]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
ext4: atomically set inode->i_flags in ext4_set_inode_flags()
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137                                 unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219
220                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
221                 goto no_delete;
222         }
223
224         if (!is_bad_inode(inode))
225                 dquot_initialize(inode);
226
227         if (ext4_should_order_data(inode))
228                 ext4_begin_ordered_truncate(inode, 0);
229         truncate_inode_pages(&inode->i_data, 0);
230
231         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232         if (is_bad_inode(inode))
233                 goto no_delete;
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241                                     ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331                 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333         return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341                                         int used, int quota_claim)
342 {
343         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344         struct ext4_inode_info *ei = EXT4_I(inode);
345
346         spin_lock(&ei->i_block_reservation_lock);
347         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348         if (unlikely(used > ei->i_reserved_data_blocks)) {
349                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350                          "with only %d reserved data blocks",
351                          __func__, inode->i_ino, used,
352                          ei->i_reserved_data_blocks);
353                 WARN_ON(1);
354                 used = ei->i_reserved_data_blocks;
355         }
356
357         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359                         "with only %d reserved metadata blocks "
360                         "(releasing %d blocks with reserved %d data blocks)",
361                         inode->i_ino, ei->i_allocated_meta_blocks,
362                              ei->i_reserved_meta_blocks, used,
363                              ei->i_reserved_data_blocks);
364                 WARN_ON(1);
365                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366         }
367
368         /* Update per-inode reservations */
369         ei->i_reserved_data_blocks -= used;
370         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
371         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372                            used + ei->i_allocated_meta_blocks);
373         ei->i_allocated_meta_blocks = 0;
374
375         if (ei->i_reserved_data_blocks == 0) {
376                 /*
377                  * We can release all of the reserved metadata blocks
378                  * only when we have written all of the delayed
379                  * allocation blocks.
380                  */
381                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
382                                    ei->i_reserved_meta_blocks);
383                 ei->i_reserved_meta_blocks = 0;
384                 ei->i_da_metadata_calc_len = 0;
385         }
386         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387
388         /* Update quota subsystem for data blocks */
389         if (quota_claim)
390                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
391         else {
392                 /*
393                  * We did fallocate with an offset that is already delayed
394                  * allocated. So on delayed allocated writeback we should
395                  * not re-claim the quota for fallocated blocks.
396                  */
397                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398         }
399
400         /*
401          * If we have done all the pending block allocations and if
402          * there aren't any writers on the inode, we can discard the
403          * inode's preallocations.
404          */
405         if ((ei->i_reserved_data_blocks == 0) &&
406             (atomic_read(&inode->i_writecount) == 0))
407                 ext4_discard_preallocations(inode);
408 }
409
410 static int __check_block_validity(struct inode *inode, const char *func,
411                                 unsigned int line,
412                                 struct ext4_map_blocks *map)
413 {
414         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415                                    map->m_len)) {
416                 ext4_error_inode(inode, func, line, map->m_pblk,
417                                  "lblock %lu mapped to illegal pblock "
418                                  "(length %d)", (unsigned long) map->m_lblk,
419                                  map->m_len);
420                 return -EIO;
421         }
422         return 0;
423 }
424
425 #define check_block_validity(inode, map)        \
426         __check_block_validity((inode), __func__, __LINE__, (map))
427
428 #ifdef ES_AGGRESSIVE_TEST
429 static void ext4_map_blocks_es_recheck(handle_t *handle,
430                                        struct inode *inode,
431                                        struct ext4_map_blocks *es_map,
432                                        struct ext4_map_blocks *map,
433                                        int flags)
434 {
435         int retval;
436
437         map->m_flags = 0;
438         /*
439          * There is a race window that the result is not the same.
440          * e.g. xfstests #223 when dioread_nolock enables.  The reason
441          * is that we lookup a block mapping in extent status tree with
442          * out taking i_data_sem.  So at the time the unwritten extent
443          * could be converted.
444          */
445         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
446                 down_read((&EXT4_I(inode)->i_data_sem));
447         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
448                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
449                                              EXT4_GET_BLOCKS_KEEP_SIZE);
450         } else {
451                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
452                                              EXT4_GET_BLOCKS_KEEP_SIZE);
453         }
454         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
455                 up_read((&EXT4_I(inode)->i_data_sem));
456         /*
457          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
458          * because it shouldn't be marked in es_map->m_flags.
459          */
460         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
461
462         /*
463          * We don't check m_len because extent will be collpased in status
464          * tree.  So the m_len might not equal.
465          */
466         if (es_map->m_lblk != map->m_lblk ||
467             es_map->m_flags != map->m_flags ||
468             es_map->m_pblk != map->m_pblk) {
469                 printk("ES cache assertion failed for inode: %lu "
470                        "es_cached ex [%d/%d/%llu/%x] != "
471                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472                        inode->i_ino, es_map->m_lblk, es_map->m_len,
473                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
474                        map->m_len, map->m_pblk, map->m_flags,
475                        retval, flags);
476         }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocate.
493  * if create==0 and the blocks are pre-allocated and uninitialized block,
494  * the result buffer head is unmapped. If the create ==1, it will make sure
495  * the buffer head is mapped.
496  *
497  * It returns 0 if plain look up failed (blocks have not been allocated), in
498  * that case, buffer head is unmapped
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503                     struct ext4_map_blocks *map, int flags)
504 {
505         struct extent_status es;
506         int retval;
507 #ifdef ES_AGGRESSIVE_TEST
508         struct ext4_map_blocks orig_map;
509
510         memcpy(&orig_map, map, sizeof(*map));
511 #endif
512
513         map->m_flags = 0;
514         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
516                   (unsigned long) map->m_lblk);
517
518         /* Lookup extent status tree firstly */
519         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
520                 ext4_es_lru_add(inode);
521                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
522                         map->m_pblk = ext4_es_pblock(&es) +
523                                         map->m_lblk - es.es_lblk;
524                         map->m_flags |= ext4_es_is_written(&es) ?
525                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
526                         retval = es.es_len - (map->m_lblk - es.es_lblk);
527                         if (retval > map->m_len)
528                                 retval = map->m_len;
529                         map->m_len = retval;
530                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
531                         retval = 0;
532                 } else {
533                         BUG_ON(1);
534                 }
535 #ifdef ES_AGGRESSIVE_TEST
536                 ext4_map_blocks_es_recheck(handle, inode, map,
537                                            &orig_map, flags);
538 #endif
539                 goto found;
540         }
541
542         /*
543          * Try to see if we can get the block without requesting a new
544          * file system block.
545          */
546         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
547                 down_read((&EXT4_I(inode)->i_data_sem));
548         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
549                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
550                                              EXT4_GET_BLOCKS_KEEP_SIZE);
551         } else {
552                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
553                                              EXT4_GET_BLOCKS_KEEP_SIZE);
554         }
555         if (retval > 0) {
556                 int ret;
557                 unsigned int status;
558
559                 if (unlikely(retval != map->m_len)) {
560                         ext4_warning(inode->i_sb,
561                                      "ES len assertion failed for inode "
562                                      "%lu: retval %d != map->m_len %d",
563                                      inode->i_ino, retval, map->m_len);
564                         WARN_ON(1);
565                 }
566
567                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
568                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
569                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
570                     ext4_find_delalloc_range(inode, map->m_lblk,
571                                              map->m_lblk + map->m_len - 1))
572                         status |= EXTENT_STATUS_DELAYED;
573                 ret = ext4_es_insert_extent(inode, map->m_lblk,
574                                             map->m_len, map->m_pblk, status);
575                 if (ret < 0)
576                         retval = ret;
577         }
578         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
579                 up_read((&EXT4_I(inode)->i_data_sem));
580
581 found:
582         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
583                 int ret = check_block_validity(inode, map);
584                 if (ret != 0)
585                         return ret;
586         }
587
588         /* If it is only a block(s) look up */
589         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
590                 return retval;
591
592         /*
593          * Returns if the blocks have already allocated
594          *
595          * Note that if blocks have been preallocated
596          * ext4_ext_get_block() returns the create = 0
597          * with buffer head unmapped.
598          */
599         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
600                 return retval;
601
602         /*
603          * Here we clear m_flags because after allocating an new extent,
604          * it will be set again.
605          */
606         map->m_flags &= ~EXT4_MAP_FLAGS;
607
608         /*
609          * New blocks allocate and/or writing to uninitialized extent
610          * will possibly result in updating i_data, so we take
611          * the write lock of i_data_sem, and call get_blocks()
612          * with create == 1 flag.
613          */
614         down_write((&EXT4_I(inode)->i_data_sem));
615
616         /*
617          * if the caller is from delayed allocation writeout path
618          * we have already reserved fs blocks for allocation
619          * let the underlying get_block() function know to
620          * avoid double accounting
621          */
622         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
623                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624         /*
625          * We need to check for EXT4 here because migrate
626          * could have changed the inode type in between
627          */
628         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
629                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
630         } else {
631                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
632
633                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634                         /*
635                          * We allocated new blocks which will result in
636                          * i_data's format changing.  Force the migrate
637                          * to fail by clearing migrate flags
638                          */
639                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640                 }
641
642                 /*
643                  * Update reserved blocks/metadata blocks after successful
644                  * block allocation which had been deferred till now. We don't
645                  * support fallocate for non extent files. So we can update
646                  * reserve space here.
647                  */
648                 if ((retval > 0) &&
649                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
650                         ext4_da_update_reserve_space(inode, retval, 1);
651         }
652         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
653                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
654
655         if (retval > 0) {
656                 int ret;
657                 unsigned int status;
658
659                 if (unlikely(retval != map->m_len)) {
660                         ext4_warning(inode->i_sb,
661                                      "ES len assertion failed for inode "
662                                      "%lu: retval %d != map->m_len %d",
663                                      inode->i_ino, retval, map->m_len);
664                         WARN_ON(1);
665                 }
666
667                 /*
668                  * If the extent has been zeroed out, we don't need to update
669                  * extent status tree.
670                  */
671                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
672                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
673                         if (ext4_es_is_written(&es))
674                                 goto has_zeroout;
675                 }
676                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
677                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
678                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
679                     ext4_find_delalloc_range(inode, map->m_lblk,
680                                              map->m_lblk + map->m_len - 1))
681                         status |= EXTENT_STATUS_DELAYED;
682                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
683                                             map->m_pblk, status);
684                 if (ret < 0)
685                         retval = ret;
686         }
687
688 has_zeroout:
689         up_write((&EXT4_I(inode)->i_data_sem));
690         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
691                 int ret = check_block_validity(inode, map);
692                 if (ret != 0)
693                         return ret;
694         }
695         return retval;
696 }
697
698 /* Maximum number of blocks we map for direct IO at once. */
699 #define DIO_MAX_BLOCKS 4096
700
701 static int _ext4_get_block(struct inode *inode, sector_t iblock,
702                            struct buffer_head *bh, int flags)
703 {
704         handle_t *handle = ext4_journal_current_handle();
705         struct ext4_map_blocks map;
706         int ret = 0, started = 0;
707         int dio_credits;
708
709         if (ext4_has_inline_data(inode))
710                 return -ERANGE;
711
712         map.m_lblk = iblock;
713         map.m_len = bh->b_size >> inode->i_blkbits;
714
715         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
716                 /* Direct IO write... */
717                 if (map.m_len > DIO_MAX_BLOCKS)
718                         map.m_len = DIO_MAX_BLOCKS;
719                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
720                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
721                                             dio_credits);
722                 if (IS_ERR(handle)) {
723                         ret = PTR_ERR(handle);
724                         return ret;
725                 }
726                 started = 1;
727         }
728
729         ret = ext4_map_blocks(handle, inode, &map, flags);
730         if (ret > 0) {
731                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
732
733                 map_bh(bh, inode->i_sb, map.m_pblk);
734                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
735                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
736                         set_buffer_defer_completion(bh);
737                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
738                 ret = 0;
739         }
740         if (started)
741                 ext4_journal_stop(handle);
742         return ret;
743 }
744
745 int ext4_get_block(struct inode *inode, sector_t iblock,
746                    struct buffer_head *bh, int create)
747 {
748         return _ext4_get_block(inode, iblock, bh,
749                                create ? EXT4_GET_BLOCKS_CREATE : 0);
750 }
751
752 /*
753  * `handle' can be NULL if create is zero
754  */
755 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
756                                 ext4_lblk_t block, int create, int *errp)
757 {
758         struct ext4_map_blocks map;
759         struct buffer_head *bh;
760         int fatal = 0, err;
761
762         J_ASSERT(handle != NULL || create == 0);
763
764         map.m_lblk = block;
765         map.m_len = 1;
766         err = ext4_map_blocks(handle, inode, &map,
767                               create ? EXT4_GET_BLOCKS_CREATE : 0);
768
769         /* ensure we send some value back into *errp */
770         *errp = 0;
771
772         if (create && err == 0)
773                 err = -ENOSPC;  /* should never happen */
774         if (err < 0)
775                 *errp = err;
776         if (err <= 0)
777                 return NULL;
778
779         bh = sb_getblk(inode->i_sb, map.m_pblk);
780         if (unlikely(!bh)) {
781                 *errp = -ENOMEM;
782                 return NULL;
783         }
784         if (map.m_flags & EXT4_MAP_NEW) {
785                 J_ASSERT(create != 0);
786                 J_ASSERT(handle != NULL);
787
788                 /*
789                  * Now that we do not always journal data, we should
790                  * keep in mind whether this should always journal the
791                  * new buffer as metadata.  For now, regular file
792                  * writes use ext4_get_block instead, so it's not a
793                  * problem.
794                  */
795                 lock_buffer(bh);
796                 BUFFER_TRACE(bh, "call get_create_access");
797                 fatal = ext4_journal_get_create_access(handle, bh);
798                 if (!fatal && !buffer_uptodate(bh)) {
799                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
800                         set_buffer_uptodate(bh);
801                 }
802                 unlock_buffer(bh);
803                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
804                 err = ext4_handle_dirty_metadata(handle, inode, bh);
805                 if (!fatal)
806                         fatal = err;
807         } else {
808                 BUFFER_TRACE(bh, "not a new buffer");
809         }
810         if (fatal) {
811                 *errp = fatal;
812                 brelse(bh);
813                 bh = NULL;
814         }
815         return bh;
816 }
817
818 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
819                                ext4_lblk_t block, int create, int *err)
820 {
821         struct buffer_head *bh;
822
823         bh = ext4_getblk(handle, inode, block, create, err);
824         if (!bh)
825                 return bh;
826         if (buffer_uptodate(bh))
827                 return bh;
828         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
829         wait_on_buffer(bh);
830         if (buffer_uptodate(bh))
831                 return bh;
832         put_bh(bh);
833         *err = -EIO;
834         return NULL;
835 }
836
837 int ext4_walk_page_buffers(handle_t *handle,
838                            struct buffer_head *head,
839                            unsigned from,
840                            unsigned to,
841                            int *partial,
842                            int (*fn)(handle_t *handle,
843                                      struct buffer_head *bh))
844 {
845         struct buffer_head *bh;
846         unsigned block_start, block_end;
847         unsigned blocksize = head->b_size;
848         int err, ret = 0;
849         struct buffer_head *next;
850
851         for (bh = head, block_start = 0;
852              ret == 0 && (bh != head || !block_start);
853              block_start = block_end, bh = next) {
854                 next = bh->b_this_page;
855                 block_end = block_start + blocksize;
856                 if (block_end <= from || block_start >= to) {
857                         if (partial && !buffer_uptodate(bh))
858                                 *partial = 1;
859                         continue;
860                 }
861                 err = (*fn)(handle, bh);
862                 if (!ret)
863                         ret = err;
864         }
865         return ret;
866 }
867
868 /*
869  * To preserve ordering, it is essential that the hole instantiation and
870  * the data write be encapsulated in a single transaction.  We cannot
871  * close off a transaction and start a new one between the ext4_get_block()
872  * and the commit_write().  So doing the jbd2_journal_start at the start of
873  * prepare_write() is the right place.
874  *
875  * Also, this function can nest inside ext4_writepage().  In that case, we
876  * *know* that ext4_writepage() has generated enough buffer credits to do the
877  * whole page.  So we won't block on the journal in that case, which is good,
878  * because the caller may be PF_MEMALLOC.
879  *
880  * By accident, ext4 can be reentered when a transaction is open via
881  * quota file writes.  If we were to commit the transaction while thus
882  * reentered, there can be a deadlock - we would be holding a quota
883  * lock, and the commit would never complete if another thread had a
884  * transaction open and was blocking on the quota lock - a ranking
885  * violation.
886  *
887  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
888  * will _not_ run commit under these circumstances because handle->h_ref
889  * is elevated.  We'll still have enough credits for the tiny quotafile
890  * write.
891  */
892 int do_journal_get_write_access(handle_t *handle,
893                                 struct buffer_head *bh)
894 {
895         int dirty = buffer_dirty(bh);
896         int ret;
897
898         if (!buffer_mapped(bh) || buffer_freed(bh))
899                 return 0;
900         /*
901          * __block_write_begin() could have dirtied some buffers. Clean
902          * the dirty bit as jbd2_journal_get_write_access() could complain
903          * otherwise about fs integrity issues. Setting of the dirty bit
904          * by __block_write_begin() isn't a real problem here as we clear
905          * the bit before releasing a page lock and thus writeback cannot
906          * ever write the buffer.
907          */
908         if (dirty)
909                 clear_buffer_dirty(bh);
910         ret = ext4_journal_get_write_access(handle, bh);
911         if (!ret && dirty)
912                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
913         return ret;
914 }
915
916 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
917                    struct buffer_head *bh_result, int create);
918 static int ext4_write_begin(struct file *file, struct address_space *mapping,
919                             loff_t pos, unsigned len, unsigned flags,
920                             struct page **pagep, void **fsdata)
921 {
922         struct inode *inode = mapping->host;
923         int ret, needed_blocks;
924         handle_t *handle;
925         int retries = 0;
926         struct page *page;
927         pgoff_t index;
928         unsigned from, to;
929
930         trace_ext4_write_begin(inode, pos, len, flags);
931         /*
932          * Reserve one block more for addition to orphan list in case
933          * we allocate blocks but write fails for some reason
934          */
935         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
936         index = pos >> PAGE_CACHE_SHIFT;
937         from = pos & (PAGE_CACHE_SIZE - 1);
938         to = from + len;
939
940         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
941                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
942                                                     flags, pagep);
943                 if (ret < 0)
944                         return ret;
945                 if (ret == 1)
946                         return 0;
947         }
948
949         /*
950          * grab_cache_page_write_begin() can take a long time if the
951          * system is thrashing due to memory pressure, or if the page
952          * is being written back.  So grab it first before we start
953          * the transaction handle.  This also allows us to allocate
954          * the page (if needed) without using GFP_NOFS.
955          */
956 retry_grab:
957         page = grab_cache_page_write_begin(mapping, index, flags);
958         if (!page)
959                 return -ENOMEM;
960         unlock_page(page);
961
962 retry_journal:
963         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
964         if (IS_ERR(handle)) {
965                 page_cache_release(page);
966                 return PTR_ERR(handle);
967         }
968
969         lock_page(page);
970         if (page->mapping != mapping) {
971                 /* The page got truncated from under us */
972                 unlock_page(page);
973                 page_cache_release(page);
974                 ext4_journal_stop(handle);
975                 goto retry_grab;
976         }
977         /* In case writeback began while the page was unlocked */
978         wait_for_stable_page(page);
979
980         if (ext4_should_dioread_nolock(inode))
981                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
982         else
983                 ret = __block_write_begin(page, pos, len, ext4_get_block);
984
985         if (!ret && ext4_should_journal_data(inode)) {
986                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
987                                              from, to, NULL,
988                                              do_journal_get_write_access);
989         }
990
991         if (ret) {
992                 unlock_page(page);
993                 /*
994                  * __block_write_begin may have instantiated a few blocks
995                  * outside i_size.  Trim these off again. Don't need
996                  * i_size_read because we hold i_mutex.
997                  *
998                  * Add inode to orphan list in case we crash before
999                  * truncate finishes
1000                  */
1001                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1002                         ext4_orphan_add(handle, inode);
1003
1004                 ext4_journal_stop(handle);
1005                 if (pos + len > inode->i_size) {
1006                         ext4_truncate_failed_write(inode);
1007                         /*
1008                          * If truncate failed early the inode might
1009                          * still be on the orphan list; we need to
1010                          * make sure the inode is removed from the
1011                          * orphan list in that case.
1012                          */
1013                         if (inode->i_nlink)
1014                                 ext4_orphan_del(NULL, inode);
1015                 }
1016
1017                 if (ret == -ENOSPC &&
1018                     ext4_should_retry_alloc(inode->i_sb, &retries))
1019                         goto retry_journal;
1020                 page_cache_release(page);
1021                 return ret;
1022         }
1023         *pagep = page;
1024         return ret;
1025 }
1026
1027 /* For write_end() in data=journal mode */
1028 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1029 {
1030         int ret;
1031         if (!buffer_mapped(bh) || buffer_freed(bh))
1032                 return 0;
1033         set_buffer_uptodate(bh);
1034         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1035         clear_buffer_meta(bh);
1036         clear_buffer_prio(bh);
1037         return ret;
1038 }
1039
1040 /*
1041  * We need to pick up the new inode size which generic_commit_write gave us
1042  * `file' can be NULL - eg, when called from page_symlink().
1043  *
1044  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1045  * buffers are managed internally.
1046  */
1047 static int ext4_write_end(struct file *file,
1048                           struct address_space *mapping,
1049                           loff_t pos, unsigned len, unsigned copied,
1050                           struct page *page, void *fsdata)
1051 {
1052         handle_t *handle = ext4_journal_current_handle();
1053         struct inode *inode = mapping->host;
1054         int ret = 0, ret2;
1055         int i_size_changed = 0;
1056
1057         trace_ext4_write_end(inode, pos, len, copied);
1058         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1059                 ret = ext4_jbd2_file_inode(handle, inode);
1060                 if (ret) {
1061                         unlock_page(page);
1062                         page_cache_release(page);
1063                         goto errout;
1064                 }
1065         }
1066
1067         if (ext4_has_inline_data(inode)) {
1068                 ret = ext4_write_inline_data_end(inode, pos, len,
1069                                                  copied, page);
1070                 if (ret < 0)
1071                         goto errout;
1072                 copied = ret;
1073         } else
1074                 copied = block_write_end(file, mapping, pos,
1075                                          len, copied, page, fsdata);
1076
1077         /*
1078          * No need to use i_size_read() here, the i_size
1079          * cannot change under us because we hole i_mutex.
1080          *
1081          * But it's important to update i_size while still holding page lock:
1082          * page writeout could otherwise come in and zero beyond i_size.
1083          */
1084         if (pos + copied > inode->i_size) {
1085                 i_size_write(inode, pos + copied);
1086                 i_size_changed = 1;
1087         }
1088
1089         if (pos + copied > EXT4_I(inode)->i_disksize) {
1090                 /* We need to mark inode dirty even if
1091                  * new_i_size is less that inode->i_size
1092                  * but greater than i_disksize. (hint delalloc)
1093                  */
1094                 ext4_update_i_disksize(inode, (pos + copied));
1095                 i_size_changed = 1;
1096         }
1097         unlock_page(page);
1098         page_cache_release(page);
1099
1100         /*
1101          * Don't mark the inode dirty under page lock. First, it unnecessarily
1102          * makes the holding time of page lock longer. Second, it forces lock
1103          * ordering of page lock and transaction start for journaling
1104          * filesystems.
1105          */
1106         if (i_size_changed)
1107                 ext4_mark_inode_dirty(handle, inode);
1108
1109         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1110                 /* if we have allocated more blocks and copied
1111                  * less. We will have blocks allocated outside
1112                  * inode->i_size. So truncate them
1113                  */
1114                 ext4_orphan_add(handle, inode);
1115 errout:
1116         ret2 = ext4_journal_stop(handle);
1117         if (!ret)
1118                 ret = ret2;
1119
1120         if (pos + len > inode->i_size) {
1121                 ext4_truncate_failed_write(inode);
1122                 /*
1123                  * If truncate failed early the inode might still be
1124                  * on the orphan list; we need to make sure the inode
1125                  * is removed from the orphan list in that case.
1126                  */
1127                 if (inode->i_nlink)
1128                         ext4_orphan_del(NULL, inode);
1129         }
1130
1131         return ret ? ret : copied;
1132 }
1133
1134 static int ext4_journalled_write_end(struct file *file,
1135                                      struct address_space *mapping,
1136                                      loff_t pos, unsigned len, unsigned copied,
1137                                      struct page *page, void *fsdata)
1138 {
1139         handle_t *handle = ext4_journal_current_handle();
1140         struct inode *inode = mapping->host;
1141         int ret = 0, ret2;
1142         int partial = 0;
1143         unsigned from, to;
1144         loff_t new_i_size;
1145
1146         trace_ext4_journalled_write_end(inode, pos, len, copied);
1147         from = pos & (PAGE_CACHE_SIZE - 1);
1148         to = from + len;
1149
1150         BUG_ON(!ext4_handle_valid(handle));
1151
1152         if (ext4_has_inline_data(inode))
1153                 copied = ext4_write_inline_data_end(inode, pos, len,
1154                                                     copied, page);
1155         else {
1156                 if (copied < len) {
1157                         if (!PageUptodate(page))
1158                                 copied = 0;
1159                         page_zero_new_buffers(page, from+copied, to);
1160                 }
1161
1162                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1163                                              to, &partial, write_end_fn);
1164                 if (!partial)
1165                         SetPageUptodate(page);
1166         }
1167         new_i_size = pos + copied;
1168         if (new_i_size > inode->i_size)
1169                 i_size_write(inode, pos+copied);
1170         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1171         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1172         if (new_i_size > EXT4_I(inode)->i_disksize) {
1173                 ext4_update_i_disksize(inode, new_i_size);
1174                 ret2 = ext4_mark_inode_dirty(handle, inode);
1175                 if (!ret)
1176                         ret = ret2;
1177         }
1178
1179         unlock_page(page);
1180         page_cache_release(page);
1181         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1182                 /* if we have allocated more blocks and copied
1183                  * less. We will have blocks allocated outside
1184                  * inode->i_size. So truncate them
1185                  */
1186                 ext4_orphan_add(handle, inode);
1187
1188         ret2 = ext4_journal_stop(handle);
1189         if (!ret)
1190                 ret = ret2;
1191         if (pos + len > inode->i_size) {
1192                 ext4_truncate_failed_write(inode);
1193                 /*
1194                  * If truncate failed early the inode might still be
1195                  * on the orphan list; we need to make sure the inode
1196                  * is removed from the orphan list in that case.
1197                  */
1198                 if (inode->i_nlink)
1199                         ext4_orphan_del(NULL, inode);
1200         }
1201
1202         return ret ? ret : copied;
1203 }
1204
1205 /*
1206  * Reserve a metadata for a single block located at lblock
1207  */
1208 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1209 {
1210         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1211         struct ext4_inode_info *ei = EXT4_I(inode);
1212         unsigned int md_needed;
1213         ext4_lblk_t save_last_lblock;
1214         int save_len;
1215
1216         /*
1217          * recalculate the amount of metadata blocks to reserve
1218          * in order to allocate nrblocks
1219          * worse case is one extent per block
1220          */
1221         spin_lock(&ei->i_block_reservation_lock);
1222         /*
1223          * ext4_calc_metadata_amount() has side effects, which we have
1224          * to be prepared undo if we fail to claim space.
1225          */
1226         save_len = ei->i_da_metadata_calc_len;
1227         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1228         md_needed = EXT4_NUM_B2C(sbi,
1229                                  ext4_calc_metadata_amount(inode, lblock));
1230         trace_ext4_da_reserve_space(inode, md_needed);
1231
1232         /*
1233          * We do still charge estimated metadata to the sb though;
1234          * we cannot afford to run out of free blocks.
1235          */
1236         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1237                 ei->i_da_metadata_calc_len = save_len;
1238                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1239                 spin_unlock(&ei->i_block_reservation_lock);
1240                 return -ENOSPC;
1241         }
1242         ei->i_reserved_meta_blocks += md_needed;
1243         spin_unlock(&ei->i_block_reservation_lock);
1244
1245         return 0;       /* success */
1246 }
1247
1248 /*
1249  * Reserve a single cluster located at lblock
1250  */
1251 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1252 {
1253         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1254         struct ext4_inode_info *ei = EXT4_I(inode);
1255         unsigned int md_needed;
1256         int ret;
1257         ext4_lblk_t save_last_lblock;
1258         int save_len;
1259
1260         /*
1261          * We will charge metadata quota at writeout time; this saves
1262          * us from metadata over-estimation, though we may go over by
1263          * a small amount in the end.  Here we just reserve for data.
1264          */
1265         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1266         if (ret)
1267                 return ret;
1268
1269         /*
1270          * recalculate the amount of metadata blocks to reserve
1271          * in order to allocate nrblocks
1272          * worse case is one extent per block
1273          */
1274         spin_lock(&ei->i_block_reservation_lock);
1275         /*
1276          * ext4_calc_metadata_amount() has side effects, which we have
1277          * to be prepared undo if we fail to claim space.
1278          */
1279         save_len = ei->i_da_metadata_calc_len;
1280         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1281         md_needed = EXT4_NUM_B2C(sbi,
1282                                  ext4_calc_metadata_amount(inode, lblock));
1283         trace_ext4_da_reserve_space(inode, md_needed);
1284
1285         /*
1286          * We do still charge estimated metadata to the sb though;
1287          * we cannot afford to run out of free blocks.
1288          */
1289         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1290                 ei->i_da_metadata_calc_len = save_len;
1291                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1292                 spin_unlock(&ei->i_block_reservation_lock);
1293                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1294                 return -ENOSPC;
1295         }
1296         ei->i_reserved_data_blocks++;
1297         ei->i_reserved_meta_blocks += md_needed;
1298         spin_unlock(&ei->i_block_reservation_lock);
1299
1300         return 0;       /* success */
1301 }
1302
1303 static void ext4_da_release_space(struct inode *inode, int to_free)
1304 {
1305         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1306         struct ext4_inode_info *ei = EXT4_I(inode);
1307
1308         if (!to_free)
1309                 return;         /* Nothing to release, exit */
1310
1311         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1312
1313         trace_ext4_da_release_space(inode, to_free);
1314         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1315                 /*
1316                  * if there aren't enough reserved blocks, then the
1317                  * counter is messed up somewhere.  Since this
1318                  * function is called from invalidate page, it's
1319                  * harmless to return without any action.
1320                  */
1321                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1322                          "ino %lu, to_free %d with only %d reserved "
1323                          "data blocks", inode->i_ino, to_free,
1324                          ei->i_reserved_data_blocks);
1325                 WARN_ON(1);
1326                 to_free = ei->i_reserved_data_blocks;
1327         }
1328         ei->i_reserved_data_blocks -= to_free;
1329
1330         if (ei->i_reserved_data_blocks == 0) {
1331                 /*
1332                  * We can release all of the reserved metadata blocks
1333                  * only when we have written all of the delayed
1334                  * allocation blocks.
1335                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1336                  * i_reserved_data_blocks, etc. refer to number of clusters.
1337                  */
1338                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1339                                    ei->i_reserved_meta_blocks);
1340                 ei->i_reserved_meta_blocks = 0;
1341                 ei->i_da_metadata_calc_len = 0;
1342         }
1343
1344         /* update fs dirty data blocks counter */
1345         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1346
1347         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1348
1349         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1350 }
1351
1352 static void ext4_da_page_release_reservation(struct page *page,
1353                                              unsigned int offset,
1354                                              unsigned int length)
1355 {
1356         int to_release = 0;
1357         struct buffer_head *head, *bh;
1358         unsigned int curr_off = 0;
1359         struct inode *inode = page->mapping->host;
1360         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1361         unsigned int stop = offset + length;
1362         int num_clusters;
1363         ext4_fsblk_t lblk;
1364
1365         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1366
1367         head = page_buffers(page);
1368         bh = head;
1369         do {
1370                 unsigned int next_off = curr_off + bh->b_size;
1371
1372                 if (next_off > stop)
1373                         break;
1374
1375                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1376                         to_release++;
1377                         clear_buffer_delay(bh);
1378                 }
1379                 curr_off = next_off;
1380         } while ((bh = bh->b_this_page) != head);
1381
1382         if (to_release) {
1383                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1384                 ext4_es_remove_extent(inode, lblk, to_release);
1385         }
1386
1387         /* If we have released all the blocks belonging to a cluster, then we
1388          * need to release the reserved space for that cluster. */
1389         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1390         while (num_clusters > 0) {
1391                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1392                         ((num_clusters - 1) << sbi->s_cluster_bits);
1393                 if (sbi->s_cluster_ratio == 1 ||
1394                     !ext4_find_delalloc_cluster(inode, lblk))
1395                         ext4_da_release_space(inode, 1);
1396
1397                 num_clusters--;
1398         }
1399 }
1400
1401 /*
1402  * Delayed allocation stuff
1403  */
1404
1405 struct mpage_da_data {
1406         struct inode *inode;
1407         struct writeback_control *wbc;
1408
1409         pgoff_t first_page;     /* The first page to write */
1410         pgoff_t next_page;      /* Current page to examine */
1411         pgoff_t last_page;      /* Last page to examine */
1412         /*
1413          * Extent to map - this can be after first_page because that can be
1414          * fully mapped. We somewhat abuse m_flags to store whether the extent
1415          * is delalloc or unwritten.
1416          */
1417         struct ext4_map_blocks map;
1418         struct ext4_io_submit io_submit;        /* IO submission data */
1419 };
1420
1421 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1422                                        bool invalidate)
1423 {
1424         int nr_pages, i;
1425         pgoff_t index, end;
1426         struct pagevec pvec;
1427         struct inode *inode = mpd->inode;
1428         struct address_space *mapping = inode->i_mapping;
1429
1430         /* This is necessary when next_page == 0. */
1431         if (mpd->first_page >= mpd->next_page)
1432                 return;
1433
1434         index = mpd->first_page;
1435         end   = mpd->next_page - 1;
1436         if (invalidate) {
1437                 ext4_lblk_t start, last;
1438                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1439                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1440                 ext4_es_remove_extent(inode, start, last - start + 1);
1441         }
1442
1443         pagevec_init(&pvec, 0);
1444         while (index <= end) {
1445                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1446                 if (nr_pages == 0)
1447                         break;
1448                 for (i = 0; i < nr_pages; i++) {
1449                         struct page *page = pvec.pages[i];
1450                         if (page->index > end)
1451                                 break;
1452                         BUG_ON(!PageLocked(page));
1453                         BUG_ON(PageWriteback(page));
1454                         if (invalidate) {
1455                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1456                                 ClearPageUptodate(page);
1457                         }
1458                         unlock_page(page);
1459                 }
1460                 index = pvec.pages[nr_pages - 1]->index + 1;
1461                 pagevec_release(&pvec);
1462         }
1463 }
1464
1465 static void ext4_print_free_blocks(struct inode *inode)
1466 {
1467         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1468         struct super_block *sb = inode->i_sb;
1469         struct ext4_inode_info *ei = EXT4_I(inode);
1470
1471         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1472                EXT4_C2B(EXT4_SB(inode->i_sb),
1473                         ext4_count_free_clusters(sb)));
1474         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1475         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1476                (long long) EXT4_C2B(EXT4_SB(sb),
1477                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1478         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1479                (long long) EXT4_C2B(EXT4_SB(sb),
1480                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1481         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1482         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1483                  ei->i_reserved_data_blocks);
1484         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1485                ei->i_reserved_meta_blocks);
1486         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1487                ei->i_allocated_meta_blocks);
1488         return;
1489 }
1490
1491 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1492 {
1493         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1494 }
1495
1496 /*
1497  * This function is grabs code from the very beginning of
1498  * ext4_map_blocks, but assumes that the caller is from delayed write
1499  * time. This function looks up the requested blocks and sets the
1500  * buffer delay bit under the protection of i_data_sem.
1501  */
1502 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1503                               struct ext4_map_blocks *map,
1504                               struct buffer_head *bh)
1505 {
1506         struct extent_status es;
1507         int retval;
1508         sector_t invalid_block = ~((sector_t) 0xffff);
1509 #ifdef ES_AGGRESSIVE_TEST
1510         struct ext4_map_blocks orig_map;
1511
1512         memcpy(&orig_map, map, sizeof(*map));
1513 #endif
1514
1515         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1516                 invalid_block = ~0;
1517
1518         map->m_flags = 0;
1519         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1520                   "logical block %lu\n", inode->i_ino, map->m_len,
1521                   (unsigned long) map->m_lblk);
1522
1523         /* Lookup extent status tree firstly */
1524         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1525                 ext4_es_lru_add(inode);
1526                 if (ext4_es_is_hole(&es)) {
1527                         retval = 0;
1528                         down_read((&EXT4_I(inode)->i_data_sem));
1529                         goto add_delayed;
1530                 }
1531
1532                 /*
1533                  * Delayed extent could be allocated by fallocate.
1534                  * So we need to check it.
1535                  */
1536                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1537                         map_bh(bh, inode->i_sb, invalid_block);
1538                         set_buffer_new(bh);
1539                         set_buffer_delay(bh);
1540                         return 0;
1541                 }
1542
1543                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1544                 retval = es.es_len - (iblock - es.es_lblk);
1545                 if (retval > map->m_len)
1546                         retval = map->m_len;
1547                 map->m_len = retval;
1548                 if (ext4_es_is_written(&es))
1549                         map->m_flags |= EXT4_MAP_MAPPED;
1550                 else if (ext4_es_is_unwritten(&es))
1551                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1552                 else
1553                         BUG_ON(1);
1554
1555 #ifdef ES_AGGRESSIVE_TEST
1556                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1557 #endif
1558                 return retval;
1559         }
1560
1561         /*
1562          * Try to see if we can get the block without requesting a new
1563          * file system block.
1564          */
1565         down_read((&EXT4_I(inode)->i_data_sem));
1566         if (ext4_has_inline_data(inode)) {
1567                 /*
1568                  * We will soon create blocks for this page, and let
1569                  * us pretend as if the blocks aren't allocated yet.
1570                  * In case of clusters, we have to handle the work
1571                  * of mapping from cluster so that the reserved space
1572                  * is calculated properly.
1573                  */
1574                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1575                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1576                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1577                 retval = 0;
1578         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1579                 retval = ext4_ext_map_blocks(NULL, inode, map,
1580                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1581         else
1582                 retval = ext4_ind_map_blocks(NULL, inode, map,
1583                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1584
1585 add_delayed:
1586         if (retval == 0) {
1587                 int ret;
1588                 /*
1589                  * XXX: __block_prepare_write() unmaps passed block,
1590                  * is it OK?
1591                  */
1592                 /*
1593                  * If the block was allocated from previously allocated cluster,
1594                  * then we don't need to reserve it again. However we still need
1595                  * to reserve metadata for every block we're going to write.
1596                  */
1597                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1598                         ret = ext4_da_reserve_space(inode, iblock);
1599                         if (ret) {
1600                                 /* not enough space to reserve */
1601                                 retval = ret;
1602                                 goto out_unlock;
1603                         }
1604                 } else {
1605                         ret = ext4_da_reserve_metadata(inode, iblock);
1606                         if (ret) {
1607                                 /* not enough space to reserve */
1608                                 retval = ret;
1609                                 goto out_unlock;
1610                         }
1611                 }
1612
1613                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1614                                             ~0, EXTENT_STATUS_DELAYED);
1615                 if (ret) {
1616                         retval = ret;
1617                         goto out_unlock;
1618                 }
1619
1620                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1621                  * and it should not appear on the bh->b_state.
1622                  */
1623                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1624
1625                 map_bh(bh, inode->i_sb, invalid_block);
1626                 set_buffer_new(bh);
1627                 set_buffer_delay(bh);
1628         } else if (retval > 0) {
1629                 int ret;
1630                 unsigned int status;
1631
1632                 if (unlikely(retval != map->m_len)) {
1633                         ext4_warning(inode->i_sb,
1634                                      "ES len assertion failed for inode "
1635                                      "%lu: retval %d != map->m_len %d",
1636                                      inode->i_ino, retval, map->m_len);
1637                         WARN_ON(1);
1638                 }
1639
1640                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1641                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1642                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1643                                             map->m_pblk, status);
1644                 if (ret != 0)
1645                         retval = ret;
1646         }
1647
1648 out_unlock:
1649         up_read((&EXT4_I(inode)->i_data_sem));
1650
1651         return retval;
1652 }
1653
1654 /*
1655  * This is a special get_blocks_t callback which is used by
1656  * ext4_da_write_begin().  It will either return mapped block or
1657  * reserve space for a single block.
1658  *
1659  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1660  * We also have b_blocknr = -1 and b_bdev initialized properly
1661  *
1662  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1663  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1664  * initialized properly.
1665  */
1666 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1667                            struct buffer_head *bh, int create)
1668 {
1669         struct ext4_map_blocks map;
1670         int ret = 0;
1671
1672         BUG_ON(create == 0);
1673         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1674
1675         map.m_lblk = iblock;
1676         map.m_len = 1;
1677
1678         /*
1679          * first, we need to know whether the block is allocated already
1680          * preallocated blocks are unmapped but should treated
1681          * the same as allocated blocks.
1682          */
1683         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1684         if (ret <= 0)
1685                 return ret;
1686
1687         map_bh(bh, inode->i_sb, map.m_pblk);
1688         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1689
1690         if (buffer_unwritten(bh)) {
1691                 /* A delayed write to unwritten bh should be marked
1692                  * new and mapped.  Mapped ensures that we don't do
1693                  * get_block multiple times when we write to the same
1694                  * offset and new ensures that we do proper zero out
1695                  * for partial write.
1696                  */
1697                 set_buffer_new(bh);
1698                 set_buffer_mapped(bh);
1699         }
1700         return 0;
1701 }
1702
1703 static int bget_one(handle_t *handle, struct buffer_head *bh)
1704 {
1705         get_bh(bh);
1706         return 0;
1707 }
1708
1709 static int bput_one(handle_t *handle, struct buffer_head *bh)
1710 {
1711         put_bh(bh);
1712         return 0;
1713 }
1714
1715 static int __ext4_journalled_writepage(struct page *page,
1716                                        unsigned int len)
1717 {
1718         struct address_space *mapping = page->mapping;
1719         struct inode *inode = mapping->host;
1720         struct buffer_head *page_bufs = NULL;
1721         handle_t *handle = NULL;
1722         int ret = 0, err = 0;
1723         int inline_data = ext4_has_inline_data(inode);
1724         struct buffer_head *inode_bh = NULL;
1725
1726         ClearPageChecked(page);
1727
1728         if (inline_data) {
1729                 BUG_ON(page->index != 0);
1730                 BUG_ON(len > ext4_get_max_inline_size(inode));
1731                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1732                 if (inode_bh == NULL)
1733                         goto out;
1734         } else {
1735                 page_bufs = page_buffers(page);
1736                 if (!page_bufs) {
1737                         BUG();
1738                         goto out;
1739                 }
1740                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1741                                        NULL, bget_one);
1742         }
1743         /* As soon as we unlock the page, it can go away, but we have
1744          * references to buffers so we are safe */
1745         unlock_page(page);
1746
1747         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1748                                     ext4_writepage_trans_blocks(inode));
1749         if (IS_ERR(handle)) {
1750                 ret = PTR_ERR(handle);
1751                 goto out;
1752         }
1753
1754         BUG_ON(!ext4_handle_valid(handle));
1755
1756         if (inline_data) {
1757                 ret = ext4_journal_get_write_access(handle, inode_bh);
1758
1759                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1760
1761         } else {
1762                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1763                                              do_journal_get_write_access);
1764
1765                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1766                                              write_end_fn);
1767         }
1768         if (ret == 0)
1769                 ret = err;
1770         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1771         err = ext4_journal_stop(handle);
1772         if (!ret)
1773                 ret = err;
1774
1775         if (!ext4_has_inline_data(inode))
1776                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1777                                        NULL, bput_one);
1778         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1779 out:
1780         brelse(inode_bh);
1781         return ret;
1782 }
1783
1784 /*
1785  * Note that we don't need to start a transaction unless we're journaling data
1786  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1787  * need to file the inode to the transaction's list in ordered mode because if
1788  * we are writing back data added by write(), the inode is already there and if
1789  * we are writing back data modified via mmap(), no one guarantees in which
1790  * transaction the data will hit the disk. In case we are journaling data, we
1791  * cannot start transaction directly because transaction start ranks above page
1792  * lock so we have to do some magic.
1793  *
1794  * This function can get called via...
1795  *   - ext4_writepages after taking page lock (have journal handle)
1796  *   - journal_submit_inode_data_buffers (no journal handle)
1797  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1798  *   - grab_page_cache when doing write_begin (have journal handle)
1799  *
1800  * We don't do any block allocation in this function. If we have page with
1801  * multiple blocks we need to write those buffer_heads that are mapped. This
1802  * is important for mmaped based write. So if we do with blocksize 1K
1803  * truncate(f, 1024);
1804  * a = mmap(f, 0, 4096);
1805  * a[0] = 'a';
1806  * truncate(f, 4096);
1807  * we have in the page first buffer_head mapped via page_mkwrite call back
1808  * but other buffer_heads would be unmapped but dirty (dirty done via the
1809  * do_wp_page). So writepage should write the first block. If we modify
1810  * the mmap area beyond 1024 we will again get a page_fault and the
1811  * page_mkwrite callback will do the block allocation and mark the
1812  * buffer_heads mapped.
1813  *
1814  * We redirty the page if we have any buffer_heads that is either delay or
1815  * unwritten in the page.
1816  *
1817  * We can get recursively called as show below.
1818  *
1819  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1820  *              ext4_writepage()
1821  *
1822  * But since we don't do any block allocation we should not deadlock.
1823  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1824  */
1825 static int ext4_writepage(struct page *page,
1826                           struct writeback_control *wbc)
1827 {
1828         int ret = 0;
1829         loff_t size;
1830         unsigned int len;
1831         struct buffer_head *page_bufs = NULL;
1832         struct inode *inode = page->mapping->host;
1833         struct ext4_io_submit io_submit;
1834
1835         trace_ext4_writepage(page);
1836         size = i_size_read(inode);
1837         if (page->index == size >> PAGE_CACHE_SHIFT)
1838                 len = size & ~PAGE_CACHE_MASK;
1839         else
1840                 len = PAGE_CACHE_SIZE;
1841
1842         page_bufs = page_buffers(page);
1843         /*
1844          * We cannot do block allocation or other extent handling in this
1845          * function. If there are buffers needing that, we have to redirty
1846          * the page. But we may reach here when we do a journal commit via
1847          * journal_submit_inode_data_buffers() and in that case we must write
1848          * allocated buffers to achieve data=ordered mode guarantees.
1849          */
1850         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1851                                    ext4_bh_delay_or_unwritten)) {
1852                 redirty_page_for_writepage(wbc, page);
1853                 if (current->flags & PF_MEMALLOC) {
1854                         /*
1855                          * For memory cleaning there's no point in writing only
1856                          * some buffers. So just bail out. Warn if we came here
1857                          * from direct reclaim.
1858                          */
1859                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1860                                                         == PF_MEMALLOC);
1861                         unlock_page(page);
1862                         return 0;
1863                 }
1864         }
1865
1866         if (PageChecked(page) && ext4_should_journal_data(inode))
1867                 /*
1868                  * It's mmapped pagecache.  Add buffers and journal it.  There
1869                  * doesn't seem much point in redirtying the page here.
1870                  */
1871                 return __ext4_journalled_writepage(page, len);
1872
1873         ext4_io_submit_init(&io_submit, wbc);
1874         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1875         if (!io_submit.io_end) {
1876                 redirty_page_for_writepage(wbc, page);
1877                 unlock_page(page);
1878                 return -ENOMEM;
1879         }
1880         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1881         ext4_io_submit(&io_submit);
1882         /* Drop io_end reference we got from init */
1883         ext4_put_io_end_defer(io_submit.io_end);
1884         return ret;
1885 }
1886
1887 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1888 {
1889         int len;
1890         loff_t size = i_size_read(mpd->inode);
1891         int err;
1892
1893         BUG_ON(page->index != mpd->first_page);
1894         if (page->index == size >> PAGE_CACHE_SHIFT)
1895                 len = size & ~PAGE_CACHE_MASK;
1896         else
1897                 len = PAGE_CACHE_SIZE;
1898         clear_page_dirty_for_io(page);
1899         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1900         if (!err)
1901                 mpd->wbc->nr_to_write--;
1902         mpd->first_page++;
1903
1904         return err;
1905 }
1906
1907 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1908
1909 /*
1910  * mballoc gives us at most this number of blocks...
1911  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1912  * The rest of mballoc seems to handle chunks up to full group size.
1913  */
1914 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1915
1916 /*
1917  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1918  *
1919  * @mpd - extent of blocks
1920  * @lblk - logical number of the block in the file
1921  * @bh - buffer head we want to add to the extent
1922  *
1923  * The function is used to collect contig. blocks in the same state. If the
1924  * buffer doesn't require mapping for writeback and we haven't started the
1925  * extent of buffers to map yet, the function returns 'true' immediately - the
1926  * caller can write the buffer right away. Otherwise the function returns true
1927  * if the block has been added to the extent, false if the block couldn't be
1928  * added.
1929  */
1930 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1931                                    struct buffer_head *bh)
1932 {
1933         struct ext4_map_blocks *map = &mpd->map;
1934
1935         /* Buffer that doesn't need mapping for writeback? */
1936         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1937             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1938                 /* So far no extent to map => we write the buffer right away */
1939                 if (map->m_len == 0)
1940                         return true;
1941                 return false;
1942         }
1943
1944         /* First block in the extent? */
1945         if (map->m_len == 0) {
1946                 map->m_lblk = lblk;
1947                 map->m_len = 1;
1948                 map->m_flags = bh->b_state & BH_FLAGS;
1949                 return true;
1950         }
1951
1952         /* Don't go larger than mballoc is willing to allocate */
1953         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1954                 return false;
1955
1956         /* Can we merge the block to our big extent? */
1957         if (lblk == map->m_lblk + map->m_len &&
1958             (bh->b_state & BH_FLAGS) == map->m_flags) {
1959                 map->m_len++;
1960                 return true;
1961         }
1962         return false;
1963 }
1964
1965 /*
1966  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1967  *
1968  * @mpd - extent of blocks for mapping
1969  * @head - the first buffer in the page
1970  * @bh - buffer we should start processing from
1971  * @lblk - logical number of the block in the file corresponding to @bh
1972  *
1973  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1974  * the page for IO if all buffers in this page were mapped and there's no
1975  * accumulated extent of buffers to map or add buffers in the page to the
1976  * extent of buffers to map. The function returns 1 if the caller can continue
1977  * by processing the next page, 0 if it should stop adding buffers to the
1978  * extent to map because we cannot extend it anymore. It can also return value
1979  * < 0 in case of error during IO submission.
1980  */
1981 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1982                                    struct buffer_head *head,
1983                                    struct buffer_head *bh,
1984                                    ext4_lblk_t lblk)
1985 {
1986         struct inode *inode = mpd->inode;
1987         int err;
1988         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1989                                                         >> inode->i_blkbits;
1990
1991         do {
1992                 BUG_ON(buffer_locked(bh));
1993
1994                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1995                         /* Found extent to map? */
1996                         if (mpd->map.m_len)
1997                                 return 0;
1998                         /* Everything mapped so far and we hit EOF */
1999                         break;
2000                 }
2001         } while (lblk++, (bh = bh->b_this_page) != head);
2002         /* So far everything mapped? Submit the page for IO. */
2003         if (mpd->map.m_len == 0) {
2004                 err = mpage_submit_page(mpd, head->b_page);
2005                 if (err < 0)
2006                         return err;
2007         }
2008         return lblk < blocks;
2009 }
2010
2011 /*
2012  * mpage_map_buffers - update buffers corresponding to changed extent and
2013  *                     submit fully mapped pages for IO
2014  *
2015  * @mpd - description of extent to map, on return next extent to map
2016  *
2017  * Scan buffers corresponding to changed extent (we expect corresponding pages
2018  * to be already locked) and update buffer state according to new extent state.
2019  * We map delalloc buffers to their physical location, clear unwritten bits,
2020  * and mark buffers as uninit when we perform writes to uninitialized extents
2021  * and do extent conversion after IO is finished. If the last page is not fully
2022  * mapped, we update @map to the next extent in the last page that needs
2023  * mapping. Otherwise we submit the page for IO.
2024  */
2025 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2026 {
2027         struct pagevec pvec;
2028         int nr_pages, i;
2029         struct inode *inode = mpd->inode;
2030         struct buffer_head *head, *bh;
2031         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2032         pgoff_t start, end;
2033         ext4_lblk_t lblk;
2034         sector_t pblock;
2035         int err;
2036
2037         start = mpd->map.m_lblk >> bpp_bits;
2038         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2039         lblk = start << bpp_bits;
2040         pblock = mpd->map.m_pblk;
2041
2042         pagevec_init(&pvec, 0);
2043         while (start <= end) {
2044                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2045                                           PAGEVEC_SIZE);
2046                 if (nr_pages == 0)
2047                         break;
2048                 for (i = 0; i < nr_pages; i++) {
2049                         struct page *page = pvec.pages[i];
2050
2051                         if (page->index > end)
2052                                 break;
2053                         /* Up to 'end' pages must be contiguous */
2054                         BUG_ON(page->index != start);
2055                         bh = head = page_buffers(page);
2056                         do {
2057                                 if (lblk < mpd->map.m_lblk)
2058                                         continue;
2059                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2060                                         /*
2061                                          * Buffer after end of mapped extent.
2062                                          * Find next buffer in the page to map.
2063                                          */
2064                                         mpd->map.m_len = 0;
2065                                         mpd->map.m_flags = 0;
2066                                         /*
2067                                          * FIXME: If dioread_nolock supports
2068                                          * blocksize < pagesize, we need to make
2069                                          * sure we add size mapped so far to
2070                                          * io_end->size as the following call
2071                                          * can submit the page for IO.
2072                                          */
2073                                         err = mpage_process_page_bufs(mpd, head,
2074                                                                       bh, lblk);
2075                                         pagevec_release(&pvec);
2076                                         if (err > 0)
2077                                                 err = 0;
2078                                         return err;
2079                                 }
2080                                 if (buffer_delay(bh)) {
2081                                         clear_buffer_delay(bh);
2082                                         bh->b_blocknr = pblock++;
2083                                 }
2084                                 clear_buffer_unwritten(bh);
2085                         } while (lblk++, (bh = bh->b_this_page) != head);
2086
2087                         /*
2088                          * FIXME: This is going to break if dioread_nolock
2089                          * supports blocksize < pagesize as we will try to
2090                          * convert potentially unmapped parts of inode.
2091                          */
2092                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2093                         /* Page fully mapped - let IO run! */
2094                         err = mpage_submit_page(mpd, page);
2095                         if (err < 0) {
2096                                 pagevec_release(&pvec);
2097                                 return err;
2098                         }
2099                         start++;
2100                 }
2101                 pagevec_release(&pvec);
2102         }
2103         /* Extent fully mapped and matches with page boundary. We are done. */
2104         mpd->map.m_len = 0;
2105         mpd->map.m_flags = 0;
2106         return 0;
2107 }
2108
2109 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2110 {
2111         struct inode *inode = mpd->inode;
2112         struct ext4_map_blocks *map = &mpd->map;
2113         int get_blocks_flags;
2114         int err;
2115
2116         trace_ext4_da_write_pages_extent(inode, map);
2117         /*
2118          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2119          * to convert an uninitialized extent to be initialized (in the case
2120          * where we have written into one or more preallocated blocks).  It is
2121          * possible that we're going to need more metadata blocks than
2122          * previously reserved. However we must not fail because we're in
2123          * writeback and there is nothing we can do about it so it might result
2124          * in data loss.  So use reserved blocks to allocate metadata if
2125          * possible.
2126          *
2127          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2128          * in question are delalloc blocks.  This affects functions in many
2129          * different parts of the allocation call path.  This flag exists
2130          * primarily because we don't want to change *many* call functions, so
2131          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2132          * once the inode's allocation semaphore is taken.
2133          */
2134         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2135                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2136         if (ext4_should_dioread_nolock(inode))
2137                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2138         if (map->m_flags & (1 << BH_Delay))
2139                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2140
2141         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2142         if (err < 0)
2143                 return err;
2144         if (map->m_flags & EXT4_MAP_UNINIT) {
2145                 if (!mpd->io_submit.io_end->handle &&
2146                     ext4_handle_valid(handle)) {
2147                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2148                         handle->h_rsv_handle = NULL;
2149                 }
2150                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2151         }
2152
2153         BUG_ON(map->m_len == 0);
2154         if (map->m_flags & EXT4_MAP_NEW) {
2155                 struct block_device *bdev = inode->i_sb->s_bdev;
2156                 int i;
2157
2158                 for (i = 0; i < map->m_len; i++)
2159                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2160         }
2161         return 0;
2162 }
2163
2164 /*
2165  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2166  *                               mpd->len and submit pages underlying it for IO
2167  *
2168  * @handle - handle for journal operations
2169  * @mpd - extent to map
2170  * @give_up_on_write - we set this to true iff there is a fatal error and there
2171  *                     is no hope of writing the data. The caller should discard
2172  *                     dirty pages to avoid infinite loops.
2173  *
2174  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2175  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2176  * them to initialized or split the described range from larger unwritten
2177  * extent. Note that we need not map all the described range since allocation
2178  * can return less blocks or the range is covered by more unwritten extents. We
2179  * cannot map more because we are limited by reserved transaction credits. On
2180  * the other hand we always make sure that the last touched page is fully
2181  * mapped so that it can be written out (and thus forward progress is
2182  * guaranteed). After mapping we submit all mapped pages for IO.
2183  */
2184 static int mpage_map_and_submit_extent(handle_t *handle,
2185                                        struct mpage_da_data *mpd,
2186                                        bool *give_up_on_write)
2187 {
2188         struct inode *inode = mpd->inode;
2189         struct ext4_map_blocks *map = &mpd->map;
2190         int err;
2191         loff_t disksize;
2192
2193         mpd->io_submit.io_end->offset =
2194                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2195         do {
2196                 err = mpage_map_one_extent(handle, mpd);
2197                 if (err < 0) {
2198                         struct super_block *sb = inode->i_sb;
2199
2200                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2201                                 goto invalidate_dirty_pages;
2202                         /*
2203                          * Let the uper layers retry transient errors.
2204                          * In the case of ENOSPC, if ext4_count_free_blocks()
2205                          * is non-zero, a commit should free up blocks.
2206                          */
2207                         if ((err == -ENOMEM) ||
2208                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2209                                 return err;
2210                         ext4_msg(sb, KERN_CRIT,
2211                                  "Delayed block allocation failed for "
2212                                  "inode %lu at logical offset %llu with"
2213                                  " max blocks %u with error %d",
2214                                  inode->i_ino,
2215                                  (unsigned long long)map->m_lblk,
2216                                  (unsigned)map->m_len, -err);
2217                         ext4_msg(sb, KERN_CRIT,
2218                                  "This should not happen!! Data will "
2219                                  "be lost\n");
2220                         if (err == -ENOSPC)
2221                                 ext4_print_free_blocks(inode);
2222                 invalidate_dirty_pages:
2223                         *give_up_on_write = true;
2224                         return err;
2225                 }
2226                 /*
2227                  * Update buffer state, submit mapped pages, and get us new
2228                  * extent to map
2229                  */
2230                 err = mpage_map_and_submit_buffers(mpd);
2231                 if (err < 0)
2232                         return err;
2233         } while (map->m_len);
2234
2235         /* Update on-disk size after IO is submitted */
2236         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2237         if (disksize > EXT4_I(inode)->i_disksize) {
2238                 int err2;
2239
2240                 ext4_wb_update_i_disksize(inode, disksize);
2241                 err2 = ext4_mark_inode_dirty(handle, inode);
2242                 if (err2)
2243                         ext4_error(inode->i_sb,
2244                                    "Failed to mark inode %lu dirty",
2245                                    inode->i_ino);
2246                 if (!err)
2247                         err = err2;
2248         }
2249         return err;
2250 }
2251
2252 /*
2253  * Calculate the total number of credits to reserve for one writepages
2254  * iteration. This is called from ext4_writepages(). We map an extent of
2255  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2256  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2257  * bpp - 1 blocks in bpp different extents.
2258  */
2259 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2260 {
2261         int bpp = ext4_journal_blocks_per_page(inode);
2262
2263         return ext4_meta_trans_blocks(inode,
2264                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2265 }
2266
2267 /*
2268  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2269  *                               and underlying extent to map
2270  *
2271  * @mpd - where to look for pages
2272  *
2273  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2274  * IO immediately. When we find a page which isn't mapped we start accumulating
2275  * extent of buffers underlying these pages that needs mapping (formed by
2276  * either delayed or unwritten buffers). We also lock the pages containing
2277  * these buffers. The extent found is returned in @mpd structure (starting at
2278  * mpd->lblk with length mpd->len blocks).
2279  *
2280  * Note that this function can attach bios to one io_end structure which are
2281  * neither logically nor physically contiguous. Although it may seem as an
2282  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2283  * case as we need to track IO to all buffers underlying a page in one io_end.
2284  */
2285 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2286 {
2287         struct address_space *mapping = mpd->inode->i_mapping;
2288         struct pagevec pvec;
2289         unsigned int nr_pages;
2290         long left = mpd->wbc->nr_to_write;
2291         pgoff_t index = mpd->first_page;
2292         pgoff_t end = mpd->last_page;
2293         int tag;
2294         int i, err = 0;
2295         int blkbits = mpd->inode->i_blkbits;
2296         ext4_lblk_t lblk;
2297         struct buffer_head *head;
2298
2299         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2300                 tag = PAGECACHE_TAG_TOWRITE;
2301         else
2302                 tag = PAGECACHE_TAG_DIRTY;
2303
2304         pagevec_init(&pvec, 0);
2305         mpd->map.m_len = 0;
2306         mpd->next_page = index;
2307         while (index <= end) {
2308                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2309                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2310                 if (nr_pages == 0)
2311                         goto out;
2312
2313                 for (i = 0; i < nr_pages; i++) {
2314                         struct page *page = pvec.pages[i];
2315
2316                         /*
2317                          * At this point, the page may be truncated or
2318                          * invalidated (changing page->mapping to NULL), or
2319                          * even swizzled back from swapper_space to tmpfs file
2320                          * mapping. However, page->index will not change
2321                          * because we have a reference on the page.
2322                          */
2323                         if (page->index > end)
2324                                 goto out;
2325
2326                         /*
2327                          * Accumulated enough dirty pages? This doesn't apply
2328                          * to WB_SYNC_ALL mode. For integrity sync we have to
2329                          * keep going because someone may be concurrently
2330                          * dirtying pages, and we might have synced a lot of
2331                          * newly appeared dirty pages, but have not synced all
2332                          * of the old dirty pages.
2333                          */
2334                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2335                                 goto out;
2336
2337                         /* If we can't merge this page, we are done. */
2338                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2339                                 goto out;
2340
2341                         lock_page(page);
2342                         /*
2343                          * If the page is no longer dirty, or its mapping no
2344                          * longer corresponds to inode we are writing (which
2345                          * means it has been truncated or invalidated), or the
2346                          * page is already under writeback and we are not doing
2347                          * a data integrity writeback, skip the page
2348                          */
2349                         if (!PageDirty(page) ||
2350                             (PageWriteback(page) &&
2351                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2352                             unlikely(page->mapping != mapping)) {
2353                                 unlock_page(page);
2354                                 continue;
2355                         }
2356
2357                         wait_on_page_writeback(page);
2358                         BUG_ON(PageWriteback(page));
2359
2360                         if (mpd->map.m_len == 0)
2361                                 mpd->first_page = page->index;
2362                         mpd->next_page = page->index + 1;
2363                         /* Add all dirty buffers to mpd */
2364                         lblk = ((ext4_lblk_t)page->index) <<
2365                                 (PAGE_CACHE_SHIFT - blkbits);
2366                         head = page_buffers(page);
2367                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2368                         if (err <= 0)
2369                                 goto out;
2370                         err = 0;
2371                         left--;
2372                 }
2373                 pagevec_release(&pvec);
2374                 cond_resched();
2375         }
2376         return 0;
2377 out:
2378         pagevec_release(&pvec);
2379         return err;
2380 }
2381
2382 static int __writepage(struct page *page, struct writeback_control *wbc,
2383                        void *data)
2384 {
2385         struct address_space *mapping = data;
2386         int ret = ext4_writepage(page, wbc);
2387         mapping_set_error(mapping, ret);
2388         return ret;
2389 }
2390
2391 static int ext4_writepages(struct address_space *mapping,
2392                            struct writeback_control *wbc)
2393 {
2394         pgoff_t writeback_index = 0;
2395         long nr_to_write = wbc->nr_to_write;
2396         int range_whole = 0;
2397         int cycled = 1;
2398         handle_t *handle = NULL;
2399         struct mpage_da_data mpd;
2400         struct inode *inode = mapping->host;
2401         int needed_blocks, rsv_blocks = 0, ret = 0;
2402         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2403         bool done;
2404         struct blk_plug plug;
2405         bool give_up_on_write = false;
2406
2407         trace_ext4_writepages(inode, wbc);
2408
2409         /*
2410          * No pages to write? This is mainly a kludge to avoid starting
2411          * a transaction for special inodes like journal inode on last iput()
2412          * because that could violate lock ordering on umount
2413          */
2414         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2415                 goto out_writepages;
2416
2417         if (ext4_should_journal_data(inode)) {
2418                 struct blk_plug plug;
2419
2420                 blk_start_plug(&plug);
2421                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2422                 blk_finish_plug(&plug);
2423                 goto out_writepages;
2424         }
2425
2426         /*
2427          * If the filesystem has aborted, it is read-only, so return
2428          * right away instead of dumping stack traces later on that
2429          * will obscure the real source of the problem.  We test
2430          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2431          * the latter could be true if the filesystem is mounted
2432          * read-only, and in that case, ext4_writepages should
2433          * *never* be called, so if that ever happens, we would want
2434          * the stack trace.
2435          */
2436         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2437                 ret = -EROFS;
2438                 goto out_writepages;
2439         }
2440
2441         if (ext4_should_dioread_nolock(inode)) {
2442                 /*
2443                  * We may need to convert up to one extent per block in
2444                  * the page and we may dirty the inode.
2445                  */
2446                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2447         }
2448
2449         /*
2450          * If we have inline data and arrive here, it means that
2451          * we will soon create the block for the 1st page, so
2452          * we'd better clear the inline data here.
2453          */
2454         if (ext4_has_inline_data(inode)) {
2455                 /* Just inode will be modified... */
2456                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2457                 if (IS_ERR(handle)) {
2458                         ret = PTR_ERR(handle);
2459                         goto out_writepages;
2460                 }
2461                 BUG_ON(ext4_test_inode_state(inode,
2462                                 EXT4_STATE_MAY_INLINE_DATA));
2463                 ext4_destroy_inline_data(handle, inode);
2464                 ext4_journal_stop(handle);
2465         }
2466
2467         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2468                 range_whole = 1;
2469
2470         if (wbc->range_cyclic) {
2471                 writeback_index = mapping->writeback_index;
2472                 if (writeback_index)
2473                         cycled = 0;
2474                 mpd.first_page = writeback_index;
2475                 mpd.last_page = -1;
2476         } else {
2477                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2478                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2479         }
2480
2481         mpd.inode = inode;
2482         mpd.wbc = wbc;
2483         ext4_io_submit_init(&mpd.io_submit, wbc);
2484 retry:
2485         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2486                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2487         done = false;
2488         blk_start_plug(&plug);
2489         while (!done && mpd.first_page <= mpd.last_page) {
2490                 /* For each extent of pages we use new io_end */
2491                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2492                 if (!mpd.io_submit.io_end) {
2493                         ret = -ENOMEM;
2494                         break;
2495                 }
2496
2497                 /*
2498                  * We have two constraints: We find one extent to map and we
2499                  * must always write out whole page (makes a difference when
2500                  * blocksize < pagesize) so that we don't block on IO when we
2501                  * try to write out the rest of the page. Journalled mode is
2502                  * not supported by delalloc.
2503                  */
2504                 BUG_ON(ext4_should_journal_data(inode));
2505                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2506
2507                 /* start a new transaction */
2508                 handle = ext4_journal_start_with_reserve(inode,
2509                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2510                 if (IS_ERR(handle)) {
2511                         ret = PTR_ERR(handle);
2512                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2513                                "%ld pages, ino %lu; err %d", __func__,
2514                                 wbc->nr_to_write, inode->i_ino, ret);
2515                         /* Release allocated io_end */
2516                         ext4_put_io_end(mpd.io_submit.io_end);
2517                         break;
2518                 }
2519
2520                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2521                 ret = mpage_prepare_extent_to_map(&mpd);
2522                 if (!ret) {
2523                         if (mpd.map.m_len)
2524                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2525                                         &give_up_on_write);
2526                         else {
2527                                 /*
2528                                  * We scanned the whole range (or exhausted
2529                                  * nr_to_write), submitted what was mapped and
2530                                  * didn't find anything needing mapping. We are
2531                                  * done.
2532                                  */
2533                                 done = true;
2534                         }
2535                 }
2536                 ext4_journal_stop(handle);
2537                 /* Submit prepared bio */
2538                 ext4_io_submit(&mpd.io_submit);
2539                 /* Unlock pages we didn't use */
2540                 mpage_release_unused_pages(&mpd, give_up_on_write);
2541                 /* Drop our io_end reference we got from init */
2542                 ext4_put_io_end(mpd.io_submit.io_end);
2543
2544                 if (ret == -ENOSPC && sbi->s_journal) {
2545                         /*
2546                          * Commit the transaction which would
2547                          * free blocks released in the transaction
2548                          * and try again
2549                          */
2550                         jbd2_journal_force_commit_nested(sbi->s_journal);
2551                         ret = 0;
2552                         continue;
2553                 }
2554                 /* Fatal error - ENOMEM, EIO... */
2555                 if (ret)
2556                         break;
2557         }
2558         blk_finish_plug(&plug);
2559         if (!ret && !cycled && wbc->nr_to_write > 0) {
2560                 cycled = 1;
2561                 mpd.last_page = writeback_index - 1;
2562                 mpd.first_page = 0;
2563                 goto retry;
2564         }
2565
2566         /* Update index */
2567         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2568                 /*
2569                  * Set the writeback_index so that range_cyclic
2570                  * mode will write it back later
2571                  */
2572                 mapping->writeback_index = mpd.first_page;
2573
2574 out_writepages:
2575         trace_ext4_writepages_result(inode, wbc, ret,
2576                                      nr_to_write - wbc->nr_to_write);
2577         return ret;
2578 }
2579
2580 static int ext4_nonda_switch(struct super_block *sb)
2581 {
2582         s64 free_clusters, dirty_clusters;
2583         struct ext4_sb_info *sbi = EXT4_SB(sb);
2584
2585         /*
2586          * switch to non delalloc mode if we are running low
2587          * on free block. The free block accounting via percpu
2588          * counters can get slightly wrong with percpu_counter_batch getting
2589          * accumulated on each CPU without updating global counters
2590          * Delalloc need an accurate free block accounting. So switch
2591          * to non delalloc when we are near to error range.
2592          */
2593         free_clusters =
2594                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2595         dirty_clusters =
2596                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2597         /*
2598          * Start pushing delalloc when 1/2 of free blocks are dirty.
2599          */
2600         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2601                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2602
2603         if (2 * free_clusters < 3 * dirty_clusters ||
2604             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2605                 /*
2606                  * free block count is less than 150% of dirty blocks
2607                  * or free blocks is less than watermark
2608                  */
2609                 return 1;
2610         }
2611         return 0;
2612 }
2613
2614 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2615                                loff_t pos, unsigned len, unsigned flags,
2616                                struct page **pagep, void **fsdata)
2617 {
2618         int ret, retries = 0;
2619         struct page *page;
2620         pgoff_t index;
2621         struct inode *inode = mapping->host;
2622         handle_t *handle;
2623
2624         index = pos >> PAGE_CACHE_SHIFT;
2625
2626         if (ext4_nonda_switch(inode->i_sb)) {
2627                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2628                 return ext4_write_begin(file, mapping, pos,
2629                                         len, flags, pagep, fsdata);
2630         }
2631         *fsdata = (void *)0;
2632         trace_ext4_da_write_begin(inode, pos, len, flags);
2633
2634         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2635                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2636                                                       pos, len, flags,
2637                                                       pagep, fsdata);
2638                 if (ret < 0)
2639                         return ret;
2640                 if (ret == 1)
2641                         return 0;
2642         }
2643
2644         /*
2645          * grab_cache_page_write_begin() can take a long time if the
2646          * system is thrashing due to memory pressure, or if the page
2647          * is being written back.  So grab it first before we start
2648          * the transaction handle.  This also allows us to allocate
2649          * the page (if needed) without using GFP_NOFS.
2650          */
2651 retry_grab:
2652         page = grab_cache_page_write_begin(mapping, index, flags);
2653         if (!page)
2654                 return -ENOMEM;
2655         unlock_page(page);
2656
2657         /*
2658          * With delayed allocation, we don't log the i_disksize update
2659          * if there is delayed block allocation. But we still need
2660          * to journalling the i_disksize update if writes to the end
2661          * of file which has an already mapped buffer.
2662          */
2663 retry_journal:
2664         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2665         if (IS_ERR(handle)) {
2666                 page_cache_release(page);
2667                 return PTR_ERR(handle);
2668         }
2669
2670         lock_page(page);
2671         if (page->mapping != mapping) {
2672                 /* The page got truncated from under us */
2673                 unlock_page(page);
2674                 page_cache_release(page);
2675                 ext4_journal_stop(handle);
2676                 goto retry_grab;
2677         }
2678         /* In case writeback began while the page was unlocked */
2679         wait_for_stable_page(page);
2680
2681         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2682         if (ret < 0) {
2683                 unlock_page(page);
2684                 ext4_journal_stop(handle);
2685                 /*
2686                  * block_write_begin may have instantiated a few blocks
2687                  * outside i_size.  Trim these off again. Don't need
2688                  * i_size_read because we hold i_mutex.
2689                  */
2690                 if (pos + len > inode->i_size)
2691                         ext4_truncate_failed_write(inode);
2692
2693                 if (ret == -ENOSPC &&
2694                     ext4_should_retry_alloc(inode->i_sb, &retries))
2695                         goto retry_journal;
2696
2697                 page_cache_release(page);
2698                 return ret;
2699         }
2700
2701         *pagep = page;
2702         return ret;
2703 }
2704
2705 /*
2706  * Check if we should update i_disksize
2707  * when write to the end of file but not require block allocation
2708  */
2709 static int ext4_da_should_update_i_disksize(struct page *page,
2710                                             unsigned long offset)
2711 {
2712         struct buffer_head *bh;
2713         struct inode *inode = page->mapping->host;
2714         unsigned int idx;
2715         int i;
2716
2717         bh = page_buffers(page);
2718         idx = offset >> inode->i_blkbits;
2719
2720         for (i = 0; i < idx; i++)
2721                 bh = bh->b_this_page;
2722
2723         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2724                 return 0;
2725         return 1;
2726 }
2727
2728 static int ext4_da_write_end(struct file *file,
2729                              struct address_space *mapping,
2730                              loff_t pos, unsigned len, unsigned copied,
2731                              struct page *page, void *fsdata)
2732 {
2733         struct inode *inode = mapping->host;
2734         int ret = 0, ret2;
2735         handle_t *handle = ext4_journal_current_handle();
2736         loff_t new_i_size;
2737         unsigned long start, end;
2738         int write_mode = (int)(unsigned long)fsdata;
2739
2740         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2741                 return ext4_write_end(file, mapping, pos,
2742                                       len, copied, page, fsdata);
2743
2744         trace_ext4_da_write_end(inode, pos, len, copied);
2745         start = pos & (PAGE_CACHE_SIZE - 1);
2746         end = start + copied - 1;
2747
2748         /*
2749          * generic_write_end() will run mark_inode_dirty() if i_size
2750          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2751          * into that.
2752          */
2753         new_i_size = pos + copied;
2754         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2755                 if (ext4_has_inline_data(inode) ||
2756                     ext4_da_should_update_i_disksize(page, end)) {
2757                         down_write(&EXT4_I(inode)->i_data_sem);
2758                         if (new_i_size > EXT4_I(inode)->i_disksize)
2759                                 EXT4_I(inode)->i_disksize = new_i_size;
2760                         up_write(&EXT4_I(inode)->i_data_sem);
2761                         /* We need to mark inode dirty even if
2762                          * new_i_size is less that inode->i_size
2763                          * bu greater than i_disksize.(hint delalloc)
2764                          */
2765                         ext4_mark_inode_dirty(handle, inode);
2766                 }
2767         }
2768
2769         if (write_mode != CONVERT_INLINE_DATA &&
2770             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2771             ext4_has_inline_data(inode))
2772                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2773                                                      page);
2774         else
2775                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2776                                                         page, fsdata);
2777
2778         copied = ret2;
2779         if (ret2 < 0)
2780                 ret = ret2;
2781         ret2 = ext4_journal_stop(handle);
2782         if (!ret)
2783                 ret = ret2;
2784
2785         return ret ? ret : copied;
2786 }
2787
2788 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2789                                    unsigned int length)
2790 {
2791         /*
2792          * Drop reserved blocks
2793          */
2794         BUG_ON(!PageLocked(page));
2795         if (!page_has_buffers(page))
2796                 goto out;
2797
2798         ext4_da_page_release_reservation(page, offset, length);
2799
2800 out:
2801         ext4_invalidatepage(page, offset, length);
2802
2803         return;
2804 }
2805
2806 /*
2807  * Force all delayed allocation blocks to be allocated for a given inode.
2808  */
2809 int ext4_alloc_da_blocks(struct inode *inode)
2810 {
2811         trace_ext4_alloc_da_blocks(inode);
2812
2813         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2814             !EXT4_I(inode)->i_reserved_meta_blocks)
2815                 return 0;
2816
2817         /*
2818          * We do something simple for now.  The filemap_flush() will
2819          * also start triggering a write of the data blocks, which is
2820          * not strictly speaking necessary (and for users of
2821          * laptop_mode, not even desirable).  However, to do otherwise
2822          * would require replicating code paths in:
2823          *
2824          * ext4_writepages() ->
2825          *    write_cache_pages() ---> (via passed in callback function)
2826          *        __mpage_da_writepage() -->
2827          *           mpage_add_bh_to_extent()
2828          *           mpage_da_map_blocks()
2829          *
2830          * The problem is that write_cache_pages(), located in
2831          * mm/page-writeback.c, marks pages clean in preparation for
2832          * doing I/O, which is not desirable if we're not planning on
2833          * doing I/O at all.
2834          *
2835          * We could call write_cache_pages(), and then redirty all of
2836          * the pages by calling redirty_page_for_writepage() but that
2837          * would be ugly in the extreme.  So instead we would need to
2838          * replicate parts of the code in the above functions,
2839          * simplifying them because we wouldn't actually intend to
2840          * write out the pages, but rather only collect contiguous
2841          * logical block extents, call the multi-block allocator, and
2842          * then update the buffer heads with the block allocations.
2843          *
2844          * For now, though, we'll cheat by calling filemap_flush(),
2845          * which will map the blocks, and start the I/O, but not
2846          * actually wait for the I/O to complete.
2847          */
2848         return filemap_flush(inode->i_mapping);
2849 }
2850
2851 /*
2852  * bmap() is special.  It gets used by applications such as lilo and by
2853  * the swapper to find the on-disk block of a specific piece of data.
2854  *
2855  * Naturally, this is dangerous if the block concerned is still in the
2856  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2857  * filesystem and enables swap, then they may get a nasty shock when the
2858  * data getting swapped to that swapfile suddenly gets overwritten by
2859  * the original zero's written out previously to the journal and
2860  * awaiting writeback in the kernel's buffer cache.
2861  *
2862  * So, if we see any bmap calls here on a modified, data-journaled file,
2863  * take extra steps to flush any blocks which might be in the cache.
2864  */
2865 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2866 {
2867         struct inode *inode = mapping->host;
2868         journal_t *journal;
2869         int err;
2870
2871         /*
2872          * We can get here for an inline file via the FIBMAP ioctl
2873          */
2874         if (ext4_has_inline_data(inode))
2875                 return 0;
2876
2877         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2878                         test_opt(inode->i_sb, DELALLOC)) {
2879                 /*
2880                  * With delalloc we want to sync the file
2881                  * so that we can make sure we allocate
2882                  * blocks for file
2883                  */
2884                 filemap_write_and_wait(mapping);
2885         }
2886
2887         if (EXT4_JOURNAL(inode) &&
2888             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2889                 /*
2890                  * This is a REALLY heavyweight approach, but the use of
2891                  * bmap on dirty files is expected to be extremely rare:
2892                  * only if we run lilo or swapon on a freshly made file
2893                  * do we expect this to happen.
2894                  *
2895                  * (bmap requires CAP_SYS_RAWIO so this does not
2896                  * represent an unprivileged user DOS attack --- we'd be
2897                  * in trouble if mortal users could trigger this path at
2898                  * will.)
2899                  *
2900                  * NB. EXT4_STATE_JDATA is not set on files other than
2901                  * regular files.  If somebody wants to bmap a directory
2902                  * or symlink and gets confused because the buffer
2903                  * hasn't yet been flushed to disk, they deserve
2904                  * everything they get.
2905                  */
2906
2907                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2908                 journal = EXT4_JOURNAL(inode);
2909                 jbd2_journal_lock_updates(journal);
2910                 err = jbd2_journal_flush(journal);
2911                 jbd2_journal_unlock_updates(journal);
2912
2913                 if (err)
2914                         return 0;
2915         }
2916
2917         return generic_block_bmap(mapping, block, ext4_get_block);
2918 }
2919
2920 static int ext4_readpage(struct file *file, struct page *page)
2921 {
2922         int ret = -EAGAIN;
2923         struct inode *inode = page->mapping->host;
2924
2925         trace_ext4_readpage(page);
2926
2927         if (ext4_has_inline_data(inode))
2928                 ret = ext4_readpage_inline(inode, page);
2929
2930         if (ret == -EAGAIN)
2931                 return mpage_readpage(page, ext4_get_block);
2932
2933         return ret;
2934 }
2935
2936 static int
2937 ext4_readpages(struct file *file, struct address_space *mapping,
2938                 struct list_head *pages, unsigned nr_pages)
2939 {
2940         struct inode *inode = mapping->host;
2941
2942         /* If the file has inline data, no need to do readpages. */
2943         if (ext4_has_inline_data(inode))
2944                 return 0;
2945
2946         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2947 }
2948
2949 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2950                                 unsigned int length)
2951 {
2952         trace_ext4_invalidatepage(page, offset, length);
2953
2954         /* No journalling happens on data buffers when this function is used */
2955         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2956
2957         block_invalidatepage(page, offset, length);
2958 }
2959
2960 static int __ext4_journalled_invalidatepage(struct page *page,
2961                                             unsigned int offset,
2962                                             unsigned int length)
2963 {
2964         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2965
2966         trace_ext4_journalled_invalidatepage(page, offset, length);
2967
2968         /*
2969          * If it's a full truncate we just forget about the pending dirtying
2970          */
2971         if (offset == 0 && length == PAGE_CACHE_SIZE)
2972                 ClearPageChecked(page);
2973
2974         return jbd2_journal_invalidatepage(journal, page, offset, length);
2975 }
2976
2977 /* Wrapper for aops... */
2978 static void ext4_journalled_invalidatepage(struct page *page,
2979                                            unsigned int offset,
2980                                            unsigned int length)
2981 {
2982         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2983 }
2984
2985 static int ext4_releasepage(struct page *page, gfp_t wait)
2986 {
2987         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2988
2989         trace_ext4_releasepage(page);
2990
2991         /* Page has dirty journalled data -> cannot release */
2992         if (PageChecked(page))
2993                 return 0;
2994         if (journal)
2995                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2996         else
2997                 return try_to_free_buffers(page);
2998 }
2999
3000 /*
3001  * ext4_get_block used when preparing for a DIO write or buffer write.
3002  * We allocate an uinitialized extent if blocks haven't been allocated.
3003  * The extent will be converted to initialized after the IO is complete.
3004  */
3005 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3006                    struct buffer_head *bh_result, int create)
3007 {
3008         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3009                    inode->i_ino, create);
3010         return _ext4_get_block(inode, iblock, bh_result,
3011                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3012 }
3013
3014 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3015                    struct buffer_head *bh_result, int create)
3016 {
3017         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3018                    inode->i_ino, create);
3019         return _ext4_get_block(inode, iblock, bh_result,
3020                                EXT4_GET_BLOCKS_NO_LOCK);
3021 }
3022
3023 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3024                             ssize_t size, void *private)
3025 {
3026         ext4_io_end_t *io_end = iocb->private;
3027
3028         /* if not async direct IO just return */
3029         if (!io_end)
3030                 return;
3031
3032         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3033                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3034                   iocb->private, io_end->inode->i_ino, iocb, offset,
3035                   size);
3036
3037         iocb->private = NULL;
3038         io_end->offset = offset;
3039         io_end->size = size;
3040         ext4_put_io_end(io_end);
3041 }
3042
3043 /*
3044  * For ext4 extent files, ext4 will do direct-io write to holes,
3045  * preallocated extents, and those write extend the file, no need to
3046  * fall back to buffered IO.
3047  *
3048  * For holes, we fallocate those blocks, mark them as uninitialized
3049  * If those blocks were preallocated, we mark sure they are split, but
3050  * still keep the range to write as uninitialized.
3051  *
3052  * The unwritten extents will be converted to written when DIO is completed.
3053  * For async direct IO, since the IO may still pending when return, we
3054  * set up an end_io call back function, which will do the conversion
3055  * when async direct IO completed.
3056  *
3057  * If the O_DIRECT write will extend the file then add this inode to the
3058  * orphan list.  So recovery will truncate it back to the original size
3059  * if the machine crashes during the write.
3060  *
3061  */
3062 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3063                               const struct iovec *iov, loff_t offset,
3064                               unsigned long nr_segs)
3065 {
3066         struct file *file = iocb->ki_filp;
3067         struct inode *inode = file->f_mapping->host;
3068         ssize_t ret;
3069         size_t count = iov_length(iov, nr_segs);
3070         int overwrite = 0;
3071         get_block_t *get_block_func = NULL;
3072         int dio_flags = 0;
3073         loff_t final_size = offset + count;
3074         ext4_io_end_t *io_end = NULL;
3075
3076         /* Use the old path for reads and writes beyond i_size. */
3077         if (rw != WRITE || final_size > inode->i_size)
3078                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3079
3080         BUG_ON(iocb->private == NULL);
3081
3082         /*
3083          * Make all waiters for direct IO properly wait also for extent
3084          * conversion. This also disallows race between truncate() and
3085          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3086          */
3087         if (rw == WRITE)
3088                 atomic_inc(&inode->i_dio_count);
3089
3090         /* If we do a overwrite dio, i_mutex locking can be released */
3091         overwrite = *((int *)iocb->private);
3092
3093         if (overwrite) {
3094                 down_read(&EXT4_I(inode)->i_data_sem);
3095                 mutex_unlock(&inode->i_mutex);
3096         }
3097
3098         /*
3099          * We could direct write to holes and fallocate.
3100          *
3101          * Allocated blocks to fill the hole are marked as
3102          * uninitialized to prevent parallel buffered read to expose
3103          * the stale data before DIO complete the data IO.
3104          *
3105          * As to previously fallocated extents, ext4 get_block will
3106          * just simply mark the buffer mapped but still keep the
3107          * extents uninitialized.
3108          *
3109          * For non AIO case, we will convert those unwritten extents
3110          * to written after return back from blockdev_direct_IO.
3111          *
3112          * For async DIO, the conversion needs to be deferred when the
3113          * IO is completed. The ext4 end_io callback function will be
3114          * called to take care of the conversion work.  Here for async
3115          * case, we allocate an io_end structure to hook to the iocb.
3116          */
3117         iocb->private = NULL;
3118         ext4_inode_aio_set(inode, NULL);
3119         if (!is_sync_kiocb(iocb)) {
3120                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3121                 if (!io_end) {
3122                         ret = -ENOMEM;
3123                         goto retake_lock;
3124                 }
3125                 /*
3126                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3127                  */
3128                 iocb->private = ext4_get_io_end(io_end);
3129                 /*
3130                  * we save the io structure for current async direct
3131                  * IO, so that later ext4_map_blocks() could flag the
3132                  * io structure whether there is a unwritten extents
3133                  * needs to be converted when IO is completed.
3134                  */
3135                 ext4_inode_aio_set(inode, io_end);
3136         }
3137
3138         if (overwrite) {
3139                 get_block_func = ext4_get_block_write_nolock;
3140         } else {
3141                 get_block_func = ext4_get_block_write;
3142                 dio_flags = DIO_LOCKING;
3143         }
3144         ret = __blockdev_direct_IO(rw, iocb, inode,
3145                                    inode->i_sb->s_bdev, iov,
3146                                    offset, nr_segs,
3147                                    get_block_func,
3148                                    ext4_end_io_dio,
3149                                    NULL,
3150                                    dio_flags);
3151
3152         /*
3153          * Put our reference to io_end. This can free the io_end structure e.g.
3154          * in sync IO case or in case of error. It can even perform extent
3155          * conversion if all bios we submitted finished before we got here.
3156          * Note that in that case iocb->private can be already set to NULL
3157          * here.
3158          */
3159         if (io_end) {
3160                 ext4_inode_aio_set(inode, NULL);
3161                 ext4_put_io_end(io_end);
3162                 /*
3163                  * When no IO was submitted ext4_end_io_dio() was not
3164                  * called so we have to put iocb's reference.
3165                  */
3166                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3167                         WARN_ON(iocb->private != io_end);
3168                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3169                         ext4_put_io_end(io_end);
3170                         iocb->private = NULL;
3171                 }
3172         }
3173         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3174                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3175                 int err;
3176                 /*
3177                  * for non AIO case, since the IO is already
3178                  * completed, we could do the conversion right here
3179                  */
3180                 err = ext4_convert_unwritten_extents(NULL, inode,
3181                                                      offset, ret);
3182                 if (err < 0)
3183                         ret = err;
3184                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3185         }
3186
3187 retake_lock:
3188         if (rw == WRITE)
3189                 inode_dio_done(inode);
3190         /* take i_mutex locking again if we do a ovewrite dio */
3191         if (overwrite) {
3192                 up_read(&EXT4_I(inode)->i_data_sem);
3193                 mutex_lock(&inode->i_mutex);
3194         }
3195
3196         return ret;
3197 }
3198
3199 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3200                               const struct iovec *iov, loff_t offset,
3201                               unsigned long nr_segs)
3202 {
3203         struct file *file = iocb->ki_filp;
3204         struct inode *inode = file->f_mapping->host;
3205         ssize_t ret;
3206
3207         /*
3208          * If we are doing data journalling we don't support O_DIRECT
3209          */
3210         if (ext4_should_journal_data(inode))
3211                 return 0;
3212
3213         /* Let buffer I/O handle the inline data case. */
3214         if (ext4_has_inline_data(inode))
3215                 return 0;
3216
3217         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3218         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3219                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3220         else
3221                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3222         trace_ext4_direct_IO_exit(inode, offset,
3223                                 iov_length(iov, nr_segs), rw, ret);
3224         return ret;
3225 }
3226
3227 /*
3228  * Pages can be marked dirty completely asynchronously from ext4's journalling
3229  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3230  * much here because ->set_page_dirty is called under VFS locks.  The page is
3231  * not necessarily locked.
3232  *
3233  * We cannot just dirty the page and leave attached buffers clean, because the
3234  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3235  * or jbddirty because all the journalling code will explode.
3236  *
3237  * So what we do is to mark the page "pending dirty" and next time writepage
3238  * is called, propagate that into the buffers appropriately.
3239  */
3240 static int ext4_journalled_set_page_dirty(struct page *page)
3241 {
3242         SetPageChecked(page);
3243         return __set_page_dirty_nobuffers(page);
3244 }
3245
3246 static const struct address_space_operations ext4_aops = {
3247         .readpage               = ext4_readpage,
3248         .readpages              = ext4_readpages,
3249         .writepage              = ext4_writepage,
3250         .writepages             = ext4_writepages,
3251         .write_begin            = ext4_write_begin,
3252         .write_end              = ext4_write_end,
3253         .bmap                   = ext4_bmap,
3254         .invalidatepage         = ext4_invalidatepage,
3255         .releasepage            = ext4_releasepage,
3256         .direct_IO              = ext4_direct_IO,
3257         .migratepage            = buffer_migrate_page,
3258         .is_partially_uptodate  = block_is_partially_uptodate,
3259         .error_remove_page      = generic_error_remove_page,
3260 };
3261
3262 static const struct address_space_operations ext4_journalled_aops = {
3263         .readpage               = ext4_readpage,
3264         .readpages              = ext4_readpages,
3265         .writepage              = ext4_writepage,
3266         .writepages             = ext4_writepages,
3267         .write_begin            = ext4_write_begin,
3268         .write_end              = ext4_journalled_write_end,
3269         .set_page_dirty         = ext4_journalled_set_page_dirty,
3270         .bmap                   = ext4_bmap,
3271         .invalidatepage         = ext4_journalled_invalidatepage,
3272         .releasepage            = ext4_releasepage,
3273         .direct_IO              = ext4_direct_IO,
3274         .is_partially_uptodate  = block_is_partially_uptodate,
3275         .error_remove_page      = generic_error_remove_page,
3276 };
3277
3278 static const struct address_space_operations ext4_da_aops = {
3279         .readpage               = ext4_readpage,
3280         .readpages              = ext4_readpages,
3281         .writepage              = ext4_writepage,
3282         .writepages             = ext4_writepages,
3283         .write_begin            = ext4_da_write_begin,
3284         .write_end              = ext4_da_write_end,
3285         .bmap                   = ext4_bmap,
3286         .invalidatepage         = ext4_da_invalidatepage,
3287         .releasepage            = ext4_releasepage,
3288         .direct_IO              = ext4_direct_IO,
3289         .migratepage            = buffer_migrate_page,
3290         .is_partially_uptodate  = block_is_partially_uptodate,
3291         .error_remove_page      = generic_error_remove_page,
3292 };
3293
3294 void ext4_set_aops(struct inode *inode)
3295 {
3296         switch (ext4_inode_journal_mode(inode)) {
3297         case EXT4_INODE_ORDERED_DATA_MODE:
3298                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3299                 break;
3300         case EXT4_INODE_WRITEBACK_DATA_MODE:
3301                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3302                 break;
3303         case EXT4_INODE_JOURNAL_DATA_MODE:
3304                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3305                 return;
3306         default:
3307                 BUG();
3308         }
3309         if (test_opt(inode->i_sb, DELALLOC))
3310                 inode->i_mapping->a_ops = &ext4_da_aops;
3311         else
3312                 inode->i_mapping->a_ops = &ext4_aops;
3313 }
3314
3315 /*
3316  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3317  * up to the end of the block which corresponds to `from'.
3318  * This required during truncate. We need to physically zero the tail end
3319  * of that block so it doesn't yield old data if the file is later grown.
3320  */
3321 int ext4_block_truncate_page(handle_t *handle,
3322                 struct address_space *mapping, loff_t from)
3323 {
3324         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3325         unsigned length;
3326         unsigned blocksize;
3327         struct inode *inode = mapping->host;
3328
3329         blocksize = inode->i_sb->s_blocksize;
3330         length = blocksize - (offset & (blocksize - 1));
3331
3332         return ext4_block_zero_page_range(handle, mapping, from, length);
3333 }
3334
3335 /*
3336  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3337  * starting from file offset 'from'.  The range to be zero'd must
3338  * be contained with in one block.  If the specified range exceeds
3339  * the end of the block it will be shortened to end of the block
3340  * that cooresponds to 'from'
3341  */
3342 int ext4_block_zero_page_range(handle_t *handle,
3343                 struct address_space *mapping, loff_t from, loff_t length)
3344 {
3345         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3346         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3347         unsigned blocksize, max, pos;
3348         ext4_lblk_t iblock;
3349         struct inode *inode = mapping->host;
3350         struct buffer_head *bh;
3351         struct page *page;
3352         int err = 0;
3353
3354         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3355                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3356         if (!page)
3357                 return -ENOMEM;
3358
3359         blocksize = inode->i_sb->s_blocksize;
3360         max = blocksize - (offset & (blocksize - 1));
3361
3362         /*
3363          * correct length if it does not fall between
3364          * 'from' and the end of the block
3365          */
3366         if (length > max || length < 0)
3367                 length = max;
3368
3369         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3370
3371         if (!page_has_buffers(page))
3372                 create_empty_buffers(page, blocksize, 0);
3373
3374         /* Find the buffer that contains "offset" */
3375         bh = page_buffers(page);
3376         pos = blocksize;
3377         while (offset >= pos) {
3378                 bh = bh->b_this_page;
3379                 iblock++;
3380                 pos += blocksize;
3381         }
3382         if (buffer_freed(bh)) {
3383                 BUFFER_TRACE(bh, "freed: skip");
3384                 goto unlock;
3385         }
3386         if (!buffer_mapped(bh)) {
3387                 BUFFER_TRACE(bh, "unmapped");
3388                 ext4_get_block(inode, iblock, bh, 0);
3389                 /* unmapped? It's a hole - nothing to do */
3390                 if (!buffer_mapped(bh)) {
3391                         BUFFER_TRACE(bh, "still unmapped");
3392                         goto unlock;
3393                 }
3394         }
3395
3396         /* Ok, it's mapped. Make sure it's up-to-date */
3397         if (PageUptodate(page))
3398                 set_buffer_uptodate(bh);
3399
3400         if (!buffer_uptodate(bh)) {
3401                 err = -EIO;
3402                 ll_rw_block(READ, 1, &bh);
3403                 wait_on_buffer(bh);
3404                 /* Uhhuh. Read error. Complain and punt. */
3405                 if (!buffer_uptodate(bh))
3406                         goto unlock;
3407         }
3408         if (ext4_should_journal_data(inode)) {
3409                 BUFFER_TRACE(bh, "get write access");
3410                 err = ext4_journal_get_write_access(handle, bh);
3411                 if (err)
3412                         goto unlock;
3413         }
3414         zero_user(page, offset, length);
3415         BUFFER_TRACE(bh, "zeroed end of block");
3416
3417         if (ext4_should_journal_data(inode)) {
3418                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3419         } else {
3420                 err = 0;
3421                 mark_buffer_dirty(bh);
3422                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3423                         err = ext4_jbd2_file_inode(handle, inode);
3424         }
3425
3426 unlock:
3427         unlock_page(page);
3428         page_cache_release(page);
3429         return err;
3430 }
3431
3432 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3433                              loff_t lstart, loff_t length)
3434 {
3435         struct super_block *sb = inode->i_sb;
3436         struct address_space *mapping = inode->i_mapping;
3437         unsigned partial_start, partial_end;
3438         ext4_fsblk_t start, end;
3439         loff_t byte_end = (lstart + length - 1);
3440         int err = 0;
3441
3442         partial_start = lstart & (sb->s_blocksize - 1);
3443         partial_end = byte_end & (sb->s_blocksize - 1);
3444
3445         start = lstart >> sb->s_blocksize_bits;
3446         end = byte_end >> sb->s_blocksize_bits;
3447
3448         /* Handle partial zero within the single block */
3449         if (start == end &&
3450             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3451                 err = ext4_block_zero_page_range(handle, mapping,
3452                                                  lstart, length);
3453                 return err;
3454         }
3455         /* Handle partial zero out on the start of the range */
3456         if (partial_start) {
3457                 err = ext4_block_zero_page_range(handle, mapping,
3458                                                  lstart, sb->s_blocksize);
3459                 if (err)
3460                         return err;
3461         }
3462         /* Handle partial zero out on the end of the range */
3463         if (partial_end != sb->s_blocksize - 1)
3464                 err = ext4_block_zero_page_range(handle, mapping,
3465                                                  byte_end - partial_end,
3466                                                  partial_end + 1);
3467         return err;
3468 }
3469
3470 int ext4_can_truncate(struct inode *inode)
3471 {
3472         if (S_ISREG(inode->i_mode))
3473                 return 1;
3474         if (S_ISDIR(inode->i_mode))
3475                 return 1;
3476         if (S_ISLNK(inode->i_mode))
3477                 return !ext4_inode_is_fast_symlink(inode);
3478         return 0;
3479 }
3480
3481 /*
3482  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3483  * associated with the given offset and length
3484  *
3485  * @inode:  File inode
3486  * @offset: The offset where the hole will begin
3487  * @len:    The length of the hole
3488  *
3489  * Returns: 0 on success or negative on failure
3490  */
3491
3492 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3493 {
3494         struct super_block *sb = inode->i_sb;
3495         ext4_lblk_t first_block, stop_block;
3496         struct address_space *mapping = inode->i_mapping;
3497         loff_t first_block_offset, last_block_offset;
3498         handle_t *handle;
3499         unsigned int credits;
3500         int ret = 0;
3501
3502         if (!S_ISREG(inode->i_mode))
3503                 return -EOPNOTSUPP;
3504
3505         trace_ext4_punch_hole(inode, offset, length);
3506
3507         /*
3508          * Write out all dirty pages to avoid race conditions
3509          * Then release them.
3510          */
3511         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3512                 ret = filemap_write_and_wait_range(mapping, offset,
3513                                                    offset + length - 1);
3514                 if (ret)
3515                         return ret;
3516         }
3517
3518         mutex_lock(&inode->i_mutex);
3519         /* It's not possible punch hole on append only file */
3520         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3521                 ret = -EPERM;
3522                 goto out_mutex;
3523         }
3524         if (IS_SWAPFILE(inode)) {
3525                 ret = -ETXTBSY;
3526                 goto out_mutex;
3527         }
3528
3529         /* No need to punch hole beyond i_size */
3530         if (offset >= inode->i_size)
3531                 goto out_mutex;
3532
3533         /*
3534          * If the hole extends beyond i_size, set the hole
3535          * to end after the page that contains i_size
3536          */
3537         if (offset + length > inode->i_size) {
3538                 length = inode->i_size +
3539                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3540                    offset;
3541         }
3542
3543         if (offset & (sb->s_blocksize - 1) ||
3544             (offset + length) & (sb->s_blocksize - 1)) {
3545                 /*
3546                  * Attach jinode to inode for jbd2 if we do any zeroing of
3547                  * partial block
3548                  */
3549                 ret = ext4_inode_attach_jinode(inode);
3550                 if (ret < 0)
3551                         goto out_mutex;
3552
3553         }
3554
3555         first_block_offset = round_up(offset, sb->s_blocksize);
3556         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3557
3558         /* Now release the pages and zero block aligned part of pages*/
3559         if (last_block_offset > first_block_offset)
3560                 truncate_pagecache_range(inode, first_block_offset,
3561                                          last_block_offset);
3562
3563         /* Wait all existing dio workers, newcomers will block on i_mutex */
3564         ext4_inode_block_unlocked_dio(inode);
3565         inode_dio_wait(inode);
3566
3567         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3568                 credits = ext4_writepage_trans_blocks(inode);
3569         else
3570                 credits = ext4_blocks_for_truncate(inode);
3571         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3572         if (IS_ERR(handle)) {
3573                 ret = PTR_ERR(handle);
3574                 ext4_std_error(sb, ret);
3575                 goto out_dio;
3576         }
3577
3578         ret = ext4_zero_partial_blocks(handle, inode, offset,
3579                                        length);
3580         if (ret)
3581                 goto out_stop;
3582
3583         first_block = (offset + sb->s_blocksize - 1) >>
3584                 EXT4_BLOCK_SIZE_BITS(sb);
3585         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3586
3587         /* If there are no blocks to remove, return now */
3588         if (first_block >= stop_block)
3589                 goto out_stop;
3590
3591         down_write(&EXT4_I(inode)->i_data_sem);
3592         ext4_discard_preallocations(inode);
3593
3594         ret = ext4_es_remove_extent(inode, first_block,
3595                                     stop_block - first_block);
3596         if (ret) {
3597                 up_write(&EXT4_I(inode)->i_data_sem);
3598                 goto out_stop;
3599         }
3600
3601         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3602                 ret = ext4_ext_remove_space(inode, first_block,
3603                                             stop_block - 1);
3604         else
3605                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3606                                             stop_block);
3607
3608         ext4_discard_preallocations(inode);
3609         up_write(&EXT4_I(inode)->i_data_sem);
3610         if (IS_SYNC(inode))
3611                 ext4_handle_sync(handle);
3612         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3613         ext4_mark_inode_dirty(handle, inode);
3614 out_stop:
3615         ext4_journal_stop(handle);
3616 out_dio:
3617         ext4_inode_resume_unlocked_dio(inode);
3618 out_mutex:
3619         mutex_unlock(&inode->i_mutex);
3620         return ret;
3621 }
3622
3623 int ext4_inode_attach_jinode(struct inode *inode)
3624 {
3625         struct ext4_inode_info *ei = EXT4_I(inode);
3626         struct jbd2_inode *jinode;
3627
3628         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3629                 return 0;
3630
3631         jinode = jbd2_alloc_inode(GFP_KERNEL);
3632         spin_lock(&inode->i_lock);
3633         if (!ei->jinode) {
3634                 if (!jinode) {
3635                         spin_unlock(&inode->i_lock);
3636                         return -ENOMEM;
3637                 }
3638                 ei->jinode = jinode;
3639                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3640                 jinode = NULL;
3641         }
3642         spin_unlock(&inode->i_lock);
3643         if (unlikely(jinode != NULL))
3644                 jbd2_free_inode(jinode);
3645         return 0;
3646 }
3647
3648 /*
3649  * ext4_truncate()
3650  *
3651  * We block out ext4_get_block() block instantiations across the entire
3652  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3653  * simultaneously on behalf of the same inode.
3654  *
3655  * As we work through the truncate and commit bits of it to the journal there
3656  * is one core, guiding principle: the file's tree must always be consistent on
3657  * disk.  We must be able to restart the truncate after a crash.
3658  *
3659  * The file's tree may be transiently inconsistent in memory (although it
3660  * probably isn't), but whenever we close off and commit a journal transaction,
3661  * the contents of (the filesystem + the journal) must be consistent and
3662  * restartable.  It's pretty simple, really: bottom up, right to left (although
3663  * left-to-right works OK too).
3664  *
3665  * Note that at recovery time, journal replay occurs *before* the restart of
3666  * truncate against the orphan inode list.
3667  *
3668  * The committed inode has the new, desired i_size (which is the same as
3669  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3670  * that this inode's truncate did not complete and it will again call
3671  * ext4_truncate() to have another go.  So there will be instantiated blocks
3672  * to the right of the truncation point in a crashed ext4 filesystem.  But
3673  * that's fine - as long as they are linked from the inode, the post-crash
3674  * ext4_truncate() run will find them and release them.
3675  */
3676 void ext4_truncate(struct inode *inode)
3677 {
3678         struct ext4_inode_info *ei = EXT4_I(inode);
3679         unsigned int credits;
3680         handle_t *handle;
3681         struct address_space *mapping = inode->i_mapping;
3682
3683         /*
3684          * There is a possibility that we're either freeing the inode
3685          * or it completely new indode. In those cases we might not
3686          * have i_mutex locked because it's not necessary.
3687          */
3688         if (!(inode->i_state & (I_NEW|I_FREEING)))
3689                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3690         trace_ext4_truncate_enter(inode);
3691
3692         if (!ext4_can_truncate(inode))
3693                 return;
3694
3695         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3696
3697         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3698                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3699
3700         if (ext4_has_inline_data(inode)) {
3701                 int has_inline = 1;
3702
3703                 ext4_inline_data_truncate(inode, &has_inline);
3704                 if (has_inline)
3705                         return;
3706         }
3707
3708         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3709         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3710                 if (ext4_inode_attach_jinode(inode) < 0)
3711                         return;
3712         }
3713
3714         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3715                 credits = ext4_writepage_trans_blocks(inode);
3716         else
3717                 credits = ext4_blocks_for_truncate(inode);
3718
3719         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3720         if (IS_ERR(handle)) {
3721                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3722                 return;
3723         }
3724
3725         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3726                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3727
3728         /*
3729          * We add the inode to the orphan list, so that if this
3730          * truncate spans multiple transactions, and we crash, we will
3731          * resume the truncate when the filesystem recovers.  It also
3732          * marks the inode dirty, to catch the new size.
3733          *
3734          * Implication: the file must always be in a sane, consistent
3735          * truncatable state while each transaction commits.
3736          */
3737         if (ext4_orphan_add(handle, inode))
3738                 goto out_stop;
3739
3740         down_write(&EXT4_I(inode)->i_data_sem);
3741
3742         ext4_discard_preallocations(inode);
3743
3744         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3745                 ext4_ext_truncate(handle, inode);
3746         else
3747                 ext4_ind_truncate(handle, inode);
3748
3749         up_write(&ei->i_data_sem);
3750
3751         if (IS_SYNC(inode))
3752                 ext4_handle_sync(handle);
3753
3754 out_stop:
3755         /*
3756          * If this was a simple ftruncate() and the file will remain alive,
3757          * then we need to clear up the orphan record which we created above.
3758          * However, if this was a real unlink then we were called by
3759          * ext4_delete_inode(), and we allow that function to clean up the
3760          * orphan info for us.
3761          */
3762         if (inode->i_nlink)
3763                 ext4_orphan_del(handle, inode);
3764
3765         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3766         ext4_mark_inode_dirty(handle, inode);
3767         ext4_journal_stop(handle);
3768
3769         trace_ext4_truncate_exit(inode);
3770 }
3771
3772 /*
3773  * ext4_get_inode_loc returns with an extra refcount against the inode's
3774  * underlying buffer_head on success. If 'in_mem' is true, we have all
3775  * data in memory that is needed to recreate the on-disk version of this
3776  * inode.
3777  */
3778 static int __ext4_get_inode_loc(struct inode *inode,
3779                                 struct ext4_iloc *iloc, int in_mem)
3780 {
3781         struct ext4_group_desc  *gdp;
3782         struct buffer_head      *bh;
3783         struct super_block      *sb = inode->i_sb;
3784         ext4_fsblk_t            block;
3785         int                     inodes_per_block, inode_offset;
3786
3787         iloc->bh = NULL;
3788         if (!ext4_valid_inum(sb, inode->i_ino))
3789                 return -EIO;
3790
3791         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3792         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3793         if (!gdp)
3794                 return -EIO;
3795
3796         /*
3797          * Figure out the offset within the block group inode table
3798          */
3799         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3800         inode_offset = ((inode->i_ino - 1) %
3801                         EXT4_INODES_PER_GROUP(sb));
3802         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3803         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3804
3805         bh = sb_getblk(sb, block);
3806         if (unlikely(!bh))
3807                 return -ENOMEM;
3808         if (!buffer_uptodate(bh)) {
3809                 lock_buffer(bh);
3810
3811                 /*
3812                  * If the buffer has the write error flag, we have failed
3813                  * to write out another inode in the same block.  In this
3814                  * case, we don't have to read the block because we may
3815                  * read the old inode data successfully.
3816                  */
3817                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3818                         set_buffer_uptodate(bh);
3819
3820                 if (buffer_uptodate(bh)) {
3821                         /* someone brought it uptodate while we waited */
3822                         unlock_buffer(bh);
3823                         goto has_buffer;
3824                 }
3825
3826                 /*
3827                  * If we have all information of the inode in memory and this
3828                  * is the only valid inode in the block, we need not read the
3829                  * block.
3830                  */
3831                 if (in_mem) {
3832                         struct buffer_head *bitmap_bh;
3833                         int i, start;
3834
3835                         start = inode_offset & ~(inodes_per_block - 1);
3836
3837                         /* Is the inode bitmap in cache? */
3838                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3839                         if (unlikely(!bitmap_bh))
3840                                 goto make_io;
3841
3842                         /*
3843                          * If the inode bitmap isn't in cache then the
3844                          * optimisation may end up performing two reads instead
3845                          * of one, so skip it.
3846                          */
3847                         if (!buffer_uptodate(bitmap_bh)) {
3848                                 brelse(bitmap_bh);
3849                                 goto make_io;
3850                         }
3851                         for (i = start; i < start + inodes_per_block; i++) {
3852                                 if (i == inode_offset)
3853                                         continue;
3854                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3855                                         break;
3856                         }
3857                         brelse(bitmap_bh);
3858                         if (i == start + inodes_per_block) {
3859                                 /* all other inodes are free, so skip I/O */
3860                                 memset(bh->b_data, 0, bh->b_size);
3861                                 set_buffer_uptodate(bh);
3862                                 unlock_buffer(bh);
3863                                 goto has_buffer;
3864                         }
3865                 }
3866
3867 make_io:
3868                 /*
3869                  * If we need to do any I/O, try to pre-readahead extra
3870                  * blocks from the inode table.
3871                  */
3872                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3873                         ext4_fsblk_t b, end, table;
3874                         unsigned num;
3875                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3876
3877                         table = ext4_inode_table(sb, gdp);
3878                         /* s_inode_readahead_blks is always a power of 2 */
3879                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3880                         if (table > b)
3881                                 b = table;
3882                         end = b + ra_blks;
3883                         num = EXT4_INODES_PER_GROUP(sb);
3884                         if (ext4_has_group_desc_csum(sb))
3885                                 num -= ext4_itable_unused_count(sb, gdp);
3886                         table += num / inodes_per_block;
3887                         if (end > table)
3888                                 end = table;
3889                         while (b <= end)
3890                                 sb_breadahead(sb, b++);
3891                 }
3892
3893                 /*
3894                  * There are other valid inodes in the buffer, this inode
3895                  * has in-inode xattrs, or we don't have this inode in memory.
3896                  * Read the block from disk.
3897                  */
3898                 trace_ext4_load_inode(inode);
3899                 get_bh(bh);
3900                 bh->b_end_io = end_buffer_read_sync;
3901                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3902                 wait_on_buffer(bh);
3903                 if (!buffer_uptodate(bh)) {
3904                         EXT4_ERROR_INODE_BLOCK(inode, block,
3905                                                "unable to read itable block");
3906                         brelse(bh);
3907                         return -EIO;
3908                 }
3909         }
3910 has_buffer:
3911         iloc->bh = bh;
3912         return 0;
3913 }
3914
3915 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3916 {
3917         /* We have all inode data except xattrs in memory here. */
3918         return __ext4_get_inode_loc(inode, iloc,
3919                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3920 }
3921
3922 void ext4_set_inode_flags(struct inode *inode)
3923 {
3924         unsigned int flags = EXT4_I(inode)->i_flags;
3925         unsigned int new_fl = 0;
3926
3927         if (flags & EXT4_SYNC_FL)
3928                 new_fl |= S_SYNC;
3929         if (flags & EXT4_APPEND_FL)
3930                 new_fl |= S_APPEND;
3931         if (flags & EXT4_IMMUTABLE_FL)
3932                 new_fl |= S_IMMUTABLE;
3933         if (flags & EXT4_NOATIME_FL)
3934                 new_fl |= S_NOATIME;
3935         if (flags & EXT4_DIRSYNC_FL)
3936                 new_fl |= S_DIRSYNC;
3937         set_mask_bits(&inode->i_flags,
3938                       S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
3939 }
3940
3941 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3942 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3943 {
3944         unsigned int vfs_fl;
3945         unsigned long old_fl, new_fl;
3946
3947         do {
3948                 vfs_fl = ei->vfs_inode.i_flags;
3949                 old_fl = ei->i_flags;
3950                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3951                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3952                                 EXT4_DIRSYNC_FL);
3953                 if (vfs_fl & S_SYNC)
3954                         new_fl |= EXT4_SYNC_FL;
3955                 if (vfs_fl & S_APPEND)
3956                         new_fl |= EXT4_APPEND_FL;
3957                 if (vfs_fl & S_IMMUTABLE)
3958                         new_fl |= EXT4_IMMUTABLE_FL;
3959                 if (vfs_fl & S_NOATIME)
3960                         new_fl |= EXT4_NOATIME_FL;
3961                 if (vfs_fl & S_DIRSYNC)
3962                         new_fl |= EXT4_DIRSYNC_FL;
3963         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3964 }
3965
3966 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3967                                   struct ext4_inode_info *ei)
3968 {
3969         blkcnt_t i_blocks ;
3970         struct inode *inode = &(ei->vfs_inode);
3971         struct super_block *sb = inode->i_sb;
3972
3973         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3974                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3975                 /* we are using combined 48 bit field */
3976                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3977                                         le32_to_cpu(raw_inode->i_blocks_lo);
3978                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3979                         /* i_blocks represent file system block size */
3980                         return i_blocks  << (inode->i_blkbits - 9);
3981                 } else {
3982                         return i_blocks;
3983                 }
3984         } else {
3985                 return le32_to_cpu(raw_inode->i_blocks_lo);
3986         }
3987 }
3988
3989 static inline void ext4_iget_extra_inode(struct inode *inode,
3990                                          struct ext4_inode *raw_inode,
3991                                          struct ext4_inode_info *ei)
3992 {
3993         __le32 *magic = (void *)raw_inode +
3994                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3995         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3996                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3997                 ext4_find_inline_data_nolock(inode);
3998         } else
3999                 EXT4_I(inode)->i_inline_off = 0;
4000 }
4001
4002 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4003 {
4004         struct ext4_iloc iloc;
4005         struct ext4_inode *raw_inode;
4006         struct ext4_inode_info *ei;
4007         struct inode *inode;
4008         journal_t *journal = EXT4_SB(sb)->s_journal;
4009         long ret;
4010         int block;
4011         uid_t i_uid;
4012         gid_t i_gid;
4013
4014         inode = iget_locked(sb, ino);
4015         if (!inode)
4016                 return ERR_PTR(-ENOMEM);
4017         if (!(inode->i_state & I_NEW))
4018                 return inode;
4019
4020         ei = EXT4_I(inode);
4021         iloc.bh = NULL;
4022
4023         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4024         if (ret < 0)
4025                 goto bad_inode;
4026         raw_inode = ext4_raw_inode(&iloc);
4027
4028         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4029                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4030                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4031                     EXT4_INODE_SIZE(inode->i_sb)) {
4032                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4033                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4034                                 EXT4_INODE_SIZE(inode->i_sb));
4035                         ret = -EIO;
4036                         goto bad_inode;
4037                 }
4038         } else
4039                 ei->i_extra_isize = 0;
4040
4041         /* Precompute checksum seed for inode metadata */
4042         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4043                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4044                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4045                 __u32 csum;
4046                 __le32 inum = cpu_to_le32(inode->i_ino);
4047                 __le32 gen = raw_inode->i_generation;
4048                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4049                                    sizeof(inum));
4050                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4051                                               sizeof(gen));
4052         }
4053
4054         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4055                 EXT4_ERROR_INODE(inode, "checksum invalid");
4056                 ret = -EIO;
4057                 goto bad_inode;
4058         }
4059
4060         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4061         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4062         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4063         if (!(test_opt(inode->i_sb, NO_UID32))) {
4064                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4065                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4066         }
4067         i_uid_write(inode, i_uid);
4068         i_gid_write(inode, i_gid);
4069         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4070
4071         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4072         ei->i_inline_off = 0;
4073         ei->i_dir_start_lookup = 0;
4074         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4075         /* We now have enough fields to check if the inode was active or not.
4076          * This is needed because nfsd might try to access dead inodes
4077          * the test is that same one that e2fsck uses
4078          * NeilBrown 1999oct15
4079          */
4080         if (inode->i_nlink == 0) {
4081                 if ((inode->i_mode == 0 ||
4082                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4083                     ino != EXT4_BOOT_LOADER_INO) {
4084                         /* this inode is deleted */
4085                         ret = -ESTALE;
4086                         goto bad_inode;
4087                 }
4088                 /* The only unlinked inodes we let through here have
4089                  * valid i_mode and are being read by the orphan
4090                  * recovery code: that's fine, we're about to complete
4091                  * the process of deleting those.
4092                  * OR it is the EXT4_BOOT_LOADER_INO which is
4093                  * not initialized on a new filesystem. */
4094         }
4095         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4096         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4097         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4098         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4099                 ei->i_file_acl |=
4100                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4101         inode->i_size = ext4_isize(raw_inode);
4102         ei->i_disksize = inode->i_size;
4103 #ifdef CONFIG_QUOTA
4104         ei->i_reserved_quota = 0;
4105 #endif
4106         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4107         ei->i_block_group = iloc.block_group;
4108         ei->i_last_alloc_group = ~0;
4109         /*
4110          * NOTE! The in-memory inode i_data array is in little-endian order
4111          * even on big-endian machines: we do NOT byteswap the block numbers!
4112          */
4113         for (block = 0; block < EXT4_N_BLOCKS; block++)
4114                 ei->i_data[block] = raw_inode->i_block[block];
4115         INIT_LIST_HEAD(&ei->i_orphan);
4116
4117         /*
4118          * Set transaction id's of transactions that have to be committed
4119          * to finish f[data]sync. We set them to currently running transaction
4120          * as we cannot be sure that the inode or some of its metadata isn't
4121          * part of the transaction - the inode could have been reclaimed and
4122          * now it is reread from disk.
4123          */
4124         if (journal) {
4125                 transaction_t *transaction;
4126                 tid_t tid;
4127
4128                 read_lock(&journal->j_state_lock);
4129                 if (journal->j_running_transaction)
4130                         transaction = journal->j_running_transaction;
4131                 else
4132                         transaction = journal->j_committing_transaction;
4133                 if (transaction)
4134                         tid = transaction->t_tid;
4135                 else
4136                         tid = journal->j_commit_sequence;
4137                 read_unlock(&journal->j_state_lock);
4138                 ei->i_sync_tid = tid;
4139                 ei->i_datasync_tid = tid;
4140         }
4141
4142         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4143                 if (ei->i_extra_isize == 0) {
4144                         /* The extra space is currently unused. Use it. */
4145                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4146                                             EXT4_GOOD_OLD_INODE_SIZE;
4147                 } else {
4148                         ext4_iget_extra_inode(inode, raw_inode, ei);
4149                 }
4150         }
4151
4152         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4153         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4154         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4155         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4156
4157         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4158         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4159                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4160                         inode->i_version |=
4161                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4162         }
4163
4164         ret = 0;
4165         if (ei->i_file_acl &&
4166             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4167                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4168                                  ei->i_file_acl);
4169                 ret = -EIO;
4170                 goto bad_inode;
4171         } else if (!ext4_has_inline_data(inode)) {
4172                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4173                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4174                             (S_ISLNK(inode->i_mode) &&
4175                              !ext4_inode_is_fast_symlink(inode))))
4176                                 /* Validate extent which is part of inode */
4177                                 ret = ext4_ext_check_inode(inode);
4178                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4179                            (S_ISLNK(inode->i_mode) &&
4180                             !ext4_inode_is_fast_symlink(inode))) {
4181                         /* Validate block references which are part of inode */
4182                         ret = ext4_ind_check_inode(inode);
4183                 }
4184         }
4185         if (ret)
4186                 goto bad_inode;
4187
4188         if (S_ISREG(inode->i_mode)) {
4189                 inode->i_op = &ext4_file_inode_operations;
4190                 inode->i_fop = &ext4_file_operations;
4191                 ext4_set_aops(inode);
4192         } else if (S_ISDIR(inode->i_mode)) {
4193                 inode->i_op = &ext4_dir_inode_operations;
4194                 inode->i_fop = &ext4_dir_operations;
4195         } else if (S_ISLNK(inode->i_mode)) {
4196                 if (ext4_inode_is_fast_symlink(inode)) {
4197                         inode->i_op = &ext4_fast_symlink_inode_operations;
4198                         nd_terminate_link(ei->i_data, inode->i_size,
4199                                 sizeof(ei->i_data) - 1);
4200                 } else {
4201                         inode->i_op = &ext4_symlink_inode_operations;
4202                         ext4_set_aops(inode);
4203                 }
4204         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4205               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4206                 inode->i_op = &ext4_special_inode_operations;
4207                 if (raw_inode->i_block[0])
4208                         init_special_inode(inode, inode->i_mode,
4209                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4210                 else
4211                         init_special_inode(inode, inode->i_mode,
4212                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4213         } else if (ino == EXT4_BOOT_LOADER_INO) {
4214                 make_bad_inode(inode);
4215         } else {
4216                 ret = -EIO;
4217                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4218                 goto bad_inode;
4219         }
4220         brelse(iloc.bh);
4221         ext4_set_inode_flags(inode);
4222         unlock_new_inode(inode);
4223         return inode;
4224
4225 bad_inode:
4226         brelse(iloc.bh);
4227         iget_failed(inode);
4228         return ERR_PTR(ret);
4229 }
4230
4231 static int ext4_inode_blocks_set(handle_t *handle,
4232                                 struct ext4_inode *raw_inode,
4233                                 struct ext4_inode_info *ei)
4234 {
4235         struct inode *inode = &(ei->vfs_inode);
4236         u64 i_blocks = inode->i_blocks;
4237         struct super_block *sb = inode->i_sb;
4238
4239         if (i_blocks <= ~0U) {
4240                 /*
4241                  * i_blocks can be represented in a 32 bit variable
4242                  * as multiple of 512 bytes
4243                  */
4244                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4245                 raw_inode->i_blocks_high = 0;
4246                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4247                 return 0;
4248         }
4249         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4250                 return -EFBIG;
4251
4252         if (i_blocks <= 0xffffffffffffULL) {
4253                 /*
4254                  * i_blocks can be represented in a 48 bit variable
4255                  * as multiple of 512 bytes
4256                  */
4257                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4258                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4259                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4260         } else {
4261                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4262                 /* i_block is stored in file system block size */
4263                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4264                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4265                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4266         }
4267         return 0;
4268 }
4269
4270 /*
4271  * Post the struct inode info into an on-disk inode location in the
4272  * buffer-cache.  This gobbles the caller's reference to the
4273  * buffer_head in the inode location struct.
4274  *
4275  * The caller must have write access to iloc->bh.
4276  */
4277 static int ext4_do_update_inode(handle_t *handle,
4278                                 struct inode *inode,
4279                                 struct ext4_iloc *iloc)
4280 {
4281         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4282         struct ext4_inode_info *ei = EXT4_I(inode);
4283         struct buffer_head *bh = iloc->bh;
4284         int err = 0, rc, block;
4285         int need_datasync = 0;
4286         uid_t i_uid;
4287         gid_t i_gid;
4288
4289         /* For fields not not tracking in the in-memory inode,
4290          * initialise them to zero for new inodes. */
4291         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4292                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4293
4294         ext4_get_inode_flags(ei);
4295         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4296         i_uid = i_uid_read(inode);
4297         i_gid = i_gid_read(inode);
4298         if (!(test_opt(inode->i_sb, NO_UID32))) {
4299                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4300                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4301 /*
4302  * Fix up interoperability with old kernels. Otherwise, old inodes get
4303  * re-used with the upper 16 bits of the uid/gid intact
4304  */
4305                 if (!ei->i_dtime) {
4306                         raw_inode->i_uid_high =
4307                                 cpu_to_le16(high_16_bits(i_uid));
4308                         raw_inode->i_gid_high =
4309                                 cpu_to_le16(high_16_bits(i_gid));
4310                 } else {
4311                         raw_inode->i_uid_high = 0;
4312                         raw_inode->i_gid_high = 0;
4313                 }
4314         } else {
4315                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4316                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4317                 raw_inode->i_uid_high = 0;
4318                 raw_inode->i_gid_high = 0;
4319         }
4320         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4321
4322         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4323         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4324         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4325         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4326
4327         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4328                 goto out_brelse;
4329         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4330         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4331         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4332             cpu_to_le32(EXT4_OS_HURD))
4333                 raw_inode->i_file_acl_high =
4334                         cpu_to_le16(ei->i_file_acl >> 32);
4335         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4336         if (ei->i_disksize != ext4_isize(raw_inode)) {
4337                 ext4_isize_set(raw_inode, ei->i_disksize);
4338                 need_datasync = 1;
4339         }
4340         if (ei->i_disksize > 0x7fffffffULL) {
4341                 struct super_block *sb = inode->i_sb;
4342                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4343                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4344                                 EXT4_SB(sb)->s_es->s_rev_level ==
4345                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4346                         /* If this is the first large file
4347                          * created, add a flag to the superblock.
4348                          */
4349                         err = ext4_journal_get_write_access(handle,
4350                                         EXT4_SB(sb)->s_sbh);
4351                         if (err)
4352                                 goto out_brelse;
4353                         ext4_update_dynamic_rev(sb);
4354                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4355                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4356                         ext4_handle_sync(handle);
4357                         err = ext4_handle_dirty_super(handle, sb);
4358                 }
4359         }
4360         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4361         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4362                 if (old_valid_dev(inode->i_rdev)) {
4363                         raw_inode->i_block[0] =
4364                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4365                         raw_inode->i_block[1] = 0;
4366                 } else {
4367                         raw_inode->i_block[0] = 0;
4368                         raw_inode->i_block[1] =
4369                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4370                         raw_inode->i_block[2] = 0;
4371                 }
4372         } else if (!ext4_has_inline_data(inode)) {
4373                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4374                         raw_inode->i_block[block] = ei->i_data[block];
4375         }
4376
4377         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4378         if (ei->i_extra_isize) {
4379                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4380                         raw_inode->i_version_hi =
4381                         cpu_to_le32(inode->i_version >> 32);
4382                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4383         }
4384
4385         ext4_inode_csum_set(inode, raw_inode, ei);
4386
4387         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4388         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4389         if (!err)
4390                 err = rc;
4391         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4392
4393         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4394 out_brelse:
4395         brelse(bh);
4396         ext4_std_error(inode->i_sb, err);
4397         return err;
4398 }
4399
4400 /*
4401  * ext4_write_inode()
4402  *
4403  * We are called from a few places:
4404  *
4405  * - Within generic_file_write() for O_SYNC files.
4406  *   Here, there will be no transaction running. We wait for any running
4407  *   transaction to commit.
4408  *
4409  * - Within sys_sync(), kupdate and such.
4410  *   We wait on commit, if tol to.
4411  *
4412  * - Within prune_icache() (PF_MEMALLOC == true)
4413  *   Here we simply return.  We can't afford to block kswapd on the
4414  *   journal commit.
4415  *
4416  * In all cases it is actually safe for us to return without doing anything,
4417  * because the inode has been copied into a raw inode buffer in
4418  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4419  * knfsd.
4420  *
4421  * Note that we are absolutely dependent upon all inode dirtiers doing the
4422  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4423  * which we are interested.
4424  *
4425  * It would be a bug for them to not do this.  The code:
4426  *
4427  *      mark_inode_dirty(inode)
4428  *      stuff();
4429  *      inode->i_size = expr;
4430  *
4431  * is in error because a kswapd-driven write_inode() could occur while
4432  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4433  * will no longer be on the superblock's dirty inode list.
4434  */
4435 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4436 {
4437         int err;
4438
4439         if (current->flags & PF_MEMALLOC)
4440                 return 0;
4441
4442         if (EXT4_SB(inode->i_sb)->s_journal) {
4443                 if (ext4_journal_current_handle()) {
4444                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4445                         dump_stack();
4446                         return -EIO;
4447                 }
4448
4449                 if (wbc->sync_mode != WB_SYNC_ALL)
4450                         return 0;
4451
4452                 err = ext4_force_commit(inode->i_sb);
4453         } else {
4454                 struct ext4_iloc iloc;
4455
4456                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4457                 if (err)
4458                         return err;
4459                 if (wbc->sync_mode == WB_SYNC_ALL)
4460                         sync_dirty_buffer(iloc.bh);
4461                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4462                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4463                                          "IO error syncing inode");
4464                         err = -EIO;
4465                 }
4466                 brelse(iloc.bh);
4467         }
4468         return err;
4469 }
4470
4471 /*
4472  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4473  * buffers that are attached to a page stradding i_size and are undergoing
4474  * commit. In that case we have to wait for commit to finish and try again.
4475  */
4476 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4477 {
4478         struct page *page;
4479         unsigned offset;
4480         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4481         tid_t commit_tid = 0;
4482         int ret;
4483
4484         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4485         /*
4486          * All buffers in the last page remain valid? Then there's nothing to
4487          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4488          * blocksize case
4489          */
4490         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4491                 return;
4492         while (1) {
4493                 page = find_lock_page(inode->i_mapping,
4494                                       inode->i_size >> PAGE_CACHE_SHIFT);
4495                 if (!page)
4496                         return;
4497                 ret = __ext4_journalled_invalidatepage(page, offset,
4498                                                 PAGE_CACHE_SIZE - offset);
4499                 unlock_page(page);
4500                 page_cache_release(page);
4501                 if (ret != -EBUSY)
4502                         return;
4503                 commit_tid = 0;
4504                 read_lock(&journal->j_state_lock);
4505                 if (journal->j_committing_transaction)
4506                         commit_tid = journal->j_committing_transaction->t_tid;
4507                 read_unlock(&journal->j_state_lock);
4508                 if (commit_tid)
4509                         jbd2_log_wait_commit(journal, commit_tid);
4510         }
4511 }
4512
4513 /*
4514  * ext4_setattr()
4515  *
4516  * Called from notify_change.
4517  *
4518  * We want to trap VFS attempts to truncate the file as soon as
4519  * possible.  In particular, we want to make sure that when the VFS
4520  * shrinks i_size, we put the inode on the orphan list and modify
4521  * i_disksize immediately, so that during the subsequent flushing of
4522  * dirty pages and freeing of disk blocks, we can guarantee that any
4523  * commit will leave the blocks being flushed in an unused state on
4524  * disk.  (On recovery, the inode will get truncated and the blocks will
4525  * be freed, so we have a strong guarantee that no future commit will
4526  * leave these blocks visible to the user.)
4527  *
4528  * Another thing we have to assure is that if we are in ordered mode
4529  * and inode is still attached to the committing transaction, we must
4530  * we start writeout of all the dirty pages which are being truncated.
4531  * This way we are sure that all the data written in the previous
4532  * transaction are already on disk (truncate waits for pages under
4533  * writeback).
4534  *
4535  * Called with inode->i_mutex down.
4536  */
4537 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4538 {
4539         struct inode *inode = dentry->d_inode;
4540         int error, rc = 0;
4541         int orphan = 0;
4542         const unsigned int ia_valid = attr->ia_valid;
4543
4544         error = inode_change_ok(inode, attr);
4545         if (error)
4546                 return error;
4547
4548         if (is_quota_modification(inode, attr))
4549                 dquot_initialize(inode);
4550         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4551             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4552                 handle_t *handle;
4553
4554                 /* (user+group)*(old+new) structure, inode write (sb,
4555                  * inode block, ? - but truncate inode update has it) */
4556                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4557                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4558                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4559                 if (IS_ERR(handle)) {
4560                         error = PTR_ERR(handle);
4561                         goto err_out;
4562                 }
4563                 error = dquot_transfer(inode, attr);
4564                 if (error) {
4565                         ext4_journal_stop(handle);
4566                         return error;
4567                 }
4568                 /* Update corresponding info in inode so that everything is in
4569                  * one transaction */
4570                 if (attr->ia_valid & ATTR_UID)
4571                         inode->i_uid = attr->ia_uid;
4572                 if (attr->ia_valid & ATTR_GID)
4573                         inode->i_gid = attr->ia_gid;
4574                 error = ext4_mark_inode_dirty(handle, inode);
4575                 ext4_journal_stop(handle);
4576         }
4577
4578         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4579                 handle_t *handle;
4580
4581                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4582                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4583
4584                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4585                                 return -EFBIG;
4586                 }
4587
4588                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4589                         inode_inc_iversion(inode);
4590
4591                 if (S_ISREG(inode->i_mode) &&
4592                     (attr->ia_size < inode->i_size)) {
4593                         if (ext4_should_order_data(inode)) {
4594                                 error = ext4_begin_ordered_truncate(inode,
4595                                                             attr->ia_size);
4596                                 if (error)
4597                                         goto err_out;
4598                         }
4599                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4600                         if (IS_ERR(handle)) {
4601                                 error = PTR_ERR(handle);
4602                                 goto err_out;
4603                         }
4604                         if (ext4_handle_valid(handle)) {
4605                                 error = ext4_orphan_add(handle, inode);
4606                                 orphan = 1;
4607                         }
4608                         down_write(&EXT4_I(inode)->i_data_sem);
4609                         EXT4_I(inode)->i_disksize = attr->ia_size;
4610                         rc = ext4_mark_inode_dirty(handle, inode);
4611                         if (!error)
4612                                 error = rc;
4613                         /*
4614                          * We have to update i_size under i_data_sem together
4615                          * with i_disksize to avoid races with writeback code
4616                          * running ext4_wb_update_i_disksize().
4617                          */
4618                         if (!error)
4619                                 i_size_write(inode, attr->ia_size);
4620                         up_write(&EXT4_I(inode)->i_data_sem);
4621                         ext4_journal_stop(handle);
4622                         if (error) {
4623                                 ext4_orphan_del(NULL, inode);
4624                                 goto err_out;
4625                         }
4626                 } else
4627                         i_size_write(inode, attr->ia_size);
4628
4629                 /*
4630                  * Blocks are going to be removed from the inode. Wait
4631                  * for dio in flight.  Temporarily disable
4632                  * dioread_nolock to prevent livelock.
4633                  */
4634                 if (orphan) {
4635                         if (!ext4_should_journal_data(inode)) {
4636                                 ext4_inode_block_unlocked_dio(inode);
4637                                 inode_dio_wait(inode);
4638                                 ext4_inode_resume_unlocked_dio(inode);
4639                         } else
4640                                 ext4_wait_for_tail_page_commit(inode);
4641                 }
4642                 /*
4643                  * Truncate pagecache after we've waited for commit
4644                  * in data=journal mode to make pages freeable.
4645                  */
4646                         truncate_pagecache(inode, inode->i_size);
4647         }
4648         /*
4649          * We want to call ext4_truncate() even if attr->ia_size ==
4650          * inode->i_size for cases like truncation of fallocated space
4651          */
4652         if (attr->ia_valid & ATTR_SIZE)
4653                 ext4_truncate(inode);
4654
4655         if (!rc) {
4656                 setattr_copy(inode, attr);
4657                 mark_inode_dirty(inode);
4658         }
4659
4660         /*
4661          * If the call to ext4_truncate failed to get a transaction handle at
4662          * all, we need to clean up the in-core orphan list manually.
4663          */
4664         if (orphan && inode->i_nlink)
4665                 ext4_orphan_del(NULL, inode);
4666
4667         if (!rc && (ia_valid & ATTR_MODE))
4668                 rc = posix_acl_chmod(inode, inode->i_mode);
4669
4670 err_out:
4671         ext4_std_error(inode->i_sb, error);
4672         if (!error)
4673                 error = rc;
4674         return error;
4675 }
4676
4677 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4678                  struct kstat *stat)
4679 {
4680         struct inode *inode;
4681         unsigned long long delalloc_blocks;
4682
4683         inode = dentry->d_inode;
4684         generic_fillattr(inode, stat);
4685
4686         /*
4687          * If there is inline data in the inode, the inode will normally not
4688          * have data blocks allocated (it may have an external xattr block).
4689          * Report at least one sector for such files, so tools like tar, rsync,
4690          * others doen't incorrectly think the file is completely sparse.
4691          */
4692         if (unlikely(ext4_has_inline_data(inode)))
4693                 stat->blocks += (stat->size + 511) >> 9;
4694
4695         /*
4696          * We can't update i_blocks if the block allocation is delayed
4697          * otherwise in the case of system crash before the real block
4698          * allocation is done, we will have i_blocks inconsistent with
4699          * on-disk file blocks.
4700          * We always keep i_blocks updated together with real
4701          * allocation. But to not confuse with user, stat
4702          * will return the blocks that include the delayed allocation
4703          * blocks for this file.
4704          */
4705         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4706                                    EXT4_I(inode)->i_reserved_data_blocks);
4707         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4708         return 0;
4709 }
4710
4711 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4712                                    int pextents)
4713 {
4714         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4715                 return ext4_ind_trans_blocks(inode, lblocks);
4716         return ext4_ext_index_trans_blocks(inode, pextents);
4717 }
4718
4719 /*
4720  * Account for index blocks, block groups bitmaps and block group
4721  * descriptor blocks if modify datablocks and index blocks
4722  * worse case, the indexs blocks spread over different block groups
4723  *
4724  * If datablocks are discontiguous, they are possible to spread over
4725  * different block groups too. If they are contiguous, with flexbg,
4726  * they could still across block group boundary.
4727  *
4728  * Also account for superblock, inode, quota and xattr blocks
4729  */
4730 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4731                                   int pextents)
4732 {
4733         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4734         int gdpblocks;
4735         int idxblocks;
4736         int ret = 0;
4737
4738         /*
4739          * How many index blocks need to touch to map @lblocks logical blocks
4740          * to @pextents physical extents?
4741          */
4742         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4743
4744         ret = idxblocks;
4745
4746         /*
4747          * Now let's see how many group bitmaps and group descriptors need
4748          * to account
4749          */
4750         groups = idxblocks + pextents;
4751         gdpblocks = groups;
4752         if (groups > ngroups)
4753                 groups = ngroups;
4754         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4755                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4756
4757         /* bitmaps and block group descriptor blocks */
4758         ret += groups + gdpblocks;
4759
4760         /* Blocks for super block, inode, quota and xattr blocks */
4761         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4762
4763         return ret;
4764 }
4765
4766 /*
4767  * Calculate the total number of credits to reserve to fit
4768  * the modification of a single pages into a single transaction,
4769  * which may include multiple chunks of block allocations.
4770  *
4771  * This could be called via ext4_write_begin()
4772  *
4773  * We need to consider the worse case, when
4774  * one new block per extent.
4775  */
4776 int ext4_writepage_trans_blocks(struct inode *inode)
4777 {
4778         int bpp = ext4_journal_blocks_per_page(inode);
4779         int ret;
4780
4781         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4782
4783         /* Account for data blocks for journalled mode */
4784         if (ext4_should_journal_data(inode))
4785                 ret += bpp;
4786         return ret;
4787 }
4788
4789 /*
4790  * Calculate the journal credits for a chunk of data modification.
4791  *
4792  * This is called from DIO, fallocate or whoever calling
4793  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4794  *
4795  * journal buffers for data blocks are not included here, as DIO
4796  * and fallocate do no need to journal data buffers.
4797  */
4798 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4799 {
4800         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4801 }
4802
4803 /*
4804  * The caller must have previously called ext4_reserve_inode_write().
4805  * Give this, we know that the caller already has write access to iloc->bh.
4806  */
4807 int ext4_mark_iloc_dirty(handle_t *handle,
4808                          struct inode *inode, struct ext4_iloc *iloc)
4809 {
4810         int err = 0;
4811
4812         if (IS_I_VERSION(inode))
4813                 inode_inc_iversion(inode);
4814
4815         /* the do_update_inode consumes one bh->b_count */
4816         get_bh(iloc->bh);
4817
4818         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4819         err = ext4_do_update_inode(handle, inode, iloc);
4820         put_bh(iloc->bh);
4821         return err;
4822 }
4823
4824 /*
4825  * On success, We end up with an outstanding reference count against
4826  * iloc->bh.  This _must_ be cleaned up later.
4827  */
4828
4829 int
4830 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4831                          struct ext4_iloc *iloc)
4832 {
4833         int err;
4834
4835         err = ext4_get_inode_loc(inode, iloc);
4836         if (!err) {
4837                 BUFFER_TRACE(iloc->bh, "get_write_access");
4838                 err = ext4_journal_get_write_access(handle, iloc->bh);
4839                 if (err) {
4840                         brelse(iloc->bh);
4841                         iloc->bh = NULL;
4842                 }
4843         }
4844         ext4_std_error(inode->i_sb, err);
4845         return err;
4846 }
4847
4848 /*
4849  * Expand an inode by new_extra_isize bytes.
4850  * Returns 0 on success or negative error number on failure.
4851  */
4852 static int ext4_expand_extra_isize(struct inode *inode,
4853                                    unsigned int new_extra_isize,
4854                                    struct ext4_iloc iloc,
4855                                    handle_t *handle)
4856 {
4857         struct ext4_inode *raw_inode;
4858         struct ext4_xattr_ibody_header *header;
4859
4860         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4861                 return 0;
4862
4863         raw_inode = ext4_raw_inode(&iloc);
4864
4865         header = IHDR(inode, raw_inode);
4866
4867         /* No extended attributes present */
4868         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4869             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4870                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4871                         new_extra_isize);
4872                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4873                 return 0;
4874         }
4875
4876         /* try to expand with EAs present */
4877         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4878                                           raw_inode, handle);
4879 }
4880
4881 /*
4882  * What we do here is to mark the in-core inode as clean with respect to inode
4883  * dirtiness (it may still be data-dirty).
4884  * This means that the in-core inode may be reaped by prune_icache
4885  * without having to perform any I/O.  This is a very good thing,
4886  * because *any* task may call prune_icache - even ones which
4887  * have a transaction open against a different journal.
4888  *
4889  * Is this cheating?  Not really.  Sure, we haven't written the
4890  * inode out, but prune_icache isn't a user-visible syncing function.
4891  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4892  * we start and wait on commits.
4893  */
4894 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4895 {
4896         struct ext4_iloc iloc;
4897         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4898         static unsigned int mnt_count;
4899         int err, ret;
4900
4901         might_sleep();
4902         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4903         err = ext4_reserve_inode_write(handle, inode, &iloc);
4904         if (ext4_handle_valid(handle) &&
4905             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4906             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4907                 /*
4908                  * We need extra buffer credits since we may write into EA block
4909                  * with this same handle. If journal_extend fails, then it will
4910                  * only result in a minor loss of functionality for that inode.
4911                  * If this is felt to be critical, then e2fsck should be run to
4912                  * force a large enough s_min_extra_isize.
4913                  */
4914                 if ((jbd2_journal_extend(handle,
4915                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4916                         ret = ext4_expand_extra_isize(inode,
4917                                                       sbi->s_want_extra_isize,
4918                                                       iloc, handle);
4919                         if (ret) {
4920                                 ext4_set_inode_state(inode,
4921                                                      EXT4_STATE_NO_EXPAND);
4922                                 if (mnt_count !=
4923                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4924                                         ext4_warning(inode->i_sb,
4925                                         "Unable to expand inode %lu. Delete"
4926                                         " some EAs or run e2fsck.",
4927                                         inode->i_ino);
4928                                         mnt_count =
4929                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4930                                 }
4931                         }
4932                 }
4933         }
4934         if (!err)
4935                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4936         return err;
4937 }
4938
4939 /*
4940  * ext4_dirty_inode() is called from __mark_inode_dirty()
4941  *
4942  * We're really interested in the case where a file is being extended.
4943  * i_size has been changed by generic_commit_write() and we thus need
4944  * to include the updated inode in the current transaction.
4945  *
4946  * Also, dquot_alloc_block() will always dirty the inode when blocks
4947  * are allocated to the file.
4948  *
4949  * If the inode is marked synchronous, we don't honour that here - doing
4950  * so would cause a commit on atime updates, which we don't bother doing.
4951  * We handle synchronous inodes at the highest possible level.
4952  */
4953 void ext4_dirty_inode(struct inode *inode, int flags)
4954 {
4955         handle_t *handle;
4956
4957         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4958         if (IS_ERR(handle))
4959                 goto out;
4960
4961         ext4_mark_inode_dirty(handle, inode);
4962
4963         ext4_journal_stop(handle);
4964 out:
4965         return;
4966 }
4967
4968 #if 0
4969 /*
4970  * Bind an inode's backing buffer_head into this transaction, to prevent
4971  * it from being flushed to disk early.  Unlike
4972  * ext4_reserve_inode_write, this leaves behind no bh reference and
4973  * returns no iloc structure, so the caller needs to repeat the iloc
4974  * lookup to mark the inode dirty later.
4975  */
4976 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4977 {
4978         struct ext4_iloc iloc;
4979
4980         int err = 0;
4981         if (handle) {
4982                 err = ext4_get_inode_loc(inode, &iloc);
4983                 if (!err) {
4984                         BUFFER_TRACE(iloc.bh, "get_write_access");
4985                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4986                         if (!err)
4987                                 err = ext4_handle_dirty_metadata(handle,
4988                                                                  NULL,
4989                                                                  iloc.bh);
4990                         brelse(iloc.bh);
4991                 }
4992         }
4993         ext4_std_error(inode->i_sb, err);
4994         return err;
4995 }
4996 #endif
4997
4998 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4999 {
5000         journal_t *journal;
5001         handle_t *handle;
5002         int err;
5003
5004         /*
5005          * We have to be very careful here: changing a data block's
5006          * journaling status dynamically is dangerous.  If we write a
5007          * data block to the journal, change the status and then delete
5008          * that block, we risk forgetting to revoke the old log record
5009          * from the journal and so a subsequent replay can corrupt data.
5010          * So, first we make sure that the journal is empty and that
5011          * nobody is changing anything.
5012          */
5013
5014         journal = EXT4_JOURNAL(inode);
5015         if (!journal)
5016                 return 0;
5017         if (is_journal_aborted(journal))
5018                 return -EROFS;
5019         /* We have to allocate physical blocks for delalloc blocks
5020          * before flushing journal. otherwise delalloc blocks can not
5021          * be allocated any more. even more truncate on delalloc blocks
5022          * could trigger BUG by flushing delalloc blocks in journal.
5023          * There is no delalloc block in non-journal data mode.
5024          */
5025         if (val && test_opt(inode->i_sb, DELALLOC)) {
5026                 err = ext4_alloc_da_blocks(inode);
5027                 if (err < 0)
5028                         return err;
5029         }
5030
5031         /* Wait for all existing dio workers */
5032         ext4_inode_block_unlocked_dio(inode);
5033         inode_dio_wait(inode);
5034
5035         jbd2_journal_lock_updates(journal);
5036
5037         /*
5038          * OK, there are no updates running now, and all cached data is
5039          * synced to disk.  We are now in a completely consistent state
5040          * which doesn't have anything in the journal, and we know that
5041          * no filesystem updates are running, so it is safe to modify
5042          * the inode's in-core data-journaling state flag now.
5043          */
5044
5045         if (val)
5046                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5047         else {
5048                 jbd2_journal_flush(journal);
5049                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5050         }
5051         ext4_set_aops(inode);
5052
5053         jbd2_journal_unlock_updates(journal);
5054         ext4_inode_resume_unlocked_dio(inode);
5055
5056         /* Finally we can mark the inode as dirty. */
5057
5058         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5059         if (IS_ERR(handle))
5060                 return PTR_ERR(handle);
5061
5062         err = ext4_mark_inode_dirty(handle, inode);
5063         ext4_handle_sync(handle);
5064         ext4_journal_stop(handle);
5065         ext4_std_error(inode->i_sb, err);
5066
5067         return err;
5068 }
5069
5070 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5071 {
5072         return !buffer_mapped(bh);
5073 }
5074
5075 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5076 {
5077         struct page *page = vmf->page;
5078         loff_t size;
5079         unsigned long len;
5080         int ret;
5081         struct file *file = vma->vm_file;
5082         struct inode *inode = file_inode(file);
5083         struct address_space *mapping = inode->i_mapping;
5084         handle_t *handle;
5085         get_block_t *get_block;
5086         int retries = 0;
5087
5088         sb_start_pagefault(inode->i_sb);
5089         file_update_time(vma->vm_file);
5090         /* Delalloc case is easy... */
5091         if (test_opt(inode->i_sb, DELALLOC) &&
5092             !ext4_should_journal_data(inode) &&
5093             !ext4_nonda_switch(inode->i_sb)) {
5094                 do {
5095                         ret = __block_page_mkwrite(vma, vmf,
5096                                                    ext4_da_get_block_prep);
5097                 } while (ret == -ENOSPC &&
5098                        ext4_should_retry_alloc(inode->i_sb, &retries));
5099                 goto out_ret;
5100         }
5101
5102         lock_page(page);
5103         size = i_size_read(inode);
5104         /* Page got truncated from under us? */
5105         if (page->mapping != mapping || page_offset(page) > size) {
5106                 unlock_page(page);
5107                 ret = VM_FAULT_NOPAGE;
5108                 goto out;
5109         }
5110
5111         if (page->index == size >> PAGE_CACHE_SHIFT)
5112                 len = size & ~PAGE_CACHE_MASK;
5113         else
5114                 len = PAGE_CACHE_SIZE;
5115         /*
5116          * Return if we have all the buffers mapped. This avoids the need to do
5117          * journal_start/journal_stop which can block and take a long time
5118          */
5119         if (page_has_buffers(page)) {
5120                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5121                                             0, len, NULL,
5122                                             ext4_bh_unmapped)) {
5123                         /* Wait so that we don't change page under IO */
5124                         wait_for_stable_page(page);
5125                         ret = VM_FAULT_LOCKED;
5126                         goto out;
5127                 }
5128         }
5129         unlock_page(page);
5130         /* OK, we need to fill the hole... */
5131         if (ext4_should_dioread_nolock(inode))
5132                 get_block = ext4_get_block_write;
5133         else
5134                 get_block = ext4_get_block;
5135 retry_alloc:
5136         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5137                                     ext4_writepage_trans_blocks(inode));
5138         if (IS_ERR(handle)) {
5139                 ret = VM_FAULT_SIGBUS;
5140                 goto out;
5141         }
5142         ret = __block_page_mkwrite(vma, vmf, get_block);
5143         if (!ret && ext4_should_journal_data(inode)) {
5144                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5145                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5146                         unlock_page(page);
5147                         ret = VM_FAULT_SIGBUS;
5148                         ext4_journal_stop(handle);
5149                         goto out;
5150                 }
5151                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5152         }
5153         ext4_journal_stop(handle);
5154         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5155                 goto retry_alloc;
5156 out_ret:
5157         ret = block_page_mkwrite_return(ret);
5158 out:
5159         sb_end_pagefault(inode->i_sb);
5160         return ret;
5161 }