allocated buffers to achieve data=ordered mode guarantees.
1855          */
1856         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1857                                    ext4_bh_delay_or_unwritten)) {
1858                 redirty_page_for_writepage(wbc, page);
1859                 if (current->flags & PF_MEMALLOC) {
1860                         /*
1861                          * For memory cleaning there's no point in writing only
1862                          * some buffers. So just bail out. Warn if we came here
1863                          * from direct reclaim.
1864                          */
1865                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1866                                                         == PF_MEMALLOC);
1867                         unlock_page(page);
1868                         return 0;
1869                 }
1870         }
1871
1872         if (PageChecked(page) && ext4_should_journal_data(inode))
1873                 /*
1874                  * It's mmapped pagecache.  Add buffers and journal it.  There
1875                  * doesn't seem much point in redirtying the page here.
1876                  */
1877                 return __ext4_journalled_writepage(page, len);
1878
1879         ext4_io_submit_init(&io_submit, wbc);
1880         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1881         if (!io_submit.io_end) {
1882                 redirty_page_for_writepage(wbc, page);
1883                 unlock_page(page);
1884                 return -ENOMEM;
1885         }
1886         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1887         ext4_io_submit(&io_submit);
1888         /* Drop io_end reference we got from init */
1889         ext4_put_io_end_defer(io_submit.io_end);
1890         return ret;
1891 }
1892
1893 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1894 {
1895         int len;
1896         loff_t size = i_size_read(mpd->inode);
1897         int err;
1898
1899         BUG_ON(page->index != mpd->first_page);
1900         if (page->index == size >> PAGE_CACHE_SHIFT)
1901                 len = size & ~PAGE_CACHE_MASK;
1902         else
1903                 len = PAGE_CACHE_SIZE;
1904         clear_page_dirty_for_io(page);
1905         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1906         if (!err)
1907                 mpd->wbc->nr_to_write--;
1908         mpd->first_page++;
1909
1910         return err;
1911 }
1912
1913 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1914
1915 /*
1916  * mballoc gives us at most this number of blocks...
1917  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1918  * The rest of mballoc seems to handle chunks upto full group size.
1919  */
1920 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1921
1922 /*
1923  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1924  *
1925  * @mpd - extent of blocks
1926  * @lblk - logical number of the block in the file
1927  * @bh - buffer head we want to add to the extent
1928  *
1929  * The function is used to collect contig. blocks in the same state. If the
1930  * buffer doesn't require mapping for writeback and we haven't started the
1931  * extent of buffers to map yet, the function returns 'true' immediately - the
1932  * caller can write the buffer right away. Otherwise the function returns true
1933  * if the block has been added to the extent, false if the block couldn't be
1934  * added.
1935  */
1936 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1937                                    struct buffer_head *bh)
1938 {
1939         struct ext4_map_blocks *map = &mpd->map;
1940
1941         /* Buffer that doesn't need mapping for writeback? */
1942         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1943             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1944                 /* So far no extent to map => we write the buffer right away */
1945                 if (map->m_len == 0)
1946                         return true;
1947                 return false;
1948         }
1949
1950         /* First block in the extent? */
1951         if (map->m_len == 0) {
1952                 map->m_lblk = lblk;
1953                 map->m_len = 1;
1954                 map->m_flags = bh->b_state & BH_FLAGS;
1955                 return true;
1956         }
1957
1958         /* Don't go larger than mballoc is willing to allocate */
1959         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1960                 return false;
1961
1962         /* Can we merge the block to our big extent? */
1963         if (lblk == map->m_lblk + map->m_len &&
1964             (bh->b_state & BH_FLAGS) == map->m_flags) {
1965                 map->m_len++;
1966                 return true;
1967         }
1968         return false;
1969 }
1970
1971 /*
1972  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1973  *
1974  * @mpd - extent of blocks for mapping
1975  * @head - the first buffer in the page
1976  * @bh - buffer we should start processing from
1977  * @lblk - logical number of the block in the file corresponding to @bh
1978  *
1979  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1980  * the page for IO if all buffers in this page were mapped and there's no
1981  * accumulated extent of buffers to map or add buffers in the page to the
1982  * extent of buffers to map. The function returns 1 if the caller can continue
1983  * by processing the next page, 0 if it should stop adding buffers to the
1984  * extent to map because we cannot extend it anymore. It can also return value
1985  * < 0 in case of error during IO submission.
1986  */
1987 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1988                                    struct buffer_head *head,
1989                                    struct buffer_head *bh,
1990                                    ext4_lblk_t lblk)
1991 {
1992         struct inode *inode = mpd->inode;
1993         int err;
1994         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1995                                                         >> inode->i_blkbits;
1996
1997         do {
1998                 BUG_ON(buffer_locked(bh));
1999
2000                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2001                         /* Found extent to map? */
2002                         if (mpd->map.m_len)
2003                                 return 0;
2004                         /* Everything mapped so far and we hit EOF */
2005                         break;
2006                 }
2007         } while (lblk++, (bh = bh->b_this_page) != head);
2008         /* So far everything mapped? Submit the page for IO. */
2009         if (mpd->map.m_len == 0) {
2010                 err = mpage_submit_page(mpd, head->b_page);
2011                 if (err < 0)
2012                         return err;
2013         }
2014         return lblk < blocks;
2015 }
2016
2017 /*
2018  * mpage_map_buffers - update buffers corresponding to changed extent and
2019  *                     submit fully mapped pages for IO
2020  *
2021  * @mpd - description of extent to map, on return next extent to map
2022  *
2023  * Scan buffers corresponding to changed extent (we expect corresponding pages
2024  * to be already locked) and update buffer state according to new extent state.
2025  * We map delalloc buffers to their physical location, clear unwritten bits,
2026  * and mark buffers as uninit when we perform writes to uninitialized extents
2027  * and do extent conversion after IO is finished. If the last page is not fully
2028  * mapped, we update @map to the next extent in the last page that needs
2029  * mapping. Otherwise we submit the page for IO.
2030  */
2031 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2032 {
2033         struct pagevec pvec;
2034         int nr_pages, i;
2035         struct inode *inode = mpd->inode;
2036         struct buffer_head *head, *bh;
2037         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2038         pgoff_t start, end;
2039         ext4_lblk_t lblk;
2040         sector_t pblock;
2041         int err;
2042
2043         start = mpd->map.m_lblk >> bpp_bits;
2044         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2045         lblk = start << bpp_bits;
2046         pblock = mpd->map.m_pblk;
2047
2048         pagevec_init(&pvec, 0);
2049         while (start <= end) {
2050                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2051                                           PAGEVEC_SIZE);
2052                 if (nr_pages == 0)
2053                         break;
2054                 for (i = 0; i < nr_pages; i++) {
2055                         struct page *page = pvec.pages[i];
2056
2057                         if (page->index > end)
2058                                 break;
2059                         /* Upto 'end' pages must be contiguous */
2060                         BUG_ON(page->index != start);
2061                         bh = head = page_buffers(page);
2062                         do {
2063                                 if (lblk < mpd->map.m_lblk)
2064                                         continue;
2065                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2066                                         /*
2067                                          * Buffer after end of mapped extent.
2068                                          * Find next buffer in the page to map.
2069                                          */
2070                                         mpd->map.m_len = 0;
2071                                         mpd->map.m_flags = 0;
2072                                         /*
2073                                          * FIXME: If dioread_nolock supports
2074                                          * blocksize < pagesize, we need to make
2075                                          * sure we add size mapped so far to
2076                                          * io_end->size as the following call
2077                                          * can submit the page for IO.
2078                                          */
2079                                         err = mpage_process_page_bufs(mpd, head,
2080                                                                       bh, lblk);
2081                                         pagevec_release(&pvec);
2082                                         if (err > 0)
2083                                                 err = 0;
2084                                         return err;
2085                                 }
2086                                 if (buffer_delay(bh)) {
2087                                         clear_buffer_delay(bh);
2088                                         bh->b_blocknr = pblock++;
2089                                 }
2090                                 clear_buffer_unwritten(bh);
2091                         } while (lblk++, (bh = bh->b_this_page) != head);
2092
2093                         /*
2094                          * FIXME: This is going to break if dioread_nolock
2095                          * supports blocksize < pagesize as we will try to
2096                          * convert potentially unmapped parts of inode.
2097                          */
2098                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2099                         /* Page fully mapped - let IO run! */
2100                         err = mpage_submit_page(mpd, page);
2101                         if (err < 0) {
2102                                 pagevec_release(&pvec);
2103                                 return err;
2104                         }
2105                         start++;
2106                 }
2107                 pagevec_release(&pvec);
2108         }
2109         /* Extent fully mapped and matches with page boundary. We are done. */
2110         mpd->map.m_len = 0;
2111         mpd->map.m_flags = 0;
2112         return 0;
2113 }
2114
2115 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2116 {
2117         struct inode *inode = mpd->inode;
2118         struct ext4_map_blocks *map = &mpd->map;
2119         int get_blocks_flags;
2120         int err;
2121
2122         trace_ext4_da_write_pages_extent(inode, map);
2123         /*
2124          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2125          * to convert an uninitialized extent to be initialized (in the case
2126          * where we have written into one or more preallocated blocks).  It is
2127          * possible that we're going to need more metadata blocks than
2128          * previously reserved. However we must not fail because we're in
2129          * writeback and there is nothing we can do about it so it might result
2130          * in data loss.  So use reserved blocks to allocate metadata if
2131          * possible.
2132          *
2133          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2134          * in question are delalloc blocks.  This affects functions in many
2135          * different parts of the allocation call path.  This flag exists
2136          * primarily because we don't want to change *many* call functions, so
2137          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2138          * once the inode's allocation semaphore is taken.
2139          */
2140         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2141                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2142         if (ext4_should_dioread_nolock(inode))
2143                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2144         if (map->m_flags & (1 << BH_Delay))
2145                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2146
2147         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2148         if (err < 0)
2149                 return err;
2150         if (map->m_flags & EXT4_MAP_UNINIT) {
2151                 if (!mpd->io_submit.io_end->handle &&
2152                     ext4_handle_valid(handle)) {
2153                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2154                         handle->h_rsv_handle = NULL;
2155                 }
2156                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2157         }
2158
2159         BUG_ON(map->m_len == 0);
2160         if (map->m_flags & EXT4_MAP_NEW) {
2161                 struct block_device *bdev = inode->i_sb->s_bdev;
2162                 int i;
2163
2164                 for (i = 0; i < map->m_len; i++)
2165                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2166         }
2167         return 0;
2168 }
2169
2170 /*
2171  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2172  *                               mpd->len and submit pages underlying it for IO
2173  *
2174  * @handle - handle for journal operations
2175  * @mpd - extent to map
2176  *
2177  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2178  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2179  * them to initialized or split the described range from larger unwritten
2180  * extent. Note that we need not map all the described range since allocation
2181  * can return less blocks or the range is covered by more unwritten extents. We
2182  * cannot map more because we are limited by reserved transaction credits. On
2183  * the other hand we always make sure that the last touched page is fully
2184  * mapped so that it can be written out (and thus forward progress is
2185  * guaranteed). After mapping we submit all mapped pages for IO.
2186  */
2187 static int mpage_map_and_submit_extent(handle_t *handle,
2188                                        struct mpage_da_data *mpd,
2189                                        bool *give_up_on_write)
2190 {
2191         struct inode *inode = mpd->inode;
2192         struct ext4_map_blocks *map = &mpd->map;
2193         int err;
2194         loff_t disksize;
2195
2196         mpd->io_submit.io_end->offset =
2197                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2198         do {
2199                 err = mpage_map_one_extent(handle, mpd);
2200                 if (err < 0) {
2201                         struct super_block *sb = inode->i_sb;
2202
2203                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2204                                 goto invalidate_dirty_pages;
2205                         /*
2206                          * Let the uper layers retry transient errors.
2207                          * In the case of ENOSPC, if ext4_count_free_blocks()
2208                          * is non-zero, a commit should free up blocks.
2209                          */
2210                         if ((err == -ENOMEM) ||
2211                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2212                                 return err;
2213                         ext4_msg(sb, KERN_CRIT,
2214                                  "Delayed block allocation failed for "
2215                                  "inode %lu at logical offset %llu with"
2216                                  " max blocks %u with error %d",
2217                                  inode->i_ino,
2218                                  (unsigned long long)map->m_lblk,
2219                                  (unsigned)map->m_len, -err);
2220                         ext4_msg(sb, KERN_CRIT,
2221                                  "This should not happen!! Data will "
2222                                  "be lost\n");
2223                         if (err == -ENOSPC)
2224                                 ext4_print_free_blocks(inode);
2225                 invalidate_dirty_pages:
2226                         *give_up_on_write = true;
2227                         return err;
2228                 }
2229                 /*
2230                  * Update buffer state, submit mapped pages, and get us new
2231                  * extent to map
2232                  */
2233                 err = mpage_map_and_submit_buffers(mpd);
2234                 if (err < 0)
2235                         return err;
2236         } while (map->m_len);
2237
2238         /* Update on-disk size after IO is submitted */
2239         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2240         if (disksize > EXT4_I(inode)->i_disksize) {
2241                 int err2;
2242
2243                 ext4_wb_update_i_disksize(inode, disksize);
2244                 err2 = ext4_mark_inode_dirty(handle, inode);
2245                 if (err2)
2246                         ext4_error(inode->i_sb,
2247                                    "Failed to mark inode %lu dirty",
2248                                    inode->i_ino);
2249                 if (!err)
2250                         err = err2;
2251         }
2252         return err;
2253 }
2254
2255 /*
2256  * Calculate the total number of credits to reserve for one writepages
2257  * iteration. This is called from ext4_writepages(). We map an extent of
2258  * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2259  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2260  * bpp - 1 blocks in bpp different extents.
2261  */
2262 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2263 {
2264         int bpp = ext4_journal_blocks_per_page(inode);
2265
2266         return ext4_meta_trans_blocks(inode,
2267                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2268 }
2269
2270 /*
2271  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2272  *                               and underlying extent to map
2273  *
2274  * @mpd - where to look for pages
2275  *
2276  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2277  * IO immediately. When we find a page which isn't mapped we start accumulating
2278  * extent of buffers underlying these pages that needs mapping (formed by
2279  * either delayed or unwritten buffers). We also lock the pages containing
2280  * these buffers. The extent found is returned in @mpd structure (starting at
2281  * mpd->lblk with length mpd->len blocks).
2282  *
2283  * Note that this function can attach bios to one io_end structure which are
2284  * neither logically nor physically contiguous. Although it may seem as an
2285  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2286  * case as we need to track IO to all buffers underlying a page in one io_end.
2287  */
2288 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2289 {
2290         struct address_space *mapping = mpd->inode->i_mapping;
2291         struct pagevec pvec;
2292         unsigned int nr_pages;
2293         pgoff_t index = mpd->first_page;
2294         pgoff_t end = mpd->last_page;
2295         int tag;
2296         int i, err = 0;
2297         int blkbits = mpd->inode->i_blkbits;
2298         ext4_lblk_t lblk;
2299         struct buffer_head *head;
2300
2301         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2302                 tag = PAGECACHE_TAG_TOWRITE;
2303         else
2304                 tag = PAGECACHE_TAG_DIRTY;
2305
2306         pagevec_init(&pvec, 0);
2307         mpd->map.m_len = 0;
2308         mpd->next_page = index;
2309         while (index <= end) {
2310                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2311                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2312                 if (nr_pages == 0)
2313                         goto out;
2314
2315                 for (i = 0; i < nr_pages; i++) {
2316                         struct page *page = pvec.pages[i];
2317
2318                         /*
2319                          * At this point, the page may be truncated or
2320                          * invalidated (changing page->mapping to NULL), or
2321                          * even swizzled back from swapper_space to tmpfs file
2322                          * mapping. However, page->index will not change
2323                          * because we have a reference on the page.
2324                          */
2325                         if (page->index > end)
2326                                 goto out;
2327
2328                         /* If we can't merge this page, we are done. */
2329                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2330                                 goto out;
2331
2332                         lock_page(page);
2333                         /*
2334                          * If the page is no longer dirty, or its mapping no
2335                          * longer corresponds to inode we are writing (which
2336                          * means it has been truncated or invalidated), or the
2337                          * page is already under writeback and we are not doing
2338                          * a data integrity writeback, skip the page
2339                          */
2340                         if (!PageDirty(page) ||
2341                             (PageWriteback(page) &&
2342                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2343                             unlikely(page->mapping != mapping)) {
2344                                 unlock_page(page);
2345                                 continue;
2346                         }
2347
2348                         wait_on_page_writeback(page);
2349                         BUG_ON(PageWriteback(page));
2350
2351                         if (mpd->map.m_len == 0)
2352                                 mpd->first_page = page->index;
2353                         mpd->next_page = page->index + 1;
2354                         /* Add all dirty buffers to mpd */
2355                         lblk = ((ext4_lblk_t)page->index) <<
2356                                 (PAGE_CACHE_SHIFT - blkbits);
2357                         head = page_buffers(page);
2358                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2359                         if (err <= 0)
2360                                 goto out;
2361                         err = 0;
2362
2363                         /*
2364                          * Accumulated enough dirty pages? This doesn't apply
2365                          * to WB_SYNC_ALL mode. For integrity sync we have to
2366                          * keep going because someone may be concurrently
2367                          * dirtying pages, and we might have synced a lot of
2368                          * newly appeared dirty pages, but have not synced all
2369                          * of the old dirty pages.
2370                          */
2371                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2372                             mpd->next_page - mpd->first_page >=
2373                                                         mpd->wbc->nr_to_write)
2374                                 goto out;
2375                 }
2376                 pagevec_release(&pvec);
2377                 cond_resched();
2378         }
2379         return 0;
2380 out:
2381         pagevec_release(&pvec);
2382         return err;
2383 }
2384
2385 static int __writepage(struct page *page, struct writeback_control *wbc,
2386                        void *data)
2387 {
2388         struct address_space *mapping = data;
2389         int ret = ext4_writepage(page, wbc);
2390         mapping_set_error(mapping, ret);
2391         return ret;
2392 }
2393
2394 static int ext4_writepages(struct address_space *mapping,
2395                            struct writeback_control *wbc)
2396 {
2397         pgoff_t writeback_index = 0;
2398         long nr_to_write = wbc->nr_to_write;
2399         int range_whole = 0;
2400         int cycled = 1;
2401         handle_t *handle = NULL;
2402         struct mpage_da_data mpd;
2403         struct inode *inode = mapping->host;
2404         int needed_blocks, rsv_blocks = 0, ret = 0;
2405         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2406         bool done;
2407         struct blk_plug plug;
2408         bool give_up_on_write = false;
2409
2410         trace_ext4_writepages(inode, wbc);
2411
2412         /*
2413          * No pages to write? This is mainly a kludge to avoid starting
2414          * a transaction for special inodes like journal inode on last iput()
2415          * because that could violate lock ordering on umount
2416          */
2417         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2418                 return 0;
2419
2420         if (ext4_should_journal_data(inode)) {
2421                 struct blk_plug plug;
2422                 int ret;
2423
2424                 blk_start_plug(&plug);
2425                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2426                 blk_finish_plug(&plug);
2427                 return ret;
2428         }
2429
2430         /*
2431          * If the filesystem has aborted, it is read-only, so return
2432          * right away instead of dumping stack traces later on that
2433          * will obscure the real source of the problem.  We test
2434          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2435          * the latter could be true if the filesystem is mounted
2436          * read-only, and in that case, ext4_writepages should
2437          * *never* be called, so if that ever happens, we would want
2438          * the stack trace.
2439          */
2440         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2441                 return -EROFS;
2442
2443         if (ext4_should_dioread_nolock(inode)) {
2444                 /*
2445                  * We may need to convert upto one extent per block in
2446                  * the page and we may dirty the inode.
2447                  */
2448                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2449         }
2450
2451         /*
2452          * If we have inline data and arrive here, it means that
2453          * we will soon create the block for the 1st page, so
2454          * we'd better clear the inline data here.
2455          */
2456         if (ext4_has_inline_data(inode)) {
2457                 /* Just inode will be modified... */
2458                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2459                 if (IS_ERR(handle)) {
2460                         ret = PTR_ERR(handle);
2461                         goto out_writepages;
2462                 }
2463                 BUG_ON(ext4_test_inode_state(inode,
2464                                 EXT4_STATE_MAY_INLINE_DATA));
2465                 ext4_destroy_inline_data(handle, inode);
2466                 ext4_journal_stop(handle);
2467         }
2468
2469         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2470                 range_whole = 1;
2471
2472         if (wbc->range_cyclic) {
2473                 writeback_index = mapping->writeback_index;
2474                 if (writeback_index)
2475                         cycled = 0;
2476                 mpd.first_page = writeback_index;
2477                 mpd.last_page = -1;
2478         } else {
2479                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2480                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2481         }
2482
2483         mpd.inode = inode;
2484         mpd.wbc = wbc;
2485         ext4_io_submit_init(&mpd.io_submit, wbc);
2486 retry:
2487         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2488                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2489         done = false;
2490         blk_start_plug(&plug);
2491         while (!done && mpd.first_page <= mpd.last_page) {
2492                 /* For each extent of pages we use new io_end */
2493                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2494                 if (!mpd.io_submit.io_end) {
2495                         ret = -ENOMEM;
2496                         break;
2497                 }
2498
2499                 /*
2500                  * We have two constraints: We find one extent to map and we
2501                  * must always write out whole page (makes a difference when
2502                  * blocksize < pagesize) so that we don't block on IO when we
2503                  * try to write out the rest of the page. Journalled mode is
2504                  * not supported by delalloc.
2505                  */
2506                 BUG_ON(ext4_should_journal_data(inode));
2507                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2508
2509                 /* start a new transaction */
2510                 handle = ext4_journal_start_with_reserve(inode,
2511                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2512                 if (IS_ERR(handle)) {
2513                         ret = PTR_ERR(handle);
2514                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2515                                "%ld pages, ino %lu; err %d", __func__,
2516                                 wbc->nr_to_write, inode->i_ino, ret);
2517                         /* Release allocated io_end */
2518                         ext4_put_io_end(mpd.io_submit.io_end);
2519                         break;
2520                 }
2521
2522                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2523                 ret = mpage_prepare_extent_to_map(&mpd);
2524                 if (!ret) {
2525                         if (mpd.map.m_len)
2526                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2527                                         &give_up_on_write);
2528                         else {
2529                                 /*
2530                                  * We scanned the whole range (or exhausted
2531                                  * nr_to_write), submitted what was mapped and
2532                                  * didn't find anything needing mapping. We are
2533                                  * done.
2534                                  */
2535                                 done = true;
2536                         }
2537                 }
2538                 ext4_journal_stop(handle);
2539                 /* Submit prepared bio */
2540                 ext4_io_submit(&mpd.io_submit);
2541                 /* Unlock pages we didn't use */
2542                 mpage_release_unused_pages(&mpd, give_up_on_write);
2543                 /* Drop our io_end reference we got from init */
2544                 ext4_put_io_end(mpd.io_submit.io_end);
2545
2546                 if (ret == -ENOSPC && sbi->s_journal) {
2547                         /*
2548                          * Commit the transaction which would
2549                          * free blocks released in the transaction
2550                          * and try again
2551                          */
2552                         jbd2_journal_force_commit_nested(sbi->s_journal);
2553                         ret = 0;
2554                         continue;
2555                 }
2556                 /* Fatal error - ENOMEM, EIO... */
2557                 if (ret)
2558                         break;
2559         }
2560         blk_finish_plug(&plug);
2561         if (!ret && !cycled) {
2562                 cycled = 1;
2563                 mpd.last_page = writeback_index - 1;
2564                 mpd.first_page = 0;
2565                 goto retry;
2566         }
2567
2568         /* Update index */
2569         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2570                 /*
2571                  * Set the writeback_index so that range_cyclic
2572                  * mode will write it back later
2573                  */
2574                 mapping->writeback_index = mpd.first_page;
2575
2576 out_writepages:
2577         trace_ext4_writepages_result(inode, wbc, ret,
2578                                      nr_to_write - wbc->nr_to_write);
2579         return ret;
2580 }
2581
2582 static int ext4_nonda_switch(struct super_block *sb)
2583 {
2584         s64 free_clusters, dirty_clusters;
2585         struct ext4_sb_info *sbi = EXT4_SB(sb);
2586
2587         /*
2588          * switch to non delalloc mode if we are running low
2589          * on free block. The free block accounting via percpu
2590          * counters can get slightly wrong with percpu_counter_batch getting
2591          * accumulated on each CPU without updating global counters
2592          * Delalloc need an accurate free block accounting. So switch
2593          * to non delalloc when we are near to error range.
2594          */
2595         free_clusters =
2596                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2597         dirty_clusters =
2598                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2599         /*
2600          * Start pushing delalloc when 1/2 of free blocks are dirty.
2601          */
2602         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2603                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2604
2605         if (2 * free_clusters < 3 * dirty_clusters ||
2606             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2607                 /*
2608                  * free block count is less than 150% of dirty blocks
2609                  * or free blocks is less than watermark
2610                  */
2611                 return 1;
2612         }
2613         return 0;
2614 }
2615
2616 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2617                                loff_t pos, unsigned len, unsigned flags,
2618                                struct page **pagep, void **fsdata)
2619 {
2620         int ret, retries = 0;
2621         struct page *page;
2622         pgoff_t index;
2623         struct inode *inode = mapping->host;
2624         handle_t *handle;
2625
2626         index = pos >> PAGE_CACHE_SHIFT;
2627
2628         if (ext4_nonda_switch(inode->i_sb)) {
2629                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2630                 return ext4_write_begin(file, mapping, pos,
2631                                         len, flags, pagep, fsdata);
2632         }
2633         *fsdata = (void *)0;
2634         trace_ext4_da_write_begin(inode, pos, len, flags);
2635
2636         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2637                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2638                                                       pos, len, flags,
2639                                                       pagep, fsdata);
2640                 if (ret < 0)
2641                         return ret;
2642                 if (ret == 1)
2643                         return 0;
2644         }
2645
2646         /*
2647          * grab_cache_page_write_begin() can take a long time if the
2648          * system is thrashing due to memory pressure, or if the page
2649          * is being written back.  So grab it first before we start
2650          * the transaction handle.  This also allows us to allocate
2651          * the page (if needed) without using GFP_NOFS.
2652          */
2653 retry_grab:
2654         page = grab_cache_page_write_begin(mapping, index, flags);
2655         if (!page)
2656                 return -ENOMEM;
2657         unlock_page(page);
2658
2659         /*
2660          * With delayed allocation, we don't log the i_disksize update
2661          * if there is delayed block allocation. But we still need
2662          * to journalling the i_disksize update if writes to the end
2663          * of file which has an already mapped buffer.
2664          */
2665 retry_journal:
2666         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2667         if (IS_ERR(handle)) {
2668                 page_cache_release(page);
2669                 return PTR_ERR(handle);
2670         }
2671
2672         lock_page(page);
2673         if (page->mapping != mapping) {
2674                 /* The page got truncated from under us */
2675                 unlock_page(page);
2676                 page_cache_release(page);
2677                 ext4_journal_stop(handle);
2678                 goto retry_grab;
2679         }
2680         /* In case writeback began while the page was unlocked */
2681         wait_on_page_writeback(page);
2682
2683         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2684         if (ret < 0) {
2685                 unlock_page(page);
2686                 ext4_journal_stop(handle);
2687                 /*
2688                  * block_write_begin may have instantiated a few blocks
2689                  * outside i_size.  Trim these off again. Don't need
2690                  * i_size_read because we hold i_mutex.
2691                  */
2692                 if (pos + len > inode->i_size)
2693                         ext4_truncate_failed_write(inode);
2694
2695                 if (ret == -ENOSPC &&
2696                     ext4_should_retry_alloc(inode->i_sb, &retries))
2697                         goto retry_journal;
2698
2699                 page_cache_release(page);
2700                 return ret;
2701         }
2702
2703         *pagep = page;
2704         return ret;
2705 }
2706
2707 /*
2708  * Check if we should update i_disksize
2709  * when write to the end of file but not require block allocation
2710  */
2711 static int ext4_da_should_update_i_disksize(struct page *page,
2712                                             unsigned long offset)
2713 {
2714         struct buffer_head *bh;
2715         struct inode *inode = page->mapping->host;
2716         unsigned int idx;
2717         int i;
2718
2719         bh = page_buffers(page);
2720         idx = offset >> inode->i_blkbits;
2721
2722         for (i = 0; i < idx; i++)
2723                 bh = bh->b_this_page;
2724
2725         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2726                 return 0;
2727         return 1;
2728 }
2729
2730 static int ext4_da_write_end(struct file *file,
2731                              struct address_space *mapping,
2732                              loff_t pos, unsigned len, unsigned copied,
2733                              struct page *page, void *fsdata)
2734 {
2735         struct inode *inode = mapping->host;
2736         int ret = 0, ret2;
2737         handle_t *handle = ext4_journal_current_handle();
2738         loff_t new_i_size;
2739         unsigned long start, end;
2740         int write_mode = (int)(unsigned long)fsdata;
2741
2742         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2743                 return ext4_write_end(file, mapping, pos,
2744                                       len, copied, page, fsdata);
2745
2746         trace_ext4_da_write_end(inode, pos, len, copied);
2747         start = pos & (PAGE_CACHE_SIZE - 1);
2748         end = start + copied - 1;
2749
2750         /*
2751          * generic_write_end() will run mark_inode_dirty() if i_size
2752          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2753          * into that.
2754          */
2755         new_i_size = pos + copied;
2756         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2757                 if (ext4_has_inline_data(inode) ||
2758                     ext4_da_should_update_i_disksize(page, end)) {
2759                         down_write(&EXT4_I(inode)->i_data_sem);
2760                         if (new_i_size > EXT4_I(inode)->i_disksize)
2761                                 EXT4_I(inode)->i_disksize = new_i_size;
2762                         up_write(&EXT4_I(inode)->i_data_sem);
2763                         /* We need to mark inode dirty even if
2764                          * new_i_size is less that inode->i_size
2765                          * bu greater than i_disksize.(hint delalloc)
2766                          */
2767                         ext4_mark_inode_dirty(handle, inode);
2768                 }
2769         }
2770
2771         if (write_mode != CONVERT_INLINE_DATA &&
2772             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2773             ext4_has_inline_data(inode))
2774                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2775                                                      page);
2776         else
2777                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2778                                                         page, fsdata);
2779
2780         copied = ret2;
2781         if (ret2 < 0)
2782                 ret = ret2;
2783         ret2 = ext4_journal_stop(handle);
2784         if (!ret)
2785                 ret = ret2;
2786
2787         return ret ? ret : copied;
2788 }
2789
2790 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2791                                    unsigned int length)
2792 {
2793         /*
2794          * Drop reserved blocks
2795          */
2796         BUG_ON(!PageLocked(page));
2797         if (!page_has_buffers(page))
2798                 goto out;
2799
2800         ext4_da_page_release_reservation(page, offset, length);
2801
2802 out:
2803         ext4_invalidatepage(page, offset, length);
2804
2805         return;
2806 }
2807
2808 /*
2809  * Force all delayed allocation blocks to be allocated for a given inode.
2810  */
2811 int ext4_alloc_da_blocks(struct inode *inode)
2812 {
2813         trace_ext4_alloc_da_blocks(inode);
2814
2815         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2816             !EXT4_I(inode)->i_reserved_meta_blocks)
2817                 return 0;
2818
2819         /*
2820          * We do something simple for now.  The filemap_flush() will
2821          * also start triggering a write of the data blocks, which is
2822          * not strictly speaking necessary (and for users of
2823          * laptop_mode, not even desirable).  However, to do otherwise
2824          * would require replicating code paths in:
2825          *
2826          * ext4_writepages() ->
2827          *    write_cache_pages() ---> (via passed in callback function)
2828          *        __mpage_da_writepage() -->
2829          *           mpage_add_bh_to_extent()
2830          *           mpage_da_map_blocks()
2831          *
2832          * The problem is that write_cache_pages(), located in
2833          * mm/page-writeback.c, marks pages clean in preparation for
2834          * doing I/O, which is not desirable if we're not planning on
2835          * doing I/O at all.
2836          *
2837          * We could call write_cache_pages(), and then redirty all of
2838          * the pages by calling redirty_page_for_writepage() but that
2839          * would be ugly in the extreme.  So instead we would need to
2840          * replicate parts of the code in the above functions,
2841          * simplifying them because we wouldn't actually intend to
2842          * write out the pages, but rather only collect contiguous
2843          * logical block extents, call the multi-block allocator, and
2844          * then update the buffer heads with the block allocations.
2845          *
2846          * For now, though, we'll cheat by calling filemap_flush(),
2847          * which will map the blocks, and start the I/O, but not
2848          * actually wait for the I/O to complete.
2849          */
2850         return filemap_flush(inode->i_mapping);
2851 }
2852
2853 /*
2854  * bmap() is special.  It gets used by applications such as lilo and by
2855  * the swapper to find the on-disk block of a specific piece of data.
2856  *
2857  * Naturally, this is dangerous if the block concerned is still in the
2858  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2859  * filesystem and enables swap, then they may get a nasty shock when the
2860  * data getting swapped to that swapfile suddenly gets overwritten by
2861  * the original zero's written out previously to the journal and
2862  * awaiting writeback in the kernel's buffer cache.
2863  *
2864  * So, if we see any bmap calls here on a modified, data-journaled file,
2865  * take extra steps to flush any blocks which might be in the cache.
2866  */
2867 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2868 {
2869         struct inode *inode = mapping->host;
2870         journal_t *journal;
2871         int err;
2872
2873         /*
2874          * We can get here for an inline file via the FIBMAP ioctl
2875          */
2876         if (ext4_has_inline_data(inode))
2877                 return 0;
2878
2879         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2880                         test_opt(inode->i_sb, DELALLOC)) {
2881                 /*
2882                  * With delalloc we want to sync the file
2883                  * so that we can make sure we allocate
2884                  * blocks for file
2885                  */
2886                 filemap_write_and_wait(mapping);
2887         }
2888
2889         if (EXT4_JOURNAL(inode) &&
2890             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2891                 /*
2892                  * This is a REALLY heavyweight approach, but the use of
2893                  * bmap on dirty files is expected to be extremely rare:
2894                  * only if we run lilo or swapon on a freshly made file
2895                  * do we expect this to happen.
2896                  *
2897                  * (bmap requires CAP_SYS_RAWIO so this does not
2898                  * represent an unprivileged user DOS attack --- we'd be
2899                  * in trouble if mortal users could trigger this path at
2900                  * will.)
2901                  *
2902                  * NB. EXT4_STATE_JDATA is not set on files other than
2903                  * regular files.  If somebody wants to bmap a directory
2904                  * or symlink and gets confused because the buffer
2905                  * hasn't yet been flushed to disk, they deserve
2906                  * everything they get.
2907                  */
2908
2909                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2910                 journal = EXT4_JOURNAL(inode);
2911                 jbd2_journal_lock_updates(journal);
2912                 err = jbd2_journal_flush(journal);
2913                 jbd2_journal_unlock_updates(journal);
2914
2915                 if (err)
2916                         return 0;
2917         }
2918
2919         return generic_block_bmap(mapping, block, ext4_get_block);
2920 }
2921
2922 static int ext4_readpage(struct file *file, struct page *page)
2923 {
2924         int ret = -EAGAIN;
2925         struct inode *inode = page->mapping->host;
2926
2927         trace_ext4_readpage(page);
2928
2929         if (ext4_has_inline_data(inode))
2930                 ret = ext4_readpage_inline(inode, page);
2931
2932         if (ret == -EAGAIN)
2933                 return mpage_readpage(page, ext4_get_block);
2934
2935         return ret;
2936 }
2937
2938 static int
2939 ext4_readpages(struct file *file, struct address_space *mapping,
2940                 struct list_head *pages, unsigned nr_pages)
2941 {
2942         struct inode *inode = mapping->host;
2943
2944         /* If the file has inline data, no need to do readpages. */
2945         if (ext4_has_inline_data(inode))
2946                 return 0;
2947
2948         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2949 }
2950
2951 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2952                                 unsigned int length)
2953 {
2954         trace_ext4_invalidatepage(page, offset, length);
2955
2956         /* No journalling happens on data buffers when this function is used */
2957         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2958
2959         block_invalidatepage(page, offset, length);
2960 }
2961
2962 static int __ext4_journalled_invalidatepage(struct page *page,
2963                                             unsigned int offset,
2964                                             unsigned int length)
2965 {
2966         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2967
2968         trace_ext4_journalled_invalidatepage(page, offset, length);
2969
2970         /*
2971          * If it's a full truncate we just forget about the pending dirtying
2972          */
2973         if (offset == 0 && length == PAGE_CACHE_SIZE)
2974                 ClearPageChecked(page);
2975
2976         return jbd2_journal_invalidatepage(journal, page, offset, length);
2977 }
2978
2979 /* Wrapper for aops... */
2980 static void ext4_journalled_invalidatepage(struct page *page,
2981                                            unsigned int offset,
2982                                            unsigned int length)
2983 {
2984         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2985 }
2986
2987 static int ext4_releasepage(struct page *page, gfp_t wait)
2988 {
2989         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2990
2991         trace_ext4_releasepage(page);
2992
2993         /* Page has dirty journalled data -> cannot release */
2994         if (PageChecked(page))
2995                 return 0;
2996         if (journal)
2997                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2998         else
2999                 return try_to_free_buffers(page);
3000 }
3001
3002 /*
3003  * ext4_get_block used when preparing for a DIO write or buffer write.
3004  * We allocate an uinitialized extent if blocks haven't been allocated.
3005  * The extent will be converted to initialized after the IO is complete.
3006  */
3007 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3008                    struct buffer_head *bh_result, int create)
3009 {
3010         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3011                    inode->i_ino, create);
3012         return _ext4_get_block(inode, iblock, bh_result,
3013                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3014 }
3015
3016 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3017                    struct buffer_head *bh_result, int create)
3018 {
3019         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3020                    inode->i_ino, create);
3021         return _ext4_get_block(inode, iblock, bh_result,
3022                                EXT4_GET_BLOCKS_NO_LOCK);
3023 }
3024
3025 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3026                             ssize_t size, void *private, int ret,
3027                             bool is_async)
3028 {
3029         struct inode *inode = file_inode(iocb->ki_filp);
3030         ext4_io_end_t *io_end = iocb->private;
3031
3032         /* if not async direct IO just return */
3033         if (!io_end) {
3034                 inode_dio_done(inode);
3035                 if (is_async)
3036                         aio_complete(iocb, ret, 0);
3037                 return;
3038         }
3039
3040         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3041                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3042                   iocb->private, io_end->inode->i_ino, iocb, offset,
3043                   size);
3044
3045         iocb->private = NULL;
3046         io_end->offset = offset;
3047         io_end->size = size;
3048         if (is_async) {
3049                 io_end->iocb = iocb;
3050                 io_end->result = ret;
3051         }
3052         ext4_put_io_end_defer(io_end);
3053 }
3054
3055 /*
3056  * For ext4 extent files, ext4 will do direct-io write to holes,
3057  * preallocated extents, and those write extend the file, no need to
3058  * fall back to buffered IO.
3059  *
3060  * For holes, we fallocate those blocks, mark them as uninitialized
3061  * If those blocks were preallocated, we mark sure they are split, but
3062  * still keep the range to write as uninitialized.
3063  *
3064  * The unwritten extents will be converted to written when DIO is completed.
3065  * For async direct IO, since the IO may still pending when return, we
3066  * set up an end_io call back function, which will do the conversion
3067  * when async direct IO completed.
3068  *
3069  * If the O_DIRECT write will extend the file then add this inode to the
3070  * orphan list.  So recovery will truncate it back to the original size
3071  * if the machine crashes during the write.
3072  *
3073  */
3074 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3075                               const struct iovec *iov, loff_t offset,
3076                               unsigned long nr_segs)
3077 {
3078         struct file *file = iocb->ki_filp;
3079         struct inode *inode = file->f_mapping->host;
3080         ssize_t ret;
3081         size_t count = iov_length(iov, nr_segs);
3082         int overwrite = 0;
3083         get_block_t *get_block_func = NULL;
3084         int dio_flags = 0;
3085         loff_t final_size = offset + count;
3086         ext4_io_end_t *io_end = NULL;
3087
3088         /* Use the old path for reads and writes beyond i_size. */
3089         if (rw != WRITE || final_size > inode->i_size)
3090                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3091
3092         BUG_ON(iocb->private == NULL);
3093
3094         /*
3095          * Make all waiters for direct IO properly wait also for extent
3096          * conversion. This also disallows race between truncate() and
3097          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3098          */
3099         if (rw == WRITE)
3100                 atomic_inc(&inode->i_dio_count);
3101
3102         /* If we do a overwrite dio, i_mutex locking can be released */
3103         overwrite = *((int *)iocb->private);
3104
3105         if (overwrite) {
3106                 down_read(&EXT4_I(inode)->i_data_sem);
3107                 mutex_unlock(&inode->i_mutex);
3108         }
3109
3110         /*
3111          * We could direct write to holes and fallocate.
3112          *
3113          * Allocated blocks to fill the hole are marked as
3114          * uninitialized to prevent parallel buffered read to expose
3115          * the stale data before DIO complete the data IO.
3116          *
3117          * As to previously fallocated extents, ext4 get_block will
3118          * just simply mark the buffer mapped but still keep the
3119          * extents uninitialized.
3120          *
3121          * For non AIO case, we will convert those unwritten extents
3122          * to written after return back from blockdev_direct_IO.
3123          *
3124          * For async DIO, the conversion needs to be deferred when the
3125          * IO is completed. The ext4 end_io callback function will be
3126          * called to take care of the conversion work.  Here for async
3127          * case, we allocate an io_end structure to hook to the iocb.
3128          */
3129         iocb->private = NULL;
3130         ext4_inode_aio_set(inode, NULL);
3131         if (!is_sync_kiocb(iocb)) {
3132                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3133                 if (!io_end) {
3134                         ret = -ENOMEM;
3135                         goto retake_lock;
3136                 }
3137                 io_end->flag |= EXT4_IO_END_DIRECT;
3138                 /*
3139                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3140                  */
3141                 iocb->private = ext4_get_io_end(io_end);
3142                 /*
3143                  * we save the io structure for current async direct
3144                  * IO, so that later ext4_map_blocks() could flag the
3145                  * io structure whether there is a unwritten extents
3146                  * needs to be converted when IO is completed.
3147                  */
3148                 ext4_inode_aio_set(inode, io_end);
3149         }
3150
3151         if (overwrite) {
3152                 get_block_func = ext4_get_block_write_nolock;
3153         } else {
3154                 get_block_func = ext4_get_block_write;
3155                 dio_flags = DIO_LOCKING;
3156         }
3157         ret = __blockdev_direct_IO(rw, iocb, inode,
3158                                    inode->i_sb->s_bdev, iov,
3159                                    offset, nr_segs,
3160                                    get_block_func,
3161                                    ext4_end_io_dio,
3162                                    NULL,
3163                                    dio_flags);
3164
3165         /*
3166          * Put our reference to io_end. This can free the io_end structure e.g.
3167          * in sync IO case or in case of error. It can even perform extent
3168          * conversion if all bios we submitted finished before we got here.
3169          * Note that in that case iocb->private can be already set to NULL
3170          * here.
3171          */
3172         if (io_end) {
3173                 ext4_inode_aio_set(inode, NULL);
3174                 ext4_put_io_end(io_end);
3175                 /*
3176                  * When no IO was submitted ext4_end_io_dio() was not
3177                  * called so we have to put iocb's reference.
3178                  */
3179                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3180                         WARN_ON(iocb->private != io_end);
3181                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3182                         WARN_ON(io_end->iocb);
3183                         /*
3184                          * Generic code already did inode_dio_done() so we
3185                          * have to clear EXT4_IO_END_DIRECT to not do it for
3186                          * the second time.
3187                          */
3188                         io_end->flag = 0;
3189                         ext4_put_io_end(io_end);
3190                         iocb->private = NULL;
3191                 }
3192         }
3193         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3194                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3195                 int err;
3196                 /*
3197                  * for non AIO case, since the IO is already
3198                  * completed, we could do the conversion right here
3199                  */
3200                 err = ext4_convert_unwritten_extents(NULL, inode,
3201                                                      offset, ret);
3202                 if (err < 0)
3203                         ret = err;
3204                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3205         }
3206
3207 retake_lock:
3208         if (rw == WRITE)
3209                 inode_dio_done(inode);
3210         /* take i_mutex locking again if we do a ovewrite dio */
3211         if (overwrite) {
3212                 up_read(&EXT4_I(inode)->i_data_sem);
3213                 mutex_lock(&inode->i_mutex);
3214         }
3215
3216         return ret;
3217 }
3218
3219 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3220                               const struct iovec *iov, loff_t offset,
3221                               unsigned long nr_segs)
3222 {
3223         struct file *file = iocb->ki_filp;
3224         struct inode *inode = file->f_mapping->host;
3225         ssize_t ret;
3226
3227         /*
3228          * If we are doing data journalling we don't support O_DIRECT
3229          */
3230         if (ext4_should_journal_data(inode))
3231                 return 0;
3232
3233         /* Let buffer I/O handle the inline data case. */
3234         if (ext4_has_inline_data(inode))
3235                 return 0;
3236
3237         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3238         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3239                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3240         else
3241                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3242         trace_ext4_direct_IO_exit(inode, offset,
3243                                 iov_length(iov, nr_segs), rw, ret);
3244         return ret;
3245 }
3246
3247 /*
3248  * Pages can be marked dirty completely asynchronously from ext4's journalling
3249  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3250  * much here because ->set_page_dirty is called under VFS locks.  The page is
3251  * not necessarily locked.
3252  *
3253  * We cannot just dirty the page and leave attached buffers clean, because the
3254  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3255  * or jbddirty because all the journalling code will explode.
3256  *
3257  * So what we do is to mark the page "pending dirty" and next time writepage
3258  * is called, propagate that into the buffers appropriately.
3259  */
3260 static int ext4_journalled_set_page_dirty(struct page *page)
3261 {
3262         SetPageChecked(page);
3263         return __set_page_dirty_nobuffers(page);
3264 }
3265
3266 static const struct address_space_operations ext4_aops = {
3267         .readpage               = ext4_readpage,
3268         .readpages              = ext4_readpages,
3269         .writepage              = ext4_writepage,
3270         .writepages             = ext4_writepages,
3271         .write_begin            = ext4_write_begin,
3272         .write_end              = ext4_write_end,
3273         .bmap                   = ext4_bmap,
3274         .invalidatepage         = ext4_invalidatepage,
3275         .releasepage            = ext4_releasepage,
3276         .direct_IO              = ext4_direct_IO,
3277         .migratepage            = buffer_migrate_page,
3278         .is_partially_uptodate  = block_is_partially_uptodate,
3279         .error_remove_page      = generic_error_remove_page,
3280 };
3281
3282 static const struct address_space_operations ext4_journalled_aops = {
3283         .readpage               = ext4_readpage,
3284         .readpages              = ext4_readpages,
3285         .writepage              = ext4_writepage,
3286         .writepages             = ext4_writepages,
3287         .write_begin            = ext4_write_begin,
3288         .write_end              = ext4_journalled_write_end,
3289         .set_page_dirty         = ext4_journalled_set_page_dirty,
3290         .bmap                   = ext4_bmap,
3291         .invalidatepage         = ext4_journalled_invalidatepage,
3292         .releasepage            = ext4_releasepage,
3293         .direct_IO              = ext4_direct_IO,
3294         .is_partially_uptodate  = block_is_partially_uptodate,
3295         .error_remove_page      = generic_error_remove_page,
3296 };
3297
3298 static const struct address_space_operations ext4_da_aops = {
3299         .readpage               = ext4_readpage,
3300         .readpages              = ext4_readpages,
3301         .writepage              = ext4_writepage,
3302         .writepages             = ext4_writepages,
3303         .write_begin            = ext4_da_write_begin,
3304         .write_end              = ext4_da_write_end,
3305         .bmap                   = ext4_bmap,
3306         .invalidatepage         = ext4_da_invalidatepage,
3307         .releasepage            = ext4_releasepage,
3308         .direct_IO              = ext4_direct_IO,
3309         .migratepage            = buffer_migrate_page,
3310         .is_partially_uptodate  = block_is_partially_uptodate,
3311         .error_remove_page      = generic_error_remove_page,
3312 };
3313
3314 void ext4_set_aops(struct inode *inode)
3315 {
3316         switch (ext4_inode_journal_mode(inode)) {
3317         case EXT4_INODE_ORDERED_DATA_MODE:
3318                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3319                 break;
3320         case EXT4_INODE_WRITEBACK_DATA_MODE:
3321                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3322                 break;
3323         case EXT4_INODE_JOURNAL_DATA_MODE:
3324                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3325                 return;
3326         default:
3327                 BUG();
3328         }
3329         if (test_opt(inode->i_sb, DELALLOC))
3330                 inode->i_mapping->a_ops = &ext4_da_aops;
3331         else
3332                 inode->i_mapping->a_ops = &ext4_aops;
3333 }
3334
3335 /*
3336  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3337  * up to the end of the block which corresponds to `from'.
3338  * This required during truncate. We need to physically zero the tail end
3339  * of that block so it doesn't yield old data if the file is later grown.
3340  */
3341 int ext4_block_truncate_page(handle_t *handle,
3342                 struct address_space *mapping, loff_t from)
3343 {
3344         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3345         unsigned length;
3346         unsigned blocksize;
3347         struct inode *inode = mapping->host;
3348
3349         blocksize = inode->i_sb->s_blocksize;
3350         length = blocksize - (offset & (blocksize - 1));
3351
3352         return ext4_block_zero_page_range(handle, mapping, from, length);
3353 }
3354
3355 /*
3356  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3357  * starting from file offset 'from'.  The range to be zero'd must
3358  * be contained with in one block.  If the specified range exceeds
3359  * the end of the block it will be shortened to end of the block
3360  * that cooresponds to 'from'
3361  */
3362 int ext4_block_zero_page_range(handle_t *handle,
3363                 struct address_space *mapping, loff_t from, loff_t length)
3364 {
3365         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3366         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3367         unsigned blocksize, max, pos;
3368         ext4_lblk_t iblock;
3369         struct inode *inode = mapping->host;
3370         struct buffer_head *bh;
3371         struct page *page;
3372         int err = 0;
3373
3374         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3375                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3376         if (!page)
3377                 return -ENOMEM;
3378
3379         blocksize = inode->i_sb->s_blocksize;
3380         max = blocksize - (offset & (blocksize - 1));
3381
3382         /*
3383          * correct length if it does not fall between
3384          * 'from' and the end of the block
3385          */
3386         if (length > max || length < 0)
3387                 length = max;
3388
3389         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3390
3391         if (!page_has_buffers(page))
3392                 create_empty_buffers(page, blocksize, 0);
3393
3394         /* Find the buffer that contains "offset" */
3395         bh = page_buffers(page);
3396         pos = blocksize;
3397         while (offset >= pos) {
3398                 bh = bh->b_this_page;
3399                 iblock++;
3400                 pos += blocksize;
3401         }
3402         if (buffer_freed(bh)) {
3403                 BUFFER_TRACE(bh, "freed: skip");
3404                 goto unlock;
3405         }
3406         if (!buffer_mapped(bh)) {
3407                 BUFFER_TRACE(bh, "unmapped");
3408                 ext4_get_block(inode, iblock, bh, 0);
3409                 /* unmapped? It's a hole - nothing to do */
3410                 if (!buffer_mapped(bh)) {
3411                         BUFFER_TRACE(bh, "still unmapped");
3412                         goto unlock;
3413                 }
3414         }
3415
3416         /* Ok, it's mapped. Make sure it's up-to-date */
3417         if (PageUptodate(page))
3418                 set_buffer_uptodate(bh);
3419
3420         if (!buffer_uptodate(bh)) {
3421                 err = -EIO;
3422                 ll_rw_block(READ, 1, &bh);
3423                 wait_on_buffer(bh);
3424                 /* Uhhuh. Read error. Complain and punt. */
3425                 if (!buffer_uptodate(bh))
3426                         goto unlock;
3427         }
3428         if (ext4_should_journal_data(inode)) {
3429                 BUFFER_TRACE(bh, "get write access");
3430                 err = ext4_journal_get_write_access(handle, bh);
3431                 if (err)
3432                         goto unlock;
3433         }
3434         zero_user(page, offset, length);
3435         BUFFER_TRACE(bh, "zeroed end of block");
3436
3437         if (ext4_should_journal_data(inode)) {
3438                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3439         } else {
3440                 err = 0;
3441                 mark_buffer_dirty(bh);
3442                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3443                         err = ext4_jbd2_file_inode(handle, inode);
3444         }
3445
3446 unlock:
3447         unlock_page(page);
3448         page_cache_release(page);
3449         return err;
3450 }
3451
3452 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3453                              loff_t lstart, loff_t length)
3454 {
3455         struct super_block *sb = inode->i_sb;
3456         struct address_space *mapping = inode->i_mapping;
3457         unsigned partial_start, partial_end;
3458         ext4_fsblk_t start, end;
3459         loff_t byte_end = (lstart + length - 1);
3460         int err = 0;
3461
3462         partial_start = lstart & (sb->s_blocksize - 1);
3463         partial_end = byte_end & (sb->s_blocksize - 1);
3464
3465         start = lstart >> sb->s_blocksize_bits;
3466         end = byte_end >> sb->s_blocksize_bits;
3467
3468         /* Handle partial zero within the single block */
3469         if (start == end &&
3470             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3471                 err = ext4_block_zero_page_range(handle, mapping,
3472                                                  lstart, length);
3473                 return err;
3474         }
3475         /* Handle partial zero out on the start of the range */
3476         if (partial_start) {
3477                 err = ext4_block_zero_page_range(handle, mapping,
3478                                                  lstart, sb->s_blocksize);
3479                 if (err)
3480                         return err;
3481         }
3482         /* Handle partial zero out on the end of the range */
3483         if (partial_end != sb->s_blocksize - 1)
3484                 err = ext4_block_zero_page_range(handle, mapping,
3485                                                  byte_end - partial_end,
3486                                                  partial_end + 1);
3487         return err;
3488 }
3489
3490 int ext4_can_truncate(struct inode *inode)
3491 {
3492         if (S_ISREG(inode->i_mode))
3493                 return 1;
3494         if (S_ISDIR(inode->i_mode))
3495                 return 1;
3496         if (S_ISLNK(inode->i_mode))
3497                 return !ext4_inode_is_fast_symlink(inode);
3498         return 0;
3499 }
3500
3501 /*
3502  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3503  * associated with the given offset and length
3504  *
3505  * @inode:  File inode
3506  * @offset: The offset where the hole will begin
3507  * @len:    The length of the hole
3508  *
3509  * Returns: 0 on success or negative on failure
3510  */
3511
3512 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3513 {
3514         struct super_block *sb = inode->i_sb;
3515         ext4_lblk_t first_block, stop_block;
3516         struct address_space *mapping = inode->i_mapping;
3517         loff_t first_block_offset, last_block_offset;
3518         handle_t *handle;
3519         unsigned int credits;
3520         int ret = 0;
3521
3522         if (!S_ISREG(inode->i_mode))
3523                 return -EOPNOTSUPP;
3524
3525         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3526                 /* TODO: Add support for bigalloc file systems */
3527                 return -EOPNOTSUPP;
3528         }
3529
3530         trace_ext4_punch_hole(inode, offset, length);
3531
3532         /*
3533          * Write out all dirty pages to avoid race conditions
3534          * Then release them.
3535          */
3536         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3537                 ret = filemap_write_and_wait_range(mapping, offset,
3538                                                    offset + length - 1);
3539                 if (ret)
3540                         return ret;
3541         }
3542
3543         mutex_lock(&inode->i_mutex);
3544         /* It's not possible punch hole on append only file */
3545         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3546                 ret = -EPERM;
3547                 goto out_mutex;
3548         }
3549         if (IS_SWAPFILE(inode)) {
3550                 ret = -ETXTBSY;
3551                 goto out_mutex;
3552         }
3553
3554         /* No need to punch hole beyond i_size */
3555         if (offset >= inode->i_size)
3556                 goto out_mutex;
3557
3558         /*
3559          * If the hole extends beyond i_size, set the hole
3560          * to end after the page that contains i_size
3561          */
3562         if (offset + length > inode->i_size) {
3563                 length = inode->i_size +
3564                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3565                    offset;
3566         }
3567
3568         if (offset & (sb->s_blocksize - 1) ||
3569             (offset + length) & (sb->s_blocksize - 1)) {
3570                 /*
3571                  * Attach jinode to inode for jbd2 if we do any zeroing of
3572                  * partial block
3573                  */
3574                 ret = ext4_inode_attach_jinode(inode);
3575                 if (ret < 0)
3576                         goto out_mutex;
3577
3578         }
3579
3580         first_block_offset = round_up(offset, sb->s_blocksize);
3581         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3582
3583         /* Now release the pages and zero block aligned part of pages*/
3584         if (last_block_offset > first_block_offset)
3585                 truncate_pagecache_range(inode, first_block_offset,
3586                                          last_block_offset);
3587
3588         /* Wait all existing dio workers, newcomers will block on i_mutex */
3589         ext4_inode_block_unlocked_dio(inode);
3590         inode_dio_wait(inode);
3591
3592         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3593                 credits = ext4_writepage_trans_blocks(inode);
3594         else
3595                 credits = ext4_blocks_for_truncate(inode);
3596         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3597         if (IS_ERR(handle)) {
3598                 ret = PTR_ERR(handle);
3599                 ext4_std_error(sb, ret);
3600                 goto out_dio;
3601         }
3602
3603         ret = ext4_zero_partial_blocks(handle, inode, offset,
3604                                        length);
3605         if (ret)
3606                 goto out_stop;
3607
3608         first_block = (offset + sb->s_blocksize - 1) >>
3609                 EXT4_BLOCK_SIZE_BITS(sb);
3610         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3611
3612         /* If there are no blocks to remove, return now */
3613         if (first_block >= stop_block)
3614                 goto out_stop;
3615
3616         down_write(&EXT4_I(inode)->i_data_sem);
3617         ext4_discard_preallocations(inode);
3618
3619         ret = ext4_es_remove_extent(inode, first_block,
3620                                     stop_block - first_block);
3621         if (ret) {
3622                 up_write(&EXT4_I(inode)->i_data_sem);
3623                 goto out_stop;
3624         }
3625
3626         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3627                 ret = ext4_ext_remove_space(inode, first_block,
3628                                             stop_block - 1);
3629         else
3630                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3631                                             stop_block);
3632
3633         ext4_discard_preallocations(inode);
3634         up_write(&EXT4_I(inode)->i_data_sem);
3635         if (IS_SYNC(inode))
3636                 ext4_handle_sync(handle);
3637         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3638         ext4_mark_inode_dirty(handle, inode);
3639 out_stop:
3640         ext4_journal_stop(handle);
3641 out_dio:
3642         ext4_inode_resume_unlocked_dio(inode);
3643 out_mutex:
3644         mutex_unlock(&inode->i_mutex);
3645         return ret;
3646 }
3647
3648 int ext4_inode_attach_jinode(struct inode *inode)
3649 {
3650         struct ext4_inode_info *ei = EXT4_I(inode);
3651         struct jbd2_inode *jinode;
3652
3653         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3654                 return 0;
3655
3656         jinode = jbd2_alloc_inode(GFP_KERNEL);
3657         spin_lock(&inode->i_lock);
3658         if (!ei->jinode) {
3659                 if (!jinode) {
3660                         spin_unlock(&inode->i_lock);
3661                         return -ENOMEM;
3662                 }
3663                 ei->jinode = jinode;
3664                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3665                 jinode = NULL;
3666         }
3667         spin_unlock(&inode->i_lock);
3668         if (unlikely(jinode != NULL))
3669                 jbd2_free_inode(jinode);
3670         return 0;
3671 }
3672
3673 /*
3674  * ext4_truncate()
3675  *
3676  * We block out ext4_get_block() block instantiations across the entire
3677  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3678  * simultaneously on behalf of the same inode.
3679  *
3680  * As we work through the truncate and commit bits of it to the journal there
3681  * is one core, guiding principle: the file's tree must always be consistent on
3682  * disk.  We must be able to restart the truncate after a crash.
3683  *
3684  * The file's tree may be transiently inconsistent in memory (although it
3685  * probably isn't), but whenever we close off and commit a journal transaction,
3686  * the contents of (the filesystem + the journal) must be consistent and
3687  * restartable.  It's pretty simple, really: bottom up, right to left (although
3688  * left-to-right works OK too).
3689  *
3690  * Note that at recovery time, journal replay occurs *before* the restart of
3691  * truncate against the orphan inode list.
3692  *
3693  * The committed inode has the new, desired i_size (which is the same as
3694  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3695  * that this inode's truncate did not complete and it will again call
3696  * ext4_truncate() to have another go.  So there will be instantiated blocks
3697  * to the right of the truncation point in a crashed ext4 filesystem.  But
3698  * that's fine - as long as they are linked from the inode, the post-crash
3699  * ext4_truncate() run will find them and release them.
3700  */
3701 void ext4_truncate(struct inode *inode)
3702 {
3703         struct ext4_inode_info *ei = EXT4_I(inode);
3704         unsigned int credits;
3705         handle_t *handle;
3706         struct address_space *mapping = inode->i_mapping;
3707
3708         /*
3709          * There is a possibility that we're either freeing the inode
3710          * or it completely new indode. In those cases we might not
3711          * have i_mutex locked because it's not necessary.
3712          */
3713         if (!(inode->i_state & (I_NEW|I_FREEING)))
3714                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3715         trace_ext4_truncate_enter(inode);
3716
3717         if (!ext4_can_truncate(inode))
3718                 return;
3719
3720         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3721
3722         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3723                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3724
3725         if (ext4_has_inline_data(inode)) {
3726                 int has_inline = 1;
3727
3728                 ext4_inline_data_truncate(inode, &has_inline);
3729                 if (has_inline)
3730                         return;
3731         }
3732
3733         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3734         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3735                 if (ext4_inode_attach_jinode(inode) < 0)
3736                         return;
3737         }
3738
3739         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3740                 credits = ext4_writepage_trans_blocks(inode);
3741         else
3742                 credits = ext4_blocks_for_truncate(inode);
3743
3744         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3745         if (IS_ERR(handle)) {
3746                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3747                 return;
3748         }
3749
3750         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3751                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3752
3753         /*
3754          * We add the inode to the orphan list, so that if this
3755          * truncate spans multiple transactions, and we crash, we will
3756          * resume the truncate when the filesystem recovers.  It also
3757          * marks the inode dirty, to catch the new size.
3758          *
3759          * Implication: the file must always be in a sane, consistent
3760          * truncatable state while each transaction commits.
3761          */
3762         if (ext4_orphan_add(handle, inode))
3763                 goto out_stop;
3764
3765         down_write(&EXT4_I(inode)->i_data_sem);
3766
3767         ext4_discard_preallocations(inode);
3768
3769         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3770                 ext4_ext_truncate(handle, inode);
3771         else
3772                 ext4_ind_truncate(handle, inode);
3773
3774         up_write(&ei->i_data_sem);
3775
3776         if (IS_SYNC(inode))
3777                 ext4_handle_sync(handle);
3778
3779 out_stop:
3780         /*
3781          * If this was a simple ftruncate() and the file will remain alive,
3782          * then we need to clear up the orphan record which we created above.
3783          * However, if this was a real unlink then we were called by
3784          * ext4_delete_inode(), and we allow that function to clean up the
3785          * orphan info for us.
3786          */
3787         if (inode->i_nlink)
3788                 ext4_orphan_del(handle, inode);
3789
3790         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3791         ext4_mark_inode_dirty(handle, inode);
3792         ext4_journal_stop(handle);
3793
3794         trace_ext4_truncate_exit(inode);
3795 }
3796
3797 /*
3798  * ext4_get_inode_loc returns with an extra refcount against the inode's
3799  * underlying buffer_head on success. If 'in_mem' is true, we have all
3800  * data in memory that is needed to recreate the on-disk version of this
3801  * inode.
3802  */
3803 static int __ext4_get_inode_loc(struct inode *inode,
3804                                 struct ext4_iloc *iloc, int in_mem)
3805 {
3806         struct ext4_group_desc  *gdp;
3807         struct buffer_head      *bh;
3808         struct super_block      *sb = inode->i_sb;
3809         ext4_fsblk_t            block;
3810         int                     inodes_per_block, inode_offset;
3811
3812         iloc->bh = NULL;
3813         if (!ext4_valid_inum(sb, inode->i_ino))
3814                 return -EIO;
3815
3816         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3817         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3818         if (!gdp)
3819                 return -EIO;
3820
3821         /*
3822          * Figure out the offset within the block group inode table
3823          */
3824         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3825         inode_offset = ((inode->i_ino - 1) %
3826                         EXT4_INODES_PER_GROUP(sb));
3827         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3828         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3829
3830         bh = sb_getblk(sb, block);
3831         if (unlikely(!bh))
3832                 return -ENOMEM;
3833         if (!buffer_uptodate(bh)) {
3834                 lock_buffer(bh);
3835
3836                 /*
3837                  * If the buffer has the write error flag, we have failed
3838                  * to write out another inode in the same block.  In this
3839                  * case, we don't have to read the block because we may
3840                  * read the old inode data successfully.
3841                  */
3842                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3843                         set_buffer_uptodate(bh);
3844
3845                 if (buffer_uptodate(bh)) {
3846                         /* someone brought it uptodate while we waited */
3847                         unlock_buffer(bh);
3848                         goto has_buffer;
3849                 }
3850
3851                 /*
3852                  * If we have all information of the inode in memory and this
3853                  * is the only valid inode in the block, we need not read the
3854                  * block.
3855                  */
3856                 if (in_mem) {
3857                         struct buffer_head *bitmap_bh;
3858                         int i, start;
3859
3860                         start = inode_offset & ~(inodes_per_block - 1);
3861
3862                         /* Is the inode bitmap in cache? */
3863                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3864                         if (unlikely(!bitmap_bh))
3865                                 goto make_io;
3866
3867                         /*
3868                          * If the inode bitmap isn't in cache then the
3869                          * optimisation may end up performing two reads instead
3870                          * of one, so skip it.
3871                          */
3872                         if (!buffer_uptodate(bitmap_bh)) {
3873                                 brelse(bitmap_bh);
3874                                 goto make_io;
3875                         }
3876                         for (i = start; i < start + inodes_per_block; i++) {
3877                                 if (i == inode_offset)
3878                                         continue;
3879                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3880                                         break;
3881                         }
3882                         brelse(bitmap_bh);
3883                         if (i == start + inodes_per_block) {
3884                                 /* all other inodes are free, so skip I/O */
3885                                 memset(bh->b_data, 0, bh->b_size);
3886                                 set_buffer_uptodate(bh);
3887                                 unlock_buffer(bh);
3888                                 goto has_buffer;
3889                         }
3890                 }
3891
3892 make_io:
3893                 /*
3894                  * If we need to do any I/O, try to pre-readahead extra
3895                  * blocks from the inode table.
3896                  */
3897                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3898                         ext4_fsblk_t b, end, table;
3899                         unsigned num;
3900                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3901
3902                         table = ext4_inode_table(sb, gdp);
3903                         /* s_inode_readahead_blks is always a power of 2 */
3904                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3905                         if (table > b)
3906                                 b = table;
3907                         end = b + ra_blks;
3908                         num = EXT4_INODES_PER_GROUP(sb);
3909                         if (ext4_has_group_desc_csum(sb))
3910                                 num -= ext4_itable_unused_count(sb, gdp);
3911                         table += num / inodes_per_block;
3912                         if (end > table)
3913                                 end = table;
3914                         while (b <= end)
3915                                 sb_breadahead(sb, b++);
3916                 }
3917
3918                 /*
3919                  * There are other valid inodes in the buffer, this inode
3920                  * has in-inode xattrs, or we don't have this inode in memory.
3921                  * Read the block from disk.
3922                  */
3923                 trace_ext4_load_inode(inode);
3924                 get_bh(bh);
3925                 bh->b_end_io = end_buffer_read_sync;
3926                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3927                 wait_on_buffer(bh);
3928                 if (!buffer_uptodate(bh)) {
3929                         EXT4_ERROR_INODE_BLOCK(inode, block,
3930                                                "unable to read itable block");
3931                         brelse(bh);
3932                         return -EIO;
3933                 }
3934         }
3935 has_buffer:
3936         iloc->bh = bh;
3937         return 0;
3938 }
3939
3940 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3941 {
3942         /* We have all inode data except xattrs in memory here. */
3943         return __ext4_get_inode_loc(inode, iloc,
3944                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3945 }
3946
3947 void ext4_set_inode_flags(struct inode *inode)
3948 {
3949         unsigned int flags = EXT4_I(inode)->i_flags;
3950
3951         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3952         if (flags & EXT4_SYNC_FL)
3953                 inode->i_flags |= S_SYNC;
3954         if (flags & EXT4_APPEND_FL)
3955                 inode->i_flags |= S_APPEND;
3956         if (flags & EXT4_IMMUTABLE_FL)
3957                 inode->i_flags |= S_IMMUTABLE;
3958         if (flags & EXT4_NOATIME_FL)
3959                 inode->i_flags |= S_NOATIME;
3960         if (flags & EXT4_DIRSYNC_FL)
3961                 inode->i_flags |= S_DIRSYNC;
3962 }
3963
3964 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3965 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3966 {
3967         unsigned int vfs_fl;
3968         unsigned long old_fl, new_fl;
3969
3970         do {
3971                 vfs_fl = ei->vfs_inode.i_flags;
3972                 old_fl = ei->i_flags;
3973                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3974                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3975                                 EXT4_DIRSYNC_FL);
3976                 if (vfs_fl & S_SYNC)
3977                         new_fl |= EXT4_SYNC_FL;
3978                 if (vfs_fl & S_APPEND)
3979                         new_fl |= EXT4_APPEND_FL;
3980                 if (vfs_fl & S_IMMUTABLE)
3981                         new_fl |= EXT4_IMMUTABLE_FL;
3982                 if (vfs_fl & S_NOATIME)
3983                         new_fl |= EXT4_NOATIME_FL;
3984                 if (vfs_fl & S_DIRSYNC)
3985                         new_fl |= EXT4_DIRSYNC_FL;
3986         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3987 }
3988
3989 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3990                                   struct ext4_inode_info *ei)
3991 {
3992         blkcnt_t i_blocks ;
3993         struct inode *inode = &(ei->vfs_inode);
3994         struct super_block *sb = inode->i_sb;
3995
3996         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3997                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3998                 /* we are using combined 48 bit field */
3999                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4000                                         le32_to_cpu(raw_inode->i_blocks_lo);
4001                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4002                         /* i_blocks represent file system block size */
4003                         return i_blocks  << (inode->i_blkbits - 9);
4004                 } else {
4005                         return i_blocks;
4006                 }
4007         } else {
4008                 return le32_to_cpu(raw_inode->i_blocks_lo);
4009         }
4010 }
4011
4012 static inline void ext4_iget_extra_inode(struct inode *inode,
4013                                          struct ext4_inode *raw_inode,
4014                                          struct ext4_inode_info *ei)
4015 {
4016         __le32 *magic = (void *)raw_inode +
4017                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4018         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4019                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4020                 ext4_find_inline_data_nolock(inode);
4021         } else
4022                 EXT4_I(inode)->i_inline_off = 0;
4023 }
4024
4025 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4026 {
4027         struct ext4_iloc iloc;
4028         struct ext4_inode *raw_inode;
4029         struct ext4_inode_info *ei;
4030         struct inode *inode;
4031         journal_t *journal = EXT4_SB(sb)->s_journal;
4032         long ret;
4033         int block;
4034         uid_t i_uid;
4035         gid_t i_gid;
4036
4037         inode = iget_locked(sb, ino);
4038         if (!inode)
4039                 return ERR_PTR(-ENOMEM);
4040         if (!(inode->i_state & I_NEW))
4041                 return inode;
4042
4043         ei = EXT4_I(inode);
4044         iloc.bh = NULL;
4045
4046         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4047         if (ret < 0)
4048                 goto bad_inode;
4049         raw_inode = ext4_raw_inode(&iloc);
4050
4051         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4052                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4053                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4054                     EXT4_INODE_SIZE(inode->i_sb)) {
4055                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4056                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4057                                 EXT4_INODE_SIZE(inode->i_sb));
4058                         ret = -EIO;
4059                         goto bad_inode;
4060                 }
4061         } else
4062                 ei->i_extra_isize = 0;
4063
4064         /* Precompute checksum seed for inode metadata */
4065         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4066                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4067                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4068                 __u32 csum;
4069                 __le32 inum = cpu_to_le32(inode->i_ino);
4070                 __le32 gen = raw_inode->i_generation;
4071                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4072                                    sizeof(inum));
4073                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4074                                               sizeof(gen));
4075         }
4076
4077         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4078                 EXT4_ERROR_INODE(inode, "checksum invalid");
4079                 ret = -EIO;
4080                 goto bad_inode;
4081         }
4082
4083         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4084         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4085         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4086         if (!(test_opt(inode->i_sb, NO_UID32))) {
4087                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4088                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4089         }
4090         i_uid_write(inode, i_uid);
4091         i_gid_write(inode, i_gid);
4092         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4093
4094         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4095         ei->i_inline_off = 0;
4096         ei->i_dir_start_lookup = 0;
4097         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4098         /* We now have enough fields to check if the inode was active or not.
4099          * This is needed because nfsd might try to access dead inodes
4100          * the test is that same one that e2fsck uses
4101          * NeilBrown 1999oct15
4102          */
4103         if (inode->i_nlink == 0) {
4104                 if ((inode->i_mode == 0 ||
4105                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4106                     ino != EXT4_BOOT_LOADER_INO) {
4107                         /* this inode is deleted */
4108                         ret = -ESTALE;
4109                         goto bad_inode;
4110                 }
4111                 /* The only unlinked inodes we let through here have
4112                  * valid i_mode and are being read by the orphan
4113                  * recovery code: that's fine, we're about to complete
4114                  * the process of deleting those.
4115                  * OR it is the EXT4_BOOT_LOADER_INO which is
4116                  * not initialized on a new filesystem. */
4117         }
4118         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4119         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4120         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4121         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4122                 ei->i_file_acl |=
4123                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4124         inode->i_size = ext4_isize(raw_inode);
4125         ei->i_disksize = inode->i_size;
4126 #ifdef CONFIG_QUOTA
4127         ei->i_reserved_quota = 0;
4128 #endif
4129         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4130         ei->i_block_group = iloc.block_group;
4131         ei->i_last_alloc_group = ~0;
4132         /*
4133          * NOTE! The in-memory inode i_data array is in little-endian order
4134          * even on big-endian machines: we do NOT byteswap the block numbers!
4135          */
4136         for (block = 0; block < EXT4_N_BLOCKS; block++)
4137                 ei->i_data[block] = raw_inode->i_block[block];
4138         INIT_LIST_HEAD(&ei->i_orphan);
4139
4140         /*
4141          * Set transaction id's of transactions that have to be committed
4142          * to finish f[data]sync. We set them to currently running transaction
4143          * as we cannot be sure that the inode or some of its metadata isn't
4144          * part of the transaction - the inode could have been reclaimed and
4145          * now it is reread from disk.
4146          */
4147         if (journal) {
4148                 transaction_t *transaction;
4149                 tid_t tid;
4150
4151                 read_lock(&journal->j_state_lock);
4152                 if (journal->j_running_transaction)
4153                         transaction = journal->j_running_transaction;
4154                 else
4155                         transaction = journal->j_committing_transaction;
4156                 if (transaction)
4157                         tid = transaction->t_tid;
4158                 else
4159                         tid = journal->j_commit_sequence;
4160                 read_unlock(&journal->j_state_lock);
4161                 ei->i_sync_tid = tid;
4162                 ei->i_datasync_tid = tid;
4163         }
4164
4165         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4166                 if (ei->i_extra_isize == 0) {
4167                         /* The extra space is currently unused. Use it. */
4168                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4169                                             EXT4_GOOD_OLD_INODE_SIZE;
4170                 } else {
4171                         ext4_iget_extra_inode(inode, raw_inode, ei);
4172                 }
4173         }
4174
4175         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4176         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4177         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4178         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4179
4180         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4181         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4182                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4183                         inode->i_version |=
4184                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4185         }
4186
4187         ret = 0;
4188         if (ei->i_file_acl &&
4189             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4190                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4191                                  ei->i_file_acl);
4192                 ret = -EIO;
4193                 goto bad_inode;
4194         } else if (!ext4_has_inline_data(inode)) {
4195                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4196                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4197                             (S_ISLNK(inode->i_mode) &&
4198                              !ext4_inode_is_fast_symlink(inode))))
4199                                 /* Validate extent which is part of inode */
4200                                 ret = ext4_ext_check_inode(inode);
4201                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4202                            (S_ISLNK(inode->i_mode) &&
4203                             !ext4_inode_is_fast_symlink(inode))) {
4204                         /* Validate block references which are part of inode */
4205                         ret = ext4_ind_check_inode(inode);
4206                 }
4207         }
4208         if (ret)
4209                 goto bad_inode;
4210
4211         if (S_ISREG(inode->i_mode)) {
4212                 inode->i_op = &ext4_file_inode_operations;
4213                 inode->i_fop = &ext4_file_operations;
4214                 ext4_set_aops(inode);
4215         } else if (S_ISDIR(inode->i_mode)) {
4216                 inode->i_op = &ext4_dir_inode_operations;
4217                 inode->i_fop = &ext4_dir_operations;
4218         } else if (S_ISLNK(inode->i_mode)) {
4219                 if (ext4_inode_is_fast_symlink(inode)) {
4220                         inode->i_op = &ext4_fast_symlink_inode_operations;
4221                         nd_terminate_link(ei->i_data, inode->i_size,
4222                                 sizeof(ei->i_data) - 1);
4223                 } else {
4224                         inode->i_op = &ext4_symlink_inode_operations;
4225                         ext4_set_aops(inode);
4226                 }
4227         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4228               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4229                 inode->i_op = &ext4_special_inode_operations;
4230                 if (raw_inode->i_block[0])
4231                         init_special_inode(inode, inode->i_mode,
4232                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4233                 else
4234                         init_special_inode(inode, inode->i_mode,
4235                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4236         } else if (ino == EXT4_BOOT_LOADER_INO) {
4237                 make_bad_inode(inode);
4238         } else {
4239                 ret = -EIO;
4240                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4241                 goto bad_inode;
4242         }
4243         brelse(iloc.bh);
4244         ext4_set_inode_flags(inode);
4245         unlock_new_inode(inode);
4246         return inode;
4247
4248 bad_inode:
4249         brelse(iloc.bh);
4250         iget_failed(inode);
4251         return ERR_PTR(ret);
4252 }
4253
4254 static int ext4_inode_blocks_set(handle_t *handle,
4255                                 struct ext4_inode *raw_inode,
4256                                 struct ext4_inode_info *ei)
4257 {
4258         struct inode *inode = &(ei->vfs_inode);
4259         u64 i_blocks = inode->i_blocks;
4260         struct super_block *sb = inode->i_sb;
4261
4262         if (i_blocks <= ~0U) {
4263                 /*
4264                  * i_blocks can be represented in a 32 bit variable
4265                  * as multiple of 512 bytes
4266                  */
4267                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4268                 raw_inode->i_blocks_high = 0;
4269                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4270                 return 0;
4271         }
4272         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4273                 return -EFBIG;
4274
4275         if (i_blocks <= 0xffffffffffffULL) {
4276                 /*
4277                  * i_blocks can be represented in a 48 bit variable
4278                  * as multiple of 512 bytes
4279                  */
4280                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4281                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4282                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4283         } else {
4284                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4285                 /* i_block is stored in file system block size */
4286                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4287                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4288                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4289         }
4290         return 0;
4291 }
4292
4293 /*
4294  * Post the struct inode info into an on-disk inode location in the
4295  * buffer-cache.  This gobbles the caller's reference to the
4296  * buffer_head in the inode location struct.
4297  *
4298  * The caller must have write access to iloc->bh.
4299  */
4300 static int ext4_do_update_inode(handle_t *handle,
4301                                 struct inode *inode,
4302                                 struct ext4_iloc *iloc)
4303 {
4304         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4305         struct ext4_inode_info *ei = EXT4_I(inode);
4306         struct buffer_head *bh = iloc->bh;
4307         int err = 0, rc, block;
4308         int need_datasync = 0;
4309         uid_t i_uid;
4310         gid_t i_gid;
4311
4312         /* For fields not not tracking in the in-memory inode,
4313          * initialise them to zero for new inodes. */
4314         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4315                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4316
4317         ext4_get_inode_flags(ei);
4318         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4319         i_uid = i_uid_read(inode);
4320         i_gid = i_gid_read(inode);
4321         if (!(test_opt(inode->i_sb, NO_UID32))) {
4322                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4323                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4324 /*
4325  * Fix up interoperability with old kernels. Otherwise, old inodes get
4326  * re-used with the upper 16 bits of the uid/gid intact
4327  */
4328                 if (!ei->i_dtime) {
4329                         raw_inode->i_uid_high =
4330                                 cpu_to_le16(high_16_bits(i_uid));
4331                         raw_inode->i_gid_high =
4332                                 cpu_to_le16(high_16_bits(i_gid));
4333                 } else {
4334                         raw_inode->i_uid_high = 0;
4335                         raw_inode->i_gid_high = 0;
4336                 }
4337         } else {
4338                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4339                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4340                 raw_inode->i_uid_high = 0;
4341                 raw_inode->i_gid_high = 0;
4342         }
4343         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4344
4345         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4346         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4347         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4348         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4349
4350         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4351                 goto out_brelse;
4352         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4353         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4354         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4355             cpu_to_le32(EXT4_OS_HURD))
4356                 raw_inode->i_file_acl_high =
4357                         cpu_to_le16(ei->i_file_acl >> 32);
4358         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4359         if (ei->i_disksize != ext4_isize(raw_inode)) {
4360                 ext4_isize_set(raw_inode, ei->i_disksize);
4361                 need_datasync = 1;
4362         }
4363         if (ei->i_disksize > 0x7fffffffULL) {
4364                 struct super_block *sb = inode->i_sb;
4365                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4366                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4367                                 EXT4_SB(sb)->s_es->s_rev_level ==
4368                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4369                         /* If this is the first large file
4370                          * created, add a flag to the superblock.
4371                          */
4372                         err = ext4_journal_get_write_access(handle,
4373                                         EXT4_SB(sb)->s_sbh);
4374                         if (err)
4375                                 goto out_brelse;
4376                         ext4_update_dynamic_rev(sb);
4377                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4378                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4379                         ext4_handle_sync(handle);
4380                         err = ext4_handle_dirty_super(handle, sb);
4381                 }
4382         }
4383         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4384         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4385                 if (old_valid_dev(inode->i_rdev)) {
4386                         raw_inode->i_block[0] =
4387                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4388                         raw_inode->i_block[1] = 0;
4389                 } else {
4390                         raw_inode->i_block[0] = 0;
4391                         raw_inode->i_block[1] =
4392                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4393                         raw_inode->i_block[2] = 0;
4394                 }
4395         } else if (!ext4_has_inline_data(inode)) {
4396                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4397                         raw_inode->i_block[block] = ei->i_data[block];
4398         }
4399
4400         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4401         if (ei->i_extra_isize) {
4402                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4403                         raw_inode->i_version_hi =
4404                         cpu_to_le32(inode->i_version >> 32);
4405                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4406         }
4407
4408         ext4_inode_csum_set(inode, raw_inode, ei);
4409
4410         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4411         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4412         if (!err)
4413                 err = rc;
4414         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4415
4416         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4417 out_brelse:
4418         brelse(bh);
4419         ext4_std_error(inode->i_sb, err);
4420         return err;
4421 }
4422
4423 /*
4424  * ext4_write_inode()
4425  *
4426  * We are called from a few places:
4427  *
4428  * - Within generic_file_write() for O_SYNC files.
4429  *   Here, there will be no transaction running. We wait for any running
4430  *   transaction to commit.
4431  *
4432  * - Within sys_sync(), kupdate and such.
4433  *   We wait on commit, if tol to.
4434  *
4435  * - Within prune_icache() (PF_MEMALLOC == true)
4436  *   Here we simply return.  We can't afford to block kswapd on the
4437  *   journal commit.
4438  *
4439  * In all cases it is actually safe for us to return without doing anything,
4440  * because the inode has been copied into a raw inode buffer in
4441  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4442  * knfsd.
4443  *
4444  * Note that we are absolutely dependent upon all inode dirtiers doing the
4445  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4446  * which we are interested.
4447  *
4448  * It would be a bug for them to not do this.  The code:
4449  *
4450  *      mark_inode_dirty(inode)
4451  *      stuff();
4452  *      inode->i_size = expr;
4453  *
4454  * is in error because a kswapd-driven write_inode() could occur while
4455  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4456  * will no longer be on the superblock's dirty inode list.
4457  */
4458 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4459 {
4460         int err;
4461
4462         if (current->flags & PF_MEMALLOC)
4463                 return 0;
4464
4465         if (EXT4_SB(inode->i_sb)->s_journal) {
4466                 if (ext4_journal_current_handle()) {
4467                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4468                         dump_stack();
4469                         return -EIO;
4470                 }
4471
4472                 if (wbc->sync_mode != WB_SYNC_ALL)
4473                         return 0;
4474
4475                 err = ext4_force_commit(inode->i_sb);
4476         } else {
4477                 struct ext4_iloc iloc;
4478
4479                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4480                 if (err)
4481                         return err;
4482                 if (wbc->sync_mode == WB_SYNC_ALL)
4483                         sync_dirty_buffer(iloc.bh);
4484                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4485                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4486                                          "IO error syncing inode");
4487                         err = -EIO;
4488                 }
4489                 brelse(iloc.bh);
4490         }
4491         return err;
4492 }
4493
4494 /*
4495  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4496  * buffers that are attached to a page stradding i_size and are undergoing
4497  * commit. In that case we have to wait for commit to finish and try again.
4498  */
4499 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4500 {
4501         struct page *page;
4502         unsigned offset;
4503         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4504         tid_t commit_tid = 0;
4505         int ret;
4506
4507         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4508         /*
4509          * All buffers in the last page remain valid? Then there's nothing to
4510          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4511          * blocksize case
4512          */
4513         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4514                 return;
4515         while (1) {
4516                 page = find_lock_page(inode->i_mapping,
4517                                       inode->i_size >> PAGE_CACHE_SHIFT);
4518                 if (!page)
4519                         return;
4520                 ret = __ext4_journalled_invalidatepage(page, offset,
4521                                                 PAGE_CACHE_SIZE - offset);
4522                 unlock_page(page);
4523                 page_cache_release(page);
4524                 if (ret != -EBUSY)
4525                         return;
4526                 commit_tid = 0;
4527                 read_lock(&journal->j_state_lock);
4528                 if (journal->j_committing_transaction)
4529                         commit_tid = journal->j_committing_transaction->t_tid;
4530                 read_unlock(&journal->j_state_lock);
4531                 if (commit_tid)
4532                         jbd2_log_wait_commit(journal, commit_tid);
4533         }
4534 }
4535
4536 /*
4537  * ext4_setattr()
4538  *
4539  * Called from notify_change.
4540  *
4541  * We want to trap VFS attempts to truncate the file as soon as
4542  * possible.  In particular, we want to make sure that when the VFS
4543  * shrinks i_size, we put the inode on the orphan list and modify
4544  * i_disksize immediately, so that during the subsequent flushing of
4545  * dirty pages and freeing of disk blocks, we can guarantee that any
4546  * commit will leave the blocks being flushed in an unused state on
4547  * disk.  (On recovery, the inode will get truncated and the blocks will
4548  * be freed, so we have a strong guarantee that no future commit will
4549  * leave these blocks visible to the user.)
4550  *
4551  * Another thing we have to assure is that if we are in ordered mode
4552  * and inode is still attached to the committing transaction, we must
4553  * we start writeout of all the dirty pages which are being truncated.
4554  * This way we are sure that all the data written in the previous
4555  * transaction are already on disk (truncate waits for pages under
4556  * writeback).
4557  *
4558  * Called with inode->i_mutex down.
4559  */
4560 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4561 {
4562         struct inode *inode = dentry->d_inode;
4563         int error, rc = 0;
4564         int orphan = 0;
4565         const unsigned int ia_valid = attr->ia_valid;
4566
4567         error = inode_change_ok(inode, attr);
4568         if (error)
4569                 return error;
4570
4571         if (is_quota_modification(inode, attr))
4572                 dquot_initialize(inode);
4573         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4574             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4575                 handle_t *handle;
4576
4577                 /* (user+group)*(old+new) structure, inode write (sb,
4578                  * inode block, ? - but truncate inode update has it) */
4579                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4580                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4581                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4582                 if (IS_ERR(handle)) {
4583                         error = PTR_ERR(handle);
4584                         goto err_out;
4585                 }
4586                 error = dquot_transfer(inode, attr);
4587                 if (error) {
4588                         ext4_journal_stop(handle);
4589                         return error;
4590                 }
4591                 /* Update corresponding info in inode so that everything is in
4592                  * one transaction */
4593                 if (attr->ia_valid & ATTR_UID)
4594                         inode->i_uid = attr->ia_uid;
4595                 if (attr->ia_valid & ATTR_GID)
4596                         inode->i_gid = attr->ia_gid;
4597                 error = ext4_mark_inode_dirty(handle, inode);
4598                 ext4_journal_stop(handle);
4599         }
4600
4601         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4602                 handle_t *handle;
4603                 loff_t oldsize = inode->i_size;
4604
4605                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4606                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4607
4608                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4609                                 return -EFBIG;
4610                 }
4611                 if (S_ISREG(inode->i_mode) &&
4612                     (attr->ia_size < inode->i_size)) {
4613                         if (ext4_should_order_data(inode)) {
4614                                 error = ext4_begin_ordered_truncate(inode,
4615                                                             attr->ia_size);
4616                                 if (error)
4617                                         goto err_out;
4618                         }
4619                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4620                         if (IS_ERR(handle)) {
4621                                 error = PTR_ERR(handle);
4622                                 goto err_out;
4623                         }
4624                         if (ext4_handle_valid(handle)) {
4625                                 error = ext4_orphan_add(handle, inode);
4626                                 orphan = 1;
4627                         }
4628                         down_write(&EXT4_I(inode)->i_data_sem);
4629                         EXT4_I(inode)->i_disksize = attr->ia_size;
4630                         rc = ext4_mark_inode_dirty(handle, inode);
4631                         if (!error)
4632                                 error = rc;
4633                         /*
4634                          * We have to update i_size under i_data_sem together
4635                          * with i_disksize to avoid races with writeback code
4636                          * running ext4_wb_update_i_disksize().
4637                          */
4638                         if (!error)
4639                                 i_size_write(inode, attr->ia_size);
4640                         up_write(&EXT4_I(inode)->i_data_sem);
4641                         ext4_journal_stop(handle);
4642                         if (error) {
4643                                 ext4_orphan_del(NULL, inode);
4644                                 goto err_out;
4645                         }
4646                 } else
4647                         i_size_write(inode, attr->ia_size);
4648
4649                 /*
4650                  * Blocks are going to be removed from the inode. Wait
4651                  * for dio in flight.  Temporarily disable
4652                  * dioread_nolock to prevent livelock.
4653                  */
4654                 if (orphan) {
4655                         if (!ext4_should_journal_data(inode)) {
4656                                 ext4_inode_block_unlocked_dio(inode);
4657                                 inode_dio_wait(inode);
4658                                 ext4_inode_resume_unlocked_dio(inode);
4659                         } else
4660                                 ext4_wait_for_tail_page_commit(inode);
4661                 }
4662                 /*
4663                  * Truncate pagecache after we've waited for commit
4664                  * in data=journal mode to make pages freeable.
4665                  */
4666                 truncate_pagecache(inode, oldsize, inode->i_size);
4667         }
4668         /*
4669          * We want to call ext4_truncate() even if attr->ia_size ==
4670          * inode->i_size for cases like truncation of fallocated space
4671          */
4672         if (attr->ia_valid & ATTR_SIZE)
4673                 ext4_truncate(inode);
4674
4675         if (!rc) {
4676                 setattr_copy(inode, attr);
4677                 mark_inode_dirty(inode);
4678         }
4679
4680         /*
4681          * If the call to ext4_truncate failed to get a transaction handle at
4682          * all, we need to clean up the in-core orphan list manually.
4683          */
4684         if (orphan && inode->i_nlink)
4685                 ext4_orphan_del(NULL, inode);
4686
4687         if (!rc && (ia_valid & ATTR_MODE))
4688                 rc = ext4_acl_chmod(inode);
4689
4690 err_out:
4691         ext4_std_error(inode->i_sb, error);
4692         if (!error)
4693                 error = rc;
4694         return error;
4695 }
4696
4697 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4698                  struct kstat *stat)
4699 {
4700         struct inode *inode;
4701         unsigned long long delalloc_blocks;
4702
4703         inode = dentry->d_inode;
4704         generic_fillattr(inode, stat);
4705
4706         /*
4707          * We can't update i_blocks if the block allocation is delayed
4708          * otherwise in the case of system crash before the real block
4709          * allocation is done, we will have i_blocks inconsistent with
4710          * on-disk file blocks.
4711          * We always keep i_blocks updated together with real
4712          * allocation. But to not confuse with user, stat
4713          * will return the blocks that include the delayed allocation
4714          * blocks for this file.
4715          */
4716         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4717                                 EXT4_I(inode)->i_reserved_data_blocks);
4718
4719         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4720         return 0;
4721 }
4722
4723 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4724                                    int pextents)
4725 {
4726         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4727                 return ext4_ind_trans_blocks(inode, lblocks);
4728         return ext4_ext_index_trans_blocks(inode, pextents);
4729 }
4730
4731 /*
4732  * Account for index blocks, block groups bitmaps and block group
4733  * descriptor blocks if modify datablocks and index blocks
4734  * worse case, the indexs blocks spread over different block groups
4735  *
4736  * If datablocks are discontiguous, they are possible to spread over
4737  * different block groups too. If they are contiguous, with flexbg,
4738  * they could still across block group boundary.
4739  *
4740  * Also account for superblock, inode, quota and xattr blocks
4741  */
4742 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4743                                   int pextents)
4744 {
4745         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4746         int gdpblocks;
4747         int idxblocks;
4748         int ret = 0;
4749
4750         /*
4751          * How many index blocks need to touch to map @lblocks logical blocks
4752          * to @pextents physical extents?
4753          */
4754         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4755
4756         ret = idxblocks;
4757
4758         /*
4759          * Now let's see how many group bitmaps and group descriptors need
4760          * to account
4761          */
4762         groups = idxblocks + pextents;
4763         gdpblocks = groups;
4764         if (groups > ngroups)
4765                 groups = ngroups;
4766         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4767                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4768
4769         /* bitmaps and block group descriptor blocks */
4770         ret += groups + gdpblocks;
4771
4772         /* Blocks for super block, inode, quota and xattr blocks */
4773         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4774
4775         return ret;
4776 }
4777
4778 /*
4779  * Calculate the total number of credits to reserve to fit
4780  * the modification of a single pages into a single transaction,
4781  * which may include multiple chunks of block allocations.
4782  *
4783  * This could be called via ext4_write_begin()
4784  *
4785  * We need to consider the worse case, when
4786  * one new block per extent.
4787  */
4788 int ext4_writepage_trans_blocks(struct inode *inode)
4789 {
4790         int bpp = ext4_journal_blocks_per_page(inode);
4791         int ret;
4792
4793         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4794
4795         /* Account for data blocks for journalled mode */
4796         if (ext4_should_journal_data(inode))
4797                 ret += bpp;
4798         return ret;
4799 }
4800
4801 /*
4802  * Calculate the journal credits for a chunk of data modification.
4803  *
4804  * This is called from DIO, fallocate or whoever calling
4805  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4806  *
4807  * journal buffers for data blocks are not included here, as DIO
4808  * and fallocate do no need to journal data buffers.
4809  */
4810 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4811 {
4812         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4813 }
4814
4815 /*
4816  * The caller must have previously called ext4_reserve_inode_write().
4817  * Give this, we know that the caller already has write access to iloc->bh.
4818  */
4819 int ext4_mark_iloc_dirty(handle_t *handle,
4820                          struct inode *inode, struct ext4_iloc *iloc)
4821 {
4822         int err = 0;
4823
4824         if (IS_I_VERSION(inode))
4825                 inode_inc_iversion(inode);
4826
4827         /* the do_update_inode consumes one bh->b_count */
4828         get_bh(iloc->bh);
4829
4830         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4831         err = ext4_do_update_inode(handle, inode, iloc);
4832         put_bh(iloc->bh);
4833         return err;
4834 }
4835
4836 /*
4837  * On success, We end up with an outstanding reference count against
4838  * iloc->bh.  This _must_ be cleaned up later.
4839  */
4840
4841 int
4842 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4843                          struct ext4_iloc *iloc)
4844 {
4845         int err;
4846
4847         err = ext4_get_inode_loc(inode, iloc);
4848         if (!err) {
4849                 BUFFER_TRACE(iloc->bh, "get_write_access");
4850                 err = ext4_journal_get_write_access(handle, iloc->bh);
4851                 if (err) {
4852                         brelse(iloc->bh);
4853                         iloc->bh = NULL;
4854                 }
4855         }
4856         ext4_std_error(inode->i_sb, err);
4857         return err;
4858 }
4859
4860 /*
4861  * Expand an inode by new_extra_isize bytes.
4862  * Returns 0 on success or negative error number on failure.
4863  */
4864 static int ext4_expand_extra_isize(struct inode *inode,
4865                                    unsigned int new_extra_isize,
4866                                    struct ext4_iloc iloc,
4867                                    handle_t *handle)
4868 {
4869         struct ext4_inode *raw_inode;
4870         struct ext4_xattr_ibody_header *header;
4871
4872         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4873                 return 0;
4874
4875         raw_inode = ext4_raw_inode(&iloc);
4876
4877         header = IHDR(inode, raw_inode);
4878
4879         /* No extended attributes present */
4880         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4881             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4882                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4883                         new_extra_isize);
4884                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4885                 return 0;
4886         }
4887
4888         /* try to expand with EAs present */
4889         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4890                                           raw_inode, handle);
4891 }
4892
4893 /*
4894  * What we do here is to mark the in-core inode as clean with respect to inode
4895  * dirtiness (it may still be data-dirty).
4896  * This means that the in-core inode may be reaped by prune_icache
4897  * without having to perform any I/O.  This is a very good thing,
4898  * because *any* task may call prune_icache - even ones which
4899  * have a transaction open against a different journal.
4900  *
4901  * Is this cheating?  Not really.  Sure, we haven't written the
4902  * inode out, but prune_icache isn't a user-visible syncing function.
4903  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4904  * we start and wait on commits.
4905  */
4906 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4907 {
4908         struct ext4_iloc iloc;
4909         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4910         static unsigned int mnt_count;
4911         int err, ret;
4912
4913         might_sleep();
4914         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4915         err = ext4_reserve_inode_write(handle, inode, &iloc);
4916         if (ext4_handle_valid(handle) &&
4917             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4918             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4919                 /*
4920                  * We need extra buffer credits since we may write into EA block
4921                  * with this same handle. If journal_extend fails, then it will
4922                  * only result in a minor loss of functionality for that inode.
4923                  * If this is felt to be critical, then e2fsck should be run to
4924                  * force a large enough s_min_extra_isize.
4925                  */
4926                 if ((jbd2_journal_extend(handle,
4927                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4928                         ret = ext4_expand_extra_isize(inode,
4929                                                       sbi->s_want_extra_isize,
4930                                                       iloc, handle);
4931                         if (ret) {
4932                                 ext4_set_inode_state(inode,
4933                                                      EXT4_STATE_NO_EXPAND);
4934                                 if (mnt_count !=
4935                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4936                                         ext4_warning(inode->i_sb,
4937                                         "Unable to expand inode %lu. Delete"
4938                                         " some EAs or run e2fsck.",
4939                                         inode->i_ino);
4940                                         mnt_count =
4941                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4942                                 }
4943                         }
4944                 }
4945         }
4946         if (!err)
4947                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4948         return err;
4949 }
4950
4951 /*
4952  * ext4_dirty_inode() is called from __mark_inode_dirty()
4953  *
4954  * We're really interested in the case where a file is being extended.
4955  * i_size has been changed by generic_commit_write() and we thus need
4956  * to include the updated inode in the current transaction.
4957  *
4958  * Also, dquot_alloc_block() will always dirty the inode when blocks
4959  * are allocated to the file.
4960  *
4961  * If the inode is marked synchronous, we don't honour that here - doing
4962  * so would cause a commit on atime updates, which we don't bother doing.
4963  * We handle synchronous inodes at the highest possible level.
4964  */
4965 void ext4_dirty_inode(struct inode *inode, int flags)
4966 {
4967         handle_t *handle;
4968
4969         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4970         if (IS_ERR(handle))
4971                 goto out;
4972
4973         ext4_mark_inode_dirty(handle, inode);
4974
4975         ext4_journal_stop(handle);
4976 out:
4977         return;
4978 }
4979
4980 #if 0
4981 /*
4982  * Bind an inode's backing buffer_head into this transaction, to prevent
4983  * it from being flushed to disk early.  Unlike
4984  * ext4_reserve_inode_write, this leaves behind no bh reference and
4985  * returns no iloc structure, so the caller needs to repeat the iloc
4986  * lookup to mark the inode dirty later.
4987  */
4988 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4989 {
4990         struct ext4_iloc iloc;
4991
4992         int err = 0;
4993         if (handle) {
4994                 err = ext4_get_inode_loc(inode, &iloc);
4995                 if (!err) {
4996                         BUFFER_TRACE(iloc.bh, "get_write_access");
4997                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4998                         if (!err)
4999                                 err = ext4_handle_dirty_metadata(handle,
5000                                                                  NULL,
5001                                                                  iloc.bh);
5002                         brelse(iloc.bh);
5003                 }
5004         }
5005         ext4_std_error(inode->i_sb, err);
5006         return err;
5007 }
5008 #endif
5009
5010 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5011 {
5012         journal_t *journal;
5013         handle_t *handle;
5014         int err;
5015
5016         /*
5017          * We have to be very careful here: changing a data block's
5018          * journaling status dynamically is dangerous.  If we write a
5019          * data block to the journal, change the status and then delete
5020          * that block, we risk forgetting to revoke the old log record
5021          * from the journal and so a subsequent replay can corrupt data.
5022          * So, first we make sure that the journal is empty and that
5023          * nobody is changing anything.
5024          */
5025
5026         journal = EXT4_JOURNAL(inode);
5027         if (!journal)
5028                 return 0;
5029         if (is_journal_aborted(journal))
5030                 return -EROFS;
5031         /* We have to allocate physical blocks for delalloc blocks
5032          * before flushing journal. otherwise delalloc blocks can not
5033          * be allocated any more. even more truncate on delalloc blocks
5034          * could trigger BUG by flushing delalloc blocks in journal.
5035          * There is no delalloc block in non-journal data mode.
5036          */
5037         if (val && test_opt(inode->i_sb, DELALLOC)) {
5038                 err = ext4_alloc_da_blocks(inode);
5039                 if (err < 0)
5040                         return err;
5041         }
5042
5043         /* Wait for all existing dio workers */
5044         ext4_inode_block_unlocked_dio(inode);
5045         inode_dio_wait(inode);
5046
5047         jbd2_journal_lock_updates(journal);
5048
5049         /*
5050          * OK, there are no updates running now, and all cached data is
5051          * synced to disk.  We are now in a completely consistent state
5052          * which doesn't have anything in the journal, and we know that
5053          * no filesystem updates are running, so it is safe to modify
5054          * the inode's in-core data-journaling state flag now.
5055          */
5056
5057         if (val)
5058                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5059         else {
5060                 jbd2_journal_flush(journal);
5061                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5062         }
5063         ext4_set_aops(inode);
5064
5065         jbd2_journal_unlock_updates(journal);
5066         ext4_inode_resume_unlocked_dio(inode);
5067
5068         /* Finally we can mark the inode as dirty. */
5069
5070         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5071         if (IS_ERR(handle))
5072                 return PTR_ERR(handle);
5073
5074         err = ext4_mark_inode_dirty(handle, inode);
5075         ext4_handle_sync(handle);
5076         ext4_journal_stop(handle);
5077         ext4_std_error(inode->i_sb, err);
5078
5079         return err;
5080 }
5081
5082 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5083 {
5084         return !buffer_mapped(bh);
5085 }
5086
5087 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5088 {
5089         struct page *page = vmf->page;
5090         loff_t size;
5091         unsigned long len;
5092         int ret;
5093         struct file *file = vma->vm_file;
5094         struct inode *inode = file_inode(file);
5095         struct address_space *mapping = inode->i_mapping;
5096         handle_t *handle;
5097         get_block_t *get_block;
5098         int retries = 0;
5099
5100         sb_start_pagefault(inode->i_sb);
5101         file_update_time(vma->vm_file);
5102         /* Delalloc case is easy... */
5103         if (test_opt(inode->i_sb, DELALLOC) &&
5104             !ext4_should_journal_data(inode) &&
5105             !ext4_nonda_switch(inode->i_sb)) {
5106                 do {
5107                         ret = __block_page_mkwrite(vma, vmf,
5108                                                    ext4_da_get_block_prep);
5109                 } while (ret == -ENOSPC &&
5110                        ext4_should_retry_alloc(inode->i_sb, &retries));
5111                 goto out_ret;
5112         }
5113
5114         lock_page(page);
5115         size = i_size_read(inode);
5116         /* Page got truncated from under us? */
5117         if (page->mapping != mapping || page_offset(page) > size) {
5118                 unlock_page(page);
5119                 ret = VM_FAULT_NOPAGE;
5120                 goto out;
5121         }
5122
5123         if (page->index == size >> PAGE_CACHE_SHIFT)
5124                 len = size & ~PAGE_CACHE_MASK;
5125         else
5126                 len = PAGE_CACHE_SIZE;
5127         /*
5128          * Return if we have all the buffers mapped. This avoids the need to do
5129          * journal_start/journal_stop which can block and take a long time
5130          */
5131         if (page_has_buffers(page)) {
5132                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5133                                             0, len, NULL,
5134                                             ext4_bh_unmapped)) {
5135                         /* Wait so that we don't change page under IO */
5136                         wait_for_stable_page(page);
5137                         ret = VM_FAULT_LOCKED;
5138                         goto out;
5139                 }
5140         }
5141         unlock_page(page);
5142         /* OK, we need to fill the hole... */
5143         if (ext4_should_dioread_nolock(inode))
5144                 get_block = ext4_get_block_write;
5145         else
5146                 get_block = ext4_get_block;
5147 retry_alloc:
5148         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5149                                     ext4_writepage_trans_blocks(inode));
5150         if (IS_ERR(handle)) {
5151                 ret = VM_FAULT_SIGBUS;
5152                 goto out;
5153         }
5154         ret = __block_page_mkwrite(vma, vmf, get_block);
5155         if (!ret && ext4_should_journal_data(inode)) {
5156                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5157                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5158                         unlock_page(page);
5159                         ret = VM_FAULT_SIGBUS;
5160                         ext4_journal_stop(handle);
5161                         goto out;
5162                 }
5163                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5164         }
5165         ext4_journal_stop(handle);
5166         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5167                 goto retry_alloc;
5168 out_ret:
5169         ret = block_page_mkwrite_return(ret);
5170 out:
5171         sb_end_pagefault(inode->i_sb);
5172         return ret;
5173 }