]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
c4e9177f60c62a6b8ee6e8441fd6b63c3d4d1e5b
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         ext4_ioend_wait(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_log_start_commit(journal, commit_tid);
215                         jbd2_log_wait_commit(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Calculate the number of metadata blocks need to reserve
323  * to allocate a block located at @lblock
324  */
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326 {
327         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328                 return ext4_ext_calc_metadata_amount(inode, lblock);
329
330         return ext4_ind_calc_metadata_amount(inode, lblock);
331 }
332
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338                                         int used, int quota_claim)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341         struct ext4_inode_info *ei = EXT4_I(inode);
342
343         spin_lock(&ei->i_block_reservation_lock);
344         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345         if (unlikely(used > ei->i_reserved_data_blocks)) {
346                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347                          "with only %d reserved data blocks",
348                          __func__, inode->i_ino, used,
349                          ei->i_reserved_data_blocks);
350                 WARN_ON(1);
351                 used = ei->i_reserved_data_blocks;
352         }
353
354         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356                         "with only %d reserved metadata blocks "
357                         "(releasing %d blocks with reserved %d data blocks)",
358                         inode->i_ino, ei->i_allocated_meta_blocks,
359                              ei->i_reserved_meta_blocks, used,
360                              ei->i_reserved_data_blocks);
361                 WARN_ON(1);
362                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363         }
364
365         /* Update per-inode reservations */
366         ei->i_reserved_data_blocks -= used;
367         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369                            used + ei->i_allocated_meta_blocks);
370         ei->i_allocated_meta_blocks = 0;
371
372         if (ei->i_reserved_data_blocks == 0) {
373                 /*
374                  * We can release all of the reserved metadata blocks
375                  * only when we have written all of the delayed
376                  * allocation blocks.
377                  */
378                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379                                    ei->i_reserved_meta_blocks);
380                 ei->i_reserved_meta_blocks = 0;
381                 ei->i_da_metadata_calc_len = 0;
382         }
383         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384
385         /* Update quota subsystem for data blocks */
386         if (quota_claim)
387                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388         else {
389                 /*
390                  * We did fallocate with an offset that is already delayed
391                  * allocated. So on delayed allocated writeback we should
392                  * not re-claim the quota for fallocated blocks.
393                  */
394                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395         }
396
397         /*
398          * If we have done all the pending block allocations and if
399          * there aren't any writers on the inode, we can discard the
400          * inode's preallocations.
401          */
402         if ((ei->i_reserved_data_blocks == 0) &&
403             (atomic_read(&inode->i_writecount) == 0))
404                 ext4_discard_preallocations(inode);
405 }
406
407 static int __check_block_validity(struct inode *inode, const char *func,
408                                 unsigned int line,
409                                 struct ext4_map_blocks *map)
410 {
411         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412                                    map->m_len)) {
413                 ext4_error_inode(inode, func, line, map->m_pblk,
414                                  "lblock %lu mapped to illegal pblock "
415                                  "(length %d)", (unsigned long) map->m_lblk,
416                                  map->m_len);
417                 return -EIO;
418         }
419         return 0;
420 }
421
422 #define check_block_validity(inode, map)        \
423         __check_block_validity((inode), __func__, __LINE__, (map))
424
425 /*
426  * Return the number of contiguous dirty pages in a given inode
427  * starting at page frame idx.
428  */
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430                                     unsigned int max_pages)
431 {
432         struct address_space *mapping = inode->i_mapping;
433         pgoff_t index;
434         struct pagevec pvec;
435         pgoff_t num = 0;
436         int i, nr_pages, done = 0;
437
438         if (max_pages == 0)
439                 return 0;
440         pagevec_init(&pvec, 0);
441         while (!done) {
442                 index = idx;
443                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444                                               PAGECACHE_TAG_DIRTY,
445                                               (pgoff_t)PAGEVEC_SIZE);
446                 if (nr_pages == 0)
447                         break;
448                 for (i = 0; i < nr_pages; i++) {
449                         struct page *page = pvec.pages[i];
450                         struct buffer_head *bh, *head;
451
452                         lock_page(page);
453                         if (unlikely(page->mapping != mapping) ||
454                             !PageDirty(page) ||
455                             PageWriteback(page) ||
456                             page->index != idx) {
457                                 done = 1;
458                                 unlock_page(page);
459                                 break;
460                         }
461                         if (page_has_buffers(page)) {
462                                 bh = head = page_buffers(page);
463                                 do {
464                                         if (!buffer_delay(bh) &&
465                                             !buffer_unwritten(bh))
466                                                 done = 1;
467                                         bh = bh->b_this_page;
468                                 } while (!done && (bh != head));
469                         }
470                         unlock_page(page);
471                         if (done)
472                                 break;
473                         idx++;
474                         num++;
475                         if (num >= max_pages) {
476                                 done = 1;
477                                 break;
478                         }
479                 }
480                 pagevec_release(&pvec);
481         }
482         return num;
483 }
484
485 /*
486  * The ext4_map_blocks() function tries to look up the requested blocks,
487  * and returns if the blocks are already mapped.
488  *
489  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
490  * and store the allocated blocks in the result buffer head and mark it
491  * mapped.
492  *
493  * If file type is extents based, it will call ext4_ext_map_blocks(),
494  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
495  * based files
496  *
497  * On success, it returns the number of blocks being mapped or allocate.
498  * if create==0 and the blocks are pre-allocated and uninitialized block,
499  * the result buffer head is unmapped. If the create ==1, it will make sure
500  * the buffer head is mapped.
501  *
502  * It returns 0 if plain look up failed (blocks have not been allocated), in
503  * that case, buffer head is unmapped
504  *
505  * It returns the error in case of allocation failure.
506  */
507 int ext4_map_blocks(handle_t *handle, struct inode *inode,
508                     struct ext4_map_blocks *map, int flags)
509 {
510         int retval;
511
512         map->m_flags = 0;
513         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
515                   (unsigned long) map->m_lblk);
516         /*
517          * Try to see if we can get the block without requesting a new
518          * file system block.
519          */
520         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
521                 down_read((&EXT4_I(inode)->i_data_sem));
522         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
523                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
524                                              EXT4_GET_BLOCKS_KEEP_SIZE);
525         } else {
526                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
527                                              EXT4_GET_BLOCKS_KEEP_SIZE);
528         }
529         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
530                 up_read((&EXT4_I(inode)->i_data_sem));
531
532         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
533                 int ret;
534                 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
535                         /* delayed alloc may be allocated by fallocate and
536                          * coverted to initialized by directIO.
537                          * we need to handle delayed extent here.
538                          */
539                         down_write((&EXT4_I(inode)->i_data_sem));
540                         goto delayed_mapped;
541                 }
542                 ret = check_block_validity(inode, map);
543                 if (ret != 0)
544                         return ret;
545         }
546
547         /* If it is only a block(s) look up */
548         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
549                 return retval;
550
551         /*
552          * Returns if the blocks have already allocated
553          *
554          * Note that if blocks have been preallocated
555          * ext4_ext_get_block() returns the create = 0
556          * with buffer head unmapped.
557          */
558         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
559                 return retval;
560
561         /*
562          * When we call get_blocks without the create flag, the
563          * BH_Unwritten flag could have gotten set if the blocks
564          * requested were part of a uninitialized extent.  We need to
565          * clear this flag now that we are committed to convert all or
566          * part of the uninitialized extent to be an initialized
567          * extent.  This is because we need to avoid the combination
568          * of BH_Unwritten and BH_Mapped flags being simultaneously
569          * set on the buffer_head.
570          */
571         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
572
573         /*
574          * New blocks allocate and/or writing to uninitialized extent
575          * will possibly result in updating i_data, so we take
576          * the write lock of i_data_sem, and call get_blocks()
577          * with create == 1 flag.
578          */
579         down_write((&EXT4_I(inode)->i_data_sem));
580
581         /*
582          * if the caller is from delayed allocation writeout path
583          * we have already reserved fs blocks for allocation
584          * let the underlying get_block() function know to
585          * avoid double accounting
586          */
587         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
588                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
589         /*
590          * We need to check for EXT4 here because migrate
591          * could have changed the inode type in between
592          */
593         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
594                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
595         } else {
596                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
597
598                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599                         /*
600                          * We allocated new blocks which will result in
601                          * i_data's format changing.  Force the migrate
602                          * to fail by clearing migrate flags
603                          */
604                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
605                 }
606
607                 /*
608                  * Update reserved blocks/metadata blocks after successful
609                  * block allocation which had been deferred till now. We don't
610                  * support fallocate for non extent files. So we can update
611                  * reserve space here.
612                  */
613                 if ((retval > 0) &&
614                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
615                         ext4_da_update_reserve_space(inode, retval, 1);
616         }
617         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
618                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
619
620                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
621                         int ret;
622 delayed_mapped:
623                         /* delayed allocation blocks has been allocated */
624                         ret = ext4_es_remove_extent(inode, map->m_lblk,
625                                                     map->m_len);
626                         if (ret < 0)
627                                 retval = ret;
628                 }
629         }
630
631         up_write((&EXT4_I(inode)->i_data_sem));
632         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
633                 int ret = check_block_validity(inode, map);
634                 if (ret != 0)
635                         return ret;
636         }
637         return retval;
638 }
639
640 /* Maximum number of blocks we map for direct IO at once. */
641 #define DIO_MAX_BLOCKS 4096
642
643 static int _ext4_get_block(struct inode *inode, sector_t iblock,
644                            struct buffer_head *bh, int flags)
645 {
646         handle_t *handle = ext4_journal_current_handle();
647         struct ext4_map_blocks map;
648         int ret = 0, started = 0;
649         int dio_credits;
650
651         if (ext4_has_inline_data(inode))
652                 return -ERANGE;
653
654         map.m_lblk = iblock;
655         map.m_len = bh->b_size >> inode->i_blkbits;
656
657         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
658                 /* Direct IO write... */
659                 if (map.m_len > DIO_MAX_BLOCKS)
660                         map.m_len = DIO_MAX_BLOCKS;
661                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
662                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
663                                             dio_credits);
664                 if (IS_ERR(handle)) {
665                         ret = PTR_ERR(handle);
666                         return ret;
667                 }
668                 started = 1;
669         }
670
671         ret = ext4_map_blocks(handle, inode, &map, flags);
672         if (ret > 0) {
673                 map_bh(bh, inode->i_sb, map.m_pblk);
674                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
675                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
676                 ret = 0;
677         }
678         if (started)
679                 ext4_journal_stop(handle);
680         return ret;
681 }
682
683 int ext4_get_block(struct inode *inode, sector_t iblock,
684                    struct buffer_head *bh, int create)
685 {
686         return _ext4_get_block(inode, iblock, bh,
687                                create ? EXT4_GET_BLOCKS_CREATE : 0);
688 }
689
690 /*
691  * `handle' can be NULL if create is zero
692  */
693 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
694                                 ext4_lblk_t block, int create, int *errp)
695 {
696         struct ext4_map_blocks map;
697         struct buffer_head *bh;
698         int fatal = 0, err;
699
700         J_ASSERT(handle != NULL || create == 0);
701
702         map.m_lblk = block;
703         map.m_len = 1;
704         err = ext4_map_blocks(handle, inode, &map,
705                               create ? EXT4_GET_BLOCKS_CREATE : 0);
706
707         /* ensure we send some value back into *errp */
708         *errp = 0;
709
710         if (err < 0)
711                 *errp = err;
712         if (err <= 0)
713                 return NULL;
714
715         bh = sb_getblk(inode->i_sb, map.m_pblk);
716         if (unlikely(!bh)) {
717                 *errp = -ENOMEM;
718                 return NULL;
719         }
720         if (map.m_flags & EXT4_MAP_NEW) {
721                 J_ASSERT(create != 0);
722                 J_ASSERT(handle != NULL);
723
724                 /*
725                  * Now that we do not always journal data, we should
726                  * keep in mind whether this should always journal the
727                  * new buffer as metadata.  For now, regular file
728                  * writes use ext4_get_block instead, so it's not a
729                  * problem.
730                  */
731                 lock_buffer(bh);
732                 BUFFER_TRACE(bh, "call get_create_access");
733                 fatal = ext4_journal_get_create_access(handle, bh);
734                 if (!fatal && !buffer_uptodate(bh)) {
735                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
736                         set_buffer_uptodate(bh);
737                 }
738                 unlock_buffer(bh);
739                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
740                 err = ext4_handle_dirty_metadata(handle, inode, bh);
741                 if (!fatal)
742                         fatal = err;
743         } else {
744                 BUFFER_TRACE(bh, "not a new buffer");
745         }
746         if (fatal) {
747                 *errp = fatal;
748                 brelse(bh);
749                 bh = NULL;
750         }
751         return bh;
752 }
753
754 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
755                                ext4_lblk_t block, int create, int *err)
756 {
757         struct buffer_head *bh;
758
759         bh = ext4_getblk(handle, inode, block, create, err);
760         if (!bh)
761                 return bh;
762         if (buffer_uptodate(bh))
763                 return bh;
764         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
765         wait_on_buffer(bh);
766         if (buffer_uptodate(bh))
767                 return bh;
768         put_bh(bh);
769         *err = -EIO;
770         return NULL;
771 }
772
773 int ext4_walk_page_buffers(handle_t *handle,
774                            struct buffer_head *head,
775                            unsigned from,
776                            unsigned to,
777                            int *partial,
778                            int (*fn)(handle_t *handle,
779                                      struct buffer_head *bh))
780 {
781         struct buffer_head *bh;
782         unsigned block_start, block_end;
783         unsigned blocksize = head->b_size;
784         int err, ret = 0;
785         struct buffer_head *next;
786
787         for (bh = head, block_start = 0;
788              ret == 0 && (bh != head || !block_start);
789              block_start = block_end, bh = next) {
790                 next = bh->b_this_page;
791                 block_end = block_start + blocksize;
792                 if (block_end <= from || block_start >= to) {
793                         if (partial && !buffer_uptodate(bh))
794                                 *partial = 1;
795                         continue;
796                 }
797                 err = (*fn)(handle, bh);
798                 if (!ret)
799                         ret = err;
800         }
801         return ret;
802 }
803
804 /*
805  * To preserve ordering, it is essential that the hole instantiation and
806  * the data write be encapsulated in a single transaction.  We cannot
807  * close off a transaction and start a new one between the ext4_get_block()
808  * and the commit_write().  So doing the jbd2_journal_start at the start of
809  * prepare_write() is the right place.
810  *
811  * Also, this function can nest inside ext4_writepage().  In that case, we
812  * *know* that ext4_writepage() has generated enough buffer credits to do the
813  * whole page.  So we won't block on the journal in that case, which is good,
814  * because the caller may be PF_MEMALLOC.
815  *
816  * By accident, ext4 can be reentered when a transaction is open via
817  * quota file writes.  If we were to commit the transaction while thus
818  * reentered, there can be a deadlock - we would be holding a quota
819  * lock, and the commit would never complete if another thread had a
820  * transaction open and was blocking on the quota lock - a ranking
821  * violation.
822  *
823  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
824  * will _not_ run commit under these circumstances because handle->h_ref
825  * is elevated.  We'll still have enough credits for the tiny quotafile
826  * write.
827  */
828 int do_journal_get_write_access(handle_t *handle,
829                                 struct buffer_head *bh)
830 {
831         int dirty = buffer_dirty(bh);
832         int ret;
833
834         if (!buffer_mapped(bh) || buffer_freed(bh))
835                 return 0;
836         /*
837          * __block_write_begin() could have dirtied some buffers. Clean
838          * the dirty bit as jbd2_journal_get_write_access() could complain
839          * otherwise about fs integrity issues. Setting of the dirty bit
840          * by __block_write_begin() isn't a real problem here as we clear
841          * the bit before releasing a page lock and thus writeback cannot
842          * ever write the buffer.
843          */
844         if (dirty)
845                 clear_buffer_dirty(bh);
846         ret = ext4_journal_get_write_access(handle, bh);
847         if (!ret && dirty)
848                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
849         return ret;
850 }
851
852 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
853                    struct buffer_head *bh_result, int create);
854 static int ext4_write_begin(struct file *file, struct address_space *mapping,
855                             loff_t pos, unsigned len, unsigned flags,
856                             struct page **pagep, void **fsdata)
857 {
858         struct inode *inode = mapping->host;
859         int ret, needed_blocks;
860         handle_t *handle;
861         int retries = 0;
862         struct page *page;
863         pgoff_t index;
864         unsigned from, to;
865
866         trace_ext4_write_begin(inode, pos, len, flags);
867         /*
868          * Reserve one block more for addition to orphan list in case
869          * we allocate blocks but write fails for some reason
870          */
871         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
872         index = pos >> PAGE_CACHE_SHIFT;
873         from = pos & (PAGE_CACHE_SIZE - 1);
874         to = from + len;
875
876         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
877                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
878                                                     flags, pagep);
879                 if (ret < 0)
880                         return ret;
881                 if (ret == 1)
882                         return 0;
883         }
884
885         /*
886          * grab_cache_page_write_begin() can take a long time if the
887          * system is thrashing due to memory pressure, or if the page
888          * is being written back.  So grab it first before we start
889          * the transaction handle.  This also allows us to allocate
890          * the page (if needed) without using GFP_NOFS.
891          */
892 retry_grab:
893         page = grab_cache_page_write_begin(mapping, index, flags);
894         if (!page)
895                 return -ENOMEM;
896         unlock_page(page);
897
898 retry_journal:
899         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
900         if (IS_ERR(handle)) {
901                 page_cache_release(page);
902                 return PTR_ERR(handle);
903         }
904
905         lock_page(page);
906         if (page->mapping != mapping) {
907                 /* The page got truncated from under us */
908                 unlock_page(page);
909                 page_cache_release(page);
910                 ext4_journal_stop(handle);
911                 goto retry_grab;
912         }
913         wait_on_page_writeback(page);
914
915         if (ext4_should_dioread_nolock(inode))
916                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
917         else
918                 ret = __block_write_begin(page, pos, len, ext4_get_block);
919
920         if (!ret && ext4_should_journal_data(inode)) {
921                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
922                                              from, to, NULL,
923                                              do_journal_get_write_access);
924         }
925
926         if (ret) {
927                 unlock_page(page);
928                 /*
929                  * __block_write_begin may have instantiated a few blocks
930                  * outside i_size.  Trim these off again. Don't need
931                  * i_size_read because we hold i_mutex.
932                  *
933                  * Add inode to orphan list in case we crash before
934                  * truncate finishes
935                  */
936                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
937                         ext4_orphan_add(handle, inode);
938
939                 ext4_journal_stop(handle);
940                 if (pos + len > inode->i_size) {
941                         ext4_truncate_failed_write(inode);
942                         /*
943                          * If truncate failed early the inode might
944                          * still be on the orphan list; we need to
945                          * make sure the inode is removed from the
946                          * orphan list in that case.
947                          */
948                         if (inode->i_nlink)
949                                 ext4_orphan_del(NULL, inode);
950                 }
951
952                 if (ret == -ENOSPC &&
953                     ext4_should_retry_alloc(inode->i_sb, &retries))
954                         goto retry_journal;
955                 page_cache_release(page);
956                 return ret;
957         }
958         *pagep = page;
959         return ret;
960 }
961
962 /* For write_end() in data=journal mode */
963 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
964 {
965         if (!buffer_mapped(bh) || buffer_freed(bh))
966                 return 0;
967         set_buffer_uptodate(bh);
968         return ext4_handle_dirty_metadata(handle, NULL, bh);
969 }
970
971 static int ext4_generic_write_end(struct file *file,
972                                   struct address_space *mapping,
973                                   loff_t pos, unsigned len, unsigned copied,
974                                   struct page *page, void *fsdata)
975 {
976         int i_size_changed = 0;
977         struct inode *inode = mapping->host;
978         handle_t *handle = ext4_journal_current_handle();
979
980         if (ext4_has_inline_data(inode))
981                 copied = ext4_write_inline_data_end(inode, pos, len,
982                                                     copied, page);
983         else
984                 copied = block_write_end(file, mapping, pos,
985                                          len, copied, page, fsdata);
986
987         /*
988          * No need to use i_size_read() here, the i_size
989          * cannot change under us because we hold i_mutex.
990          *
991          * But it's important to update i_size while still holding page lock:
992          * page writeout could otherwise come in and zero beyond i_size.
993          */
994         if (pos + copied > inode->i_size) {
995                 i_size_write(inode, pos + copied);
996                 i_size_changed = 1;
997         }
998
999         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1000                 /* We need to mark inode dirty even if
1001                  * new_i_size is less that inode->i_size
1002                  * bu greater than i_disksize.(hint delalloc)
1003                  */
1004                 ext4_update_i_disksize(inode, (pos + copied));
1005                 i_size_changed = 1;
1006         }
1007         unlock_page(page);
1008         page_cache_release(page);
1009
1010         /*
1011          * Don't mark the inode dirty under page lock. First, it unnecessarily
1012          * makes the holding time of page lock longer. Second, it forces lock
1013          * ordering of page lock and transaction start for journaling
1014          * filesystems.
1015          */
1016         if (i_size_changed)
1017                 ext4_mark_inode_dirty(handle, inode);
1018
1019         return copied;
1020 }
1021
1022 /*
1023  * We need to pick up the new inode size which generic_commit_write gave us
1024  * `file' can be NULL - eg, when called from page_symlink().
1025  *
1026  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1027  * buffers are managed internally.
1028  */
1029 static int ext4_ordered_write_end(struct file *file,
1030                                   struct address_space *mapping,
1031                                   loff_t pos, unsigned len, unsigned copied,
1032                                   struct page *page, void *fsdata)
1033 {
1034         handle_t *handle = ext4_journal_current_handle();
1035         struct inode *inode = mapping->host;
1036         int ret = 0, ret2;
1037
1038         trace_ext4_ordered_write_end(inode, pos, len, copied);
1039         ret = ext4_jbd2_file_inode(handle, inode);
1040
1041         if (ret == 0) {
1042                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1043                                                         page, fsdata);
1044                 copied = ret2;
1045                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1046                         /* if we have allocated more blocks and copied
1047                          * less. We will have blocks allocated outside
1048                          * inode->i_size. So truncate them
1049                          */
1050                         ext4_orphan_add(handle, inode);
1051                 if (ret2 < 0)
1052                         ret = ret2;
1053         } else {
1054                 unlock_page(page);
1055                 page_cache_release(page);
1056         }
1057
1058         ret2 = ext4_journal_stop(handle);
1059         if (!ret)
1060                 ret = ret2;
1061
1062         if (pos + len > inode->i_size) {
1063                 ext4_truncate_failed_write(inode);
1064                 /*
1065                  * If truncate failed early the inode might still be
1066                  * on the orphan list; we need to make sure the inode
1067                  * is removed from the orphan list in that case.
1068                  */
1069                 if (inode->i_nlink)
1070                         ext4_orphan_del(NULL, inode);
1071         }
1072
1073
1074         return ret ? ret : copied;
1075 }
1076
1077 static int ext4_writeback_write_end(struct file *file,
1078                                     struct address_space *mapping,
1079                                     loff_t pos, unsigned len, unsigned copied,
1080                                     struct page *page, void *fsdata)
1081 {
1082         handle_t *handle = ext4_journal_current_handle();
1083         struct inode *inode = mapping->host;
1084         int ret = 0, ret2;
1085
1086         trace_ext4_writeback_write_end(inode, pos, len, copied);
1087         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1088                                                         page, fsdata);
1089         copied = ret2;
1090         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1091                 /* if we have allocated more blocks and copied
1092                  * less. We will have blocks allocated outside
1093                  * inode->i_size. So truncate them
1094                  */
1095                 ext4_orphan_add(handle, inode);
1096
1097         if (ret2 < 0)
1098                 ret = ret2;
1099
1100         ret2 = ext4_journal_stop(handle);
1101         if (!ret)
1102                 ret = ret2;
1103
1104         if (pos + len > inode->i_size) {
1105                 ext4_truncate_failed_write(inode);
1106                 /*
1107                  * If truncate failed early the inode might still be
1108                  * on the orphan list; we need to make sure the inode
1109                  * is removed from the orphan list in that case.
1110                  */
1111                 if (inode->i_nlink)
1112                         ext4_orphan_del(NULL, inode);
1113         }
1114
1115         return ret ? ret : copied;
1116 }
1117
1118 static int ext4_journalled_write_end(struct file *file,
1119                                      struct address_space *mapping,
1120                                      loff_t pos, unsigned len, unsigned copied,
1121                                      struct page *page, void *fsdata)
1122 {
1123         handle_t *handle = ext4_journal_current_handle();
1124         struct inode *inode = mapping->host;
1125         int ret = 0, ret2;
1126         int partial = 0;
1127         unsigned from, to;
1128         loff_t new_i_size;
1129
1130         trace_ext4_journalled_write_end(inode, pos, len, copied);
1131         from = pos & (PAGE_CACHE_SIZE - 1);
1132         to = from + len;
1133
1134         BUG_ON(!ext4_handle_valid(handle));
1135
1136         if (ext4_has_inline_data(inode))
1137                 copied = ext4_write_inline_data_end(inode, pos, len,
1138                                                     copied, page);
1139         else {
1140                 if (copied < len) {
1141                         if (!PageUptodate(page))
1142                                 copied = 0;
1143                         page_zero_new_buffers(page, from+copied, to);
1144                 }
1145
1146                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1147                                              to, &partial, write_end_fn);
1148                 if (!partial)
1149                         SetPageUptodate(page);
1150         }
1151         new_i_size = pos + copied;
1152         if (new_i_size > inode->i_size)
1153                 i_size_write(inode, pos+copied);
1154         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1155         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1156         if (new_i_size > EXT4_I(inode)->i_disksize) {
1157                 ext4_update_i_disksize(inode, new_i_size);
1158                 ret2 = ext4_mark_inode_dirty(handle, inode);
1159                 if (!ret)
1160                         ret = ret2;
1161         }
1162
1163         unlock_page(page);
1164         page_cache_release(page);
1165         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1166                 /* if we have allocated more blocks and copied
1167                  * less. We will have blocks allocated outside
1168                  * inode->i_size. So truncate them
1169                  */
1170                 ext4_orphan_add(handle, inode);
1171
1172         ret2 = ext4_journal_stop(handle);
1173         if (!ret)
1174                 ret = ret2;
1175         if (pos + len > inode->i_size) {
1176                 ext4_truncate_failed_write(inode);
1177                 /*
1178                  * If truncate failed early the inode might still be
1179                  * on the orphan list; we need to make sure the inode
1180                  * is removed from the orphan list in that case.
1181                  */
1182                 if (inode->i_nlink)
1183                         ext4_orphan_del(NULL, inode);
1184         }
1185
1186         return ret ? ret : copied;
1187 }
1188
1189 /*
1190  * Reserve a single cluster located at lblock
1191  */
1192 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1193 {
1194         int retries = 0;
1195         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1196         struct ext4_inode_info *ei = EXT4_I(inode);
1197         unsigned int md_needed;
1198         int ret;
1199         ext4_lblk_t save_last_lblock;
1200         int save_len;
1201
1202         /*
1203          * We will charge metadata quota at writeout time; this saves
1204          * us from metadata over-estimation, though we may go over by
1205          * a small amount in the end.  Here we just reserve for data.
1206          */
1207         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1208         if (ret)
1209                 return ret;
1210
1211         /*
1212          * recalculate the amount of metadata blocks to reserve
1213          * in order to allocate nrblocks
1214          * worse case is one extent per block
1215          */
1216 repeat:
1217         spin_lock(&ei->i_block_reservation_lock);
1218         /*
1219          * ext4_calc_metadata_amount() has side effects, which we have
1220          * to be prepared undo if we fail to claim space.
1221          */
1222         save_len = ei->i_da_metadata_calc_len;
1223         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1224         md_needed = EXT4_NUM_B2C(sbi,
1225                                  ext4_calc_metadata_amount(inode, lblock));
1226         trace_ext4_da_reserve_space(inode, md_needed);
1227
1228         /*
1229          * We do still charge estimated metadata to the sb though;
1230          * we cannot afford to run out of free blocks.
1231          */
1232         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1233                 ei->i_da_metadata_calc_len = save_len;
1234                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1235                 spin_unlock(&ei->i_block_reservation_lock);
1236                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1237                         yield();
1238                         goto repeat;
1239                 }
1240                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1241                 return -ENOSPC;
1242         }
1243         ei->i_reserved_data_blocks++;
1244         ei->i_reserved_meta_blocks += md_needed;
1245         spin_unlock(&ei->i_block_reservation_lock);
1246
1247         return 0;       /* success */
1248 }
1249
1250 static void ext4_da_release_space(struct inode *inode, int to_free)
1251 {
1252         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1253         struct ext4_inode_info *ei = EXT4_I(inode);
1254
1255         if (!to_free)
1256                 return;         /* Nothing to release, exit */
1257
1258         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1259
1260         trace_ext4_da_release_space(inode, to_free);
1261         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1262                 /*
1263                  * if there aren't enough reserved blocks, then the
1264                  * counter is messed up somewhere.  Since this
1265                  * function is called from invalidate page, it's
1266                  * harmless to return without any action.
1267                  */
1268                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1269                          "ino %lu, to_free %d with only %d reserved "
1270                          "data blocks", inode->i_ino, to_free,
1271                          ei->i_reserved_data_blocks);
1272                 WARN_ON(1);
1273                 to_free = ei->i_reserved_data_blocks;
1274         }
1275         ei->i_reserved_data_blocks -= to_free;
1276
1277         if (ei->i_reserved_data_blocks == 0) {
1278                 /*
1279                  * We can release all of the reserved metadata blocks
1280                  * only when we have written all of the delayed
1281                  * allocation blocks.
1282                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1283                  * i_reserved_data_blocks, etc. refer to number of clusters.
1284                  */
1285                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1286                                    ei->i_reserved_meta_blocks);
1287                 ei->i_reserved_meta_blocks = 0;
1288                 ei->i_da_metadata_calc_len = 0;
1289         }
1290
1291         /* update fs dirty data blocks counter */
1292         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1293
1294         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1295
1296         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1297 }
1298
1299 static void ext4_da_page_release_reservation(struct page *page,
1300                                              unsigned long offset)
1301 {
1302         int to_release = 0;
1303         struct buffer_head *head, *bh;
1304         unsigned int curr_off = 0;
1305         struct inode *inode = page->mapping->host;
1306         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1307         int num_clusters;
1308         ext4_fsblk_t lblk;
1309
1310         head = page_buffers(page);
1311         bh = head;
1312         do {
1313                 unsigned int next_off = curr_off + bh->b_size;
1314
1315                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1316                         to_release++;
1317                         clear_buffer_delay(bh);
1318                 }
1319                 curr_off = next_off;
1320         } while ((bh = bh->b_this_page) != head);
1321
1322         if (to_release) {
1323                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1324                 ext4_es_remove_extent(inode, lblk, to_release);
1325         }
1326
1327         /* If we have released all the blocks belonging to a cluster, then we
1328          * need to release the reserved space for that cluster. */
1329         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1330         while (num_clusters > 0) {
1331                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1332                         ((num_clusters - 1) << sbi->s_cluster_bits);
1333                 if (sbi->s_cluster_ratio == 1 ||
1334                     !ext4_find_delalloc_cluster(inode, lblk))
1335                         ext4_da_release_space(inode, 1);
1336
1337                 num_clusters--;
1338         }
1339 }
1340
1341 /*
1342  * Delayed allocation stuff
1343  */
1344
1345 /*
1346  * mpage_da_submit_io - walks through extent of pages and try to write
1347  * them with writepage() call back
1348  *
1349  * @mpd->inode: inode
1350  * @mpd->first_page: first page of the extent
1351  * @mpd->next_page: page after the last page of the extent
1352  *
1353  * By the time mpage_da_submit_io() is called we expect all blocks
1354  * to be allocated. this may be wrong if allocation failed.
1355  *
1356  * As pages are already locked by write_cache_pages(), we can't use it
1357  */
1358 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1359                               struct ext4_map_blocks *map)
1360 {
1361         struct pagevec pvec;
1362         unsigned long index, end;
1363         int ret = 0, err, nr_pages, i;
1364         struct inode *inode = mpd->inode;
1365         struct address_space *mapping = inode->i_mapping;
1366         loff_t size = i_size_read(inode);
1367         unsigned int len, block_start;
1368         struct buffer_head *bh, *page_bufs = NULL;
1369         sector_t pblock = 0, cur_logical = 0;
1370         struct ext4_io_submit io_submit;
1371
1372         BUG_ON(mpd->next_page <= mpd->first_page);
1373         memset(&io_submit, 0, sizeof(io_submit));
1374         /*
1375          * We need to start from the first_page to the next_page - 1
1376          * to make sure we also write the mapped dirty buffer_heads.
1377          * If we look at mpd->b_blocknr we would only be looking
1378          * at the currently mapped buffer_heads.
1379          */
1380         index = mpd->first_page;
1381         end = mpd->next_page - 1;
1382
1383         pagevec_init(&pvec, 0);
1384         while (index <= end) {
1385                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1386                 if (nr_pages == 0)
1387                         break;
1388                 for (i = 0; i < nr_pages; i++) {
1389                         int skip_page = 0;
1390                         struct page *page = pvec.pages[i];
1391
1392                         index = page->index;
1393                         if (index > end)
1394                                 break;
1395
1396                         if (index == size >> PAGE_CACHE_SHIFT)
1397                                 len = size & ~PAGE_CACHE_MASK;
1398                         else
1399                                 len = PAGE_CACHE_SIZE;
1400                         if (map) {
1401                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1402                                                         inode->i_blkbits);
1403                                 pblock = map->m_pblk + (cur_logical -
1404                                                         map->m_lblk);
1405                         }
1406                         index++;
1407
1408                         BUG_ON(!PageLocked(page));
1409                         BUG_ON(PageWriteback(page));
1410
1411                         bh = page_bufs = page_buffers(page);
1412                         block_start = 0;
1413                         do {
1414                                 if (map && (cur_logical >= map->m_lblk) &&
1415                                     (cur_logical <= (map->m_lblk +
1416                                                      (map->m_len - 1)))) {
1417                                         if (buffer_delay(bh)) {
1418                                                 clear_buffer_delay(bh);
1419                                                 bh->b_blocknr = pblock;
1420                                         }
1421                                         if (buffer_unwritten(bh) ||
1422                                             buffer_mapped(bh))
1423                                                 BUG_ON(bh->b_blocknr != pblock);
1424                                         if (map->m_flags & EXT4_MAP_UNINIT)
1425                                                 set_buffer_uninit(bh);
1426                                         clear_buffer_unwritten(bh);
1427                                 }
1428
1429                                 /*
1430                                  * skip page if block allocation undone and
1431                                  * block is dirty
1432                                  */
1433                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1434                                         skip_page = 1;
1435                                 bh = bh->b_this_page;
1436                                 block_start += bh->b_size;
1437                                 cur_logical++;
1438                                 pblock++;
1439                         } while (bh != page_bufs);
1440
1441                         if (skip_page) {
1442                                 unlock_page(page);
1443                                 continue;
1444                         }
1445
1446                         clear_page_dirty_for_io(page);
1447                         err = ext4_bio_write_page(&io_submit, page, len,
1448                                                   mpd->wbc);
1449                         if (!err)
1450                                 mpd->pages_written++;
1451                         /*
1452                          * In error case, we have to continue because
1453                          * remaining pages are still locked
1454                          */
1455                         if (ret == 0)
1456                                 ret = err;
1457                 }
1458                 pagevec_release(&pvec);
1459         }
1460         ext4_io_submit(&io_submit);
1461         return ret;
1462 }
1463
1464 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1465 {
1466         int nr_pages, i;
1467         pgoff_t index, end;
1468         struct pagevec pvec;
1469         struct inode *inode = mpd->inode;
1470         struct address_space *mapping = inode->i_mapping;
1471         ext4_lblk_t start, last;
1472
1473         index = mpd->first_page;
1474         end   = mpd->next_page - 1;
1475
1476         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1477         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1478         ext4_es_remove_extent(inode, start, last - start + 1);
1479
1480         pagevec_init(&pvec, 0);
1481         while (index <= end) {
1482                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1483                 if (nr_pages == 0)
1484                         break;
1485                 for (i = 0; i < nr_pages; i++) {
1486                         struct page *page = pvec.pages[i];
1487                         if (page->index > end)
1488                                 break;
1489                         BUG_ON(!PageLocked(page));
1490                         BUG_ON(PageWriteback(page));
1491                         block_invalidatepage(page, 0);
1492                         ClearPageUptodate(page);
1493                         unlock_page(page);
1494                 }
1495                 index = pvec.pages[nr_pages - 1]->index + 1;
1496                 pagevec_release(&pvec);
1497         }
1498         return;
1499 }
1500
1501 static void ext4_print_free_blocks(struct inode *inode)
1502 {
1503         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504         struct super_block *sb = inode->i_sb;
1505
1506         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1507                EXT4_C2B(EXT4_SB(inode->i_sb),
1508                         ext4_count_free_clusters(inode->i_sb)));
1509         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1510         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1511                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1512                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1513         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1514                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1515                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1516         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1517         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1518                  EXT4_I(inode)->i_reserved_data_blocks);
1519         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1520                EXT4_I(inode)->i_reserved_meta_blocks);
1521         return;
1522 }
1523
1524 /*
1525  * mpage_da_map_and_submit - go through given space, map them
1526  *       if necessary, and then submit them for I/O
1527  *
1528  * @mpd - bh describing space
1529  *
1530  * The function skips space we know is already mapped to disk blocks.
1531  *
1532  */
1533 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1534 {
1535         int err, blks, get_blocks_flags;
1536         struct ext4_map_blocks map, *mapp = NULL;
1537         sector_t next = mpd->b_blocknr;
1538         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1539         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1540         handle_t *handle = NULL;
1541
1542         /*
1543          * If the blocks are mapped already, or we couldn't accumulate
1544          * any blocks, then proceed immediately to the submission stage.
1545          */
1546         if ((mpd->b_size == 0) ||
1547             ((mpd->b_state  & (1 << BH_Mapped)) &&
1548              !(mpd->b_state & (1 << BH_Delay)) &&
1549              !(mpd->b_state & (1 << BH_Unwritten))))
1550                 goto submit_io;
1551
1552         handle = ext4_journal_current_handle();
1553         BUG_ON(!handle);
1554
1555         /*
1556          * Call ext4_map_blocks() to allocate any delayed allocation
1557          * blocks, or to convert an uninitialized extent to be
1558          * initialized (in the case where we have written into
1559          * one or more preallocated blocks).
1560          *
1561          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1562          * indicate that we are on the delayed allocation path.  This
1563          * affects functions in many different parts of the allocation
1564          * call path.  This flag exists primarily because we don't
1565          * want to change *many* call functions, so ext4_map_blocks()
1566          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1567          * inode's allocation semaphore is taken.
1568          *
1569          * If the blocks in questions were delalloc blocks, set
1570          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1571          * variables are updated after the blocks have been allocated.
1572          */
1573         map.m_lblk = next;
1574         map.m_len = max_blocks;
1575         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1576         if (ext4_should_dioread_nolock(mpd->inode))
1577                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1578         if (mpd->b_state & (1 << BH_Delay))
1579                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1580
1581         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1582         if (blks < 0) {
1583                 struct super_block *sb = mpd->inode->i_sb;
1584
1585                 err = blks;
1586                 /*
1587                  * If get block returns EAGAIN or ENOSPC and there
1588                  * appears to be free blocks we will just let
1589                  * mpage_da_submit_io() unlock all of the pages.
1590                  */
1591                 if (err == -EAGAIN)
1592                         goto submit_io;
1593
1594                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1595                         mpd->retval = err;
1596                         goto submit_io;
1597                 }
1598
1599                 /*
1600                  * get block failure will cause us to loop in
1601                  * writepages, because a_ops->writepage won't be able
1602                  * to make progress. The page will be redirtied by
1603                  * writepage and writepages will again try to write
1604                  * the same.
1605                  */
1606                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1607                         ext4_msg(sb, KERN_CRIT,
1608                                  "delayed block allocation failed for inode %lu "
1609                                  "at logical offset %llu with max blocks %zd "
1610                                  "with error %d", mpd->inode->i_ino,
1611                                  (unsigned long long) next,
1612                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1613                         ext4_msg(sb, KERN_CRIT,
1614                                 "This should not happen!! Data will be lost");
1615                         if (err == -ENOSPC)
1616                                 ext4_print_free_blocks(mpd->inode);
1617                 }
1618                 /* invalidate all the pages */
1619                 ext4_da_block_invalidatepages(mpd);
1620
1621                 /* Mark this page range as having been completed */
1622                 mpd->io_done = 1;
1623                 return;
1624         }
1625         BUG_ON(blks == 0);
1626
1627         mapp = &map;
1628         if (map.m_flags & EXT4_MAP_NEW) {
1629                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1630                 int i;
1631
1632                 for (i = 0; i < map.m_len; i++)
1633                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1634         }
1635
1636         /*
1637          * Update on-disk size along with block allocation.
1638          */
1639         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1640         if (disksize > i_size_read(mpd->inode))
1641                 disksize = i_size_read(mpd->inode);
1642         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1643                 ext4_update_i_disksize(mpd->inode, disksize);
1644                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1645                 if (err)
1646                         ext4_error(mpd->inode->i_sb,
1647                                    "Failed to mark inode %lu dirty",
1648                                    mpd->inode->i_ino);
1649         }
1650
1651 submit_io:
1652         mpage_da_submit_io(mpd, mapp);
1653         mpd->io_done = 1;
1654 }
1655
1656 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1657                 (1 << BH_Delay) | (1 << BH_Unwritten))
1658
1659 /*
1660  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1661  *
1662  * @mpd->lbh - extent of blocks
1663  * @logical - logical number of the block in the file
1664  * @b_state - b_state of the buffer head added
1665  *
1666  * the function is used to collect contig. blocks in same state
1667  */
1668 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1669                                    unsigned long b_state)
1670 {
1671         sector_t next;
1672         int blkbits = mpd->inode->i_blkbits;
1673         int nrblocks = mpd->b_size >> blkbits;
1674
1675         /*
1676          * XXX Don't go larger than mballoc is willing to allocate
1677          * This is a stopgap solution.  We eventually need to fold
1678          * mpage_da_submit_io() into this function and then call
1679          * ext4_map_blocks() multiple times in a loop
1680          */
1681         if (nrblocks >= (8*1024*1024 >> blkbits))
1682                 goto flush_it;
1683
1684         /* check if the reserved journal credits might overflow */
1685         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1686                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1687                         /*
1688                          * With non-extent format we are limited by the journal
1689                          * credit available.  Total credit needed to insert
1690                          * nrblocks contiguous blocks is dependent on the
1691                          * nrblocks.  So limit nrblocks.
1692                          */
1693                         goto flush_it;
1694                 }
1695         }
1696         /*
1697          * First block in the extent
1698          */
1699         if (mpd->b_size == 0) {
1700                 mpd->b_blocknr = logical;
1701                 mpd->b_size = 1 << blkbits;
1702                 mpd->b_state = b_state & BH_FLAGS;
1703                 return;
1704         }
1705
1706         next = mpd->b_blocknr + nrblocks;
1707         /*
1708          * Can we merge the block to our big extent?
1709          */
1710         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1711                 mpd->b_size += 1 << blkbits;
1712                 return;
1713         }
1714
1715 flush_it:
1716         /*
1717          * We couldn't merge the block to our extent, so we
1718          * need to flush current  extent and start new one
1719          */
1720         mpage_da_map_and_submit(mpd);
1721         return;
1722 }
1723
1724 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1725 {
1726         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1727 }
1728
1729 /*
1730  * This function is grabs code from the very beginning of
1731  * ext4_map_blocks, but assumes that the caller is from delayed write
1732  * time. This function looks up the requested blocks and sets the
1733  * buffer delay bit under the protection of i_data_sem.
1734  */
1735 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1736                               struct ext4_map_blocks *map,
1737                               struct buffer_head *bh)
1738 {
1739         int retval;
1740         sector_t invalid_block = ~((sector_t) 0xffff);
1741
1742         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1743                 invalid_block = ~0;
1744
1745         map->m_flags = 0;
1746         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1747                   "logical block %lu\n", inode->i_ino, map->m_len,
1748                   (unsigned long) map->m_lblk);
1749         /*
1750          * Try to see if we can get the block without requesting a new
1751          * file system block.
1752          */
1753         down_read((&EXT4_I(inode)->i_data_sem));
1754         if (ext4_has_inline_data(inode)) {
1755                 /*
1756                  * We will soon create blocks for this page, and let
1757                  * us pretend as if the blocks aren't allocated yet.
1758                  * In case of clusters, we have to handle the work
1759                  * of mapping from cluster so that the reserved space
1760                  * is calculated properly.
1761                  */
1762                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1763                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1764                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1765                 retval = 0;
1766         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1767                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1768         else
1769                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1770
1771         if (retval == 0) {
1772                 /*
1773                  * XXX: __block_prepare_write() unmaps passed block,
1774                  * is it OK?
1775                  */
1776                 /* If the block was allocated from previously allocated cluster,
1777                  * then we dont need to reserve it again. */
1778                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1779                         retval = ext4_da_reserve_space(inode, iblock);
1780                         if (retval)
1781                                 /* not enough space to reserve */
1782                                 goto out_unlock;
1783                 }
1784
1785                 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1786                 if (retval)
1787                         goto out_unlock;
1788
1789                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1790                  * and it should not appear on the bh->b_state.
1791                  */
1792                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1793
1794                 map_bh(bh, inode->i_sb, invalid_block);
1795                 set_buffer_new(bh);
1796                 set_buffer_delay(bh);
1797         }
1798
1799 out_unlock:
1800         up_read((&EXT4_I(inode)->i_data_sem));
1801
1802         return retval;
1803 }
1804
1805 /*
1806  * This is a special get_blocks_t callback which is used by
1807  * ext4_da_write_begin().  It will either return mapped block or
1808  * reserve space for a single block.
1809  *
1810  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1811  * We also have b_blocknr = -1 and b_bdev initialized properly
1812  *
1813  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1814  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1815  * initialized properly.
1816  */
1817 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1818                            struct buffer_head *bh, int create)
1819 {
1820         struct ext4_map_blocks map;
1821         int ret = 0;
1822
1823         BUG_ON(create == 0);
1824         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1825
1826         map.m_lblk = iblock;
1827         map.m_len = 1;
1828
1829         /*
1830          * first, we need to know whether the block is allocated already
1831          * preallocated blocks are unmapped but should treated
1832          * the same as allocated blocks.
1833          */
1834         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1835         if (ret <= 0)
1836                 return ret;
1837
1838         map_bh(bh, inode->i_sb, map.m_pblk);
1839         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1840
1841         if (buffer_unwritten(bh)) {
1842                 /* A delayed write to unwritten bh should be marked
1843                  * new and mapped.  Mapped ensures that we don't do
1844                  * get_block multiple times when we write to the same
1845                  * offset and new ensures that we do proper zero out
1846                  * for partial write.
1847                  */
1848                 set_buffer_new(bh);
1849                 set_buffer_mapped(bh);
1850         }
1851         return 0;
1852 }
1853
1854 static int bget_one(handle_t *handle, struct buffer_head *bh)
1855 {
1856         get_bh(bh);
1857         return 0;
1858 }
1859
1860 static int bput_one(handle_t *handle, struct buffer_head *bh)
1861 {
1862         put_bh(bh);
1863         return 0;
1864 }
1865
1866 static int __ext4_journalled_writepage(struct page *page,
1867                                        unsigned int len)
1868 {
1869         struct address_space *mapping = page->mapping;
1870         struct inode *inode = mapping->host;
1871         struct buffer_head *page_bufs = NULL;
1872         handle_t *handle = NULL;
1873         int ret = 0, err = 0;
1874         int inline_data = ext4_has_inline_data(inode);
1875         struct buffer_head *inode_bh = NULL;
1876
1877         ClearPageChecked(page);
1878
1879         if (inline_data) {
1880                 BUG_ON(page->index != 0);
1881                 BUG_ON(len > ext4_get_max_inline_size(inode));
1882                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1883                 if (inode_bh == NULL)
1884                         goto out;
1885         } else {
1886                 page_bufs = page_buffers(page);
1887                 if (!page_bufs) {
1888                         BUG();
1889                         goto out;
1890                 }
1891                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1892                                        NULL, bget_one);
1893         }
1894         /* As soon as we unlock the page, it can go away, but we have
1895          * references to buffers so we are safe */
1896         unlock_page(page);
1897
1898         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1899                                     ext4_writepage_trans_blocks(inode));
1900         if (IS_ERR(handle)) {
1901                 ret = PTR_ERR(handle);
1902                 goto out;
1903         }
1904
1905         BUG_ON(!ext4_handle_valid(handle));
1906
1907         if (inline_data) {
1908                 ret = ext4_journal_get_write_access(handle, inode_bh);
1909
1910                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1911
1912         } else {
1913                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1914                                              do_journal_get_write_access);
1915
1916                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1917                                              write_end_fn);
1918         }
1919         if (ret == 0)
1920                 ret = err;
1921         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1922         err = ext4_journal_stop(handle);
1923         if (!ret)
1924                 ret = err;
1925
1926         if (!ext4_has_inline_data(inode))
1927                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1928                                        NULL, bput_one);
1929         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1930 out:
1931         brelse(inode_bh);
1932         return ret;
1933 }
1934
1935 /*
1936  * Note that we don't need to start a transaction unless we're journaling data
1937  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1938  * need to file the inode to the transaction's list in ordered mode because if
1939  * we are writing back data added by write(), the inode is already there and if
1940  * we are writing back data modified via mmap(), no one guarantees in which
1941  * transaction the data will hit the disk. In case we are journaling data, we
1942  * cannot start transaction directly because transaction start ranks above page
1943  * lock so we have to do some magic.
1944  *
1945  * This function can get called via...
1946  *   - ext4_da_writepages after taking page lock (have journal handle)
1947  *   - journal_submit_inode_data_buffers (no journal handle)
1948  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1949  *   - grab_page_cache when doing write_begin (have journal handle)
1950  *
1951  * We don't do any block allocation in this function. If we have page with
1952  * multiple blocks we need to write those buffer_heads that are mapped. This
1953  * is important for mmaped based write. So if we do with blocksize 1K
1954  * truncate(f, 1024);
1955  * a = mmap(f, 0, 4096);
1956  * a[0] = 'a';
1957  * truncate(f, 4096);
1958  * we have in the page first buffer_head mapped via page_mkwrite call back
1959  * but other buffer_heads would be unmapped but dirty (dirty done via the
1960  * do_wp_page). So writepage should write the first block. If we modify
1961  * the mmap area beyond 1024 we will again get a page_fault and the
1962  * page_mkwrite callback will do the block allocation and mark the
1963  * buffer_heads mapped.
1964  *
1965  * We redirty the page if we have any buffer_heads that is either delay or
1966  * unwritten in the page.
1967  *
1968  * We can get recursively called as show below.
1969  *
1970  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1971  *              ext4_writepage()
1972  *
1973  * But since we don't do any block allocation we should not deadlock.
1974  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1975  */
1976 static int ext4_writepage(struct page *page,
1977                           struct writeback_control *wbc)
1978 {
1979         int ret = 0;
1980         loff_t size;
1981         unsigned int len;
1982         struct buffer_head *page_bufs = NULL;
1983         struct inode *inode = page->mapping->host;
1984         struct ext4_io_submit io_submit;
1985
1986         trace_ext4_writepage(page);
1987         size = i_size_read(inode);
1988         if (page->index == size >> PAGE_CACHE_SHIFT)
1989                 len = size & ~PAGE_CACHE_MASK;
1990         else
1991                 len = PAGE_CACHE_SIZE;
1992
1993         page_bufs = page_buffers(page);
1994         /*
1995          * We cannot do block allocation or other extent handling in this
1996          * function. If there are buffers needing that, we have to redirty
1997          * the page. But we may reach here when we do a journal commit via
1998          * journal_submit_inode_data_buffers() and in that case we must write
1999          * allocated buffers to achieve data=ordered mode guarantees.
2000          */
2001         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2002                                    ext4_bh_delay_or_unwritten)) {
2003                 redirty_page_for_writepage(wbc, page);
2004                 if (current->flags & PF_MEMALLOC) {
2005                         /*
2006                          * For memory cleaning there's no point in writing only
2007                          * some buffers. So just bail out. Warn if we came here
2008                          * from direct reclaim.
2009                          */
2010                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2011                                                         == PF_MEMALLOC);
2012                         unlock_page(page);
2013                         return 0;
2014                 }
2015         }
2016
2017         if (PageChecked(page) && ext4_should_journal_data(inode))
2018                 /*
2019                  * It's mmapped pagecache.  Add buffers and journal it.  There
2020                  * doesn't seem much point in redirtying the page here.
2021                  */
2022                 return __ext4_journalled_writepage(page, len);
2023
2024         memset(&io_submit, 0, sizeof(io_submit));
2025         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2026         ext4_io_submit(&io_submit);
2027         return ret;
2028 }
2029
2030 /*
2031  * This is called via ext4_da_writepages() to
2032  * calculate the total number of credits to reserve to fit
2033  * a single extent allocation into a single transaction,
2034  * ext4_da_writpeages() will loop calling this before
2035  * the block allocation.
2036  */
2037
2038 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2039 {
2040         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2041
2042         /*
2043          * With non-extent format the journal credit needed to
2044          * insert nrblocks contiguous block is dependent on
2045          * number of contiguous block. So we will limit
2046          * number of contiguous block to a sane value
2047          */
2048         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2049             (max_blocks > EXT4_MAX_TRANS_DATA))
2050                 max_blocks = EXT4_MAX_TRANS_DATA;
2051
2052         return ext4_chunk_trans_blocks(inode, max_blocks);
2053 }
2054
2055 /*
2056  * write_cache_pages_da - walk the list of dirty pages of the given
2057  * address space and accumulate pages that need writing, and call
2058  * mpage_da_map_and_submit to map a single contiguous memory region
2059  * and then write them.
2060  */
2061 static int write_cache_pages_da(handle_t *handle,
2062                                 struct address_space *mapping,
2063                                 struct writeback_control *wbc,
2064                                 struct mpage_da_data *mpd,
2065                                 pgoff_t *done_index)
2066 {
2067         struct buffer_head      *bh, *head;
2068         struct inode            *inode = mapping->host;
2069         struct pagevec          pvec;
2070         unsigned int            nr_pages;
2071         sector_t                logical;
2072         pgoff_t                 index, end;
2073         long                    nr_to_write = wbc->nr_to_write;
2074         int                     i, tag, ret = 0;
2075
2076         memset(mpd, 0, sizeof(struct mpage_da_data));
2077         mpd->wbc = wbc;
2078         mpd->inode = inode;
2079         pagevec_init(&pvec, 0);
2080         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2081         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2082
2083         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2084                 tag = PAGECACHE_TAG_TOWRITE;
2085         else
2086                 tag = PAGECACHE_TAG_DIRTY;
2087
2088         *done_index = index;
2089         while (index <= end) {
2090                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2091                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2092                 if (nr_pages == 0)
2093                         return 0;
2094
2095                 for (i = 0; i < nr_pages; i++) {
2096                         struct page *page = pvec.pages[i];
2097
2098                         /*
2099                          * At this point, the page may be truncated or
2100                          * invalidated (changing page->mapping to NULL), or
2101                          * even swizzled back from swapper_space to tmpfs file
2102                          * mapping. However, page->index will not change
2103                          * because we have a reference on the page.
2104                          */
2105                         if (page->index > end)
2106                                 goto out;
2107
2108                         *done_index = page->index + 1;
2109
2110                         /*
2111                          * If we can't merge this page, and we have
2112                          * accumulated an contiguous region, write it
2113                          */
2114                         if ((mpd->next_page != page->index) &&
2115                             (mpd->next_page != mpd->first_page)) {
2116                                 mpage_da_map_and_submit(mpd);
2117                                 goto ret_extent_tail;
2118                         }
2119
2120                         lock_page(page);
2121
2122                         /*
2123                          * If the page is no longer dirty, or its
2124                          * mapping no longer corresponds to inode we
2125                          * are writing (which means it has been
2126                          * truncated or invalidated), or the page is
2127                          * already under writeback and we are not
2128                          * doing a data integrity writeback, skip the page
2129                          */
2130                         if (!PageDirty(page) ||
2131                             (PageWriteback(page) &&
2132                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2133                             unlikely(page->mapping != mapping)) {
2134                                 unlock_page(page);
2135                                 continue;
2136                         }
2137
2138                         wait_on_page_writeback(page);
2139                         BUG_ON(PageWriteback(page));
2140
2141                         /*
2142                          * If we have inline data and arrive here, it means that
2143                          * we will soon create the block for the 1st page, so
2144                          * we'd better clear the inline data here.
2145                          */
2146                         if (ext4_has_inline_data(inode)) {
2147                                 BUG_ON(ext4_test_inode_state(inode,
2148                                                 EXT4_STATE_MAY_INLINE_DATA));
2149                                 ext4_destroy_inline_data(handle, inode);
2150                         }
2151
2152                         if (mpd->next_page != page->index)
2153                                 mpd->first_page = page->index;
2154                         mpd->next_page = page->index + 1;
2155                         logical = (sector_t) page->index <<
2156                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2157
2158                         /* Add all dirty buffers to mpd */
2159                         head = page_buffers(page);
2160                         bh = head;
2161                         do {
2162                                 BUG_ON(buffer_locked(bh));
2163                                 /*
2164                                  * We need to try to allocate unmapped blocks
2165                                  * in the same page.  Otherwise we won't make
2166                                  * progress with the page in ext4_writepage
2167                                  */
2168                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2169                                         mpage_add_bh_to_extent(mpd, logical,
2170                                                                bh->b_state);
2171                                         if (mpd->io_done)
2172                                                 goto ret_extent_tail;
2173                                 } else if (buffer_dirty(bh) &&
2174                                            buffer_mapped(bh)) {
2175                                         /*
2176                                          * mapped dirty buffer. We need to
2177                                          * update the b_state because we look
2178                                          * at b_state in mpage_da_map_blocks.
2179                                          * We don't update b_size because if we
2180                                          * find an unmapped buffer_head later
2181                                          * we need to use the b_state flag of
2182                                          * that buffer_head.
2183                                          */
2184                                         if (mpd->b_size == 0)
2185                                                 mpd->b_state =
2186                                                         bh->b_state & BH_FLAGS;
2187                                 }
2188                                 logical++;
2189                         } while ((bh = bh->b_this_page) != head);
2190
2191                         if (nr_to_write > 0) {
2192                                 nr_to_write--;
2193                                 if (nr_to_write == 0 &&
2194                                     wbc->sync_mode == WB_SYNC_NONE)
2195                                         /*
2196                                          * We stop writing back only if we are
2197                                          * not doing integrity sync. In case of
2198                                          * integrity sync we have to keep going
2199                                          * because someone may be concurrently
2200                                          * dirtying pages, and we might have
2201                                          * synced a lot of newly appeared dirty
2202                                          * pages, but have not synced all of the
2203                                          * old dirty pages.
2204                                          */
2205                                         goto out;
2206                         }
2207                 }
2208                 pagevec_release(&pvec);
2209                 cond_resched();
2210         }
2211         return 0;
2212 ret_extent_tail:
2213         ret = MPAGE_DA_EXTENT_TAIL;
2214 out:
2215         pagevec_release(&pvec);
2216         cond_resched();
2217         return ret;
2218 }
2219
2220
2221 static int ext4_da_writepages(struct address_space *mapping,
2222                               struct writeback_control *wbc)
2223 {
2224         pgoff_t index;
2225         int range_whole = 0;
2226         handle_t *handle = NULL;
2227         struct mpage_da_data mpd;
2228         struct inode *inode = mapping->host;
2229         int pages_written = 0;
2230         unsigned int max_pages;
2231         int range_cyclic, cycled = 1, io_done = 0;
2232         int needed_blocks, ret = 0;
2233         long desired_nr_to_write, nr_to_writebump = 0;
2234         loff_t range_start = wbc->range_start;
2235         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2236         pgoff_t done_index = 0;
2237         pgoff_t end;
2238         struct blk_plug plug;
2239
2240         trace_ext4_da_writepages(inode, wbc);
2241
2242         /*
2243          * No pages to write? This is mainly a kludge to avoid starting
2244          * a transaction for special inodes like journal inode on last iput()
2245          * because that could violate lock ordering on umount
2246          */
2247         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2248                 return 0;
2249
2250         /*
2251          * If the filesystem has aborted, it is read-only, so return
2252          * right away instead of dumping stack traces later on that
2253          * will obscure the real source of the problem.  We test
2254          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2255          * the latter could be true if the filesystem is mounted
2256          * read-only, and in that case, ext4_da_writepages should
2257          * *never* be called, so if that ever happens, we would want
2258          * the stack trace.
2259          */
2260         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2261                 return -EROFS;
2262
2263         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2264                 range_whole = 1;
2265
2266         range_cyclic = wbc->range_cyclic;
2267         if (wbc->range_cyclic) {
2268                 index = mapping->writeback_index;
2269                 if (index)
2270                         cycled = 0;
2271                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2272                 wbc->range_end  = LLONG_MAX;
2273                 wbc->range_cyclic = 0;
2274                 end = -1;
2275         } else {
2276                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2277                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2278         }
2279
2280         /*
2281          * This works around two forms of stupidity.  The first is in
2282          * the writeback code, which caps the maximum number of pages
2283          * written to be 1024 pages.  This is wrong on multiple
2284          * levels; different architectues have a different page size,
2285          * which changes the maximum amount of data which gets
2286          * written.  Secondly, 4 megabytes is way too small.  XFS
2287          * forces this value to be 16 megabytes by multiplying
2288          * nr_to_write parameter by four, and then relies on its
2289          * allocator to allocate larger extents to make them
2290          * contiguous.  Unfortunately this brings us to the second
2291          * stupidity, which is that ext4's mballoc code only allocates
2292          * at most 2048 blocks.  So we force contiguous writes up to
2293          * the number of dirty blocks in the inode, or
2294          * sbi->max_writeback_mb_bump whichever is smaller.
2295          */
2296         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2297         if (!range_cyclic && range_whole) {
2298                 if (wbc->nr_to_write == LONG_MAX)
2299                         desired_nr_to_write = wbc->nr_to_write;
2300                 else
2301                         desired_nr_to_write = wbc->nr_to_write * 8;
2302         } else
2303                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2304                                                            max_pages);
2305         if (desired_nr_to_write > max_pages)
2306                 desired_nr_to_write = max_pages;
2307
2308         if (wbc->nr_to_write < desired_nr_to_write) {
2309                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2310                 wbc->nr_to_write = desired_nr_to_write;
2311         }
2312
2313 retry:
2314         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2315                 tag_pages_for_writeback(mapping, index, end);
2316
2317         blk_start_plug(&plug);
2318         while (!ret && wbc->nr_to_write > 0) {
2319
2320                 /*
2321                  * we  insert one extent at a time. So we need
2322                  * credit needed for single extent allocation.
2323                  * journalled mode is currently not supported
2324                  * by delalloc
2325                  */
2326                 BUG_ON(ext4_should_journal_data(inode));
2327                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2328
2329                 /* start a new transaction*/
2330                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2331                                             needed_blocks);
2332                 if (IS_ERR(handle)) {
2333                         ret = PTR_ERR(handle);
2334                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2335                                "%ld pages, ino %lu; err %d", __func__,
2336                                 wbc->nr_to_write, inode->i_ino, ret);
2337                         blk_finish_plug(&plug);
2338                         goto out_writepages;
2339                 }
2340
2341                 /*
2342                  * Now call write_cache_pages_da() to find the next
2343                  * contiguous region of logical blocks that need
2344                  * blocks to be allocated by ext4 and submit them.
2345                  */
2346                 ret = write_cache_pages_da(handle, mapping,
2347                                            wbc, &mpd, &done_index);
2348                 /*
2349                  * If we have a contiguous extent of pages and we
2350                  * haven't done the I/O yet, map the blocks and submit
2351                  * them for I/O.
2352                  */
2353                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2354                         mpage_da_map_and_submit(&mpd);
2355                         ret = MPAGE_DA_EXTENT_TAIL;
2356                 }
2357                 trace_ext4_da_write_pages(inode, &mpd);
2358                 wbc->nr_to_write -= mpd.pages_written;
2359
2360                 ext4_journal_stop(handle);
2361
2362                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2363                         /* commit the transaction which would
2364                          * free blocks released in the transaction
2365                          * and try again
2366                          */
2367                         jbd2_journal_force_commit_nested(sbi->s_journal);
2368                         ret = 0;
2369                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2370                         /*
2371                          * Got one extent now try with rest of the pages.
2372                          * If mpd.retval is set -EIO, journal is aborted.
2373                          * So we don't need to write any more.
2374                          */
2375                         pages_written += mpd.pages_written;
2376                         ret = mpd.retval;
2377                         io_done = 1;
2378                 } else if (wbc->nr_to_write)
2379                         /*
2380                          * There is no more writeout needed
2381                          * or we requested for a noblocking writeout
2382                          * and we found the device congested
2383                          */
2384                         break;
2385         }
2386         blk_finish_plug(&plug);
2387         if (!io_done && !cycled) {
2388                 cycled = 1;
2389                 index = 0;
2390                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2391                 wbc->range_end  = mapping->writeback_index - 1;
2392                 goto retry;
2393         }
2394
2395         /* Update index */
2396         wbc->range_cyclic = range_cyclic;
2397         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2398                 /*
2399                  * set the writeback_index so that range_cyclic
2400                  * mode will write it back later
2401                  */
2402                 mapping->writeback_index = done_index;
2403
2404 out_writepages:
2405         wbc->nr_to_write -= nr_to_writebump;
2406         wbc->range_start = range_start;
2407         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2408         return ret;
2409 }
2410
2411 static int ext4_nonda_switch(struct super_block *sb)
2412 {
2413         s64 free_blocks, dirty_blocks;
2414         struct ext4_sb_info *sbi = EXT4_SB(sb);
2415
2416         /*
2417          * switch to non delalloc mode if we are running low
2418          * on free block. The free block accounting via percpu
2419          * counters can get slightly wrong with percpu_counter_batch getting
2420          * accumulated on each CPU without updating global counters
2421          * Delalloc need an accurate free block accounting. So switch
2422          * to non delalloc when we are near to error range.
2423          */
2424         free_blocks  = EXT4_C2B(sbi,
2425                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2426         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2427         /*
2428          * Start pushing delalloc when 1/2 of free blocks are dirty.
2429          */
2430         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2431             !writeback_in_progress(sb->s_bdi) &&
2432             down_read_trylock(&sb->s_umount)) {
2433                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2434                 up_read(&sb->s_umount);
2435         }
2436
2437         if (2 * free_blocks < 3 * dirty_blocks ||
2438                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2439                 /*
2440                  * free block count is less than 150% of dirty blocks
2441                  * or free blocks is less than watermark
2442                  */
2443                 return 1;
2444         }
2445         return 0;
2446 }
2447
2448 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2449                                loff_t pos, unsigned len, unsigned flags,
2450                                struct page **pagep, void **fsdata)
2451 {
2452         int ret, retries = 0;
2453         struct page *page;
2454         pgoff_t index;
2455         struct inode *inode = mapping->host;
2456         handle_t *handle;
2457
2458         index = pos >> PAGE_CACHE_SHIFT;
2459
2460         if (ext4_nonda_switch(inode->i_sb)) {
2461                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2462                 return ext4_write_begin(file, mapping, pos,
2463                                         len, flags, pagep, fsdata);
2464         }
2465         *fsdata = (void *)0;
2466         trace_ext4_da_write_begin(inode, pos, len, flags);
2467
2468         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2469                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2470                                                       pos, len, flags,
2471                                                       pagep, fsdata);
2472                 if (ret < 0)
2473                         return ret;
2474                 if (ret == 1)
2475                         return 0;
2476         }
2477
2478         /*
2479          * grab_cache_page_write_begin() can take a long time if the
2480          * system is thrashing due to memory pressure, or if the page
2481          * is being written back.  So grab it first before we start
2482          * the transaction handle.  This also allows us to allocate
2483          * the page (if needed) without using GFP_NOFS.
2484          */
2485 retry_grab:
2486         page = grab_cache_page_write_begin(mapping, index, flags);
2487         if (!page)
2488                 return -ENOMEM;
2489         unlock_page(page);
2490
2491         /*
2492          * With delayed allocation, we don't log the i_disksize update
2493          * if there is delayed block allocation. But we still need
2494          * to journalling the i_disksize update if writes to the end
2495          * of file which has an already mapped buffer.
2496          */
2497 retry_journal:
2498         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2499         if (IS_ERR(handle)) {
2500                 page_cache_release(page);
2501                 return PTR_ERR(handle);
2502         }
2503
2504         lock_page(page);
2505         if (page->mapping != mapping) {
2506                 /* The page got truncated from under us */
2507                 unlock_page(page);
2508                 page_cache_release(page);
2509                 ext4_journal_stop(handle);
2510                 goto retry_grab;
2511         }
2512         /* In case writeback began while the page was unlocked */
2513         wait_on_page_writeback(page);
2514
2515         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2516         if (ret < 0) {
2517                 unlock_page(page);
2518                 ext4_journal_stop(handle);
2519                 /*
2520                  * block_write_begin may have instantiated a few blocks
2521                  * outside i_size.  Trim these off again. Don't need
2522                  * i_size_read because we hold i_mutex.
2523                  */
2524                 if (pos + len > inode->i_size)
2525                         ext4_truncate_failed_write(inode);
2526
2527                 if (ret == -ENOSPC &&
2528                     ext4_should_retry_alloc(inode->i_sb, &retries))
2529                         goto retry_journal;
2530
2531                 page_cache_release(page);
2532                 return ret;
2533         }
2534
2535         *pagep = page;
2536         return ret;
2537 }
2538
2539 /*
2540  * Check if we should update i_disksize
2541  * when write to the end of file but not require block allocation
2542  */
2543 static int ext4_da_should_update_i_disksize(struct page *page,
2544                                             unsigned long offset)
2545 {
2546         struct buffer_head *bh;
2547         struct inode *inode = page->mapping->host;
2548         unsigned int idx;
2549         int i;
2550
2551         bh = page_buffers(page);
2552         idx = offset >> inode->i_blkbits;
2553
2554         for (i = 0; i < idx; i++)
2555                 bh = bh->b_this_page;
2556
2557         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2558                 return 0;
2559         return 1;
2560 }
2561
2562 static int ext4_da_write_end(struct file *file,
2563                              struct address_space *mapping,
2564                              loff_t pos, unsigned len, unsigned copied,
2565                              struct page *page, void *fsdata)
2566 {
2567         struct inode *inode = mapping->host;
2568         int ret = 0, ret2;
2569         handle_t *handle = ext4_journal_current_handle();
2570         loff_t new_i_size;
2571         unsigned long start, end;
2572         int write_mode = (int)(unsigned long)fsdata;
2573
2574         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2575                 switch (ext4_inode_journal_mode(inode)) {
2576                 case EXT4_INODE_ORDERED_DATA_MODE:
2577                         return ext4_ordered_write_end(file, mapping, pos,
2578                                         len, copied, page, fsdata);
2579                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2580                         return ext4_writeback_write_end(file, mapping, pos,
2581                                         len, copied, page, fsdata);
2582                 default:
2583                         BUG();
2584                 }
2585         }
2586
2587         trace_ext4_da_write_end(inode, pos, len, copied);
2588         start = pos & (PAGE_CACHE_SIZE - 1);
2589         end = start + copied - 1;
2590
2591         /*
2592          * generic_write_end() will run mark_inode_dirty() if i_size
2593          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2594          * into that.
2595          */
2596         new_i_size = pos + copied;
2597         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2598                 if (ext4_has_inline_data(inode) ||
2599                     ext4_da_should_update_i_disksize(page, end)) {
2600                         down_write(&EXT4_I(inode)->i_data_sem);
2601                         if (new_i_size > EXT4_I(inode)->i_disksize)
2602                                 EXT4_I(inode)->i_disksize = new_i_size;
2603                         up_write(&EXT4_I(inode)->i_data_sem);
2604                         /* We need to mark inode dirty even if
2605                          * new_i_size is less that inode->i_size
2606                          * bu greater than i_disksize.(hint delalloc)
2607                          */
2608                         ext4_mark_inode_dirty(handle, inode);
2609                 }
2610         }
2611
2612         if (write_mode != CONVERT_INLINE_DATA &&
2613             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2614             ext4_has_inline_data(inode))
2615                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2616                                                      page);
2617         else
2618                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2619                                                         page, fsdata);
2620
2621         copied = ret2;
2622         if (ret2 < 0)
2623                 ret = ret2;
2624         ret2 = ext4_journal_stop(handle);
2625         if (!ret)
2626                 ret = ret2;
2627
2628         return ret ? ret : copied;
2629 }
2630
2631 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2632 {
2633         /*
2634          * Drop reserved blocks
2635          */
2636         BUG_ON(!PageLocked(page));
2637         if (!page_has_buffers(page))
2638                 goto out;
2639
2640         ext4_da_page_release_reservation(page, offset);
2641
2642 out:
2643         ext4_invalidatepage(page, offset);
2644
2645         return;
2646 }
2647
2648 /*
2649  * Force all delayed allocation blocks to be allocated for a given inode.
2650  */
2651 int ext4_alloc_da_blocks(struct inode *inode)
2652 {
2653         trace_ext4_alloc_da_blocks(inode);
2654
2655         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2656             !EXT4_I(inode)->i_reserved_meta_blocks)
2657                 return 0;
2658
2659         /*
2660          * We do something simple for now.  The filemap_flush() will
2661          * also start triggering a write of the data blocks, which is
2662          * not strictly speaking necessary (and for users of
2663          * laptop_mode, not even desirable).  However, to do otherwise
2664          * would require replicating code paths in:
2665          *
2666          * ext4_da_writepages() ->
2667          *    write_cache_pages() ---> (via passed in callback function)
2668          *        __mpage_da_writepage() -->
2669          *           mpage_add_bh_to_extent()
2670          *           mpage_da_map_blocks()
2671          *
2672          * The problem is that write_cache_pages(), located in
2673          * mm/page-writeback.c, marks pages clean in preparation for
2674          * doing I/O, which is not desirable if we're not planning on
2675          * doing I/O at all.
2676          *
2677          * We could call write_cache_pages(), and then redirty all of
2678          * the pages by calling redirty_page_for_writepage() but that
2679          * would be ugly in the extreme.  So instead we would need to
2680          * replicate parts of the code in the above functions,
2681          * simplifying them because we wouldn't actually intend to
2682          * write out the pages, but rather only collect contiguous
2683          * logical block extents, call the multi-block allocator, and
2684          * then update the buffer heads with the block allocations.
2685          *
2686          * For now, though, we'll cheat by calling filemap_flush(),
2687          * which will map the blocks, and start the I/O, but not
2688          * actually wait for the I/O to complete.
2689          */
2690         return filemap_flush(inode->i_mapping);
2691 }
2692
2693 /*
2694  * bmap() is special.  It gets used by applications such as lilo and by
2695  * the swapper to find the on-disk block of a specific piece of data.
2696  *
2697  * Naturally, this is dangerous if the block concerned is still in the
2698  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2699  * filesystem and enables swap, then they may get a nasty shock when the
2700  * data getting swapped to that swapfile suddenly gets overwritten by
2701  * the original zero's written out previously to the journal and
2702  * awaiting writeback in the kernel's buffer cache.
2703  *
2704  * So, if we see any bmap calls here on a modified, data-journaled file,
2705  * take extra steps to flush any blocks which might be in the cache.
2706  */
2707 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2708 {
2709         struct inode *inode = mapping->host;
2710         journal_t *journal;
2711         int err;
2712
2713         /*
2714          * We can get here for an inline file via the FIBMAP ioctl
2715          */
2716         if (ext4_has_inline_data(inode))
2717                 return 0;
2718
2719         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2720                         test_opt(inode->i_sb, DELALLOC)) {
2721                 /*
2722                  * With delalloc we want to sync the file
2723                  * so that we can make sure we allocate
2724                  * blocks for file
2725                  */
2726                 filemap_write_and_wait(mapping);
2727         }
2728
2729         if (EXT4_JOURNAL(inode) &&
2730             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2731                 /*
2732                  * This is a REALLY heavyweight approach, but the use of
2733                  * bmap on dirty files is expected to be extremely rare:
2734                  * only if we run lilo or swapon on a freshly made file
2735                  * do we expect this to happen.
2736                  *
2737                  * (bmap requires CAP_SYS_RAWIO so this does not
2738                  * represent an unprivileged user DOS attack --- we'd be
2739                  * in trouble if mortal users could trigger this path at
2740                  * will.)
2741                  *
2742                  * NB. EXT4_STATE_JDATA is not set on files other than
2743                  * regular files.  If somebody wants to bmap a directory
2744                  * or symlink and gets confused because the buffer
2745                  * hasn't yet been flushed to disk, they deserve
2746                  * everything they get.
2747                  */
2748
2749                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2750                 journal = EXT4_JOURNAL(inode);
2751                 jbd2_journal_lock_updates(journal);
2752                 err = jbd2_journal_flush(journal);
2753                 jbd2_journal_unlock_updates(journal);
2754
2755                 if (err)
2756                         return 0;
2757         }
2758
2759         return generic_block_bmap(mapping, block, ext4_get_block);
2760 }
2761
2762 static int ext4_readpage(struct file *file, struct page *page)
2763 {
2764         int ret = -EAGAIN;
2765         struct inode *inode = page->mapping->host;
2766
2767         trace_ext4_readpage(page);
2768
2769         if (ext4_has_inline_data(inode))
2770                 ret = ext4_readpage_inline(inode, page);
2771
2772         if (ret == -EAGAIN)
2773                 return mpage_readpage(page, ext4_get_block);
2774
2775         return ret;
2776 }
2777
2778 static int
2779 ext4_readpages(struct file *file, struct address_space *mapping,
2780                 struct list_head *pages, unsigned nr_pages)
2781 {
2782         struct inode *inode = mapping->host;
2783
2784         /* If the file has inline data, no need to do readpages. */
2785         if (ext4_has_inline_data(inode))
2786                 return 0;
2787
2788         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2789 }
2790
2791 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2792 {
2793         trace_ext4_invalidatepage(page, offset);
2794
2795         /* No journalling happens on data buffers when this function is used */
2796         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2797
2798         block_invalidatepage(page, offset);
2799 }
2800
2801 static int __ext4_journalled_invalidatepage(struct page *page,
2802                                             unsigned long offset)
2803 {
2804         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2805
2806         trace_ext4_journalled_invalidatepage(page, offset);
2807
2808         /*
2809          * If it's a full truncate we just forget about the pending dirtying
2810          */
2811         if (offset == 0)
2812                 ClearPageChecked(page);
2813
2814         return jbd2_journal_invalidatepage(journal, page, offset);
2815 }
2816
2817 /* Wrapper for aops... */
2818 static void ext4_journalled_invalidatepage(struct page *page,
2819                                            unsigned long offset)
2820 {
2821         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2822 }
2823
2824 static int ext4_releasepage(struct page *page, gfp_t wait)
2825 {
2826         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2827
2828         trace_ext4_releasepage(page);
2829
2830         WARN_ON(PageChecked(page));
2831         if (!page_has_buffers(page))
2832                 return 0;
2833         if (journal)
2834                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2835         else
2836                 return try_to_free_buffers(page);
2837 }
2838
2839 /*
2840  * ext4_get_block used when preparing for a DIO write or buffer write.
2841  * We allocate an uinitialized extent if blocks haven't been allocated.
2842  * The extent will be converted to initialized after the IO is complete.
2843  */
2844 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2845                    struct buffer_head *bh_result, int create)
2846 {
2847         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2848                    inode->i_ino, create);
2849         return _ext4_get_block(inode, iblock, bh_result,
2850                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2851 }
2852
2853 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2854                    struct buffer_head *bh_result, int create)
2855 {
2856         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2857                    inode->i_ino, create);
2858         return _ext4_get_block(inode, iblock, bh_result,
2859                                EXT4_GET_BLOCKS_NO_LOCK);
2860 }
2861
2862 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2863                             ssize_t size, void *private, int ret,
2864                             bool is_async)
2865 {
2866         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2867         ext4_io_end_t *io_end = iocb->private;
2868
2869         /* if not async direct IO or dio with 0 bytes write, just return */
2870         if (!io_end || !size)
2871                 goto out;
2872
2873         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2874                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2875                   iocb->private, io_end->inode->i_ino, iocb, offset,
2876                   size);
2877
2878         iocb->private = NULL;
2879
2880         /* if not aio dio with unwritten extents, just free io and return */
2881         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2882                 ext4_free_io_end(io_end);
2883 out:
2884                 inode_dio_done(inode);
2885                 if (is_async)
2886                         aio_complete(iocb, ret, 0);
2887                 return;
2888         }
2889
2890         io_end->offset = offset;
2891         io_end->size = size;
2892         if (is_async) {
2893                 io_end->iocb = iocb;
2894                 io_end->result = ret;
2895         }
2896
2897         ext4_add_complete_io(io_end);
2898 }
2899
2900 /*
2901  * For ext4 extent files, ext4 will do direct-io write to holes,
2902  * preallocated extents, and those write extend the file, no need to
2903  * fall back to buffered IO.
2904  *
2905  * For holes, we fallocate those blocks, mark them as uninitialized
2906  * If those blocks were preallocated, we mark sure they are split, but
2907  * still keep the range to write as uninitialized.
2908  *
2909  * The unwritten extents will be converted to written when DIO is completed.
2910  * For async direct IO, since the IO may still pending when return, we
2911  * set up an end_io call back function, which will do the conversion
2912  * when async direct IO completed.
2913  *
2914  * If the O_DIRECT write will extend the file then add this inode to the
2915  * orphan list.  So recovery will truncate it back to the original size
2916  * if the machine crashes during the write.
2917  *
2918  */
2919 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2920                               const struct iovec *iov, loff_t offset,
2921                               unsigned long nr_segs)
2922 {
2923         struct file *file = iocb->ki_filp;
2924         struct inode *inode = file->f_mapping->host;
2925         ssize_t ret;
2926         size_t count = iov_length(iov, nr_segs);
2927         int overwrite = 0;
2928         get_block_t *get_block_func = NULL;
2929         int dio_flags = 0;
2930         loff_t final_size = offset + count;
2931
2932         /* Use the old path for reads and writes beyond i_size. */
2933         if (rw != WRITE || final_size > inode->i_size)
2934                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2935
2936         BUG_ON(iocb->private == NULL);
2937
2938         /* If we do a overwrite dio, i_mutex locking can be released */
2939         overwrite = *((int *)iocb->private);
2940
2941         if (overwrite) {
2942                 atomic_inc(&inode->i_dio_count);
2943                 down_read(&EXT4_I(inode)->i_data_sem);
2944                 mutex_unlock(&inode->i_mutex);
2945         }
2946
2947         /*
2948          * We could direct write to holes and fallocate.
2949          *
2950          * Allocated blocks to fill the hole are marked as
2951          * uninitialized to prevent parallel buffered read to expose
2952          * the stale data before DIO complete the data IO.
2953          *
2954          * As to previously fallocated extents, ext4 get_block will
2955          * just simply mark the buffer mapped but still keep the
2956          * extents uninitialized.
2957          *
2958          * For non AIO case, we will convert those unwritten extents
2959          * to written after return back from blockdev_direct_IO.
2960          *
2961          * For async DIO, the conversion needs to be deferred when the
2962          * IO is completed. The ext4 end_io callback function will be
2963          * called to take care of the conversion work.  Here for async
2964          * case, we allocate an io_end structure to hook to the iocb.
2965          */
2966         iocb->private = NULL;
2967         ext4_inode_aio_set(inode, NULL);
2968         if (!is_sync_kiocb(iocb)) {
2969                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
2970                 if (!io_end) {
2971                         ret = -ENOMEM;
2972                         goto retake_lock;
2973                 }
2974                 io_end->flag |= EXT4_IO_END_DIRECT;
2975                 iocb->private = io_end;
2976                 /*
2977                  * we save the io structure for current async direct
2978                  * IO, so that later ext4_map_blocks() could flag the
2979                  * io structure whether there is a unwritten extents
2980                  * needs to be converted when IO is completed.
2981                  */
2982                 ext4_inode_aio_set(inode, io_end);
2983         }
2984
2985         if (overwrite) {
2986                 get_block_func = ext4_get_block_write_nolock;
2987         } else {
2988                 get_block_func = ext4_get_block_write;
2989                 dio_flags = DIO_LOCKING;
2990         }
2991         ret = __blockdev_direct_IO(rw, iocb, inode,
2992                                    inode->i_sb->s_bdev, iov,
2993                                    offset, nr_segs,
2994                                    get_block_func,
2995                                    ext4_end_io_dio,
2996                                    NULL,
2997                                    dio_flags);
2998
2999         if (iocb->private)
3000                 ext4_inode_aio_set(inode, NULL);
3001         /*
3002          * The io_end structure takes a reference to the inode, that
3003          * structure needs to be destroyed and the reference to the
3004          * inode need to be dropped, when IO is complete, even with 0
3005          * byte write, or failed.
3006          *
3007          * In the successful AIO DIO case, the io_end structure will
3008          * be destroyed and the reference to the inode will be dropped
3009          * after the end_io call back function is called.
3010          *
3011          * In the case there is 0 byte write, or error case, since VFS
3012          * direct IO won't invoke the end_io call back function, we
3013          * need to free the end_io structure here.
3014          */
3015         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3016                 ext4_free_io_end(iocb->private);
3017                 iocb->private = NULL;
3018         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3019                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3020                 int err;
3021                 /*
3022                  * for non AIO case, since the IO is already
3023                  * completed, we could do the conversion right here
3024                  */
3025                 err = ext4_convert_unwritten_extents(inode,
3026                                                      offset, ret);
3027                 if (err < 0)
3028                         ret = err;
3029                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3030         }
3031
3032 retake_lock:
3033         /* take i_mutex locking again if we do a ovewrite dio */
3034         if (overwrite) {
3035                 inode_dio_done(inode);
3036                 up_read(&EXT4_I(inode)->i_data_sem);
3037                 mutex_lock(&inode->i_mutex);
3038         }
3039
3040         return ret;
3041 }
3042
3043 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3044                               const struct iovec *iov, loff_t offset,
3045                               unsigned long nr_segs)
3046 {
3047         struct file *file = iocb->ki_filp;
3048         struct inode *inode = file->f_mapping->host;
3049         ssize_t ret;
3050
3051         /*
3052          * If we are doing data journalling we don't support O_DIRECT
3053          */
3054         if (ext4_should_journal_data(inode))
3055                 return 0;
3056
3057         /* Let buffer I/O handle the inline data case. */
3058         if (ext4_has_inline_data(inode))
3059                 return 0;
3060
3061         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3062         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3063                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3064         else
3065                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3066         trace_ext4_direct_IO_exit(inode, offset,
3067                                 iov_length(iov, nr_segs), rw, ret);
3068         return ret;
3069 }
3070
3071 /*
3072  * Pages can be marked dirty completely asynchronously from ext4's journalling
3073  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3074  * much here because ->set_page_dirty is called under VFS locks.  The page is
3075  * not necessarily locked.
3076  *
3077  * We cannot just dirty the page and leave attached buffers clean, because the
3078  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3079  * or jbddirty because all the journalling code will explode.
3080  *
3081  * So what we do is to mark the page "pending dirty" and next time writepage
3082  * is called, propagate that into the buffers appropriately.
3083  */
3084 static int ext4_journalled_set_page_dirty(struct page *page)
3085 {
3086         SetPageChecked(page);
3087         return __set_page_dirty_nobuffers(page);
3088 }
3089
3090 static const struct address_space_operations ext4_ordered_aops = {
3091         .readpage               = ext4_readpage,
3092         .readpages              = ext4_readpages,
3093         .writepage              = ext4_writepage,
3094         .write_begin            = ext4_write_begin,
3095         .write_end              = ext4_ordered_write_end,
3096         .bmap                   = ext4_bmap,
3097         .invalidatepage         = ext4_invalidatepage,
3098         .releasepage            = ext4_releasepage,
3099         .direct_IO              = ext4_direct_IO,
3100         .migratepage            = buffer_migrate_page,
3101         .is_partially_uptodate  = block_is_partially_uptodate,
3102         .error_remove_page      = generic_error_remove_page,
3103 };
3104
3105 static const struct address_space_operations ext4_writeback_aops = {
3106         .readpage               = ext4_readpage,
3107         .readpages              = ext4_readpages,
3108         .writepage              = ext4_writepage,
3109         .write_begin            = ext4_write_begin,
3110         .write_end              = ext4_writeback_write_end,
3111         .bmap                   = ext4_bmap,
3112         .invalidatepage         = ext4_invalidatepage,
3113         .releasepage            = ext4_releasepage,
3114         .direct_IO              = ext4_direct_IO,
3115         .migratepage            = buffer_migrate_page,
3116         .is_partially_uptodate  = block_is_partially_uptodate,
3117         .error_remove_page      = generic_error_remove_page,
3118 };
3119
3120 static const struct address_space_operations ext4_journalled_aops = {
3121         .readpage               = ext4_readpage,
3122         .readpages              = ext4_readpages,
3123         .writepage              = ext4_writepage,
3124         .write_begin            = ext4_write_begin,
3125         .write_end              = ext4_journalled_write_end,
3126         .set_page_dirty         = ext4_journalled_set_page_dirty,
3127         .bmap                   = ext4_bmap,
3128         .invalidatepage         = ext4_journalled_invalidatepage,
3129         .releasepage            = ext4_releasepage,
3130         .direct_IO              = ext4_direct_IO,
3131         .is_partially_uptodate  = block_is_partially_uptodate,
3132         .error_remove_page      = generic_error_remove_page,
3133 };
3134
3135 static const struct address_space_operations ext4_da_aops = {
3136         .readpage               = ext4_readpage,
3137         .readpages              = ext4_readpages,
3138         .writepage              = ext4_writepage,
3139         .writepages             = ext4_da_writepages,
3140         .write_begin            = ext4_da_write_begin,
3141         .write_end              = ext4_da_write_end,
3142         .bmap                   = ext4_bmap,
3143         .invalidatepage         = ext4_da_invalidatepage,
3144         .releasepage            = ext4_releasepage,
3145         .direct_IO              = ext4_direct_IO,
3146         .migratepage            = buffer_migrate_page,
3147         .is_partially_uptodate  = block_is_partially_uptodate,
3148         .error_remove_page      = generic_error_remove_page,
3149 };
3150
3151 void ext4_set_aops(struct inode *inode)
3152 {
3153         switch (ext4_inode_journal_mode(inode)) {
3154         case EXT4_INODE_ORDERED_DATA_MODE:
3155                 if (test_opt(inode->i_sb, DELALLOC))
3156                         inode->i_mapping->a_ops = &ext4_da_aops;
3157                 else
3158                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3159                 break;
3160         case EXT4_INODE_WRITEBACK_DATA_MODE:
3161                 if (test_opt(inode->i_sb, DELALLOC))
3162                         inode->i_mapping->a_ops = &ext4_da_aops;
3163                 else
3164                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3165                 break;
3166         case EXT4_INODE_JOURNAL_DATA_MODE:
3167                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3168                 break;
3169         default:
3170                 BUG();
3171         }
3172 }
3173
3174
3175 /*
3176  * ext4_discard_partial_page_buffers()
3177  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3178  * This function finds and locks the page containing the offset
3179  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3180  * Calling functions that already have the page locked should call
3181  * ext4_discard_partial_page_buffers_no_lock directly.
3182  */
3183 int ext4_discard_partial_page_buffers(handle_t *handle,
3184                 struct address_space *mapping, loff_t from,
3185                 loff_t length, int flags)
3186 {
3187         struct inode *inode = mapping->host;
3188         struct page *page;
3189         int err = 0;
3190
3191         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3192                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3193         if (!page)
3194                 return -ENOMEM;
3195
3196         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3197                 from, length, flags);
3198
3199         unlock_page(page);
3200         page_cache_release(page);
3201         return err;
3202 }
3203
3204 /*
3205  * ext4_discard_partial_page_buffers_no_lock()
3206  * Zeros a page range of length 'length' starting from offset 'from'.
3207  * Buffer heads that correspond to the block aligned regions of the
3208  * zeroed range will be unmapped.  Unblock aligned regions
3209  * will have the corresponding buffer head mapped if needed so that
3210  * that region of the page can be updated with the partial zero out.
3211  *
3212  * This function assumes that the page has already been  locked.  The
3213  * The range to be discarded must be contained with in the given page.
3214  * If the specified range exceeds the end of the page it will be shortened
3215  * to the end of the page that corresponds to 'from'.  This function is
3216  * appropriate for updating a page and it buffer heads to be unmapped and
3217  * zeroed for blocks that have been either released, or are going to be
3218  * released.
3219  *
3220  * handle: The journal handle
3221  * inode:  The files inode
3222  * page:   A locked page that contains the offset "from"
3223  * from:   The starting byte offset (from the beginning of the file)
3224  *         to begin discarding
3225  * len:    The length of bytes to discard
3226  * flags:  Optional flags that may be used:
3227  *
3228  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3229  *         Only zero the regions of the page whose buffer heads
3230  *         have already been unmapped.  This flag is appropriate
3231  *         for updating the contents of a page whose blocks may
3232  *         have already been released, and we only want to zero
3233  *         out the regions that correspond to those released blocks.
3234  *
3235  * Returns zero on success or negative on failure.
3236  */
3237 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3238                 struct inode *inode, struct page *page, loff_t from,
3239                 loff_t length, int flags)
3240 {
3241         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3242         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3243         unsigned int blocksize, max, pos;
3244         ext4_lblk_t iblock;
3245         struct buffer_head *bh;
3246         int err = 0;
3247
3248         blocksize = inode->i_sb->s_blocksize;
3249         max = PAGE_CACHE_SIZE - offset;
3250
3251         if (index != page->index)
3252                 return -EINVAL;
3253
3254         /*
3255          * correct length if it does not fall between
3256          * 'from' and the end of the page
3257          */
3258         if (length > max || length < 0)
3259                 length = max;
3260
3261         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3262
3263         if (!page_has_buffers(page))
3264                 create_empty_buffers(page, blocksize, 0);
3265
3266         /* Find the buffer that contains "offset" */
3267         bh = page_buffers(page);
3268         pos = blocksize;
3269         while (offset >= pos) {
3270                 bh = bh->b_this_page;
3271                 iblock++;
3272                 pos += blocksize;
3273         }
3274
3275         pos = offset;
3276         while (pos < offset + length) {
3277                 unsigned int end_of_block, range_to_discard;
3278
3279                 err = 0;
3280
3281                 /* The length of space left to zero and unmap */
3282                 range_to_discard = offset + length - pos;
3283
3284                 /* The length of space until the end of the block */
3285                 end_of_block = blocksize - (pos & (blocksize-1));
3286
3287                 /*
3288                  * Do not unmap or zero past end of block
3289                  * for this buffer head
3290                  */
3291                 if (range_to_discard > end_of_block)
3292                         range_to_discard = end_of_block;
3293
3294
3295                 /*
3296                  * Skip this buffer head if we are only zeroing unampped
3297                  * regions of the page
3298                  */
3299                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3300                         buffer_mapped(bh))
3301                                 goto next;
3302
3303                 /* If the range is block aligned, unmap */
3304                 if (range_to_discard == blocksize) {
3305                         clear_buffer_dirty(bh);
3306                         bh->b_bdev = NULL;
3307                         clear_buffer_mapped(bh);
3308                         clear_buffer_req(bh);
3309                         clear_buffer_new(bh);
3310                         clear_buffer_delay(bh);
3311                         clear_buffer_unwritten(bh);
3312                         clear_buffer_uptodate(bh);
3313                         zero_user(page, pos, range_to_discard);
3314                         BUFFER_TRACE(bh, "Buffer discarded");
3315                         goto next;
3316                 }
3317
3318                 /*
3319                  * If this block is not completely contained in the range
3320                  * to be discarded, then it is not going to be released. Because
3321                  * we need to keep this block, we need to make sure this part
3322                  * of the page is uptodate before we modify it by writeing
3323                  * partial zeros on it.
3324                  */
3325                 if (!buffer_mapped(bh)) {
3326                         /*
3327                          * Buffer head must be mapped before we can read
3328                          * from the block
3329                          */
3330                         BUFFER_TRACE(bh, "unmapped");
3331                         ext4_get_block(inode, iblock, bh, 0);
3332                         /* unmapped? It's a hole - nothing to do */
3333                         if (!buffer_mapped(bh)) {
3334                                 BUFFER_TRACE(bh, "still unmapped");
3335                                 goto next;
3336                         }
3337                 }
3338
3339                 /* Ok, it's mapped. Make sure it's up-to-date */
3340                 if (PageUptodate(page))
3341                         set_buffer_uptodate(bh);
3342
3343                 if (!buffer_uptodate(bh)) {
3344                         err = -EIO;
3345                         ll_rw_block(READ, 1, &bh);
3346                         wait_on_buffer(bh);
3347                         /* Uhhuh. Read error. Complain and punt.*/
3348                         if (!buffer_uptodate(bh))
3349                                 goto next;
3350                 }
3351
3352                 if (ext4_should_journal_data(inode)) {
3353                         BUFFER_TRACE(bh, "get write access");
3354                         err = ext4_journal_get_write_access(handle, bh);
3355                         if (err)
3356                                 goto next;
3357                 }
3358
3359                 zero_user(page, pos, range_to_discard);
3360
3361                 err = 0;
3362                 if (ext4_should_journal_data(inode)) {
3363                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3364                 } else
3365                         mark_buffer_dirty(bh);
3366
3367                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3368 next:
3369                 bh = bh->b_this_page;
3370                 iblock++;
3371                 pos += range_to_discard;
3372         }
3373
3374         return err;
3375 }
3376
3377 int ext4_can_truncate(struct inode *inode)
3378 {
3379         if (S_ISREG(inode->i_mode))
3380                 return 1;
3381         if (S_ISDIR(inode->i_mode))
3382                 return 1;
3383         if (S_ISLNK(inode->i_mode))
3384                 return !ext4_inode_is_fast_symlink(inode);
3385         return 0;
3386 }
3387
3388 /*
3389  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3390  * associated with the given offset and length
3391  *
3392  * @inode:  File inode
3393  * @offset: The offset where the hole will begin
3394  * @len:    The length of the hole
3395  *
3396  * Returns: 0 on success or negative on failure
3397  */
3398
3399 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3400 {
3401         struct inode *inode = file->f_path.dentry->d_inode;
3402         if (!S_ISREG(inode->i_mode))
3403                 return -EOPNOTSUPP;
3404
3405         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3406                 return ext4_ind_punch_hole(file, offset, length);
3407
3408         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3409                 /* TODO: Add support for bigalloc file systems */
3410                 return -EOPNOTSUPP;
3411         }
3412
3413         trace_ext4_punch_hole(inode, offset, length);
3414
3415         return ext4_ext_punch_hole(file, offset, length);
3416 }
3417
3418 /*
3419  * ext4_truncate()
3420  *
3421  * We block out ext4_get_block() block instantiations across the entire
3422  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3423  * simultaneously on behalf of the same inode.
3424  *
3425  * As we work through the truncate and commit bits of it to the journal there
3426  * is one core, guiding principle: the file's tree must always be consistent on
3427  * disk.  We must be able to restart the truncate after a crash.
3428  *
3429  * The file's tree may be transiently inconsistent in memory (although it
3430  * probably isn't), but whenever we close off and commit a journal transaction,
3431  * the contents of (the filesystem + the journal) must be consistent and
3432  * restartable.  It's pretty simple, really: bottom up, right to left (although
3433  * left-to-right works OK too).
3434  *
3435  * Note that at recovery time, journal replay occurs *before* the restart of
3436  * truncate against the orphan inode list.
3437  *
3438  * The committed inode has the new, desired i_size (which is the same as
3439  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3440  * that this inode's truncate did not complete and it will again call
3441  * ext4_truncate() to have another go.  So there will be instantiated blocks
3442  * to the right of the truncation point in a crashed ext4 filesystem.  But
3443  * that's fine - as long as they are linked from the inode, the post-crash
3444  * ext4_truncate() run will find them and release them.
3445  */
3446 void ext4_truncate(struct inode *inode)
3447 {
3448         trace_ext4_truncate_enter(inode);
3449
3450         if (!ext4_can_truncate(inode))
3451                 return;
3452
3453         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3454
3455         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3456                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3457
3458         if (ext4_has_inline_data(inode)) {
3459                 int has_inline = 1;
3460
3461                 ext4_inline_data_truncate(inode, &has_inline);
3462                 if (has_inline)
3463                         return;
3464         }
3465
3466         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3467                 ext4_ext_truncate(inode);
3468         else
3469                 ext4_ind_truncate(inode);
3470
3471         trace_ext4_truncate_exit(inode);
3472 }
3473
3474 /*
3475  * ext4_get_inode_loc returns with an extra refcount against the inode's
3476  * underlying buffer_head on success. If 'in_mem' is true, we have all
3477  * data in memory that is needed to recreate the on-disk version of this
3478  * inode.
3479  */
3480 static int __ext4_get_inode_loc(struct inode *inode,
3481                                 struct ext4_iloc *iloc, int in_mem)
3482 {
3483         struct ext4_group_desc  *gdp;
3484         struct buffer_head      *bh;
3485         struct super_block      *sb = inode->i_sb;
3486         ext4_fsblk_t            block;
3487         int                     inodes_per_block, inode_offset;
3488
3489         iloc->bh = NULL;
3490         if (!ext4_valid_inum(sb, inode->i_ino))
3491                 return -EIO;
3492
3493         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3494         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3495         if (!gdp)
3496                 return -EIO;
3497
3498         /*
3499          * Figure out the offset within the block group inode table
3500          */
3501         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3502         inode_offset = ((inode->i_ino - 1) %
3503                         EXT4_INODES_PER_GROUP(sb));
3504         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3505         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3506
3507         bh = sb_getblk(sb, block);
3508         if (unlikely(!bh))
3509                 return -ENOMEM;
3510         if (!buffer_uptodate(bh)) {
3511                 lock_buffer(bh);
3512
3513                 /*
3514                  * If the buffer has the write error flag, we have failed
3515                  * to write out another inode in the same block.  In this
3516                  * case, we don't have to read the block because we may
3517                  * read the old inode data successfully.
3518                  */
3519                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3520                         set_buffer_uptodate(bh);
3521
3522                 if (buffer_uptodate(bh)) {
3523                         /* someone brought it uptodate while we waited */
3524                         unlock_buffer(bh);
3525                         goto has_buffer;
3526                 }
3527
3528                 /*
3529                  * If we have all information of the inode in memory and this
3530                  * is the only valid inode in the block, we need not read the
3531                  * block.
3532                  */
3533                 if (in_mem) {
3534                         struct buffer_head *bitmap_bh;
3535                         int i, start;
3536
3537                         start = inode_offset & ~(inodes_per_block - 1);
3538
3539                         /* Is the inode bitmap in cache? */
3540                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3541                         if (unlikely(!bitmap_bh))
3542                                 goto make_io;
3543
3544                         /*
3545                          * If the inode bitmap isn't in cache then the
3546                          * optimisation may end up performing two reads instead
3547                          * of one, so skip it.
3548                          */
3549                         if (!buffer_uptodate(bitmap_bh)) {
3550                                 brelse(bitmap_bh);
3551                                 goto make_io;
3552                         }
3553                         for (i = start; i < start + inodes_per_block; i++) {
3554                                 if (i == inode_offset)
3555                                         continue;
3556                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3557                                         break;
3558                         }
3559                         brelse(bitmap_bh);
3560                         if (i == start + inodes_per_block) {
3561                                 /* all other inodes are free, so skip I/O */
3562                                 memset(bh->b_data, 0, bh->b_size);
3563                                 set_buffer_uptodate(bh);
3564                                 unlock_buffer(bh);
3565                                 goto has_buffer;
3566                         }
3567                 }
3568
3569 make_io:
3570                 /*
3571                  * If we need to do any I/O, try to pre-readahead extra
3572                  * blocks from the inode table.
3573                  */
3574                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3575                         ext4_fsblk_t b, end, table;
3576                         unsigned num;
3577
3578                         table = ext4_inode_table(sb, gdp);
3579                         /* s_inode_readahead_blks is always a power of 2 */
3580                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3581                         if (table > b)
3582                                 b = table;
3583                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3584                         num = EXT4_INODES_PER_GROUP(sb);
3585                         if (ext4_has_group_desc_csum(sb))
3586                                 num -= ext4_itable_unused_count(sb, gdp);
3587                         table += num / inodes_per_block;
3588                         if (end > table)
3589                                 end = table;
3590                         while (b <= end)
3591                                 sb_breadahead(sb, b++);
3592                 }
3593
3594                 /*
3595                  * There are other valid inodes in the buffer, this inode
3596                  * has in-inode xattrs, or we don't have this inode in memory.
3597                  * Read the block from disk.
3598                  */
3599                 trace_ext4_load_inode(inode);
3600                 get_bh(bh);
3601                 bh->b_end_io = end_buffer_read_sync;
3602                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3603                 wait_on_buffer(bh);
3604                 if (!buffer_uptodate(bh)) {
3605                         EXT4_ERROR_INODE_BLOCK(inode, block,
3606                                                "unable to read itable block");
3607                         brelse(bh);
3608                         return -EIO;
3609                 }
3610         }
3611 has_buffer:
3612         iloc->bh = bh;
3613         return 0;
3614 }
3615
3616 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3617 {
3618         /* We have all inode data except xattrs in memory here. */
3619         return __ext4_get_inode_loc(inode, iloc,
3620                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3621 }
3622
3623 void ext4_set_inode_flags(struct inode *inode)
3624 {
3625         unsigned int flags = EXT4_I(inode)->i_flags;
3626
3627         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3628         if (flags & EXT4_SYNC_FL)
3629                 inode->i_flags |= S_SYNC;
3630         if (flags & EXT4_APPEND_FL)
3631                 inode->i_flags |= S_APPEND;
3632         if (flags & EXT4_IMMUTABLE_FL)
3633                 inode->i_flags |= S_IMMUTABLE;
3634         if (flags & EXT4_NOATIME_FL)
3635                 inode->i_flags |= S_NOATIME;
3636         if (flags & EXT4_DIRSYNC_FL)
3637                 inode->i_flags |= S_DIRSYNC;
3638 }
3639
3640 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3641 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3642 {
3643         unsigned int vfs_fl;
3644         unsigned long old_fl, new_fl;
3645
3646         do {
3647                 vfs_fl = ei->vfs_inode.i_flags;
3648                 old_fl = ei->i_flags;
3649                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3650                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3651                                 EXT4_DIRSYNC_FL);
3652                 if (vfs_fl & S_SYNC)
3653                         new_fl |= EXT4_SYNC_FL;
3654                 if (vfs_fl & S_APPEND)
3655                         new_fl |= EXT4_APPEND_FL;
3656                 if (vfs_fl & S_IMMUTABLE)
3657                         new_fl |= EXT4_IMMUTABLE_FL;
3658                 if (vfs_fl & S_NOATIME)
3659                         new_fl |= EXT4_NOATIME_FL;
3660                 if (vfs_fl & S_DIRSYNC)
3661                         new_fl |= EXT4_DIRSYNC_FL;
3662         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3663 }
3664
3665 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3666                                   struct ext4_inode_info *ei)
3667 {
3668         blkcnt_t i_blocks ;
3669         struct inode *inode = &(ei->vfs_inode);
3670         struct super_block *sb = inode->i_sb;
3671
3672         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3673                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3674                 /* we are using combined 48 bit field */
3675                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3676                                         le32_to_cpu(raw_inode->i_blocks_lo);
3677                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3678                         /* i_blocks represent file system block size */
3679                         return i_blocks  << (inode->i_blkbits - 9);
3680                 } else {
3681                         return i_blocks;
3682                 }
3683         } else {
3684                 return le32_to_cpu(raw_inode->i_blocks_lo);
3685         }
3686 }
3687
3688 static inline void ext4_iget_extra_inode(struct inode *inode,
3689                                          struct ext4_inode *raw_inode,
3690                                          struct ext4_inode_info *ei)
3691 {
3692         __le32 *magic = (void *)raw_inode +
3693                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3694         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3695                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3696                 ext4_find_inline_data_nolock(inode);
3697         } else
3698                 EXT4_I(inode)->i_inline_off = 0;
3699 }
3700
3701 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3702 {
3703         struct ext4_iloc iloc;
3704         struct ext4_inode *raw_inode;
3705         struct ext4_inode_info *ei;
3706         struct inode *inode;
3707         journal_t *journal = EXT4_SB(sb)->s_journal;
3708         long ret;
3709         int block;
3710         uid_t i_uid;
3711         gid_t i_gid;
3712
3713         inode = iget_locked(sb, ino);
3714         if (!inode)
3715                 return ERR_PTR(-ENOMEM);
3716         if (!(inode->i_state & I_NEW))
3717                 return inode;
3718
3719         ei = EXT4_I(inode);
3720         iloc.bh = NULL;
3721
3722         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3723         if (ret < 0)
3724                 goto bad_inode;
3725         raw_inode = ext4_raw_inode(&iloc);
3726
3727         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3728                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3729                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3730                     EXT4_INODE_SIZE(inode->i_sb)) {
3731                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3732                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3733                                 EXT4_INODE_SIZE(inode->i_sb));
3734                         ret = -EIO;
3735                         goto bad_inode;
3736                 }
3737         } else
3738                 ei->i_extra_isize = 0;
3739
3740         /* Precompute checksum seed for inode metadata */
3741         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3742                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3743                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3744                 __u32 csum;
3745                 __le32 inum = cpu_to_le32(inode->i_ino);
3746                 __le32 gen = raw_inode->i_generation;
3747                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3748                                    sizeof(inum));
3749                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3750                                               sizeof(gen));
3751         }
3752
3753         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3754                 EXT4_ERROR_INODE(inode, "checksum invalid");
3755                 ret = -EIO;
3756                 goto bad_inode;
3757         }
3758
3759         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3760         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3761         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3762         if (!(test_opt(inode->i_sb, NO_UID32))) {
3763                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3764                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3765         }
3766         i_uid_write(inode, i_uid);
3767         i_gid_write(inode, i_gid);
3768         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3769
3770         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3771         ei->i_inline_off = 0;
3772         ei->i_dir_start_lookup = 0;
3773         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3774         /* We now have enough fields to check if the inode was active or not.
3775          * This is needed because nfsd might try to access dead inodes
3776          * the test is that same one that e2fsck uses
3777          * NeilBrown 1999oct15
3778          */
3779         if (inode->i_nlink == 0) {
3780                 if (inode->i_mode == 0 ||
3781                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3782                         /* this inode is deleted */
3783                         ret = -ESTALE;
3784                         goto bad_inode;
3785                 }
3786                 /* The only unlinked inodes we let through here have
3787                  * valid i_mode and are being read by the orphan
3788                  * recovery code: that's fine, we're about to complete
3789                  * the process of deleting those. */
3790         }
3791         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3792         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3793         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3794         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3795                 ei->i_file_acl |=
3796                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3797         inode->i_size = ext4_isize(raw_inode);
3798         ei->i_disksize = inode->i_size;
3799 #ifdef CONFIG_QUOTA
3800         ei->i_reserved_quota = 0;
3801 #endif
3802         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3803         ei->i_block_group = iloc.block_group;
3804         ei->i_last_alloc_group = ~0;
3805         /*
3806          * NOTE! The in-memory inode i_data array is in little-endian order
3807          * even on big-endian machines: we do NOT byteswap the block numbers!
3808          */
3809         for (block = 0; block < EXT4_N_BLOCKS; block++)
3810                 ei->i_data[block] = raw_inode->i_block[block];
3811         INIT_LIST_HEAD(&ei->i_orphan);
3812
3813         /*
3814          * Set transaction id's of transactions that have to be committed
3815          * to finish f[data]sync. We set them to currently running transaction
3816          * as we cannot be sure that the inode or some of its metadata isn't
3817          * part of the transaction - the inode could have been reclaimed and
3818          * now it is reread from disk.
3819          */
3820         if (journal) {
3821                 transaction_t *transaction;
3822                 tid_t tid;
3823
3824                 read_lock(&journal->j_state_lock);
3825                 if (journal->j_running_transaction)
3826                         transaction = journal->j_running_transaction;
3827                 else
3828                         transaction = journal->j_committing_transaction;
3829                 if (transaction)
3830                         tid = transaction->t_tid;
3831                 else
3832                         tid = journal->j_commit_sequence;
3833                 read_unlock(&journal->j_state_lock);
3834                 ei->i_sync_tid = tid;
3835                 ei->i_datasync_tid = tid;
3836         }
3837
3838         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3839                 if (ei->i_extra_isize == 0) {
3840                         /* The extra space is currently unused. Use it. */
3841                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3842                                             EXT4_GOOD_OLD_INODE_SIZE;
3843                 } else {
3844                         ext4_iget_extra_inode(inode, raw_inode, ei);
3845                 }
3846         }
3847
3848         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3849         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3850         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3851         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3852
3853         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3854         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3855                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3856                         inode->i_version |=
3857                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3858         }
3859
3860         ret = 0;
3861         if (ei->i_file_acl &&
3862             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3863                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3864                                  ei->i_file_acl);
3865                 ret = -EIO;
3866                 goto bad_inode;
3867         } else if (!ext4_has_inline_data(inode)) {
3868                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3869                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3870                             (S_ISLNK(inode->i_mode) &&
3871                              !ext4_inode_is_fast_symlink(inode))))
3872                                 /* Validate extent which is part of inode */
3873                                 ret = ext4_ext_check_inode(inode);
3874                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3875                            (S_ISLNK(inode->i_mode) &&
3876                             !ext4_inode_is_fast_symlink(inode))) {
3877                         /* Validate block references which are part of inode */
3878                         ret = ext4_ind_check_inode(inode);
3879                 }
3880         }
3881         if (ret)
3882                 goto bad_inode;
3883
3884         if (S_ISREG(inode->i_mode)) {
3885                 inode->i_op = &ext4_file_inode_operations;
3886                 inode->i_fop = &ext4_file_operations;
3887                 ext4_set_aops(inode);
3888         } else if (S_ISDIR(inode->i_mode)) {
3889                 inode->i_op = &ext4_dir_inode_operations;
3890                 inode->i_fop = &ext4_dir_operations;
3891         } else if (S_ISLNK(inode->i_mode)) {
3892                 if (ext4_inode_is_fast_symlink(inode)) {
3893                         inode->i_op = &ext4_fast_symlink_inode_operations;
3894                         nd_terminate_link(ei->i_data, inode->i_size,
3895                                 sizeof(ei->i_data) - 1);
3896                 } else {
3897                         inode->i_op = &ext4_symlink_inode_operations;
3898                         ext4_set_aops(inode);
3899                 }
3900         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3901               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3902                 inode->i_op = &ext4_special_inode_operations;
3903                 if (raw_inode->i_block[0])
3904                         init_special_inode(inode, inode->i_mode,
3905                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3906                 else
3907                         init_special_inode(inode, inode->i_mode,
3908                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3909         } else {
3910                 ret = -EIO;
3911                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3912                 goto bad_inode;
3913         }
3914         brelse(iloc.bh);
3915         ext4_set_inode_flags(inode);
3916         unlock_new_inode(inode);
3917         return inode;
3918
3919 bad_inode:
3920         brelse(iloc.bh);
3921         iget_failed(inode);
3922         return ERR_PTR(ret);
3923 }
3924
3925 static int ext4_inode_blocks_set(handle_t *handle,
3926                                 struct ext4_inode *raw_inode,
3927                                 struct ext4_inode_info *ei)
3928 {
3929         struct inode *inode = &(ei->vfs_inode);
3930         u64 i_blocks = inode->i_blocks;
3931         struct super_block *sb = inode->i_sb;
3932
3933         if (i_blocks <= ~0U) {
3934                 /*
3935                  * i_blocks can be represented in a 32 bit variable
3936                  * as multiple of 512 bytes
3937                  */
3938                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3939                 raw_inode->i_blocks_high = 0;
3940                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3941                 return 0;
3942         }
3943         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3944                 return -EFBIG;
3945
3946         if (i_blocks <= 0xffffffffffffULL) {
3947                 /*
3948                  * i_blocks can be represented in a 48 bit variable
3949                  * as multiple of 512 bytes
3950                  */
3951                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3952                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3953                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3954         } else {
3955                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3956                 /* i_block is stored in file system block size */
3957                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3958                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3959                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3960         }
3961         return 0;
3962 }
3963
3964 /*
3965  * Post the struct inode info into an on-disk inode location in the
3966  * buffer-cache.  This gobbles the caller's reference to the
3967  * buffer_head in the inode location struct.
3968  *
3969  * The caller must have write access to iloc->bh.
3970  */
3971 static int ext4_do_update_inode(handle_t *handle,
3972                                 struct inode *inode,
3973                                 struct ext4_iloc *iloc)
3974 {
3975         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3976         struct ext4_inode_info *ei = EXT4_I(inode);
3977         struct buffer_head *bh = iloc->bh;
3978         int err = 0, rc, block;
3979         int need_datasync = 0;
3980         uid_t i_uid;
3981         gid_t i_gid;
3982
3983         /* For fields not not tracking in the in-memory inode,
3984          * initialise them to zero for new inodes. */
3985         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3986                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3987
3988         ext4_get_inode_flags(ei);
3989         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3990         i_uid = i_uid_read(inode);
3991         i_gid = i_gid_read(inode);
3992         if (!(test_opt(inode->i_sb, NO_UID32))) {
3993                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3994                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3995 /*
3996  * Fix up interoperability with old kernels. Otherwise, old inodes get
3997  * re-used with the upper 16 bits of the uid/gid intact
3998  */
3999                 if (!ei->i_dtime) {
4000                         raw_inode->i_uid_high =
4001                                 cpu_to_le16(high_16_bits(i_uid));
4002                         raw_inode->i_gid_high =
4003                                 cpu_to_le16(high_16_bits(i_gid));
4004                 } else {
4005                         raw_inode->i_uid_high = 0;
4006                         raw_inode->i_gid_high = 0;
4007                 }
4008         } else {
4009                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4010                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4011                 raw_inode->i_uid_high = 0;
4012                 raw_inode->i_gid_high = 0;
4013         }
4014         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4015
4016         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4017         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4018         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4019         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4020
4021         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4022                 goto out_brelse;
4023         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4024         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4025         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4026             cpu_to_le32(EXT4_OS_HURD))
4027                 raw_inode->i_file_acl_high =
4028                         cpu_to_le16(ei->i_file_acl >> 32);
4029         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4030         if (ei->i_disksize != ext4_isize(raw_inode)) {
4031                 ext4_isize_set(raw_inode, ei->i_disksize);
4032                 need_datasync = 1;
4033         }
4034         if (ei->i_disksize > 0x7fffffffULL) {
4035                 struct super_block *sb = inode->i_sb;
4036                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4037                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4038                                 EXT4_SB(sb)->s_es->s_rev_level ==
4039                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4040                         /* If this is the first large file
4041                          * created, add a flag to the superblock.
4042                          */
4043                         err = ext4_journal_get_write_access(handle,
4044                                         EXT4_SB(sb)->s_sbh);
4045                         if (err)
4046                                 goto out_brelse;
4047                         ext4_update_dynamic_rev(sb);
4048                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4049                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4050                         ext4_handle_sync(handle);
4051                         err = ext4_handle_dirty_super(handle, sb);
4052                 }
4053         }
4054         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4055         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4056                 if (old_valid_dev(inode->i_rdev)) {
4057                         raw_inode->i_block[0] =
4058                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4059                         raw_inode->i_block[1] = 0;
4060                 } else {
4061                         raw_inode->i_block[0] = 0;
4062                         raw_inode->i_block[1] =
4063                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4064                         raw_inode->i_block[2] = 0;
4065                 }
4066         } else if (!ext4_has_inline_data(inode)) {
4067                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4068                         raw_inode->i_block[block] = ei->i_data[block];
4069         }
4070
4071         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4072         if (ei->i_extra_isize) {
4073                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4074                         raw_inode->i_version_hi =
4075                         cpu_to_le32(inode->i_version >> 32);
4076                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4077         }
4078
4079         ext4_inode_csum_set(inode, raw_inode, ei);
4080
4081         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4082         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4083         if (!err)
4084                 err = rc;
4085         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4086
4087         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4088 out_brelse:
4089         brelse(bh);
4090         ext4_std_error(inode->i_sb, err);
4091         return err;
4092 }
4093
4094 /*
4095  * ext4_write_inode()
4096  *
4097  * We are called from a few places:
4098  *
4099  * - Within generic_file_write() for O_SYNC files.
4100  *   Here, there will be no transaction running. We wait for any running
4101  *   transaction to commit.
4102  *
4103  * - Within sys_sync(), kupdate and such.
4104  *   We wait on commit, if tol to.
4105  *
4106  * - Within prune_icache() (PF_MEMALLOC == true)
4107  *   Here we simply return.  We can't afford to block kswapd on the
4108  *   journal commit.
4109  *
4110  * In all cases it is actually safe for us to return without doing anything,
4111  * because the inode has been copied into a raw inode buffer in
4112  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4113  * knfsd.
4114  *
4115  * Note that we are absolutely dependent upon all inode dirtiers doing the
4116  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4117  * which we are interested.
4118  *
4119  * It would be a bug for them to not do this.  The code:
4120  *
4121  *      mark_inode_dirty(inode)
4122  *      stuff();
4123  *      inode->i_size = expr;
4124  *
4125  * is in error because a kswapd-driven write_inode() could occur while
4126  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4127  * will no longer be on the superblock's dirty inode list.
4128  */
4129 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4130 {
4131         int err;
4132
4133         if (current->flags & PF_MEMALLOC)
4134                 return 0;
4135
4136         if (EXT4_SB(inode->i_sb)->s_journal) {
4137                 if (ext4_journal_current_handle()) {
4138                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4139                         dump_stack();
4140                         return -EIO;
4141                 }
4142
4143                 if (wbc->sync_mode != WB_SYNC_ALL)
4144                         return 0;
4145
4146                 err = ext4_force_commit(inode->i_sb);
4147         } else {
4148                 struct ext4_iloc iloc;
4149
4150                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4151                 if (err)
4152                         return err;
4153                 if (wbc->sync_mode == WB_SYNC_ALL)
4154                         sync_dirty_buffer(iloc.bh);
4155                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4156                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4157                                          "IO error syncing inode");
4158                         err = -EIO;
4159                 }
4160                 brelse(iloc.bh);
4161         }
4162         return err;
4163 }
4164
4165 /*
4166  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4167  * buffers that are attached to a page stradding i_size and are undergoing
4168  * commit. In that case we have to wait for commit to finish and try again.
4169  */
4170 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4171 {
4172         struct page *page;
4173         unsigned offset;
4174         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4175         tid_t commit_tid = 0;
4176         int ret;
4177
4178         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4179         /*
4180          * All buffers in the last page remain valid? Then there's nothing to
4181          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4182          * blocksize case
4183          */
4184         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4185                 return;
4186         while (1) {
4187                 page = find_lock_page(inode->i_mapping,
4188                                       inode->i_size >> PAGE_CACHE_SHIFT);
4189                 if (!page)
4190                         return;
4191                 ret = __ext4_journalled_invalidatepage(page, offset);
4192                 unlock_page(page);
4193                 page_cache_release(page);
4194                 if (ret != -EBUSY)
4195                         return;
4196                 commit_tid = 0;
4197                 read_lock(&journal->j_state_lock);
4198                 if (journal->j_committing_transaction)
4199                         commit_tid = journal->j_committing_transaction->t_tid;
4200                 read_unlock(&journal->j_state_lock);
4201                 if (commit_tid)
4202                         jbd2_log_wait_commit(journal, commit_tid);
4203         }
4204 }
4205
4206 /*
4207  * ext4_setattr()
4208  *
4209  * Called from notify_change.
4210  *
4211  * We want to trap VFS attempts to truncate the file as soon as
4212  * possible.  In particular, we want to make sure that when the VFS
4213  * shrinks i_size, we put the inode on the orphan list and modify
4214  * i_disksize immediately, so that during the subsequent flushing of
4215  * dirty pages and freeing of disk blocks, we can guarantee that any
4216  * commit will leave the blocks being flushed in an unused state on
4217  * disk.  (On recovery, the inode will get truncated and the blocks will
4218  * be freed, so we have a strong guarantee that no future commit will
4219  * leave these blocks visible to the user.)
4220  *
4221  * Another thing we have to assure is that if we are in ordered mode
4222  * and inode is still attached to the committing transaction, we must
4223  * we start writeout of all the dirty pages which are being truncated.
4224  * This way we are sure that all the data written in the previous
4225  * transaction are already on disk (truncate waits for pages under
4226  * writeback).
4227  *
4228  * Called with inode->i_mutex down.
4229  */
4230 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4231 {
4232         struct inode *inode = dentry->d_inode;
4233         int error, rc = 0;
4234         int orphan = 0;
4235         const unsigned int ia_valid = attr->ia_valid;
4236
4237         error = inode_change_ok(inode, attr);
4238         if (error)
4239                 return error;
4240
4241         if (is_quota_modification(inode, attr))
4242                 dquot_initialize(inode);
4243         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4244             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4245                 handle_t *handle;
4246
4247                 /* (user+group)*(old+new) structure, inode write (sb,
4248                  * inode block, ? - but truncate inode update has it) */
4249                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4250                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4251                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4252                 if (IS_ERR(handle)) {
4253                         error = PTR_ERR(handle);
4254                         goto err_out;
4255                 }
4256                 error = dquot_transfer(inode, attr);
4257                 if (error) {
4258                         ext4_journal_stop(handle);
4259                         return error;
4260                 }
4261                 /* Update corresponding info in inode so that everything is in
4262                  * one transaction */
4263                 if (attr->ia_valid & ATTR_UID)
4264                         inode->i_uid = attr->ia_uid;
4265                 if (attr->ia_valid & ATTR_GID)
4266                         inode->i_gid = attr->ia_gid;
4267                 error = ext4_mark_inode_dirty(handle, inode);
4268                 ext4_journal_stop(handle);
4269         }
4270
4271         if (attr->ia_valid & ATTR_SIZE) {
4272
4273                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4274                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4275
4276                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4277                                 return -EFBIG;
4278                 }
4279         }
4280
4281         if (S_ISREG(inode->i_mode) &&
4282             attr->ia_valid & ATTR_SIZE &&
4283             (attr->ia_size < inode->i_size)) {
4284                 handle_t *handle;
4285
4286                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4287                 if (IS_ERR(handle)) {
4288                         error = PTR_ERR(handle);
4289                         goto err_out;
4290                 }
4291                 if (ext4_handle_valid(handle)) {
4292                         error = ext4_orphan_add(handle, inode);
4293                         orphan = 1;
4294                 }
4295                 EXT4_I(inode)->i_disksize = attr->ia_size;
4296                 rc = ext4_mark_inode_dirty(handle, inode);
4297                 if (!error)
4298                         error = rc;
4299                 ext4_journal_stop(handle);
4300
4301                 if (ext4_should_order_data(inode)) {
4302                         error = ext4_begin_ordered_truncate(inode,
4303                                                             attr->ia_size);
4304                         if (error) {
4305                                 /* Do as much error cleanup as possible */
4306                                 handle = ext4_journal_start(inode,
4307                                                             EXT4_HT_INODE, 3);
4308                                 if (IS_ERR(handle)) {
4309                                         ext4_orphan_del(NULL, inode);
4310                                         goto err_out;
4311                                 }
4312                                 ext4_orphan_del(handle, inode);
4313                                 orphan = 0;
4314                                 ext4_journal_stop(handle);
4315                                 goto err_out;
4316                         }
4317                 }
4318         }
4319
4320         if (attr->ia_valid & ATTR_SIZE) {
4321                 if (attr->ia_size != inode->i_size) {
4322                         loff_t oldsize = inode->i_size;
4323
4324                         i_size_write(inode, attr->ia_size);
4325                         /*
4326                          * Blocks are going to be removed from the inode. Wait
4327                          * for dio in flight.  Temporarily disable
4328                          * dioread_nolock to prevent livelock.
4329                          */
4330                         if (orphan) {
4331                                 if (!ext4_should_journal_data(inode)) {
4332                                         ext4_inode_block_unlocked_dio(inode);
4333                                         inode_dio_wait(inode);
4334                                         ext4_inode_resume_unlocked_dio(inode);
4335                                 } else
4336                                         ext4_wait_for_tail_page_commit(inode);
4337                         }
4338                         /*
4339                          * Truncate pagecache after we've waited for commit
4340                          * in data=journal mode to make pages freeable.
4341                          */
4342                         truncate_pagecache(inode, oldsize, inode->i_size);
4343                 }
4344                 ext4_truncate(inode);
4345         }
4346
4347         if (!rc) {
4348                 setattr_copy(inode, attr);
4349                 mark_inode_dirty(inode);
4350         }
4351
4352         /*
4353          * If the call to ext4_truncate failed to get a transaction handle at
4354          * all, we need to clean up the in-core orphan list manually.
4355          */
4356         if (orphan && inode->i_nlink)
4357                 ext4_orphan_del(NULL, inode);
4358
4359         if (!rc && (ia_valid & ATTR_MODE))
4360                 rc = ext4_acl_chmod(inode);
4361
4362 err_out:
4363         ext4_std_error(inode->i_sb, error);
4364         if (!error)
4365                 error = rc;
4366         return error;
4367 }
4368
4369 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4370                  struct kstat *stat)
4371 {
4372         struct inode *inode;
4373         unsigned long delalloc_blocks;
4374
4375         inode = dentry->d_inode;
4376         generic_fillattr(inode, stat);
4377
4378         /*
4379          * We can't update i_blocks if the block allocation is delayed
4380          * otherwise in the case of system crash before the real block
4381          * allocation is done, we will have i_blocks inconsistent with
4382          * on-disk file blocks.
4383          * We always keep i_blocks updated together with real
4384          * allocation. But to not confuse with user, stat
4385          * will return the blocks that include the delayed allocation
4386          * blocks for this file.
4387          */
4388         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4389                                 EXT4_I(inode)->i_reserved_data_blocks);
4390
4391         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4392         return 0;
4393 }
4394
4395 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4396 {
4397         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4398                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4399         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4400 }
4401
4402 /*
4403  * Account for index blocks, block groups bitmaps and block group
4404  * descriptor blocks if modify datablocks and index blocks
4405  * worse case, the indexs blocks spread over different block groups
4406  *
4407  * If datablocks are discontiguous, they are possible to spread over
4408  * different block groups too. If they are contiguous, with flexbg,
4409  * they could still across block group boundary.
4410  *
4411  * Also account for superblock, inode, quota and xattr blocks
4412  */
4413 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4414 {
4415         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4416         int gdpblocks;
4417         int idxblocks;
4418         int ret = 0;
4419
4420         /*
4421          * How many index blocks need to touch to modify nrblocks?
4422          * The "Chunk" flag indicating whether the nrblocks is
4423          * physically contiguous on disk
4424          *
4425          * For Direct IO and fallocate, they calls get_block to allocate
4426          * one single extent at a time, so they could set the "Chunk" flag
4427          */
4428         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4429
4430         ret = idxblocks;
4431
4432         /*
4433          * Now let's see how many group bitmaps and group descriptors need
4434          * to account
4435          */
4436         groups = idxblocks;
4437         if (chunk)
4438                 groups += 1;
4439         else
4440                 groups += nrblocks;
4441
4442         gdpblocks = groups;
4443         if (groups > ngroups)
4444                 groups = ngroups;
4445         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4446                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4447
4448         /* bitmaps and block group descriptor blocks */
4449         ret += groups + gdpblocks;
4450
4451         /* Blocks for super block, inode, quota and xattr blocks */
4452         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4453
4454         return ret;
4455 }
4456
4457 /*
4458  * Calculate the total number of credits to reserve to fit
4459  * the modification of a single pages into a single transaction,
4460  * which may include multiple chunks of block allocations.
4461  *
4462  * This could be called via ext4_write_begin()
4463  *
4464  * We need to consider the worse case, when
4465  * one new block per extent.
4466  */
4467 int ext4_writepage_trans_blocks(struct inode *inode)
4468 {
4469         int bpp = ext4_journal_blocks_per_page(inode);
4470         int ret;
4471
4472         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4473
4474         /* Account for data blocks for journalled mode */
4475         if (ext4_should_journal_data(inode))
4476                 ret += bpp;
4477         return ret;
4478 }
4479
4480 /*
4481  * Calculate the journal credits for a chunk of data modification.
4482  *
4483  * This is called from DIO, fallocate or whoever calling
4484  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4485  *
4486  * journal buffers for data blocks are not included here, as DIO
4487  * and fallocate do no need to journal data buffers.
4488  */
4489 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4490 {
4491         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4492 }
4493
4494 /*
4495  * The caller must have previously called ext4_reserve_inode_write().
4496  * Give this, we know that the caller already has write access to iloc->bh.
4497  */
4498 int ext4_mark_iloc_dirty(handle_t *handle,
4499                          struct inode *inode, struct ext4_iloc *iloc)
4500 {
4501         int err = 0;
4502
4503         if (IS_I_VERSION(inode))
4504                 inode_inc_iversion(inode);
4505
4506         /* the do_update_inode consumes one bh->b_count */
4507         get_bh(iloc->bh);
4508
4509         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4510         err = ext4_do_update_inode(handle, inode, iloc);
4511         put_bh(iloc->bh);
4512         return err;
4513 }
4514
4515 /*
4516  * On success, We end up with an outstanding reference count against
4517  * iloc->bh.  This _must_ be cleaned up later.
4518  */
4519
4520 int
4521 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4522                          struct ext4_iloc *iloc)
4523 {
4524         int err;
4525
4526         err = ext4_get_inode_loc(inode, iloc);
4527         if (!err) {
4528                 BUFFER_TRACE(iloc->bh, "get_write_access");
4529                 err = ext4_journal_get_write_access(handle, iloc->bh);
4530                 if (err) {
4531                         brelse(iloc->bh);
4532                         iloc->bh = NULL;
4533                 }
4534         }
4535         ext4_std_error(inode->i_sb, err);
4536         return err;
4537 }
4538
4539 /*
4540  * Expand an inode by new_extra_isize bytes.
4541  * Returns 0 on success or negative error number on failure.
4542  */
4543 static int ext4_expand_extra_isize(struct inode *inode,
4544                                    unsigned int new_extra_isize,
4545                                    struct ext4_iloc iloc,
4546                                    handle_t *handle)
4547 {
4548         struct ext4_inode *raw_inode;
4549         struct ext4_xattr_ibody_header *header;
4550
4551         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4552                 return 0;
4553
4554         raw_inode = ext4_raw_inode(&iloc);
4555
4556         header = IHDR(inode, raw_inode);
4557
4558         /* No extended attributes present */
4559         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4560             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4561                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4562                         new_extra_isize);
4563                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4564                 return 0;
4565         }
4566
4567         /* try to expand with EAs present */
4568         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4569                                           raw_inode, handle);
4570 }
4571
4572 /*
4573  * What we do here is to mark the in-core inode as clean with respect to inode
4574  * dirtiness (it may still be data-dirty).
4575  * This means that the in-core inode may be reaped by prune_icache
4576  * without having to perform any I/O.  This is a very good thing,
4577  * because *any* task may call prune_icache - even ones which
4578  * have a transaction open against a different journal.
4579  *
4580  * Is this cheating?  Not really.  Sure, we haven't written the
4581  * inode out, but prune_icache isn't a user-visible syncing function.
4582  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4583  * we start and wait on commits.
4584  */
4585 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4586 {
4587         struct ext4_iloc iloc;
4588         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4589         static unsigned int mnt_count;
4590         int err, ret;
4591
4592         might_sleep();
4593         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4594         err = ext4_reserve_inode_write(handle, inode, &iloc);
4595         if (ext4_handle_valid(handle) &&
4596             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4597             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4598                 /*
4599                  * We need extra buffer credits since we may write into EA block
4600                  * with this same handle. If journal_extend fails, then it will
4601                  * only result in a minor loss of functionality for that inode.
4602                  * If this is felt to be critical, then e2fsck should be run to
4603                  * force a large enough s_min_extra_isize.
4604                  */
4605                 if ((jbd2_journal_extend(handle,
4606                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4607                         ret = ext4_expand_extra_isize(inode,
4608                                                       sbi->s_want_extra_isize,
4609                                                       iloc, handle);
4610                         if (ret) {
4611                                 ext4_set_inode_state(inode,
4612                                                      EXT4_STATE_NO_EXPAND);
4613                                 if (mnt_count !=
4614                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4615                                         ext4_warning(inode->i_sb,
4616                                         "Unable to expand inode %lu. Delete"
4617                                         " some EAs or run e2fsck.",
4618                                         inode->i_ino);
4619                                         mnt_count =
4620                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4621                                 }
4622                         }
4623                 }
4624         }
4625         if (!err)
4626                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4627         return err;
4628 }
4629
4630 /*
4631  * ext4_dirty_inode() is called from __mark_inode_dirty()
4632  *
4633  * We're really interested in the case where a file is being extended.
4634  * i_size has been changed by generic_commit_write() and we thus need
4635  * to include the updated inode in the current transaction.
4636  *
4637  * Also, dquot_alloc_block() will always dirty the inode when blocks
4638  * are allocated to the file.
4639  *
4640  * If the inode is marked synchronous, we don't honour that here - doing
4641  * so would cause a commit on atime updates, which we don't bother doing.
4642  * We handle synchronous inodes at the highest possible level.
4643  */
4644 void ext4_dirty_inode(struct inode *inode, int flags)
4645 {
4646         handle_t *handle;
4647
4648         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4649         if (IS_ERR(handle))
4650                 goto out;
4651
4652         ext4_mark_inode_dirty(handle, inode);
4653
4654         ext4_journal_stop(handle);
4655 out:
4656         return;
4657 }
4658
4659 #if 0
4660 /*
4661  * Bind an inode's backing buffer_head into this transaction, to prevent
4662  * it from being flushed to disk early.  Unlike
4663  * ext4_reserve_inode_write, this leaves behind no bh reference and
4664  * returns no iloc structure, so the caller needs to repeat the iloc
4665  * lookup to mark the inode dirty later.
4666  */
4667 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4668 {
4669         struct ext4_iloc iloc;
4670
4671         int err = 0;
4672         if (handle) {
4673                 err = ext4_get_inode_loc(inode, &iloc);
4674                 if (!err) {
4675                         BUFFER_TRACE(iloc.bh, "get_write_access");
4676                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4677                         if (!err)
4678                                 err = ext4_handle_dirty_metadata(handle,
4679                                                                  NULL,
4680                                                                  iloc.bh);
4681                         brelse(iloc.bh);
4682                 }
4683         }
4684         ext4_std_error(inode->i_sb, err);
4685         return err;
4686 }
4687 #endif
4688
4689 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4690 {
4691         journal_t *journal;
4692         handle_t *handle;
4693         int err;
4694
4695         /*
4696          * We have to be very careful here: changing a data block's
4697          * journaling status dynamically is dangerous.  If we write a
4698          * data block to the journal, change the status and then delete
4699          * that block, we risk forgetting to revoke the old log record
4700          * from the journal and so a subsequent replay can corrupt data.
4701          * So, first we make sure that the journal is empty and that
4702          * nobody is changing anything.
4703          */
4704
4705         journal = EXT4_JOURNAL(inode);
4706         if (!journal)
4707                 return 0;
4708         if (is_journal_aborted(journal))
4709                 return -EROFS;
4710         /* We have to allocate physical blocks for delalloc blocks
4711          * before flushing journal. otherwise delalloc blocks can not
4712          * be allocated any more. even more truncate on delalloc blocks
4713          * could trigger BUG by flushing delalloc blocks in journal.
4714          * There is no delalloc block in non-journal data mode.
4715          */
4716         if (val && test_opt(inode->i_sb, DELALLOC)) {
4717                 err = ext4_alloc_da_blocks(inode);
4718                 if (err < 0)
4719                         return err;
4720         }
4721
4722         /* Wait for all existing dio workers */
4723         ext4_inode_block_unlocked_dio(inode);
4724         inode_dio_wait(inode);
4725
4726         jbd2_journal_lock_updates(journal);
4727
4728         /*
4729          * OK, there are no updates running now, and all cached data is
4730          * synced to disk.  We are now in a completely consistent state
4731          * which doesn't have anything in the journal, and we know that
4732          * no filesystem updates are running, so it is safe to modify
4733          * the inode's in-core data-journaling state flag now.
4734          */
4735
4736         if (val)
4737                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4738         else {
4739                 jbd2_journal_flush(journal);
4740                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4741         }
4742         ext4_set_aops(inode);
4743
4744         jbd2_journal_unlock_updates(journal);
4745         ext4_inode_resume_unlocked_dio(inode);
4746
4747         /* Finally we can mark the inode as dirty. */
4748
4749         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4750         if (IS_ERR(handle))
4751                 return PTR_ERR(handle);
4752
4753         err = ext4_mark_inode_dirty(handle, inode);
4754         ext4_handle_sync(handle);
4755         ext4_journal_stop(handle);
4756         ext4_std_error(inode->i_sb, err);
4757
4758         return err;
4759 }
4760
4761 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4762 {
4763         return !buffer_mapped(bh);
4764 }
4765
4766 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4767 {
4768         struct page *page = vmf->page;
4769         loff_t size;
4770         unsigned long len;
4771         int ret;
4772         struct file *file = vma->vm_file;
4773         struct inode *inode = file->f_path.dentry->d_inode;
4774         struct address_space *mapping = inode->i_mapping;
4775         handle_t *handle;
4776         get_block_t *get_block;
4777         int retries = 0;
4778
4779         sb_start_pagefault(inode->i_sb);
4780         file_update_time(vma->vm_file);
4781         /* Delalloc case is easy... */
4782         if (test_opt(inode->i_sb, DELALLOC) &&
4783             !ext4_should_journal_data(inode) &&
4784             !ext4_nonda_switch(inode->i_sb)) {
4785                 do {
4786                         ret = __block_page_mkwrite(vma, vmf,
4787                                                    ext4_da_get_block_prep);
4788                 } while (ret == -ENOSPC &&
4789                        ext4_should_retry_alloc(inode->i_sb, &retries));
4790                 goto out_ret;
4791         }
4792
4793         lock_page(page);
4794         size = i_size_read(inode);
4795         /* Page got truncated from under us? */
4796         if (page->mapping != mapping || page_offset(page) > size) {
4797                 unlock_page(page);
4798                 ret = VM_FAULT_NOPAGE;
4799                 goto out;
4800         }
4801
4802         if (page->index == size >> PAGE_CACHE_SHIFT)
4803                 len = size & ~PAGE_CACHE_MASK;
4804         else
4805                 len = PAGE_CACHE_SIZE;
4806         /*
4807          * Return if we have all the buffers mapped. This avoids the need to do
4808          * journal_start/journal_stop which can block and take a long time
4809          */
4810         if (page_has_buffers(page)) {
4811                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4812                                             0, len, NULL,
4813                                             ext4_bh_unmapped)) {
4814                         /* Wait so that we don't change page under IO */
4815                         wait_on_page_writeback(page);
4816                         ret = VM_FAULT_LOCKED;
4817                         goto out;
4818                 }
4819         }
4820         unlock_page(page);
4821         /* OK, we need to fill the hole... */
4822         if (ext4_should_dioread_nolock(inode))
4823                 get_block = ext4_get_block_write;
4824         else
4825                 get_block = ext4_get_block;
4826 retry_alloc:
4827         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
4828                                     ext4_writepage_trans_blocks(inode));
4829         if (IS_ERR(handle)) {
4830                 ret = VM_FAULT_SIGBUS;
4831                 goto out;
4832         }
4833         ret = __block_page_mkwrite(vma, vmf, get_block);
4834         if (!ret && ext4_should_journal_data(inode)) {
4835                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4836                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4837                         unlock_page(page);
4838                         ret = VM_FAULT_SIGBUS;
4839                         ext4_journal_stop(handle);
4840                         goto out;
4841                 }
4842                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4843         }
4844         ext4_journal_stop(handle);
4845         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4846                 goto retry_alloc;
4847 out_ret:
4848         ret = block_page_mkwrite_return(ret);
4849 out:
4850         sb_end_pagefault(inode->i_sb);
4851         return ret;
4852 }