]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
ext4: silence warning in ext4_writepages()
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429                                        struct inode *inode,
430                                        struct ext4_map_blocks *es_map,
431                                        struct ext4_map_blocks *map,
432                                        int flags)
433 {
434         int retval;
435
436         map->m_flags = 0;
437         /*
438          * There is a race window that the result is not the same.
439          * e.g. xfstests #223 when dioread_nolock enables.  The reason
440          * is that we lookup a block mapping in extent status tree with
441          * out taking i_data_sem.  So at the time the unwritten extent
442          * could be converted.
443          */
444         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445                 down_read((&EXT4_I(inode)->i_data_sem));
446         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448                                              EXT4_GET_BLOCKS_KEEP_SIZE);
449         } else {
450                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         }
453         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454                 up_read((&EXT4_I(inode)->i_data_sem));
455         /*
456          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457          * because it shouldn't be marked in es_map->m_flags.
458          */
459         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertation failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507         struct ext4_map_blocks orig_map;
508
509         memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512         map->m_flags = 0;
513         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
515                   (unsigned long) map->m_lblk);
516
517         ext4_es_lru_add(inode);
518
519         /* Lookup extent status tree firstly */
520         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
521                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
522                         map->m_pblk = ext4_es_pblock(&es) +
523                                         map->m_lblk - es.es_lblk;
524                         map->m_flags |= ext4_es_is_written(&es) ?
525                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
526                         retval = es.es_len - (map->m_lblk - es.es_lblk);
527                         if (retval > map->m_len)
528                                 retval = map->m_len;
529                         map->m_len = retval;
530                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
531                         retval = 0;
532                 } else {
533                         BUG_ON(1);
534                 }
535 #ifdef ES_AGGRESSIVE_TEST
536                 ext4_map_blocks_es_recheck(handle, inode, map,
537                                            &orig_map, flags);
538 #endif
539                 goto found;
540         }
541
542         /*
543          * Try to see if we can get the block without requesting a new
544          * file system block.
545          */
546         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
547                 down_read((&EXT4_I(inode)->i_data_sem));
548         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
549                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
550                                              EXT4_GET_BLOCKS_KEEP_SIZE);
551         } else {
552                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
553                                              EXT4_GET_BLOCKS_KEEP_SIZE);
554         }
555         if (retval > 0) {
556                 int ret;
557                 unsigned long long status;
558
559 #ifdef ES_AGGRESSIVE_TEST
560                 if (retval != map->m_len) {
561                         printk("ES len assertation failed for inode: %lu "
562                                "retval %d != map->m_len %d "
563                                "in %s (lookup)\n", inode->i_ino, retval,
564                                map->m_len, __func__);
565                 }
566 #endif
567
568                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
569                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
570                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
571                     ext4_find_delalloc_range(inode, map->m_lblk,
572                                              map->m_lblk + map->m_len - 1))
573                         status |= EXTENT_STATUS_DELAYED;
574                 ret = ext4_es_insert_extent(inode, map->m_lblk,
575                                             map->m_len, map->m_pblk, status);
576                 if (ret < 0)
577                         retval = ret;
578         }
579         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
580                 up_read((&EXT4_I(inode)->i_data_sem));
581
582 found:
583         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
584                 int ret = check_block_validity(inode, map);
585                 if (ret != 0)
586                         return ret;
587         }
588
589         /* If it is only a block(s) look up */
590         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
591                 return retval;
592
593         /*
594          * Returns if the blocks have already allocated
595          *
596          * Note that if blocks have been preallocated
597          * ext4_ext_get_block() returns the create = 0
598          * with buffer head unmapped.
599          */
600         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
601                 return retval;
602
603         /*
604          * Here we clear m_flags because after allocating an new extent,
605          * it will be set again.
606          */
607         map->m_flags &= ~EXT4_MAP_FLAGS;
608
609         /*
610          * New blocks allocate and/or writing to uninitialized extent
611          * will possibly result in updating i_data, so we take
612          * the write lock of i_data_sem, and call get_blocks()
613          * with create == 1 flag.
614          */
615         down_write((&EXT4_I(inode)->i_data_sem));
616
617         /*
618          * if the caller is from delayed allocation writeout path
619          * we have already reserved fs blocks for allocation
620          * let the underlying get_block() function know to
621          * avoid double accounting
622          */
623         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
624                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
625         /*
626          * We need to check for EXT4 here because migrate
627          * could have changed the inode type in between
628          */
629         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
630                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
631         } else {
632                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
633
634                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
635                         /*
636                          * We allocated new blocks which will result in
637                          * i_data's format changing.  Force the migrate
638                          * to fail by clearing migrate flags
639                          */
640                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
641                 }
642
643                 /*
644                  * Update reserved blocks/metadata blocks after successful
645                  * block allocation which had been deferred till now. We don't
646                  * support fallocate for non extent files. So we can update
647                  * reserve space here.
648                  */
649                 if ((retval > 0) &&
650                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
651                         ext4_da_update_reserve_space(inode, retval, 1);
652         }
653         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
654                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
655
656         if (retval > 0) {
657                 int ret;
658                 unsigned long long status;
659
660 #ifdef ES_AGGRESSIVE_TEST
661                 if (retval != map->m_len) {
662                         printk("ES len assertation failed for inode: %lu "
663                                "retval %d != map->m_len %d "
664                                "in %s (allocation)\n", inode->i_ino, retval,
665                                map->m_len, __func__);
666                 }
667 #endif
668
669                 /*
670                  * If the extent has been zeroed out, we don't need to update
671                  * extent status tree.
672                  */
673                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
674                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
675                         if (ext4_es_is_written(&es))
676                                 goto has_zeroout;
677                 }
678                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
679                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
680                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
681                     ext4_find_delalloc_range(inode, map->m_lblk,
682                                              map->m_lblk + map->m_len - 1))
683                         status |= EXTENT_STATUS_DELAYED;
684                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
685                                             map->m_pblk, status);
686                 if (ret < 0)
687                         retval = ret;
688         }
689
690 has_zeroout:
691         up_write((&EXT4_I(inode)->i_data_sem));
692         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
693                 int ret = check_block_validity(inode, map);
694                 if (ret != 0)
695                         return ret;
696         }
697         return retval;
698 }
699
700 /* Maximum number of blocks we map for direct IO at once. */
701 #define DIO_MAX_BLOCKS 4096
702
703 static int _ext4_get_block(struct inode *inode, sector_t iblock,
704                            struct buffer_head *bh, int flags)
705 {
706         handle_t *handle = ext4_journal_current_handle();
707         struct ext4_map_blocks map;
708         int ret = 0, started = 0;
709         int dio_credits;
710
711         if (ext4_has_inline_data(inode))
712                 return -ERANGE;
713
714         map.m_lblk = iblock;
715         map.m_len = bh->b_size >> inode->i_blkbits;
716
717         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
718                 /* Direct IO write... */
719                 if (map.m_len > DIO_MAX_BLOCKS)
720                         map.m_len = DIO_MAX_BLOCKS;
721                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
722                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
723                                             dio_credits);
724                 if (IS_ERR(handle)) {
725                         ret = PTR_ERR(handle);
726                         return ret;
727                 }
728                 started = 1;
729         }
730
731         ret = ext4_map_blocks(handle, inode, &map, flags);
732         if (ret > 0) {
733                 map_bh(bh, inode->i_sb, map.m_pblk);
734                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
735                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
736                 ret = 0;
737         }
738         if (started)
739                 ext4_journal_stop(handle);
740         return ret;
741 }
742
743 int ext4_get_block(struct inode *inode, sector_t iblock,
744                    struct buffer_head *bh, int create)
745 {
746         return _ext4_get_block(inode, iblock, bh,
747                                create ? EXT4_GET_BLOCKS_CREATE : 0);
748 }
749
750 /*
751  * `handle' can be NULL if create is zero
752  */
753 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
754                                 ext4_lblk_t block, int create, int *errp)
755 {
756         struct ext4_map_blocks map;
757         struct buffer_head *bh;
758         int fatal = 0, err;
759
760         J_ASSERT(handle != NULL || create == 0);
761
762         map.m_lblk = block;
763         map.m_len = 1;
764         err = ext4_map_blocks(handle, inode, &map,
765                               create ? EXT4_GET_BLOCKS_CREATE : 0);
766
767         /* ensure we send some value back into *errp */
768         *errp = 0;
769
770         if (create && err == 0)
771                 err = -ENOSPC;  /* should never happen */
772         if (err < 0)
773                 *errp = err;
774         if (err <= 0)
775                 return NULL;
776
777         bh = sb_getblk(inode->i_sb, map.m_pblk);
778         if (unlikely(!bh)) {
779                 *errp = -ENOMEM;
780                 return NULL;
781         }
782         if (map.m_flags & EXT4_MAP_NEW) {
783                 J_ASSERT(create != 0);
784                 J_ASSERT(handle != NULL);
785
786                 /*
787                  * Now that we do not always journal data, we should
788                  * keep in mind whether this should always journal the
789                  * new buffer as metadata.  For now, regular file
790                  * writes use ext4_get_block instead, so it's not a
791                  * problem.
792                  */
793                 lock_buffer(bh);
794                 BUFFER_TRACE(bh, "call get_create_access");
795                 fatal = ext4_journal_get_create_access(handle, bh);
796                 if (!fatal && !buffer_uptodate(bh)) {
797                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
798                         set_buffer_uptodate(bh);
799                 }
800                 unlock_buffer(bh);
801                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
802                 err = ext4_handle_dirty_metadata(handle, inode, bh);
803                 if (!fatal)
804                         fatal = err;
805         } else {
806                 BUFFER_TRACE(bh, "not a new buffer");
807         }
808         if (fatal) {
809                 *errp = fatal;
810                 brelse(bh);
811                 bh = NULL;
812         }
813         return bh;
814 }
815
816 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
817                                ext4_lblk_t block, int create, int *err)
818 {
819         struct buffer_head *bh;
820
821         bh = ext4_getblk(handle, inode, block, create, err);
822         if (!bh)
823                 return bh;
824         if (buffer_uptodate(bh))
825                 return bh;
826         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
827         wait_on_buffer(bh);
828         if (buffer_uptodate(bh))
829                 return bh;
830         put_bh(bh);
831         *err = -EIO;
832         return NULL;
833 }
834
835 int ext4_walk_page_buffers(handle_t *handle,
836                            struct buffer_head *head,
837                            unsigned from,
838                            unsigned to,
839                            int *partial,
840                            int (*fn)(handle_t *handle,
841                                      struct buffer_head *bh))
842 {
843         struct buffer_head *bh;
844         unsigned block_start, block_end;
845         unsigned blocksize = head->b_size;
846         int err, ret = 0;
847         struct buffer_head *next;
848
849         for (bh = head, block_start = 0;
850              ret == 0 && (bh != head || !block_start);
851              block_start = block_end, bh = next) {
852                 next = bh->b_this_page;
853                 block_end = block_start + blocksize;
854                 if (block_end <= from || block_start >= to) {
855                         if (partial && !buffer_uptodate(bh))
856                                 *partial = 1;
857                         continue;
858                 }
859                 err = (*fn)(handle, bh);
860                 if (!ret)
861                         ret = err;
862         }
863         return ret;
864 }
865
866 /*
867  * To preserve ordering, it is essential that the hole instantiation and
868  * the data write be encapsulated in a single transaction.  We cannot
869  * close off a transaction and start a new one between the ext4_get_block()
870  * and the commit_write().  So doing the jbd2_journal_start at the start of
871  * prepare_write() is the right place.
872  *
873  * Also, this function can nest inside ext4_writepage().  In that case, we
874  * *know* that ext4_writepage() has generated enough buffer credits to do the
875  * whole page.  So we won't block on the journal in that case, which is good,
876  * because the caller may be PF_MEMALLOC.
877  *
878  * By accident, ext4 can be reentered when a transaction is open via
879  * quota file writes.  If we were to commit the transaction while thus
880  * reentered, there can be a deadlock - we would be holding a quota
881  * lock, and the commit would never complete if another thread had a
882  * transaction open and was blocking on the quota lock - a ranking
883  * violation.
884  *
885  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
886  * will _not_ run commit under these circumstances because handle->h_ref
887  * is elevated.  We'll still have enough credits for the tiny quotafile
888  * write.
889  */
890 int do_journal_get_write_access(handle_t *handle,
891                                 struct buffer_head *bh)
892 {
893         int dirty = buffer_dirty(bh);
894         int ret;
895
896         if (!buffer_mapped(bh) || buffer_freed(bh))
897                 return 0;
898         /*
899          * __block_write_begin() could have dirtied some buffers. Clean
900          * the dirty bit as jbd2_journal_get_write_access() could complain
901          * otherwise about fs integrity issues. Setting of the dirty bit
902          * by __block_write_begin() isn't a real problem here as we clear
903          * the bit before releasing a page lock and thus writeback cannot
904          * ever write the buffer.
905          */
906         if (dirty)
907                 clear_buffer_dirty(bh);
908         ret = ext4_journal_get_write_access(handle, bh);
909         if (!ret && dirty)
910                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
911         return ret;
912 }
913
914 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
915                    struct buffer_head *bh_result, int create);
916 static int ext4_write_begin(struct file *file, struct address_space *mapping,
917                             loff_t pos, unsigned len, unsigned flags,
918                             struct page **pagep, void **fsdata)
919 {
920         struct inode *inode = mapping->host;
921         int ret, needed_blocks;
922         handle_t *handle;
923         int retries = 0;
924         struct page *page;
925         pgoff_t index;
926         unsigned from, to;
927
928         trace_ext4_write_begin(inode, pos, len, flags);
929         /*
930          * Reserve one block more for addition to orphan list in case
931          * we allocate blocks but write fails for some reason
932          */
933         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
934         index = pos >> PAGE_CACHE_SHIFT;
935         from = pos & (PAGE_CACHE_SIZE - 1);
936         to = from + len;
937
938         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
939                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
940                                                     flags, pagep);
941                 if (ret < 0)
942                         return ret;
943                 if (ret == 1)
944                         return 0;
945         }
946
947         /*
948          * grab_cache_page_write_begin() can take a long time if the
949          * system is thrashing due to memory pressure, or if the page
950          * is being written back.  So grab it first before we start
951          * the transaction handle.  This also allows us to allocate
952          * the page (if needed) without using GFP_NOFS.
953          */
954 retry_grab:
955         page = grab_cache_page_write_begin(mapping, index, flags);
956         if (!page)
957                 return -ENOMEM;
958         unlock_page(page);
959
960 retry_journal:
961         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
962         if (IS_ERR(handle)) {
963                 page_cache_release(page);
964                 return PTR_ERR(handle);
965         }
966
967         lock_page(page);
968         if (page->mapping != mapping) {
969                 /* The page got truncated from under us */
970                 unlock_page(page);
971                 page_cache_release(page);
972                 ext4_journal_stop(handle);
973                 goto retry_grab;
974         }
975         wait_on_page_writeback(page);
976
977         if (ext4_should_dioread_nolock(inode))
978                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
979         else
980                 ret = __block_write_begin(page, pos, len, ext4_get_block);
981
982         if (!ret && ext4_should_journal_data(inode)) {
983                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
984                                              from, to, NULL,
985                                              do_journal_get_write_access);
986         }
987
988         if (ret) {
989                 unlock_page(page);
990                 /*
991                  * __block_write_begin may have instantiated a few blocks
992                  * outside i_size.  Trim these off again. Don't need
993                  * i_size_read because we hold i_mutex.
994                  *
995                  * Add inode to orphan list in case we crash before
996                  * truncate finishes
997                  */
998                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
999                         ext4_orphan_add(handle, inode);
1000
1001                 ext4_journal_stop(handle);
1002                 if (pos + len > inode->i_size) {
1003                         ext4_truncate_failed_write(inode);
1004                         /*
1005                          * If truncate failed early the inode might
1006                          * still be on the orphan list; we need to
1007                          * make sure the inode is removed from the
1008                          * orphan list in that case.
1009                          */
1010                         if (inode->i_nlink)
1011                                 ext4_orphan_del(NULL, inode);
1012                 }
1013
1014                 if (ret == -ENOSPC &&
1015                     ext4_should_retry_alloc(inode->i_sb, &retries))
1016                         goto retry_journal;
1017                 page_cache_release(page);
1018                 return ret;
1019         }
1020         *pagep = page;
1021         return ret;
1022 }
1023
1024 /* For write_end() in data=journal mode */
1025 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1026 {
1027         int ret;
1028         if (!buffer_mapped(bh) || buffer_freed(bh))
1029                 return 0;
1030         set_buffer_uptodate(bh);
1031         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1032         clear_buffer_meta(bh);
1033         clear_buffer_prio(bh);
1034         return ret;
1035 }
1036
1037 /*
1038  * We need to pick up the new inode size which generic_commit_write gave us
1039  * `file' can be NULL - eg, when called from page_symlink().
1040  *
1041  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1042  * buffers are managed internally.
1043  */
1044 static int ext4_write_end(struct file *file,
1045                           struct address_space *mapping,
1046                           loff_t pos, unsigned len, unsigned copied,
1047                           struct page *page, void *fsdata)
1048 {
1049         handle_t *handle = ext4_journal_current_handle();
1050         struct inode *inode = mapping->host;
1051         int ret = 0, ret2;
1052         int i_size_changed = 0;
1053
1054         trace_ext4_write_end(inode, pos, len, copied);
1055         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1056                 ret = ext4_jbd2_file_inode(handle, inode);
1057                 if (ret) {
1058                         unlock_page(page);
1059                         page_cache_release(page);
1060                         goto errout;
1061                 }
1062         }
1063
1064         if (ext4_has_inline_data(inode)) {
1065                 ret = ext4_write_inline_data_end(inode, pos, len,
1066                                                  copied, page);
1067                 if (ret < 0)
1068                         goto errout;
1069                 copied = ret;
1070         } else
1071                 copied = block_write_end(file, mapping, pos,
1072                                          len, copied, page, fsdata);
1073
1074         /*
1075          * No need to use i_size_read() here, the i_size
1076          * cannot change under us because we hole i_mutex.
1077          *
1078          * But it's important to update i_size while still holding page lock:
1079          * page writeout could otherwise come in and zero beyond i_size.
1080          */
1081         if (pos + copied > inode->i_size) {
1082                 i_size_write(inode, pos + copied);
1083                 i_size_changed = 1;
1084         }
1085
1086         if (pos + copied > EXT4_I(inode)->i_disksize) {
1087                 /* We need to mark inode dirty even if
1088                  * new_i_size is less that inode->i_size
1089                  * but greater than i_disksize. (hint delalloc)
1090                  */
1091                 ext4_update_i_disksize(inode, (pos + copied));
1092                 i_size_changed = 1;
1093         }
1094         unlock_page(page);
1095         page_cache_release(page);
1096
1097         /*
1098          * Don't mark the inode dirty under page lock. First, it unnecessarily
1099          * makes the holding time of page lock longer. Second, it forces lock
1100          * ordering of page lock and transaction start for journaling
1101          * filesystems.
1102          */
1103         if (i_size_changed)
1104                 ext4_mark_inode_dirty(handle, inode);
1105
1106         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1107                 /* if we have allocated more blocks and copied
1108                  * less. We will have blocks allocated outside
1109                  * inode->i_size. So truncate them
1110                  */
1111                 ext4_orphan_add(handle, inode);
1112 errout:
1113         ret2 = ext4_journal_stop(handle);
1114         if (!ret)
1115                 ret = ret2;
1116
1117         if (pos + len > inode->i_size) {
1118                 ext4_truncate_failed_write(inode);
1119                 /*
1120                  * If truncate failed early the inode might still be
1121                  * on the orphan list; we need to make sure the inode
1122                  * is removed from the orphan list in that case.
1123                  */
1124                 if (inode->i_nlink)
1125                         ext4_orphan_del(NULL, inode);
1126         }
1127
1128         return ret ? ret : copied;
1129 }
1130
1131 static int ext4_journalled_write_end(struct file *file,
1132                                      struct address_space *mapping,
1133                                      loff_t pos, unsigned len, unsigned copied,
1134                                      struct page *page, void *fsdata)
1135 {
1136         handle_t *handle = ext4_journal_current_handle();
1137         struct inode *inode = mapping->host;
1138         int ret = 0, ret2;
1139         int partial = 0;
1140         unsigned from, to;
1141         loff_t new_i_size;
1142
1143         trace_ext4_journalled_write_end(inode, pos, len, copied);
1144         from = pos & (PAGE_CACHE_SIZE - 1);
1145         to = from + len;
1146
1147         BUG_ON(!ext4_handle_valid(handle));
1148
1149         if (ext4_has_inline_data(inode))
1150                 copied = ext4_write_inline_data_end(inode, pos, len,
1151                                                     copied, page);
1152         else {
1153                 if (copied < len) {
1154                         if (!PageUptodate(page))
1155                                 copied = 0;
1156                         page_zero_new_buffers(page, from+copied, to);
1157                 }
1158
1159                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1160                                              to, &partial, write_end_fn);
1161                 if (!partial)
1162                         SetPageUptodate(page);
1163         }
1164         new_i_size = pos + copied;
1165         if (new_i_size > inode->i_size)
1166                 i_size_write(inode, pos+copied);
1167         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1168         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1169         if (new_i_size > EXT4_I(inode)->i_disksize) {
1170                 ext4_update_i_disksize(inode, new_i_size);
1171                 ret2 = ext4_mark_inode_dirty(handle, inode);
1172                 if (!ret)
1173                         ret = ret2;
1174         }
1175
1176         unlock_page(page);
1177         page_cache_release(page);
1178         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1179                 /* if we have allocated more blocks and copied
1180                  * less. We will have blocks allocated outside
1181                  * inode->i_size. So truncate them
1182                  */
1183                 ext4_orphan_add(handle, inode);
1184
1185         ret2 = ext4_journal_stop(handle);
1186         if (!ret)
1187                 ret = ret2;
1188         if (pos + len > inode->i_size) {
1189                 ext4_truncate_failed_write(inode);
1190                 /*
1191                  * If truncate failed early the inode might still be
1192                  * on the orphan list; we need to make sure the inode
1193                  * is removed from the orphan list in that case.
1194                  */
1195                 if (inode->i_nlink)
1196                         ext4_orphan_del(NULL, inode);
1197         }
1198
1199         return ret ? ret : copied;
1200 }
1201
1202 /*
1203  * Reserve a metadata for a single block located at lblock
1204  */
1205 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1206 {
1207         int retries = 0;
1208         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1209         struct ext4_inode_info *ei = EXT4_I(inode);
1210         unsigned int md_needed;
1211         ext4_lblk_t save_last_lblock;
1212         int save_len;
1213
1214         /*
1215          * recalculate the amount of metadata blocks to reserve
1216          * in order to allocate nrblocks
1217          * worse case is one extent per block
1218          */
1219 repeat:
1220         spin_lock(&ei->i_block_reservation_lock);
1221         /*
1222          * ext4_calc_metadata_amount() has side effects, which we have
1223          * to be prepared undo if we fail to claim space.
1224          */
1225         save_len = ei->i_da_metadata_calc_len;
1226         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1227         md_needed = EXT4_NUM_B2C(sbi,
1228                                  ext4_calc_metadata_amount(inode, lblock));
1229         trace_ext4_da_reserve_space(inode, md_needed);
1230
1231         /*
1232          * We do still charge estimated metadata to the sb though;
1233          * we cannot afford to run out of free blocks.
1234          */
1235         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1236                 ei->i_da_metadata_calc_len = save_len;
1237                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1238                 spin_unlock(&ei->i_block_reservation_lock);
1239                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1240                         cond_resched();
1241                         goto repeat;
1242                 }
1243                 return -ENOSPC;
1244         }
1245         ei->i_reserved_meta_blocks += md_needed;
1246         spin_unlock(&ei->i_block_reservation_lock);
1247
1248         return 0;       /* success */
1249 }
1250
1251 /*
1252  * Reserve a single cluster located at lblock
1253  */
1254 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1255 {
1256         int retries = 0;
1257         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1258         struct ext4_inode_info *ei = EXT4_I(inode);
1259         unsigned int md_needed;
1260         int ret;
1261         ext4_lblk_t save_last_lblock;
1262         int save_len;
1263
1264         /*
1265          * We will charge metadata quota at writeout time; this saves
1266          * us from metadata over-estimation, though we may go over by
1267          * a small amount in the end.  Here we just reserve for data.
1268          */
1269         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1270         if (ret)
1271                 return ret;
1272
1273         /*
1274          * recalculate the amount of metadata blocks to reserve
1275          * in order to allocate nrblocks
1276          * worse case is one extent per block
1277          */
1278 repeat:
1279         spin_lock(&ei->i_block_reservation_lock);
1280         /*
1281          * ext4_calc_metadata_amount() has side effects, which we have
1282          * to be prepared undo if we fail to claim space.
1283          */
1284         save_len = ei->i_da_metadata_calc_len;
1285         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1286         md_needed = EXT4_NUM_B2C(sbi,
1287                                  ext4_calc_metadata_amount(inode, lblock));
1288         trace_ext4_da_reserve_space(inode, md_needed);
1289
1290         /*
1291          * We do still charge estimated metadata to the sb though;
1292          * we cannot afford to run out of free blocks.
1293          */
1294         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1295                 ei->i_da_metadata_calc_len = save_len;
1296                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1297                 spin_unlock(&ei->i_block_reservation_lock);
1298                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1299                         cond_resched();
1300                         goto repeat;
1301                 }
1302                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1303                 return -ENOSPC;
1304         }
1305         ei->i_reserved_data_blocks++;
1306         ei->i_reserved_meta_blocks += md_needed;
1307         spin_unlock(&ei->i_block_reservation_lock);
1308
1309         return 0;       /* success */
1310 }
1311
1312 static void ext4_da_release_space(struct inode *inode, int to_free)
1313 {
1314         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1315         struct ext4_inode_info *ei = EXT4_I(inode);
1316
1317         if (!to_free)
1318                 return;         /* Nothing to release, exit */
1319
1320         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1321
1322         trace_ext4_da_release_space(inode, to_free);
1323         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1324                 /*
1325                  * if there aren't enough reserved blocks, then the
1326                  * counter is messed up somewhere.  Since this
1327                  * function is called from invalidate page, it's
1328                  * harmless to return without any action.
1329                  */
1330                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1331                          "ino %lu, to_free %d with only %d reserved "
1332                          "data blocks", inode->i_ino, to_free,
1333                          ei->i_reserved_data_blocks);
1334                 WARN_ON(1);
1335                 to_free = ei->i_reserved_data_blocks;
1336         }
1337         ei->i_reserved_data_blocks -= to_free;
1338
1339         if (ei->i_reserved_data_blocks == 0) {
1340                 /*
1341                  * We can release all of the reserved metadata blocks
1342                  * only when we have written all of the delayed
1343                  * allocation blocks.
1344                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1345                  * i_reserved_data_blocks, etc. refer to number of clusters.
1346                  */
1347                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1348                                    ei->i_reserved_meta_blocks);
1349                 ei->i_reserved_meta_blocks = 0;
1350                 ei->i_da_metadata_calc_len = 0;
1351         }
1352
1353         /* update fs dirty data blocks counter */
1354         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1355
1356         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1357
1358         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1359 }
1360
1361 static void ext4_da_page_release_reservation(struct page *page,
1362                                              unsigned int offset,
1363                                              unsigned int length)
1364 {
1365         int to_release = 0;
1366         struct buffer_head *head, *bh;
1367         unsigned int curr_off = 0;
1368         struct inode *inode = page->mapping->host;
1369         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1370         unsigned int stop = offset + length;
1371         int num_clusters;
1372         ext4_fsblk_t lblk;
1373
1374         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1375
1376         head = page_buffers(page);
1377         bh = head;
1378         do {
1379                 unsigned int next_off = curr_off + bh->b_size;
1380
1381                 if (next_off > stop)
1382                         break;
1383
1384                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1385                         to_release++;
1386                         clear_buffer_delay(bh);
1387                 }
1388                 curr_off = next_off;
1389         } while ((bh = bh->b_this_page) != head);
1390
1391         if (to_release) {
1392                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1393                 ext4_es_remove_extent(inode, lblk, to_release);
1394         }
1395
1396         /* If we have released all the blocks belonging to a cluster, then we
1397          * need to release the reserved space for that cluster. */
1398         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1399         while (num_clusters > 0) {
1400                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1401                         ((num_clusters - 1) << sbi->s_cluster_bits);
1402                 if (sbi->s_cluster_ratio == 1 ||
1403                     !ext4_find_delalloc_cluster(inode, lblk))
1404                         ext4_da_release_space(inode, 1);
1405
1406                 num_clusters--;
1407         }
1408 }
1409
1410 /*
1411  * Delayed allocation stuff
1412  */
1413
1414 struct mpage_da_data {
1415         struct inode *inode;
1416         struct writeback_control *wbc;
1417
1418         pgoff_t first_page;     /* The first page to write */
1419         pgoff_t next_page;      /* Current page to examine */
1420         pgoff_t last_page;      /* Last page to examine */
1421         /*
1422          * Extent to map - this can be after first_page because that can be
1423          * fully mapped. We somewhat abuse m_flags to store whether the extent
1424          * is delalloc or unwritten.
1425          */
1426         struct ext4_map_blocks map;
1427         struct ext4_io_submit io_submit;        /* IO submission data */
1428 };
1429
1430 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1431                                        bool invalidate)
1432 {
1433         int nr_pages, i;
1434         pgoff_t index, end;
1435         struct pagevec pvec;
1436         struct inode *inode = mpd->inode;
1437         struct address_space *mapping = inode->i_mapping;
1438
1439         /* This is necessary when next_page == 0. */
1440         if (mpd->first_page >= mpd->next_page)
1441                 return;
1442
1443         index = mpd->first_page;
1444         end   = mpd->next_page - 1;
1445         if (invalidate) {
1446                 ext4_lblk_t start, last;
1447                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1448                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1449                 ext4_es_remove_extent(inode, start, last - start + 1);
1450         }
1451
1452         pagevec_init(&pvec, 0);
1453         while (index <= end) {
1454                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1455                 if (nr_pages == 0)
1456                         break;
1457                 for (i = 0; i < nr_pages; i++) {
1458                         struct page *page = pvec.pages[i];
1459                         if (page->index > end)
1460                                 break;
1461                         BUG_ON(!PageLocked(page));
1462                         BUG_ON(PageWriteback(page));
1463                         if (invalidate) {
1464                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1465                                 ClearPageUptodate(page);
1466                         }
1467                         unlock_page(page);
1468                 }
1469                 index = pvec.pages[nr_pages - 1]->index + 1;
1470                 pagevec_release(&pvec);
1471         }
1472 }
1473
1474 static void ext4_print_free_blocks(struct inode *inode)
1475 {
1476         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1477         struct super_block *sb = inode->i_sb;
1478         struct ext4_inode_info *ei = EXT4_I(inode);
1479
1480         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1481                EXT4_C2B(EXT4_SB(inode->i_sb),
1482                         ext4_count_free_clusters(sb)));
1483         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1484         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1485                (long long) EXT4_C2B(EXT4_SB(sb),
1486                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1487         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1488                (long long) EXT4_C2B(EXT4_SB(sb),
1489                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1490         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1491         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1492                  ei->i_reserved_data_blocks);
1493         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1494                ei->i_reserved_meta_blocks);
1495         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1496                ei->i_allocated_meta_blocks);
1497         return;
1498 }
1499
1500 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1501 {
1502         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1503 }
1504
1505 /*
1506  * This function is grabs code from the very beginning of
1507  * ext4_map_blocks, but assumes that the caller is from delayed write
1508  * time. This function looks up the requested blocks and sets the
1509  * buffer delay bit under the protection of i_data_sem.
1510  */
1511 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1512                               struct ext4_map_blocks *map,
1513                               struct buffer_head *bh)
1514 {
1515         struct extent_status es;
1516         int retval;
1517         sector_t invalid_block = ~((sector_t) 0xffff);
1518 #ifdef ES_AGGRESSIVE_TEST
1519         struct ext4_map_blocks orig_map;
1520
1521         memcpy(&orig_map, map, sizeof(*map));
1522 #endif
1523
1524         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1525                 invalid_block = ~0;
1526
1527         map->m_flags = 0;
1528         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1529                   "logical block %lu\n", inode->i_ino, map->m_len,
1530                   (unsigned long) map->m_lblk);
1531
1532         ext4_es_lru_add(inode);
1533
1534         /* Lookup extent status tree firstly */
1535         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1536
1537                 if (ext4_es_is_hole(&es)) {
1538                         retval = 0;
1539                         down_read((&EXT4_I(inode)->i_data_sem));
1540                         goto add_delayed;
1541                 }
1542
1543                 /*
1544                  * Delayed extent could be allocated by fallocate.
1545                  * So we need to check it.
1546                  */
1547                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1548                         map_bh(bh, inode->i_sb, invalid_block);
1549                         set_buffer_new(bh);
1550                         set_buffer_delay(bh);
1551                         return 0;
1552                 }
1553
1554                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1555                 retval = es.es_len - (iblock - es.es_lblk);
1556                 if (retval > map->m_len)
1557                         retval = map->m_len;
1558                 map->m_len = retval;
1559                 if (ext4_es_is_written(&es))
1560                         map->m_flags |= EXT4_MAP_MAPPED;
1561                 else if (ext4_es_is_unwritten(&es))
1562                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1563                 else
1564                         BUG_ON(1);
1565
1566 #ifdef ES_AGGRESSIVE_TEST
1567                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1568 #endif
1569                 return retval;
1570         }
1571
1572         /*
1573          * Try to see if we can get the block without requesting a new
1574          * file system block.
1575          */
1576         down_read((&EXT4_I(inode)->i_data_sem));
1577         if (ext4_has_inline_data(inode)) {
1578                 /*
1579                  * We will soon create blocks for this page, and let
1580                  * us pretend as if the blocks aren't allocated yet.
1581                  * In case of clusters, we have to handle the work
1582                  * of mapping from cluster so that the reserved space
1583                  * is calculated properly.
1584                  */
1585                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1586                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1587                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1588                 retval = 0;
1589         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1590                 retval = ext4_ext_map_blocks(NULL, inode, map,
1591                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1592         else
1593                 retval = ext4_ind_map_blocks(NULL, inode, map,
1594                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1595
1596 add_delayed:
1597         if (retval == 0) {
1598                 int ret;
1599                 /*
1600                  * XXX: __block_prepare_write() unmaps passed block,
1601                  * is it OK?
1602                  */
1603                 /*
1604                  * If the block was allocated from previously allocated cluster,
1605                  * then we don't need to reserve it again. However we still need
1606                  * to reserve metadata for every block we're going to write.
1607                  */
1608                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1609                         ret = ext4_da_reserve_space(inode, iblock);
1610                         if (ret) {
1611                                 /* not enough space to reserve */
1612                                 retval = ret;
1613                                 goto out_unlock;
1614                         }
1615                 } else {
1616                         ret = ext4_da_reserve_metadata(inode, iblock);
1617                         if (ret) {
1618                                 /* not enough space to reserve */
1619                                 retval = ret;
1620                                 goto out_unlock;
1621                         }
1622                 }
1623
1624                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1625                                             ~0, EXTENT_STATUS_DELAYED);
1626                 if (ret) {
1627                         retval = ret;
1628                         goto out_unlock;
1629                 }
1630
1631                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1632                  * and it should not appear on the bh->b_state.
1633                  */
1634                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1635
1636                 map_bh(bh, inode->i_sb, invalid_block);
1637                 set_buffer_new(bh);
1638                 set_buffer_delay(bh);
1639         } else if (retval > 0) {
1640                 int ret;
1641                 unsigned long long status;
1642
1643 #ifdef ES_AGGRESSIVE_TEST
1644                 if (retval != map->m_len) {
1645                         printk("ES len assertation failed for inode: %lu "
1646                                "retval %d != map->m_len %d "
1647                                "in %s (lookup)\n", inode->i_ino, retval,
1648                                map->m_len, __func__);
1649                 }
1650 #endif
1651
1652                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1653                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1654                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1655                                             map->m_pblk, status);
1656                 if (ret != 0)
1657                         retval = ret;
1658         }
1659
1660 out_unlock:
1661         up_read((&EXT4_I(inode)->i_data_sem));
1662
1663         return retval;
1664 }
1665
1666 /*
1667  * This is a special get_blocks_t callback which is used by
1668  * ext4_da_write_begin().  It will either return mapped block or
1669  * reserve space for a single block.
1670  *
1671  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1672  * We also have b_blocknr = -1 and b_bdev initialized properly
1673  *
1674  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1675  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1676  * initialized properly.
1677  */
1678 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1679                            struct buffer_head *bh, int create)
1680 {
1681         struct ext4_map_blocks map;
1682         int ret = 0;
1683
1684         BUG_ON(create == 0);
1685         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1686
1687         map.m_lblk = iblock;
1688         map.m_len = 1;
1689
1690         /*
1691          * first, we need to know whether the block is allocated already
1692          * preallocated blocks are unmapped but should treated
1693          * the same as allocated blocks.
1694          */
1695         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1696         if (ret <= 0)
1697                 return ret;
1698
1699         map_bh(bh, inode->i_sb, map.m_pblk);
1700         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1701
1702         if (buffer_unwritten(bh)) {
1703                 /* A delayed write to unwritten bh should be marked
1704                  * new and mapped.  Mapped ensures that we don't do
1705                  * get_block multiple times when we write to the same
1706                  * offset and new ensures that we do proper zero out
1707                  * for partial write.
1708                  */
1709                 set_buffer_new(bh);
1710                 set_buffer_mapped(bh);
1711         }
1712         return 0;
1713 }
1714
1715 static int bget_one(handle_t *handle, struct buffer_head *bh)
1716 {
1717         get_bh(bh);
1718         return 0;
1719 }
1720
1721 static int bput_one(handle_t *handle, struct buffer_head *bh)
1722 {
1723         put_bh(bh);
1724         return 0;
1725 }
1726
1727 static int __ext4_journalled_writepage(struct page *page,
1728                                        unsigned int len)
1729 {
1730         struct address_space *mapping = page->mapping;
1731         struct inode *inode = mapping->host;
1732         struct buffer_head *page_bufs = NULL;
1733         handle_t *handle = NULL;
1734         int ret = 0, err = 0;
1735         int inline_data = ext4_has_inline_data(inode);
1736         struct buffer_head *inode_bh = NULL;
1737
1738         ClearPageChecked(page);
1739
1740         if (inline_data) {
1741                 BUG_ON(page->index != 0);
1742                 BUG_ON(len > ext4_get_max_inline_size(inode));
1743                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1744                 if (inode_bh == NULL)
1745                         goto out;
1746         } else {
1747                 page_bufs = page_buffers(page);
1748                 if (!page_bufs) {
1749                         BUG();
1750                         goto out;
1751                 }
1752                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1753                                        NULL, bget_one);
1754         }
1755         /* As soon as we unlock the page, it can go away, but we have
1756          * references to buffers so we are safe */
1757         unlock_page(page);
1758
1759         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1760                                     ext4_writepage_trans_blocks(inode));
1761         if (IS_ERR(handle)) {
1762                 ret = PTR_ERR(handle);
1763                 goto out;
1764         }
1765
1766         BUG_ON(!ext4_handle_valid(handle));
1767
1768         if (inline_data) {
1769                 ret = ext4_journal_get_write_access(handle, inode_bh);
1770
1771                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1772
1773         } else {
1774                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1775                                              do_journal_get_write_access);
1776
1777                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1778                                              write_end_fn);
1779         }
1780         if (ret == 0)
1781                 ret = err;
1782         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1783         err = ext4_journal_stop(handle);
1784         if (!ret)
1785                 ret = err;
1786
1787         if (!ext4_has_inline_data(inode))
1788                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1789                                        NULL, bput_one);
1790         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1791 out:
1792         brelse(inode_bh);
1793         return ret;
1794 }
1795
1796 /*
1797  * Note that we don't need to start a transaction unless we're journaling data
1798  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1799  * need to file the inode to the transaction's list in ordered mode because if
1800  * we are writing back data added by write(), the inode is already there and if
1801  * we are writing back data modified via mmap(), no one guarantees in which
1802  * transaction the data will hit the disk. In case we are journaling data, we
1803  * cannot start transaction directly because transaction start ranks above page
1804  * lock so we have to do some magic.
1805  *
1806  * This function can get called via...
1807  *   - ext4_writepages after taking page lock (have journal handle)
1808  *   - journal_submit_inode_data_buffers (no journal handle)
1809  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1810  *   - grab_page_cache when doing write_begin (have journal handle)
1811  *
1812  * We don't do any block allocation in this function. If we have page with
1813  * multiple blocks we need to write those buffer_heads that are mapped. This
1814  * is important for mmaped based write. So if we do with blocksize 1K
1815  * truncate(f, 1024);
1816  * a = mmap(f, 0, 4096);
1817  * a[0] = 'a';
1818  * truncate(f, 4096);
1819  * we have in the page first buffer_head mapped via page_mkwrite call back
1820  * but other buffer_heads would be unmapped but dirty (dirty done via the
1821  * do_wp_page). So writepage should write the first block. If we modify
1822  * the mmap area beyond 1024 we will again get a page_fault and the
1823  * page_mkwrite callback will do the block allocation and mark the
1824  * buffer_heads mapped.
1825  *
1826  * We redirty the page if we have any buffer_heads that is either delay or
1827  * unwritten in the page.
1828  *
1829  * We can get recursively called as show below.
1830  *
1831  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1832  *              ext4_writepage()
1833  *
1834  * But since we don't do any block allocation we should not deadlock.
1835  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1836  */
1837 static int ext4_writepage(struct page *page,
1838                           struct writeback_control *wbc)
1839 {
1840         int ret = 0;
1841         loff_t size;
1842         unsigned int len;
1843         struct buffer_head *page_bufs = NULL;
1844         struct inode *inode = page->mapping->host;
1845         struct ext4_io_submit io_submit;
1846
1847         trace_ext4_writepage(page);
1848         size = i_size_read(inode);
1849         if (page->index == size >> PAGE_CACHE_SHIFT)
1850                 len = size & ~PAGE_CACHE_MASK;
1851         else
1852                 len = PAGE_CACHE_SIZE;
1853
1854         page_bufs = page_buffers(page);
1855         /*
1856          * We cannot do block allocation or other extent handling in this
1857          * function. If there are buffers needing that, we have to redirty
1858          * the page. But we may reach here when we do a journal commit via
1859          * journal_submit_inode_data_buffers() and in that case we must write
1860          * allocated buffers to achieve data=ordered mode guarantees.
1861          */
1862         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1863                                    ext4_bh_delay_or_unwritten)) {
1864                 redirty_page_for_writepage(wbc, page);
1865                 if (current->flags & PF_MEMALLOC) {
1866                         /*
1867                          * For memory cleaning there's no point in writing only
1868                          * some buffers. So just bail out. Warn if we came here
1869                          * from direct reclaim.
1870                          */
1871                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1872                                                         == PF_MEMALLOC);
1873                         unlock_page(page);
1874                         return 0;
1875                 }
1876         }
1877
1878         if (PageChecked(page) && ext4_should_journal_data(inode))
1879                 /*
1880                  * It's mmapped pagecache.  Add buffers and journal it.  There
1881                  * doesn't seem much point in redirtying the page here.
1882                  */
1883                 return __ext4_journalled_writepage(page, len);
1884
1885         ext4_io_submit_init(&io_submit, wbc);
1886         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1887         if (!io_submit.io_end) {
1888                 redirty_page_for_writepage(wbc, page);
1889                 unlock_page(page);
1890                 return -ENOMEM;
1891         }
1892         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1893         ext4_io_submit(&io_submit);
1894         /* Drop io_end reference we got from init */
1895         ext4_put_io_end_defer(io_submit.io_end);
1896         return ret;
1897 }
1898
1899 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1900
1901 /*
1902  * mballoc gives us at most this number of blocks...
1903  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1904  * The rest of mballoc seems to handle chunks upto full group size.
1905  */
1906 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1907
1908 /*
1909  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1910  *
1911  * @mpd - extent of blocks
1912  * @lblk - logical number of the block in the file
1913  * @b_state - b_state of the buffer head added
1914  *
1915  * the function is used to collect contig. blocks in same state
1916  */
1917 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1918                                   unsigned long b_state)
1919 {
1920         struct ext4_map_blocks *map = &mpd->map;
1921
1922         /* Don't go larger than mballoc is willing to allocate */
1923         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1924                 return 0;
1925
1926         /* First block in the extent? */
1927         if (map->m_len == 0) {
1928                 map->m_lblk = lblk;
1929                 map->m_len = 1;
1930                 map->m_flags = b_state & BH_FLAGS;
1931                 return 1;
1932         }
1933
1934         /* Can we merge the block to our big extent? */
1935         if (lblk == map->m_lblk + map->m_len &&
1936             (b_state & BH_FLAGS) == map->m_flags) {
1937                 map->m_len++;
1938                 return 1;
1939         }
1940         return 0;
1941 }
1942
1943 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1944                                     struct buffer_head *head,
1945                                     struct buffer_head *bh,
1946                                     ext4_lblk_t lblk)
1947 {
1948         struct inode *inode = mpd->inode;
1949         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1950                                                         >> inode->i_blkbits;
1951
1952         do {
1953                 BUG_ON(buffer_locked(bh));
1954
1955                 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1956                     (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1957                     lblk >= blocks) {
1958                         /* Found extent to map? */
1959                         if (mpd->map.m_len)
1960                                 return false;
1961                         if (lblk >= blocks)
1962                                 return true;
1963                         continue;
1964                 }
1965                 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1966                         return false;
1967         } while (lblk++, (bh = bh->b_this_page) != head);
1968         return true;
1969 }
1970
1971 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1972 {
1973         int len;
1974         loff_t size = i_size_read(mpd->inode);
1975         int err;
1976
1977         BUG_ON(page->index != mpd->first_page);
1978         if (page->index == size >> PAGE_CACHE_SHIFT)
1979                 len = size & ~PAGE_CACHE_MASK;
1980         else
1981                 len = PAGE_CACHE_SIZE;
1982         clear_page_dirty_for_io(page);
1983         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1984         if (!err)
1985                 mpd->wbc->nr_to_write--;
1986         mpd->first_page++;
1987
1988         return err;
1989 }
1990
1991 /*
1992  * mpage_map_buffers - update buffers corresponding to changed extent and
1993  *                     submit fully mapped pages for IO
1994  *
1995  * @mpd - description of extent to map, on return next extent to map
1996  *
1997  * Scan buffers corresponding to changed extent (we expect corresponding pages
1998  * to be already locked) and update buffer state according to new extent state.
1999  * We map delalloc buffers to their physical location, clear unwritten bits,
2000  * and mark buffers as uninit when we perform writes to uninitialized extents
2001  * and do extent conversion after IO is finished. If the last page is not fully
2002  * mapped, we update @map to the next extent in the last page that needs
2003  * mapping. Otherwise we submit the page for IO.
2004  */
2005 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2006 {
2007         struct pagevec pvec;
2008         int nr_pages, i;
2009         struct inode *inode = mpd->inode;
2010         struct buffer_head *head, *bh;
2011         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2012         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2013                                                         >> inode->i_blkbits;
2014         pgoff_t start, end;
2015         ext4_lblk_t lblk;
2016         sector_t pblock;
2017         int err;
2018
2019         start = mpd->map.m_lblk >> bpp_bits;
2020         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2021         lblk = start << bpp_bits;
2022         pblock = mpd->map.m_pblk;
2023
2024         pagevec_init(&pvec, 0);
2025         while (start <= end) {
2026                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2027                                           PAGEVEC_SIZE);
2028                 if (nr_pages == 0)
2029                         break;
2030                 for (i = 0; i < nr_pages; i++) {
2031                         struct page *page = pvec.pages[i];
2032
2033                         if (page->index > end)
2034                                 break;
2035                         /* Upto 'end' pages must be contiguous */
2036                         BUG_ON(page->index != start);
2037                         bh = head = page_buffers(page);
2038                         do {
2039                                 if (lblk < mpd->map.m_lblk)
2040                                         continue;
2041                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2042                                         /*
2043                                          * Buffer after end of mapped extent.
2044                                          * Find next buffer in the page to map.
2045                                          */
2046                                         mpd->map.m_len = 0;
2047                                         mpd->map.m_flags = 0;
2048                                         add_page_bufs_to_extent(mpd, head, bh,
2049                                                                 lblk);
2050                                         pagevec_release(&pvec);
2051                                         return 0;
2052                                 }
2053                                 if (buffer_delay(bh)) {
2054                                         clear_buffer_delay(bh);
2055                                         bh->b_blocknr = pblock++;
2056                                 }
2057                                 clear_buffer_unwritten(bh);
2058                         } while (++lblk < blocks &&
2059                                  (bh = bh->b_this_page) != head);
2060
2061                         /*
2062                          * FIXME: This is going to break if dioread_nolock
2063                          * supports blocksize < pagesize as we will try to
2064                          * convert potentially unmapped parts of inode.
2065                          */
2066                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2067                         /* Page fully mapped - let IO run! */
2068                         err = mpage_submit_page(mpd, page);
2069                         if (err < 0) {
2070                                 pagevec_release(&pvec);
2071                                 return err;
2072                         }
2073                         start++;
2074                 }
2075                 pagevec_release(&pvec);
2076         }
2077         /* Extent fully mapped and matches with page boundary. We are done. */
2078         mpd->map.m_len = 0;
2079         mpd->map.m_flags = 0;
2080         return 0;
2081 }
2082
2083 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2084 {
2085         struct inode *inode = mpd->inode;
2086         struct ext4_map_blocks *map = &mpd->map;
2087         int get_blocks_flags;
2088         int err;
2089
2090         trace_ext4_da_write_pages_extent(inode, map);
2091         /*
2092          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2093          * to convert an uninitialized extent to be initialized (in the case
2094          * where we have written into one or more preallocated blocks).  It is
2095          * possible that we're going to need more metadata blocks than
2096          * previously reserved. However we must not fail because we're in
2097          * writeback and there is nothing we can do about it so it might result
2098          * in data loss.  So use reserved blocks to allocate metadata if
2099          * possible.
2100          *
2101          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2102          * in question are delalloc blocks.  This affects functions in many
2103          * different parts of the allocation call path.  This flag exists
2104          * primarily because we don't want to change *many* call functions, so
2105          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2106          * once the inode's allocation semaphore is taken.
2107          */
2108         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2109                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2110         if (ext4_should_dioread_nolock(inode))
2111                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2112         if (map->m_flags & (1 << BH_Delay))
2113                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2114
2115         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2116         if (err < 0)
2117                 return err;
2118         if (map->m_flags & EXT4_MAP_UNINIT) {
2119                 if (!mpd->io_submit.io_end->handle &&
2120                     ext4_handle_valid(handle)) {
2121                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2122                         handle->h_rsv_handle = NULL;
2123                 }
2124                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2125         }
2126
2127         BUG_ON(map->m_len == 0);
2128         if (map->m_flags & EXT4_MAP_NEW) {
2129                 struct block_device *bdev = inode->i_sb->s_bdev;
2130                 int i;
2131
2132                 for (i = 0; i < map->m_len; i++)
2133                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2134         }
2135         return 0;
2136 }
2137
2138 /*
2139  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2140  *                               mpd->len and submit pages underlying it for IO
2141  *
2142  * @handle - handle for journal operations
2143  * @mpd - extent to map
2144  *
2145  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2146  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2147  * them to initialized or split the described range from larger unwritten
2148  * extent. Note that we need not map all the described range since allocation
2149  * can return less blocks or the range is covered by more unwritten extents. We
2150  * cannot map more because we are limited by reserved transaction credits. On
2151  * the other hand we always make sure that the last touched page is fully
2152  * mapped so that it can be written out (and thus forward progress is
2153  * guaranteed). After mapping we submit all mapped pages for IO.
2154  */
2155 static int mpage_map_and_submit_extent(handle_t *handle,
2156                                        struct mpage_da_data *mpd,
2157                                        bool *give_up_on_write)
2158 {
2159         struct inode *inode = mpd->inode;
2160         struct ext4_map_blocks *map = &mpd->map;
2161         int err;
2162         loff_t disksize;
2163
2164         mpd->io_submit.io_end->offset =
2165                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2166         do {
2167                 err = mpage_map_one_extent(handle, mpd);
2168                 if (err < 0) {
2169                         struct super_block *sb = inode->i_sb;
2170
2171                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2172                                 goto invalidate_dirty_pages;
2173                         /*
2174                          * Let the uper layers retry transient errors.
2175                          * In the case of ENOSPC, if ext4_count_free_blocks()
2176                          * is non-zero, a commit should free up blocks.
2177                          */
2178                         if ((err == -ENOMEM) ||
2179                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2180                                 return err;
2181                         ext4_msg(sb, KERN_CRIT,
2182                                  "Delayed block allocation failed for "
2183                                  "inode %lu at logical offset %llu with"
2184                                  " max blocks %u with error %d",
2185                                  inode->i_ino,
2186                                  (unsigned long long)map->m_lblk,
2187                                  (unsigned)map->m_len, -err);
2188                         ext4_msg(sb, KERN_CRIT,
2189                                  "This should not happen!! Data will "
2190                                  "be lost\n");
2191                         if (err == -ENOSPC)
2192                                 ext4_print_free_blocks(inode);
2193                 invalidate_dirty_pages:
2194                         *give_up_on_write = true;
2195                         return err;
2196                 }
2197                 /*
2198                  * Update buffer state, submit mapped pages, and get us new
2199                  * extent to map
2200                  */
2201                 err = mpage_map_and_submit_buffers(mpd);
2202                 if (err < 0)
2203                         return err;
2204         } while (map->m_len);
2205
2206         /* Update on-disk size after IO is submitted */
2207         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2208         if (disksize > i_size_read(inode))
2209                 disksize = i_size_read(inode);
2210         if (disksize > EXT4_I(inode)->i_disksize) {
2211                 int err2;
2212
2213                 ext4_update_i_disksize(inode, disksize);
2214                 err2 = ext4_mark_inode_dirty(handle, inode);
2215                 if (err2)
2216                         ext4_error(inode->i_sb,
2217                                    "Failed to mark inode %lu dirty",
2218                                    inode->i_ino);
2219                 if (!err)
2220                         err = err2;
2221         }
2222         return err;
2223 }
2224
2225 /*
2226  * Calculate the total number of credits to reserve for one writepages
2227  * iteration. This is called from ext4_writepages(). We map an extent of
2228  * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2229  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2230  * bpp - 1 blocks in bpp different extents.
2231  */
2232 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2233 {
2234         int bpp = ext4_journal_blocks_per_page(inode);
2235
2236         return ext4_meta_trans_blocks(inode,
2237                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2238 }
2239
2240 /*
2241  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2242  *                               and underlying extent to map
2243  *
2244  * @mpd - where to look for pages
2245  *
2246  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2247  * IO immediately. When we find a page which isn't mapped we start accumulating
2248  * extent of buffers underlying these pages that needs mapping (formed by
2249  * either delayed or unwritten buffers). We also lock the pages containing
2250  * these buffers. The extent found is returned in @mpd structure (starting at
2251  * mpd->lblk with length mpd->len blocks).
2252  *
2253  * Note that this function can attach bios to one io_end structure which are
2254  * neither logically nor physically contiguous. Although it may seem as an
2255  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2256  * case as we need to track IO to all buffers underlying a page in one io_end.
2257  */
2258 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2259 {
2260         struct address_space *mapping = mpd->inode->i_mapping;
2261         struct pagevec pvec;
2262         unsigned int nr_pages;
2263         pgoff_t index = mpd->first_page;
2264         pgoff_t end = mpd->last_page;
2265         int tag;
2266         int i, err = 0;
2267         int blkbits = mpd->inode->i_blkbits;
2268         ext4_lblk_t lblk;
2269         struct buffer_head *head;
2270
2271         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2272                 tag = PAGECACHE_TAG_TOWRITE;
2273         else
2274                 tag = PAGECACHE_TAG_DIRTY;
2275
2276         pagevec_init(&pvec, 0);
2277         mpd->map.m_len = 0;
2278         mpd->next_page = index;
2279         while (index <= end) {
2280                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2281                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2282                 if (nr_pages == 0)
2283                         goto out;
2284
2285                 for (i = 0; i < nr_pages; i++) {
2286                         struct page *page = pvec.pages[i];
2287
2288                         /*
2289                          * At this point, the page may be truncated or
2290                          * invalidated (changing page->mapping to NULL), or
2291                          * even swizzled back from swapper_space to tmpfs file
2292                          * mapping. However, page->index will not change
2293                          * because we have a reference on the page.
2294                          */
2295                         if (page->index > end)
2296                                 goto out;
2297
2298                         /* If we can't merge this page, we are done. */
2299                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2300                                 goto out;
2301
2302                         lock_page(page);
2303                         /*
2304                          * If the page is no longer dirty, or its mapping no
2305                          * longer corresponds to inode we are writing (which
2306                          * means it has been truncated or invalidated), or the
2307                          * page is already under writeback and we are not doing
2308                          * a data integrity writeback, skip the page
2309                          */
2310                         if (!PageDirty(page) ||
2311                             (PageWriteback(page) &&
2312                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2313                             unlikely(page->mapping != mapping)) {
2314                                 unlock_page(page);
2315                                 continue;
2316                         }
2317
2318                         wait_on_page_writeback(page);
2319                         BUG_ON(PageWriteback(page));
2320
2321                         if (mpd->map.m_len == 0)
2322                                 mpd->first_page = page->index;
2323                         mpd->next_page = page->index + 1;
2324                         /* Add all dirty buffers to mpd */
2325                         lblk = ((ext4_lblk_t)page->index) <<
2326                                 (PAGE_CACHE_SHIFT - blkbits);
2327                         head = page_buffers(page);
2328                         if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2329                                 goto out;
2330                         /* So far everything mapped? Submit the page for IO. */
2331                         if (mpd->map.m_len == 0) {
2332                                 err = mpage_submit_page(mpd, page);
2333                                 if (err < 0)
2334                                         goto out;
2335                         }
2336
2337                         /*
2338                          * Accumulated enough dirty pages? This doesn't apply
2339                          * to WB_SYNC_ALL mode. For integrity sync we have to
2340                          * keep going because someone may be concurrently
2341                          * dirtying pages, and we might have synced a lot of
2342                          * newly appeared dirty pages, but have not synced all
2343                          * of the old dirty pages.
2344                          */
2345                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2346                             mpd->next_page - mpd->first_page >=
2347                                                         mpd->wbc->nr_to_write)
2348                                 goto out;
2349                 }
2350                 pagevec_release(&pvec);
2351                 cond_resched();
2352         }
2353         return 0;
2354 out:
2355         pagevec_release(&pvec);
2356         return err;
2357 }
2358
2359 static int __writepage(struct page *page, struct writeback_control *wbc,
2360                        void *data)
2361 {
2362         struct address_space *mapping = data;
2363         int ret = ext4_writepage(page, wbc);
2364         mapping_set_error(mapping, ret);
2365         return ret;
2366 }
2367
2368 static int ext4_writepages(struct address_space *mapping,
2369                            struct writeback_control *wbc)
2370 {
2371         pgoff_t writeback_index = 0;
2372         long nr_to_write = wbc->nr_to_write;
2373         int range_whole = 0;
2374         int cycled = 1;
2375         handle_t *handle = NULL;
2376         struct mpage_da_data mpd;
2377         struct inode *inode = mapping->host;
2378         int needed_blocks, rsv_blocks = 0, ret = 0;
2379         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2380         bool done;
2381         struct blk_plug plug;
2382         bool give_up_on_write = false;
2383
2384         trace_ext4_writepages(inode, wbc);
2385
2386         /*
2387          * No pages to write? This is mainly a kludge to avoid starting
2388          * a transaction for special inodes like journal inode on last iput()
2389          * because that could violate lock ordering on umount
2390          */
2391         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2392                 return 0;
2393
2394         if (ext4_should_journal_data(inode)) {
2395                 struct blk_plug plug;
2396                 int ret;
2397
2398                 blk_start_plug(&plug);
2399                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2400                 blk_finish_plug(&plug);
2401                 return ret;
2402         }
2403
2404         /*
2405          * If the filesystem has aborted, it is read-only, so return
2406          * right away instead of dumping stack traces later on that
2407          * will obscure the real source of the problem.  We test
2408          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2409          * the latter could be true if the filesystem is mounted
2410          * read-only, and in that case, ext4_writepages should
2411          * *never* be called, so if that ever happens, we would want
2412          * the stack trace.
2413          */
2414         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2415                 return -EROFS;
2416
2417         if (ext4_should_dioread_nolock(inode)) {
2418                 /*
2419                  * We may need to convert upto one extent per block in
2420                  * the page and we may dirty the inode.
2421                  */
2422                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2423         }
2424
2425         /*
2426          * If we have inline data and arrive here, it means that
2427          * we will soon create the block for the 1st page, so
2428          * we'd better clear the inline data here.
2429          */
2430         if (ext4_has_inline_data(inode)) {
2431                 /* Just inode will be modified... */
2432                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2433                 if (IS_ERR(handle)) {
2434                         ret = PTR_ERR(handle);
2435                         goto out_writepages;
2436                 }
2437                 BUG_ON(ext4_test_inode_state(inode,
2438                                 EXT4_STATE_MAY_INLINE_DATA));
2439                 ext4_destroy_inline_data(handle, inode);
2440                 ext4_journal_stop(handle);
2441         }
2442
2443         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2444                 range_whole = 1;
2445
2446         if (wbc->range_cyclic) {
2447                 writeback_index = mapping->writeback_index;
2448                 if (writeback_index)
2449                         cycled = 0;
2450                 mpd.first_page = writeback_index;
2451                 mpd.last_page = -1;
2452         } else {
2453                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2454                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2455         }
2456
2457         mpd.inode = inode;
2458         mpd.wbc = wbc;
2459         ext4_io_submit_init(&mpd.io_submit, wbc);
2460 retry:
2461         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2462                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2463         done = false;
2464         blk_start_plug(&plug);
2465         while (!done && mpd.first_page <= mpd.last_page) {
2466                 /* For each extent of pages we use new io_end */
2467                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2468                 if (!mpd.io_submit.io_end) {
2469                         ret = -ENOMEM;
2470                         break;
2471                 }
2472
2473                 /*
2474                  * We have two constraints: We find one extent to map and we
2475                  * must always write out whole page (makes a difference when
2476                  * blocksize < pagesize) so that we don't block on IO when we
2477                  * try to write out the rest of the page. Journalled mode is
2478                  * not supported by delalloc.
2479                  */
2480                 BUG_ON(ext4_should_journal_data(inode));
2481                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2482
2483                 /* start a new transaction */
2484                 handle = ext4_journal_start_with_reserve(inode,
2485                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2486                 if (IS_ERR(handle)) {
2487                         ret = PTR_ERR(handle);
2488                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2489                                "%ld pages, ino %lu; err %d", __func__,
2490                                 wbc->nr_to_write, inode->i_ino, ret);
2491                         /* Release allocated io_end */
2492                         ext4_put_io_end(mpd.io_submit.io_end);
2493                         break;
2494                 }
2495
2496                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2497                 ret = mpage_prepare_extent_to_map(&mpd);
2498                 if (!ret) {
2499                         if (mpd.map.m_len)
2500                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2501                                         &give_up_on_write);
2502                         else {
2503                                 /*
2504                                  * We scanned the whole range (or exhausted
2505                                  * nr_to_write), submitted what was mapped and
2506                                  * didn't find anything needing mapping. We are
2507                                  * done.
2508                                  */
2509                                 done = true;
2510                         }
2511                 }
2512                 ext4_journal_stop(handle);
2513                 /* Submit prepared bio */
2514                 ext4_io_submit(&mpd.io_submit);
2515                 /* Unlock pages we didn't use */
2516                 mpage_release_unused_pages(&mpd, give_up_on_write);
2517                 /* Drop our io_end reference we got from init */
2518                 ext4_put_io_end(mpd.io_submit.io_end);
2519
2520                 if (ret == -ENOSPC && sbi->s_journal) {
2521                         /*
2522                          * Commit the transaction which would
2523                          * free blocks released in the transaction
2524                          * and try again
2525                          */
2526                         jbd2_journal_force_commit_nested(sbi->s_journal);
2527                         ret = 0;
2528                         continue;
2529                 }
2530                 /* Fatal error - ENOMEM, EIO... */
2531                 if (ret)
2532                         break;
2533         }
2534         blk_finish_plug(&plug);
2535         if (!ret && !cycled) {
2536                 cycled = 1;
2537                 mpd.last_page = writeback_index - 1;
2538                 mpd.first_page = 0;
2539                 goto retry;
2540         }
2541
2542         /* Update index */
2543         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2544                 /*
2545                  * Set the writeback_index so that range_cyclic
2546                  * mode will write it back later
2547                  */
2548                 mapping->writeback_index = mpd.first_page;
2549
2550 out_writepages:
2551         trace_ext4_writepages_result(inode, wbc, ret,
2552                                      nr_to_write - wbc->nr_to_write);
2553         return ret;
2554 }
2555
2556 static int ext4_nonda_switch(struct super_block *sb)
2557 {
2558         s64 free_clusters, dirty_clusters;
2559         struct ext4_sb_info *sbi = EXT4_SB(sb);
2560
2561         /*
2562          * switch to non delalloc mode if we are running low
2563          * on free block. The free block accounting via percpu
2564          * counters can get slightly wrong with percpu_counter_batch getting
2565          * accumulated on each CPU without updating global counters
2566          * Delalloc need an accurate free block accounting. So switch
2567          * to non delalloc when we are near to error range.
2568          */
2569         free_clusters =
2570                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2571         dirty_clusters =
2572                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2573         /*
2574          * Start pushing delalloc when 1/2 of free blocks are dirty.
2575          */
2576         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2577                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2578
2579         if (2 * free_clusters < 3 * dirty_clusters ||
2580             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2581                 /*
2582                  * free block count is less than 150% of dirty blocks
2583                  * or free blocks is less than watermark
2584                  */
2585                 return 1;
2586         }
2587         return 0;
2588 }
2589
2590 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2591                                loff_t pos, unsigned len, unsigned flags,
2592                                struct page **pagep, void **fsdata)
2593 {
2594         int ret, retries = 0;
2595         struct page *page;
2596         pgoff_t index;
2597         struct inode *inode = mapping->host;
2598         handle_t *handle;
2599
2600         index = pos >> PAGE_CACHE_SHIFT;
2601
2602         if (ext4_nonda_switch(inode->i_sb)) {
2603                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2604                 return ext4_write_begin(file, mapping, pos,
2605                                         len, flags, pagep, fsdata);
2606         }
2607         *fsdata = (void *)0;
2608         trace_ext4_da_write_begin(inode, pos, len, flags);
2609
2610         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2611                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2612                                                       pos, len, flags,
2613                                                       pagep, fsdata);
2614                 if (ret < 0)
2615                         return ret;
2616                 if (ret == 1)
2617                         return 0;
2618         }
2619
2620         /*
2621          * grab_cache_page_write_begin() can take a long time if the
2622          * system is thrashing due to memory pressure, or if the page
2623          * is being written back.  So grab it first before we start
2624          * the transaction handle.  This also allows us to allocate
2625          * the page (if needed) without using GFP_NOFS.
2626          */
2627 retry_grab:
2628         page = grab_cache_page_write_begin(mapping, index, flags);
2629         if (!page)
2630                 return -ENOMEM;
2631         unlock_page(page);
2632
2633         /*
2634          * With delayed allocation, we don't log the i_disksize update
2635          * if there is delayed block allocation. But we still need
2636          * to journalling the i_disksize update if writes to the end
2637          * of file which has an already mapped buffer.
2638          */
2639 retry_journal:
2640         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2641         if (IS_ERR(handle)) {
2642                 page_cache_release(page);
2643                 return PTR_ERR(handle);
2644         }
2645
2646         lock_page(page);
2647         if (page->mapping != mapping) {
2648                 /* The page got truncated from under us */
2649                 unlock_page(page);
2650                 page_cache_release(page);
2651                 ext4_journal_stop(handle);
2652                 goto retry_grab;
2653         }
2654         /* In case writeback began while the page was unlocked */
2655         wait_on_page_writeback(page);
2656
2657         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2658         if (ret < 0) {
2659                 unlock_page(page);
2660                 ext4_journal_stop(handle);
2661                 /*
2662                  * block_write_begin may have instantiated a few blocks
2663                  * outside i_size.  Trim these off again. Don't need
2664                  * i_size_read because we hold i_mutex.
2665                  */
2666                 if (pos + len > inode->i_size)
2667                         ext4_truncate_failed_write(inode);
2668
2669                 if (ret == -ENOSPC &&
2670                     ext4_should_retry_alloc(inode->i_sb, &retries))
2671                         goto retry_journal;
2672
2673                 page_cache_release(page);
2674                 return ret;
2675         }
2676
2677         *pagep = page;
2678         return ret;
2679 }
2680
2681 /*
2682  * Check if we should update i_disksize
2683  * when write to the end of file but not require block allocation
2684  */
2685 static int ext4_da_should_update_i_disksize(struct page *page,
2686                                             unsigned long offset)
2687 {
2688         struct buffer_head *bh;
2689         struct inode *inode = page->mapping->host;
2690         unsigned int idx;
2691         int i;
2692
2693         bh = page_buffers(page);
2694         idx = offset >> inode->i_blkbits;
2695
2696         for (i = 0; i < idx; i++)
2697                 bh = bh->b_this_page;
2698
2699         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2700                 return 0;
2701         return 1;
2702 }
2703
2704 static int ext4_da_write_end(struct file *file,
2705                              struct address_space *mapping,
2706                              loff_t pos, unsigned len, unsigned copied,
2707                              struct page *page, void *fsdata)
2708 {
2709         struct inode *inode = mapping->host;
2710         int ret = 0, ret2;
2711         handle_t *handle = ext4_journal_current_handle();
2712         loff_t new_i_size;
2713         unsigned long start, end;
2714         int write_mode = (int)(unsigned long)fsdata;
2715
2716         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2717                 return ext4_write_end(file, mapping, pos,
2718                                       len, copied, page, fsdata);
2719
2720         trace_ext4_da_write_end(inode, pos, len, copied);
2721         start = pos & (PAGE_CACHE_SIZE - 1);
2722         end = start + copied - 1;
2723
2724         /*
2725          * generic_write_end() will run mark_inode_dirty() if i_size
2726          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2727          * into that.
2728          */
2729         new_i_size = pos + copied;
2730         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2731                 if (ext4_has_inline_data(inode) ||
2732                     ext4_da_should_update_i_disksize(page, end)) {
2733                         down_write(&EXT4_I(inode)->i_data_sem);
2734                         if (new_i_size > EXT4_I(inode)->i_disksize)
2735                                 EXT4_I(inode)->i_disksize = new_i_size;
2736                         up_write(&EXT4_I(inode)->i_data_sem);
2737                         /* We need to mark inode dirty even if
2738                          * new_i_size is less that inode->i_size
2739                          * bu greater than i_disksize.(hint delalloc)
2740                          */
2741                         ext4_mark_inode_dirty(handle, inode);
2742                 }
2743         }
2744
2745         if (write_mode != CONVERT_INLINE_DATA &&
2746             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2747             ext4_has_inline_data(inode))
2748                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2749                                                      page);
2750         else
2751                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2752                                                         page, fsdata);
2753
2754         copied = ret2;
2755         if (ret2 < 0)
2756                 ret = ret2;
2757         ret2 = ext4_journal_stop(handle);
2758         if (!ret)
2759                 ret = ret2;
2760
2761         return ret ? ret : copied;
2762 }
2763
2764 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2765                                    unsigned int length)
2766 {
2767         /*
2768          * Drop reserved blocks
2769          */
2770         BUG_ON(!PageLocked(page));
2771         if (!page_has_buffers(page))
2772                 goto out;
2773
2774         ext4_da_page_release_reservation(page, offset, length);
2775
2776 out:
2777         ext4_invalidatepage(page, offset, length);
2778
2779         return;
2780 }
2781
2782 /*
2783  * Force all delayed allocation blocks to be allocated for a given inode.
2784  */
2785 int ext4_alloc_da_blocks(struct inode *inode)
2786 {
2787         trace_ext4_alloc_da_blocks(inode);
2788
2789         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2790             !EXT4_I(inode)->i_reserved_meta_blocks)
2791                 return 0;
2792
2793         /*
2794          * We do something simple for now.  The filemap_flush() will
2795          * also start triggering a write of the data blocks, which is
2796          * not strictly speaking necessary (and for users of
2797          * laptop_mode, not even desirable).  However, to do otherwise
2798          * would require replicating code paths in:
2799          *
2800          * ext4_writepages() ->
2801          *    write_cache_pages() ---> (via passed in callback function)
2802          *        __mpage_da_writepage() -->
2803          *           mpage_add_bh_to_extent()
2804          *           mpage_da_map_blocks()
2805          *
2806          * The problem is that write_cache_pages(), located in
2807          * mm/page-writeback.c, marks pages clean in preparation for
2808          * doing I/O, which is not desirable if we're not planning on
2809          * doing I/O at all.
2810          *
2811          * We could call write_cache_pages(), and then redirty all of
2812          * the pages by calling redirty_page_for_writepage() but that
2813          * would be ugly in the extreme.  So instead we would need to
2814          * replicate parts of the code in the above functions,
2815          * simplifying them because we wouldn't actually intend to
2816          * write out the pages, but rather only collect contiguous
2817          * logical block extents, call the multi-block allocator, and
2818          * then update the buffer heads with the block allocations.
2819          *
2820          * For now, though, we'll cheat by calling filemap_flush(),
2821          * which will map the blocks, and start the I/O, but not
2822          * actually wait for the I/O to complete.
2823          */
2824         return filemap_flush(inode->i_mapping);
2825 }
2826
2827 /*
2828  * bmap() is special.  It gets used by applications such as lilo and by
2829  * the swapper to find the on-disk block of a specific piece of data.
2830  *
2831  * Naturally, this is dangerous if the block concerned is still in the
2832  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2833  * filesystem and enables swap, then they may get a nasty shock when the
2834  * data getting swapped to that swapfile suddenly gets overwritten by
2835  * the original zero's written out previously to the journal and
2836  * awaiting writeback in the kernel's buffer cache.
2837  *
2838  * So, if we see any bmap calls here on a modified, data-journaled file,
2839  * take extra steps to flush any blocks which might be in the cache.
2840  */
2841 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2842 {
2843         struct inode *inode = mapping->host;
2844         journal_t *journal;
2845         int err;
2846
2847         /*
2848          * We can get here for an inline file via the FIBMAP ioctl
2849          */
2850         if (ext4_has_inline_data(inode))
2851                 return 0;
2852
2853         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2854                         test_opt(inode->i_sb, DELALLOC)) {
2855                 /*
2856                  * With delalloc we want to sync the file
2857                  * so that we can make sure we allocate
2858                  * blocks for file
2859                  */
2860                 filemap_write_and_wait(mapping);
2861         }
2862
2863         if (EXT4_JOURNAL(inode) &&
2864             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2865                 /*
2866                  * This is a REALLY heavyweight approach, but the use of
2867                  * bmap on dirty files is expected to be extremely rare:
2868                  * only if we run lilo or swapon on a freshly made file
2869                  * do we expect this to happen.
2870                  *
2871                  * (bmap requires CAP_SYS_RAWIO so this does not
2872                  * represent an unprivileged user DOS attack --- we'd be
2873                  * in trouble if mortal users could trigger this path at
2874                  * will.)
2875                  *
2876                  * NB. EXT4_STATE_JDATA is not set on files other than
2877                  * regular files.  If somebody wants to bmap a directory
2878                  * or symlink and gets confused because the buffer
2879                  * hasn't yet been flushed to disk, they deserve
2880                  * everything they get.
2881                  */
2882
2883                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2884                 journal = EXT4_JOURNAL(inode);
2885                 jbd2_journal_lock_updates(journal);
2886                 err = jbd2_journal_flush(journal);
2887                 jbd2_journal_unlock_updates(journal);
2888
2889                 if (err)
2890                         return 0;
2891         }
2892
2893         return generic_block_bmap(mapping, block, ext4_get_block);
2894 }
2895
2896 static int ext4_readpage(struct file *file, struct page *page)
2897 {
2898         int ret = -EAGAIN;
2899         struct inode *inode = page->mapping->host;
2900
2901         trace_ext4_readpage(page);
2902
2903         if (ext4_has_inline_data(inode))
2904                 ret = ext4_readpage_inline(inode, page);
2905
2906         if (ret == -EAGAIN)
2907                 return mpage_readpage(page, ext4_get_block);
2908
2909         return ret;
2910 }
2911
2912 static int
2913 ext4_readpages(struct file *file, struct address_space *mapping,
2914                 struct list_head *pages, unsigned nr_pages)
2915 {
2916         struct inode *inode = mapping->host;
2917
2918         /* If the file has inline data, no need to do readpages. */
2919         if (ext4_has_inline_data(inode))
2920                 return 0;
2921
2922         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2923 }
2924
2925 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2926                                 unsigned int length)
2927 {
2928         trace_ext4_invalidatepage(page, offset, length);
2929
2930         /* No journalling happens on data buffers when this function is used */
2931         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2932
2933         block_invalidatepage(page, offset, length);
2934 }
2935
2936 static int __ext4_journalled_invalidatepage(struct page *page,
2937                                             unsigned int offset,
2938                                             unsigned int length)
2939 {
2940         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2941
2942         trace_ext4_journalled_invalidatepage(page, offset, length);
2943
2944         /*
2945          * If it's a full truncate we just forget about the pending dirtying
2946          */
2947         if (offset == 0 && length == PAGE_CACHE_SIZE)
2948                 ClearPageChecked(page);
2949
2950         return jbd2_journal_invalidatepage(journal, page, offset, length);
2951 }
2952
2953 /* Wrapper for aops... */
2954 static void ext4_journalled_invalidatepage(struct page *page,
2955                                            unsigned int offset,
2956                                            unsigned int length)
2957 {
2958         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2959 }
2960
2961 static int ext4_releasepage(struct page *page, gfp_t wait)
2962 {
2963         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2964
2965         trace_ext4_releasepage(page);
2966
2967         /* Page has dirty journalled data -> cannot release */
2968         if (PageChecked(page))
2969                 return 0;
2970         if (journal)
2971                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2972         else
2973                 return try_to_free_buffers(page);
2974 }
2975
2976 /*
2977  * ext4_get_block used when preparing for a DIO write or buffer write.
2978  * We allocate an uinitialized extent if blocks haven't been allocated.
2979  * The extent will be converted to initialized after the IO is complete.
2980  */
2981 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2982                    struct buffer_head *bh_result, int create)
2983 {
2984         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2985                    inode->i_ino, create);
2986         return _ext4_get_block(inode, iblock, bh_result,
2987                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2988 }
2989
2990 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2991                    struct buffer_head *bh_result, int create)
2992 {
2993         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2994                    inode->i_ino, create);
2995         return _ext4_get_block(inode, iblock, bh_result,
2996                                EXT4_GET_BLOCKS_NO_LOCK);
2997 }
2998
2999 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3000                             ssize_t size, void *private, int ret,
3001                             bool is_async)
3002 {
3003         struct inode *inode = file_inode(iocb->ki_filp);
3004         ext4_io_end_t *io_end = iocb->private;
3005
3006         /* if not async direct IO just return */
3007         if (!io_end) {
3008                 inode_dio_done(inode);
3009                 if (is_async)
3010                         aio_complete(iocb, ret, 0);
3011                 return;
3012         }
3013
3014         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3015                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3016                   iocb->private, io_end->inode->i_ino, iocb, offset,
3017                   size);
3018
3019         iocb->private = NULL;
3020         io_end->offset = offset;
3021         io_end->size = size;
3022         if (is_async) {
3023                 io_end->iocb = iocb;
3024                 io_end->result = ret;
3025         }
3026         ext4_put_io_end_defer(io_end);
3027 }
3028
3029 /*
3030  * For ext4 extent files, ext4 will do direct-io write to holes,
3031  * preallocated extents, and those write extend the file, no need to
3032  * fall back to buffered IO.
3033  *
3034  * For holes, we fallocate those blocks, mark them as uninitialized
3035  * If those blocks were preallocated, we mark sure they are split, but
3036  * still keep the range to write as uninitialized.
3037  *
3038  * The unwritten extents will be converted to written when DIO is completed.
3039  * For async direct IO, since the IO may still pending when return, we
3040  * set up an end_io call back function, which will do the conversion
3041  * when async direct IO completed.
3042  *
3043  * If the O_DIRECT write will extend the file then add this inode to the
3044  * orphan list.  So recovery will truncate it back to the original size
3045  * if the machine crashes during the write.
3046  *
3047  */
3048 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3049                               const struct iovec *iov, loff_t offset,
3050                               unsigned long nr_segs)
3051 {
3052         struct file *file = iocb->ki_filp;
3053         struct inode *inode = file->f_mapping->host;
3054         ssize_t ret;
3055         size_t count = iov_length(iov, nr_segs);
3056         int overwrite = 0;
3057         get_block_t *get_block_func = NULL;
3058         int dio_flags = 0;
3059         loff_t final_size = offset + count;
3060         ext4_io_end_t *io_end = NULL;
3061
3062         /* Use the old path for reads and writes beyond i_size. */
3063         if (rw != WRITE || final_size > inode->i_size)
3064                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3065
3066         BUG_ON(iocb->private == NULL);
3067
3068         /*
3069          * Make all waiters for direct IO properly wait also for extent
3070          * conversion. This also disallows race between truncate() and
3071          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3072          */
3073         if (rw == WRITE)
3074                 atomic_inc(&inode->i_dio_count);
3075
3076         /* If we do a overwrite dio, i_mutex locking can be released */
3077         overwrite = *((int *)iocb->private);
3078
3079         if (overwrite) {
3080                 down_read(&EXT4_I(inode)->i_data_sem);
3081                 mutex_unlock(&inode->i_mutex);
3082         }
3083
3084         /*
3085          * We could direct write to holes and fallocate.
3086          *
3087          * Allocated blocks to fill the hole are marked as
3088          * uninitialized to prevent parallel buffered read to expose
3089          * the stale data before DIO complete the data IO.
3090          *
3091          * As to previously fallocated extents, ext4 get_block will
3092          * just simply mark the buffer mapped but still keep the
3093          * extents uninitialized.
3094          *
3095          * For non AIO case, we will convert those unwritten extents
3096          * to written after return back from blockdev_direct_IO.
3097          *
3098          * For async DIO, the conversion needs to be deferred when the
3099          * IO is completed. The ext4 end_io callback function will be
3100          * called to take care of the conversion work.  Here for async
3101          * case, we allocate an io_end structure to hook to the iocb.
3102          */
3103         iocb->private = NULL;
3104         ext4_inode_aio_set(inode, NULL);
3105         if (!is_sync_kiocb(iocb)) {
3106                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3107                 if (!io_end) {
3108                         ret = -ENOMEM;
3109                         goto retake_lock;
3110                 }
3111                 io_end->flag |= EXT4_IO_END_DIRECT;
3112                 /*
3113                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3114                  */
3115                 iocb->private = ext4_get_io_end(io_end);
3116                 /*
3117                  * we save the io structure for current async direct
3118                  * IO, so that later ext4_map_blocks() could flag the
3119                  * io structure whether there is a unwritten extents
3120                  * needs to be converted when IO is completed.
3121                  */
3122                 ext4_inode_aio_set(inode, io_end);
3123         }
3124
3125         if (overwrite) {
3126                 get_block_func = ext4_get_block_write_nolock;
3127         } else {
3128                 get_block_func = ext4_get_block_write;
3129                 dio_flags = DIO_LOCKING;
3130         }
3131         ret = __blockdev_direct_IO(rw, iocb, inode,
3132                                    inode->i_sb->s_bdev, iov,
3133                                    offset, nr_segs,
3134                                    get_block_func,
3135                                    ext4_end_io_dio,
3136                                    NULL,
3137                                    dio_flags);
3138
3139         /*
3140          * Put our reference to io_end. This can free the io_end structure e.g.
3141          * in sync IO case or in case of error. It can even perform extent
3142          * conversion if all bios we submitted finished before we got here.
3143          * Note that in that case iocb->private can be already set to NULL
3144          * here.
3145          */
3146         if (io_end) {
3147                 ext4_inode_aio_set(inode, NULL);
3148                 ext4_put_io_end(io_end);
3149                 /*
3150                  * When no IO was submitted ext4_end_io_dio() was not
3151                  * called so we have to put iocb's reference.
3152                  */
3153                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3154                         WARN_ON(iocb->private != io_end);
3155                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3156                         WARN_ON(io_end->iocb);
3157                         /*
3158                          * Generic code already did inode_dio_done() so we
3159                          * have to clear EXT4_IO_END_DIRECT to not do it for
3160                          * the second time.
3161                          */
3162                         io_end->flag = 0;
3163                         ext4_put_io_end(io_end);
3164                         iocb->private = NULL;
3165                 }
3166         }
3167         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3168                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3169                 int err;
3170                 /*
3171                  * for non AIO case, since the IO is already
3172                  * completed, we could do the conversion right here
3173                  */
3174                 err = ext4_convert_unwritten_extents(NULL, inode,
3175                                                      offset, ret);
3176                 if (err < 0)
3177                         ret = err;
3178                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3179         }
3180
3181 retake_lock:
3182         if (rw == WRITE)
3183                 inode_dio_done(inode);
3184         /* take i_mutex locking again if we do a ovewrite dio */
3185         if (overwrite) {
3186                 up_read(&EXT4_I(inode)->i_data_sem);
3187                 mutex_lock(&inode->i_mutex);
3188         }
3189
3190         return ret;
3191 }
3192
3193 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3194                               const struct iovec *iov, loff_t offset,
3195                               unsigned long nr_segs)
3196 {
3197         struct file *file = iocb->ki_filp;
3198         struct inode *inode = file->f_mapping->host;
3199         ssize_t ret;
3200
3201         /*
3202          * If we are doing data journalling we don't support O_DIRECT
3203          */
3204         if (ext4_should_journal_data(inode))
3205                 return 0;
3206
3207         /* Let buffer I/O handle the inline data case. */
3208         if (ext4_has_inline_data(inode))
3209                 return 0;
3210
3211         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3212         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3213                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3214         else
3215                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3216         trace_ext4_direct_IO_exit(inode, offset,
3217                                 iov_length(iov, nr_segs), rw, ret);
3218         return ret;
3219 }
3220
3221 /*
3222  * Pages can be marked dirty completely asynchronously from ext4's journalling
3223  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3224  * much here because ->set_page_dirty is called under VFS locks.  The page is
3225  * not necessarily locked.
3226  *
3227  * We cannot just dirty the page and leave attached buffers clean, because the
3228  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3229  * or jbddirty because all the journalling code will explode.
3230  *
3231  * So what we do is to mark the page "pending dirty" and next time writepage
3232  * is called, propagate that into the buffers appropriately.
3233  */
3234 static int ext4_journalled_set_page_dirty(struct page *page)
3235 {
3236         SetPageChecked(page);
3237         return __set_page_dirty_nobuffers(page);
3238 }
3239
3240 static const struct address_space_operations ext4_aops = {
3241         .readpage               = ext4_readpage,
3242         .readpages              = ext4_readpages,
3243         .writepage              = ext4_writepage,
3244         .writepages             = ext4_writepages,
3245         .write_begin            = ext4_write_begin,
3246         .write_end              = ext4_write_end,
3247         .bmap                   = ext4_bmap,
3248         .invalidatepage         = ext4_invalidatepage,
3249         .releasepage            = ext4_releasepage,
3250         .direct_IO              = ext4_direct_IO,
3251         .migratepage            = buffer_migrate_page,
3252         .is_partially_uptodate  = block_is_partially_uptodate,
3253         .error_remove_page      = generic_error_remove_page,
3254 };
3255
3256 static const struct address_space_operations ext4_journalled_aops = {
3257         .readpage               = ext4_readpage,
3258         .readpages              = ext4_readpages,
3259         .writepage              = ext4_writepage,
3260         .writepages             = ext4_writepages,
3261         .write_begin            = ext4_write_begin,
3262         .write_end              = ext4_journalled_write_end,
3263         .set_page_dirty         = ext4_journalled_set_page_dirty,
3264         .bmap                   = ext4_bmap,
3265         .invalidatepage         = ext4_journalled_invalidatepage,
3266         .releasepage            = ext4_releasepage,
3267         .direct_IO              = ext4_direct_IO,
3268         .is_partially_uptodate  = block_is_partially_uptodate,
3269         .error_remove_page      = generic_error_remove_page,
3270 };
3271
3272 static const struct address_space_operations ext4_da_aops = {
3273         .readpage               = ext4_readpage,
3274         .readpages              = ext4_readpages,
3275         .writepage              = ext4_writepage,
3276         .writepages             = ext4_writepages,
3277         .write_begin            = ext4_da_write_begin,
3278         .write_end              = ext4_da_write_end,
3279         .bmap                   = ext4_bmap,
3280         .invalidatepage         = ext4_da_invalidatepage,
3281         .releasepage            = ext4_releasepage,
3282         .direct_IO              = ext4_direct_IO,
3283         .migratepage            = buffer_migrate_page,
3284         .is_partially_uptodate  = block_is_partially_uptodate,
3285         .error_remove_page      = generic_error_remove_page,
3286 };
3287
3288 void ext4_set_aops(struct inode *inode)
3289 {
3290         switch (ext4_inode_journal_mode(inode)) {
3291         case EXT4_INODE_ORDERED_DATA_MODE:
3292                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3293                 break;
3294         case EXT4_INODE_WRITEBACK_DATA_MODE:
3295                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3296                 break;
3297         case EXT4_INODE_JOURNAL_DATA_MODE:
3298                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3299                 return;
3300         default:
3301                 BUG();
3302         }
3303         if (test_opt(inode->i_sb, DELALLOC))
3304                 inode->i_mapping->a_ops = &ext4_da_aops;
3305         else
3306                 inode->i_mapping->a_ops = &ext4_aops;
3307 }
3308
3309 /*
3310  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3311  * up to the end of the block which corresponds to `from'.
3312  * This required during truncate. We need to physically zero the tail end
3313  * of that block so it doesn't yield old data if the file is later grown.
3314  */
3315 int ext4_block_truncate_page(handle_t *handle,
3316                 struct address_space *mapping, loff_t from)
3317 {
3318         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3319         unsigned length;
3320         unsigned blocksize;
3321         struct inode *inode = mapping->host;
3322
3323         blocksize = inode->i_sb->s_blocksize;
3324         length = blocksize - (offset & (blocksize - 1));
3325
3326         return ext4_block_zero_page_range(handle, mapping, from, length);
3327 }
3328
3329 /*
3330  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3331  * starting from file offset 'from'.  The range to be zero'd must
3332  * be contained with in one block.  If the specified range exceeds
3333  * the end of the block it will be shortened to end of the block
3334  * that cooresponds to 'from'
3335  */
3336 int ext4_block_zero_page_range(handle_t *handle,
3337                 struct address_space *mapping, loff_t from, loff_t length)
3338 {
3339         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3340         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3341         unsigned blocksize, max, pos;
3342         ext4_lblk_t iblock;
3343         struct inode *inode = mapping->host;
3344         struct buffer_head *bh;
3345         struct page *page;
3346         int err = 0;
3347
3348         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3349                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3350         if (!page)
3351                 return -ENOMEM;
3352
3353         blocksize = inode->i_sb->s_blocksize;
3354         max = blocksize - (offset & (blocksize - 1));
3355
3356         /*
3357          * correct length if it does not fall between
3358          * 'from' and the end of the block
3359          */
3360         if (length > max || length < 0)
3361                 length = max;
3362
3363         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3364
3365         if (!page_has_buffers(page))
3366                 create_empty_buffers(page, blocksize, 0);
3367
3368         /* Find the buffer that contains "offset" */
3369         bh = page_buffers(page);
3370         pos = blocksize;
3371         while (offset >= pos) {
3372                 bh = bh->b_this_page;
3373                 iblock++;
3374                 pos += blocksize;
3375         }
3376         if (buffer_freed(bh)) {
3377                 BUFFER_TRACE(bh, "freed: skip");
3378                 goto unlock;
3379         }
3380         if (!buffer_mapped(bh)) {
3381                 BUFFER_TRACE(bh, "unmapped");
3382                 ext4_get_block(inode, iblock, bh, 0);
3383                 /* unmapped? It's a hole - nothing to do */
3384                 if (!buffer_mapped(bh)) {
3385                         BUFFER_TRACE(bh, "still unmapped");
3386                         goto unlock;
3387                 }
3388         }
3389
3390         /* Ok, it's mapped. Make sure it's up-to-date */
3391         if (PageUptodate(page))
3392                 set_buffer_uptodate(bh);
3393
3394         if (!buffer_uptodate(bh)) {
3395                 err = -EIO;
3396                 ll_rw_block(READ, 1, &bh);
3397                 wait_on_buffer(bh);
3398                 /* Uhhuh. Read error. Complain and punt. */
3399                 if (!buffer_uptodate(bh))
3400                         goto unlock;
3401         }
3402         if (ext4_should_journal_data(inode)) {
3403                 BUFFER_TRACE(bh, "get write access");
3404                 err = ext4_journal_get_write_access(handle, bh);
3405                 if (err)
3406                         goto unlock;
3407         }
3408         zero_user(page, offset, length);
3409         BUFFER_TRACE(bh, "zeroed end of block");
3410
3411         if (ext4_should_journal_data(inode)) {
3412                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3413         } else {
3414                 err = 0;
3415                 mark_buffer_dirty(bh);
3416                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3417                         err = ext4_jbd2_file_inode(handle, inode);
3418         }
3419
3420 unlock:
3421         unlock_page(page);
3422         page_cache_release(page);
3423         return err;
3424 }
3425
3426 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3427                              loff_t lstart, loff_t length)
3428 {
3429         struct super_block *sb = inode->i_sb;
3430         struct address_space *mapping = inode->i_mapping;
3431         unsigned partial_start, partial_end;
3432         ext4_fsblk_t start, end;
3433         loff_t byte_end = (lstart + length - 1);
3434         int err = 0;
3435
3436         partial_start = lstart & (sb->s_blocksize - 1);
3437         partial_end = byte_end & (sb->s_blocksize - 1);
3438
3439         start = lstart >> sb->s_blocksize_bits;
3440         end = byte_end >> sb->s_blocksize_bits;
3441
3442         /* Handle partial zero within the single block */
3443         if (start == end &&
3444             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3445                 err = ext4_block_zero_page_range(handle, mapping,
3446                                                  lstart, length);
3447                 return err;
3448         }
3449         /* Handle partial zero out on the start of the range */
3450         if (partial_start) {
3451                 err = ext4_block_zero_page_range(handle, mapping,
3452                                                  lstart, sb->s_blocksize);
3453                 if (err)
3454                         return err;
3455         }
3456         /* Handle partial zero out on the end of the range */
3457         if (partial_end != sb->s_blocksize - 1)
3458                 err = ext4_block_zero_page_range(handle, mapping,
3459                                                  byte_end - partial_end,
3460                                                  partial_end + 1);
3461         return err;
3462 }
3463
3464 int ext4_can_truncate(struct inode *inode)
3465 {
3466         if (S_ISREG(inode->i_mode))
3467                 return 1;
3468         if (S_ISDIR(inode->i_mode))
3469                 return 1;
3470         if (S_ISLNK(inode->i_mode))
3471                 return !ext4_inode_is_fast_symlink(inode);
3472         return 0;
3473 }
3474
3475 /*
3476  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3477  * associated with the given offset and length
3478  *
3479  * @inode:  File inode
3480  * @offset: The offset where the hole will begin
3481  * @len:    The length of the hole
3482  *
3483  * Returns: 0 on success or negative on failure
3484  */
3485
3486 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3487 {
3488         struct super_block *sb = inode->i_sb;
3489         ext4_lblk_t first_block, stop_block;
3490         struct address_space *mapping = inode->i_mapping;
3491         loff_t first_block_offset, last_block_offset;
3492         handle_t *handle;
3493         unsigned int credits;
3494         int ret = 0;
3495
3496         if (!S_ISREG(inode->i_mode))
3497                 return -EOPNOTSUPP;
3498
3499         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3500                 /* TODO: Add support for bigalloc file systems */
3501                 return -EOPNOTSUPP;
3502         }
3503
3504         trace_ext4_punch_hole(inode, offset, length);
3505
3506         /*
3507          * Write out all dirty pages to avoid race conditions
3508          * Then release them.
3509          */
3510         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3511                 ret = filemap_write_and_wait_range(mapping, offset,
3512                                                    offset + length - 1);
3513                 if (ret)
3514                         return ret;
3515         }
3516
3517         mutex_lock(&inode->i_mutex);
3518         /* It's not possible punch hole on append only file */
3519         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3520                 ret = -EPERM;
3521                 goto out_mutex;
3522         }
3523         if (IS_SWAPFILE(inode)) {
3524                 ret = -ETXTBSY;
3525                 goto out_mutex;
3526         }
3527
3528         /* No need to punch hole beyond i_size */
3529         if (offset >= inode->i_size)
3530                 goto out_mutex;
3531
3532         /*
3533          * If the hole extends beyond i_size, set the hole
3534          * to end after the page that contains i_size
3535          */
3536         if (offset + length > inode->i_size) {
3537                 length = inode->i_size +
3538                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3539                    offset;
3540         }
3541
3542         first_block_offset = round_up(offset, sb->s_blocksize);
3543         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3544
3545         /* Now release the pages and zero block aligned part of pages*/
3546         if (last_block_offset > first_block_offset)
3547                 truncate_pagecache_range(inode, first_block_offset,
3548                                          last_block_offset);
3549
3550         /* Wait all existing dio workers, newcomers will block on i_mutex */
3551         ext4_inode_block_unlocked_dio(inode);
3552         inode_dio_wait(inode);
3553
3554         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3555                 credits = ext4_writepage_trans_blocks(inode);
3556         else
3557                 credits = ext4_blocks_for_truncate(inode);
3558         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3559         if (IS_ERR(handle)) {
3560                 ret = PTR_ERR(handle);
3561                 ext4_std_error(sb, ret);
3562                 goto out_dio;
3563         }
3564
3565         ret = ext4_zero_partial_blocks(handle, inode, offset,
3566                                        length);
3567         if (ret)
3568                 goto out_stop;
3569
3570         first_block = (offset + sb->s_blocksize - 1) >>
3571                 EXT4_BLOCK_SIZE_BITS(sb);
3572         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3573
3574         /* If there are no blocks to remove, return now */
3575         if (first_block >= stop_block)
3576                 goto out_stop;
3577
3578         down_write(&EXT4_I(inode)->i_data_sem);
3579         ext4_discard_preallocations(inode);
3580
3581         ret = ext4_es_remove_extent(inode, first_block,
3582                                     stop_block - first_block);
3583         if (ret) {
3584                 up_write(&EXT4_I(inode)->i_data_sem);
3585                 goto out_stop;
3586         }
3587
3588         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3589                 ret = ext4_ext_remove_space(inode, first_block,
3590                                             stop_block - 1);
3591         else
3592                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3593                                             stop_block);
3594
3595         ext4_discard_preallocations(inode);
3596         up_write(&EXT4_I(inode)->i_data_sem);
3597         if (IS_SYNC(inode))
3598                 ext4_handle_sync(handle);
3599         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3600         ext4_mark_inode_dirty(handle, inode);
3601 out_stop:
3602         ext4_journal_stop(handle);
3603 out_dio:
3604         ext4_inode_resume_unlocked_dio(inode);
3605 out_mutex:
3606         mutex_unlock(&inode->i_mutex);
3607         return ret;
3608 }
3609
3610 /*
3611  * ext4_truncate()
3612  *
3613  * We block out ext4_get_block() block instantiations across the entire
3614  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3615  * simultaneously on behalf of the same inode.
3616  *
3617  * As we work through the truncate and commit bits of it to the journal there
3618  * is one core, guiding principle: the file's tree must always be consistent on
3619  * disk.  We must be able to restart the truncate after a crash.
3620  *
3621  * The file's tree may be transiently inconsistent in memory (although it
3622  * probably isn't), but whenever we close off and commit a journal transaction,
3623  * the contents of (the filesystem + the journal) must be consistent and
3624  * restartable.  It's pretty simple, really: bottom up, right to left (although
3625  * left-to-right works OK too).
3626  *
3627  * Note that at recovery time, journal replay occurs *before* the restart of
3628  * truncate against the orphan inode list.
3629  *
3630  * The committed inode has the new, desired i_size (which is the same as
3631  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3632  * that this inode's truncate did not complete and it will again call
3633  * ext4_truncate() to have another go.  So there will be instantiated blocks
3634  * to the right of the truncation point in a crashed ext4 filesystem.  But
3635  * that's fine - as long as they are linked from the inode, the post-crash
3636  * ext4_truncate() run will find them and release them.
3637  */
3638 void ext4_truncate(struct inode *inode)
3639 {
3640         struct ext4_inode_info *ei = EXT4_I(inode);
3641         unsigned int credits;
3642         handle_t *handle;
3643         struct address_space *mapping = inode->i_mapping;
3644
3645         /*
3646          * There is a possibility that we're either freeing the inode
3647          * or it completely new indode. In those cases we might not
3648          * have i_mutex locked because it's not necessary.
3649          */
3650         if (!(inode->i_state & (I_NEW|I_FREEING)))
3651                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3652         trace_ext4_truncate_enter(inode);
3653
3654         if (!ext4_can_truncate(inode))
3655                 return;
3656
3657         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3658
3659         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3660                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3661
3662         if (ext4_has_inline_data(inode)) {
3663                 int has_inline = 1;
3664
3665                 ext4_inline_data_truncate(inode, &has_inline);
3666                 if (has_inline)
3667                         return;
3668         }
3669
3670         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3671                 credits = ext4_writepage_trans_blocks(inode);
3672         else
3673                 credits = ext4_blocks_for_truncate(inode);
3674
3675         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3676         if (IS_ERR(handle)) {
3677                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3678                 return;
3679         }
3680
3681         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3682                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3683
3684         /*
3685          * We add the inode to the orphan list, so that if this
3686          * truncate spans multiple transactions, and we crash, we will
3687          * resume the truncate when the filesystem recovers.  It also
3688          * marks the inode dirty, to catch the new size.
3689          *
3690          * Implication: the file must always be in a sane, consistent
3691          * truncatable state while each transaction commits.
3692          */
3693         if (ext4_orphan_add(handle, inode))
3694                 goto out_stop;
3695
3696         down_write(&EXT4_I(inode)->i_data_sem);
3697
3698         ext4_discard_preallocations(inode);
3699
3700         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3701                 ext4_ext_truncate(handle, inode);
3702         else
3703                 ext4_ind_truncate(handle, inode);
3704
3705         up_write(&ei->i_data_sem);
3706
3707         if (IS_SYNC(inode))
3708                 ext4_handle_sync(handle);
3709
3710 out_stop:
3711         /*
3712          * If this was a simple ftruncate() and the file will remain alive,
3713          * then we need to clear up the orphan record which we created above.
3714          * However, if this was a real unlink then we were called by
3715          * ext4_delete_inode(), and we allow that function to clean up the
3716          * orphan info for us.
3717          */
3718         if (inode->i_nlink)
3719                 ext4_orphan_del(handle, inode);
3720
3721         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3722         ext4_mark_inode_dirty(handle, inode);
3723         ext4_journal_stop(handle);
3724
3725         trace_ext4_truncate_exit(inode);
3726 }
3727
3728 /*
3729  * ext4_get_inode_loc returns with an extra refcount against the inode's
3730  * underlying buffer_head on success. If 'in_mem' is true, we have all
3731  * data in memory that is needed to recreate the on-disk version of this
3732  * inode.
3733  */
3734 static int __ext4_get_inode_loc(struct inode *inode,
3735                                 struct ext4_iloc *iloc, int in_mem)
3736 {
3737         struct ext4_group_desc  *gdp;
3738         struct buffer_head      *bh;
3739         struct super_block      *sb = inode->i_sb;
3740         ext4_fsblk_t            block;
3741         int                     inodes_per_block, inode_offset;
3742
3743         iloc->bh = NULL;
3744         if (!ext4_valid_inum(sb, inode->i_ino))
3745                 return -EIO;
3746
3747         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3748         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3749         if (!gdp)
3750                 return -EIO;
3751
3752         /*
3753          * Figure out the offset within the block group inode table
3754          */
3755         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3756         inode_offset = ((inode->i_ino - 1) %
3757                         EXT4_INODES_PER_GROUP(sb));
3758         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3759         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3760
3761         bh = sb_getblk(sb, block);
3762         if (unlikely(!bh))
3763                 return -ENOMEM;
3764         if (!buffer_uptodate(bh)) {
3765                 lock_buffer(bh);
3766
3767                 /*
3768                  * If the buffer has the write error flag, we have failed
3769                  * to write out another inode in the same block.  In this
3770                  * case, we don't have to read the block because we may
3771                  * read the old inode data successfully.
3772                  */
3773                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3774                         set_buffer_uptodate(bh);
3775
3776                 if (buffer_uptodate(bh)) {
3777                         /* someone brought it uptodate while we waited */
3778                         unlock_buffer(bh);
3779                         goto has_buffer;
3780                 }
3781
3782                 /*
3783                  * If we have all information of the inode in memory and this
3784                  * is the only valid inode in the block, we need not read the
3785                  * block.
3786                  */
3787                 if (in_mem) {
3788                         struct buffer_head *bitmap_bh;
3789                         int i, start;
3790
3791                         start = inode_offset & ~(inodes_per_block - 1);
3792
3793                         /* Is the inode bitmap in cache? */
3794                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3795                         if (unlikely(!bitmap_bh))
3796                                 goto make_io;
3797
3798                         /*
3799                          * If the inode bitmap isn't in cache then the
3800                          * optimisation may end up performing two reads instead
3801                          * of one, so skip it.
3802                          */
3803                         if (!buffer_uptodate(bitmap_bh)) {
3804                                 brelse(bitmap_bh);
3805                                 goto make_io;
3806                         }
3807                         for (i = start; i < start + inodes_per_block; i++) {
3808                                 if (i == inode_offset)
3809                                         continue;
3810                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3811                                         break;
3812                         }
3813                         brelse(bitmap_bh);
3814                         if (i == start + inodes_per_block) {
3815                                 /* all other inodes are free, so skip I/O */
3816                                 memset(bh->b_data, 0, bh->b_size);
3817                                 set_buffer_uptodate(bh);
3818                                 unlock_buffer(bh);
3819                                 goto has_buffer;
3820                         }
3821                 }
3822
3823 make_io:
3824                 /*
3825                  * If we need to do any I/O, try to pre-readahead extra
3826                  * blocks from the inode table.
3827                  */
3828                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3829                         ext4_fsblk_t b, end, table;
3830                         unsigned num;
3831                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3832
3833                         table = ext4_inode_table(sb, gdp);
3834                         /* s_inode_readahead_blks is always a power of 2 */
3835                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3836                         if (table > b)
3837                                 b = table;
3838                         end = b + ra_blks;
3839                         num = EXT4_INODES_PER_GROUP(sb);
3840                         if (ext4_has_group_desc_csum(sb))
3841                                 num -= ext4_itable_unused_count(sb, gdp);
3842                         table += num / inodes_per_block;
3843                         if (end > table)
3844                                 end = table;
3845                         while (b <= end)
3846                                 sb_breadahead(sb, b++);
3847                 }
3848
3849                 /*
3850                  * There are other valid inodes in the buffer, this inode
3851                  * has in-inode xattrs, or we don't have this inode in memory.
3852                  * Read the block from disk.
3853                  */
3854                 trace_ext4_load_inode(inode);
3855                 get_bh(bh);
3856                 bh->b_end_io = end_buffer_read_sync;
3857                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3858                 wait_on_buffer(bh);
3859                 if (!buffer_uptodate(bh)) {
3860                         EXT4_ERROR_INODE_BLOCK(inode, block,
3861                                                "unable to read itable block");
3862                         brelse(bh);
3863                         return -EIO;
3864                 }
3865         }
3866 has_buffer:
3867         iloc->bh = bh;
3868         return 0;
3869 }
3870
3871 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3872 {
3873         /* We have all inode data except xattrs in memory here. */
3874         return __ext4_get_inode_loc(inode, iloc,
3875                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3876 }
3877
3878 void ext4_set_inode_flags(struct inode *inode)
3879 {
3880         unsigned int flags = EXT4_I(inode)->i_flags;
3881
3882         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3883         if (flags & EXT4_SYNC_FL)
3884                 inode->i_flags |= S_SYNC;
3885         if (flags & EXT4_APPEND_FL)
3886                 inode->i_flags |= S_APPEND;
3887         if (flags & EXT4_IMMUTABLE_FL)
3888                 inode->i_flags |= S_IMMUTABLE;
3889         if (flags & EXT4_NOATIME_FL)
3890                 inode->i_flags |= S_NOATIME;
3891         if (flags & EXT4_DIRSYNC_FL)
3892                 inode->i_flags |= S_DIRSYNC;
3893 }
3894
3895 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3896 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3897 {
3898         unsigned int vfs_fl;
3899         unsigned long old_fl, new_fl;
3900
3901         do {
3902                 vfs_fl = ei->vfs_inode.i_flags;
3903                 old_fl = ei->i_flags;
3904                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3905                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3906                                 EXT4_DIRSYNC_FL);
3907                 if (vfs_fl & S_SYNC)
3908                         new_fl |= EXT4_SYNC_FL;
3909                 if (vfs_fl & S_APPEND)
3910                         new_fl |= EXT4_APPEND_FL;
3911                 if (vfs_fl & S_IMMUTABLE)
3912                         new_fl |= EXT4_IMMUTABLE_FL;
3913                 if (vfs_fl & S_NOATIME)
3914                         new_fl |= EXT4_NOATIME_FL;
3915                 if (vfs_fl & S_DIRSYNC)
3916                         new_fl |= EXT4_DIRSYNC_FL;
3917         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3918 }
3919
3920 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3921                                   struct ext4_inode_info *ei)
3922 {
3923         blkcnt_t i_blocks ;
3924         struct inode *inode = &(ei->vfs_inode);
3925         struct super_block *sb = inode->i_sb;
3926
3927         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3928                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3929                 /* we are using combined 48 bit field */
3930                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3931                                         le32_to_cpu(raw_inode->i_blocks_lo);
3932                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3933                         /* i_blocks represent file system block size */
3934                         return i_blocks  << (inode->i_blkbits - 9);
3935                 } else {
3936                         return i_blocks;
3937                 }
3938         } else {
3939                 return le32_to_cpu(raw_inode->i_blocks_lo);
3940         }
3941 }
3942
3943 static inline void ext4_iget_extra_inode(struct inode *inode,
3944                                          struct ext4_inode *raw_inode,
3945                                          struct ext4_inode_info *ei)
3946 {
3947         __le32 *magic = (void *)raw_inode +
3948                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3949         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3950                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3951                 ext4_find_inline_data_nolock(inode);
3952         } else
3953                 EXT4_I(inode)->i_inline_off = 0;
3954 }
3955
3956 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3957 {
3958         struct ext4_iloc iloc;
3959         struct ext4_inode *raw_inode;
3960         struct ext4_inode_info *ei;
3961         struct inode *inode;
3962         journal_t *journal = EXT4_SB(sb)->s_journal;
3963         long ret;
3964         int block;
3965         uid_t i_uid;
3966         gid_t i_gid;
3967
3968         inode = iget_locked(sb, ino);
3969         if (!inode)
3970                 return ERR_PTR(-ENOMEM);
3971         if (!(inode->i_state & I_NEW))
3972                 return inode;
3973
3974         ei = EXT4_I(inode);
3975         iloc.bh = NULL;
3976
3977         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3978         if (ret < 0)
3979                 goto bad_inode;
3980         raw_inode = ext4_raw_inode(&iloc);
3981
3982         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3983                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3984                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3985                     EXT4_INODE_SIZE(inode->i_sb)) {
3986                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3987                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3988                                 EXT4_INODE_SIZE(inode->i_sb));
3989                         ret = -EIO;
3990                         goto bad_inode;
3991                 }
3992         } else
3993                 ei->i_extra_isize = 0;
3994
3995         /* Precompute checksum seed for inode metadata */
3996         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3997                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3998                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3999                 __u32 csum;
4000                 __le32 inum = cpu_to_le32(inode->i_ino);
4001                 __le32 gen = raw_inode->i_generation;
4002                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4003                                    sizeof(inum));
4004                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4005                                               sizeof(gen));
4006         }
4007
4008         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4009                 EXT4_ERROR_INODE(inode, "checksum invalid");
4010                 ret = -EIO;
4011                 goto bad_inode;
4012         }
4013
4014         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4015         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4016         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4017         if (!(test_opt(inode->i_sb, NO_UID32))) {
4018                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4019                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4020         }
4021         i_uid_write(inode, i_uid);
4022         i_gid_write(inode, i_gid);
4023         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4024
4025         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4026         ei->i_inline_off = 0;
4027         ei->i_dir_start_lookup = 0;
4028         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4029         /* We now have enough fields to check if the inode was active or not.
4030          * This is needed because nfsd might try to access dead inodes
4031          * the test is that same one that e2fsck uses
4032          * NeilBrown 1999oct15
4033          */
4034         if (inode->i_nlink == 0) {
4035                 if ((inode->i_mode == 0 ||
4036                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4037                     ino != EXT4_BOOT_LOADER_INO) {
4038                         /* this inode is deleted */
4039                         ret = -ESTALE;
4040                         goto bad_inode;
4041                 }
4042                 /* The only unlinked inodes we let through here have
4043                  * valid i_mode and are being read by the orphan
4044                  * recovery code: that's fine, we're about to complete
4045                  * the process of deleting those.
4046                  * OR it is the EXT4_BOOT_LOADER_INO which is
4047                  * not initialized on a new filesystem. */
4048         }
4049         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4050         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4051         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4052         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4053                 ei->i_file_acl |=
4054                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4055         inode->i_size = ext4_isize(raw_inode);
4056         ei->i_disksize = inode->i_size;
4057 #ifdef CONFIG_QUOTA
4058         ei->i_reserved_quota = 0;
4059 #endif
4060         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4061         ei->i_block_group = iloc.block_group;
4062         ei->i_last_alloc_group = ~0;
4063         /*
4064          * NOTE! The in-memory inode i_data array is in little-endian order
4065          * even on big-endian machines: we do NOT byteswap the block numbers!
4066          */
4067         for (block = 0; block < EXT4_N_BLOCKS; block++)
4068                 ei->i_data[block] = raw_inode->i_block[block];
4069         INIT_LIST_HEAD(&ei->i_orphan);
4070
4071         /*
4072          * Set transaction id's of transactions that have to be committed
4073          * to finish f[data]sync. We set them to currently running transaction
4074          * as we cannot be sure that the inode or some of its metadata isn't
4075          * part of the transaction - the inode could have been reclaimed and
4076          * now it is reread from disk.
4077          */
4078         if (journal) {
4079                 transaction_t *transaction;
4080                 tid_t tid;
4081
4082                 read_lock(&journal->j_state_lock);
4083                 if (journal->j_running_transaction)
4084                         transaction = journal->j_running_transaction;
4085                 else
4086                         transaction = journal->j_committing_transaction;
4087                 if (transaction)
4088                         tid = transaction->t_tid;
4089                 else
4090                         tid = journal->j_commit_sequence;
4091                 read_unlock(&journal->j_state_lock);
4092                 ei->i_sync_tid = tid;
4093                 ei->i_datasync_tid = tid;
4094         }
4095
4096         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4097                 if (ei->i_extra_isize == 0) {
4098                         /* The extra space is currently unused. Use it. */
4099                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4100                                             EXT4_GOOD_OLD_INODE_SIZE;
4101                 } else {
4102                         ext4_iget_extra_inode(inode, raw_inode, ei);
4103                 }
4104         }
4105
4106         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4107         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4108         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4109         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4110
4111         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4113                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4114                         inode->i_version |=
4115                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4116         }
4117
4118         ret = 0;
4119         if (ei->i_file_acl &&
4120             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4121                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4122                                  ei->i_file_acl);
4123                 ret = -EIO;
4124                 goto bad_inode;
4125         } else if (!ext4_has_inline_data(inode)) {
4126                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4127                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4128                             (S_ISLNK(inode->i_mode) &&
4129                              !ext4_inode_is_fast_symlink(inode))))
4130                                 /* Validate extent which is part of inode */
4131                                 ret = ext4_ext_check_inode(inode);
4132                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4133                            (S_ISLNK(inode->i_mode) &&
4134                             !ext4_inode_is_fast_symlink(inode))) {
4135                         /* Validate block references which are part of inode */
4136                         ret = ext4_ind_check_inode(inode);
4137                 }
4138         }
4139         if (ret)
4140                 goto bad_inode;
4141
4142         if (S_ISREG(inode->i_mode)) {
4143                 inode->i_op = &ext4_file_inode_operations;
4144                 inode->i_fop = &ext4_file_operations;
4145                 ext4_set_aops(inode);
4146         } else if (S_ISDIR(inode->i_mode)) {
4147                 inode->i_op = &ext4_dir_inode_operations;
4148                 inode->i_fop = &ext4_dir_operations;
4149         } else if (S_ISLNK(inode->i_mode)) {
4150                 if (ext4_inode_is_fast_symlink(inode)) {
4151                         inode->i_op = &ext4_fast_symlink_inode_operations;
4152                         nd_terminate_link(ei->i_data, inode->i_size,
4153                                 sizeof(ei->i_data) - 1);
4154                 } else {
4155                         inode->i_op = &ext4_symlink_inode_operations;
4156                         ext4_set_aops(inode);
4157                 }
4158         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4159               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4160                 inode->i_op = &ext4_special_inode_operations;
4161                 if (raw_inode->i_block[0])
4162                         init_special_inode(inode, inode->i_mode,
4163                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4164                 else
4165                         init_special_inode(inode, inode->i_mode,
4166                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4167         } else if (ino == EXT4_BOOT_LOADER_INO) {
4168                 make_bad_inode(inode);
4169         } else {
4170                 ret = -EIO;
4171                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4172                 goto bad_inode;
4173         }
4174         brelse(iloc.bh);
4175         ext4_set_inode_flags(inode);
4176         unlock_new_inode(inode);
4177         return inode;
4178
4179 bad_inode:
4180         brelse(iloc.bh);
4181         iget_failed(inode);
4182         return ERR_PTR(ret);
4183 }
4184
4185 static int ext4_inode_blocks_set(handle_t *handle,
4186                                 struct ext4_inode *raw_inode,
4187                                 struct ext4_inode_info *ei)
4188 {
4189         struct inode *inode = &(ei->vfs_inode);
4190         u64 i_blocks = inode->i_blocks;
4191         struct super_block *sb = inode->i_sb;
4192
4193         if (i_blocks <= ~0U) {
4194                 /*
4195                  * i_blocks can be represented in a 32 bit variable
4196                  * as multiple of 512 bytes
4197                  */
4198                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4199                 raw_inode->i_blocks_high = 0;
4200                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4201                 return 0;
4202         }
4203         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4204                 return -EFBIG;
4205
4206         if (i_blocks <= 0xffffffffffffULL) {
4207                 /*
4208                  * i_blocks can be represented in a 48 bit variable
4209                  * as multiple of 512 bytes
4210                  */
4211                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4212                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4213                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4214         } else {
4215                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4216                 /* i_block is stored in file system block size */
4217                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4218                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4219                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4220         }
4221         return 0;
4222 }
4223
4224 /*
4225  * Post the struct inode info into an on-disk inode location in the
4226  * buffer-cache.  This gobbles the caller's reference to the
4227  * buffer_head in the inode location struct.
4228  *
4229  * The caller must have write access to iloc->bh.
4230  */
4231 static int ext4_do_update_inode(handle_t *handle,
4232                                 struct inode *inode,
4233                                 struct ext4_iloc *iloc)
4234 {
4235         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4236         struct ext4_inode_info *ei = EXT4_I(inode);
4237         struct buffer_head *bh = iloc->bh;
4238         int err = 0, rc, block;
4239         int need_datasync = 0;
4240         uid_t i_uid;
4241         gid_t i_gid;
4242
4243         /* For fields not not tracking in the in-memory inode,
4244          * initialise them to zero for new inodes. */
4245         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4246                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4247
4248         ext4_get_inode_flags(ei);
4249         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4250         i_uid = i_uid_read(inode);
4251         i_gid = i_gid_read(inode);
4252         if (!(test_opt(inode->i_sb, NO_UID32))) {
4253                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4254                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4255 /*
4256  * Fix up interoperability with old kernels. Otherwise, old inodes get
4257  * re-used with the upper 16 bits of the uid/gid intact
4258  */
4259                 if (!ei->i_dtime) {
4260                         raw_inode->i_uid_high =
4261                                 cpu_to_le16(high_16_bits(i_uid));
4262                         raw_inode->i_gid_high =
4263                                 cpu_to_le16(high_16_bits(i_gid));
4264                 } else {
4265                         raw_inode->i_uid_high = 0;
4266                         raw_inode->i_gid_high = 0;
4267                 }
4268         } else {
4269                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4270                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4271                 raw_inode->i_uid_high = 0;
4272                 raw_inode->i_gid_high = 0;
4273         }
4274         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4275
4276         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4277         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4278         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4279         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4280
4281         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4282                 goto out_brelse;
4283         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4284         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4285         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4286             cpu_to_le32(EXT4_OS_HURD))
4287                 raw_inode->i_file_acl_high =
4288                         cpu_to_le16(ei->i_file_acl >> 32);
4289         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4290         if (ei->i_disksize != ext4_isize(raw_inode)) {
4291                 ext4_isize_set(raw_inode, ei->i_disksize);
4292                 need_datasync = 1;
4293         }
4294         if (ei->i_disksize > 0x7fffffffULL) {
4295                 struct super_block *sb = inode->i_sb;
4296                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4297                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4298                                 EXT4_SB(sb)->s_es->s_rev_level ==
4299                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4300                         /* If this is the first large file
4301                          * created, add a flag to the superblock.
4302                          */
4303                         err = ext4_journal_get_write_access(handle,
4304                                         EXT4_SB(sb)->s_sbh);
4305                         if (err)
4306                                 goto out_brelse;
4307                         ext4_update_dynamic_rev(sb);
4308                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4309                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4310                         ext4_handle_sync(handle);
4311                         err = ext4_handle_dirty_super(handle, sb);
4312                 }
4313         }
4314         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4315         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4316                 if (old_valid_dev(inode->i_rdev)) {
4317                         raw_inode->i_block[0] =
4318                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4319                         raw_inode->i_block[1] = 0;
4320                 } else {
4321                         raw_inode->i_block[0] = 0;
4322                         raw_inode->i_block[1] =
4323                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4324                         raw_inode->i_block[2] = 0;
4325                 }
4326         } else if (!ext4_has_inline_data(inode)) {
4327                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4328                         raw_inode->i_block[block] = ei->i_data[block];
4329         }
4330
4331         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4332         if (ei->i_extra_isize) {
4333                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4334                         raw_inode->i_version_hi =
4335                         cpu_to_le32(inode->i_version >> 32);
4336                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4337         }
4338
4339         ext4_inode_csum_set(inode, raw_inode, ei);
4340
4341         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4342         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4343         if (!err)
4344                 err = rc;
4345         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4346
4347         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4348 out_brelse:
4349         brelse(bh);
4350         ext4_std_error(inode->i_sb, err);
4351         return err;
4352 }
4353
4354 /*
4355  * ext4_write_inode()
4356  *
4357  * We are called from a few places:
4358  *
4359  * - Within generic_file_write() for O_SYNC files.
4360  *   Here, there will be no transaction running. We wait for any running
4361  *   transaction to commit.
4362  *
4363  * - Within sys_sync(), kupdate and such.
4364  *   We wait on commit, if tol to.
4365  *
4366  * - Within prune_icache() (PF_MEMALLOC == true)
4367  *   Here we simply return.  We can't afford to block kswapd on the
4368  *   journal commit.
4369  *
4370  * In all cases it is actually safe for us to return without doing anything,
4371  * because the inode has been copied into a raw inode buffer in
4372  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4373  * knfsd.
4374  *
4375  * Note that we are absolutely dependent upon all inode dirtiers doing the
4376  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4377  * which we are interested.
4378  *
4379  * It would be a bug for them to not do this.  The code:
4380  *
4381  *      mark_inode_dirty(inode)
4382  *      stuff();
4383  *      inode->i_size = expr;
4384  *
4385  * is in error because a kswapd-driven write_inode() could occur while
4386  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4387  * will no longer be on the superblock's dirty inode list.
4388  */
4389 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4390 {
4391         int err;
4392
4393         if (current->flags & PF_MEMALLOC)
4394                 return 0;
4395
4396         if (EXT4_SB(inode->i_sb)->s_journal) {
4397                 if (ext4_journal_current_handle()) {
4398                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4399                         dump_stack();
4400                         return -EIO;
4401                 }
4402
4403                 if (wbc->sync_mode != WB_SYNC_ALL)
4404                         return 0;
4405
4406                 err = ext4_force_commit(inode->i_sb);
4407         } else {
4408                 struct ext4_iloc iloc;
4409
4410                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4411                 if (err)
4412                         return err;
4413                 if (wbc->sync_mode == WB_SYNC_ALL)
4414                         sync_dirty_buffer(iloc.bh);
4415                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4416                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4417                                          "IO error syncing inode");
4418                         err = -EIO;
4419                 }
4420                 brelse(iloc.bh);
4421         }
4422         return err;
4423 }
4424
4425 /*
4426  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4427  * buffers that are attached to a page stradding i_size and are undergoing
4428  * commit. In that case we have to wait for commit to finish and try again.
4429  */
4430 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4431 {
4432         struct page *page;
4433         unsigned offset;
4434         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4435         tid_t commit_tid = 0;
4436         int ret;
4437
4438         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4439         /*
4440          * All buffers in the last page remain valid? Then there's nothing to
4441          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4442          * blocksize case
4443          */
4444         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4445                 return;
4446         while (1) {
4447                 page = find_lock_page(inode->i_mapping,
4448                                       inode->i_size >> PAGE_CACHE_SHIFT);
4449                 if (!page)
4450                         return;
4451                 ret = __ext4_journalled_invalidatepage(page, offset,
4452                                                 PAGE_CACHE_SIZE - offset);
4453                 unlock_page(page);
4454                 page_cache_release(page);
4455                 if (ret != -EBUSY)
4456                         return;
4457                 commit_tid = 0;
4458                 read_lock(&journal->j_state_lock);
4459                 if (journal->j_committing_transaction)
4460                         commit_tid = journal->j_committing_transaction->t_tid;
4461                 read_unlock(&journal->j_state_lock);
4462                 if (commit_tid)
4463                         jbd2_log_wait_commit(journal, commit_tid);
4464         }
4465 }
4466
4467 /*
4468  * ext4_setattr()
4469  *
4470  * Called from notify_change.
4471  *
4472  * We want to trap VFS attempts to truncate the file as soon as
4473  * possible.  In particular, we want to make sure that when the VFS
4474  * shrinks i_size, we put the inode on the orphan list and modify
4475  * i_disksize immediately, so that during the subsequent flushing of
4476  * dirty pages and freeing of disk blocks, we can guarantee that any
4477  * commit will leave the blocks being flushed in an unused state on
4478  * disk.  (On recovery, the inode will get truncated and the blocks will
4479  * be freed, so we have a strong guarantee that no future commit will
4480  * leave these blocks visible to the user.)
4481  *
4482  * Another thing we have to assure is that if we are in ordered mode
4483  * and inode is still attached to the committing transaction, we must
4484  * we start writeout of all the dirty pages which are being truncated.
4485  * This way we are sure that all the data written in the previous
4486  * transaction are already on disk (truncate waits for pages under
4487  * writeback).
4488  *
4489  * Called with inode->i_mutex down.
4490  */
4491 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4492 {
4493         struct inode *inode = dentry->d_inode;
4494         int error, rc = 0;
4495         int orphan = 0;
4496         const unsigned int ia_valid = attr->ia_valid;
4497
4498         error = inode_change_ok(inode, attr);
4499         if (error)
4500                 return error;
4501
4502         if (is_quota_modification(inode, attr))
4503                 dquot_initialize(inode);
4504         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4505             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4506                 handle_t *handle;
4507
4508                 /* (user+group)*(old+new) structure, inode write (sb,
4509                  * inode block, ? - but truncate inode update has it) */
4510                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4511                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4512                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4513                 if (IS_ERR(handle)) {
4514                         error = PTR_ERR(handle);
4515                         goto err_out;
4516                 }
4517                 error = dquot_transfer(inode, attr);
4518                 if (error) {
4519                         ext4_journal_stop(handle);
4520                         return error;
4521                 }
4522                 /* Update corresponding info in inode so that everything is in
4523                  * one transaction */
4524                 if (attr->ia_valid & ATTR_UID)
4525                         inode->i_uid = attr->ia_uid;
4526                 if (attr->ia_valid & ATTR_GID)
4527                         inode->i_gid = attr->ia_gid;
4528                 error = ext4_mark_inode_dirty(handle, inode);
4529                 ext4_journal_stop(handle);
4530         }
4531
4532         if (attr->ia_valid & ATTR_SIZE) {
4533
4534                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4535                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4536
4537                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4538                                 return -EFBIG;
4539                 }
4540         }
4541
4542         if (S_ISREG(inode->i_mode) &&
4543             attr->ia_valid & ATTR_SIZE &&
4544             (attr->ia_size < inode->i_size)) {
4545                 handle_t *handle;
4546
4547                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4548                 if (IS_ERR(handle)) {
4549                         error = PTR_ERR(handle);
4550                         goto err_out;
4551                 }
4552                 if (ext4_handle_valid(handle)) {
4553                         error = ext4_orphan_add(handle, inode);
4554                         orphan = 1;
4555                 }
4556                 EXT4_I(inode)->i_disksize = attr->ia_size;
4557                 rc = ext4_mark_inode_dirty(handle, inode);
4558                 if (!error)
4559                         error = rc;
4560                 ext4_journal_stop(handle);
4561
4562                 if (ext4_should_order_data(inode)) {
4563                         error = ext4_begin_ordered_truncate(inode,
4564                                                             attr->ia_size);
4565                         if (error) {
4566                                 /* Do as much error cleanup as possible */
4567                                 handle = ext4_journal_start(inode,
4568                                                             EXT4_HT_INODE, 3);
4569                                 if (IS_ERR(handle)) {
4570                                         ext4_orphan_del(NULL, inode);
4571                                         goto err_out;
4572                                 }
4573                                 ext4_orphan_del(handle, inode);
4574                                 orphan = 0;
4575                                 ext4_journal_stop(handle);
4576                                 goto err_out;
4577                         }
4578                 }
4579         }
4580
4581         if (attr->ia_valid & ATTR_SIZE) {
4582                 if (attr->ia_size != inode->i_size) {
4583                         loff_t oldsize = inode->i_size;
4584
4585                         i_size_write(inode, attr->ia_size);
4586                         /*
4587                          * Blocks are going to be removed from the inode. Wait
4588                          * for dio in flight.  Temporarily disable
4589                          * dioread_nolock to prevent livelock.
4590                          */
4591                         if (orphan) {
4592                                 if (!ext4_should_journal_data(inode)) {
4593                                         ext4_inode_block_unlocked_dio(inode);
4594                                         inode_dio_wait(inode);
4595                                         ext4_inode_resume_unlocked_dio(inode);
4596                                 } else
4597                                         ext4_wait_for_tail_page_commit(inode);
4598                         }
4599                         /*
4600                          * Truncate pagecache after we've waited for commit
4601                          * in data=journal mode to make pages freeable.
4602                          */
4603                         truncate_pagecache(inode, oldsize, inode->i_size);
4604                 }
4605                 ext4_truncate(inode);
4606         }
4607
4608         if (!rc) {
4609                 setattr_copy(inode, attr);
4610                 mark_inode_dirty(inode);
4611         }
4612
4613         /*
4614          * If the call to ext4_truncate failed to get a transaction handle at
4615          * all, we need to clean up the in-core orphan list manually.
4616          */
4617         if (orphan && inode->i_nlink)
4618                 ext4_orphan_del(NULL, inode);
4619
4620         if (!rc && (ia_valid & ATTR_MODE))
4621                 rc = ext4_acl_chmod(inode);
4622
4623 err_out:
4624         ext4_std_error(inode->i_sb, error);
4625         if (!error)
4626                 error = rc;
4627         return error;
4628 }
4629
4630 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4631                  struct kstat *stat)
4632 {
4633         struct inode *inode;
4634         unsigned long long delalloc_blocks;
4635
4636         inode = dentry->d_inode;
4637         generic_fillattr(inode, stat);
4638
4639         /*
4640          * We can't update i_blocks if the block allocation is delayed
4641          * otherwise in the case of system crash before the real block
4642          * allocation is done, we will have i_blocks inconsistent with
4643          * on-disk file blocks.
4644          * We always keep i_blocks updated together with real
4645          * allocation. But to not confuse with user, stat
4646          * will return the blocks that include the delayed allocation
4647          * blocks for this file.
4648          */
4649         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4650                                 EXT4_I(inode)->i_reserved_data_blocks);
4651
4652         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4653         return 0;
4654 }
4655
4656 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4657                                    int pextents)
4658 {
4659         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4660                 return ext4_ind_trans_blocks(inode, lblocks);
4661         return ext4_ext_index_trans_blocks(inode, pextents);
4662 }
4663
4664 /*
4665  * Account for index blocks, block groups bitmaps and block group
4666  * descriptor blocks if modify datablocks and index blocks
4667  * worse case, the indexs blocks spread over different block groups
4668  *
4669  * If datablocks are discontiguous, they are possible to spread over
4670  * different block groups too. If they are contiguous, with flexbg,
4671  * they could still across block group boundary.
4672  *
4673  * Also account for superblock, inode, quota and xattr blocks
4674  */
4675 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4676                                   int pextents)
4677 {
4678         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4679         int gdpblocks;
4680         int idxblocks;
4681         int ret = 0;
4682
4683         /*
4684          * How many index blocks need to touch to map @lblocks logical blocks
4685          * to @pextents physical extents?
4686          */
4687         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4688
4689         ret = idxblocks;
4690
4691         /*
4692          * Now let's see how many group bitmaps and group descriptors need
4693          * to account
4694          */
4695         groups = idxblocks + pextents;
4696         gdpblocks = groups;
4697         if (groups > ngroups)
4698                 groups = ngroups;
4699         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4700                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4701
4702         /* bitmaps and block group descriptor blocks */
4703         ret += groups + gdpblocks;
4704
4705         /* Blocks for super block, inode, quota and xattr blocks */
4706         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4707
4708         return ret;
4709 }
4710
4711 /*
4712  * Calculate the total number of credits to reserve to fit
4713  * the modification of a single pages into a single transaction,
4714  * which may include multiple chunks of block allocations.
4715  *
4716  * This could be called via ext4_write_begin()
4717  *
4718  * We need to consider the worse case, when
4719  * one new block per extent.
4720  */
4721 int ext4_writepage_trans_blocks(struct inode *inode)
4722 {
4723         int bpp = ext4_journal_blocks_per_page(inode);
4724         int ret;
4725
4726         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4727
4728         /* Account for data blocks for journalled mode */
4729         if (ext4_should_journal_data(inode))
4730                 ret += bpp;
4731         return ret;
4732 }
4733
4734 /*
4735  * Calculate the journal credits for a chunk of data modification.
4736  *
4737  * This is called from DIO, fallocate or whoever calling
4738  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4739  *
4740  * journal buffers for data blocks are not included here, as DIO
4741  * and fallocate do no need to journal data buffers.
4742  */
4743 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4744 {
4745         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4746 }
4747
4748 /*
4749  * The caller must have previously called ext4_reserve_inode_write().
4750  * Give this, we know that the caller already has write access to iloc->bh.
4751  */
4752 int ext4_mark_iloc_dirty(handle_t *handle,
4753                          struct inode *inode, struct ext4_iloc *iloc)
4754 {
4755         int err = 0;
4756
4757         if (IS_I_VERSION(inode))
4758                 inode_inc_iversion(inode);
4759
4760         /* the do_update_inode consumes one bh->b_count */
4761         get_bh(iloc->bh);
4762
4763         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4764         err = ext4_do_update_inode(handle, inode, iloc);
4765         put_bh(iloc->bh);
4766         return err;
4767 }
4768
4769 /*
4770  * On success, We end up with an outstanding reference count against
4771  * iloc->bh.  This _must_ be cleaned up later.
4772  */
4773
4774 int
4775 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4776                          struct ext4_iloc *iloc)
4777 {
4778         int err;
4779
4780         err = ext4_get_inode_loc(inode, iloc);
4781         if (!err) {
4782                 BUFFER_TRACE(iloc->bh, "get_write_access");
4783                 err = ext4_journal_get_write_access(handle, iloc->bh);
4784                 if (err) {
4785                         brelse(iloc->bh);
4786                         iloc->bh = NULL;
4787                 }
4788         }
4789         ext4_std_error(inode->i_sb, err);
4790         return err;
4791 }
4792
4793 /*
4794  * Expand an inode by new_extra_isize bytes.
4795  * Returns 0 on success or negative error number on failure.
4796  */
4797 static int ext4_expand_extra_isize(struct inode *inode,
4798                                    unsigned int new_extra_isize,
4799                                    struct ext4_iloc iloc,
4800                                    handle_t *handle)
4801 {
4802         struct ext4_inode *raw_inode;
4803         struct ext4_xattr_ibody_header *header;
4804
4805         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4806                 return 0;
4807
4808         raw_inode = ext4_raw_inode(&iloc);
4809
4810         header = IHDR(inode, raw_inode);
4811
4812         /* No extended attributes present */
4813         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4814             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4815                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4816                         new_extra_isize);
4817                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4818                 return 0;
4819         }
4820
4821         /* try to expand with EAs present */
4822         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4823                                           raw_inode, handle);
4824 }
4825
4826 /*
4827  * What we do here is to mark the in-core inode as clean with respect to inode
4828  * dirtiness (it may still be data-dirty).
4829  * This means that the in-core inode may be reaped by prune_icache
4830  * without having to perform any I/O.  This is a very good thing,
4831  * because *any* task may call prune_icache - even ones which
4832  * have a transaction open against a different journal.
4833  *
4834  * Is this cheating?  Not really.  Sure, we haven't written the
4835  * inode out, but prune_icache isn't a user-visible syncing function.
4836  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4837  * we start and wait on commits.
4838  */
4839 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4840 {
4841         struct ext4_iloc iloc;
4842         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4843         static unsigned int mnt_count;
4844         int err, ret;
4845
4846         might_sleep();
4847         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4848         err = ext4_reserve_inode_write(handle, inode, &iloc);
4849         if (ext4_handle_valid(handle) &&
4850             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4851             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4852                 /*
4853                  * We need extra buffer credits since we may write into EA block
4854                  * with this same handle. If journal_extend fails, then it will
4855                  * only result in a minor loss of functionality for that inode.
4856                  * If this is felt to be critical, then e2fsck should be run to
4857                  * force a large enough s_min_extra_isize.
4858                  */
4859                 if ((jbd2_journal_extend(handle,
4860                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4861                         ret = ext4_expand_extra_isize(inode,
4862                                                       sbi->s_want_extra_isize,
4863                                                       iloc, handle);
4864                         if (ret) {
4865                                 ext4_set_inode_state(inode,
4866                                                      EXT4_STATE_NO_EXPAND);
4867                                 if (mnt_count !=
4868                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4869                                         ext4_warning(inode->i_sb,
4870                                         "Unable to expand inode %lu. Delete"
4871                                         " some EAs or run e2fsck.",
4872                                         inode->i_ino);
4873                                         mnt_count =
4874                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4875                                 }
4876                         }
4877                 }
4878         }
4879         if (!err)
4880                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4881         return err;
4882 }
4883
4884 /*
4885  * ext4_dirty_inode() is called from __mark_inode_dirty()
4886  *
4887  * We're really interested in the case where a file is being extended.
4888  * i_size has been changed by generic_commit_write() and we thus need
4889  * to include the updated inode in the current transaction.
4890  *
4891  * Also, dquot_alloc_block() will always dirty the inode when blocks
4892  * are allocated to the file.
4893  *
4894  * If the inode is marked synchronous, we don't honour that here - doing
4895  * so would cause a commit on atime updates, which we don't bother doing.
4896  * We handle synchronous inodes at the highest possible level.
4897  */
4898 void ext4_dirty_inode(struct inode *inode, int flags)
4899 {
4900         handle_t *handle;
4901
4902         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4903         if (IS_ERR(handle))
4904                 goto out;
4905
4906         ext4_mark_inode_dirty(handle, inode);
4907
4908         ext4_journal_stop(handle);
4909 out:
4910         return;
4911 }
4912
4913 #if 0
4914 /*
4915  * Bind an inode's backing buffer_head into this transaction, to prevent
4916  * it from being flushed to disk early.  Unlike
4917  * ext4_reserve_inode_write, this leaves behind no bh reference and
4918  * returns no iloc structure, so the caller needs to repeat the iloc
4919  * lookup to mark the inode dirty later.
4920  */
4921 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4922 {
4923         struct ext4_iloc iloc;
4924
4925         int err = 0;
4926         if (handle) {
4927                 err = ext4_get_inode_loc(inode, &iloc);
4928                 if (!err) {
4929                         BUFFER_TRACE(iloc.bh, "get_write_access");
4930                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4931                         if (!err)
4932                                 err = ext4_handle_dirty_metadata(handle,
4933                                                                  NULL,
4934                                                                  iloc.bh);
4935                         brelse(iloc.bh);
4936                 }
4937         }
4938         ext4_std_error(inode->i_sb, err);
4939         return err;
4940 }
4941 #endif
4942
4943 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4944 {
4945         journal_t *journal;
4946         handle_t *handle;
4947         int err;
4948
4949         /*
4950          * We have to be very careful here: changing a data block's
4951          * journaling status dynamically is dangerous.  If we write a
4952          * data block to the journal, change the status and then delete
4953          * that block, we risk forgetting to revoke the old log record
4954          * from the journal and so a subsequent replay can corrupt data.
4955          * So, first we make sure that the journal is empty and that
4956          * nobody is changing anything.
4957          */
4958
4959         journal = EXT4_JOURNAL(inode);
4960         if (!journal)
4961                 return 0;
4962         if (is_journal_aborted(journal))
4963                 return -EROFS;
4964         /* We have to allocate physical blocks for delalloc blocks
4965          * before flushing journal. otherwise delalloc blocks can not
4966          * be allocated any more. even more truncate on delalloc blocks
4967          * could trigger BUG by flushing delalloc blocks in journal.
4968          * There is no delalloc block in non-journal data mode.
4969          */
4970         if (val && test_opt(inode->i_sb, DELALLOC)) {
4971                 err = ext4_alloc_da_blocks(inode);
4972                 if (err < 0)
4973                         return err;
4974         }
4975
4976         /* Wait for all existing dio workers */
4977         ext4_inode_block_unlocked_dio(inode);
4978         inode_dio_wait(inode);
4979
4980         jbd2_journal_lock_updates(journal);
4981
4982         /*
4983          * OK, there are no updates running now, and all cached data is
4984          * synced to disk.  We are now in a completely consistent state
4985          * which doesn't have anything in the journal, and we know that
4986          * no filesystem updates are running, so it is safe to modify
4987          * the inode's in-core data-journaling state flag now.
4988          */
4989
4990         if (val)
4991                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4992         else {
4993                 jbd2_journal_flush(journal);
4994                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4995         }
4996         ext4_set_aops(inode);
4997
4998         jbd2_journal_unlock_updates(journal);
4999         ext4_inode_resume_unlocked_dio(inode);
5000
5001         /* Finally we can mark the inode as dirty. */
5002
5003         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5004         if (IS_ERR(handle))
5005                 return PTR_ERR(handle);
5006
5007         err = ext4_mark_inode_dirty(handle, inode);
5008         ext4_handle_sync(handle);
5009         ext4_journal_stop(handle);
5010         ext4_std_error(inode->i_sb, err);
5011
5012         return err;
5013 }
5014
5015 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5016 {
5017         return !buffer_mapped(bh);
5018 }
5019
5020 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5021 {
5022         struct page *page = vmf->page;
5023         loff_t size;
5024         unsigned long len;
5025         int ret;
5026         struct file *file = vma->vm_file;
5027         struct inode *inode = file_inode(file);
5028         struct address_space *mapping = inode->i_mapping;
5029         handle_t *handle;
5030         get_block_t *get_block;
5031         int retries = 0;
5032
5033         sb_start_pagefault(inode->i_sb);
5034         file_update_time(vma->vm_file);
5035         /* Delalloc case is easy... */
5036         if (test_opt(inode->i_sb, DELALLOC) &&
5037             !ext4_should_journal_data(inode) &&
5038             !ext4_nonda_switch(inode->i_sb)) {
5039                 do {
5040                         ret = __block_page_mkwrite(vma, vmf,
5041                                                    ext4_da_get_block_prep);
5042                 } while (ret == -ENOSPC &&
5043                        ext4_should_retry_alloc(inode->i_sb, &retries));
5044                 goto out_ret;
5045         }
5046
5047         lock_page(page);
5048         size = i_size_read(inode);
5049         /* Page got truncated from under us? */
5050         if (page->mapping != mapping || page_offset(page) > size) {
5051                 unlock_page(page);
5052                 ret = VM_FAULT_NOPAGE;
5053                 goto out;
5054         }
5055
5056         if (page->index == size >> PAGE_CACHE_SHIFT)
5057                 len = size & ~PAGE_CACHE_MASK;
5058         else
5059                 len = PAGE_CACHE_SIZE;
5060         /*
5061          * Return if we have all the buffers mapped. This avoids the need to do
5062          * journal_start/journal_stop which can block and take a long time
5063          */
5064         if (page_has_buffers(page)) {
5065                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5066                                             0, len, NULL,
5067                                             ext4_bh_unmapped)) {
5068                         /* Wait so that we don't change page under IO */
5069                         wait_for_stable_page(page);
5070                         ret = VM_FAULT_LOCKED;
5071                         goto out;
5072                 }
5073         }
5074         unlock_page(page);
5075         /* OK, we need to fill the hole... */
5076         if (ext4_should_dioread_nolock(inode))
5077                 get_block = ext4_get_block_write;
5078         else
5079                 get_block = ext4_get_block;
5080 retry_alloc:
5081         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5082                                     ext4_writepage_trans_blocks(inode));
5083         if (IS_ERR(handle)) {
5084                 ret = VM_FAULT_SIGBUS;
5085                 goto out;
5086         }
5087         ret = __block_page_mkwrite(vma, vmf, get_block);
5088         if (!ret && ext4_should_journal_data(inode)) {
5089                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5090                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5091                         unlock_page(page);
5092                         ret = VM_FAULT_SIGBUS;
5093                         ext4_journal_stop(handle);
5094                         goto out;
5095                 }
5096                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5097         }
5098         ext4_journal_stop(handle);
5099         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5100                 goto retry_alloc;
5101 out_ret:
5102         ret = block_page_mkwrite_return(ret);
5103 out:
5104         sb_end_pagefault(inode->i_sb);
5105         return ret;
5106 }