]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
19fa2e076275952779a443ab1ee5656a11c29a88
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429                                        struct inode *inode,
430                                        struct ext4_map_blocks *es_map,
431                                        struct ext4_map_blocks *map,
432                                        int flags)
433 {
434         int retval;
435
436         map->m_flags = 0;
437         /*
438          * There is a race window that the result is not the same.
439          * e.g. xfstests #223 when dioread_nolock enables.  The reason
440          * is that we lookup a block mapping in extent status tree with
441          * out taking i_data_sem.  So at the time the unwritten extent
442          * could be converted.
443          */
444         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445                 down_read((&EXT4_I(inode)->i_data_sem));
446         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448                                              EXT4_GET_BLOCKS_KEEP_SIZE);
449         } else {
450                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         }
453         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454                 up_read((&EXT4_I(inode)->i_data_sem));
455         /*
456          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457          * because it shouldn't be marked in es_map->m_flags.
458          */
459         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertion failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507         struct ext4_map_blocks orig_map;
508
509         memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512         map->m_flags = 0;
513         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
515                   (unsigned long) map->m_lblk);
516
517         /* Lookup extent status tree firstly */
518         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519                 ext4_es_lru_add(inode);
520                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521                         map->m_pblk = ext4_es_pblock(&es) +
522                                         map->m_lblk - es.es_lblk;
523                         map->m_flags |= ext4_es_is_written(&es) ?
524                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525                         retval = es.es_len - (map->m_lblk - es.es_lblk);
526                         if (retval > map->m_len)
527                                 retval = map->m_len;
528                         map->m_len = retval;
529                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530                         retval = 0;
531                 } else {
532                         BUG_ON(1);
533                 }
534 #ifdef ES_AGGRESSIVE_TEST
535                 ext4_map_blocks_es_recheck(handle, inode, map,
536                                            &orig_map, flags);
537 #endif
538                 goto found;
539         }
540
541         /*
542          * Try to see if we can get the block without requesting a new
543          * file system block.
544          */
545         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546                 down_read((&EXT4_I(inode)->i_data_sem));
547         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549                                              EXT4_GET_BLOCKS_KEEP_SIZE);
550         } else {
551                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552                                              EXT4_GET_BLOCKS_KEEP_SIZE);
553         }
554         if (retval > 0) {
555                 int ret;
556                 unsigned int status;
557
558                 if (unlikely(retval != map->m_len)) {
559                         ext4_warning(inode->i_sb,
560                                      "ES len assertion failed for inode "
561                                      "%lu: retval %d != map->m_len %d",
562                                      inode->i_ino, retval, map->m_len);
563                         WARN_ON(1);
564                 }
565
566                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569                     ext4_find_delalloc_range(inode, map->m_lblk,
570                                              map->m_lblk + map->m_len - 1))
571                         status |= EXTENT_STATUS_DELAYED;
572                 ret = ext4_es_insert_extent(inode, map->m_lblk,
573                                             map->m_len, map->m_pblk, status);
574                 if (ret < 0)
575                         retval = ret;
576         }
577         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578                 up_read((&EXT4_I(inode)->i_data_sem));
579
580 found:
581         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582                 int ret = check_block_validity(inode, map);
583                 if (ret != 0)
584                         return ret;
585         }
586
587         /* If it is only a block(s) look up */
588         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589                 return retval;
590
591         /*
592          * Returns if the blocks have already allocated
593          *
594          * Note that if blocks have been preallocated
595          * ext4_ext_get_block() returns the create = 0
596          * with buffer head unmapped.
597          */
598         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599                 return retval;
600
601         /*
602          * Here we clear m_flags because after allocating an new extent,
603          * it will be set again.
604          */
605         map->m_flags &= ~EXT4_MAP_FLAGS;
606
607         /*
608          * New blocks allocate and/or writing to uninitialized extent
609          * will possibly result in updating i_data, so we take
610          * the write lock of i_data_sem, and call get_blocks()
611          * with create == 1 flag.
612          */
613         down_write((&EXT4_I(inode)->i_data_sem));
614
615         /*
616          * if the caller is from delayed allocation writeout path
617          * we have already reserved fs blocks for allocation
618          * let the underlying get_block() function know to
619          * avoid double accounting
620          */
621         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
623         /*
624          * We need to check for EXT4 here because migrate
625          * could have changed the inode type in between
626          */
627         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
629         } else {
630                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
631
632                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633                         /*
634                          * We allocated new blocks which will result in
635                          * i_data's format changing.  Force the migrate
636                          * to fail by clearing migrate flags
637                          */
638                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639                 }
640
641                 /*
642                  * Update reserved blocks/metadata blocks after successful
643                  * block allocation which had been deferred till now. We don't
644                  * support fallocate for non extent files. So we can update
645                  * reserve space here.
646                  */
647                 if ((retval > 0) &&
648                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649                         ext4_da_update_reserve_space(inode, retval, 1);
650         }
651         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
653
654         if (retval > 0) {
655                 int ret;
656                 unsigned int status;
657
658                 if (unlikely(retval != map->m_len)) {
659                         ext4_warning(inode->i_sb,
660                                      "ES len assertion failed for inode "
661                                      "%lu: retval %d != map->m_len %d",
662                                      inode->i_ino, retval, map->m_len);
663                         WARN_ON(1);
664                 }
665
666                 /*
667                  * If the extent has been zeroed out, we don't need to update
668                  * extent status tree.
669                  */
670                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672                         if (ext4_es_is_written(&es))
673                                 goto has_zeroout;
674                 }
675                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678                     ext4_find_delalloc_range(inode, map->m_lblk,
679                                              map->m_lblk + map->m_len - 1))
680                         status |= EXTENT_STATUS_DELAYED;
681                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682                                             map->m_pblk, status);
683                 if (ret < 0)
684                         retval = ret;
685         }
686
687 has_zeroout:
688         up_write((&EXT4_I(inode)->i_data_sem));
689         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690                 int ret = check_block_validity(inode, map);
691                 if (ret != 0)
692                         return ret;
693         }
694         return retval;
695 }
696
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
699
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701                            struct buffer_head *bh, int flags)
702 {
703         handle_t *handle = ext4_journal_current_handle();
704         struct ext4_map_blocks map;
705         int ret = 0, started = 0;
706         int dio_credits;
707
708         if (ext4_has_inline_data(inode))
709                 return -ERANGE;
710
711         map.m_lblk = iblock;
712         map.m_len = bh->b_size >> inode->i_blkbits;
713
714         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715                 /* Direct IO write... */
716                 if (map.m_len > DIO_MAX_BLOCKS)
717                         map.m_len = DIO_MAX_BLOCKS;
718                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720                                             dio_credits);
721                 if (IS_ERR(handle)) {
722                         ret = PTR_ERR(handle);
723                         return ret;
724                 }
725                 started = 1;
726         }
727
728         ret = ext4_map_blocks(handle, inode, &map, flags);
729         if (ret > 0) {
730                 map_bh(bh, inode->i_sb, map.m_pblk);
731                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
732                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
733                 ret = 0;
734         }
735         if (started)
736                 ext4_journal_stop(handle);
737         return ret;
738 }
739
740 int ext4_get_block(struct inode *inode, sector_t iblock,
741                    struct buffer_head *bh, int create)
742 {
743         return _ext4_get_block(inode, iblock, bh,
744                                create ? EXT4_GET_BLOCKS_CREATE : 0);
745 }
746
747 /*
748  * `handle' can be NULL if create is zero
749  */
750 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
751                                 ext4_lblk_t block, int create, int *errp)
752 {
753         struct ext4_map_blocks map;
754         struct buffer_head *bh;
755         int fatal = 0, err;
756
757         J_ASSERT(handle != NULL || create == 0);
758
759         map.m_lblk = block;
760         map.m_len = 1;
761         err = ext4_map_blocks(handle, inode, &map,
762                               create ? EXT4_GET_BLOCKS_CREATE : 0);
763
764         /* ensure we send some value back into *errp */
765         *errp = 0;
766
767         if (create && err == 0)
768                 err = -ENOSPC;  /* should never happen */
769         if (err < 0)
770                 *errp = err;
771         if (err <= 0)
772                 return NULL;
773
774         bh = sb_getblk(inode->i_sb, map.m_pblk);
775         if (unlikely(!bh)) {
776                 *errp = -ENOMEM;
777                 return NULL;
778         }
779         if (map.m_flags & EXT4_MAP_NEW) {
780                 J_ASSERT(create != 0);
781                 J_ASSERT(handle != NULL);
782
783                 /*
784                  * Now that we do not always journal data, we should
785                  * keep in mind whether this should always journal the
786                  * new buffer as metadata.  For now, regular file
787                  * writes use ext4_get_block instead, so it's not a
788                  * problem.
789                  */
790                 lock_buffer(bh);
791                 BUFFER_TRACE(bh, "call get_create_access");
792                 fatal = ext4_journal_get_create_access(handle, bh);
793                 if (!fatal && !buffer_uptodate(bh)) {
794                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
795                         set_buffer_uptodate(bh);
796                 }
797                 unlock_buffer(bh);
798                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
799                 err = ext4_handle_dirty_metadata(handle, inode, bh);
800                 if (!fatal)
801                         fatal = err;
802         } else {
803                 BUFFER_TRACE(bh, "not a new buffer");
804         }
805         if (fatal) {
806                 *errp = fatal;
807                 brelse(bh);
808                 bh = NULL;
809         }
810         return bh;
811 }
812
813 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
814                                ext4_lblk_t block, int create, int *err)
815 {
816         struct buffer_head *bh;
817
818         bh = ext4_getblk(handle, inode, block, create, err);
819         if (!bh)
820                 return bh;
821         if (buffer_uptodate(bh))
822                 return bh;
823         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
824         wait_on_buffer(bh);
825         if (buffer_uptodate(bh))
826                 return bh;
827         put_bh(bh);
828         *err = -EIO;
829         return NULL;
830 }
831
832 int ext4_walk_page_buffers(handle_t *handle,
833                            struct buffer_head *head,
834                            unsigned from,
835                            unsigned to,
836                            int *partial,
837                            int (*fn)(handle_t *handle,
838                                      struct buffer_head *bh))
839 {
840         struct buffer_head *bh;
841         unsigned block_start, block_end;
842         unsigned blocksize = head->b_size;
843         int err, ret = 0;
844         struct buffer_head *next;
845
846         for (bh = head, block_start = 0;
847              ret == 0 && (bh != head || !block_start);
848              block_start = block_end, bh = next) {
849                 next = bh->b_this_page;
850                 block_end = block_start + blocksize;
851                 if (block_end <= from || block_start >= to) {
852                         if (partial && !buffer_uptodate(bh))
853                                 *partial = 1;
854                         continue;
855                 }
856                 err = (*fn)(handle, bh);
857                 if (!ret)
858                         ret = err;
859         }
860         return ret;
861 }
862
863 /*
864  * To preserve ordering, it is essential that the hole instantiation and
865  * the data write be encapsulated in a single transaction.  We cannot
866  * close off a transaction and start a new one between the ext4_get_block()
867  * and the commit_write().  So doing the jbd2_journal_start at the start of
868  * prepare_write() is the right place.
869  *
870  * Also, this function can nest inside ext4_writepage().  In that case, we
871  * *know* that ext4_writepage() has generated enough buffer credits to do the
872  * whole page.  So we won't block on the journal in that case, which is good,
873  * because the caller may be PF_MEMALLOC.
874  *
875  * By accident, ext4 can be reentered when a transaction is open via
876  * quota file writes.  If we were to commit the transaction while thus
877  * reentered, there can be a deadlock - we would be holding a quota
878  * lock, and the commit would never complete if another thread had a
879  * transaction open and was blocking on the quota lock - a ranking
880  * violation.
881  *
882  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
883  * will _not_ run commit under these circumstances because handle->h_ref
884  * is elevated.  We'll still have enough credits for the tiny quotafile
885  * write.
886  */
887 int do_journal_get_write_access(handle_t *handle,
888                                 struct buffer_head *bh)
889 {
890         int dirty = buffer_dirty(bh);
891         int ret;
892
893         if (!buffer_mapped(bh) || buffer_freed(bh))
894                 return 0;
895         /*
896          * __block_write_begin() could have dirtied some buffers. Clean
897          * the dirty bit as jbd2_journal_get_write_access() could complain
898          * otherwise about fs integrity issues. Setting of the dirty bit
899          * by __block_write_begin() isn't a real problem here as we clear
900          * the bit before releasing a page lock and thus writeback cannot
901          * ever write the buffer.
902          */
903         if (dirty)
904                 clear_buffer_dirty(bh);
905         ret = ext4_journal_get_write_access(handle, bh);
906         if (!ret && dirty)
907                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
908         return ret;
909 }
910
911 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
912                    struct buffer_head *bh_result, int create);
913 static int ext4_write_begin(struct file *file, struct address_space *mapping,
914                             loff_t pos, unsigned len, unsigned flags,
915                             struct page **pagep, void **fsdata)
916 {
917         struct inode *inode = mapping->host;
918         int ret, needed_blocks;
919         handle_t *handle;
920         int retries = 0;
921         struct page *page;
922         pgoff_t index;
923         unsigned from, to;
924
925         trace_ext4_write_begin(inode, pos, len, flags);
926         /*
927          * Reserve one block more for addition to orphan list in case
928          * we allocate blocks but write fails for some reason
929          */
930         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
931         index = pos >> PAGE_CACHE_SHIFT;
932         from = pos & (PAGE_CACHE_SIZE - 1);
933         to = from + len;
934
935         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
936                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
937                                                     flags, pagep);
938                 if (ret < 0)
939                         return ret;
940                 if (ret == 1)
941                         return 0;
942         }
943
944         /*
945          * grab_cache_page_write_begin() can take a long time if the
946          * system is thrashing due to memory pressure, or if the page
947          * is being written back.  So grab it first before we start
948          * the transaction handle.  This also allows us to allocate
949          * the page (if needed) without using GFP_NOFS.
950          */
951 retry_grab:
952         page = grab_cache_page_write_begin(mapping, index, flags);
953         if (!page)
954                 return -ENOMEM;
955         unlock_page(page);
956
957 retry_journal:
958         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
959         if (IS_ERR(handle)) {
960                 page_cache_release(page);
961                 return PTR_ERR(handle);
962         }
963
964         lock_page(page);
965         if (page->mapping != mapping) {
966                 /* The page got truncated from under us */
967                 unlock_page(page);
968                 page_cache_release(page);
969                 ext4_journal_stop(handle);
970                 goto retry_grab;
971         }
972         wait_on_page_writeback(page);
973
974         if (ext4_should_dioread_nolock(inode))
975                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
976         else
977                 ret = __block_write_begin(page, pos, len, ext4_get_block);
978
979         if (!ret && ext4_should_journal_data(inode)) {
980                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
981                                              from, to, NULL,
982                                              do_journal_get_write_access);
983         }
984
985         if (ret) {
986                 unlock_page(page);
987                 /*
988                  * __block_write_begin may have instantiated a few blocks
989                  * outside i_size.  Trim these off again. Don't need
990                  * i_size_read because we hold i_mutex.
991                  *
992                  * Add inode to orphan list in case we crash before
993                  * truncate finishes
994                  */
995                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
996                         ext4_orphan_add(handle, inode);
997
998                 ext4_journal_stop(handle);
999                 if (pos + len > inode->i_size) {
1000                         ext4_truncate_failed_write(inode);
1001                         /*
1002                          * If truncate failed early the inode might
1003                          * still be on the orphan list; we need to
1004                          * make sure the inode is removed from the
1005                          * orphan list in that case.
1006                          */
1007                         if (inode->i_nlink)
1008                                 ext4_orphan_del(NULL, inode);
1009                 }
1010
1011                 if (ret == -ENOSPC &&
1012                     ext4_should_retry_alloc(inode->i_sb, &retries))
1013                         goto retry_journal;
1014                 page_cache_release(page);
1015                 return ret;
1016         }
1017         *pagep = page;
1018         return ret;
1019 }
1020
1021 /* For write_end() in data=journal mode */
1022 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1023 {
1024         int ret;
1025         if (!buffer_mapped(bh) || buffer_freed(bh))
1026                 return 0;
1027         set_buffer_uptodate(bh);
1028         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1029         clear_buffer_meta(bh);
1030         clear_buffer_prio(bh);
1031         return ret;
1032 }
1033
1034 /*
1035  * We need to pick up the new inode size which generic_commit_write gave us
1036  * `file' can be NULL - eg, when called from page_symlink().
1037  *
1038  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1039  * buffers are managed internally.
1040  */
1041 static int ext4_write_end(struct file *file,
1042                           struct address_space *mapping,
1043                           loff_t pos, unsigned len, unsigned copied,
1044                           struct page *page, void *fsdata)
1045 {
1046         handle_t *handle = ext4_journal_current_handle();
1047         struct inode *inode = mapping->host;
1048         int ret = 0, ret2;
1049         int i_size_changed = 0;
1050
1051         trace_ext4_write_end(inode, pos, len, copied);
1052         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1053                 ret = ext4_jbd2_file_inode(handle, inode);
1054                 if (ret) {
1055                         unlock_page(page);
1056                         page_cache_release(page);
1057                         goto errout;
1058                 }
1059         }
1060
1061         if (ext4_has_inline_data(inode)) {
1062                 ret = ext4_write_inline_data_end(inode, pos, len,
1063                                                  copied, page);
1064                 if (ret < 0)
1065                         goto errout;
1066                 copied = ret;
1067         } else
1068                 copied = block_write_end(file, mapping, pos,
1069                                          len, copied, page, fsdata);
1070
1071         /*
1072          * No need to use i_size_read() here, the i_size
1073          * cannot change under us because we hole i_mutex.
1074          *
1075          * But it's important to update i_size while still holding page lock:
1076          * page writeout could otherwise come in and zero beyond i_size.
1077          */
1078         if (pos + copied > inode->i_size) {
1079                 i_size_write(inode, pos + copied);
1080                 i_size_changed = 1;
1081         }
1082
1083         if (pos + copied > EXT4_I(inode)->i_disksize) {
1084                 /* We need to mark inode dirty even if
1085                  * new_i_size is less that inode->i_size
1086                  * but greater than i_disksize. (hint delalloc)
1087                  */
1088                 ext4_update_i_disksize(inode, (pos + copied));
1089                 i_size_changed = 1;
1090         }
1091         unlock_page(page);
1092         page_cache_release(page);
1093
1094         /*
1095          * Don't mark the inode dirty under page lock. First, it unnecessarily
1096          * makes the holding time of page lock longer. Second, it forces lock
1097          * ordering of page lock and transaction start for journaling
1098          * filesystems.
1099          */
1100         if (i_size_changed)
1101                 ext4_mark_inode_dirty(handle, inode);
1102
1103         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1104                 /* if we have allocated more blocks and copied
1105                  * less. We will have blocks allocated outside
1106                  * inode->i_size. So truncate them
1107                  */
1108                 ext4_orphan_add(handle, inode);
1109 errout:
1110         ret2 = ext4_journal_stop(handle);
1111         if (!ret)
1112                 ret = ret2;
1113
1114         if (pos + len > inode->i_size) {
1115                 ext4_truncate_failed_write(inode);
1116                 /*
1117                  * If truncate failed early the inode might still be
1118                  * on the orphan list; we need to make sure the inode
1119                  * is removed from the orphan list in that case.
1120                  */
1121                 if (inode->i_nlink)
1122                         ext4_orphan_del(NULL, inode);
1123         }
1124
1125         return ret ? ret : copied;
1126 }
1127
1128 static int ext4_journalled_write_end(struct file *file,
1129                                      struct address_space *mapping,
1130                                      loff_t pos, unsigned len, unsigned copied,
1131                                      struct page *page, void *fsdata)
1132 {
1133         handle_t *handle = ext4_journal_current_handle();
1134         struct inode *inode = mapping->host;
1135         int ret = 0, ret2;
1136         int partial = 0;
1137         unsigned from, to;
1138         loff_t new_i_size;
1139
1140         trace_ext4_journalled_write_end(inode, pos, len, copied);
1141         from = pos & (PAGE_CACHE_SIZE - 1);
1142         to = from + len;
1143
1144         BUG_ON(!ext4_handle_valid(handle));
1145
1146         if (ext4_has_inline_data(inode))
1147                 copied = ext4_write_inline_data_end(inode, pos, len,
1148                                                     copied, page);
1149         else {
1150                 if (copied < len) {
1151                         if (!PageUptodate(page))
1152                                 copied = 0;
1153                         page_zero_new_buffers(page, from+copied, to);
1154                 }
1155
1156                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1157                                              to, &partial, write_end_fn);
1158                 if (!partial)
1159                         SetPageUptodate(page);
1160         }
1161         new_i_size = pos + copied;
1162         if (new_i_size > inode->i_size)
1163                 i_size_write(inode, pos+copied);
1164         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1165         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1166         if (new_i_size > EXT4_I(inode)->i_disksize) {
1167                 ext4_update_i_disksize(inode, new_i_size);
1168                 ret2 = ext4_mark_inode_dirty(handle, inode);
1169                 if (!ret)
1170                         ret = ret2;
1171         }
1172
1173         unlock_page(page);
1174         page_cache_release(page);
1175         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1176                 /* if we have allocated more blocks and copied
1177                  * less. We will have blocks allocated outside
1178                  * inode->i_size. So truncate them
1179                  */
1180                 ext4_orphan_add(handle, inode);
1181
1182         ret2 = ext4_journal_stop(handle);
1183         if (!ret)
1184                 ret = ret2;
1185         if (pos + len > inode->i_size) {
1186                 ext4_truncate_failed_write(inode);
1187                 /*
1188                  * If truncate failed early the inode might still be
1189                  * on the orphan list; we need to make sure the inode
1190                  * is removed from the orphan list in that case.
1191                  */
1192                 if (inode->i_nlink)
1193                         ext4_orphan_del(NULL, inode);
1194         }
1195
1196         return ret ? ret : copied;
1197 }
1198
1199 /*
1200  * Reserve a metadata for a single block located at lblock
1201  */
1202 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1203 {
1204         int retries = 0;
1205         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1206         struct ext4_inode_info *ei = EXT4_I(inode);
1207         unsigned int md_needed;
1208         ext4_lblk_t save_last_lblock;
1209         int save_len;
1210
1211         /*
1212          * recalculate the amount of metadata blocks to reserve
1213          * in order to allocate nrblocks
1214          * worse case is one extent per block
1215          */
1216 repeat:
1217         spin_lock(&ei->i_block_reservation_lock);
1218         /*
1219          * ext4_calc_metadata_amount() has side effects, which we have
1220          * to be prepared undo if we fail to claim space.
1221          */
1222         save_len = ei->i_da_metadata_calc_len;
1223         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1224         md_needed = EXT4_NUM_B2C(sbi,
1225                                  ext4_calc_metadata_amount(inode, lblock));
1226         trace_ext4_da_reserve_space(inode, md_needed);
1227
1228         /*
1229          * We do still charge estimated metadata to the sb though;
1230          * we cannot afford to run out of free blocks.
1231          */
1232         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1233                 ei->i_da_metadata_calc_len = save_len;
1234                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1235                 spin_unlock(&ei->i_block_reservation_lock);
1236                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1237                         cond_resched();
1238                         goto repeat;
1239                 }
1240                 return -ENOSPC;
1241         }
1242         ei->i_reserved_meta_blocks += md_needed;
1243         spin_unlock(&ei->i_block_reservation_lock);
1244
1245         return 0;       /* success */
1246 }
1247
1248 /*
1249  * Reserve a single cluster located at lblock
1250  */
1251 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1252 {
1253         int retries = 0;
1254         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1255         struct ext4_inode_info *ei = EXT4_I(inode);
1256         unsigned int md_needed;
1257         int ret;
1258         ext4_lblk_t save_last_lblock;
1259         int save_len;
1260
1261         /*
1262          * We will charge metadata quota at writeout time; this saves
1263          * us from metadata over-estimation, though we may go over by
1264          * a small amount in the end.  Here we just reserve for data.
1265          */
1266         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1267         if (ret)
1268                 return ret;
1269
1270         /*
1271          * recalculate the amount of metadata blocks to reserve
1272          * in order to allocate nrblocks
1273          * worse case is one extent per block
1274          */
1275 repeat:
1276         spin_lock(&ei->i_block_reservation_lock);
1277         /*
1278          * ext4_calc_metadata_amount() has side effects, which we have
1279          * to be prepared undo if we fail to claim space.
1280          */
1281         save_len = ei->i_da_metadata_calc_len;
1282         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1283         md_needed = EXT4_NUM_B2C(sbi,
1284                                  ext4_calc_metadata_amount(inode, lblock));
1285         trace_ext4_da_reserve_space(inode, md_needed);
1286
1287         /*
1288          * We do still charge estimated metadata to the sb though;
1289          * we cannot afford to run out of free blocks.
1290          */
1291         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1292                 ei->i_da_metadata_calc_len = save_len;
1293                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1294                 spin_unlock(&ei->i_block_reservation_lock);
1295                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1296                         cond_resched();
1297                         goto repeat;
1298                 }
1299                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1300                 return -ENOSPC;
1301         }
1302         ei->i_reserved_data_blocks++;
1303         ei->i_reserved_meta_blocks += md_needed;
1304         spin_unlock(&ei->i_block_reservation_lock);
1305
1306         return 0;       /* success */
1307 }
1308
1309 static void ext4_da_release_space(struct inode *inode, int to_free)
1310 {
1311         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1312         struct ext4_inode_info *ei = EXT4_I(inode);
1313
1314         if (!to_free)
1315                 return;         /* Nothing to release, exit */
1316
1317         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1318
1319         trace_ext4_da_release_space(inode, to_free);
1320         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1321                 /*
1322                  * if there aren't enough reserved blocks, then the
1323                  * counter is messed up somewhere.  Since this
1324                  * function is called from invalidate page, it's
1325                  * harmless to return without any action.
1326                  */
1327                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1328                          "ino %lu, to_free %d with only %d reserved "
1329                          "data blocks", inode->i_ino, to_free,
1330                          ei->i_reserved_data_blocks);
1331                 WARN_ON(1);
1332                 to_free = ei->i_reserved_data_blocks;
1333         }
1334         ei->i_reserved_data_blocks -= to_free;
1335
1336         if (ei->i_reserved_data_blocks == 0) {
1337                 /*
1338                  * We can release all of the reserved metadata blocks
1339                  * only when we have written all of the delayed
1340                  * allocation blocks.
1341                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1342                  * i_reserved_data_blocks, etc. refer to number of clusters.
1343                  */
1344                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1345                                    ei->i_reserved_meta_blocks);
1346                 ei->i_reserved_meta_blocks = 0;
1347                 ei->i_da_metadata_calc_len = 0;
1348         }
1349
1350         /* update fs dirty data blocks counter */
1351         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1352
1353         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1354
1355         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1356 }
1357
1358 static void ext4_da_page_release_reservation(struct page *page,
1359                                              unsigned int offset,
1360                                              unsigned int length)
1361 {
1362         int to_release = 0;
1363         struct buffer_head *head, *bh;
1364         unsigned int curr_off = 0;
1365         struct inode *inode = page->mapping->host;
1366         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1367         unsigned int stop = offset + length;
1368         int num_clusters;
1369         ext4_fsblk_t lblk;
1370
1371         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1372
1373         head = page_buffers(page);
1374         bh = head;
1375         do {
1376                 unsigned int next_off = curr_off + bh->b_size;
1377
1378                 if (next_off > stop)
1379                         break;
1380
1381                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1382                         to_release++;
1383                         clear_buffer_delay(bh);
1384                 }
1385                 curr_off = next_off;
1386         } while ((bh = bh->b_this_page) != head);
1387
1388         if (to_release) {
1389                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1390                 ext4_es_remove_extent(inode, lblk, to_release);
1391         }
1392
1393         /* If we have released all the blocks belonging to a cluster, then we
1394          * need to release the reserved space for that cluster. */
1395         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1396         while (num_clusters > 0) {
1397                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1398                         ((num_clusters - 1) << sbi->s_cluster_bits);
1399                 if (sbi->s_cluster_ratio == 1 ||
1400                     !ext4_find_delalloc_cluster(inode, lblk))
1401                         ext4_da_release_space(inode, 1);
1402
1403                 num_clusters--;
1404         }
1405 }
1406
1407 /*
1408  * Delayed allocation stuff
1409  */
1410
1411 struct mpage_da_data {
1412         struct inode *inode;
1413         struct writeback_control *wbc;
1414
1415         pgoff_t first_page;     /* The first page to write */
1416         pgoff_t next_page;      /* Current page to examine */
1417         pgoff_t last_page;      /* Last page to examine */
1418         /*
1419          * Extent to map - this can be after first_page because that can be
1420          * fully mapped. We somewhat abuse m_flags to store whether the extent
1421          * is delalloc or unwritten.
1422          */
1423         struct ext4_map_blocks map;
1424         struct ext4_io_submit io_submit;        /* IO submission data */
1425 };
1426
1427 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1428                                        bool invalidate)
1429 {
1430         int nr_pages, i;
1431         pgoff_t index, end;
1432         struct pagevec pvec;
1433         struct inode *inode = mpd->inode;
1434         struct address_space *mapping = inode->i_mapping;
1435
1436         /* This is necessary when next_page == 0. */
1437         if (mpd->first_page >= mpd->next_page)
1438                 return;
1439
1440         index = mpd->first_page;
1441         end   = mpd->next_page - 1;
1442         if (invalidate) {
1443                 ext4_lblk_t start, last;
1444                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1446                 ext4_es_remove_extent(inode, start, last - start + 1);
1447         }
1448
1449         pagevec_init(&pvec, 0);
1450         while (index <= end) {
1451                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1452                 if (nr_pages == 0)
1453                         break;
1454                 for (i = 0; i < nr_pages; i++) {
1455                         struct page *page = pvec.pages[i];
1456                         if (page->index > end)
1457                                 break;
1458                         BUG_ON(!PageLocked(page));
1459                         BUG_ON(PageWriteback(page));
1460                         if (invalidate) {
1461                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1462                                 ClearPageUptodate(page);
1463                         }
1464                         unlock_page(page);
1465                 }
1466                 index = pvec.pages[nr_pages - 1]->index + 1;
1467                 pagevec_release(&pvec);
1468         }
1469 }
1470
1471 static void ext4_print_free_blocks(struct inode *inode)
1472 {
1473         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474         struct super_block *sb = inode->i_sb;
1475         struct ext4_inode_info *ei = EXT4_I(inode);
1476
1477         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1478                EXT4_C2B(EXT4_SB(inode->i_sb),
1479                         ext4_count_free_clusters(sb)));
1480         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1481         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1482                (long long) EXT4_C2B(EXT4_SB(sb),
1483                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1484         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1485                (long long) EXT4_C2B(EXT4_SB(sb),
1486                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1487         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1488         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1489                  ei->i_reserved_data_blocks);
1490         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1491                ei->i_reserved_meta_blocks);
1492         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1493                ei->i_allocated_meta_blocks);
1494         return;
1495 }
1496
1497 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1498 {
1499         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1500 }
1501
1502 /*
1503  * This function is grabs code from the very beginning of
1504  * ext4_map_blocks, but assumes that the caller is from delayed write
1505  * time. This function looks up the requested blocks and sets the
1506  * buffer delay bit under the protection of i_data_sem.
1507  */
1508 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1509                               struct ext4_map_blocks *map,
1510                               struct buffer_head *bh)
1511 {
1512         struct extent_status es;
1513         int retval;
1514         sector_t invalid_block = ~((sector_t) 0xffff);
1515 #ifdef ES_AGGRESSIVE_TEST
1516         struct ext4_map_blocks orig_map;
1517
1518         memcpy(&orig_map, map, sizeof(*map));
1519 #endif
1520
1521         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1522                 invalid_block = ~0;
1523
1524         map->m_flags = 0;
1525         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1526                   "logical block %lu\n", inode->i_ino, map->m_len,
1527                   (unsigned long) map->m_lblk);
1528
1529         /* Lookup extent status tree firstly */
1530         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1531                 ext4_es_lru_add(inode);
1532                 if (ext4_es_is_hole(&es)) {
1533                         retval = 0;
1534                         down_read((&EXT4_I(inode)->i_data_sem));
1535                         goto add_delayed;
1536                 }
1537
1538                 /*
1539                  * Delayed extent could be allocated by fallocate.
1540                  * So we need to check it.
1541                  */
1542                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1543                         map_bh(bh, inode->i_sb, invalid_block);
1544                         set_buffer_new(bh);
1545                         set_buffer_delay(bh);
1546                         return 0;
1547                 }
1548
1549                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1550                 retval = es.es_len - (iblock - es.es_lblk);
1551                 if (retval > map->m_len)
1552                         retval = map->m_len;
1553                 map->m_len = retval;
1554                 if (ext4_es_is_written(&es))
1555                         map->m_flags |= EXT4_MAP_MAPPED;
1556                 else if (ext4_es_is_unwritten(&es))
1557                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1558                 else
1559                         BUG_ON(1);
1560
1561 #ifdef ES_AGGRESSIVE_TEST
1562                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1563 #endif
1564                 return retval;
1565         }
1566
1567         /*
1568          * Try to see if we can get the block without requesting a new
1569          * file system block.
1570          */
1571         down_read((&EXT4_I(inode)->i_data_sem));
1572         if (ext4_has_inline_data(inode)) {
1573                 /*
1574                  * We will soon create blocks for this page, and let
1575                  * us pretend as if the blocks aren't allocated yet.
1576                  * In case of clusters, we have to handle the work
1577                  * of mapping from cluster so that the reserved space
1578                  * is calculated properly.
1579                  */
1580                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1581                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1582                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1583                 retval = 0;
1584         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1585                 retval = ext4_ext_map_blocks(NULL, inode, map,
1586                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1587         else
1588                 retval = ext4_ind_map_blocks(NULL, inode, map,
1589                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1590
1591 add_delayed:
1592         if (retval == 0) {
1593                 int ret;
1594                 /*
1595                  * XXX: __block_prepare_write() unmaps passed block,
1596                  * is it OK?
1597                  */
1598                 /*
1599                  * If the block was allocated from previously allocated cluster,
1600                  * then we don't need to reserve it again. However we still need
1601                  * to reserve metadata for every block we're going to write.
1602                  */
1603                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1604                         ret = ext4_da_reserve_space(inode, iblock);
1605                         if (ret) {
1606                                 /* not enough space to reserve */
1607                                 retval = ret;
1608                                 goto out_unlock;
1609                         }
1610                 } else {
1611                         ret = ext4_da_reserve_metadata(inode, iblock);
1612                         if (ret) {
1613                                 /* not enough space to reserve */
1614                                 retval = ret;
1615                                 goto out_unlock;
1616                         }
1617                 }
1618
1619                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1620                                             ~0, EXTENT_STATUS_DELAYED);
1621                 if (ret) {
1622                         retval = ret;
1623                         goto out_unlock;
1624                 }
1625
1626                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1627                  * and it should not appear on the bh->b_state.
1628                  */
1629                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1630
1631                 map_bh(bh, inode->i_sb, invalid_block);
1632                 set_buffer_new(bh);
1633                 set_buffer_delay(bh);
1634         } else if (retval > 0) {
1635                 int ret;
1636                 unsigned int status;
1637
1638                 if (unlikely(retval != map->m_len)) {
1639                         ext4_warning(inode->i_sb,
1640                                      "ES len assertion failed for inode "
1641                                      "%lu: retval %d != map->m_len %d",
1642                                      inode->i_ino, retval, map->m_len);
1643                         WARN_ON(1);
1644                 }
1645
1646                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1647                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1648                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1649                                             map->m_pblk, status);
1650                 if (ret != 0)
1651                         retval = ret;
1652         }
1653
1654 out_unlock:
1655         up_read((&EXT4_I(inode)->i_data_sem));
1656
1657         return retval;
1658 }
1659
1660 /*
1661  * This is a special get_blocks_t callback which is used by
1662  * ext4_da_write_begin().  It will either return mapped block or
1663  * reserve space for a single block.
1664  *
1665  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1666  * We also have b_blocknr = -1 and b_bdev initialized properly
1667  *
1668  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1669  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1670  * initialized properly.
1671  */
1672 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1673                            struct buffer_head *bh, int create)
1674 {
1675         struct ext4_map_blocks map;
1676         int ret = 0;
1677
1678         BUG_ON(create == 0);
1679         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1680
1681         map.m_lblk = iblock;
1682         map.m_len = 1;
1683
1684         /*
1685          * first, we need to know whether the block is allocated already
1686          * preallocated blocks are unmapped but should treated
1687          * the same as allocated blocks.
1688          */
1689         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1690         if (ret <= 0)
1691                 return ret;
1692
1693         map_bh(bh, inode->i_sb, map.m_pblk);
1694         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1695
1696         if (buffer_unwritten(bh)) {
1697                 /* A delayed write to unwritten bh should be marked
1698                  * new and mapped.  Mapped ensures that we don't do
1699                  * get_block multiple times when we write to the same
1700                  * offset and new ensures that we do proper zero out
1701                  * for partial write.
1702                  */
1703                 set_buffer_new(bh);
1704                 set_buffer_mapped(bh);
1705         }
1706         return 0;
1707 }
1708
1709 static int bget_one(handle_t *handle, struct buffer_head *bh)
1710 {
1711         get_bh(bh);
1712         return 0;
1713 }
1714
1715 static int bput_one(handle_t *handle, struct buffer_head *bh)
1716 {
1717         put_bh(bh);
1718         return 0;
1719 }
1720
1721 static int __ext4_journalled_writepage(struct page *page,
1722                                        unsigned int len)
1723 {
1724         struct address_space *mapping = page->mapping;
1725         struct inode *inode = mapping->host;
1726         struct buffer_head *page_bufs = NULL;
1727         handle_t *handle = NULL;
1728         int ret = 0, err = 0;
1729         int inline_data = ext4_has_inline_data(inode);
1730         struct buffer_head *inode_bh = NULL;
1731
1732         ClearPageChecked(page);
1733
1734         if (inline_data) {
1735                 BUG_ON(page->index != 0);
1736                 BUG_ON(len > ext4_get_max_inline_size(inode));
1737                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1738                 if (inode_bh == NULL)
1739                         goto out;
1740         } else {
1741                 page_bufs = page_buffers(page);
1742                 if (!page_bufs) {
1743                         BUG();
1744                         goto out;
1745                 }
1746                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1747                                        NULL, bget_one);
1748         }
1749         /* As soon as we unlock the page, it can go away, but we have
1750          * references to buffers so we are safe */
1751         unlock_page(page);
1752
1753         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1754                                     ext4_writepage_trans_blocks(inode));
1755         if (IS_ERR(handle)) {
1756                 ret = PTR_ERR(handle);
1757                 goto out;
1758         }
1759
1760         BUG_ON(!ext4_handle_valid(handle));
1761
1762         if (inline_data) {
1763                 ret = ext4_journal_get_write_access(handle, inode_bh);
1764
1765                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1766
1767         } else {
1768                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1769                                              do_journal_get_write_access);
1770
1771                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1772                                              write_end_fn);
1773         }
1774         if (ret == 0)
1775                 ret = err;
1776         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1777         err = ext4_journal_stop(handle);
1778         if (!ret)
1779                 ret = err;
1780
1781         if (!ext4_has_inline_data(inode))
1782                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1783                                        NULL, bput_one);
1784         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1785 out:
1786         brelse(inode_bh);
1787         return ret;
1788 }
1789
1790 /*
1791  * Note that we don't need to start a transaction unless we're journaling data
1792  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1793  * need to file the inode to the transaction's list in ordered mode because if
1794  * we are writing back data added by write(), the inode is already there and if
1795  * we are writing back data modified via mmap(), no one guarantees in which
1796  * transaction the data will hit the disk. In case we are journaling data, we
1797  * cannot start transaction directly because transaction start ranks above page
1798  * lock so we have to do some magic.
1799  *
1800  * This function can get called via...
1801  *   - ext4_writepages after taking page lock (have journal handle)
1802  *   - journal_submit_inode_data_buffers (no journal handle)
1803  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1804  *   - grab_page_cache when doing write_begin (have journal handle)
1805  *
1806  * We don't do any block allocation in this function. If we have page with
1807  * multiple blocks we need to write those buffer_heads that are mapped. This
1808  * is important for mmaped based write. So if we do with blocksize 1K
1809  * truncate(f, 1024);
1810  * a = mmap(f, 0, 4096);
1811  * a[0] = 'a';
1812  * truncate(f, 4096);
1813  * we have in the page first buffer_head mapped via page_mkwrite call back
1814  * but other buffer_heads would be unmapped but dirty (dirty done via the
1815  * do_wp_page). So writepage should write the first block. If we modify
1816  * the mmap area beyond 1024 we will again get a page_fault and the
1817  * page_mkwrite callback will do the block allocation and mark the
1818  * buffer_heads mapped.
1819  *
1820  * We redirty the page if we have any buffer_heads that is either delay or
1821  * unwritten in the page.
1822  *
1823  * We can get recursively called as show below.
1824  *
1825  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1826  *              ext4_writepage()
1827  *
1828  * But since we don't do any block allocation we should not deadlock.
1829  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1830  */
1831 static int ext4_writepage(struct page *page,
1832                           struct writeback_control *wbc)
1833 {
1834         int ret = 0;
1835         loff_t size;
1836         unsigned int len;
1837         struct buffer_head *page_bufs = NULL;
1838         struct inode *inode = page->mapping->host;
1839         struct ext4_io_submit io_submit;
1840
1841         trace_ext4_writepage(page);
1842         size = i_size_read(inode);
1843         if (page->index == size >> PAGE_CACHE_SHIFT)
1844                 len = size & ~PAGE_CACHE_MASK;
1845         else
1846                 len = PAGE_CACHE_SIZE;
1847
1848         page_bufs = page_buffers(page);
1849         /*
1850          * We cannot do block allocation or other extent handling in this
1851          * function. If there are buffers needing that, we have to redirty
1852          * the page. But we may reach here when we do a journal commit via
1853          * journal_submit_inode_data_buffers() and in that case we must write
1854          * allocated buffers to achieve data=ordered mode guarantees.
1855          */
1856         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1857                                    ext4_bh_delay_or_unwritten)) {
1858                 redirty_page_for_writepage(wbc, page);
1859                 if (current->flags & PF_MEMALLOC) {
1860                         /*
1861                          * For memory cleaning there's no point in writing only
1862                          * some buffers. So just bail out. Warn if we came here
1863                          * from direct reclaim.
1864                          */
1865                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1866                                                         == PF_MEMALLOC);
1867                         unlock_page(page);
1868                         return 0;
1869                 }
1870         }
1871
1872         if (PageChecked(page) && ext4_should_journal_data(inode))
1873                 /*
1874                  * It's mmapped pagecache.  Add buffers and journal it.  There
1875                  * doesn't seem much point in redirtying the page here.
1876                  */
1877                 return __ext4_journalled_writepage(page, len);
1878
1879         ext4_io_submit_init(&io_submit, wbc);
1880         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1881         if (!io_submit.io_end) {
1882                 redirty_page_for_writepage(wbc, page);
1883                 unlock_page(page);
1884                 return -ENOMEM;
1885         }
1886         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1887         ext4_io_submit(&io_submit);
1888         /* Drop io_end reference we got from init */
1889         ext4_put_io_end_defer(io_submit.io_end);
1890         return ret;
1891 }
1892
1893 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1894 {
1895         int len;
1896         loff_t size = i_size_read(mpd->inode);
1897         int err;
1898
1899         BUG_ON(page->index != mpd->first_page);
1900         if (page->index == size >> PAGE_CACHE_SHIFT)
1901                 len = size & ~PAGE_CACHE_MASK;
1902         else
1903                 len = PAGE_CACHE_SIZE;
1904         clear_page_dirty_for_io(page);
1905         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1906         if (!err)
1907                 mpd->wbc->nr_to_write--;
1908         mpd->first_page++;
1909
1910         return err;
1911 }
1912
1913 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1914
1915 /*
1916  * mballoc gives us at most this number of blocks...
1917  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1918  * The rest of mballoc seems to handle chunks upto full group size.
1919  */
1920 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1921
1922 /*
1923  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1924  *
1925  * @mpd - extent of blocks
1926  * @lblk - logical number of the block in the file
1927  * @bh - buffer head we want to add to the extent
1928  *
1929  * The function is used to collect contig. blocks in the same state. If the
1930  * buffer doesn't require mapping for writeback and we haven't started the
1931  * extent of buffers to map yet, the function returns 'true' immediately - the
1932  * caller can write the buffer right away. Otherwise the function returns true
1933  * if the block has been added to the extent, false if the block couldn't be
1934  * added.
1935  */
1936 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1937                                    struct buffer_head *bh)
1938 {
1939         struct ext4_map_blocks *map = &mpd->map;
1940
1941         /* Buffer that doesn't need mapping for writeback? */
1942         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1943             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1944                 /* So far no extent to map => we write the buffer right away */
1945                 if (map->m_len == 0)
1946                         return true;
1947                 return false;
1948         }
1949
1950         /* First block in the extent? */
1951         if (map->m_len == 0) {
1952                 map->m_lblk = lblk;
1953                 map->m_len = 1;
1954                 map->m_flags = bh->b_state & BH_FLAGS;
1955                 return true;
1956         }
1957
1958         /* Don't go larger than mballoc is willing to allocate */
1959         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1960                 return false;
1961
1962         /* Can we merge the block to our big extent? */
1963         if (lblk == map->m_lblk + map->m_len &&
1964             (bh->b_state & BH_FLAGS) == map->m_flags) {
1965                 map->m_len++;
1966                 return true;
1967         }
1968         return false;
1969 }
1970
1971 /*
1972  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1973  *
1974  * @mpd - extent of blocks for mapping
1975  * @head - the first buffer in the page
1976  * @bh - buffer we should start processing from
1977  * @lblk - logical number of the block in the file corresponding to @bh
1978  *
1979  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1980  * the page for IO if all buffers in this page were mapped and there's no
1981  * accumulated extent of buffers to map or add buffers in the page to the
1982  * extent of buffers to map. The function returns 1 if the caller can continue
1983  * by processing the next page, 0 if it should stop adding buffers to the
1984  * extent to map because we cannot extend it anymore. It can also return value
1985  * < 0 in case of error during IO submission.
1986  */
1987 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1988                                    struct buffer_head *head,
1989                                    struct buffer_head *bh,
1990                                    ext4_lblk_t lblk)
1991 {
1992         struct inode *inode = mpd->inode;
1993         int err;
1994         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1995                                                         >> inode->i_blkbits;
1996
1997         do {
1998                 BUG_ON(buffer_locked(bh));
1999
2000                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2001                         /* Found extent to map? */
2002                         if (mpd->map.m_len)
2003                                 return 0;
2004                         /* Everything mapped so far and we hit EOF */
2005                         break;
2006                 }
2007         } while (lblk++, (bh = bh->b_this_page) != head);
2008         /* So far everything mapped? Submit the page for IO. */
2009         if (mpd->map.m_len == 0) {
2010                 err = mpage_submit_page(mpd, head->b_page);
2011                 if (err < 0)
2012                         return err;
2013         }
2014         return lblk < blocks;
2015 }
2016
2017 /*
2018  * mpage_map_buffers - update buffers corresponding to changed extent and
2019  *                     submit fully mapped pages for IO
2020  *
2021  * @mpd - description of extent to map, on return next extent to map
2022  *
2023  * Scan buffers corresponding to changed extent (we expect corresponding pages
2024  * to be already locked) and update buffer state according to new extent state.
2025  * We map delalloc buffers to their physical location, clear unwritten bits,
2026  * and mark buffers as uninit when we perform writes to uninitialized extents
2027  * and do extent conversion after IO is finished. If the last page is not fully
2028  * mapped, we update @map to the next extent in the last page that needs
2029  * mapping. Otherwise we submit the page for IO.
2030  */
2031 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2032 {
2033         struct pagevec pvec;
2034         int nr_pages, i;
2035         struct inode *inode = mpd->inode;
2036         struct buffer_head *head, *bh;
2037         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2038         pgoff_t start, end;
2039         ext4_lblk_t lblk;
2040         sector_t pblock;
2041         int err;
2042
2043         start = mpd->map.m_lblk >> bpp_bits;
2044         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2045         lblk = start << bpp_bits;
2046         pblock = mpd->map.m_pblk;
2047
2048         pagevec_init(&pvec, 0);
2049         while (start <= end) {
2050                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2051                                           PAGEVEC_SIZE);
2052                 if (nr_pages == 0)
2053                         break;
2054                 for (i = 0; i < nr_pages; i++) {
2055                         struct page *page = pvec.pages[i];
2056
2057                         if (page->index > end)
2058                                 break;
2059                         /* Upto 'end' pages must be contiguous */
2060                         BUG_ON(page->index != start);
2061                         bh = head = page_buffers(page);
2062                         do {
2063                                 if (lblk < mpd->map.m_lblk)
2064                                         continue;
2065                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2066                                         /*
2067                                          * Buffer after end of mapped extent.
2068                                          * Find next buffer in the page to map.
2069                                          */
2070                                         mpd->map.m_len = 0;
2071                                         mpd->map.m_flags = 0;
2072                                         /*
2073                                          * FIXME: If dioread_nolock supports
2074                                          * blocksize < pagesize, we need to make
2075                                          * sure we add size mapped so far to
2076                                          * io_end->size as the following call
2077                                          * can submit the page for IO.
2078                                          */
2079                                         err = mpage_process_page_bufs(mpd, head,
2080                                                                       bh, lblk);
2081                                         pagevec_release(&pvec);
2082                                         if (err > 0)
2083                                                 err = 0;
2084                                         return err;
2085                                 }
2086                                 if (buffer_delay(bh)) {
2087                                         clear_buffer_delay(bh);
2088                                         bh->b_blocknr = pblock++;
2089                                 }
2090                                 clear_buffer_unwritten(bh);
2091                         } while (lblk++, (bh = bh->b_this_page) != head);
2092
2093                         /*
2094                          * FIXME: This is going to break if dioread_nolock
2095                          * supports blocksize < pagesize as we will try to
2096                          * convert potentially unmapped parts of inode.
2097                          */
2098                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2099                         /* Page fully mapped - let IO run! */
2100                         err = mpage_submit_page(mpd, page);
2101                         if (err < 0) {
2102                                 pagevec_release(&pvec);
2103                                 return err;
2104                         }
2105                         start++;
2106                 }
2107                 pagevec_release(&pvec);
2108         }
2109         /* Extent fully mapped and matches with page boundary. We are done. */
2110         mpd->map.m_len = 0;
2111         mpd->map.m_flags = 0;
2112         return 0;
2113 }
2114
2115 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2116 {
2117         struct inode *inode = mpd->inode;
2118         struct ext4_map_blocks *map = &mpd->map;
2119         int get_blocks_flags;
2120         int err;
2121
2122         trace_ext4_da_write_pages_extent(inode, map);
2123         /*
2124          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2125          * to convert an uninitialized extent to be initialized (in the case
2126          * where we have written into one or more preallocated blocks).  It is
2127          * possible that we're going to need more metadata blocks than
2128          * previously reserved. However we must not fail because we're in
2129          * writeback and there is nothing we can do about it so it might result
2130          * in data loss.  So use reserved blocks to allocate metadata if
2131          * possible.
2132          *
2133          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2134          * in question are delalloc blocks.  This affects functions in many
2135          * different parts of the allocation call path.  This flag exists
2136          * primarily because we don't want to change *many* call functions, so
2137          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2138          * once the inode's allocation semaphore is taken.
2139          */
2140         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2141                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2142         if (ext4_should_dioread_nolock(inode))
2143                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2144         if (map->m_flags & (1 << BH_Delay))
2145                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2146
2147         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2148         if (err < 0)
2149                 return err;
2150         if (map->m_flags & EXT4_MAP_UNINIT) {
2151                 if (!mpd->io_submit.io_end->handle &&
2152                     ext4_handle_valid(handle)) {
2153                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2154                         handle->h_rsv_handle = NULL;
2155                 }
2156                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2157         }
2158
2159         BUG_ON(map->m_len == 0);
2160         if (map->m_flags & EXT4_MAP_NEW) {
2161                 struct block_device *bdev = inode->i_sb->s_bdev;
2162                 int i;
2163
2164                 for (i = 0; i < map->m_len; i++)
2165                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2166         }
2167         return 0;
2168 }
2169
2170 /*
2171  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2172  *                               mpd->len and submit pages underlying it for IO
2173  *
2174  * @handle - handle for journal operations
2175  * @mpd - extent to map
2176  *
2177  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2178  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2179  * them to initialized or split the described range from larger unwritten
2180  * extent. Note that we need not map all the described range since allocation
2181  * can return less blocks or the range is covered by more unwritten extents. We
2182  * cannot map more because we are limited by reserved transaction credits. On
2183  * the other hand we always make sure that the last touched page is fully
2184  * mapped so that it can be written out (and thus forward progress is
2185  * guaranteed). After mapping we submit all mapped pages for IO.
2186  */
2187 static int mpage_map_and_submit_extent(handle_t *handle,
2188                                        struct mpage_da_data *mpd,
2189                                        bool *give_up_on_write)
2190 {
2191         struct inode *inode = mpd->inode;
2192         struct ext4_map_blocks *map = &mpd->map;
2193         int err;
2194         loff_t disksize;
2195
2196         mpd->io_submit.io_end->offset =
2197                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2198         do {
2199                 err = mpage_map_one_extent(handle, mpd);
2200                 if (err < 0) {
2201                         struct super_block *sb = inode->i_sb;
2202
2203                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2204                                 goto invalidate_dirty_pages;
2205                         /*
2206                          * Let the uper layers retry transient errors.
2207                          * In the case of ENOSPC, if ext4_count_free_blocks()
2208                          * is non-zero, a commit should free up blocks.
2209                          */
2210                         if ((err == -ENOMEM) ||
2211                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2212                                 return err;
2213                         ext4_msg(sb, KERN_CRIT,
2214                                  "Delayed block allocation failed for "
2215                                  "inode %lu at logical offset %llu with"
2216                                  " max blocks %u with error %d",
2217                                  inode->i_ino,
2218                                  (unsigned long long)map->m_lblk,
2219                                  (unsigned)map->m_len, -err);
2220                         ext4_msg(sb, KERN_CRIT,
2221                                  "This should not happen!! Data will "
2222                                  "be lost\n");
2223                         if (err == -ENOSPC)
2224                                 ext4_print_free_blocks(inode);
2225                 invalidate_dirty_pages:
2226                         *give_up_on_write = true;
2227                         return err;
2228                 }
2229                 /*
2230                  * Update buffer state, submit mapped pages, and get us new
2231                  * extent to map
2232                  */
2233                 err = mpage_map_and_submit_buffers(mpd);
2234                 if (err < 0)
2235                         return err;
2236         } while (map->m_len);
2237
2238         /* Update on-disk size after IO is submitted */
2239         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2240         if (disksize > i_size_read(inode))
2241                 disksize = i_size_read(inode);
2242         if (disksize > EXT4_I(inode)->i_disksize) {
2243                 int err2;
2244
2245                 ext4_update_i_disksize(inode, disksize);
2246                 err2 = ext4_mark_inode_dirty(handle, inode);
2247                 if (err2)
2248                         ext4_error(inode->i_sb,
2249                                    "Failed to mark inode %lu dirty",
2250                                    inode->i_ino);
2251                 if (!err)
2252                         err = err2;
2253         }
2254         return err;
2255 }
2256
2257 /*
2258  * Calculate the total number of credits to reserve for one writepages
2259  * iteration. This is called from ext4_writepages(). We map an extent of
2260  * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2261  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2262  * bpp - 1 blocks in bpp different extents.
2263  */
2264 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2265 {
2266         int bpp = ext4_journal_blocks_per_page(inode);
2267
2268         return ext4_meta_trans_blocks(inode,
2269                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2270 }
2271
2272 /*
2273  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2274  *                               and underlying extent to map
2275  *
2276  * @mpd - where to look for pages
2277  *
2278  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2279  * IO immediately. When we find a page which isn't mapped we start accumulating
2280  * extent of buffers underlying these pages that needs mapping (formed by
2281  * either delayed or unwritten buffers). We also lock the pages containing
2282  * these buffers. The extent found is returned in @mpd structure (starting at
2283  * mpd->lblk with length mpd->len blocks).
2284  *
2285  * Note that this function can attach bios to one io_end structure which are
2286  * neither logically nor physically contiguous. Although it may seem as an
2287  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2288  * case as we need to track IO to all buffers underlying a page in one io_end.
2289  */
2290 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2291 {
2292         struct address_space *mapping = mpd->inode->i_mapping;
2293         struct pagevec pvec;
2294         unsigned int nr_pages;
2295         pgoff_t index = mpd->first_page;
2296         pgoff_t end = mpd->last_page;
2297         int tag;
2298         int i, err = 0;
2299         int blkbits = mpd->inode->i_blkbits;
2300         ext4_lblk_t lblk;
2301         struct buffer_head *head;
2302
2303         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2304                 tag = PAGECACHE_TAG_TOWRITE;
2305         else
2306                 tag = PAGECACHE_TAG_DIRTY;
2307
2308         pagevec_init(&pvec, 0);
2309         mpd->map.m_len = 0;
2310         mpd->next_page = index;
2311         while (index <= end) {
2312                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2313                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2314                 if (nr_pages == 0)
2315                         goto out;
2316
2317                 for (i = 0; i < nr_pages; i++) {
2318                         struct page *page = pvec.pages[i];
2319
2320                         /*
2321                          * At this point, the page may be truncated or
2322                          * invalidated (changing page->mapping to NULL), or
2323                          * even swizzled back from swapper_space to tmpfs file
2324                          * mapping. However, page->index will not change
2325                          * because we have a reference on the page.
2326                          */
2327                         if (page->index > end)
2328                                 goto out;
2329
2330                         /* If we can't merge this page, we are done. */
2331                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2332                                 goto out;
2333
2334                         lock_page(page);
2335                         /*
2336                          * If the page is no longer dirty, or its mapping no
2337                          * longer corresponds to inode we are writing (which
2338                          * means it has been truncated or invalidated), or the
2339                          * page is already under writeback and we are not doing
2340                          * a data integrity writeback, skip the page
2341                          */
2342                         if (!PageDirty(page) ||
2343                             (PageWriteback(page) &&
2344                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2345                             unlikely(page->mapping != mapping)) {
2346                                 unlock_page(page);
2347                                 continue;
2348                         }
2349
2350                         wait_on_page_writeback(page);
2351                         BUG_ON(PageWriteback(page));
2352
2353                         if (mpd->map.m_len == 0)
2354                                 mpd->first_page = page->index;
2355                         mpd->next_page = page->index + 1;
2356                         /* Add all dirty buffers to mpd */
2357                         lblk = ((ext4_lblk_t)page->index) <<
2358                                 (PAGE_CACHE_SHIFT - blkbits);
2359                         head = page_buffers(page);
2360                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2361                         if (err <= 0)
2362                                 goto out;
2363                         err = 0;
2364
2365                         /*
2366                          * Accumulated enough dirty pages? This doesn't apply
2367                          * to WB_SYNC_ALL mode. For integrity sync we have to
2368                          * keep going because someone may be concurrently
2369                          * dirtying pages, and we might have synced a lot of
2370                          * newly appeared dirty pages, but have not synced all
2371                          * of the old dirty pages.
2372                          */
2373                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2374                             mpd->next_page - mpd->first_page >=
2375                                                         mpd->wbc->nr_to_write)
2376                                 goto out;
2377                 }
2378                 pagevec_release(&pvec);
2379                 cond_resched();
2380         }
2381         return 0;
2382 out:
2383         pagevec_release(&pvec);
2384         return err;
2385 }
2386
2387 static int __writepage(struct page *page, struct writeback_control *wbc,
2388                        void *data)
2389 {
2390         struct address_space *mapping = data;
2391         int ret = ext4_writepage(page, wbc);
2392         mapping_set_error(mapping, ret);
2393         return ret;
2394 }
2395
2396 static int ext4_writepages(struct address_space *mapping,
2397                            struct writeback_control *wbc)
2398 {
2399         pgoff_t writeback_index = 0;
2400         long nr_to_write = wbc->nr_to_write;
2401         int range_whole = 0;
2402         int cycled = 1;
2403         handle_t *handle = NULL;
2404         struct mpage_da_data mpd;
2405         struct inode *inode = mapping->host;
2406         int needed_blocks, rsv_blocks = 0, ret = 0;
2407         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2408         bool done;
2409         struct blk_plug plug;
2410         bool give_up_on_write = false;
2411
2412         trace_ext4_writepages(inode, wbc);
2413
2414         /*
2415          * No pages to write? This is mainly a kludge to avoid starting
2416          * a transaction for special inodes like journal inode on last iput()
2417          * because that could violate lock ordering on umount
2418          */
2419         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2420                 return 0;
2421
2422         if (ext4_should_journal_data(inode)) {
2423                 struct blk_plug plug;
2424                 int ret;
2425
2426                 blk_start_plug(&plug);
2427                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2428                 blk_finish_plug(&plug);
2429                 return ret;
2430         }
2431
2432         /*
2433          * If the filesystem has aborted, it is read-only, so return
2434          * right away instead of dumping stack traces later on that
2435          * will obscure the real source of the problem.  We test
2436          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2437          * the latter could be true if the filesystem is mounted
2438          * read-only, and in that case, ext4_writepages should
2439          * *never* be called, so if that ever happens, we would want
2440          * the stack trace.
2441          */
2442         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2443                 return -EROFS;
2444
2445         if (ext4_should_dioread_nolock(inode)) {
2446                 /*
2447                  * We may need to convert upto one extent per block in
2448                  * the page and we may dirty the inode.
2449                  */
2450                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2451         }
2452
2453         /*
2454          * If we have inline data and arrive here, it means that
2455          * we will soon create the block for the 1st page, so
2456          * we'd better clear the inline data here.
2457          */
2458         if (ext4_has_inline_data(inode)) {
2459                 /* Just inode will be modified... */
2460                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2461                 if (IS_ERR(handle)) {
2462                         ret = PTR_ERR(handle);
2463                         goto out_writepages;
2464                 }
2465                 BUG_ON(ext4_test_inode_state(inode,
2466                                 EXT4_STATE_MAY_INLINE_DATA));
2467                 ext4_destroy_inline_data(handle, inode);
2468                 ext4_journal_stop(handle);
2469         }
2470
2471         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2472                 range_whole = 1;
2473
2474         if (wbc->range_cyclic) {
2475                 writeback_index = mapping->writeback_index;
2476                 if (writeback_index)
2477                         cycled = 0;
2478                 mpd.first_page = writeback_index;
2479                 mpd.last_page = -1;
2480         } else {
2481                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2482                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2483         }
2484
2485         mpd.inode = inode;
2486         mpd.wbc = wbc;
2487         ext4_io_submit_init(&mpd.io_submit, wbc);
2488 retry:
2489         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2490                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2491         done = false;
2492         blk_start_plug(&plug);
2493         while (!done && mpd.first_page <= mpd.last_page) {
2494                 /* For each extent of pages we use new io_end */
2495                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2496                 if (!mpd.io_submit.io_end) {
2497                         ret = -ENOMEM;
2498                         break;
2499                 }
2500
2501                 /*
2502                  * We have two constraints: We find one extent to map and we
2503                  * must always write out whole page (makes a difference when
2504                  * blocksize < pagesize) so that we don't block on IO when we
2505                  * try to write out the rest of the page. Journalled mode is
2506                  * not supported by delalloc.
2507                  */
2508                 BUG_ON(ext4_should_journal_data(inode));
2509                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2510
2511                 /* start a new transaction */
2512                 handle = ext4_journal_start_with_reserve(inode,
2513                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2514                 if (IS_ERR(handle)) {
2515                         ret = PTR_ERR(handle);
2516                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2517                                "%ld pages, ino %lu; err %d", __func__,
2518                                 wbc->nr_to_write, inode->i_ino, ret);
2519                         /* Release allocated io_end */
2520                         ext4_put_io_end(mpd.io_submit.io_end);
2521                         break;
2522                 }
2523
2524                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2525                 ret = mpage_prepare_extent_to_map(&mpd);
2526                 if (!ret) {
2527                         if (mpd.map.m_len)
2528                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2529                                         &give_up_on_write);
2530                         else {
2531                                 /*
2532                                  * We scanned the whole range (or exhausted
2533                                  * nr_to_write), submitted what was mapped and
2534                                  * didn't find anything needing mapping. We are
2535                                  * done.
2536                                  */
2537                                 done = true;
2538                         }
2539                 }
2540                 ext4_journal_stop(handle);
2541                 /* Submit prepared bio */
2542                 ext4_io_submit(&mpd.io_submit);
2543                 /* Unlock pages we didn't use */
2544                 mpage_release_unused_pages(&mpd, give_up_on_write);
2545                 /* Drop our io_end reference we got from init */
2546                 ext4_put_io_end(mpd.io_submit.io_end);
2547
2548                 if (ret == -ENOSPC && sbi->s_journal) {
2549                         /*
2550                          * Commit the transaction which would
2551                          * free blocks released in the transaction
2552                          * and try again
2553                          */
2554                         jbd2_journal_force_commit_nested(sbi->s_journal);
2555                         ret = 0;
2556                         continue;
2557                 }
2558                 /* Fatal error - ENOMEM, EIO... */
2559                 if (ret)
2560                         break;
2561         }
2562         blk_finish_plug(&plug);
2563         if (!ret && !cycled) {
2564                 cycled = 1;
2565                 mpd.last_page = writeback_index - 1;
2566                 mpd.first_page = 0;
2567                 goto retry;
2568         }
2569
2570         /* Update index */
2571         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2572                 /*
2573                  * Set the writeback_index so that range_cyclic
2574                  * mode will write it back later
2575                  */
2576                 mapping->writeback_index = mpd.first_page;
2577
2578 out_writepages:
2579         trace_ext4_writepages_result(inode, wbc, ret,
2580                                      nr_to_write - wbc->nr_to_write);
2581         return ret;
2582 }
2583
2584 static int ext4_nonda_switch(struct super_block *sb)
2585 {
2586         s64 free_clusters, dirty_clusters;
2587         struct ext4_sb_info *sbi = EXT4_SB(sb);
2588
2589         /*
2590          * switch to non delalloc mode if we are running low
2591          * on free block. The free block accounting via percpu
2592          * counters can get slightly wrong with percpu_counter_batch getting
2593          * accumulated on each CPU without updating global counters
2594          * Delalloc need an accurate free block accounting. So switch
2595          * to non delalloc when we are near to error range.
2596          */
2597         free_clusters =
2598                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2599         dirty_clusters =
2600                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2601         /*
2602          * Start pushing delalloc when 1/2 of free blocks are dirty.
2603          */
2604         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2605                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2606
2607         if (2 * free_clusters < 3 * dirty_clusters ||
2608             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2609                 /*
2610                  * free block count is less than 150% of dirty blocks
2611                  * or free blocks is less than watermark
2612                  */
2613                 return 1;
2614         }
2615         return 0;
2616 }
2617
2618 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2619                                loff_t pos, unsigned len, unsigned flags,
2620                                struct page **pagep, void **fsdata)
2621 {
2622         int ret, retries = 0;
2623         struct page *page;
2624         pgoff_t index;
2625         struct inode *inode = mapping->host;
2626         handle_t *handle;
2627
2628         index = pos >> PAGE_CACHE_SHIFT;
2629
2630         if (ext4_nonda_switch(inode->i_sb)) {
2631                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2632                 return ext4_write_begin(file, mapping, pos,
2633                                         len, flags, pagep, fsdata);
2634         }
2635         *fsdata = (void *)0;
2636         trace_ext4_da_write_begin(inode, pos, len, flags);
2637
2638         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2639                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2640                                                       pos, len, flags,
2641                                                       pagep, fsdata);
2642                 if (ret < 0)
2643                         return ret;
2644                 if (ret == 1)
2645                         return 0;
2646         }
2647
2648         /*
2649          * grab_cache_page_write_begin() can take a long time if the
2650          * system is thrashing due to memory pressure, or if the page
2651          * is being written back.  So grab it first before we start
2652          * the transaction handle.  This also allows us to allocate
2653          * the page (if needed) without using GFP_NOFS.
2654          */
2655 retry_grab:
2656         page = grab_cache_page_write_begin(mapping, index, flags);
2657         if (!page)
2658                 return -ENOMEM;
2659         unlock_page(page);
2660
2661         /*
2662          * With delayed allocation, we don't log the i_disksize update
2663          * if there is delayed block allocation. But we still need
2664          * to journalling the i_disksize update if writes to the end
2665          * of file which has an already mapped buffer.
2666          */
2667 retry_journal:
2668         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2669         if (IS_ERR(handle)) {
2670                 page_cache_release(page);
2671                 return PTR_ERR(handle);
2672         }
2673
2674         lock_page(page);
2675         if (page->mapping != mapping) {
2676                 /* The page got truncated from under us */
2677                 unlock_page(page);
2678                 page_cache_release(page);
2679                 ext4_journal_stop(handle);
2680                 goto retry_grab;
2681         }
2682         /* In case writeback began while the page was unlocked */
2683         wait_on_page_writeback(page);
2684
2685         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2686         if (ret < 0) {
2687                 unlock_page(page);
2688                 ext4_journal_stop(handle);
2689                 /*
2690                  * block_write_begin may have instantiated a few blocks
2691                  * outside i_size.  Trim these off again. Don't need
2692                  * i_size_read because we hold i_mutex.
2693                  */
2694                 if (pos + len > inode->i_size)
2695                         ext4_truncate_failed_write(inode);
2696
2697                 if (ret == -ENOSPC &&
2698                     ext4_should_retry_alloc(inode->i_sb, &retries))
2699                         goto retry_journal;
2700
2701                 page_cache_release(page);
2702                 return ret;
2703         }
2704
2705         *pagep = page;
2706         return ret;
2707 }
2708
2709 /*
2710  * Check if we should update i_disksize
2711  * when write to the end of file but not require block allocation
2712  */
2713 static int ext4_da_should_update_i_disksize(struct page *page,
2714                                             unsigned long offset)
2715 {
2716         struct buffer_head *bh;
2717         struct inode *inode = page->mapping->host;
2718         unsigned int idx;
2719         int i;
2720
2721         bh = page_buffers(page);
2722         idx = offset >> inode->i_blkbits;
2723
2724         for (i = 0; i < idx; i++)
2725                 bh = bh->b_this_page;
2726
2727         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2728                 return 0;
2729         return 1;
2730 }
2731
2732 static int ext4_da_write_end(struct file *file,
2733                              struct address_space *mapping,
2734                              loff_t pos, unsigned len, unsigned copied,
2735                              struct page *page, void *fsdata)
2736 {
2737         struct inode *inode = mapping->host;
2738         int ret = 0, ret2;
2739         handle_t *handle = ext4_journal_current_handle();
2740         loff_t new_i_size;
2741         unsigned long start, end;
2742         int write_mode = (int)(unsigned long)fsdata;
2743
2744         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2745                 return ext4_write_end(file, mapping, pos,
2746                                       len, copied, page, fsdata);
2747
2748         trace_ext4_da_write_end(inode, pos, len, copied);
2749         start = pos & (PAGE_CACHE_SIZE - 1);
2750         end = start + copied - 1;
2751
2752         /*
2753          * generic_write_end() will run mark_inode_dirty() if i_size
2754          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2755          * into that.
2756          */
2757         new_i_size = pos + copied;
2758         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2759                 if (ext4_has_inline_data(inode) ||
2760                     ext4_da_should_update_i_disksize(page, end)) {
2761                         down_write(&EXT4_I(inode)->i_data_sem);
2762                         if (new_i_size > EXT4_I(inode)->i_disksize)
2763                                 EXT4_I(inode)->i_disksize = new_i_size;
2764                         up_write(&EXT4_I(inode)->i_data_sem);
2765                         /* We need to mark inode dirty even if
2766                          * new_i_size is less that inode->i_size
2767                          * bu greater than i_disksize.(hint delalloc)
2768                          */
2769                         ext4_mark_inode_dirty(handle, inode);
2770                 }
2771         }
2772
2773         if (write_mode != CONVERT_INLINE_DATA &&
2774             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2775             ext4_has_inline_data(inode))
2776                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2777                                                      page);
2778         else
2779                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2780                                                         page, fsdata);
2781
2782         copied = ret2;
2783         if (ret2 < 0)
2784                 ret = ret2;
2785         ret2 = ext4_journal_stop(handle);
2786         if (!ret)
2787                 ret = ret2;
2788
2789         return ret ? ret : copied;
2790 }
2791
2792 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2793                                    unsigned int length)
2794 {
2795         /*
2796          * Drop reserved blocks
2797          */
2798         BUG_ON(!PageLocked(page));
2799         if (!page_has_buffers(page))
2800                 goto out;
2801
2802         ext4_da_page_release_reservation(page, offset, length);
2803
2804 out:
2805         ext4_invalidatepage(page, offset, length);
2806
2807         return;
2808 }
2809
2810 /*
2811  * Force all delayed allocation blocks to be allocated for a given inode.
2812  */
2813 int ext4_alloc_da_blocks(struct inode *inode)
2814 {
2815         trace_ext4_alloc_da_blocks(inode);
2816
2817         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2818             !EXT4_I(inode)->i_reserved_meta_blocks)
2819                 return 0;
2820
2821         /*
2822          * We do something simple for now.  The filemap_flush() will
2823          * also start triggering a write of the data blocks, which is
2824          * not strictly speaking necessary (and for users of
2825          * laptop_mode, not even desirable).  However, to do otherwise
2826          * would require replicating code paths in:
2827          *
2828          * ext4_writepages() ->
2829          *    write_cache_pages() ---> (via passed in callback function)
2830          *        __mpage_da_writepage() -->
2831          *           mpage_add_bh_to_extent()
2832          *           mpage_da_map_blocks()
2833          *
2834          * The problem is that write_cache_pages(), located in
2835          * mm/page-writeback.c, marks pages clean in preparation for
2836          * doing I/O, which is not desirable if we're not planning on
2837          * doing I/O at all.
2838          *
2839          * We could call write_cache_pages(), and then redirty all of
2840          * the pages by calling redirty_page_for_writepage() but that
2841          * would be ugly in the extreme.  So instead we would need to
2842          * replicate parts of the code in the above functions,
2843          * simplifying them because we wouldn't actually intend to
2844          * write out the pages, but rather only collect contiguous
2845          * logical block extents, call the multi-block allocator, and
2846          * then update the buffer heads with the block allocations.
2847          *
2848          * For now, though, we'll cheat by calling filemap_flush(),
2849          * which will map the blocks, and start the I/O, but not
2850          * actually wait for the I/O to complete.
2851          */
2852         return filemap_flush(inode->i_mapping);
2853 }
2854
2855 /*
2856  * bmap() is special.  It gets used by applications such as lilo and by
2857  * the swapper to find the on-disk block of a specific piece of data.
2858  *
2859  * Naturally, this is dangerous if the block concerned is still in the
2860  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2861  * filesystem and enables swap, then they may get a nasty shock when the
2862  * data getting swapped to that swapfile suddenly gets overwritten by
2863  * the original zero's written out previously to the journal and
2864  * awaiting writeback in the kernel's buffer cache.
2865  *
2866  * So, if we see any bmap calls here on a modified, data-journaled file,
2867  * take extra steps to flush any blocks which might be in the cache.
2868  */
2869 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2870 {
2871         struct inode *inode = mapping->host;
2872         journal_t *journal;
2873         int err;
2874
2875         /*
2876          * We can get here for an inline file via the FIBMAP ioctl
2877          */
2878         if (ext4_has_inline_data(inode))
2879                 return 0;
2880
2881         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2882                         test_opt(inode->i_sb, DELALLOC)) {
2883                 /*
2884                  * With delalloc we want to sync the file
2885                  * so that we can make sure we allocate
2886                  * blocks for file
2887                  */
2888                 filemap_write_and_wait(mapping);
2889         }
2890
2891         if (EXT4_JOURNAL(inode) &&
2892             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2893                 /*
2894                  * This is a REALLY heavyweight approach, but the use of
2895                  * bmap on dirty files is expected to be extremely rare:
2896                  * only if we run lilo or swapon on a freshly made file
2897                  * do we expect this to happen.
2898                  *
2899                  * (bmap requires CAP_SYS_RAWIO so this does not
2900                  * represent an unprivileged user DOS attack --- we'd be
2901                  * in trouble if mortal users could trigger this path at
2902                  * will.)
2903                  *
2904                  * NB. EXT4_STATE_JDATA is not set on files other than
2905                  * regular files.  If somebody wants to bmap a directory
2906                  * or symlink and gets confused because the buffer
2907                  * hasn't yet been flushed to disk, they deserve
2908                  * everything they get.
2909                  */
2910
2911                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2912                 journal = EXT4_JOURNAL(inode);
2913                 jbd2_journal_lock_updates(journal);
2914                 err = jbd2_journal_flush(journal);
2915                 jbd2_journal_unlock_updates(journal);
2916
2917                 if (err)
2918                         return 0;
2919         }
2920
2921         return generic_block_bmap(mapping, block, ext4_get_block);
2922 }
2923
2924 static int ext4_readpage(struct file *file, struct page *page)
2925 {
2926         int ret = -EAGAIN;
2927         struct inode *inode = page->mapping->host;
2928
2929         trace_ext4_readpage(page);
2930
2931         if (ext4_has_inline_data(inode))
2932                 ret = ext4_readpage_inline(inode, page);
2933
2934         if (ret == -EAGAIN)
2935                 return mpage_readpage(page, ext4_get_block);
2936
2937         return ret;
2938 }
2939
2940 static int
2941 ext4_readpages(struct file *file, struct address_space *mapping,
2942                 struct list_head *pages, unsigned nr_pages)
2943 {
2944         struct inode *inode = mapping->host;
2945
2946         /* If the file has inline data, no need to do readpages. */
2947         if (ext4_has_inline_data(inode))
2948                 return 0;
2949
2950         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2951 }
2952
2953 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2954                                 unsigned int length)
2955 {
2956         trace_ext4_invalidatepage(page, offset, length);
2957
2958         /* No journalling happens on data buffers when this function is used */
2959         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2960
2961         block_invalidatepage(page, offset, length);
2962 }
2963
2964 static int __ext4_journalled_invalidatepage(struct page *page,
2965                                             unsigned int offset,
2966                                             unsigned int length)
2967 {
2968         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2969
2970         trace_ext4_journalled_invalidatepage(page, offset, length);
2971
2972         /*
2973          * If it's a full truncate we just forget about the pending dirtying
2974          */
2975         if (offset == 0 && length == PAGE_CACHE_SIZE)
2976                 ClearPageChecked(page);
2977
2978         return jbd2_journal_invalidatepage(journal, page, offset, length);
2979 }
2980
2981 /* Wrapper for aops... */
2982 static void ext4_journalled_invalidatepage(struct page *page,
2983                                            unsigned int offset,
2984                                            unsigned int length)
2985 {
2986         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2987 }
2988
2989 static int ext4_releasepage(struct page *page, gfp_t wait)
2990 {
2991         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2992
2993         trace_ext4_releasepage(page);
2994
2995         /* Page has dirty journalled data -> cannot release */
2996         if (PageChecked(page))
2997                 return 0;
2998         if (journal)
2999                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3000         else
3001                 return try_to_free_buffers(page);
3002 }
3003
3004 /*
3005  * ext4_get_block used when preparing for a DIO write or buffer write.
3006  * We allocate an uinitialized extent if blocks haven't been allocated.
3007  * The extent will be converted to initialized after the IO is complete.
3008  */
3009 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3010                    struct buffer_head *bh_result, int create)
3011 {
3012         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3013                    inode->i_ino, create);
3014         return _ext4_get_block(inode, iblock, bh_result,
3015                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3016 }
3017
3018 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3019                    struct buffer_head *bh_result, int create)
3020 {
3021         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3022                    inode->i_ino, create);
3023         return _ext4_get_block(inode, iblock, bh_result,
3024                                EXT4_GET_BLOCKS_NO_LOCK);
3025 }
3026
3027 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3028                             ssize_t size, void *private, int ret,
3029                             bool is_async)
3030 {
3031         struct inode *inode = file_inode(iocb->ki_filp);
3032         ext4_io_end_t *io_end = iocb->private;
3033
3034         /* if not async direct IO just return */
3035         if (!io_end) {
3036                 inode_dio_done(inode);
3037                 if (is_async)
3038                         aio_complete(iocb, ret, 0);
3039                 return;
3040         }
3041
3042         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3043                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3044                   iocb->private, io_end->inode->i_ino, iocb, offset,
3045                   size);
3046
3047         iocb->private = NULL;
3048         io_end->offset = offset;
3049         io_end->size = size;
3050         if (is_async) {
3051                 io_end->iocb = iocb;
3052                 io_end->result = ret;
3053         }
3054         ext4_put_io_end_defer(io_end);
3055 }
3056
3057 /*
3058  * For ext4 extent files, ext4 will do direct-io write to holes,
3059  * preallocated extents, and those write extend the file, no need to
3060  * fall back to buffered IO.
3061  *
3062  * For holes, we fallocate those blocks, mark them as uninitialized
3063  * If those blocks were preallocated, we mark sure they are split, but
3064  * still keep the range to write as uninitialized.
3065  *
3066  * The unwritten extents will be converted to written when DIO is completed.
3067  * For async direct IO, since the IO may still pending when return, we
3068  * set up an end_io call back function, which will do the conversion
3069  * when async direct IO completed.
3070  *
3071  * If the O_DIRECT write will extend the file then add this inode to the
3072  * orphan list.  So recovery will truncate it back to the original size
3073  * if the machine crashes during the write.
3074  *
3075  */
3076 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3077                               const struct iovec *iov, loff_t offset,
3078                               unsigned long nr_segs)
3079 {
3080         struct file *file = iocb->ki_filp;
3081         struct inode *inode = file->f_mapping->host;
3082         ssize_t ret;
3083         size_t count = iov_length(iov, nr_segs);
3084         int overwrite = 0;
3085         get_block_t *get_block_func = NULL;
3086         int dio_flags = 0;
3087         loff_t final_size = offset + count;
3088         ext4_io_end_t *io_end = NULL;
3089
3090         /* Use the old path for reads and writes beyond i_size. */
3091         if (rw != WRITE || final_size > inode->i_size)
3092                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3093
3094         BUG_ON(iocb->private == NULL);
3095
3096         /*
3097          * Make all waiters for direct IO properly wait also for extent
3098          * conversion. This also disallows race between truncate() and
3099          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3100          */
3101         if (rw == WRITE)
3102                 atomic_inc(&inode->i_dio_count);
3103
3104         /* If we do a overwrite dio, i_mutex locking can be released */
3105         overwrite = *((int *)iocb->private);
3106
3107         if (overwrite) {
3108                 down_read(&EXT4_I(inode)->i_data_sem);
3109                 mutex_unlock(&inode->i_mutex);
3110         }
3111
3112         /*
3113          * We could direct write to holes and fallocate.
3114          *
3115          * Allocated blocks to fill the hole are marked as
3116          * uninitialized to prevent parallel buffered read to expose
3117          * the stale data before DIO complete the data IO.
3118          *
3119          * As to previously fallocated extents, ext4 get_block will
3120          * just simply mark the buffer mapped but still keep the
3121          * extents uninitialized.
3122          *
3123          * For non AIO case, we will convert those unwritten extents
3124          * to written after return back from blockdev_direct_IO.
3125          *
3126          * For async DIO, the conversion needs to be deferred when the
3127          * IO is completed. The ext4 end_io callback function will be
3128          * called to take care of the conversion work.  Here for async
3129          * case, we allocate an io_end structure to hook to the iocb.
3130          */
3131         iocb->private = NULL;
3132         ext4_inode_aio_set(inode, NULL);
3133         if (!is_sync_kiocb(iocb)) {
3134                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3135                 if (!io_end) {
3136                         ret = -ENOMEM;
3137                         goto retake_lock;
3138                 }
3139                 io_end->flag |= EXT4_IO_END_DIRECT;
3140                 /*
3141                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3142                  */
3143                 iocb->private = ext4_get_io_end(io_end);
3144                 /*
3145                  * we save the io structure for current async direct
3146                  * IO, so that later ext4_map_blocks() could flag the
3147                  * io structure whether there is a unwritten extents
3148                  * needs to be converted when IO is completed.
3149                  */
3150                 ext4_inode_aio_set(inode, io_end);
3151         }
3152
3153         if (overwrite) {
3154                 get_block_func = ext4_get_block_write_nolock;
3155         } else {
3156                 get_block_func = ext4_get_block_write;
3157                 dio_flags = DIO_LOCKING;
3158         }
3159         ret = __blockdev_direct_IO(rw, iocb, inode,
3160                                    inode->i_sb->s_bdev, iov,
3161                                    offset, nr_segs,
3162                                    get_block_func,
3163                                    ext4_end_io_dio,
3164                                    NULL,
3165                                    dio_flags);
3166
3167         /*
3168          * Put our reference to io_end. This can free the io_end structure e.g.
3169          * in sync IO case or in case of error. It can even perform extent
3170          * conversion if all bios we submitted finished before we got here.
3171          * Note that in that case iocb->private can be already set to NULL
3172          * here.
3173          */
3174         if (io_end) {
3175                 ext4_inode_aio_set(inode, NULL);
3176                 ext4_put_io_end(io_end);
3177                 /*
3178                  * When no IO was submitted ext4_end_io_dio() was not
3179                  * called so we have to put iocb's reference.
3180                  */
3181                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3182                         WARN_ON(iocb->private != io_end);
3183                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3184                         WARN_ON(io_end->iocb);
3185                         /*
3186                          * Generic code already did inode_dio_done() so we
3187                          * have to clear EXT4_IO_END_DIRECT to not do it for
3188                          * the second time.
3189                          */
3190                         io_end->flag = 0;
3191                         ext4_put_io_end(io_end);
3192                         iocb->private = NULL;
3193                 }
3194         }
3195         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3196                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3197                 int err;
3198                 /*
3199                  * for non AIO case, since the IO is already
3200                  * completed, we could do the conversion right here
3201                  */
3202                 err = ext4_convert_unwritten_extents(NULL, inode,
3203                                                      offset, ret);
3204                 if (err < 0)
3205                         ret = err;
3206                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3207         }
3208
3209 retake_lock:
3210         if (rw == WRITE)
3211                 inode_dio_done(inode);
3212         /* take i_mutex locking again if we do a ovewrite dio */
3213         if (overwrite) {
3214                 up_read(&EXT4_I(inode)->i_data_sem);
3215                 mutex_lock(&inode->i_mutex);
3216         }
3217
3218         return ret;
3219 }
3220
3221 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3222                               const struct iovec *iov, loff_t offset,
3223                               unsigned long nr_segs)
3224 {
3225         struct file *file = iocb->ki_filp;
3226         struct inode *inode = file->f_mapping->host;
3227         ssize_t ret;
3228
3229         /*
3230          * If we are doing data journalling we don't support O_DIRECT
3231          */
3232         if (ext4_should_journal_data(inode))
3233                 return 0;
3234
3235         /* Let buffer I/O handle the inline data case. */
3236         if (ext4_has_inline_data(inode))
3237                 return 0;
3238
3239         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3240         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3241                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3242         else
3243                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3244         trace_ext4_direct_IO_exit(inode, offset,
3245                                 iov_length(iov, nr_segs), rw, ret);
3246         return ret;
3247 }
3248
3249 /*
3250  * Pages can be marked dirty completely asynchronously from ext4's journalling
3251  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3252  * much here because ->set_page_dirty is called under VFS locks.  The page is
3253  * not necessarily locked.
3254  *
3255  * We cannot just dirty the page and leave attached buffers clean, because the
3256  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3257  * or jbddirty because all the journalling code will explode.
3258  *
3259  * So what we do is to mark the page "pending dirty" and next time writepage
3260  * is called, propagate that into the buffers appropriately.
3261  */
3262 static int ext4_journalled_set_page_dirty(struct page *page)
3263 {
3264         SetPageChecked(page);
3265         return __set_page_dirty_nobuffers(page);
3266 }
3267
3268 static const struct address_space_operations ext4_aops = {
3269         .readpage               = ext4_readpage,
3270         .readpages              = ext4_readpages,
3271         .writepage              = ext4_writepage,
3272         .writepages             = ext4_writepages,
3273         .write_begin            = ext4_write_begin,
3274         .write_end              = ext4_write_end,
3275         .bmap                   = ext4_bmap,
3276         .invalidatepage         = ext4_invalidatepage,
3277         .releasepage            = ext4_releasepage,
3278         .direct_IO              = ext4_direct_IO,
3279         .migratepage            = buffer_migrate_page,
3280         .is_partially_uptodate  = block_is_partially_uptodate,
3281         .error_remove_page      = generic_error_remove_page,
3282 };
3283
3284 static const struct address_space_operations ext4_journalled_aops = {
3285         .readpage               = ext4_readpage,
3286         .readpages              = ext4_readpages,
3287         .writepage              = ext4_writepage,
3288         .writepages             = ext4_writepages,
3289         .write_begin            = ext4_write_begin,
3290         .write_end              = ext4_journalled_write_end,
3291         .set_page_dirty         = ext4_journalled_set_page_dirty,
3292         .bmap                   = ext4_bmap,
3293         .invalidatepage         = ext4_journalled_invalidatepage,
3294         .releasepage            = ext4_releasepage,
3295         .direct_IO              = ext4_direct_IO,
3296         .is_partially_uptodate  = block_is_partially_uptodate,
3297         .error_remove_page      = generic_error_remove_page,
3298 };
3299
3300 static const struct address_space_operations ext4_da_aops = {
3301         .readpage               = ext4_readpage,
3302         .readpages              = ext4_readpages,
3303         .writepage              = ext4_writepage,
3304         .writepages             = ext4_writepages,
3305         .write_begin            = ext4_da_write_begin,
3306         .write_end              = ext4_da_write_end,
3307         .bmap                   = ext4_bmap,
3308         .invalidatepage         = ext4_da_invalidatepage,
3309         .releasepage            = ext4_releasepage,
3310         .direct_IO              = ext4_direct_IO,
3311         .migratepage            = buffer_migrate_page,
3312         .is_partially_uptodate  = block_is_partially_uptodate,
3313         .error_remove_page      = generic_error_remove_page,
3314 };
3315
3316 void ext4_set_aops(struct inode *inode)
3317 {
3318         switch (ext4_inode_journal_mode(inode)) {
3319         case EXT4_INODE_ORDERED_DATA_MODE:
3320                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3321                 break;
3322         case EXT4_INODE_WRITEBACK_DATA_MODE:
3323                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3324                 break;
3325         case EXT4_INODE_JOURNAL_DATA_MODE:
3326                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3327                 return;
3328         default:
3329                 BUG();
3330         }
3331         if (test_opt(inode->i_sb, DELALLOC))
3332                 inode->i_mapping->a_ops = &ext4_da_aops;
3333         else
3334                 inode->i_mapping->a_ops = &ext4_aops;
3335 }
3336
3337 /*
3338  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3339  * up to the end of the block which corresponds to `from'.
3340  * This required during truncate. We need to physically zero the tail end
3341  * of that block so it doesn't yield old data if the file is later grown.
3342  */
3343 int ext4_block_truncate_page(handle_t *handle,
3344                 struct address_space *mapping, loff_t from)
3345 {
3346         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3347         unsigned length;
3348         unsigned blocksize;
3349         struct inode *inode = mapping->host;
3350
3351         blocksize = inode->i_sb->s_blocksize;
3352         length = blocksize - (offset & (blocksize - 1));
3353
3354         return ext4_block_zero_page_range(handle, mapping, from, length);
3355 }
3356
3357 /*
3358  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3359  * starting from file offset 'from'.  The range to be zero'd must
3360  * be contained with in one block.  If the specified range exceeds
3361  * the end of the block it will be shortened to end of the block
3362  * that cooresponds to 'from'
3363  */
3364 int ext4_block_zero_page_range(handle_t *handle,
3365                 struct address_space *mapping, loff_t from, loff_t length)
3366 {
3367         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3368         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3369         unsigned blocksize, max, pos;
3370         ext4_lblk_t iblock;
3371         struct inode *inode = mapping->host;
3372         struct buffer_head *bh;
3373         struct page *page;
3374         int err = 0;
3375
3376         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3377                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3378         if (!page)
3379                 return -ENOMEM;
3380
3381         blocksize = inode->i_sb->s_blocksize;
3382         max = blocksize - (offset & (blocksize - 1));
3383
3384         /*
3385          * correct length if it does not fall between
3386          * 'from' and the end of the block
3387          */
3388         if (length > max || length < 0)
3389                 length = max;
3390
3391         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3392
3393         if (!page_has_buffers(page))
3394                 create_empty_buffers(page, blocksize, 0);
3395
3396         /* Find the buffer that contains "offset" */
3397         bh = page_buffers(page);
3398         pos = blocksize;
3399         while (offset >= pos) {
3400                 bh = bh->b_this_page;
3401                 iblock++;
3402                 pos += blocksize;
3403         }
3404         if (buffer_freed(bh)) {
3405                 BUFFER_TRACE(bh, "freed: skip");
3406                 goto unlock;
3407         }
3408         if (!buffer_mapped(bh)) {
3409                 BUFFER_TRACE(bh, "unmapped");
3410                 ext4_get_block(inode, iblock, bh, 0);
3411                 /* unmapped? It's a hole - nothing to do */
3412                 if (!buffer_mapped(bh)) {
3413                         BUFFER_TRACE(bh, "still unmapped");
3414                         goto unlock;
3415                 }
3416         }
3417
3418         /* Ok, it's mapped. Make sure it's up-to-date */
3419         if (PageUptodate(page))
3420                 set_buffer_uptodate(bh);
3421
3422         if (!buffer_uptodate(bh)) {
3423                 err = -EIO;
3424                 ll_rw_block(READ, 1, &bh);
3425                 wait_on_buffer(bh);
3426                 /* Uhhuh. Read error. Complain and punt. */
3427                 if (!buffer_uptodate(bh))
3428                         goto unlock;
3429         }
3430         if (ext4_should_journal_data(inode)) {
3431                 BUFFER_TRACE(bh, "get write access");
3432                 err = ext4_journal_get_write_access(handle, bh);
3433                 if (err)
3434                         goto unlock;
3435         }
3436         zero_user(page, offset, length);
3437         BUFFER_TRACE(bh, "zeroed end of block");
3438
3439         if (ext4_should_journal_data(inode)) {
3440                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3441         } else {
3442                 err = 0;
3443                 mark_buffer_dirty(bh);
3444                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3445                         err = ext4_jbd2_file_inode(handle, inode);
3446         }
3447
3448 unlock:
3449         unlock_page(page);
3450         page_cache_release(page);
3451         return err;
3452 }
3453
3454 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3455                              loff_t lstart, loff_t length)
3456 {
3457         struct super_block *sb = inode->i_sb;
3458         struct address_space *mapping = inode->i_mapping;
3459         unsigned partial_start, partial_end;
3460         ext4_fsblk_t start, end;
3461         loff_t byte_end = (lstart + length - 1);
3462         int err = 0;
3463
3464         partial_start = lstart & (sb->s_blocksize - 1);
3465         partial_end = byte_end & (sb->s_blocksize - 1);
3466
3467         start = lstart >> sb->s_blocksize_bits;
3468         end = byte_end >> sb->s_blocksize_bits;
3469
3470         /* Handle partial zero within the single block */
3471         if (start == end &&
3472             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3473                 err = ext4_block_zero_page_range(handle, mapping,
3474                                                  lstart, length);
3475                 return err;
3476         }
3477         /* Handle partial zero out on the start of the range */
3478         if (partial_start) {
3479                 err = ext4_block_zero_page_range(handle, mapping,
3480                                                  lstart, sb->s_blocksize);
3481                 if (err)
3482                         return err;
3483         }
3484         /* Handle partial zero out on the end of the range */
3485         if (partial_end != sb->s_blocksize - 1)
3486                 err = ext4_block_zero_page_range(handle, mapping,
3487                                                  byte_end - partial_end,
3488                                                  partial_end + 1);
3489         return err;
3490 }
3491
3492 int ext4_can_truncate(struct inode *inode)
3493 {
3494         if (S_ISREG(inode->i_mode))
3495                 return 1;
3496         if (S_ISDIR(inode->i_mode))
3497                 return 1;
3498         if (S_ISLNK(inode->i_mode))
3499                 return !ext4_inode_is_fast_symlink(inode);
3500         return 0;
3501 }
3502
3503 /*
3504  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3505  * associated with the given offset and length
3506  *
3507  * @inode:  File inode
3508  * @offset: The offset where the hole will begin
3509  * @len:    The length of the hole
3510  *
3511  * Returns: 0 on success or negative on failure
3512  */
3513
3514 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3515 {
3516         struct super_block *sb = inode->i_sb;
3517         ext4_lblk_t first_block, stop_block;
3518         struct address_space *mapping = inode->i_mapping;
3519         loff_t first_block_offset, last_block_offset;
3520         handle_t *handle;
3521         unsigned int credits;
3522         int ret = 0;
3523
3524         if (!S_ISREG(inode->i_mode))
3525                 return -EOPNOTSUPP;
3526
3527         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3528                 /* TODO: Add support for bigalloc file systems */
3529                 return -EOPNOTSUPP;
3530         }
3531
3532         trace_ext4_punch_hole(inode, offset, length);
3533
3534         /*
3535          * Write out all dirty pages to avoid race conditions
3536          * Then release them.
3537          */
3538         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3539                 ret = filemap_write_and_wait_range(mapping, offset,
3540                                                    offset + length - 1);
3541                 if (ret)
3542                         return ret;
3543         }
3544
3545         mutex_lock(&inode->i_mutex);
3546         /* It's not possible punch hole on append only file */
3547         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3548                 ret = -EPERM;
3549                 goto out_mutex;
3550         }
3551         if (IS_SWAPFILE(inode)) {
3552                 ret = -ETXTBSY;
3553                 goto out_mutex;
3554         }
3555
3556         /* No need to punch hole beyond i_size */
3557         if (offset >= inode->i_size)
3558                 goto out_mutex;
3559
3560         /*
3561          * If the hole extends beyond i_size, set the hole
3562          * to end after the page that contains i_size
3563          */
3564         if (offset + length > inode->i_size) {
3565                 length = inode->i_size +
3566                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3567                    offset;
3568         }
3569
3570         if (offset & (sb->s_blocksize - 1) ||
3571             (offset + length) & (sb->s_blocksize - 1)) {
3572                 /*
3573                  * Attach jinode to inode for jbd2 if we do any zeroing of
3574                  * partial block
3575                  */
3576                 ret = ext4_inode_attach_jinode(inode);
3577                 if (ret < 0)
3578                         goto out_mutex;
3579
3580         }
3581
3582         first_block_offset = round_up(offset, sb->s_blocksize);
3583         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3584
3585         /* Now release the pages and zero block aligned part of pages*/
3586         if (last_block_offset > first_block_offset)
3587                 truncate_pagecache_range(inode, first_block_offset,
3588                                          last_block_offset);
3589
3590         /* Wait all existing dio workers, newcomers will block on i_mutex */
3591         ext4_inode_block_unlocked_dio(inode);
3592         inode_dio_wait(inode);
3593
3594         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3595                 credits = ext4_writepage_trans_blocks(inode);
3596         else
3597                 credits = ext4_blocks_for_truncate(inode);
3598         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3599         if (IS_ERR(handle)) {
3600                 ret = PTR_ERR(handle);
3601                 ext4_std_error(sb, ret);
3602                 goto out_dio;
3603         }
3604
3605         ret = ext4_zero_partial_blocks(handle, inode, offset,
3606                                        length);
3607         if (ret)
3608                 goto out_stop;
3609
3610         first_block = (offset + sb->s_blocksize - 1) >>
3611                 EXT4_BLOCK_SIZE_BITS(sb);
3612         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3613
3614         /* If there are no blocks to remove, return now */
3615         if (first_block >= stop_block)
3616                 goto out_stop;
3617
3618         down_write(&EXT4_I(inode)->i_data_sem);
3619         ext4_discard_preallocations(inode);
3620
3621         ret = ext4_es_remove_extent(inode, first_block,
3622                                     stop_block - first_block);
3623         if (ret) {
3624                 up_write(&EXT4_I(inode)->i_data_sem);
3625                 goto out_stop;
3626         }
3627
3628         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3629                 ret = ext4_ext_remove_space(inode, first_block,
3630                                             stop_block - 1);
3631         else
3632                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3633                                             stop_block);
3634
3635         ext4_discard_preallocations(inode);
3636         up_write(&EXT4_I(inode)->i_data_sem);
3637         if (IS_SYNC(inode))
3638                 ext4_handle_sync(handle);
3639         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3640         ext4_mark_inode_dirty(handle, inode);
3641 out_stop:
3642         ext4_journal_stop(handle);
3643 out_dio:
3644         ext4_inode_resume_unlocked_dio(inode);
3645 out_mutex:
3646         mutex_unlock(&inode->i_mutex);
3647         return ret;
3648 }
3649
3650 int ext4_inode_attach_jinode(struct inode *inode)
3651 {
3652         struct ext4_inode_info *ei = EXT4_I(inode);
3653         struct jbd2_inode *jinode;
3654
3655         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3656                 return 0;
3657
3658         jinode = jbd2_alloc_inode(GFP_KERNEL);
3659         spin_lock(&inode->i_lock);
3660         if (!ei->jinode) {
3661                 if (!jinode) {
3662                         spin_unlock(&inode->i_lock);
3663                         return -ENOMEM;
3664                 }
3665                 ei->jinode = jinode;
3666                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3667                 jinode = NULL;
3668         }
3669         spin_unlock(&inode->i_lock);
3670         if (unlikely(jinode != NULL))
3671                 jbd2_free_inode(jinode);
3672         return 0;
3673 }
3674
3675 /*
3676  * ext4_truncate()
3677  *
3678  * We block out ext4_get_block() block instantiations across the entire
3679  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3680  * simultaneously on behalf of the same inode.
3681  *
3682  * As we work through the truncate and commit bits of it to the journal there
3683  * is one core, guiding principle: the file's tree must always be consistent on
3684  * disk.  We must be able to restart the truncate after a crash.
3685  *
3686  * The file's tree may be transiently inconsistent in memory (although it
3687  * probably isn't), but whenever we close off and commit a journal transaction,
3688  * the contents of (the filesystem + the journal) must be consistent and
3689  * restartable.  It's pretty simple, really: bottom up, right to left (although
3690  * left-to-right works OK too).
3691  *
3692  * Note that at recovery time, journal replay occurs *before* the restart of
3693  * truncate against the orphan inode list.
3694  *
3695  * The committed inode has the new, desired i_size (which is the same as
3696  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3697  * that this inode's truncate did not complete and it will again call
3698  * ext4_truncate() to have another go.  So there will be instantiated blocks
3699  * to the right of the truncation point in a crashed ext4 filesystem.  But
3700  * that's fine - as long as they are linked from the inode, the post-crash
3701  * ext4_truncate() run will find them and release them.
3702  */
3703 void ext4_truncate(struct inode *inode)
3704 {
3705         struct ext4_inode_info *ei = EXT4_I(inode);
3706         unsigned int credits;
3707         handle_t *handle;
3708         struct address_space *mapping = inode->i_mapping;
3709
3710         /*
3711          * There is a possibility that we're either freeing the inode
3712          * or it completely new indode. In those cases we might not
3713          * have i_mutex locked because it's not necessary.
3714          */
3715         if (!(inode->i_state & (I_NEW|I_FREEING)))
3716                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3717         trace_ext4_truncate_enter(inode);
3718
3719         if (!ext4_can_truncate(inode))
3720                 return;
3721
3722         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3723
3724         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3725                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3726
3727         if (ext4_has_inline_data(inode)) {
3728                 int has_inline = 1;
3729
3730                 ext4_inline_data_truncate(inode, &has_inline);
3731                 if (has_inline)
3732                         return;
3733         }
3734
3735         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3736         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3737                 if (ext4_inode_attach_jinode(inode) < 0)
3738                         return;
3739         }
3740
3741         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3742                 credits = ext4_writepage_trans_blocks(inode);
3743         else
3744                 credits = ext4_blocks_for_truncate(inode);
3745
3746         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3747         if (IS_ERR(handle)) {
3748                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3749                 return;
3750         }
3751
3752         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3753                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3754
3755         /*
3756          * We add the inode to the orphan list, so that if this
3757          * truncate spans multiple transactions, and we crash, we will
3758          * resume the truncate when the filesystem recovers.  It also
3759          * marks the inode dirty, to catch the new size.
3760          *
3761          * Implication: the file must always be in a sane, consistent
3762          * truncatable state while each transaction commits.
3763          */
3764         if (ext4_orphan_add(handle, inode))
3765                 goto out_stop;
3766
3767         down_write(&EXT4_I(inode)->i_data_sem);
3768
3769         ext4_discard_preallocations(inode);
3770
3771         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3772                 ext4_ext_truncate(handle, inode);
3773         else
3774                 ext4_ind_truncate(handle, inode);
3775
3776         up_write(&ei->i_data_sem);
3777
3778         if (IS_SYNC(inode))
3779                 ext4_handle_sync(handle);
3780
3781 out_stop:
3782         /*
3783          * If this was a simple ftruncate() and the file will remain alive,
3784          * then we need to clear up the orphan record which we created above.
3785          * However, if this was a real unlink then we were called by
3786          * ext4_delete_inode(), and we allow that function to clean up the
3787          * orphan info for us.
3788          */
3789         if (inode->i_nlink)
3790                 ext4_orphan_del(handle, inode);
3791
3792         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3793         ext4_mark_inode_dirty(handle, inode);
3794         ext4_journal_stop(handle);
3795
3796         trace_ext4_truncate_exit(inode);
3797 }
3798
3799 /*
3800  * ext4_get_inode_loc returns with an extra refcount against the inode's
3801  * underlying buffer_head on success. If 'in_mem' is true, we have all
3802  * data in memory that is needed to recreate the on-disk version of this
3803  * inode.
3804  */
3805 static int __ext4_get_inode_loc(struct inode *inode,
3806                                 struct ext4_iloc *iloc, int in_mem)
3807 {
3808         struct ext4_group_desc  *gdp;
3809         struct buffer_head      *bh;
3810         struct super_block      *sb = inode->i_sb;
3811         ext4_fsblk_t            block;
3812         int                     inodes_per_block, inode_offset;
3813
3814         iloc->bh = NULL;
3815         if (!ext4_valid_inum(sb, inode->i_ino))
3816                 return -EIO;
3817
3818         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3819         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3820         if (!gdp)
3821                 return -EIO;
3822
3823         /*
3824          * Figure out the offset within the block group inode table
3825          */
3826         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3827         inode_offset = ((inode->i_ino - 1) %
3828                         EXT4_INODES_PER_GROUP(sb));
3829         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3830         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3831
3832         bh = sb_getblk(sb, block);
3833         if (unlikely(!bh))
3834                 return -ENOMEM;
3835         if (!buffer_uptodate(bh)) {
3836                 lock_buffer(bh);
3837
3838                 /*
3839                  * If the buffer has the write error flag, we have failed
3840                  * to write out another inode in the same block.  In this
3841                  * case, we don't have to read the block because we may
3842                  * read the old inode data successfully.
3843                  */
3844                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3845                         set_buffer_uptodate(bh);
3846
3847                 if (buffer_uptodate(bh)) {
3848                         /* someone brought it uptodate while we waited */
3849                         unlock_buffer(bh);
3850                         goto has_buffer;
3851                 }
3852
3853                 /*
3854                  * If we have all information of the inode in memory and this
3855                  * is the only valid inode in the block, we need not read the
3856                  * block.
3857                  */
3858                 if (in_mem) {
3859                         struct buffer_head *bitmap_bh;
3860                         int i, start;
3861
3862                         start = inode_offset & ~(inodes_per_block - 1);
3863
3864                         /* Is the inode bitmap in cache? */
3865                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3866                         if (unlikely(!bitmap_bh))
3867                                 goto make_io;
3868
3869                         /*
3870                          * If the inode bitmap isn't in cache then the
3871                          * optimisation may end up performing two reads instead
3872                          * of one, so skip it.
3873                          */
3874                         if (!buffer_uptodate(bitmap_bh)) {
3875                                 brelse(bitmap_bh);
3876                                 goto make_io;
3877                         }
3878                         for (i = start; i < start + inodes_per_block; i++) {
3879                                 if (i == inode_offset)
3880                                         continue;
3881                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3882                                         break;
3883                         }
3884                         brelse(bitmap_bh);
3885                         if (i == start + inodes_per_block) {
3886                                 /* all other inodes are free, so skip I/O */
3887                                 memset(bh->b_data, 0, bh->b_size);
3888                                 set_buffer_uptodate(bh);
3889                                 unlock_buffer(bh);
3890                                 goto has_buffer;
3891                         }
3892                 }
3893
3894 make_io:
3895                 /*
3896                  * If we need to do any I/O, try to pre-readahead extra
3897                  * blocks from the inode table.
3898                  */
3899                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3900                         ext4_fsblk_t b, end, table;
3901                         unsigned num;
3902                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3903
3904                         table = ext4_inode_table(sb, gdp);
3905                         /* s_inode_readahead_blks is always a power of 2 */
3906                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3907                         if (table > b)
3908                                 b = table;
3909                         end = b + ra_blks;
3910                         num = EXT4_INODES_PER_GROUP(sb);
3911                         if (ext4_has_group_desc_csum(sb))
3912                                 num -= ext4_itable_unused_count(sb, gdp);
3913                         table += num / inodes_per_block;
3914                         if (end > table)
3915                                 end = table;
3916                         while (b <= end)
3917                                 sb_breadahead(sb, b++);
3918                 }
3919
3920                 /*
3921                  * There are other valid inodes in the buffer, this inode
3922                  * has in-inode xattrs, or we don't have this inode in memory.
3923                  * Read the block from disk.
3924                  */
3925                 trace_ext4_load_inode(inode);
3926                 get_bh(bh);
3927                 bh->b_end_io = end_buffer_read_sync;
3928                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3929                 wait_on_buffer(bh);
3930                 if (!buffer_uptodate(bh)) {
3931                         EXT4_ERROR_INODE_BLOCK(inode, block,
3932                                                "unable to read itable block");
3933                         brelse(bh);
3934                         return -EIO;
3935                 }
3936         }
3937 has_buffer:
3938         iloc->bh = bh;
3939         return 0;
3940 }
3941
3942 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3943 {
3944         /* We have all inode data except xattrs in memory here. */
3945         return __ext4_get_inode_loc(inode, iloc,
3946                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3947 }
3948
3949 void ext4_set_inode_flags(struct inode *inode)
3950 {
3951         unsigned int flags = EXT4_I(inode)->i_flags;
3952
3953         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3954         if (flags & EXT4_SYNC_FL)
3955                 inode->i_flags |= S_SYNC;
3956         if (flags & EXT4_APPEND_FL)
3957                 inode->i_flags |= S_APPEND;
3958         if (flags & EXT4_IMMUTABLE_FL)
3959                 inode->i_flags |= S_IMMUTABLE;
3960         if (flags & EXT4_NOATIME_FL)
3961                 inode->i_flags |= S_NOATIME;
3962         if (flags & EXT4_DIRSYNC_FL)
3963                 inode->i_flags |= S_DIRSYNC;
3964 }
3965
3966 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3967 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3968 {
3969         unsigned int vfs_fl;
3970         unsigned long old_fl, new_fl;
3971
3972         do {
3973                 vfs_fl = ei->vfs_inode.i_flags;
3974                 old_fl = ei->i_flags;
3975                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3976                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3977                                 EXT4_DIRSYNC_FL);
3978                 if (vfs_fl & S_SYNC)
3979                         new_fl |= EXT4_SYNC_FL;
3980                 if (vfs_fl & S_APPEND)
3981                         new_fl |= EXT4_APPEND_FL;
3982                 if (vfs_fl & S_IMMUTABLE)
3983                         new_fl |= EXT4_IMMUTABLE_FL;
3984                 if (vfs_fl & S_NOATIME)
3985                         new_fl |= EXT4_NOATIME_FL;
3986                 if (vfs_fl & S_DIRSYNC)
3987                         new_fl |= EXT4_DIRSYNC_FL;
3988         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3989 }
3990
3991 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3992                                   struct ext4_inode_info *ei)
3993 {
3994         blkcnt_t i_blocks ;
3995         struct inode *inode = &(ei->vfs_inode);
3996         struct super_block *sb = inode->i_sb;
3997
3998         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3999                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4000                 /* we are using combined 48 bit field */
4001                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4002                                         le32_to_cpu(raw_inode->i_blocks_lo);
4003                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4004                         /* i_blocks represent file system block size */
4005                         return i_blocks  << (inode->i_blkbits - 9);
4006                 } else {
4007                         return i_blocks;
4008                 }
4009         } else {
4010                 return le32_to_cpu(raw_inode->i_blocks_lo);
4011         }
4012 }
4013
4014 static inline void ext4_iget_extra_inode(struct inode *inode,
4015                                          struct ext4_inode *raw_inode,
4016                                          struct ext4_inode_info *ei)
4017 {
4018         __le32 *magic = (void *)raw_inode +
4019                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4020         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4021                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4022                 ext4_find_inline_data_nolock(inode);
4023         } else
4024                 EXT4_I(inode)->i_inline_off = 0;
4025 }
4026
4027 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4028 {
4029         struct ext4_iloc iloc;
4030         struct ext4_inode *raw_inode;
4031         struct ext4_inode_info *ei;
4032         struct inode *inode;
4033         journal_t *journal = EXT4_SB(sb)->s_journal;
4034         long ret;
4035         int block;
4036         uid_t i_uid;
4037         gid_t i_gid;
4038
4039         inode = iget_locked(sb, ino);
4040         if (!inode)
4041                 return ERR_PTR(-ENOMEM);
4042         if (!(inode->i_state & I_NEW))
4043                 return inode;
4044
4045         ei = EXT4_I(inode);
4046         iloc.bh = NULL;
4047
4048         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4049         if (ret < 0)
4050                 goto bad_inode;
4051         raw_inode = ext4_raw_inode(&iloc);
4052
4053         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4054                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4055                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4056                     EXT4_INODE_SIZE(inode->i_sb)) {
4057                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4058                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4059                                 EXT4_INODE_SIZE(inode->i_sb));
4060                         ret = -EIO;
4061                         goto bad_inode;
4062                 }
4063         } else
4064                 ei->i_extra_isize = 0;
4065
4066         /* Precompute checksum seed for inode metadata */
4067         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4068                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4069                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4070                 __u32 csum;
4071                 __le32 inum = cpu_to_le32(inode->i_ino);
4072                 __le32 gen = raw_inode->i_generation;
4073                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4074                                    sizeof(inum));
4075                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4076                                               sizeof(gen));
4077         }
4078
4079         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4080                 EXT4_ERROR_INODE(inode, "checksum invalid");
4081                 ret = -EIO;
4082                 goto bad_inode;
4083         }
4084
4085         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4086         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4087         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4088         if (!(test_opt(inode->i_sb, NO_UID32))) {
4089                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4090                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4091         }
4092         i_uid_write(inode, i_uid);
4093         i_gid_write(inode, i_gid);
4094         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4095
4096         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4097         ei->i_inline_off = 0;
4098         ei->i_dir_start_lookup = 0;
4099         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4100         /* We now have enough fields to check if the inode was active or not.
4101          * This is needed because nfsd might try to access dead inodes
4102          * the test is that same one that e2fsck uses
4103          * NeilBrown 1999oct15
4104          */
4105         if (inode->i_nlink == 0) {
4106                 if ((inode->i_mode == 0 ||
4107                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4108                     ino != EXT4_BOOT_LOADER_INO) {
4109                         /* this inode is deleted */
4110                         ret = -ESTALE;
4111                         goto bad_inode;
4112                 }
4113                 /* The only unlinked inodes we let through here have
4114                  * valid i_mode and are being read by the orphan
4115                  * recovery code: that's fine, we're about to complete
4116                  * the process of deleting those.
4117                  * OR it is the EXT4_BOOT_LOADER_INO which is
4118                  * not initialized on a new filesystem. */
4119         }
4120         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4121         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4122         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4123         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4124                 ei->i_file_acl |=
4125                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4126         inode->i_size = ext4_isize(raw_inode);
4127         ei->i_disksize = inode->i_size;
4128 #ifdef CONFIG_QUOTA
4129         ei->i_reserved_quota = 0;
4130 #endif
4131         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4132         ei->i_block_group = iloc.block_group;
4133         ei->i_last_alloc_group = ~0;
4134         /*
4135          * NOTE! The in-memory inode i_data array is in little-endian order
4136          * even on big-endian machines: we do NOT byteswap the block numbers!
4137          */
4138         for (block = 0; block < EXT4_N_BLOCKS; block++)
4139                 ei->i_data[block] = raw_inode->i_block[block];
4140         INIT_LIST_HEAD(&ei->i_orphan);
4141
4142         /*
4143          * Set transaction id's of transactions that have to be committed
4144          * to finish f[data]sync. We set them to currently running transaction
4145          * as we cannot be sure that the inode or some of its metadata isn't
4146          * part of the transaction - the inode could have been reclaimed and
4147          * now it is reread from disk.
4148          */
4149         if (journal) {
4150                 transaction_t *transaction;
4151                 tid_t tid;
4152
4153                 read_lock(&journal->j_state_lock);
4154                 if (journal->j_running_transaction)
4155                         transaction = journal->j_running_transaction;
4156                 else
4157                         transaction = journal->j_committing_transaction;
4158                 if (transaction)
4159                         tid = transaction->t_tid;
4160                 else
4161                         tid = journal->j_commit_sequence;
4162                 read_unlock(&journal->j_state_lock);
4163                 ei->i_sync_tid = tid;
4164                 ei->i_datasync_tid = tid;
4165         }
4166
4167         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4168                 if (ei->i_extra_isize == 0) {
4169                         /* The extra space is currently unused. Use it. */
4170                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4171                                             EXT4_GOOD_OLD_INODE_SIZE;
4172                 } else {
4173                         ext4_iget_extra_inode(inode, raw_inode, ei);
4174                 }
4175         }
4176
4177         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4178         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4179         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4180         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4181
4182         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4183         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4184                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4185                         inode->i_version |=
4186                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4187         }
4188
4189         ret = 0;
4190         if (ei->i_file_acl &&
4191             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4192                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4193                                  ei->i_file_acl);
4194                 ret = -EIO;
4195                 goto bad_inode;
4196         } else if (!ext4_has_inline_data(inode)) {
4197                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4198                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4199                             (S_ISLNK(inode->i_mode) &&
4200                              !ext4_inode_is_fast_symlink(inode))))
4201                                 /* Validate extent which is part of inode */
4202                                 ret = ext4_ext_check_inode(inode);
4203                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4204                            (S_ISLNK(inode->i_mode) &&
4205                             !ext4_inode_is_fast_symlink(inode))) {
4206                         /* Validate block references which are part of inode */
4207                         ret = ext4_ind_check_inode(inode);
4208                 }
4209         }
4210         if (ret)
4211                 goto bad_inode;
4212
4213         if (S_ISREG(inode->i_mode)) {
4214                 inode->i_op = &ext4_file_inode_operations;
4215                 inode->i_fop = &ext4_file_operations;
4216                 ext4_set_aops(inode);
4217         } else if (S_ISDIR(inode->i_mode)) {
4218                 inode->i_op = &ext4_dir_inode_operations;
4219                 inode->i_fop = &ext4_dir_operations;
4220         } else if (S_ISLNK(inode->i_mode)) {
4221                 if (ext4_inode_is_fast_symlink(inode)) {
4222                         inode->i_op = &ext4_fast_symlink_inode_operations;
4223                         nd_terminate_link(ei->i_data, inode->i_size,
4224                                 sizeof(ei->i_data) - 1);
4225                 } else {
4226                         inode->i_op = &ext4_symlink_inode_operations;
4227                         ext4_set_aops(inode);
4228                 }
4229         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4230               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4231                 inode->i_op = &ext4_special_inode_operations;
4232                 if (raw_inode->i_block[0])
4233                         init_special_inode(inode, inode->i_mode,
4234                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4235                 else
4236                         init_special_inode(inode, inode->i_mode,
4237                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4238         } else if (ino == EXT4_BOOT_LOADER_INO) {
4239                 make_bad_inode(inode);
4240         } else {
4241                 ret = -EIO;
4242                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4243                 goto bad_inode;
4244         }
4245         brelse(iloc.bh);
4246         ext4_set_inode_flags(inode);
4247         unlock_new_inode(inode);
4248         return inode;
4249
4250 bad_inode:
4251         brelse(iloc.bh);
4252         iget_failed(inode);
4253         return ERR_PTR(ret);
4254 }
4255
4256 static int ext4_inode_blocks_set(handle_t *handle,
4257                                 struct ext4_inode *raw_inode,
4258                                 struct ext4_inode_info *ei)
4259 {
4260         struct inode *inode = &(ei->vfs_inode);
4261         u64 i_blocks = inode->i_blocks;
4262         struct super_block *sb = inode->i_sb;
4263
4264         if (i_blocks <= ~0U) {
4265                 /*
4266                  * i_blocks can be represented in a 32 bit variable
4267                  * as multiple of 512 bytes
4268                  */
4269                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4270                 raw_inode->i_blocks_high = 0;
4271                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4272                 return 0;
4273         }
4274         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4275                 return -EFBIG;
4276
4277         if (i_blocks <= 0xffffffffffffULL) {
4278                 /*
4279                  * i_blocks can be represented in a 48 bit variable
4280                  * as multiple of 512 bytes
4281                  */
4282                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4283                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4284                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4285         } else {
4286                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4287                 /* i_block is stored in file system block size */
4288                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4289                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4290                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4291         }
4292         return 0;
4293 }
4294
4295 /*
4296  * Post the struct inode info into an on-disk inode location in the
4297  * buffer-cache.  This gobbles the caller's reference to the
4298  * buffer_head in the inode location struct.
4299  *
4300  * The caller must have write access to iloc->bh.
4301  */
4302 static int ext4_do_update_inode(handle_t *handle,
4303                                 struct inode *inode,
4304                                 struct ext4_iloc *iloc)
4305 {
4306         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4307         struct ext4_inode_info *ei = EXT4_I(inode);
4308         struct buffer_head *bh = iloc->bh;
4309         int err = 0, rc, block;
4310         int need_datasync = 0;
4311         uid_t i_uid;
4312         gid_t i_gid;
4313
4314         /* For fields not not tracking in the in-memory inode,
4315          * initialise them to zero for new inodes. */
4316         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4317                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4318
4319         ext4_get_inode_flags(ei);
4320         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4321         i_uid = i_uid_read(inode);
4322         i_gid = i_gid_read(inode);
4323         if (!(test_opt(inode->i_sb, NO_UID32))) {
4324                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4325                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4326 /*
4327  * Fix up interoperability with old kernels. Otherwise, old inodes get
4328  * re-used with the upper 16 bits of the uid/gid intact
4329  */
4330                 if (!ei->i_dtime) {
4331                         raw_inode->i_uid_high =
4332                                 cpu_to_le16(high_16_bits(i_uid));
4333                         raw_inode->i_gid_high =
4334                                 cpu_to_le16(high_16_bits(i_gid));
4335                 } else {
4336                         raw_inode->i_uid_high = 0;
4337                         raw_inode->i_gid_high = 0;
4338                 }
4339         } else {
4340                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4341                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4342                 raw_inode->i_uid_high = 0;
4343                 raw_inode->i_gid_high = 0;
4344         }
4345         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4346
4347         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4348         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4349         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4350         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4351
4352         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4353                 goto out_brelse;
4354         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4355         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4356         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4357             cpu_to_le32(EXT4_OS_HURD))
4358                 raw_inode->i_file_acl_high =
4359                         cpu_to_le16(ei->i_file_acl >> 32);
4360         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4361         if (ei->i_disksize != ext4_isize(raw_inode)) {
4362                 ext4_isize_set(raw_inode, ei->i_disksize);
4363                 need_datasync = 1;
4364         }
4365         if (ei->i_disksize > 0x7fffffffULL) {
4366                 struct super_block *sb = inode->i_sb;
4367                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4368                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4369                                 EXT4_SB(sb)->s_es->s_rev_level ==
4370                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4371                         /* If this is the first large file
4372                          * created, add a flag to the superblock.
4373                          */
4374                         err = ext4_journal_get_write_access(handle,
4375                                         EXT4_SB(sb)->s_sbh);
4376                         if (err)
4377                                 goto out_brelse;
4378                         ext4_update_dynamic_rev(sb);
4379                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4380                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4381                         ext4_handle_sync(handle);
4382                         err = ext4_handle_dirty_super(handle, sb);
4383                 }
4384         }
4385         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4386         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4387                 if (old_valid_dev(inode->i_rdev)) {
4388                         raw_inode->i_block[0] =
4389                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4390                         raw_inode->i_block[1] = 0;
4391                 } else {
4392                         raw_inode->i_block[0] = 0;
4393                         raw_inode->i_block[1] =
4394                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4395                         raw_inode->i_block[2] = 0;
4396                 }
4397         } else if (!ext4_has_inline_data(inode)) {
4398                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4399                         raw_inode->i_block[block] = ei->i_data[block];
4400         }
4401
4402         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4403         if (ei->i_extra_isize) {
4404                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4405                         raw_inode->i_version_hi =
4406                         cpu_to_le32(inode->i_version >> 32);
4407                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4408         }
4409
4410         ext4_inode_csum_set(inode, raw_inode, ei);
4411
4412         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4413         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4414         if (!err)
4415                 err = rc;
4416         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4417
4418         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4419 out_brelse:
4420         brelse(bh);
4421         ext4_std_error(inode->i_sb, err);
4422         return err;
4423 }
4424
4425 /*
4426  * ext4_write_inode()
4427  *
4428  * We are called from a few places:
4429  *
4430  * - Within generic_file_write() for O_SYNC files.
4431  *   Here, there will be no transaction running. We wait for any running
4432  *   transaction to commit.
4433  *
4434  * - Within sys_sync(), kupdate and such.
4435  *   We wait on commit, if tol to.
4436  *
4437  * - Within prune_icache() (PF_MEMALLOC == true)
4438  *   Here we simply return.  We can't afford to block kswapd on the
4439  *   journal commit.
4440  *
4441  * In all cases it is actually safe for us to return without doing anything,
4442  * because the inode has been copied into a raw inode buffer in
4443  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4444  * knfsd.
4445  *
4446  * Note that we are absolutely dependent upon all inode dirtiers doing the
4447  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4448  * which we are interested.
4449  *
4450  * It would be a bug for them to not do this.  The code:
4451  *
4452  *      mark_inode_dirty(inode)
4453  *      stuff();
4454  *      inode->i_size = expr;
4455  *
4456  * is in error because a kswapd-driven write_inode() could occur while
4457  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4458  * will no longer be on the superblock's dirty inode list.
4459  */
4460 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4461 {
4462         int err;
4463
4464         if (current->flags & PF_MEMALLOC)
4465                 return 0;
4466
4467         if (EXT4_SB(inode->i_sb)->s_journal) {
4468                 if (ext4_journal_current_handle()) {
4469                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4470                         dump_stack();
4471                         return -EIO;
4472                 }
4473
4474                 if (wbc->sync_mode != WB_SYNC_ALL)
4475                         return 0;
4476
4477                 err = ext4_force_commit(inode->i_sb);
4478         } else {
4479                 struct ext4_iloc iloc;
4480
4481                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4482                 if (err)
4483                         return err;
4484                 if (wbc->sync_mode == WB_SYNC_ALL)
4485                         sync_dirty_buffer(iloc.bh);
4486                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4487                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4488                                          "IO error syncing inode");
4489                         err = -EIO;
4490                 }
4491                 brelse(iloc.bh);
4492         }
4493         return err;
4494 }
4495
4496 /*
4497  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4498  * buffers that are attached to a page stradding i_size and are undergoing
4499  * commit. In that case we have to wait for commit to finish and try again.
4500  */
4501 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4502 {
4503         struct page *page;
4504         unsigned offset;
4505         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4506         tid_t commit_tid = 0;
4507         int ret;
4508
4509         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4510         /*
4511          * All buffers in the last page remain valid? Then there's nothing to
4512          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4513          * blocksize case
4514          */
4515         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4516                 return;
4517         while (1) {
4518                 page = find_lock_page(inode->i_mapping,
4519                                       inode->i_size >> PAGE_CACHE_SHIFT);
4520                 if (!page)
4521                         return;
4522                 ret = __ext4_journalled_invalidatepage(page, offset,
4523                                                 PAGE_CACHE_SIZE - offset);
4524                 unlock_page(page);
4525                 page_cache_release(page);
4526                 if (ret != -EBUSY)
4527                         return;
4528                 commit_tid = 0;
4529                 read_lock(&journal->j_state_lock);
4530                 if (journal->j_committing_transaction)
4531                         commit_tid = journal->j_committing_transaction->t_tid;
4532                 read_unlock(&journal->j_state_lock);
4533                 if (commit_tid)
4534                         jbd2_log_wait_commit(journal, commit_tid);
4535         }
4536 }
4537
4538 /*
4539  * ext4_setattr()
4540  *
4541  * Called from notify_change.
4542  *
4543  * We want to trap VFS attempts to truncate the file as soon as
4544  * possible.  In particular, we want to make sure that when the VFS
4545  * shrinks i_size, we put the inode on the orphan list and modify
4546  * i_disksize immediately, so that during the subsequent flushing of
4547  * dirty pages and freeing of disk blocks, we can guarantee that any
4548  * commit will leave the blocks being flushed in an unused state on
4549  * disk.  (On recovery, the inode will get truncated and the blocks will
4550  * be freed, so we have a strong guarantee that no future commit will
4551  * leave these blocks visible to the user.)
4552  *
4553  * Another thing we have to assure is that if we are in ordered mode
4554  * and inode is still attached to the committing transaction, we must
4555  * we start writeout of all the dirty pages which are being truncated.
4556  * This way we are sure that all the data written in the previous
4557  * transaction are already on disk (truncate waits for pages under
4558  * writeback).
4559  *
4560  * Called with inode->i_mutex down.
4561  */
4562 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4563 {
4564         struct inode *inode = dentry->d_inode;
4565         int error, rc = 0;
4566         int orphan = 0;
4567         const unsigned int ia_valid = attr->ia_valid;
4568
4569         error = inode_change_ok(inode, attr);
4570         if (error)
4571                 return error;
4572
4573         if (is_quota_modification(inode, attr))
4574                 dquot_initialize(inode);
4575         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4576             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4577                 handle_t *handle;
4578
4579                 /* (user+group)*(old+new) structure, inode write (sb,
4580                  * inode block, ? - but truncate inode update has it) */
4581                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4582                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4583                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4584                 if (IS_ERR(handle)) {
4585                         error = PTR_ERR(handle);
4586                         goto err_out;
4587                 }
4588                 error = dquot_transfer(inode, attr);
4589                 if (error) {
4590                         ext4_journal_stop(handle);
4591                         return error;
4592                 }
4593                 /* Update corresponding info in inode so that everything is in
4594                  * one transaction */
4595                 if (attr->ia_valid & ATTR_UID)
4596                         inode->i_uid = attr->ia_uid;
4597                 if (attr->ia_valid & ATTR_GID)
4598                         inode->i_gid = attr->ia_gid;
4599                 error = ext4_mark_inode_dirty(handle, inode);
4600                 ext4_journal_stop(handle);
4601         }
4602
4603         if (attr->ia_valid & ATTR_SIZE) {
4604
4605                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4606                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4607
4608                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4609                                 return -EFBIG;
4610                 }
4611         }
4612
4613         if (S_ISREG(inode->i_mode) &&
4614             attr->ia_valid & ATTR_SIZE &&
4615             (attr->ia_size < inode->i_size)) {
4616                 handle_t *handle;
4617
4618                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4619                 if (IS_ERR(handle)) {
4620                         error = PTR_ERR(handle);
4621                         goto err_out;
4622                 }
4623                 if (ext4_handle_valid(handle)) {
4624                         error = ext4_orphan_add(handle, inode);
4625                         orphan = 1;
4626                 }
4627                 EXT4_I(inode)->i_disksize = attr->ia_size;
4628                 rc = ext4_mark_inode_dirty(handle, inode);
4629                 if (!error)
4630                         error = rc;
4631                 ext4_journal_stop(handle);
4632
4633                 if (ext4_should_order_data(inode)) {
4634                         error = ext4_begin_ordered_truncate(inode,
4635                                                             attr->ia_size);
4636                         if (error) {
4637                                 /* Do as much error cleanup as possible */
4638                                 handle = ext4_journal_start(inode,
4639                                                             EXT4_HT_INODE, 3);
4640                                 if (IS_ERR(handle)) {
4641                                         ext4_orphan_del(NULL, inode);
4642                                         goto err_out;
4643                                 }
4644                                 ext4_orphan_del(handle, inode);
4645                                 orphan = 0;
4646                                 ext4_journal_stop(handle);
4647                                 goto err_out;
4648                         }
4649                 }
4650         }
4651
4652         if (attr->ia_valid & ATTR_SIZE) {
4653                 if (attr->ia_size != inode->i_size) {
4654                         loff_t oldsize = inode->i_size;
4655
4656                         i_size_write(inode, attr->ia_size);
4657                         /*
4658                          * Blocks are going to be removed from the inode. Wait
4659                          * for dio in flight.  Temporarily disable
4660                          * dioread_nolock to prevent livelock.
4661                          */
4662                         if (orphan) {
4663                                 if (!ext4_should_journal_data(inode)) {
4664                                         ext4_inode_block_unlocked_dio(inode);
4665                                         inode_dio_wait(inode);
4666                                         ext4_inode_resume_unlocked_dio(inode);
4667                                 } else
4668                                         ext4_wait_for_tail_page_commit(inode);
4669                         }
4670                         /*
4671                          * Truncate pagecache after we've waited for commit
4672                          * in data=journal mode to make pages freeable.
4673                          */
4674                         truncate_pagecache(inode, oldsize, inode->i_size);
4675                 }
4676                 ext4_truncate(inode);
4677         }
4678
4679         if (!rc) {
4680                 setattr_copy(inode, attr);
4681                 mark_inode_dirty(inode);
4682         }
4683
4684         /*
4685          * If the call to ext4_truncate failed to get a transaction handle at
4686          * all, we need to clean up the in-core orphan list manually.
4687          */
4688         if (orphan && inode->i_nlink)
4689                 ext4_orphan_del(NULL, inode);
4690
4691         if (!rc && (ia_valid & ATTR_MODE))
4692                 rc = ext4_acl_chmod(inode);
4693
4694 err_out:
4695         ext4_std_error(inode->i_sb, error);
4696         if (!error)
4697                 error = rc;
4698         return error;
4699 }
4700
4701 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4702                  struct kstat *stat)
4703 {
4704         struct inode *inode;
4705         unsigned long long delalloc_blocks;
4706
4707         inode = dentry->d_inode;
4708         generic_fillattr(inode, stat);
4709
4710         /*
4711          * We can't update i_blocks if the block allocation is delayed
4712          * otherwise in the case of system crash before the real block
4713          * allocation is done, we will have i_blocks inconsistent with
4714          * on-disk file blocks.
4715          * We always keep i_blocks updated together with real
4716          * allocation. But to not confuse with user, stat
4717          * will return the blocks that include the delayed allocation
4718          * blocks for this file.
4719          */
4720         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4721                                 EXT4_I(inode)->i_reserved_data_blocks);
4722
4723         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4724         return 0;
4725 }
4726
4727 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4728                                    int pextents)
4729 {
4730         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4731                 return ext4_ind_trans_blocks(inode, lblocks);
4732         return ext4_ext_index_trans_blocks(inode, pextents);
4733 }
4734
4735 /*
4736  * Account for index blocks, block groups bitmaps and block group
4737  * descriptor blocks if modify datablocks and index blocks
4738  * worse case, the indexs blocks spread over different block groups
4739  *
4740  * If datablocks are discontiguous, they are possible to spread over
4741  * different block groups too. If they are contiguous, with flexbg,
4742  * they could still across block group boundary.
4743  *
4744  * Also account for superblock, inode, quota and xattr blocks
4745  */
4746 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4747                                   int pextents)
4748 {
4749         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4750         int gdpblocks;
4751         int idxblocks;
4752         int ret = 0;
4753
4754         /*
4755          * How many index blocks need to touch to map @lblocks logical blocks
4756          * to @pextents physical extents?
4757          */
4758         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4759
4760         ret = idxblocks;
4761
4762         /*
4763          * Now let's see how many group bitmaps and group descriptors need
4764          * to account
4765          */
4766         groups = idxblocks + pextents;
4767         gdpblocks = groups;
4768         if (groups > ngroups)
4769                 groups = ngroups;
4770         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4771                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4772
4773         /* bitmaps and block group descriptor blocks */
4774         ret += groups + gdpblocks;
4775
4776         /* Blocks for super block, inode, quota and xattr blocks */
4777         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4778
4779         return ret;
4780 }
4781
4782 /*
4783  * Calculate the total number of credits to reserve to fit
4784  * the modification of a single pages into a single transaction,
4785  * which may include multiple chunks of block allocations.
4786  *
4787  * This could be called via ext4_write_begin()
4788  *
4789  * We need to consider the worse case, when
4790  * one new block per extent.
4791  */
4792 int ext4_writepage_trans_blocks(struct inode *inode)
4793 {
4794         int bpp = ext4_journal_blocks_per_page(inode);
4795         int ret;
4796
4797         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4798
4799         /* Account for data blocks for journalled mode */
4800         if (ext4_should_journal_data(inode))
4801                 ret += bpp;
4802         return ret;
4803 }
4804
4805 /*
4806  * Calculate the journal credits for a chunk of data modification.
4807  *
4808  * This is called from DIO, fallocate or whoever calling
4809  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4810  *
4811  * journal buffers for data blocks are not included here, as DIO
4812  * and fallocate do no need to journal data buffers.
4813  */
4814 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4815 {
4816         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4817 }
4818
4819 /*
4820  * The caller must have previously called ext4_reserve_inode_write().
4821  * Give this, we know that the caller already has write access to iloc->bh.
4822  */
4823 int ext4_mark_iloc_dirty(handle_t *handle,
4824                          struct inode *inode, struct ext4_iloc *iloc)
4825 {
4826         int err = 0;
4827
4828         if (IS_I_VERSION(inode))
4829                 inode_inc_iversion(inode);
4830
4831         /* the do_update_inode consumes one bh->b_count */
4832         get_bh(iloc->bh);
4833
4834         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4835         err = ext4_do_update_inode(handle, inode, iloc);
4836         put_bh(iloc->bh);
4837         return err;
4838 }
4839
4840 /*
4841  * On success, We end up with an outstanding reference count against
4842  * iloc->bh.  This _must_ be cleaned up later.
4843  */
4844
4845 int
4846 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4847                          struct ext4_iloc *iloc)
4848 {
4849         int err;
4850
4851         err = ext4_get_inode_loc(inode, iloc);
4852         if (!err) {
4853                 BUFFER_TRACE(iloc->bh, "get_write_access");
4854                 err = ext4_journal_get_write_access(handle, iloc->bh);
4855                 if (err) {
4856                         brelse(iloc->bh);
4857                         iloc->bh = NULL;
4858                 }
4859         }
4860         ext4_std_error(inode->i_sb, err);
4861         return err;
4862 }
4863
4864 /*
4865  * Expand an inode by new_extra_isize bytes.
4866  * Returns 0 on success or negative error number on failure.
4867  */
4868 static int ext4_expand_extra_isize(struct inode *inode,
4869                                    unsigned int new_extra_isize,
4870                                    struct ext4_iloc iloc,
4871                                    handle_t *handle)
4872 {
4873         struct ext4_inode *raw_inode;
4874         struct ext4_xattr_ibody_header *header;
4875
4876         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4877                 return 0;
4878
4879         raw_inode = ext4_raw_inode(&iloc);
4880
4881         header = IHDR(inode, raw_inode);
4882
4883         /* No extended attributes present */
4884         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4885             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4886                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4887                         new_extra_isize);
4888                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4889                 return 0;
4890         }
4891
4892         /* try to expand with EAs present */
4893         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4894                                           raw_inode, handle);
4895 }
4896
4897 /*
4898  * What we do here is to mark the in-core inode as clean with respect to inode
4899  * dirtiness (it may still be data-dirty).
4900  * This means that the in-core inode may be reaped by prune_icache
4901  * without having to perform any I/O.  This is a very good thing,
4902  * because *any* task may call prune_icache - even ones which
4903  * have a transaction open against a different journal.
4904  *
4905  * Is this cheating?  Not really.  Sure, we haven't written the
4906  * inode out, but prune_icache isn't a user-visible syncing function.
4907  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4908  * we start and wait on commits.
4909  */
4910 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4911 {
4912         struct ext4_iloc iloc;
4913         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4914         static unsigned int mnt_count;
4915         int err, ret;
4916
4917         might_sleep();
4918         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4919         err = ext4_reserve_inode_write(handle, inode, &iloc);
4920         if (ext4_handle_valid(handle) &&
4921             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4922             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4923                 /*
4924                  * We need extra buffer credits since we may write into EA block
4925                  * with this same handle. If journal_extend fails, then it will
4926                  * only result in a minor loss of functionality for that inode.
4927                  * If this is felt to be critical, then e2fsck should be run to
4928                  * force a large enough s_min_extra_isize.
4929                  */
4930                 if ((jbd2_journal_extend(handle,
4931                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4932                         ret = ext4_expand_extra_isize(inode,
4933                                                       sbi->s_want_extra_isize,
4934                                                       iloc, handle);
4935                         if (ret) {
4936                                 ext4_set_inode_state(inode,
4937                                                      EXT4_STATE_NO_EXPAND);
4938                                 if (mnt_count !=
4939                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4940                                         ext4_warning(inode->i_sb,
4941                                         "Unable to expand inode %lu. Delete"
4942                                         " some EAs or run e2fsck.",
4943                                         inode->i_ino);
4944                                         mnt_count =
4945                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4946                                 }
4947                         }
4948                 }
4949         }
4950         if (!err)
4951                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4952         return err;
4953 }
4954
4955 /*
4956  * ext4_dirty_inode() is called from __mark_inode_dirty()
4957  *
4958  * We're really interested in the case where a file is being extended.
4959  * i_size has been changed by generic_commit_write() and we thus need
4960  * to include the updated inode in the current transaction.
4961  *
4962  * Also, dquot_alloc_block() will always dirty the inode when blocks
4963  * are allocated to the file.
4964  *
4965  * If the inode is marked synchronous, we don't honour that here - doing
4966  * so would cause a commit on atime updates, which we don't bother doing.
4967  * We handle synchronous inodes at the highest possible level.
4968  */
4969 void ext4_dirty_inode(struct inode *inode, int flags)
4970 {
4971         handle_t *handle;
4972
4973         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4974         if (IS_ERR(handle))
4975                 goto out;
4976
4977         ext4_mark_inode_dirty(handle, inode);
4978
4979         ext4_journal_stop(handle);
4980 out:
4981         return;
4982 }
4983
4984 #if 0
4985 /*
4986  * Bind an inode's backing buffer_head into this transaction, to prevent
4987  * it from being flushed to disk early.  Unlike
4988  * ext4_reserve_inode_write, this leaves behind no bh reference and
4989  * returns no iloc structure, so the caller needs to repeat the iloc
4990  * lookup to mark the inode dirty later.
4991  */
4992 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4993 {
4994         struct ext4_iloc iloc;
4995
4996         int err = 0;
4997         if (handle) {
4998                 err = ext4_get_inode_loc(inode, &iloc);
4999                 if (!err) {
5000                         BUFFER_TRACE(iloc.bh, "get_write_access");
5001                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5002                         if (!err)
5003                                 err = ext4_handle_dirty_metadata(handle,
5004                                                                  NULL,
5005                                                                  iloc.bh);
5006                         brelse(iloc.bh);
5007                 }
5008         }
5009         ext4_std_error(inode->i_sb, err);
5010         return err;
5011 }
5012 #endif
5013
5014 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5015 {
5016         journal_t *journal;
5017         handle_t *handle;
5018         int err;
5019
5020         /*
5021          * We have to be very careful here: changing a data block's
5022          * journaling status dynamically is dangerous.  If we write a
5023          * data block to the journal, change the status and then delete
5024          * that block, we risk forgetting to revoke the old log record
5025          * from the journal and so a subsequent replay can corrupt data.
5026          * So, first we make sure that the journal is empty and that
5027          * nobody is changing anything.
5028          */
5029
5030         journal = EXT4_JOURNAL(inode);
5031         if (!journal)
5032                 return 0;
5033         if (is_journal_aborted(journal))
5034                 return -EROFS;
5035         /* We have to allocate physical blocks for delalloc blocks
5036          * before flushing journal. otherwise delalloc blocks can not
5037          * be allocated any more. even more truncate on delalloc blocks
5038          * could trigger BUG by flushing delalloc blocks in journal.
5039          * There is no delalloc block in non-journal data mode.
5040          */
5041         if (val && test_opt(inode->i_sb, DELALLOC)) {
5042                 err = ext4_alloc_da_blocks(inode);
5043                 if (err < 0)
5044                         return err;
5045         }
5046
5047         /* Wait for all existing dio workers */
5048         ext4_inode_block_unlocked_dio(inode);
5049         inode_dio_wait(inode);
5050
5051         jbd2_journal_lock_updates(journal);
5052
5053         /*
5054          * OK, there are no updates running now, and all cached data is
5055          * synced to disk.  We are now in a completely consistent state
5056          * which doesn't have anything in the journal, and we know that
5057          * no filesystem updates are running, so it is safe to modify
5058          * the inode's in-core data-journaling state flag now.
5059          */
5060
5061         if (val)
5062                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5063         else {
5064                 jbd2_journal_flush(journal);
5065                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5066         }
5067         ext4_set_aops(inode);
5068
5069         jbd2_journal_unlock_updates(journal);
5070         ext4_inode_resume_unlocked_dio(inode);
5071
5072         /* Finally we can mark the inode as dirty. */
5073
5074         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5075         if (IS_ERR(handle))
5076                 return PTR_ERR(handle);
5077
5078         err = ext4_mark_inode_dirty(handle, inode);
5079         ext4_handle_sync(handle);
5080         ext4_journal_stop(handle);
5081         ext4_std_error(inode->i_sb, err);
5082
5083         return err;
5084 }
5085
5086 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5087 {
5088         return !buffer_mapped(bh);
5089 }
5090
5091 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5092 {
5093         struct page *page = vmf->page;
5094         loff_t size;
5095         unsigned long len;
5096         int ret;
5097         struct file *file = vma->vm_file;
5098         struct inode *inode = file_inode(file);
5099         struct address_space *mapping = inode->i_mapping;
5100         handle_t *handle;
5101         get_block_t *get_block;
5102         int retries = 0;
5103
5104         sb_start_pagefault(inode->i_sb);
5105         file_update_time(vma->vm_file);
5106         /* Delalloc case is easy... */
5107         if (test_opt(inode->i_sb, DELALLOC) &&
5108             !ext4_should_journal_data(inode) &&
5109             !ext4_nonda_switch(inode->i_sb)) {
5110                 do {
5111                         ret = __block_page_mkwrite(vma, vmf,
5112                                                    ext4_da_get_block_prep);
5113                 } while (ret == -ENOSPC &&
5114                        ext4_should_retry_alloc(inode->i_sb, &retries));
5115                 goto out_ret;
5116         }
5117
5118         lock_page(page);
5119         size = i_size_read(inode);
5120         /* Page got truncated from under us? */
5121         if (page->mapping != mapping || page_offset(page) > size) {
5122                 unlock_page(page);
5123                 ret = VM_FAULT_NOPAGE;
5124                 goto out;
5125         }
5126
5127         if (page->index == size >> PAGE_CACHE_SHIFT)
5128                 len = size & ~PAGE_CACHE_MASK;
5129         else
5130                 len = PAGE_CACHE_SIZE;
5131         /*
5132          * Return if we have all the buffers mapped. This avoids the need to do
5133          * journal_start/journal_stop which can block and take a long time
5134          */
5135         if (page_has_buffers(page)) {
5136                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5137                                             0, len, NULL,
5138                                             ext4_bh_unmapped)) {
5139                         /* Wait so that we don't change page under IO */
5140                         wait_for_stable_page(page);
5141                         ret = VM_FAULT_LOCKED;
5142                         goto out;
5143                 }
5144         }
5145         unlock_page(page);
5146         /* OK, we need to fill the hole... */
5147         if (ext4_should_dioread_nolock(inode))
5148                 get_block = ext4_get_block_write;
5149         else
5150                 get_block = ext4_get_block;
5151 retry_alloc:
5152         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5153                                     ext4_writepage_trans_blocks(inode));
5154         if (IS_ERR(handle)) {
5155                 ret = VM_FAULT_SIGBUS;
5156                 goto out;
5157         }
5158         ret = __block_page_mkwrite(vma, vmf, get_block);
5159         if (!ret && ext4_should_journal_data(inode)) {
5160                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5161                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5162                         unlock_page(page);
5163                         ret = VM_FAULT_SIGBUS;
5164                         ext4_journal_stop(handle);
5165                         goto out;
5166                 }
5167                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5168         }
5169         ext4_journal_stop(handle);
5170         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5171                 goto retry_alloc;
5172 out_ret:
5173         ret = block_page_mkwrite_return(ret);
5174 out:
5175         sb_end_pagefault(inode->i_sb);
5176         return ret;
5177 }