]> Pileus Git - ~andy/linux/blob - fs/ext3/inode.c
Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[~andy/linux] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/fs.h>
26 #include <linux/time.h>
27 #include <linux/ext3_jbd.h>
28 #include <linux/jbd.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/fiemap.h>
39 #include <linux/namei.h>
40 #include <trace/events/ext3.h>
41 #include "xattr.h"
42 #include "acl.h"
43
44 static int ext3_writepage_trans_blocks(struct inode *inode);
45 static int ext3_block_truncate_page(struct inode *inode, loff_t from);
46
47 /*
48  * Test whether an inode is a fast symlink.
49  */
50 static int ext3_inode_is_fast_symlink(struct inode *inode)
51 {
52         int ea_blocks = EXT3_I(inode)->i_file_acl ?
53                 (inode->i_sb->s_blocksize >> 9) : 0;
54
55         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
56 }
57
58 /*
59  * The ext3 forget function must perform a revoke if we are freeing data
60  * which has been journaled.  Metadata (eg. indirect blocks) must be
61  * revoked in all cases.
62  *
63  * "bh" may be NULL: a metadata block may have been freed from memory
64  * but there may still be a record of it in the journal, and that record
65  * still needs to be revoked.
66  */
67 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
68                         struct buffer_head *bh, ext3_fsblk_t blocknr)
69 {
70         int err;
71
72         might_sleep();
73
74         trace_ext3_forget(inode, is_metadata, blocknr);
75         BUFFER_TRACE(bh, "enter");
76
77         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
78                   "data mode %lx\n",
79                   bh, is_metadata, inode->i_mode,
80                   test_opt(inode->i_sb, DATA_FLAGS));
81
82         /* Never use the revoke function if we are doing full data
83          * journaling: there is no need to, and a V1 superblock won't
84          * support it.  Otherwise, only skip the revoke on un-journaled
85          * data blocks. */
86
87         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
88             (!is_metadata && !ext3_should_journal_data(inode))) {
89                 if (bh) {
90                         BUFFER_TRACE(bh, "call journal_forget");
91                         return ext3_journal_forget(handle, bh);
92                 }
93                 return 0;
94         }
95
96         /*
97          * data!=journal && (is_metadata || should_journal_data(inode))
98          */
99         BUFFER_TRACE(bh, "call ext3_journal_revoke");
100         err = ext3_journal_revoke(handle, blocknr, bh);
101         if (err)
102                 ext3_abort(inode->i_sb, __func__,
103                            "error %d when attempting revoke", err);
104         BUFFER_TRACE(bh, "exit");
105         return err;
106 }
107
108 /*
109  * Work out how many blocks we need to proceed with the next chunk of a
110  * truncate transaction.
111  */
112 static unsigned long blocks_for_truncate(struct inode *inode)
113 {
114         unsigned long needed;
115
116         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
117
118         /* Give ourselves just enough room to cope with inodes in which
119          * i_blocks is corrupt: we've seen disk corruptions in the past
120          * which resulted in random data in an inode which looked enough
121          * like a regular file for ext3 to try to delete it.  Things
122          * will go a bit crazy if that happens, but at least we should
123          * try not to panic the whole kernel. */
124         if (needed < 2)
125                 needed = 2;
126
127         /* But we need to bound the transaction so we don't overflow the
128          * journal. */
129         if (needed > EXT3_MAX_TRANS_DATA)
130                 needed = EXT3_MAX_TRANS_DATA;
131
132         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
133 }
134
135 /*
136  * Truncate transactions can be complex and absolutely huge.  So we need to
137  * be able to restart the transaction at a conventient checkpoint to make
138  * sure we don't overflow the journal.
139  *
140  * start_transaction gets us a new handle for a truncate transaction,
141  * and extend_transaction tries to extend the existing one a bit.  If
142  * extend fails, we need to propagate the failure up and restart the
143  * transaction in the top-level truncate loop. --sct
144  */
145 static handle_t *start_transaction(struct inode *inode)
146 {
147         handle_t *result;
148
149         result = ext3_journal_start(inode, blocks_for_truncate(inode));
150         if (!IS_ERR(result))
151                 return result;
152
153         ext3_std_error(inode->i_sb, PTR_ERR(result));
154         return result;
155 }
156
157 /*
158  * Try to extend this transaction for the purposes of truncation.
159  *
160  * Returns 0 if we managed to create more room.  If we can't create more
161  * room, and the transaction must be restarted we return 1.
162  */
163 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
164 {
165         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
166                 return 0;
167         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
168                 return 0;
169         return 1;
170 }
171
172 /*
173  * Restart the transaction associated with *handle.  This does a commit,
174  * so before we call here everything must be consistently dirtied against
175  * this transaction.
176  */
177 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
178 {
179         int ret;
180
181         jbd_debug(2, "restarting handle %p\n", handle);
182         /*
183          * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
184          * At this moment, get_block can be called only for blocks inside
185          * i_size since page cache has been already dropped and writes are
186          * blocked by i_mutex. So we can safely drop the truncate_mutex.
187          */
188         mutex_unlock(&EXT3_I(inode)->truncate_mutex);
189         ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
190         mutex_lock(&EXT3_I(inode)->truncate_mutex);
191         return ret;
192 }
193
194 /*
195  * Called at inode eviction from icache
196  */
197 void ext3_evict_inode (struct inode *inode)
198 {
199         struct ext3_inode_info *ei = EXT3_I(inode);
200         struct ext3_block_alloc_info *rsv;
201         handle_t *handle;
202         int want_delete = 0;
203
204         trace_ext3_evict_inode(inode);
205         if (!inode->i_nlink && !is_bad_inode(inode)) {
206                 dquot_initialize(inode);
207                 want_delete = 1;
208         }
209
210         /*
211          * When journalling data dirty buffers are tracked only in the journal.
212          * So although mm thinks everything is clean and ready for reaping the
213          * inode might still have some pages to write in the running
214          * transaction or waiting to be checkpointed. Thus calling
215          * journal_invalidatepage() (via truncate_inode_pages()) to discard
216          * these buffers can cause data loss. Also even if we did not discard
217          * these buffers, we would have no way to find them after the inode
218          * is reaped and thus user could see stale data if he tries to read
219          * them before the transaction is checkpointed. So be careful and
220          * force everything to disk here... We use ei->i_datasync_tid to
221          * store the newest transaction containing inode's data.
222          *
223          * Note that directories do not have this problem because they don't
224          * use page cache.
225          *
226          * The s_journal check handles the case when ext3_get_journal() fails
227          * and puts the journal inode.
228          */
229         if (inode->i_nlink && ext3_should_journal_data(inode) &&
230             EXT3_SB(inode->i_sb)->s_journal &&
231             (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
232                 tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
233                 journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
234
235                 log_start_commit(journal, commit_tid);
236                 log_wait_commit(journal, commit_tid);
237                 filemap_write_and_wait(&inode->i_data);
238         }
239         truncate_inode_pages(&inode->i_data, 0);
240
241         ext3_discard_reservation(inode);
242         rsv = ei->i_block_alloc_info;
243         ei->i_block_alloc_info = NULL;
244         if (unlikely(rsv))
245                 kfree(rsv);
246
247         if (!want_delete)
248                 goto no_delete;
249
250         handle = start_transaction(inode);
251         if (IS_ERR(handle)) {
252                 /*
253                  * If we're going to skip the normal cleanup, we still need to
254                  * make sure that the in-core orphan linked list is properly
255                  * cleaned up.
256                  */
257                 ext3_orphan_del(NULL, inode);
258                 goto no_delete;
259         }
260
261         if (IS_SYNC(inode))
262                 handle->h_sync = 1;
263         inode->i_size = 0;
264         if (inode->i_blocks)
265                 ext3_truncate(inode);
266         /*
267          * Kill off the orphan record created when the inode lost the last
268          * link.  Note that ext3_orphan_del() has to be able to cope with the
269          * deletion of a non-existent orphan - ext3_truncate() could
270          * have removed the record.
271          */
272         ext3_orphan_del(handle, inode);
273         ei->i_dtime = get_seconds();
274
275         /*
276          * One subtle ordering requirement: if anything has gone wrong
277          * (transaction abort, IO errors, whatever), then we can still
278          * do these next steps (the fs will already have been marked as
279          * having errors), but we can't free the inode if the mark_dirty
280          * fails.
281          */
282         if (ext3_mark_inode_dirty(handle, inode)) {
283                 /* If that failed, just dquot_drop() and be done with that */
284                 dquot_drop(inode);
285                 end_writeback(inode);
286         } else {
287                 ext3_xattr_delete_inode(handle, inode);
288                 dquot_free_inode(inode);
289                 dquot_drop(inode);
290                 end_writeback(inode);
291                 ext3_free_inode(handle, inode);
292         }
293         ext3_journal_stop(handle);
294         return;
295 no_delete:
296         end_writeback(inode);
297         dquot_drop(inode);
298 }
299
300 typedef struct {
301         __le32  *p;
302         __le32  key;
303         struct buffer_head *bh;
304 } Indirect;
305
306 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
307 {
308         p->key = *(p->p = v);
309         p->bh = bh;
310 }
311
312 static int verify_chain(Indirect *from, Indirect *to)
313 {
314         while (from <= to && from->key == *from->p)
315                 from++;
316         return (from > to);
317 }
318
319 /**
320  *      ext3_block_to_path - parse the block number into array of offsets
321  *      @inode: inode in question (we are only interested in its superblock)
322  *      @i_block: block number to be parsed
323  *      @offsets: array to store the offsets in
324  *      @boundary: set this non-zero if the referred-to block is likely to be
325  *             followed (on disk) by an indirect block.
326  *
327  *      To store the locations of file's data ext3 uses a data structure common
328  *      for UNIX filesystems - tree of pointers anchored in the inode, with
329  *      data blocks at leaves and indirect blocks in intermediate nodes.
330  *      This function translates the block number into path in that tree -
331  *      return value is the path length and @offsets[n] is the offset of
332  *      pointer to (n+1)th node in the nth one. If @block is out of range
333  *      (negative or too large) warning is printed and zero returned.
334  *
335  *      Note: function doesn't find node addresses, so no IO is needed. All
336  *      we need to know is the capacity of indirect blocks (taken from the
337  *      inode->i_sb).
338  */
339
340 /*
341  * Portability note: the last comparison (check that we fit into triple
342  * indirect block) is spelled differently, because otherwise on an
343  * architecture with 32-bit longs and 8Kb pages we might get into trouble
344  * if our filesystem had 8Kb blocks. We might use long long, but that would
345  * kill us on x86. Oh, well, at least the sign propagation does not matter -
346  * i_block would have to be negative in the very beginning, so we would not
347  * get there at all.
348  */
349
350 static int ext3_block_to_path(struct inode *inode,
351                         long i_block, int offsets[4], int *boundary)
352 {
353         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
354         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
355         const long direct_blocks = EXT3_NDIR_BLOCKS,
356                 indirect_blocks = ptrs,
357                 double_blocks = (1 << (ptrs_bits * 2));
358         int n = 0;
359         int final = 0;
360
361         if (i_block < 0) {
362                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
363         } else if (i_block < direct_blocks) {
364                 offsets[n++] = i_block;
365                 final = direct_blocks;
366         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
367                 offsets[n++] = EXT3_IND_BLOCK;
368                 offsets[n++] = i_block;
369                 final = ptrs;
370         } else if ((i_block -= indirect_blocks) < double_blocks) {
371                 offsets[n++] = EXT3_DIND_BLOCK;
372                 offsets[n++] = i_block >> ptrs_bits;
373                 offsets[n++] = i_block & (ptrs - 1);
374                 final = ptrs;
375         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
376                 offsets[n++] = EXT3_TIND_BLOCK;
377                 offsets[n++] = i_block >> (ptrs_bits * 2);
378                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
379                 offsets[n++] = i_block & (ptrs - 1);
380                 final = ptrs;
381         } else {
382                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
383         }
384         if (boundary)
385                 *boundary = final - 1 - (i_block & (ptrs - 1));
386         return n;
387 }
388
389 /**
390  *      ext3_get_branch - read the chain of indirect blocks leading to data
391  *      @inode: inode in question
392  *      @depth: depth of the chain (1 - direct pointer, etc.)
393  *      @offsets: offsets of pointers in inode/indirect blocks
394  *      @chain: place to store the result
395  *      @err: here we store the error value
396  *
397  *      Function fills the array of triples <key, p, bh> and returns %NULL
398  *      if everything went OK or the pointer to the last filled triple
399  *      (incomplete one) otherwise. Upon the return chain[i].key contains
400  *      the number of (i+1)-th block in the chain (as it is stored in memory,
401  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
402  *      number (it points into struct inode for i==0 and into the bh->b_data
403  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
404  *      block for i>0 and NULL for i==0. In other words, it holds the block
405  *      numbers of the chain, addresses they were taken from (and where we can
406  *      verify that chain did not change) and buffer_heads hosting these
407  *      numbers.
408  *
409  *      Function stops when it stumbles upon zero pointer (absent block)
410  *              (pointer to last triple returned, *@err == 0)
411  *      or when it gets an IO error reading an indirect block
412  *              (ditto, *@err == -EIO)
413  *      or when it notices that chain had been changed while it was reading
414  *              (ditto, *@err == -EAGAIN)
415  *      or when it reads all @depth-1 indirect blocks successfully and finds
416  *      the whole chain, all way to the data (returns %NULL, *err == 0).
417  */
418 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
419                                  Indirect chain[4], int *err)
420 {
421         struct super_block *sb = inode->i_sb;
422         Indirect *p = chain;
423         struct buffer_head *bh;
424
425         *err = 0;
426         /* i_data is not going away, no lock needed */
427         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
428         if (!p->key)
429                 goto no_block;
430         while (--depth) {
431                 bh = sb_bread(sb, le32_to_cpu(p->key));
432                 if (!bh)
433                         goto failure;
434                 /* Reader: pointers */
435                 if (!verify_chain(chain, p))
436                         goto changed;
437                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
438                 /* Reader: end */
439                 if (!p->key)
440                         goto no_block;
441         }
442         return NULL;
443
444 changed:
445         brelse(bh);
446         *err = -EAGAIN;
447         goto no_block;
448 failure:
449         *err = -EIO;
450 no_block:
451         return p;
452 }
453
454 /**
455  *      ext3_find_near - find a place for allocation with sufficient locality
456  *      @inode: owner
457  *      @ind: descriptor of indirect block.
458  *
459  *      This function returns the preferred place for block allocation.
460  *      It is used when heuristic for sequential allocation fails.
461  *      Rules are:
462  *        + if there is a block to the left of our position - allocate near it.
463  *        + if pointer will live in indirect block - allocate near that block.
464  *        + if pointer will live in inode - allocate in the same
465  *          cylinder group.
466  *
467  * In the latter case we colour the starting block by the callers PID to
468  * prevent it from clashing with concurrent allocations for a different inode
469  * in the same block group.   The PID is used here so that functionally related
470  * files will be close-by on-disk.
471  *
472  *      Caller must make sure that @ind is valid and will stay that way.
473  */
474 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
475 {
476         struct ext3_inode_info *ei = EXT3_I(inode);
477         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
478         __le32 *p;
479         ext3_fsblk_t bg_start;
480         ext3_grpblk_t colour;
481
482         /* Try to find previous block */
483         for (p = ind->p - 1; p >= start; p--) {
484                 if (*p)
485                         return le32_to_cpu(*p);
486         }
487
488         /* No such thing, so let's try location of indirect block */
489         if (ind->bh)
490                 return ind->bh->b_blocknr;
491
492         /*
493          * It is going to be referred to from the inode itself? OK, just put it
494          * into the same cylinder group then.
495          */
496         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
497         colour = (current->pid % 16) *
498                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
499         return bg_start + colour;
500 }
501
502 /**
503  *      ext3_find_goal - find a preferred place for allocation.
504  *      @inode: owner
505  *      @block:  block we want
506  *      @partial: pointer to the last triple within a chain
507  *
508  *      Normally this function find the preferred place for block allocation,
509  *      returns it.
510  */
511
512 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
513                                    Indirect *partial)
514 {
515         struct ext3_block_alloc_info *block_i;
516
517         block_i =  EXT3_I(inode)->i_block_alloc_info;
518
519         /*
520          * try the heuristic for sequential allocation,
521          * failing that at least try to get decent locality.
522          */
523         if (block_i && (block == block_i->last_alloc_logical_block + 1)
524                 && (block_i->last_alloc_physical_block != 0)) {
525                 return block_i->last_alloc_physical_block + 1;
526         }
527
528         return ext3_find_near(inode, partial);
529 }
530
531 /**
532  *      ext3_blks_to_allocate - Look up the block map and count the number
533  *      of direct blocks need to be allocated for the given branch.
534  *
535  *      @branch: chain of indirect blocks
536  *      @k: number of blocks need for indirect blocks
537  *      @blks: number of data blocks to be mapped.
538  *      @blocks_to_boundary:  the offset in the indirect block
539  *
540  *      return the total number of blocks to be allocate, including the
541  *      direct and indirect blocks.
542  */
543 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
544                 int blocks_to_boundary)
545 {
546         unsigned long count = 0;
547
548         /*
549          * Simple case, [t,d]Indirect block(s) has not allocated yet
550          * then it's clear blocks on that path have not allocated
551          */
552         if (k > 0) {
553                 /* right now we don't handle cross boundary allocation */
554                 if (blks < blocks_to_boundary + 1)
555                         count += blks;
556                 else
557                         count += blocks_to_boundary + 1;
558                 return count;
559         }
560
561         count++;
562         while (count < blks && count <= blocks_to_boundary &&
563                 le32_to_cpu(*(branch[0].p + count)) == 0) {
564                 count++;
565         }
566         return count;
567 }
568
569 /**
570  *      ext3_alloc_blocks - multiple allocate blocks needed for a branch
571  *      @handle: handle for this transaction
572  *      @inode: owner
573  *      @goal: preferred place for allocation
574  *      @indirect_blks: the number of blocks need to allocate for indirect
575  *                      blocks
576  *      @blks:  number of blocks need to allocated for direct blocks
577  *      @new_blocks: on return it will store the new block numbers for
578  *      the indirect blocks(if needed) and the first direct block,
579  *      @err: here we store the error value
580  *
581  *      return the number of direct blocks allocated
582  */
583 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
584                         ext3_fsblk_t goal, int indirect_blks, int blks,
585                         ext3_fsblk_t new_blocks[4], int *err)
586 {
587         int target, i;
588         unsigned long count = 0;
589         int index = 0;
590         ext3_fsblk_t current_block = 0;
591         int ret = 0;
592
593         /*
594          * Here we try to allocate the requested multiple blocks at once,
595          * on a best-effort basis.
596          * To build a branch, we should allocate blocks for
597          * the indirect blocks(if not allocated yet), and at least
598          * the first direct block of this branch.  That's the
599          * minimum number of blocks need to allocate(required)
600          */
601         target = blks + indirect_blks;
602
603         while (1) {
604                 count = target;
605                 /* allocating blocks for indirect blocks and direct blocks */
606                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
607                 if (*err)
608                         goto failed_out;
609
610                 target -= count;
611                 /* allocate blocks for indirect blocks */
612                 while (index < indirect_blks && count) {
613                         new_blocks[index++] = current_block++;
614                         count--;
615                 }
616
617                 if (count > 0)
618                         break;
619         }
620
621         /* save the new block number for the first direct block */
622         new_blocks[index] = current_block;
623
624         /* total number of blocks allocated for direct blocks */
625         ret = count;
626         *err = 0;
627         return ret;
628 failed_out:
629         for (i = 0; i <index; i++)
630                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
631         return ret;
632 }
633
634 /**
635  *      ext3_alloc_branch - allocate and set up a chain of blocks.
636  *      @handle: handle for this transaction
637  *      @inode: owner
638  *      @indirect_blks: number of allocated indirect blocks
639  *      @blks: number of allocated direct blocks
640  *      @goal: preferred place for allocation
641  *      @offsets: offsets (in the blocks) to store the pointers to next.
642  *      @branch: place to store the chain in.
643  *
644  *      This function allocates blocks, zeroes out all but the last one,
645  *      links them into chain and (if we are synchronous) writes them to disk.
646  *      In other words, it prepares a branch that can be spliced onto the
647  *      inode. It stores the information about that chain in the branch[], in
648  *      the same format as ext3_get_branch() would do. We are calling it after
649  *      we had read the existing part of chain and partial points to the last
650  *      triple of that (one with zero ->key). Upon the exit we have the same
651  *      picture as after the successful ext3_get_block(), except that in one
652  *      place chain is disconnected - *branch->p is still zero (we did not
653  *      set the last link), but branch->key contains the number that should
654  *      be placed into *branch->p to fill that gap.
655  *
656  *      If allocation fails we free all blocks we've allocated (and forget
657  *      their buffer_heads) and return the error value the from failed
658  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
659  *      as described above and return 0.
660  */
661 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
662                         int indirect_blks, int *blks, ext3_fsblk_t goal,
663                         int *offsets, Indirect *branch)
664 {
665         int blocksize = inode->i_sb->s_blocksize;
666         int i, n = 0;
667         int err = 0;
668         struct buffer_head *bh;
669         int num;
670         ext3_fsblk_t new_blocks[4];
671         ext3_fsblk_t current_block;
672
673         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
674                                 *blks, new_blocks, &err);
675         if (err)
676                 return err;
677
678         branch[0].key = cpu_to_le32(new_blocks[0]);
679         /*
680          * metadata blocks and data blocks are allocated.
681          */
682         for (n = 1; n <= indirect_blks;  n++) {
683                 /*
684                  * Get buffer_head for parent block, zero it out
685                  * and set the pointer to new one, then send
686                  * parent to disk.
687                  */
688                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
689                 branch[n].bh = bh;
690                 lock_buffer(bh);
691                 BUFFER_TRACE(bh, "call get_create_access");
692                 err = ext3_journal_get_create_access(handle, bh);
693                 if (err) {
694                         unlock_buffer(bh);
695                         brelse(bh);
696                         goto failed;
697                 }
698
699                 memset(bh->b_data, 0, blocksize);
700                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
701                 branch[n].key = cpu_to_le32(new_blocks[n]);
702                 *branch[n].p = branch[n].key;
703                 if ( n == indirect_blks) {
704                         current_block = new_blocks[n];
705                         /*
706                          * End of chain, update the last new metablock of
707                          * the chain to point to the new allocated
708                          * data blocks numbers
709                          */
710                         for (i=1; i < num; i++)
711                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
712                 }
713                 BUFFER_TRACE(bh, "marking uptodate");
714                 set_buffer_uptodate(bh);
715                 unlock_buffer(bh);
716
717                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
718                 err = ext3_journal_dirty_metadata(handle, bh);
719                 if (err)
720                         goto failed;
721         }
722         *blks = num;
723         return err;
724 failed:
725         /* Allocation failed, free what we already allocated */
726         for (i = 1; i <= n ; i++) {
727                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
728                 ext3_journal_forget(handle, branch[i].bh);
729         }
730         for (i = 0; i <indirect_blks; i++)
731                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
732
733         ext3_free_blocks(handle, inode, new_blocks[i], num);
734
735         return err;
736 }
737
738 /**
739  * ext3_splice_branch - splice the allocated branch onto inode.
740  * @handle: handle for this transaction
741  * @inode: owner
742  * @block: (logical) number of block we are adding
743  * @where: location of missing link
744  * @num:   number of indirect blocks we are adding
745  * @blks:  number of direct blocks we are adding
746  *
747  * This function fills the missing link and does all housekeeping needed in
748  * inode (->i_blocks, etc.). In case of success we end up with the full
749  * chain to new block and return 0.
750  */
751 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
752                         long block, Indirect *where, int num, int blks)
753 {
754         int i;
755         int err = 0;
756         struct ext3_block_alloc_info *block_i;
757         ext3_fsblk_t current_block;
758         struct ext3_inode_info *ei = EXT3_I(inode);
759
760         block_i = ei->i_block_alloc_info;
761         /*
762          * If we're splicing into a [td]indirect block (as opposed to the
763          * inode) then we need to get write access to the [td]indirect block
764          * before the splice.
765          */
766         if (where->bh) {
767                 BUFFER_TRACE(where->bh, "get_write_access");
768                 err = ext3_journal_get_write_access(handle, where->bh);
769                 if (err)
770                         goto err_out;
771         }
772         /* That's it */
773
774         *where->p = where->key;
775
776         /*
777          * Update the host buffer_head or inode to point to more just allocated
778          * direct blocks blocks
779          */
780         if (num == 0 && blks > 1) {
781                 current_block = le32_to_cpu(where->key) + 1;
782                 for (i = 1; i < blks; i++)
783                         *(where->p + i ) = cpu_to_le32(current_block++);
784         }
785
786         /*
787          * update the most recently allocated logical & physical block
788          * in i_block_alloc_info, to assist find the proper goal block for next
789          * allocation
790          */
791         if (block_i) {
792                 block_i->last_alloc_logical_block = block + blks - 1;
793                 block_i->last_alloc_physical_block =
794                                 le32_to_cpu(where[num].key) + blks - 1;
795         }
796
797         /* We are done with atomic stuff, now do the rest of housekeeping */
798
799         inode->i_ctime = CURRENT_TIME_SEC;
800         ext3_mark_inode_dirty(handle, inode);
801         /* ext3_mark_inode_dirty already updated i_sync_tid */
802         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
803
804         /* had we spliced it onto indirect block? */
805         if (where->bh) {
806                 /*
807                  * If we spliced it onto an indirect block, we haven't
808                  * altered the inode.  Note however that if it is being spliced
809                  * onto an indirect block at the very end of the file (the
810                  * file is growing) then we *will* alter the inode to reflect
811                  * the new i_size.  But that is not done here - it is done in
812                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
813                  */
814                 jbd_debug(5, "splicing indirect only\n");
815                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
816                 err = ext3_journal_dirty_metadata(handle, where->bh);
817                 if (err)
818                         goto err_out;
819         } else {
820                 /*
821                  * OK, we spliced it into the inode itself on a direct block.
822                  * Inode was dirtied above.
823                  */
824                 jbd_debug(5, "splicing direct\n");
825         }
826         return err;
827
828 err_out:
829         for (i = 1; i <= num; i++) {
830                 BUFFER_TRACE(where[i].bh, "call journal_forget");
831                 ext3_journal_forget(handle, where[i].bh);
832                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
833         }
834         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
835
836         return err;
837 }
838
839 /*
840  * Allocation strategy is simple: if we have to allocate something, we will
841  * have to go the whole way to leaf. So let's do it before attaching anything
842  * to tree, set linkage between the newborn blocks, write them if sync is
843  * required, recheck the path, free and repeat if check fails, otherwise
844  * set the last missing link (that will protect us from any truncate-generated
845  * removals - all blocks on the path are immune now) and possibly force the
846  * write on the parent block.
847  * That has a nice additional property: no special recovery from the failed
848  * allocations is needed - we simply release blocks and do not touch anything
849  * reachable from inode.
850  *
851  * `handle' can be NULL if create == 0.
852  *
853  * The BKL may not be held on entry here.  Be sure to take it early.
854  * return > 0, # of blocks mapped or allocated.
855  * return = 0, if plain lookup failed.
856  * return < 0, error case.
857  */
858 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
859                 sector_t iblock, unsigned long maxblocks,
860                 struct buffer_head *bh_result,
861                 int create)
862 {
863         int err = -EIO;
864         int offsets[4];
865         Indirect chain[4];
866         Indirect *partial;
867         ext3_fsblk_t goal;
868         int indirect_blks;
869         int blocks_to_boundary = 0;
870         int depth;
871         struct ext3_inode_info *ei = EXT3_I(inode);
872         int count = 0;
873         ext3_fsblk_t first_block = 0;
874
875
876         trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
877         J_ASSERT(handle != NULL || create == 0);
878         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
879
880         if (depth == 0)
881                 goto out;
882
883         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
884
885         /* Simplest case - block found, no allocation needed */
886         if (!partial) {
887                 first_block = le32_to_cpu(chain[depth - 1].key);
888                 clear_buffer_new(bh_result);
889                 count++;
890                 /*map more blocks*/
891                 while (count < maxblocks && count <= blocks_to_boundary) {
892                         ext3_fsblk_t blk;
893
894                         if (!verify_chain(chain, chain + depth - 1)) {
895                                 /*
896                                  * Indirect block might be removed by
897                                  * truncate while we were reading it.
898                                  * Handling of that case: forget what we've
899                                  * got now. Flag the err as EAGAIN, so it
900                                  * will reread.
901                                  */
902                                 err = -EAGAIN;
903                                 count = 0;
904                                 break;
905                         }
906                         blk = le32_to_cpu(*(chain[depth-1].p + count));
907
908                         if (blk == first_block + count)
909                                 count++;
910                         else
911                                 break;
912                 }
913                 if (err != -EAGAIN)
914                         goto got_it;
915         }
916
917         /* Next simple case - plain lookup or failed read of indirect block */
918         if (!create || err == -EIO)
919                 goto cleanup;
920
921         /*
922          * Block out ext3_truncate while we alter the tree
923          */
924         mutex_lock(&ei->truncate_mutex);
925
926         /*
927          * If the indirect block is missing while we are reading
928          * the chain(ext3_get_branch() returns -EAGAIN err), or
929          * if the chain has been changed after we grab the semaphore,
930          * (either because another process truncated this branch, or
931          * another get_block allocated this branch) re-grab the chain to see if
932          * the request block has been allocated or not.
933          *
934          * Since we already block the truncate/other get_block
935          * at this point, we will have the current copy of the chain when we
936          * splice the branch into the tree.
937          */
938         if (err == -EAGAIN || !verify_chain(chain, partial)) {
939                 while (partial > chain) {
940                         brelse(partial->bh);
941                         partial--;
942                 }
943                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
944                 if (!partial) {
945                         count++;
946                         mutex_unlock(&ei->truncate_mutex);
947                         if (err)
948                                 goto cleanup;
949                         clear_buffer_new(bh_result);
950                         goto got_it;
951                 }
952         }
953
954         /*
955          * Okay, we need to do block allocation.  Lazily initialize the block
956          * allocation info here if necessary
957         */
958         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
959                 ext3_init_block_alloc_info(inode);
960
961         goal = ext3_find_goal(inode, iblock, partial);
962
963         /* the number of blocks need to allocate for [d,t]indirect blocks */
964         indirect_blks = (chain + depth) - partial - 1;
965
966         /*
967          * Next look up the indirect map to count the totoal number of
968          * direct blocks to allocate for this branch.
969          */
970         count = ext3_blks_to_allocate(partial, indirect_blks,
971                                         maxblocks, blocks_to_boundary);
972         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
973                                 offsets + (partial - chain), partial);
974
975         /*
976          * The ext3_splice_branch call will free and forget any buffers
977          * on the new chain if there is a failure, but that risks using
978          * up transaction credits, especially for bitmaps where the
979          * credits cannot be returned.  Can we handle this somehow?  We
980          * may need to return -EAGAIN upwards in the worst case.  --sct
981          */
982         if (!err)
983                 err = ext3_splice_branch(handle, inode, iblock,
984                                         partial, indirect_blks, count);
985         mutex_unlock(&ei->truncate_mutex);
986         if (err)
987                 goto cleanup;
988
989         set_buffer_new(bh_result);
990 got_it:
991         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
992         if (count > blocks_to_boundary)
993                 set_buffer_boundary(bh_result);
994         err = count;
995         /* Clean up and exit */
996         partial = chain + depth - 1;    /* the whole chain */
997 cleanup:
998         while (partial > chain) {
999                 BUFFER_TRACE(partial->bh, "call brelse");
1000                 brelse(partial->bh);
1001                 partial--;
1002         }
1003         BUFFER_TRACE(bh_result, "returned");
1004 out:
1005         trace_ext3_get_blocks_exit(inode, iblock,
1006                                    depth ? le32_to_cpu(chain[depth-1].key) : 0,
1007                                    count, err);
1008         return err;
1009 }
1010
1011 /* Maximum number of blocks we map for direct IO at once. */
1012 #define DIO_MAX_BLOCKS 4096
1013 /*
1014  * Number of credits we need for writing DIO_MAX_BLOCKS:
1015  * We need sb + group descriptor + bitmap + inode -> 4
1016  * For B blocks with A block pointers per block we need:
1017  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1018  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1019  */
1020 #define DIO_CREDITS 25
1021
1022 static int ext3_get_block(struct inode *inode, sector_t iblock,
1023                         struct buffer_head *bh_result, int create)
1024 {
1025         handle_t *handle = ext3_journal_current_handle();
1026         int ret = 0, started = 0;
1027         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1028
1029         if (create && !handle) {        /* Direct IO write... */
1030                 if (max_blocks > DIO_MAX_BLOCKS)
1031                         max_blocks = DIO_MAX_BLOCKS;
1032                 handle = ext3_journal_start(inode, DIO_CREDITS +
1033                                 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1034                 if (IS_ERR(handle)) {
1035                         ret = PTR_ERR(handle);
1036                         goto out;
1037                 }
1038                 started = 1;
1039         }
1040
1041         ret = ext3_get_blocks_handle(handle, inode, iblock,
1042                                         max_blocks, bh_result, create);
1043         if (ret > 0) {
1044                 bh_result->b_size = (ret << inode->i_blkbits);
1045                 ret = 0;
1046         }
1047         if (started)
1048                 ext3_journal_stop(handle);
1049 out:
1050         return ret;
1051 }
1052
1053 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1054                 u64 start, u64 len)
1055 {
1056         return generic_block_fiemap(inode, fieinfo, start, len,
1057                                     ext3_get_block);
1058 }
1059
1060 /*
1061  * `handle' can be NULL if create is zero
1062  */
1063 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1064                                 long block, int create, int *errp)
1065 {
1066         struct buffer_head dummy;
1067         int fatal = 0, err;
1068
1069         J_ASSERT(handle != NULL || create == 0);
1070
1071         dummy.b_state = 0;
1072         dummy.b_blocknr = -1000;
1073         buffer_trace_init(&dummy.b_history);
1074         err = ext3_get_blocks_handle(handle, inode, block, 1,
1075                                         &dummy, create);
1076         /*
1077          * ext3_get_blocks_handle() returns number of blocks
1078          * mapped. 0 in case of a HOLE.
1079          */
1080         if (err > 0) {
1081                 if (err > 1)
1082                         WARN_ON(1);
1083                 err = 0;
1084         }
1085         *errp = err;
1086         if (!err && buffer_mapped(&dummy)) {
1087                 struct buffer_head *bh;
1088                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1089                 if (!bh) {
1090                         *errp = -EIO;
1091                         goto err;
1092                 }
1093                 if (buffer_new(&dummy)) {
1094                         J_ASSERT(create != 0);
1095                         J_ASSERT(handle != NULL);
1096
1097                         /*
1098                          * Now that we do not always journal data, we should
1099                          * keep in mind whether this should always journal the
1100                          * new buffer as metadata.  For now, regular file
1101                          * writes use ext3_get_block instead, so it's not a
1102                          * problem.
1103                          */
1104                         lock_buffer(bh);
1105                         BUFFER_TRACE(bh, "call get_create_access");
1106                         fatal = ext3_journal_get_create_access(handle, bh);
1107                         if (!fatal && !buffer_uptodate(bh)) {
1108                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1109                                 set_buffer_uptodate(bh);
1110                         }
1111                         unlock_buffer(bh);
1112                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1113                         err = ext3_journal_dirty_metadata(handle, bh);
1114                         if (!fatal)
1115                                 fatal = err;
1116                 } else {
1117                         BUFFER_TRACE(bh, "not a new buffer");
1118                 }
1119                 if (fatal) {
1120                         *errp = fatal;
1121                         brelse(bh);
1122                         bh = NULL;
1123                 }
1124                 return bh;
1125         }
1126 err:
1127         return NULL;
1128 }
1129
1130 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1131                                int block, int create, int *err)
1132 {
1133         struct buffer_head * bh;
1134
1135         bh = ext3_getblk(handle, inode, block, create, err);
1136         if (!bh)
1137                 return bh;
1138         if (bh_uptodate_or_lock(bh))
1139                 return bh;
1140         get_bh(bh);
1141         bh->b_end_io = end_buffer_read_sync;
1142         submit_bh(READ | REQ_META | REQ_PRIO, bh);
1143         wait_on_buffer(bh);
1144         if (buffer_uptodate(bh))
1145                 return bh;
1146         put_bh(bh);
1147         *err = -EIO;
1148         return NULL;
1149 }
1150
1151 static int walk_page_buffers(   handle_t *handle,
1152                                 struct buffer_head *head,
1153                                 unsigned from,
1154                                 unsigned to,
1155                                 int *partial,
1156                                 int (*fn)(      handle_t *handle,
1157                                                 struct buffer_head *bh))
1158 {
1159         struct buffer_head *bh;
1160         unsigned block_start, block_end;
1161         unsigned blocksize = head->b_size;
1162         int err, ret = 0;
1163         struct buffer_head *next;
1164
1165         for (   bh = head, block_start = 0;
1166                 ret == 0 && (bh != head || !block_start);
1167                 block_start = block_end, bh = next)
1168         {
1169                 next = bh->b_this_page;
1170                 block_end = block_start + blocksize;
1171                 if (block_end <= from || block_start >= to) {
1172                         if (partial && !buffer_uptodate(bh))
1173                                 *partial = 1;
1174                         continue;
1175                 }
1176                 err = (*fn)(handle, bh);
1177                 if (!ret)
1178                         ret = err;
1179         }
1180         return ret;
1181 }
1182
1183 /*
1184  * To preserve ordering, it is essential that the hole instantiation and
1185  * the data write be encapsulated in a single transaction.  We cannot
1186  * close off a transaction and start a new one between the ext3_get_block()
1187  * and the commit_write().  So doing the journal_start at the start of
1188  * prepare_write() is the right place.
1189  *
1190  * Also, this function can nest inside ext3_writepage() ->
1191  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1192  * has generated enough buffer credits to do the whole page.  So we won't
1193  * block on the journal in that case, which is good, because the caller may
1194  * be PF_MEMALLOC.
1195  *
1196  * By accident, ext3 can be reentered when a transaction is open via
1197  * quota file writes.  If we were to commit the transaction while thus
1198  * reentered, there can be a deadlock - we would be holding a quota
1199  * lock, and the commit would never complete if another thread had a
1200  * transaction open and was blocking on the quota lock - a ranking
1201  * violation.
1202  *
1203  * So what we do is to rely on the fact that journal_stop/journal_start
1204  * will _not_ run commit under these circumstances because handle->h_ref
1205  * is elevated.  We'll still have enough credits for the tiny quotafile
1206  * write.
1207  */
1208 static int do_journal_get_write_access(handle_t *handle,
1209                                         struct buffer_head *bh)
1210 {
1211         int dirty = buffer_dirty(bh);
1212         int ret;
1213
1214         if (!buffer_mapped(bh) || buffer_freed(bh))
1215                 return 0;
1216         /*
1217          * __block_prepare_write() could have dirtied some buffers. Clean
1218          * the dirty bit as jbd2_journal_get_write_access() could complain
1219          * otherwise about fs integrity issues. Setting of the dirty bit
1220          * by __block_prepare_write() isn't a real problem here as we clear
1221          * the bit before releasing a page lock and thus writeback cannot
1222          * ever write the buffer.
1223          */
1224         if (dirty)
1225                 clear_buffer_dirty(bh);
1226         ret = ext3_journal_get_write_access(handle, bh);
1227         if (!ret && dirty)
1228                 ret = ext3_journal_dirty_metadata(handle, bh);
1229         return ret;
1230 }
1231
1232 /*
1233  * Truncate blocks that were not used by write. We have to truncate the
1234  * pagecache as well so that corresponding buffers get properly unmapped.
1235  */
1236 static void ext3_truncate_failed_write(struct inode *inode)
1237 {
1238         truncate_inode_pages(inode->i_mapping, inode->i_size);
1239         ext3_truncate(inode);
1240 }
1241
1242 /*
1243  * Truncate blocks that were not used by direct IO write. We have to zero out
1244  * the last file block as well because direct IO might have written to it.
1245  */
1246 static void ext3_truncate_failed_direct_write(struct inode *inode)
1247 {
1248         ext3_block_truncate_page(inode, inode->i_size);
1249         ext3_truncate(inode);
1250 }
1251
1252 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1253                                 loff_t pos, unsigned len, unsigned flags,
1254                                 struct page **pagep, void **fsdata)
1255 {
1256         struct inode *inode = mapping->host;
1257         int ret;
1258         handle_t *handle;
1259         int retries = 0;
1260         struct page *page;
1261         pgoff_t index;
1262         unsigned from, to;
1263         /* Reserve one block more for addition to orphan list in case
1264          * we allocate blocks but write fails for some reason */
1265         int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1266
1267         trace_ext3_write_begin(inode, pos, len, flags);
1268
1269         index = pos >> PAGE_CACHE_SHIFT;
1270         from = pos & (PAGE_CACHE_SIZE - 1);
1271         to = from + len;
1272
1273 retry:
1274         page = grab_cache_page_write_begin(mapping, index, flags);
1275         if (!page)
1276                 return -ENOMEM;
1277         *pagep = page;
1278
1279         handle = ext3_journal_start(inode, needed_blocks);
1280         if (IS_ERR(handle)) {
1281                 unlock_page(page);
1282                 page_cache_release(page);
1283                 ret = PTR_ERR(handle);
1284                 goto out;
1285         }
1286         ret = __block_write_begin(page, pos, len, ext3_get_block);
1287         if (ret)
1288                 goto write_begin_failed;
1289
1290         if (ext3_should_journal_data(inode)) {
1291                 ret = walk_page_buffers(handle, page_buffers(page),
1292                                 from, to, NULL, do_journal_get_write_access);
1293         }
1294 write_begin_failed:
1295         if (ret) {
1296                 /*
1297                  * block_write_begin may have instantiated a few blocks
1298                  * outside i_size.  Trim these off again. Don't need
1299                  * i_size_read because we hold i_mutex.
1300                  *
1301                  * Add inode to orphan list in case we crash before truncate
1302                  * finishes. Do this only if ext3_can_truncate() agrees so
1303                  * that orphan processing code is happy.
1304                  */
1305                 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1306                         ext3_orphan_add(handle, inode);
1307                 ext3_journal_stop(handle);
1308                 unlock_page(page);
1309                 page_cache_release(page);
1310                 if (pos + len > inode->i_size)
1311                         ext3_truncate_failed_write(inode);
1312         }
1313         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1314                 goto retry;
1315 out:
1316         return ret;
1317 }
1318
1319
1320 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1321 {
1322         int err = journal_dirty_data(handle, bh);
1323         if (err)
1324                 ext3_journal_abort_handle(__func__, __func__,
1325                                                 bh, handle, err);
1326         return err;
1327 }
1328
1329 /* For ordered writepage and write_end functions */
1330 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1331 {
1332         /*
1333          * Write could have mapped the buffer but it didn't copy the data in
1334          * yet. So avoid filing such buffer into a transaction.
1335          */
1336         if (buffer_mapped(bh) && buffer_uptodate(bh))
1337                 return ext3_journal_dirty_data(handle, bh);
1338         return 0;
1339 }
1340
1341 /* For write_end() in data=journal mode */
1342 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1343 {
1344         if (!buffer_mapped(bh) || buffer_freed(bh))
1345                 return 0;
1346         set_buffer_uptodate(bh);
1347         return ext3_journal_dirty_metadata(handle, bh);
1348 }
1349
1350 /*
1351  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1352  * for the whole page but later we failed to copy the data in. Update inode
1353  * size according to what we managed to copy. The rest is going to be
1354  * truncated in write_end function.
1355  */
1356 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1357 {
1358         /* What matters to us is i_disksize. We don't write i_size anywhere */
1359         if (pos + copied > inode->i_size)
1360                 i_size_write(inode, pos + copied);
1361         if (pos + copied > EXT3_I(inode)->i_disksize) {
1362                 EXT3_I(inode)->i_disksize = pos + copied;
1363                 mark_inode_dirty(inode);
1364         }
1365 }
1366
1367 /*
1368  * We need to pick up the new inode size which generic_commit_write gave us
1369  * `file' can be NULL - eg, when called from page_symlink().
1370  *
1371  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1372  * buffers are managed internally.
1373  */
1374 static int ext3_ordered_write_end(struct file *file,
1375                                 struct address_space *mapping,
1376                                 loff_t pos, unsigned len, unsigned copied,
1377                                 struct page *page, void *fsdata)
1378 {
1379         handle_t *handle = ext3_journal_current_handle();
1380         struct inode *inode = file->f_mapping->host;
1381         unsigned from, to;
1382         int ret = 0, ret2;
1383
1384         trace_ext3_ordered_write_end(inode, pos, len, copied);
1385         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1386
1387         from = pos & (PAGE_CACHE_SIZE - 1);
1388         to = from + copied;
1389         ret = walk_page_buffers(handle, page_buffers(page),
1390                 from, to, NULL, journal_dirty_data_fn);
1391
1392         if (ret == 0)
1393                 update_file_sizes(inode, pos, copied);
1394         /*
1395          * There may be allocated blocks outside of i_size because
1396          * we failed to copy some data. Prepare for truncate.
1397          */
1398         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1399                 ext3_orphan_add(handle, inode);
1400         ret2 = ext3_journal_stop(handle);
1401         if (!ret)
1402                 ret = ret2;
1403         unlock_page(page);
1404         page_cache_release(page);
1405
1406         if (pos + len > inode->i_size)
1407                 ext3_truncate_failed_write(inode);
1408         return ret ? ret : copied;
1409 }
1410
1411 static int ext3_writeback_write_end(struct file *file,
1412                                 struct address_space *mapping,
1413                                 loff_t pos, unsigned len, unsigned copied,
1414                                 struct page *page, void *fsdata)
1415 {
1416         handle_t *handle = ext3_journal_current_handle();
1417         struct inode *inode = file->f_mapping->host;
1418         int ret;
1419
1420         trace_ext3_writeback_write_end(inode, pos, len, copied);
1421         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1422         update_file_sizes(inode, pos, copied);
1423         /*
1424          * There may be allocated blocks outside of i_size because
1425          * we failed to copy some data. Prepare for truncate.
1426          */
1427         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1428                 ext3_orphan_add(handle, inode);
1429         ret = ext3_journal_stop(handle);
1430         unlock_page(page);
1431         page_cache_release(page);
1432
1433         if (pos + len > inode->i_size)
1434                 ext3_truncate_failed_write(inode);
1435         return ret ? ret : copied;
1436 }
1437
1438 static int ext3_journalled_write_end(struct file *file,
1439                                 struct address_space *mapping,
1440                                 loff_t pos, unsigned len, unsigned copied,
1441                                 struct page *page, void *fsdata)
1442 {
1443         handle_t *handle = ext3_journal_current_handle();
1444         struct inode *inode = mapping->host;
1445         struct ext3_inode_info *ei = EXT3_I(inode);
1446         int ret = 0, ret2;
1447         int partial = 0;
1448         unsigned from, to;
1449
1450         trace_ext3_journalled_write_end(inode, pos, len, copied);
1451         from = pos & (PAGE_CACHE_SIZE - 1);
1452         to = from + len;
1453
1454         if (copied < len) {
1455                 if (!PageUptodate(page))
1456                         copied = 0;
1457                 page_zero_new_buffers(page, from + copied, to);
1458                 to = from + copied;
1459         }
1460
1461         ret = walk_page_buffers(handle, page_buffers(page), from,
1462                                 to, &partial, write_end_fn);
1463         if (!partial)
1464                 SetPageUptodate(page);
1465
1466         if (pos + copied > inode->i_size)
1467                 i_size_write(inode, pos + copied);
1468         /*
1469          * There may be allocated blocks outside of i_size because
1470          * we failed to copy some data. Prepare for truncate.
1471          */
1472         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1473                 ext3_orphan_add(handle, inode);
1474         ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1475         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1476         if (inode->i_size > ei->i_disksize) {
1477                 ei->i_disksize = inode->i_size;
1478                 ret2 = ext3_mark_inode_dirty(handle, inode);
1479                 if (!ret)
1480                         ret = ret2;
1481         }
1482
1483         ret2 = ext3_journal_stop(handle);
1484         if (!ret)
1485                 ret = ret2;
1486         unlock_page(page);
1487         page_cache_release(page);
1488
1489         if (pos + len > inode->i_size)
1490                 ext3_truncate_failed_write(inode);
1491         return ret ? ret : copied;
1492 }
1493
1494 /*
1495  * bmap() is special.  It gets used by applications such as lilo and by
1496  * the swapper to find the on-disk block of a specific piece of data.
1497  *
1498  * Naturally, this is dangerous if the block concerned is still in the
1499  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1500  * filesystem and enables swap, then they may get a nasty shock when the
1501  * data getting swapped to that swapfile suddenly gets overwritten by
1502  * the original zero's written out previously to the journal and
1503  * awaiting writeback in the kernel's buffer cache.
1504  *
1505  * So, if we see any bmap calls here on a modified, data-journaled file,
1506  * take extra steps to flush any blocks which might be in the cache.
1507  */
1508 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1509 {
1510         struct inode *inode = mapping->host;
1511         journal_t *journal;
1512         int err;
1513
1514         if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1515                 /*
1516                  * This is a REALLY heavyweight approach, but the use of
1517                  * bmap on dirty files is expected to be extremely rare:
1518                  * only if we run lilo or swapon on a freshly made file
1519                  * do we expect this to happen.
1520                  *
1521                  * (bmap requires CAP_SYS_RAWIO so this does not
1522                  * represent an unprivileged user DOS attack --- we'd be
1523                  * in trouble if mortal users could trigger this path at
1524                  * will.)
1525                  *
1526                  * NB. EXT3_STATE_JDATA is not set on files other than
1527                  * regular files.  If somebody wants to bmap a directory
1528                  * or symlink and gets confused because the buffer
1529                  * hasn't yet been flushed to disk, they deserve
1530                  * everything they get.
1531                  */
1532
1533                 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1534                 journal = EXT3_JOURNAL(inode);
1535                 journal_lock_updates(journal);
1536                 err = journal_flush(journal);
1537                 journal_unlock_updates(journal);
1538
1539                 if (err)
1540                         return 0;
1541         }
1542
1543         return generic_block_bmap(mapping,block,ext3_get_block);
1544 }
1545
1546 static int bget_one(handle_t *handle, struct buffer_head *bh)
1547 {
1548         get_bh(bh);
1549         return 0;
1550 }
1551
1552 static int bput_one(handle_t *handle, struct buffer_head *bh)
1553 {
1554         put_bh(bh);
1555         return 0;
1556 }
1557
1558 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1559 {
1560         return !buffer_mapped(bh);
1561 }
1562
1563 /*
1564  * Note that we always start a transaction even if we're not journalling
1565  * data.  This is to preserve ordering: any hole instantiation within
1566  * __block_write_full_page -> ext3_get_block() should be journalled
1567  * along with the data so we don't crash and then get metadata which
1568  * refers to old data.
1569  *
1570  * In all journalling modes block_write_full_page() will start the I/O.
1571  *
1572  * Problem:
1573  *
1574  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1575  *              ext3_writepage()
1576  *
1577  * Similar for:
1578  *
1579  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1580  *
1581  * Same applies to ext3_get_block().  We will deadlock on various things like
1582  * lock_journal and i_truncate_mutex.
1583  *
1584  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1585  * allocations fail.
1586  *
1587  * 16May01: If we're reentered then journal_current_handle() will be
1588  *          non-zero. We simply *return*.
1589  *
1590  * 1 July 2001: @@@ FIXME:
1591  *   In journalled data mode, a data buffer may be metadata against the
1592  *   current transaction.  But the same file is part of a shared mapping
1593  *   and someone does a writepage() on it.
1594  *
1595  *   We will move the buffer onto the async_data list, but *after* it has
1596  *   been dirtied. So there's a small window where we have dirty data on
1597  *   BJ_Metadata.
1598  *
1599  *   Note that this only applies to the last partial page in the file.  The
1600  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1601  *   broken code anyway: it's wrong for msync()).
1602  *
1603  *   It's a rare case: affects the final partial page, for journalled data
1604  *   where the file is subject to bith write() and writepage() in the same
1605  *   transction.  To fix it we'll need a custom block_write_full_page().
1606  *   We'll probably need that anyway for journalling writepage() output.
1607  *
1608  * We don't honour synchronous mounts for writepage().  That would be
1609  * disastrous.  Any write() or metadata operation will sync the fs for
1610  * us.
1611  *
1612  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1613  * we don't need to open a transaction here.
1614  */
1615 static int ext3_ordered_writepage(struct page *page,
1616                                 struct writeback_control *wbc)
1617 {
1618         struct inode *inode = page->mapping->host;
1619         struct buffer_head *page_bufs;
1620         handle_t *handle = NULL;
1621         int ret = 0;
1622         int err;
1623
1624         J_ASSERT(PageLocked(page));
1625         /*
1626          * We don't want to warn for emergency remount. The condition is
1627          * ordered to avoid dereferencing inode->i_sb in non-error case to
1628          * avoid slow-downs.
1629          */
1630         WARN_ON_ONCE(IS_RDONLY(inode) &&
1631                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1632
1633         /*
1634          * We give up here if we're reentered, because it might be for a
1635          * different filesystem.
1636          */
1637         if (ext3_journal_current_handle())
1638                 goto out_fail;
1639
1640         trace_ext3_ordered_writepage(page);
1641         if (!page_has_buffers(page)) {
1642                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1643                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1644                 page_bufs = page_buffers(page);
1645         } else {
1646                 page_bufs = page_buffers(page);
1647                 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1648                                        NULL, buffer_unmapped)) {
1649                         /* Provide NULL get_block() to catch bugs if buffers
1650                          * weren't really mapped */
1651                         return block_write_full_page(page, NULL, wbc);
1652                 }
1653         }
1654         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1655
1656         if (IS_ERR(handle)) {
1657                 ret = PTR_ERR(handle);
1658                 goto out_fail;
1659         }
1660
1661         walk_page_buffers(handle, page_bufs, 0,
1662                         PAGE_CACHE_SIZE, NULL, bget_one);
1663
1664         ret = block_write_full_page(page, ext3_get_block, wbc);
1665
1666         /*
1667          * The page can become unlocked at any point now, and
1668          * truncate can then come in and change things.  So we
1669          * can't touch *page from now on.  But *page_bufs is
1670          * safe due to elevated refcount.
1671          */
1672
1673         /*
1674          * And attach them to the current transaction.  But only if
1675          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1676          * and generally junk.
1677          */
1678         if (ret == 0) {
1679                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1680                                         NULL, journal_dirty_data_fn);
1681                 if (!ret)
1682                         ret = err;
1683         }
1684         walk_page_buffers(handle, page_bufs, 0,
1685                         PAGE_CACHE_SIZE, NULL, bput_one);
1686         err = ext3_journal_stop(handle);
1687         if (!ret)
1688                 ret = err;
1689         return ret;
1690
1691 out_fail:
1692         redirty_page_for_writepage(wbc, page);
1693         unlock_page(page);
1694         return ret;
1695 }
1696
1697 static int ext3_writeback_writepage(struct page *page,
1698                                 struct writeback_control *wbc)
1699 {
1700         struct inode *inode = page->mapping->host;
1701         handle_t *handle = NULL;
1702         int ret = 0;
1703         int err;
1704
1705         J_ASSERT(PageLocked(page));
1706         /*
1707          * We don't want to warn for emergency remount. The condition is
1708          * ordered to avoid dereferencing inode->i_sb in non-error case to
1709          * avoid slow-downs.
1710          */
1711         WARN_ON_ONCE(IS_RDONLY(inode) &&
1712                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1713
1714         if (ext3_journal_current_handle())
1715                 goto out_fail;
1716
1717         trace_ext3_writeback_writepage(page);
1718         if (page_has_buffers(page)) {
1719                 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1720                                       PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1721                         /* Provide NULL get_block() to catch bugs if buffers
1722                          * weren't really mapped */
1723                         return block_write_full_page(page, NULL, wbc);
1724                 }
1725         }
1726
1727         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1728         if (IS_ERR(handle)) {
1729                 ret = PTR_ERR(handle);
1730                 goto out_fail;
1731         }
1732
1733         ret = block_write_full_page(page, ext3_get_block, wbc);
1734
1735         err = ext3_journal_stop(handle);
1736         if (!ret)
1737                 ret = err;
1738         return ret;
1739
1740 out_fail:
1741         redirty_page_for_writepage(wbc, page);
1742         unlock_page(page);
1743         return ret;
1744 }
1745
1746 static int ext3_journalled_writepage(struct page *page,
1747                                 struct writeback_control *wbc)
1748 {
1749         struct inode *inode = page->mapping->host;
1750         handle_t *handle = NULL;
1751         int ret = 0;
1752         int err;
1753
1754         J_ASSERT(PageLocked(page));
1755         /*
1756          * We don't want to warn for emergency remount. The condition is
1757          * ordered to avoid dereferencing inode->i_sb in non-error case to
1758          * avoid slow-downs.
1759          */
1760         WARN_ON_ONCE(IS_RDONLY(inode) &&
1761                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1762
1763         if (ext3_journal_current_handle())
1764                 goto no_write;
1765
1766         trace_ext3_journalled_writepage(page);
1767         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1768         if (IS_ERR(handle)) {
1769                 ret = PTR_ERR(handle);
1770                 goto no_write;
1771         }
1772
1773         if (!page_has_buffers(page) || PageChecked(page)) {
1774                 /*
1775                  * It's mmapped pagecache.  Add buffers and journal it.  There
1776                  * doesn't seem much point in redirtying the page here.
1777                  */
1778                 ClearPageChecked(page);
1779                 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1780                                           ext3_get_block);
1781                 if (ret != 0) {
1782                         ext3_journal_stop(handle);
1783                         goto out_unlock;
1784                 }
1785                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1786                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1787
1788                 err = walk_page_buffers(handle, page_buffers(page), 0,
1789                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1790                 if (ret == 0)
1791                         ret = err;
1792                 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1793                 atomic_set(&EXT3_I(inode)->i_datasync_tid,
1794                            handle->h_transaction->t_tid);
1795                 unlock_page(page);
1796         } else {
1797                 /*
1798                  * It may be a page full of checkpoint-mode buffers.  We don't
1799                  * really know unless we go poke around in the buffer_heads.
1800                  * But block_write_full_page will do the right thing.
1801                  */
1802                 ret = block_write_full_page(page, ext3_get_block, wbc);
1803         }
1804         err = ext3_journal_stop(handle);
1805         if (!ret)
1806                 ret = err;
1807 out:
1808         return ret;
1809
1810 no_write:
1811         redirty_page_for_writepage(wbc, page);
1812 out_unlock:
1813         unlock_page(page);
1814         goto out;
1815 }
1816
1817 static int ext3_readpage(struct file *file, struct page *page)
1818 {
1819         trace_ext3_readpage(page);
1820         return mpage_readpage(page, ext3_get_block);
1821 }
1822
1823 static int
1824 ext3_readpages(struct file *file, struct address_space *mapping,
1825                 struct list_head *pages, unsigned nr_pages)
1826 {
1827         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1828 }
1829
1830 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1831 {
1832         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1833
1834         trace_ext3_invalidatepage(page, offset);
1835
1836         /*
1837          * If it's a full truncate we just forget about the pending dirtying
1838          */
1839         if (offset == 0)
1840                 ClearPageChecked(page);
1841
1842         journal_invalidatepage(journal, page, offset);
1843 }
1844
1845 static int ext3_releasepage(struct page *page, gfp_t wait)
1846 {
1847         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1848
1849         trace_ext3_releasepage(page);
1850         WARN_ON(PageChecked(page));
1851         if (!page_has_buffers(page))
1852                 return 0;
1853         return journal_try_to_free_buffers(journal, page, wait);
1854 }
1855
1856 /*
1857  * If the O_DIRECT write will extend the file then add this inode to the
1858  * orphan list.  So recovery will truncate it back to the original size
1859  * if the machine crashes during the write.
1860  *
1861  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1862  * crashes then stale disk data _may_ be exposed inside the file. But current
1863  * VFS code falls back into buffered path in that case so we are safe.
1864  */
1865 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1866                         const struct iovec *iov, loff_t offset,
1867                         unsigned long nr_segs)
1868 {
1869         struct file *file = iocb->ki_filp;
1870         struct inode *inode = file->f_mapping->host;
1871         struct ext3_inode_info *ei = EXT3_I(inode);
1872         handle_t *handle;
1873         ssize_t ret;
1874         int orphan = 0;
1875         size_t count = iov_length(iov, nr_segs);
1876         int retries = 0;
1877
1878         trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1879
1880         if (rw == WRITE) {
1881                 loff_t final_size = offset + count;
1882
1883                 if (final_size > inode->i_size) {
1884                         /* Credits for sb + inode write */
1885                         handle = ext3_journal_start(inode, 2);
1886                         if (IS_ERR(handle)) {
1887                                 ret = PTR_ERR(handle);
1888                                 goto out;
1889                         }
1890                         ret = ext3_orphan_add(handle, inode);
1891                         if (ret) {
1892                                 ext3_journal_stop(handle);
1893                                 goto out;
1894                         }
1895                         orphan = 1;
1896                         ei->i_disksize = inode->i_size;
1897                         ext3_journal_stop(handle);
1898                 }
1899         }
1900
1901 retry:
1902         ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
1903                                  ext3_get_block);
1904         /*
1905          * In case of error extending write may have instantiated a few
1906          * blocks outside i_size. Trim these off again.
1907          */
1908         if (unlikely((rw & WRITE) && ret < 0)) {
1909                 loff_t isize = i_size_read(inode);
1910                 loff_t end = offset + iov_length(iov, nr_segs);
1911
1912                 if (end > isize)
1913                         ext3_truncate_failed_direct_write(inode);
1914         }
1915         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1916                 goto retry;
1917
1918         if (orphan) {
1919                 int err;
1920
1921                 /* Credits for sb + inode write */
1922                 handle = ext3_journal_start(inode, 2);
1923                 if (IS_ERR(handle)) {
1924                         /* This is really bad luck. We've written the data
1925                          * but cannot extend i_size. Truncate allocated blocks
1926                          * and pretend the write failed... */
1927                         ext3_truncate_failed_direct_write(inode);
1928                         ret = PTR_ERR(handle);
1929                         goto out;
1930                 }
1931                 if (inode->i_nlink)
1932                         ext3_orphan_del(handle, inode);
1933                 if (ret > 0) {
1934                         loff_t end = offset + ret;
1935                         if (end > inode->i_size) {
1936                                 ei->i_disksize = end;
1937                                 i_size_write(inode, end);
1938                                 /*
1939                                  * We're going to return a positive `ret'
1940                                  * here due to non-zero-length I/O, so there's
1941                                  * no way of reporting error returns from
1942                                  * ext3_mark_inode_dirty() to userspace.  So
1943                                  * ignore it.
1944                                  */
1945                                 ext3_mark_inode_dirty(handle, inode);
1946                         }
1947                 }
1948                 err = ext3_journal_stop(handle);
1949                 if (ret == 0)
1950                         ret = err;
1951         }
1952 out:
1953         trace_ext3_direct_IO_exit(inode, offset,
1954                                 iov_length(iov, nr_segs), rw, ret);
1955         return ret;
1956 }
1957
1958 /*
1959  * Pages can be marked dirty completely asynchronously from ext3's journalling
1960  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1961  * much here because ->set_page_dirty is called under VFS locks.  The page is
1962  * not necessarily locked.
1963  *
1964  * We cannot just dirty the page and leave attached buffers clean, because the
1965  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1966  * or jbddirty because all the journalling code will explode.
1967  *
1968  * So what we do is to mark the page "pending dirty" and next time writepage
1969  * is called, propagate that into the buffers appropriately.
1970  */
1971 static int ext3_journalled_set_page_dirty(struct page *page)
1972 {
1973         SetPageChecked(page);
1974         return __set_page_dirty_nobuffers(page);
1975 }
1976
1977 static const struct address_space_operations ext3_ordered_aops = {
1978         .readpage               = ext3_readpage,
1979         .readpages              = ext3_readpages,
1980         .writepage              = ext3_ordered_writepage,
1981         .write_begin            = ext3_write_begin,
1982         .write_end              = ext3_ordered_write_end,
1983         .bmap                   = ext3_bmap,
1984         .invalidatepage         = ext3_invalidatepage,
1985         .releasepage            = ext3_releasepage,
1986         .direct_IO              = ext3_direct_IO,
1987         .migratepage            = buffer_migrate_page,
1988         .is_partially_uptodate  = block_is_partially_uptodate,
1989         .error_remove_page      = generic_error_remove_page,
1990 };
1991
1992 static const struct address_space_operations ext3_writeback_aops = {
1993         .readpage               = ext3_readpage,
1994         .readpages              = ext3_readpages,
1995         .writepage              = ext3_writeback_writepage,
1996         .write_begin            = ext3_write_begin,
1997         .write_end              = ext3_writeback_write_end,
1998         .bmap                   = ext3_bmap,
1999         .invalidatepage         = ext3_invalidatepage,
2000         .releasepage            = ext3_releasepage,
2001         .direct_IO              = ext3_direct_IO,
2002         .migratepage            = buffer_migrate_page,
2003         .is_partially_uptodate  = block_is_partially_uptodate,
2004         .error_remove_page      = generic_error_remove_page,
2005 };
2006
2007 static const struct address_space_operations ext3_journalled_aops = {
2008         .readpage               = ext3_readpage,
2009         .readpages              = ext3_readpages,
2010         .writepage              = ext3_journalled_writepage,
2011         .write_begin            = ext3_write_begin,
2012         .write_end              = ext3_journalled_write_end,
2013         .set_page_dirty         = ext3_journalled_set_page_dirty,
2014         .bmap                   = ext3_bmap,
2015         .invalidatepage         = ext3_invalidatepage,
2016         .releasepage            = ext3_releasepage,
2017         .is_partially_uptodate  = block_is_partially_uptodate,
2018         .error_remove_page      = generic_error_remove_page,
2019 };
2020
2021 void ext3_set_aops(struct inode *inode)
2022 {
2023         if (ext3_should_order_data(inode))
2024                 inode->i_mapping->a_ops = &ext3_ordered_aops;
2025         else if (ext3_should_writeback_data(inode))
2026                 inode->i_mapping->a_ops = &ext3_writeback_aops;
2027         else
2028                 inode->i_mapping->a_ops = &ext3_journalled_aops;
2029 }
2030
2031 /*
2032  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2033  * up to the end of the block which corresponds to `from'.
2034  * This required during truncate. We need to physically zero the tail end
2035  * of that block so it doesn't yield old data if the file is later grown.
2036  */
2037 static int ext3_block_truncate_page(struct inode *inode, loff_t from)
2038 {
2039         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2040         unsigned offset = from & (PAGE_CACHE_SIZE - 1);
2041         unsigned blocksize, iblock, length, pos;
2042         struct page *page;
2043         handle_t *handle = NULL;
2044         struct buffer_head *bh;
2045         int err = 0;
2046
2047         /* Truncated on block boundary - nothing to do */
2048         blocksize = inode->i_sb->s_blocksize;
2049         if ((from & (blocksize - 1)) == 0)
2050                 return 0;
2051
2052         page = grab_cache_page(inode->i_mapping, index);
2053         if (!page)
2054                 return -ENOMEM;
2055         length = blocksize - (offset & (blocksize - 1));
2056         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2057
2058         if (!page_has_buffers(page))
2059                 create_empty_buffers(page, blocksize, 0);
2060
2061         /* Find the buffer that contains "offset" */
2062         bh = page_buffers(page);
2063         pos = blocksize;
2064         while (offset >= pos) {
2065                 bh = bh->b_this_page;
2066                 iblock++;
2067                 pos += blocksize;
2068         }
2069
2070         err = 0;
2071         if (buffer_freed(bh)) {
2072                 BUFFER_TRACE(bh, "freed: skip");
2073                 goto unlock;
2074         }
2075
2076         if (!buffer_mapped(bh)) {
2077                 BUFFER_TRACE(bh, "unmapped");
2078                 ext3_get_block(inode, iblock, bh, 0);
2079                 /* unmapped? It's a hole - nothing to do */
2080                 if (!buffer_mapped(bh)) {
2081                         BUFFER_TRACE(bh, "still unmapped");
2082                         goto unlock;
2083                 }
2084         }
2085
2086         /* Ok, it's mapped. Make sure it's up-to-date */
2087         if (PageUptodate(page))
2088                 set_buffer_uptodate(bh);
2089
2090         if (!bh_uptodate_or_lock(bh)) {
2091                 err = bh_submit_read(bh);
2092                 /* Uhhuh. Read error. Complain and punt. */
2093                 if (err)
2094                         goto unlock;
2095         }
2096
2097         /* data=writeback mode doesn't need transaction to zero-out data */
2098         if (!ext3_should_writeback_data(inode)) {
2099                 /* We journal at most one block */
2100                 handle = ext3_journal_start(inode, 1);
2101                 if (IS_ERR(handle)) {
2102                         clear_highpage(page);
2103                         flush_dcache_page(page);
2104                         err = PTR_ERR(handle);
2105                         goto unlock;
2106                 }
2107         }
2108
2109         if (ext3_should_journal_data(inode)) {
2110                 BUFFER_TRACE(bh, "get write access");
2111                 err = ext3_journal_get_write_access(handle, bh);
2112                 if (err)
2113                         goto stop;
2114         }
2115
2116         zero_user(page, offset, length);
2117         BUFFER_TRACE(bh, "zeroed end of block");
2118
2119         err = 0;
2120         if (ext3_should_journal_data(inode)) {
2121                 err = ext3_journal_dirty_metadata(handle, bh);
2122         } else {
2123                 if (ext3_should_order_data(inode))
2124                         err = ext3_journal_dirty_data(handle, bh);
2125                 mark_buffer_dirty(bh);
2126         }
2127 stop:
2128         if (handle)
2129                 ext3_journal_stop(handle);
2130
2131 unlock:
2132         unlock_page(page);
2133         page_cache_release(page);
2134         return err;
2135 }
2136
2137 /*
2138  * Probably it should be a library function... search for first non-zero word
2139  * or memcmp with zero_page, whatever is better for particular architecture.
2140  * Linus?
2141  */
2142 static inline int all_zeroes(__le32 *p, __le32 *q)
2143 {
2144         while (p < q)
2145                 if (*p++)
2146                         return 0;
2147         return 1;
2148 }
2149
2150 /**
2151  *      ext3_find_shared - find the indirect blocks for partial truncation.
2152  *      @inode:   inode in question
2153  *      @depth:   depth of the affected branch
2154  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2155  *      @chain:   place to store the pointers to partial indirect blocks
2156  *      @top:     place to the (detached) top of branch
2157  *
2158  *      This is a helper function used by ext3_truncate().
2159  *
2160  *      When we do truncate() we may have to clean the ends of several
2161  *      indirect blocks but leave the blocks themselves alive. Block is
2162  *      partially truncated if some data below the new i_size is referred
2163  *      from it (and it is on the path to the first completely truncated
2164  *      data block, indeed).  We have to free the top of that path along
2165  *      with everything to the right of the path. Since no allocation
2166  *      past the truncation point is possible until ext3_truncate()
2167  *      finishes, we may safely do the latter, but top of branch may
2168  *      require special attention - pageout below the truncation point
2169  *      might try to populate it.
2170  *
2171  *      We atomically detach the top of branch from the tree, store the
2172  *      block number of its root in *@top, pointers to buffer_heads of
2173  *      partially truncated blocks - in @chain[].bh and pointers to
2174  *      their last elements that should not be removed - in
2175  *      @chain[].p. Return value is the pointer to last filled element
2176  *      of @chain.
2177  *
2178  *      The work left to caller to do the actual freeing of subtrees:
2179  *              a) free the subtree starting from *@top
2180  *              b) free the subtrees whose roots are stored in
2181  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2182  *              c) free the subtrees growing from the inode past the @chain[0].
2183  *                      (no partially truncated stuff there).  */
2184
2185 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2186                         int offsets[4], Indirect chain[4], __le32 *top)
2187 {
2188         Indirect *partial, *p;
2189         int k, err;
2190
2191         *top = 0;
2192         /* Make k index the deepest non-null offset + 1 */
2193         for (k = depth; k > 1 && !offsets[k-1]; k--)
2194                 ;
2195         partial = ext3_get_branch(inode, k, offsets, chain, &err);
2196         /* Writer: pointers */
2197         if (!partial)
2198                 partial = chain + k-1;
2199         /*
2200          * If the branch acquired continuation since we've looked at it -
2201          * fine, it should all survive and (new) top doesn't belong to us.
2202          */
2203         if (!partial->key && *partial->p)
2204                 /* Writer: end */
2205                 goto no_top;
2206         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2207                 ;
2208         /*
2209          * OK, we've found the last block that must survive. The rest of our
2210          * branch should be detached before unlocking. However, if that rest
2211          * of branch is all ours and does not grow immediately from the inode
2212          * it's easier to cheat and just decrement partial->p.
2213          */
2214         if (p == chain + k - 1 && p > chain) {
2215                 p->p--;
2216         } else {
2217                 *top = *p->p;
2218                 /* Nope, don't do this in ext3.  Must leave the tree intact */
2219 #if 0
2220                 *p->p = 0;
2221 #endif
2222         }
2223         /* Writer: end */
2224
2225         while(partial > p) {
2226                 brelse(partial->bh);
2227                 partial--;
2228         }
2229 no_top:
2230         return partial;
2231 }
2232
2233 /*
2234  * Zero a number of block pointers in either an inode or an indirect block.
2235  * If we restart the transaction we must again get write access to the
2236  * indirect block for further modification.
2237  *
2238  * We release `count' blocks on disk, but (last - first) may be greater
2239  * than `count' because there can be holes in there.
2240  */
2241 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2242                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2243                 unsigned long count, __le32 *first, __le32 *last)
2244 {
2245         __le32 *p;
2246         if (try_to_extend_transaction(handle, inode)) {
2247                 if (bh) {
2248                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2249                         if (ext3_journal_dirty_metadata(handle, bh))
2250                                 return;
2251                 }
2252                 ext3_mark_inode_dirty(handle, inode);
2253                 truncate_restart_transaction(handle, inode);
2254                 if (bh) {
2255                         BUFFER_TRACE(bh, "retaking write access");
2256                         if (ext3_journal_get_write_access(handle, bh))
2257                                 return;
2258                 }
2259         }
2260
2261         /*
2262          * Any buffers which are on the journal will be in memory. We find
2263          * them on the hash table so journal_revoke() will run journal_forget()
2264          * on them.  We've already detached each block from the file, so
2265          * bforget() in journal_forget() should be safe.
2266          *
2267          * AKPM: turn on bforget in journal_forget()!!!
2268          */
2269         for (p = first; p < last; p++) {
2270                 u32 nr = le32_to_cpu(*p);
2271                 if (nr) {
2272                         struct buffer_head *bh;
2273
2274                         *p = 0;
2275                         bh = sb_find_get_block(inode->i_sb, nr);
2276                         ext3_forget(handle, 0, inode, bh, nr);
2277                 }
2278         }
2279
2280         ext3_free_blocks(handle, inode, block_to_free, count);
2281 }
2282
2283 /**
2284  * ext3_free_data - free a list of data blocks
2285  * @handle:     handle for this transaction
2286  * @inode:      inode we are dealing with
2287  * @this_bh:    indirect buffer_head which contains *@first and *@last
2288  * @first:      array of block numbers
2289  * @last:       points immediately past the end of array
2290  *
2291  * We are freeing all blocks referred from that array (numbers are stored as
2292  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2293  *
2294  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2295  * blocks are contiguous then releasing them at one time will only affect one
2296  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2297  * actually use a lot of journal space.
2298  *
2299  * @this_bh will be %NULL if @first and @last point into the inode's direct
2300  * block pointers.
2301  */
2302 static void ext3_free_data(handle_t *handle, struct inode *inode,
2303                            struct buffer_head *this_bh,
2304                            __le32 *first, __le32 *last)
2305 {
2306         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2307         unsigned long count = 0;            /* Number of blocks in the run */
2308         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2309                                                corresponding to
2310                                                block_to_free */
2311         ext3_fsblk_t nr;                    /* Current block # */
2312         __le32 *p;                          /* Pointer into inode/ind
2313                                                for current block */
2314         int err;
2315
2316         if (this_bh) {                          /* For indirect block */
2317                 BUFFER_TRACE(this_bh, "get_write_access");
2318                 err = ext3_journal_get_write_access(handle, this_bh);
2319                 /* Important: if we can't update the indirect pointers
2320                  * to the blocks, we can't free them. */
2321                 if (err)
2322                         return;
2323         }
2324
2325         for (p = first; p < last; p++) {
2326                 nr = le32_to_cpu(*p);
2327                 if (nr) {
2328                         /* accumulate blocks to free if they're contiguous */
2329                         if (count == 0) {
2330                                 block_to_free = nr;
2331                                 block_to_free_p = p;
2332                                 count = 1;
2333                         } else if (nr == block_to_free + count) {
2334                                 count++;
2335                         } else {
2336                                 ext3_clear_blocks(handle, inode, this_bh,
2337                                                   block_to_free,
2338                                                   count, block_to_free_p, p);
2339                                 block_to_free = nr;
2340                                 block_to_free_p = p;
2341                                 count = 1;
2342                         }
2343                 }
2344         }
2345
2346         if (count > 0)
2347                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2348                                   count, block_to_free_p, p);
2349
2350         if (this_bh) {
2351                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2352
2353                 /*
2354                  * The buffer head should have an attached journal head at this
2355                  * point. However, if the data is corrupted and an indirect
2356                  * block pointed to itself, it would have been detached when
2357                  * the block was cleared. Check for this instead of OOPSing.
2358                  */
2359                 if (bh2jh(this_bh))
2360                         ext3_journal_dirty_metadata(handle, this_bh);
2361                 else
2362                         ext3_error(inode->i_sb, "ext3_free_data",
2363                                    "circular indirect block detected, "
2364                                    "inode=%lu, block=%llu",
2365                                    inode->i_ino,
2366                                    (unsigned long long)this_bh->b_blocknr);
2367         }
2368 }
2369
2370 /**
2371  *      ext3_free_branches - free an array of branches
2372  *      @handle: JBD handle for this transaction
2373  *      @inode: inode we are dealing with
2374  *      @parent_bh: the buffer_head which contains *@first and *@last
2375  *      @first: array of block numbers
2376  *      @last:  pointer immediately past the end of array
2377  *      @depth: depth of the branches to free
2378  *
2379  *      We are freeing all blocks referred from these branches (numbers are
2380  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2381  *      appropriately.
2382  */
2383 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2384                                struct buffer_head *parent_bh,
2385                                __le32 *first, __le32 *last, int depth)
2386 {
2387         ext3_fsblk_t nr;
2388         __le32 *p;
2389
2390         if (is_handle_aborted(handle))
2391                 return;
2392
2393         if (depth--) {
2394                 struct buffer_head *bh;
2395                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2396                 p = last;
2397                 while (--p >= first) {
2398                         nr = le32_to_cpu(*p);
2399                         if (!nr)
2400                                 continue;               /* A hole */
2401
2402                         /* Go read the buffer for the next level down */
2403                         bh = sb_bread(inode->i_sb, nr);
2404
2405                         /*
2406                          * A read failure? Report error and clear slot
2407                          * (should be rare).
2408                          */
2409                         if (!bh) {
2410                                 ext3_error(inode->i_sb, "ext3_free_branches",
2411                                            "Read failure, inode=%lu, block="E3FSBLK,
2412                                            inode->i_ino, nr);
2413                                 continue;
2414                         }
2415
2416                         /* This zaps the entire block.  Bottom up. */
2417                         BUFFER_TRACE(bh, "free child branches");
2418                         ext3_free_branches(handle, inode, bh,
2419                                            (__le32*)bh->b_data,
2420                                            (__le32*)bh->b_data + addr_per_block,
2421                                            depth);
2422
2423                         /*
2424                          * Everything below this this pointer has been
2425                          * released.  Now let this top-of-subtree go.
2426                          *
2427                          * We want the freeing of this indirect block to be
2428                          * atomic in the journal with the updating of the
2429                          * bitmap block which owns it.  So make some room in
2430                          * the journal.
2431                          *
2432                          * We zero the parent pointer *after* freeing its
2433                          * pointee in the bitmaps, so if extend_transaction()
2434                          * for some reason fails to put the bitmap changes and
2435                          * the release into the same transaction, recovery
2436                          * will merely complain about releasing a free block,
2437                          * rather than leaking blocks.
2438                          */
2439                         if (is_handle_aborted(handle))
2440                                 return;
2441                         if (try_to_extend_transaction(handle, inode)) {
2442                                 ext3_mark_inode_dirty(handle, inode);
2443                                 truncate_restart_transaction(handle, inode);
2444                         }
2445
2446                         /*
2447                          * We've probably journalled the indirect block several
2448                          * times during the truncate.  But it's no longer
2449                          * needed and we now drop it from the transaction via
2450                          * journal_revoke().
2451                          *
2452                          * That's easy if it's exclusively part of this
2453                          * transaction.  But if it's part of the committing
2454                          * transaction then journal_forget() will simply
2455                          * brelse() it.  That means that if the underlying
2456                          * block is reallocated in ext3_get_block(),
2457                          * unmap_underlying_metadata() will find this block
2458                          * and will try to get rid of it.  damn, damn. Thus
2459                          * we don't allow a block to be reallocated until
2460                          * a transaction freeing it has fully committed.
2461                          *
2462                          * We also have to make sure journal replay after a
2463                          * crash does not overwrite non-journaled data blocks
2464                          * with old metadata when the block got reallocated for
2465                          * data.  Thus we have to store a revoke record for a
2466                          * block in the same transaction in which we free the
2467                          * block.
2468                          */
2469                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2470
2471                         ext3_free_blocks(handle, inode, nr, 1);
2472
2473                         if (parent_bh) {
2474                                 /*
2475                                  * The block which we have just freed is
2476                                  * pointed to by an indirect block: journal it
2477                                  */
2478                                 BUFFER_TRACE(parent_bh, "get_write_access");
2479                                 if (!ext3_journal_get_write_access(handle,
2480                                                                    parent_bh)){
2481                                         *p = 0;
2482                                         BUFFER_TRACE(parent_bh,
2483                                         "call ext3_journal_dirty_metadata");
2484                                         ext3_journal_dirty_metadata(handle,
2485                                                                     parent_bh);
2486                                 }
2487                         }
2488                 }
2489         } else {
2490                 /* We have reached the bottom of the tree. */
2491                 BUFFER_TRACE(parent_bh, "free data blocks");
2492                 ext3_free_data(handle, inode, parent_bh, first, last);
2493         }
2494 }
2495
2496 int ext3_can_truncate(struct inode *inode)
2497 {
2498         if (S_ISREG(inode->i_mode))
2499                 return 1;
2500         if (S_ISDIR(inode->i_mode))
2501                 return 1;
2502         if (S_ISLNK(inode->i_mode))
2503                 return !ext3_inode_is_fast_symlink(inode);
2504         return 0;
2505 }
2506
2507 /*
2508  * ext3_truncate()
2509  *
2510  * We block out ext3_get_block() block instantiations across the entire
2511  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2512  * simultaneously on behalf of the same inode.
2513  *
2514  * As we work through the truncate and commit bits of it to the journal there
2515  * is one core, guiding principle: the file's tree must always be consistent on
2516  * disk.  We must be able to restart the truncate after a crash.
2517  *
2518  * The file's tree may be transiently inconsistent in memory (although it
2519  * probably isn't), but whenever we close off and commit a journal transaction,
2520  * the contents of (the filesystem + the journal) must be consistent and
2521  * restartable.  It's pretty simple, really: bottom up, right to left (although
2522  * left-to-right works OK too).
2523  *
2524  * Note that at recovery time, journal replay occurs *before* the restart of
2525  * truncate against the orphan inode list.
2526  *
2527  * The committed inode has the new, desired i_size (which is the same as
2528  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2529  * that this inode's truncate did not complete and it will again call
2530  * ext3_truncate() to have another go.  So there will be instantiated blocks
2531  * to the right of the truncation point in a crashed ext3 filesystem.  But
2532  * that's fine - as long as they are linked from the inode, the post-crash
2533  * ext3_truncate() run will find them and release them.
2534  */
2535 void ext3_truncate(struct inode *inode)
2536 {
2537         handle_t *handle;
2538         struct ext3_inode_info *ei = EXT3_I(inode);
2539         __le32 *i_data = ei->i_data;
2540         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2541         int offsets[4];
2542         Indirect chain[4];
2543         Indirect *partial;
2544         __le32 nr = 0;
2545         int n;
2546         long last_block;
2547         unsigned blocksize = inode->i_sb->s_blocksize;
2548
2549         trace_ext3_truncate_enter(inode);
2550
2551         if (!ext3_can_truncate(inode))
2552                 goto out_notrans;
2553
2554         if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2555                 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2556
2557         handle = start_transaction(inode);
2558         if (IS_ERR(handle))
2559                 goto out_notrans;
2560
2561         last_block = (inode->i_size + blocksize-1)
2562                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2563         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2564         if (n == 0)
2565                 goto out_stop;  /* error */
2566
2567         /*
2568          * OK.  This truncate is going to happen.  We add the inode to the
2569          * orphan list, so that if this truncate spans multiple transactions,
2570          * and we crash, we will resume the truncate when the filesystem
2571          * recovers.  It also marks the inode dirty, to catch the new size.
2572          *
2573          * Implication: the file must always be in a sane, consistent
2574          * truncatable state while each transaction commits.
2575          */
2576         if (ext3_orphan_add(handle, inode))
2577                 goto out_stop;
2578
2579         /*
2580          * The orphan list entry will now protect us from any crash which
2581          * occurs before the truncate completes, so it is now safe to propagate
2582          * the new, shorter inode size (held for now in i_size) into the
2583          * on-disk inode. We do this via i_disksize, which is the value which
2584          * ext3 *really* writes onto the disk inode.
2585          */
2586         ei->i_disksize = inode->i_size;
2587
2588         /*
2589          * From here we block out all ext3_get_block() callers who want to
2590          * modify the block allocation tree.
2591          */
2592         mutex_lock(&ei->truncate_mutex);
2593
2594         if (n == 1) {           /* direct blocks */
2595                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2596                                i_data + EXT3_NDIR_BLOCKS);
2597                 goto do_indirects;
2598         }
2599
2600         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2601         /* Kill the top of shared branch (not detached) */
2602         if (nr) {
2603                 if (partial == chain) {
2604                         /* Shared branch grows from the inode */
2605                         ext3_free_branches(handle, inode, NULL,
2606                                            &nr, &nr+1, (chain+n-1) - partial);
2607                         *partial->p = 0;
2608                         /*
2609                          * We mark the inode dirty prior to restart,
2610                          * and prior to stop.  No need for it here.
2611                          */
2612                 } else {
2613                         /* Shared branch grows from an indirect block */
2614                         ext3_free_branches(handle, inode, partial->bh,
2615                                         partial->p,
2616                                         partial->p+1, (chain+n-1) - partial);
2617                 }
2618         }
2619         /* Clear the ends of indirect blocks on the shared branch */
2620         while (partial > chain) {
2621                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2622                                    (__le32*)partial->bh->b_data+addr_per_block,
2623                                    (chain+n-1) - partial);
2624                 BUFFER_TRACE(partial->bh, "call brelse");
2625                 brelse (partial->bh);
2626                 partial--;
2627         }
2628 do_indirects:
2629         /* Kill the remaining (whole) subtrees */
2630         switch (offsets[0]) {
2631         default:
2632                 nr = i_data[EXT3_IND_BLOCK];
2633                 if (nr) {
2634                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2635                         i_data[EXT3_IND_BLOCK] = 0;
2636                 }
2637         case EXT3_IND_BLOCK:
2638                 nr = i_data[EXT3_DIND_BLOCK];
2639                 if (nr) {
2640                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2641                         i_data[EXT3_DIND_BLOCK] = 0;
2642                 }
2643         case EXT3_DIND_BLOCK:
2644                 nr = i_data[EXT3_TIND_BLOCK];
2645                 if (nr) {
2646                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2647                         i_data[EXT3_TIND_BLOCK] = 0;
2648                 }
2649         case EXT3_TIND_BLOCK:
2650                 ;
2651         }
2652
2653         ext3_discard_reservation(inode);
2654
2655         mutex_unlock(&ei->truncate_mutex);
2656         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2657         ext3_mark_inode_dirty(handle, inode);
2658
2659         /*
2660          * In a multi-transaction truncate, we only make the final transaction
2661          * synchronous
2662          */
2663         if (IS_SYNC(inode))
2664                 handle->h_sync = 1;
2665 out_stop:
2666         /*
2667          * If this was a simple ftruncate(), and the file will remain alive
2668          * then we need to clear up the orphan record which we created above.
2669          * However, if this was a real unlink then we were called by
2670          * ext3_evict_inode(), and we allow that function to clean up the
2671          * orphan info for us.
2672          */
2673         if (inode->i_nlink)
2674                 ext3_orphan_del(handle, inode);
2675
2676         ext3_journal_stop(handle);
2677         trace_ext3_truncate_exit(inode);
2678         return;
2679 out_notrans:
2680         /*
2681          * Delete the inode from orphan list so that it doesn't stay there
2682          * forever and trigger assertion on umount.
2683          */
2684         if (inode->i_nlink)
2685                 ext3_orphan_del(NULL, inode);
2686         trace_ext3_truncate_exit(inode);
2687 }
2688
2689 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2690                 unsigned long ino, struct ext3_iloc *iloc)
2691 {
2692         unsigned long block_group;
2693         unsigned long offset;
2694         ext3_fsblk_t block;
2695         struct ext3_group_desc *gdp;
2696
2697         if (!ext3_valid_inum(sb, ino)) {
2698                 /*
2699                  * This error is already checked for in namei.c unless we are
2700                  * looking at an NFS filehandle, in which case no error
2701                  * report is needed
2702                  */
2703                 return 0;
2704         }
2705
2706         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2707         gdp = ext3_get_group_desc(sb, block_group, NULL);
2708         if (!gdp)
2709                 return 0;
2710         /*
2711          * Figure out the offset within the block group inode table
2712          */
2713         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2714                 EXT3_INODE_SIZE(sb);
2715         block = le32_to_cpu(gdp->bg_inode_table) +
2716                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2717
2718         iloc->block_group = block_group;
2719         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2720         return block;
2721 }
2722
2723 /*
2724  * ext3_get_inode_loc returns with an extra refcount against the inode's
2725  * underlying buffer_head on success. If 'in_mem' is true, we have all
2726  * data in memory that is needed to recreate the on-disk version of this
2727  * inode.
2728  */
2729 static int __ext3_get_inode_loc(struct inode *inode,
2730                                 struct ext3_iloc *iloc, int in_mem)
2731 {
2732         ext3_fsblk_t block;
2733         struct buffer_head *bh;
2734
2735         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2736         if (!block)
2737                 return -EIO;
2738
2739         bh = sb_getblk(inode->i_sb, block);
2740         if (!bh) {
2741                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2742                                 "unable to read inode block - "
2743                                 "inode=%lu, block="E3FSBLK,
2744                                  inode->i_ino, block);
2745                 return -EIO;
2746         }
2747         if (!buffer_uptodate(bh)) {
2748                 lock_buffer(bh);
2749
2750                 /*
2751                  * If the buffer has the write error flag, we have failed
2752                  * to write out another inode in the same block.  In this
2753                  * case, we don't have to read the block because we may
2754                  * read the old inode data successfully.
2755                  */
2756                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2757                         set_buffer_uptodate(bh);
2758
2759                 if (buffer_uptodate(bh)) {
2760                         /* someone brought it uptodate while we waited */
2761                         unlock_buffer(bh);
2762                         goto has_buffer;
2763                 }
2764
2765                 /*
2766                  * If we have all information of the inode in memory and this
2767                  * is the only valid inode in the block, we need not read the
2768                  * block.
2769                  */
2770                 if (in_mem) {
2771                         struct buffer_head *bitmap_bh;
2772                         struct ext3_group_desc *desc;
2773                         int inodes_per_buffer;
2774                         int inode_offset, i;
2775                         int block_group;
2776                         int start;
2777
2778                         block_group = (inode->i_ino - 1) /
2779                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2780                         inodes_per_buffer = bh->b_size /
2781                                 EXT3_INODE_SIZE(inode->i_sb);
2782                         inode_offset = ((inode->i_ino - 1) %
2783                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2784                         start = inode_offset & ~(inodes_per_buffer - 1);
2785
2786                         /* Is the inode bitmap in cache? */
2787                         desc = ext3_get_group_desc(inode->i_sb,
2788                                                 block_group, NULL);
2789                         if (!desc)
2790                                 goto make_io;
2791
2792                         bitmap_bh = sb_getblk(inode->i_sb,
2793                                         le32_to_cpu(desc->bg_inode_bitmap));
2794                         if (!bitmap_bh)
2795                                 goto make_io;
2796
2797                         /*
2798                          * If the inode bitmap isn't in cache then the
2799                          * optimisation may end up performing two reads instead
2800                          * of one, so skip it.
2801                          */
2802                         if (!buffer_uptodate(bitmap_bh)) {
2803                                 brelse(bitmap_bh);
2804                                 goto make_io;
2805                         }
2806                         for (i = start; i < start + inodes_per_buffer; i++) {
2807                                 if (i == inode_offset)
2808                                         continue;
2809                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2810                                         break;
2811                         }
2812                         brelse(bitmap_bh);
2813                         if (i == start + inodes_per_buffer) {
2814                                 /* all other inodes are free, so skip I/O */
2815                                 memset(bh->b_data, 0, bh->b_size);
2816                                 set_buffer_uptodate(bh);
2817                                 unlock_buffer(bh);
2818                                 goto has_buffer;
2819                         }
2820                 }
2821
2822 make_io:
2823                 /*
2824                  * There are other valid inodes in the buffer, this inode
2825                  * has in-inode xattrs, or we don't have this inode in memory.
2826                  * Read the block from disk.
2827                  */
2828                 trace_ext3_load_inode(inode);
2829                 get_bh(bh);
2830                 bh->b_end_io = end_buffer_read_sync;
2831                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
2832                 wait_on_buffer(bh);
2833                 if (!buffer_uptodate(bh)) {
2834                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2835                                         "unable to read inode block - "
2836                                         "inode=%lu, block="E3FSBLK,
2837                                         inode->i_ino, block);
2838                         brelse(bh);
2839                         return -EIO;
2840                 }
2841         }
2842 has_buffer:
2843         iloc->bh = bh;
2844         return 0;
2845 }
2846
2847 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2848 {
2849         /* We have all inode data except xattrs in memory here. */
2850         return __ext3_get_inode_loc(inode, iloc,
2851                 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2852 }
2853
2854 void ext3_set_inode_flags(struct inode *inode)
2855 {
2856         unsigned int flags = EXT3_I(inode)->i_flags;
2857
2858         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2859         if (flags & EXT3_SYNC_FL)
2860                 inode->i_flags |= S_SYNC;
2861         if (flags & EXT3_APPEND_FL)
2862                 inode->i_flags |= S_APPEND;
2863         if (flags & EXT3_IMMUTABLE_FL)
2864                 inode->i_flags |= S_IMMUTABLE;
2865         if (flags & EXT3_NOATIME_FL)
2866                 inode->i_flags |= S_NOATIME;
2867         if (flags & EXT3_DIRSYNC_FL)
2868                 inode->i_flags |= S_DIRSYNC;
2869 }
2870
2871 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2872 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2873 {
2874         unsigned int flags = ei->vfs_inode.i_flags;
2875
2876         ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2877                         EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2878         if (flags & S_SYNC)
2879                 ei->i_flags |= EXT3_SYNC_FL;
2880         if (flags & S_APPEND)
2881                 ei->i_flags |= EXT3_APPEND_FL;
2882         if (flags & S_IMMUTABLE)
2883                 ei->i_flags |= EXT3_IMMUTABLE_FL;
2884         if (flags & S_NOATIME)
2885                 ei->i_flags |= EXT3_NOATIME_FL;
2886         if (flags & S_DIRSYNC)
2887                 ei->i_flags |= EXT3_DIRSYNC_FL;
2888 }
2889
2890 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2891 {
2892         struct ext3_iloc iloc;
2893         struct ext3_inode *raw_inode;
2894         struct ext3_inode_info *ei;
2895         struct buffer_head *bh;
2896         struct inode *inode;
2897         journal_t *journal = EXT3_SB(sb)->s_journal;
2898         transaction_t *transaction;
2899         long ret;
2900         int block;
2901
2902         inode = iget_locked(sb, ino);
2903         if (!inode)
2904                 return ERR_PTR(-ENOMEM);
2905         if (!(inode->i_state & I_NEW))
2906                 return inode;
2907
2908         ei = EXT3_I(inode);
2909         ei->i_block_alloc_info = NULL;
2910
2911         ret = __ext3_get_inode_loc(inode, &iloc, 0);
2912         if (ret < 0)
2913                 goto bad_inode;
2914         bh = iloc.bh;
2915         raw_inode = ext3_raw_inode(&iloc);
2916         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2917         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2918         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2919         if(!(test_opt (inode->i_sb, NO_UID32))) {
2920                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2921                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2922         }
2923         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
2924         inode->i_size = le32_to_cpu(raw_inode->i_size);
2925         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2926         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2927         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2928         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2929
2930         ei->i_state_flags = 0;
2931         ei->i_dir_start_lookup = 0;
2932         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2933         /* We now have enough fields to check if the inode was active or not.
2934          * This is needed because nfsd might try to access dead inodes
2935          * the test is that same one that e2fsck uses
2936          * NeilBrown 1999oct15
2937          */
2938         if (inode->i_nlink == 0) {
2939                 if (inode->i_mode == 0 ||
2940                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2941                         /* this inode is deleted */
2942                         brelse (bh);
2943                         ret = -ESTALE;
2944                         goto bad_inode;
2945                 }
2946                 /* The only unlinked inodes we let through here have
2947                  * valid i_mode and are being read by the orphan
2948                  * recovery code: that's fine, we're about to complete
2949                  * the process of deleting those. */
2950         }
2951         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2952         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2953 #ifdef EXT3_FRAGMENTS
2954         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2955         ei->i_frag_no = raw_inode->i_frag;
2956         ei->i_frag_size = raw_inode->i_fsize;
2957 #endif
2958         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2959         if (!S_ISREG(inode->i_mode)) {
2960                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2961         } else {
2962                 inode->i_size |=
2963                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2964         }
2965         ei->i_disksize = inode->i_size;
2966         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2967         ei->i_block_group = iloc.block_group;
2968         /*
2969          * NOTE! The in-memory inode i_data array is in little-endian order
2970          * even on big-endian machines: we do NOT byteswap the block numbers!
2971          */
2972         for (block = 0; block < EXT3_N_BLOCKS; block++)
2973                 ei->i_data[block] = raw_inode->i_block[block];
2974         INIT_LIST_HEAD(&ei->i_orphan);
2975
2976         /*
2977          * Set transaction id's of transactions that have to be committed
2978          * to finish f[data]sync. We set them to currently running transaction
2979          * as we cannot be sure that the inode or some of its metadata isn't
2980          * part of the transaction - the inode could have been reclaimed and
2981          * now it is reread from disk.
2982          */
2983         if (journal) {
2984                 tid_t tid;
2985
2986                 spin_lock(&journal->j_state_lock);
2987                 if (journal->j_running_transaction)
2988                         transaction = journal->j_running_transaction;
2989                 else
2990                         transaction = journal->j_committing_transaction;
2991                 if (transaction)
2992                         tid = transaction->t_tid;
2993                 else
2994                         tid = journal->j_commit_sequence;
2995                 spin_unlock(&journal->j_state_lock);
2996                 atomic_set(&ei->i_sync_tid, tid);
2997                 atomic_set(&ei->i_datasync_tid, tid);
2998         }
2999
3000         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
3001             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
3002                 /*
3003                  * When mke2fs creates big inodes it does not zero out
3004                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
3005                  * so ignore those first few inodes.
3006                  */
3007                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3008                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3009                     EXT3_INODE_SIZE(inode->i_sb)) {
3010                         brelse (bh);
3011                         ret = -EIO;
3012                         goto bad_inode;
3013                 }
3014                 if (ei->i_extra_isize == 0) {
3015                         /* The extra space is currently unused. Use it. */
3016                         ei->i_extra_isize = sizeof(struct ext3_inode) -
3017                                             EXT3_GOOD_OLD_INODE_SIZE;
3018                 } else {
3019                         __le32 *magic = (void *)raw_inode +
3020                                         EXT3_GOOD_OLD_INODE_SIZE +
3021                                         ei->i_extra_isize;
3022                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
3023                                  ext3_set_inode_state(inode, EXT3_STATE_XATTR);
3024                 }
3025         } else
3026                 ei->i_extra_isize = 0;
3027
3028         if (S_ISREG(inode->i_mode)) {
3029                 inode->i_op = &ext3_file_inode_operations;
3030                 inode->i_fop = &ext3_file_operations;
3031                 ext3_set_aops(inode);
3032         } else if (S_ISDIR(inode->i_mode)) {
3033                 inode->i_op = &ext3_dir_inode_operations;
3034                 inode->i_fop = &ext3_dir_operations;
3035         } else if (S_ISLNK(inode->i_mode)) {
3036                 if (ext3_inode_is_fast_symlink(inode)) {
3037                         inode->i_op = &ext3_fast_symlink_inode_operations;
3038                         nd_terminate_link(ei->i_data, inode->i_size,
3039                                 sizeof(ei->i_data) - 1);
3040                 } else {
3041                         inode->i_op = &ext3_symlink_inode_operations;
3042                         ext3_set_aops(inode);
3043                 }
3044         } else {
3045                 inode->i_op = &ext3_special_inode_operations;
3046                 if (raw_inode->i_block[0])
3047                         init_special_inode(inode, inode->i_mode,
3048                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3049                 else
3050                         init_special_inode(inode, inode->i_mode,
3051                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3052         }
3053         brelse (iloc.bh);
3054         ext3_set_inode_flags(inode);
3055         unlock_new_inode(inode);
3056         return inode;
3057
3058 bad_inode:
3059         iget_failed(inode);
3060         return ERR_PTR(ret);
3061 }
3062
3063 /*
3064  * Post the struct inode info into an on-disk inode location in the
3065  * buffer-cache.  This gobbles the caller's reference to the
3066  * buffer_head in the inode location struct.
3067  *
3068  * The caller must have write access to iloc->bh.
3069  */
3070 static int ext3_do_update_inode(handle_t *handle,
3071                                 struct inode *inode,
3072                                 struct ext3_iloc *iloc)
3073 {
3074         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3075         struct ext3_inode_info *ei = EXT3_I(inode);
3076         struct buffer_head *bh = iloc->bh;
3077         int err = 0, rc, block;
3078
3079 again:
3080         /* we can't allow multiple procs in here at once, its a bit racey */
3081         lock_buffer(bh);
3082
3083         /* For fields not not tracking in the in-memory inode,
3084          * initialise them to zero for new inodes. */
3085         if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3086                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3087
3088         ext3_get_inode_flags(ei);
3089         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3090         if(!(test_opt(inode->i_sb, NO_UID32))) {
3091                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3092                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3093 /*
3094  * Fix up interoperability with old kernels. Otherwise, old inodes get
3095  * re-used with the upper 16 bits of the uid/gid intact
3096  */
3097                 if(!ei->i_dtime) {
3098                         raw_inode->i_uid_high =
3099                                 cpu_to_le16(high_16_bits(inode->i_uid));
3100                         raw_inode->i_gid_high =
3101                                 cpu_to_le16(high_16_bits(inode->i_gid));
3102                 } else {
3103                         raw_inode->i_uid_high = 0;
3104                         raw_inode->i_gid_high = 0;
3105                 }
3106         } else {
3107                 raw_inode->i_uid_low =
3108                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
3109                 raw_inode->i_gid_low =
3110                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
3111                 raw_inode->i_uid_high = 0;
3112                 raw_inode->i_gid_high = 0;
3113         }
3114         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3115         raw_inode->i_size = cpu_to_le32(ei->i_disksize);
3116         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3117         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3118         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3119         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3120         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3121         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3122 #ifdef EXT3_FRAGMENTS
3123         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3124         raw_inode->i_frag = ei->i_frag_no;
3125         raw_inode->i_fsize = ei->i_frag_size;
3126 #endif
3127         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3128         if (!S_ISREG(inode->i_mode)) {
3129                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3130         } else {
3131                 raw_inode->i_size_high =
3132                         cpu_to_le32(ei->i_disksize >> 32);
3133                 if (ei->i_disksize > 0x7fffffffULL) {
3134                         struct super_block *sb = inode->i_sb;
3135                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3136                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3137                             EXT3_SB(sb)->s_es->s_rev_level ==
3138                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3139                                /* If this is the first large file
3140                                 * created, add a flag to the superblock.
3141                                 */
3142                                 unlock_buffer(bh);
3143                                 err = ext3_journal_get_write_access(handle,
3144                                                 EXT3_SB(sb)->s_sbh);
3145                                 if (err)
3146                                         goto out_brelse;
3147
3148                                 ext3_update_dynamic_rev(sb);
3149                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
3150                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3151                                 handle->h_sync = 1;
3152                                 err = ext3_journal_dirty_metadata(handle,
3153                                                 EXT3_SB(sb)->s_sbh);
3154                                 /* get our lock and start over */
3155                                 goto again;
3156                         }
3157                 }
3158         }
3159         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3160         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3161                 if (old_valid_dev(inode->i_rdev)) {
3162                         raw_inode->i_block[0] =
3163                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3164                         raw_inode->i_block[1] = 0;
3165                 } else {
3166                         raw_inode->i_block[0] = 0;
3167                         raw_inode->i_block[1] =
3168                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3169                         raw_inode->i_block[2] = 0;
3170                 }
3171         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3172                 raw_inode->i_block[block] = ei->i_data[block];
3173
3174         if (ei->i_extra_isize)
3175                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3176
3177         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3178         unlock_buffer(bh);
3179         rc = ext3_journal_dirty_metadata(handle, bh);
3180         if (!err)
3181                 err = rc;
3182         ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3183
3184         atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3185 out_brelse:
3186         brelse (bh);
3187         ext3_std_error(inode->i_sb, err);
3188         return err;
3189 }
3190
3191 /*
3192  * ext3_write_inode()
3193  *
3194  * We are called from a few places:
3195  *
3196  * - Within generic_file_write() for O_SYNC files.
3197  *   Here, there will be no transaction running. We wait for any running
3198  *   trasnaction to commit.
3199  *
3200  * - Within sys_sync(), kupdate and such.
3201  *   We wait on commit, if tol to.
3202  *
3203  * - Within prune_icache() (PF_MEMALLOC == true)
3204  *   Here we simply return.  We can't afford to block kswapd on the
3205  *   journal commit.
3206  *
3207  * In all cases it is actually safe for us to return without doing anything,
3208  * because the inode has been copied into a raw inode buffer in
3209  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3210  * knfsd.
3211  *
3212  * Note that we are absolutely dependent upon all inode dirtiers doing the
3213  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3214  * which we are interested.
3215  *
3216  * It would be a bug for them to not do this.  The code:
3217  *
3218  *      mark_inode_dirty(inode)
3219  *      stuff();
3220  *      inode->i_size = expr;
3221  *
3222  * is in error because a kswapd-driven write_inode() could occur while
3223  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3224  * will no longer be on the superblock's dirty inode list.
3225  */
3226 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3227 {
3228         if (current->flags & PF_MEMALLOC)
3229                 return 0;
3230
3231         if (ext3_journal_current_handle()) {
3232                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3233                 dump_stack();
3234                 return -EIO;
3235         }
3236
3237         if (wbc->sync_mode != WB_SYNC_ALL)
3238                 return 0;
3239
3240         return ext3_force_commit(inode->i_sb);
3241 }
3242
3243 /*
3244  * ext3_setattr()
3245  *
3246  * Called from notify_change.
3247  *
3248  * We want to trap VFS attempts to truncate the file as soon as
3249  * possible.  In particular, we want to make sure that when the VFS
3250  * shrinks i_size, we put the inode on the orphan list and modify
3251  * i_disksize immediately, so that during the subsequent flushing of
3252  * dirty pages and freeing of disk blocks, we can guarantee that any
3253  * commit will leave the blocks being flushed in an unused state on
3254  * disk.  (On recovery, the inode will get truncated and the blocks will
3255  * be freed, so we have a strong guarantee that no future commit will
3256  * leave these blocks visible to the user.)
3257  *
3258  * Called with inode->sem down.
3259  */
3260 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3261 {
3262         struct inode *inode = dentry->d_inode;
3263         int error, rc = 0;
3264         const unsigned int ia_valid = attr->ia_valid;
3265
3266         error = inode_change_ok(inode, attr);
3267         if (error)
3268                 return error;
3269
3270         if (is_quota_modification(inode, attr))
3271                 dquot_initialize(inode);
3272         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3273                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3274                 handle_t *handle;
3275
3276                 /* (user+group)*(old+new) structure, inode write (sb,
3277                  * inode block, ? - but truncate inode update has it) */
3278                 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3279                                         EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3280                 if (IS_ERR(handle)) {
3281                         error = PTR_ERR(handle);
3282                         goto err_out;
3283                 }
3284                 error = dquot_transfer(inode, attr);
3285                 if (error) {
3286                         ext3_journal_stop(handle);
3287                         return error;
3288                 }
3289                 /* Update corresponding info in inode so that everything is in
3290                  * one transaction */
3291                 if (attr->ia_valid & ATTR_UID)
3292                         inode->i_uid = attr->ia_uid;
3293                 if (attr->ia_valid & ATTR_GID)
3294                         inode->i_gid = attr->ia_gid;
3295                 error = ext3_mark_inode_dirty(handle, inode);
3296                 ext3_journal_stop(handle);
3297         }
3298
3299         if (attr->ia_valid & ATTR_SIZE)
3300                 inode_dio_wait(inode);
3301
3302         if (S_ISREG(inode->i_mode) &&
3303             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3304                 handle_t *handle;
3305
3306                 handle = ext3_journal_start(inode, 3);
3307                 if (IS_ERR(handle)) {
3308                         error = PTR_ERR(handle);
3309                         goto err_out;
3310                 }
3311
3312                 error = ext3_orphan_add(handle, inode);
3313                 if (error) {
3314                         ext3_journal_stop(handle);
3315                         goto err_out;
3316                 }
3317                 EXT3_I(inode)->i_disksize = attr->ia_size;
3318                 error = ext3_mark_inode_dirty(handle, inode);
3319                 ext3_journal_stop(handle);
3320                 if (error) {
3321                         /* Some hard fs error must have happened. Bail out. */
3322                         ext3_orphan_del(NULL, inode);
3323                         goto err_out;
3324                 }
3325                 rc = ext3_block_truncate_page(inode, attr->ia_size);
3326                 if (rc) {
3327                         /* Cleanup orphan list and exit */
3328                         handle = ext3_journal_start(inode, 3);
3329                         if (IS_ERR(handle)) {
3330                                 ext3_orphan_del(NULL, inode);
3331                                 goto err_out;
3332                         }
3333                         ext3_orphan_del(handle, inode);
3334                         ext3_journal_stop(handle);
3335                         goto err_out;
3336                 }
3337         }
3338
3339         if ((attr->ia_valid & ATTR_SIZE) &&
3340             attr->ia_size != i_size_read(inode)) {
3341                 truncate_setsize(inode, attr->ia_size);
3342                 ext3_truncate(inode);
3343         }
3344
3345         setattr_copy(inode, attr);
3346         mark_inode_dirty(inode);
3347
3348         if (ia_valid & ATTR_MODE)
3349                 rc = ext3_acl_chmod(inode);
3350
3351 err_out:
3352         ext3_std_error(inode->i_sb, error);
3353         if (!error)
3354                 error = rc;
3355         return error;
3356 }
3357
3358
3359 /*
3360  * How many blocks doth make a writepage()?
3361  *
3362  * With N blocks per page, it may be:
3363  * N data blocks
3364  * 2 indirect block
3365  * 2 dindirect
3366  * 1 tindirect
3367  * N+5 bitmap blocks (from the above)
3368  * N+5 group descriptor summary blocks
3369  * 1 inode block
3370  * 1 superblock.
3371  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3372  *
3373  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3374  *
3375  * With ordered or writeback data it's the same, less the N data blocks.
3376  *
3377  * If the inode's direct blocks can hold an integral number of pages then a
3378  * page cannot straddle two indirect blocks, and we can only touch one indirect
3379  * and dindirect block, and the "5" above becomes "3".
3380  *
3381  * This still overestimates under most circumstances.  If we were to pass the
3382  * start and end offsets in here as well we could do block_to_path() on each
3383  * block and work out the exact number of indirects which are touched.  Pah.
3384  */
3385
3386 static int ext3_writepage_trans_blocks(struct inode *inode)
3387 {
3388         int bpp = ext3_journal_blocks_per_page(inode);
3389         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3390         int ret;
3391
3392         if (ext3_should_journal_data(inode))
3393                 ret = 3 * (bpp + indirects) + 2;
3394         else
3395                 ret = 2 * (bpp + indirects) + indirects + 2;
3396
3397 #ifdef CONFIG_QUOTA
3398         /* We know that structure was already allocated during dquot_initialize so
3399          * we will be updating only the data blocks + inodes */
3400         ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3401 #endif
3402
3403         return ret;
3404 }
3405
3406 /*
3407  * The caller must have previously called ext3_reserve_inode_write().
3408  * Give this, we know that the caller already has write access to iloc->bh.
3409  */
3410 int ext3_mark_iloc_dirty(handle_t *handle,
3411                 struct inode *inode, struct ext3_iloc *iloc)
3412 {
3413         int err = 0;
3414
3415         /* the do_update_inode consumes one bh->b_count */
3416         get_bh(iloc->bh);
3417
3418         /* ext3_do_update_inode() does journal_dirty_metadata */
3419         err = ext3_do_update_inode(handle, inode, iloc);
3420         put_bh(iloc->bh);
3421         return err;
3422 }
3423
3424 /*
3425  * On success, We end up with an outstanding reference count against
3426  * iloc->bh.  This _must_ be cleaned up later.
3427  */
3428
3429 int
3430 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3431                          struct ext3_iloc *iloc)
3432 {
3433         int err = 0;
3434         if (handle) {
3435                 err = ext3_get_inode_loc(inode, iloc);
3436                 if (!err) {
3437                         BUFFER_TRACE(iloc->bh, "get_write_access");
3438                         err = ext3_journal_get_write_access(handle, iloc->bh);
3439                         if (err) {
3440                                 brelse(iloc->bh);
3441                                 iloc->bh = NULL;
3442                         }
3443                 }
3444         }
3445         ext3_std_error(inode->i_sb, err);
3446         return err;
3447 }
3448
3449 /*
3450  * What we do here is to mark the in-core inode as clean with respect to inode
3451  * dirtiness (it may still be data-dirty).
3452  * This means that the in-core inode may be reaped by prune_icache
3453  * without having to perform any I/O.  This is a very good thing,
3454  * because *any* task may call prune_icache - even ones which
3455  * have a transaction open against a different journal.
3456  *
3457  * Is this cheating?  Not really.  Sure, we haven't written the
3458  * inode out, but prune_icache isn't a user-visible syncing function.
3459  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3460  * we start and wait on commits.
3461  *
3462  * Is this efficient/effective?  Well, we're being nice to the system
3463  * by cleaning up our inodes proactively so they can be reaped
3464  * without I/O.  But we are potentially leaving up to five seconds'
3465  * worth of inodes floating about which prune_icache wants us to
3466  * write out.  One way to fix that would be to get prune_icache()
3467  * to do a write_super() to free up some memory.  It has the desired
3468  * effect.
3469  */
3470 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3471 {
3472         struct ext3_iloc iloc;
3473         int err;
3474
3475         might_sleep();
3476         trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3477         err = ext3_reserve_inode_write(handle, inode, &iloc);
3478         if (!err)
3479                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3480         return err;
3481 }
3482
3483 /*
3484  * ext3_dirty_inode() is called from __mark_inode_dirty()
3485  *
3486  * We're really interested in the case where a file is being extended.
3487  * i_size has been changed by generic_commit_write() and we thus need
3488  * to include the updated inode in the current transaction.
3489  *
3490  * Also, dquot_alloc_space() will always dirty the inode when blocks
3491  * are allocated to the file.
3492  *
3493  * If the inode is marked synchronous, we don't honour that here - doing
3494  * so would cause a commit on atime updates, which we don't bother doing.
3495  * We handle synchronous inodes at the highest possible level.
3496  */
3497 void ext3_dirty_inode(struct inode *inode, int flags)
3498 {
3499         handle_t *current_handle = ext3_journal_current_handle();
3500         handle_t *handle;
3501
3502         handle = ext3_journal_start(inode, 2);
3503         if (IS_ERR(handle))
3504                 goto out;
3505         if (current_handle &&
3506                 current_handle->h_transaction != handle->h_transaction) {
3507                 /* This task has a transaction open against a different fs */
3508                 printk(KERN_EMERG "%s: transactions do not match!\n",
3509                        __func__);
3510         } else {
3511                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3512                                 current_handle);
3513                 ext3_mark_inode_dirty(handle, inode);
3514         }
3515         ext3_journal_stop(handle);
3516 out:
3517         return;
3518 }
3519
3520 #if 0
3521 /*
3522  * Bind an inode's backing buffer_head into this transaction, to prevent
3523  * it from being flushed to disk early.  Unlike
3524  * ext3_reserve_inode_write, this leaves behind no bh reference and
3525  * returns no iloc structure, so the caller needs to repeat the iloc
3526  * lookup to mark the inode dirty later.
3527  */
3528 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3529 {
3530         struct ext3_iloc iloc;
3531
3532         int err = 0;
3533         if (handle) {
3534                 err = ext3_get_inode_loc(inode, &iloc);
3535                 if (!err) {
3536                         BUFFER_TRACE(iloc.bh, "get_write_access");
3537                         err = journal_get_write_access(handle, iloc.bh);
3538                         if (!err)
3539                                 err = ext3_journal_dirty_metadata(handle,
3540                                                                   iloc.bh);
3541                         brelse(iloc.bh);
3542                 }
3543         }
3544         ext3_std_error(inode->i_sb, err);
3545         return err;
3546 }
3547 #endif
3548
3549 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3550 {
3551         journal_t *journal;
3552         handle_t *handle;
3553         int err;
3554
3555         /*
3556          * We have to be very careful here: changing a data block's
3557          * journaling status dynamically is dangerous.  If we write a
3558          * data block to the journal, change the status and then delete
3559          * that block, we risk forgetting to revoke the old log record
3560          * from the journal and so a subsequent replay can corrupt data.
3561          * So, first we make sure that the journal is empty and that
3562          * nobody is changing anything.
3563          */
3564
3565         journal = EXT3_JOURNAL(inode);
3566         if (is_journal_aborted(journal))
3567                 return -EROFS;
3568
3569         journal_lock_updates(journal);
3570         journal_flush(journal);
3571
3572         /*
3573          * OK, there are no updates running now, and all cached data is
3574          * synced to disk.  We are now in a completely consistent state
3575          * which doesn't have anything in the journal, and we know that
3576          * no filesystem updates are running, so it is safe to modify
3577          * the inode's in-core data-journaling state flag now.
3578          */
3579
3580         if (val)
3581                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3582         else
3583                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3584         ext3_set_aops(inode);
3585
3586         journal_unlock_updates(journal);
3587
3588         /* Finally we can mark the inode as dirty. */
3589
3590         handle = ext3_journal_start(inode, 1);
3591         if (IS_ERR(handle))
3592                 return PTR_ERR(handle);
3593
3594         err = ext3_mark_inode_dirty(handle, inode);
3595         handle->h_sync = 1;
3596         ext3_journal_stop(handle);
3597         ext3_std_error(inode->i_sb, err);
3598
3599         return err;
3600 }