]> Pileus Git - ~andy/linux/blob - fs/btrfs/tree-log.c
Linux 3.14
[~andy/linux] / fs / btrfs / tree-log.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "tree-log.h"
30 #include "hash.h"
31
32 /* magic values for the inode_only field in btrfs_log_inode:
33  *
34  * LOG_INODE_ALL means to log everything
35  * LOG_INODE_EXISTS means to log just enough to recreate the inode
36  * during log replay
37  */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40
41 /*
42  * directory trouble cases
43  *
44  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45  * log, we must force a full commit before doing an fsync of the directory
46  * where the unlink was done.
47  * ---> record transid of last unlink/rename per directory
48  *
49  * mkdir foo/some_dir
50  * normal commit
51  * rename foo/some_dir foo2/some_dir
52  * mkdir foo/some_dir
53  * fsync foo/some_dir/some_file
54  *
55  * The fsync above will unlink the original some_dir without recording
56  * it in its new location (foo2).  After a crash, some_dir will be gone
57  * unless the fsync of some_file forces a full commit
58  *
59  * 2) we must log any new names for any file or dir that is in the fsync
60  * log. ---> check inode while renaming/linking.
61  *
62  * 2a) we must log any new names for any file or dir during rename
63  * when the directory they are being removed from was logged.
64  * ---> check inode and old parent dir during rename
65  *
66  *  2a is actually the more important variant.  With the extra logging
67  *  a crash might unlink the old name without recreating the new one
68  *
69  * 3) after a crash, we must go through any directories with a link count
70  * of zero and redo the rm -rf
71  *
72  * mkdir f1/foo
73  * normal commit
74  * rm -rf f1/foo
75  * fsync(f1)
76  *
77  * The directory f1 was fully removed from the FS, but fsync was never
78  * called on f1, only its parent dir.  After a crash the rm -rf must
79  * be replayed.  This must be able to recurse down the entire
80  * directory tree.  The inode link count fixup code takes care of the
81  * ugly details.
82  */
83
84 /*
85  * stages for the tree walking.  The first
86  * stage (0) is to only pin down the blocks we find
87  * the second stage (1) is to make sure that all the inodes
88  * we find in the log are created in the subvolume.
89  *
90  * The last stage is to deal with directories and links and extents
91  * and all the other fun semantics
92  */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_DIR_INDEX 2
96 #define LOG_WALK_REPLAY_ALL 3
97
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99                              struct btrfs_root *root, struct inode *inode,
100                              int inode_only);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102                              struct btrfs_root *root,
103                              struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105                                        struct btrfs_root *root,
106                                        struct btrfs_root *log,
107                                        struct btrfs_path *path,
108                                        u64 dirid, int del_all);
109
110 /*
111  * tree logging is a special write ahead log used to make sure that
112  * fsyncs and O_SYNCs can happen without doing full tree commits.
113  *
114  * Full tree commits are expensive because they require commonly
115  * modified blocks to be recowed, creating many dirty pages in the
116  * extent tree an 4x-6x higher write load than ext3.
117  *
118  * Instead of doing a tree commit on every fsync, we use the
119  * key ranges and transaction ids to find items for a given file or directory
120  * that have changed in this transaction.  Those items are copied into
121  * a special tree (one per subvolume root), that tree is written to disk
122  * and then the fsync is considered complete.
123  *
124  * After a crash, items are copied out of the log-tree back into the
125  * subvolume tree.  Any file data extents found are recorded in the extent
126  * allocation tree, and the log-tree freed.
127  *
128  * The log tree is read three times, once to pin down all the extents it is
129  * using in ram and once, once to create all the inodes logged in the tree
130  * and once to do all the other items.
131  */
132
133 /*
134  * start a sub transaction and setup the log tree
135  * this increments the log tree writer count to make the people
136  * syncing the tree wait for us to finish
137  */
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139                            struct btrfs_root *root)
140 {
141         int ret;
142         int err = 0;
143
144         mutex_lock(&root->log_mutex);
145         if (root->log_root) {
146                 if (!root->log_start_pid) {
147                         root->log_start_pid = current->pid;
148                         root->log_multiple_pids = false;
149                 } else if (root->log_start_pid != current->pid) {
150                         root->log_multiple_pids = true;
151                 }
152
153                 atomic_inc(&root->log_batch);
154                 atomic_inc(&root->log_writers);
155                 mutex_unlock(&root->log_mutex);
156                 return 0;
157         }
158         root->log_multiple_pids = false;
159         root->log_start_pid = current->pid;
160         mutex_lock(&root->fs_info->tree_log_mutex);
161         if (!root->fs_info->log_root_tree) {
162                 ret = btrfs_init_log_root_tree(trans, root->fs_info);
163                 if (ret)
164                         err = ret;
165         }
166         if (err == 0 && !root->log_root) {
167                 ret = btrfs_add_log_tree(trans, root);
168                 if (ret)
169                         err = ret;
170         }
171         mutex_unlock(&root->fs_info->tree_log_mutex);
172         atomic_inc(&root->log_batch);
173         atomic_inc(&root->log_writers);
174         mutex_unlock(&root->log_mutex);
175         return err;
176 }
177
178 /*
179  * returns 0 if there was a log transaction running and we were able
180  * to join, or returns -ENOENT if there were not transactions
181  * in progress
182  */
183 static int join_running_log_trans(struct btrfs_root *root)
184 {
185         int ret = -ENOENT;
186
187         smp_mb();
188         if (!root->log_root)
189                 return -ENOENT;
190
191         mutex_lock(&root->log_mutex);
192         if (root->log_root) {
193                 ret = 0;
194                 atomic_inc(&root->log_writers);
195         }
196         mutex_unlock(&root->log_mutex);
197         return ret;
198 }
199
200 /*
201  * This either makes the current running log transaction wait
202  * until you call btrfs_end_log_trans() or it makes any future
203  * log transactions wait until you call btrfs_end_log_trans()
204  */
205 int btrfs_pin_log_trans(struct btrfs_root *root)
206 {
207         int ret = -ENOENT;
208
209         mutex_lock(&root->log_mutex);
210         atomic_inc(&root->log_writers);
211         mutex_unlock(&root->log_mutex);
212         return ret;
213 }
214
215 /*
216  * indicate we're done making changes to the log tree
217  * and wake up anyone waiting to do a sync
218  */
219 void btrfs_end_log_trans(struct btrfs_root *root)
220 {
221         if (atomic_dec_and_test(&root->log_writers)) {
222                 smp_mb();
223                 if (waitqueue_active(&root->log_writer_wait))
224                         wake_up(&root->log_writer_wait);
225         }
226 }
227
228
229 /*
230  * the walk control struct is used to pass state down the chain when
231  * processing the log tree.  The stage field tells us which part
232  * of the log tree processing we are currently doing.  The others
233  * are state fields used for that specific part
234  */
235 struct walk_control {
236         /* should we free the extent on disk when done?  This is used
237          * at transaction commit time while freeing a log tree
238          */
239         int free;
240
241         /* should we write out the extent buffer?  This is used
242          * while flushing the log tree to disk during a sync
243          */
244         int write;
245
246         /* should we wait for the extent buffer io to finish?  Also used
247          * while flushing the log tree to disk for a sync
248          */
249         int wait;
250
251         /* pin only walk, we record which extents on disk belong to the
252          * log trees
253          */
254         int pin;
255
256         /* what stage of the replay code we're currently in */
257         int stage;
258
259         /* the root we are currently replaying */
260         struct btrfs_root *replay_dest;
261
262         /* the trans handle for the current replay */
263         struct btrfs_trans_handle *trans;
264
265         /* the function that gets used to process blocks we find in the
266          * tree.  Note the extent_buffer might not be up to date when it is
267          * passed in, and it must be checked or read if you need the data
268          * inside it
269          */
270         int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
271                             struct walk_control *wc, u64 gen);
272 };
273
274 /*
275  * process_func used to pin down extents, write them or wait on them
276  */
277 static int process_one_buffer(struct btrfs_root *log,
278                               struct extent_buffer *eb,
279                               struct walk_control *wc, u64 gen)
280 {
281         int ret = 0;
282
283         /*
284          * If this fs is mixed then we need to be able to process the leaves to
285          * pin down any logged extents, so we have to read the block.
286          */
287         if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
288                 ret = btrfs_read_buffer(eb, gen);
289                 if (ret)
290                         return ret;
291         }
292
293         if (wc->pin)
294                 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
295                                                       eb->start, eb->len);
296
297         if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
298                 if (wc->pin && btrfs_header_level(eb) == 0)
299                         ret = btrfs_exclude_logged_extents(log, eb);
300                 if (wc->write)
301                         btrfs_write_tree_block(eb);
302                 if (wc->wait)
303                         btrfs_wait_tree_block_writeback(eb);
304         }
305         return ret;
306 }
307
308 /*
309  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
310  * to the src data we are copying out.
311  *
312  * root is the tree we are copying into, and path is a scratch
313  * path for use in this function (it should be released on entry and
314  * will be released on exit).
315  *
316  * If the key is already in the destination tree the existing item is
317  * overwritten.  If the existing item isn't big enough, it is extended.
318  * If it is too large, it is truncated.
319  *
320  * If the key isn't in the destination yet, a new item is inserted.
321  */
322 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
323                                    struct btrfs_root *root,
324                                    struct btrfs_path *path,
325                                    struct extent_buffer *eb, int slot,
326                                    struct btrfs_key *key)
327 {
328         int ret;
329         u32 item_size;
330         u64 saved_i_size = 0;
331         int save_old_i_size = 0;
332         unsigned long src_ptr;
333         unsigned long dst_ptr;
334         int overwrite_root = 0;
335         bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
336
337         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
338                 overwrite_root = 1;
339
340         item_size = btrfs_item_size_nr(eb, slot);
341         src_ptr = btrfs_item_ptr_offset(eb, slot);
342
343         /* look for the key in the destination tree */
344         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
345         if (ret < 0)
346                 return ret;
347
348         if (ret == 0) {
349                 char *src_copy;
350                 char *dst_copy;
351                 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
352                                                   path->slots[0]);
353                 if (dst_size != item_size)
354                         goto insert;
355
356                 if (item_size == 0) {
357                         btrfs_release_path(path);
358                         return 0;
359                 }
360                 dst_copy = kmalloc(item_size, GFP_NOFS);
361                 src_copy = kmalloc(item_size, GFP_NOFS);
362                 if (!dst_copy || !src_copy) {
363                         btrfs_release_path(path);
364                         kfree(dst_copy);
365                         kfree(src_copy);
366                         return -ENOMEM;
367                 }
368
369                 read_extent_buffer(eb, src_copy, src_ptr, item_size);
370
371                 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
372                 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
373                                    item_size);
374                 ret = memcmp(dst_copy, src_copy, item_size);
375
376                 kfree(dst_copy);
377                 kfree(src_copy);
378                 /*
379                  * they have the same contents, just return, this saves
380                  * us from cowing blocks in the destination tree and doing
381                  * extra writes that may not have been done by a previous
382                  * sync
383                  */
384                 if (ret == 0) {
385                         btrfs_release_path(path);
386                         return 0;
387                 }
388
389                 /*
390                  * We need to load the old nbytes into the inode so when we
391                  * replay the extents we've logged we get the right nbytes.
392                  */
393                 if (inode_item) {
394                         struct btrfs_inode_item *item;
395                         u64 nbytes;
396                         u32 mode;
397
398                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
399                                               struct btrfs_inode_item);
400                         nbytes = btrfs_inode_nbytes(path->nodes[0], item);
401                         item = btrfs_item_ptr(eb, slot,
402                                               struct btrfs_inode_item);
403                         btrfs_set_inode_nbytes(eb, item, nbytes);
404
405                         /*
406                          * If this is a directory we need to reset the i_size to
407                          * 0 so that we can set it up properly when replaying
408                          * the rest of the items in this log.
409                          */
410                         mode = btrfs_inode_mode(eb, item);
411                         if (S_ISDIR(mode))
412                                 btrfs_set_inode_size(eb, item, 0);
413                 }
414         } else if (inode_item) {
415                 struct btrfs_inode_item *item;
416                 u32 mode;
417
418                 /*
419                  * New inode, set nbytes to 0 so that the nbytes comes out
420                  * properly when we replay the extents.
421                  */
422                 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
423                 btrfs_set_inode_nbytes(eb, item, 0);
424
425                 /*
426                  * If this is a directory we need to reset the i_size to 0 so
427                  * that we can set it up properly when replaying the rest of
428                  * the items in this log.
429                  */
430                 mode = btrfs_inode_mode(eb, item);
431                 if (S_ISDIR(mode))
432                         btrfs_set_inode_size(eb, item, 0);
433         }
434 insert:
435         btrfs_release_path(path);
436         /* try to insert the key into the destination tree */
437         ret = btrfs_insert_empty_item(trans, root, path,
438                                       key, item_size);
439
440         /* make sure any existing item is the correct size */
441         if (ret == -EEXIST) {
442                 u32 found_size;
443                 found_size = btrfs_item_size_nr(path->nodes[0],
444                                                 path->slots[0]);
445                 if (found_size > item_size)
446                         btrfs_truncate_item(root, path, item_size, 1);
447                 else if (found_size < item_size)
448                         btrfs_extend_item(root, path,
449                                           item_size - found_size);
450         } else if (ret) {
451                 return ret;
452         }
453         dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
454                                         path->slots[0]);
455
456         /* don't overwrite an existing inode if the generation number
457          * was logged as zero.  This is done when the tree logging code
458          * is just logging an inode to make sure it exists after recovery.
459          *
460          * Also, don't overwrite i_size on directories during replay.
461          * log replay inserts and removes directory items based on the
462          * state of the tree found in the subvolume, and i_size is modified
463          * as it goes
464          */
465         if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
466                 struct btrfs_inode_item *src_item;
467                 struct btrfs_inode_item *dst_item;
468
469                 src_item = (struct btrfs_inode_item *)src_ptr;
470                 dst_item = (struct btrfs_inode_item *)dst_ptr;
471
472                 if (btrfs_inode_generation(eb, src_item) == 0)
473                         goto no_copy;
474
475                 if (overwrite_root &&
476                     S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
477                     S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
478                         save_old_i_size = 1;
479                         saved_i_size = btrfs_inode_size(path->nodes[0],
480                                                         dst_item);
481                 }
482         }
483
484         copy_extent_buffer(path->nodes[0], eb, dst_ptr,
485                            src_ptr, item_size);
486
487         if (save_old_i_size) {
488                 struct btrfs_inode_item *dst_item;
489                 dst_item = (struct btrfs_inode_item *)dst_ptr;
490                 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
491         }
492
493         /* make sure the generation is filled in */
494         if (key->type == BTRFS_INODE_ITEM_KEY) {
495                 struct btrfs_inode_item *dst_item;
496                 dst_item = (struct btrfs_inode_item *)dst_ptr;
497                 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
498                         btrfs_set_inode_generation(path->nodes[0], dst_item,
499                                                    trans->transid);
500                 }
501         }
502 no_copy:
503         btrfs_mark_buffer_dirty(path->nodes[0]);
504         btrfs_release_path(path);
505         return 0;
506 }
507
508 /*
509  * simple helper to read an inode off the disk from a given root
510  * This can only be called for subvolume roots and not for the log
511  */
512 static noinline struct inode *read_one_inode(struct btrfs_root *root,
513                                              u64 objectid)
514 {
515         struct btrfs_key key;
516         struct inode *inode;
517
518         key.objectid = objectid;
519         key.type = BTRFS_INODE_ITEM_KEY;
520         key.offset = 0;
521         inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
522         if (IS_ERR(inode)) {
523                 inode = NULL;
524         } else if (is_bad_inode(inode)) {
525                 iput(inode);
526                 inode = NULL;
527         }
528         return inode;
529 }
530
531 /* replays a single extent in 'eb' at 'slot' with 'key' into the
532  * subvolume 'root'.  path is released on entry and should be released
533  * on exit.
534  *
535  * extents in the log tree have not been allocated out of the extent
536  * tree yet.  So, this completes the allocation, taking a reference
537  * as required if the extent already exists or creating a new extent
538  * if it isn't in the extent allocation tree yet.
539  *
540  * The extent is inserted into the file, dropping any existing extents
541  * from the file that overlap the new one.
542  */
543 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
544                                       struct btrfs_root *root,
545                                       struct btrfs_path *path,
546                                       struct extent_buffer *eb, int slot,
547                                       struct btrfs_key *key)
548 {
549         int found_type;
550         u64 extent_end;
551         u64 start = key->offset;
552         u64 nbytes = 0;
553         struct btrfs_file_extent_item *item;
554         struct inode *inode = NULL;
555         unsigned long size;
556         int ret = 0;
557
558         item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
559         found_type = btrfs_file_extent_type(eb, item);
560
561         if (found_type == BTRFS_FILE_EXTENT_REG ||
562             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
563                 nbytes = btrfs_file_extent_num_bytes(eb, item);
564                 extent_end = start + nbytes;
565
566                 /*
567                  * We don't add to the inodes nbytes if we are prealloc or a
568                  * hole.
569                  */
570                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
571                         nbytes = 0;
572         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
573                 size = btrfs_file_extent_inline_len(eb, slot, item);
574                 nbytes = btrfs_file_extent_ram_bytes(eb, item);
575                 extent_end = ALIGN(start + size, root->sectorsize);
576         } else {
577                 ret = 0;
578                 goto out;
579         }
580
581         inode = read_one_inode(root, key->objectid);
582         if (!inode) {
583                 ret = -EIO;
584                 goto out;
585         }
586
587         /*
588          * first check to see if we already have this extent in the
589          * file.  This must be done before the btrfs_drop_extents run
590          * so we don't try to drop this extent.
591          */
592         ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
593                                        start, 0);
594
595         if (ret == 0 &&
596             (found_type == BTRFS_FILE_EXTENT_REG ||
597              found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
598                 struct btrfs_file_extent_item cmp1;
599                 struct btrfs_file_extent_item cmp2;
600                 struct btrfs_file_extent_item *existing;
601                 struct extent_buffer *leaf;
602
603                 leaf = path->nodes[0];
604                 existing = btrfs_item_ptr(leaf, path->slots[0],
605                                           struct btrfs_file_extent_item);
606
607                 read_extent_buffer(eb, &cmp1, (unsigned long)item,
608                                    sizeof(cmp1));
609                 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
610                                    sizeof(cmp2));
611
612                 /*
613                  * we already have a pointer to this exact extent,
614                  * we don't have to do anything
615                  */
616                 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
617                         btrfs_release_path(path);
618                         goto out;
619                 }
620         }
621         btrfs_release_path(path);
622
623         /* drop any overlapping extents */
624         ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
625         if (ret)
626                 goto out;
627
628         if (found_type == BTRFS_FILE_EXTENT_REG ||
629             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
630                 u64 offset;
631                 unsigned long dest_offset;
632                 struct btrfs_key ins;
633
634                 ret = btrfs_insert_empty_item(trans, root, path, key,
635                                               sizeof(*item));
636                 if (ret)
637                         goto out;
638                 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
639                                                     path->slots[0]);
640                 copy_extent_buffer(path->nodes[0], eb, dest_offset,
641                                 (unsigned long)item,  sizeof(*item));
642
643                 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
644                 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
645                 ins.type = BTRFS_EXTENT_ITEM_KEY;
646                 offset = key->offset - btrfs_file_extent_offset(eb, item);
647
648                 if (ins.objectid > 0) {
649                         u64 csum_start;
650                         u64 csum_end;
651                         LIST_HEAD(ordered_sums);
652                         /*
653                          * is this extent already allocated in the extent
654                          * allocation tree?  If so, just add a reference
655                          */
656                         ret = btrfs_lookup_extent(root, ins.objectid,
657                                                 ins.offset);
658                         if (ret == 0) {
659                                 ret = btrfs_inc_extent_ref(trans, root,
660                                                 ins.objectid, ins.offset,
661                                                 0, root->root_key.objectid,
662                                                 key->objectid, offset, 0);
663                                 if (ret)
664                                         goto out;
665                         } else {
666                                 /*
667                                  * insert the extent pointer in the extent
668                                  * allocation tree
669                                  */
670                                 ret = btrfs_alloc_logged_file_extent(trans,
671                                                 root, root->root_key.objectid,
672                                                 key->objectid, offset, &ins);
673                                 if (ret)
674                                         goto out;
675                         }
676                         btrfs_release_path(path);
677
678                         if (btrfs_file_extent_compression(eb, item)) {
679                                 csum_start = ins.objectid;
680                                 csum_end = csum_start + ins.offset;
681                         } else {
682                                 csum_start = ins.objectid +
683                                         btrfs_file_extent_offset(eb, item);
684                                 csum_end = csum_start +
685                                         btrfs_file_extent_num_bytes(eb, item);
686                         }
687
688                         ret = btrfs_lookup_csums_range(root->log_root,
689                                                 csum_start, csum_end - 1,
690                                                 &ordered_sums, 0);
691                         if (ret)
692                                 goto out;
693                         while (!list_empty(&ordered_sums)) {
694                                 struct btrfs_ordered_sum *sums;
695                                 sums = list_entry(ordered_sums.next,
696                                                 struct btrfs_ordered_sum,
697                                                 list);
698                                 if (!ret)
699                                         ret = btrfs_csum_file_blocks(trans,
700                                                 root->fs_info->csum_root,
701                                                 sums);
702                                 list_del(&sums->list);
703                                 kfree(sums);
704                         }
705                         if (ret)
706                                 goto out;
707                 } else {
708                         btrfs_release_path(path);
709                 }
710         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
711                 /* inline extents are easy, we just overwrite them */
712                 ret = overwrite_item(trans, root, path, eb, slot, key);
713                 if (ret)
714                         goto out;
715         }
716
717         inode_add_bytes(inode, nbytes);
718         ret = btrfs_update_inode(trans, root, inode);
719 out:
720         if (inode)
721                 iput(inode);
722         return ret;
723 }
724
725 /*
726  * when cleaning up conflicts between the directory names in the
727  * subvolume, directory names in the log and directory names in the
728  * inode back references, we may have to unlink inodes from directories.
729  *
730  * This is a helper function to do the unlink of a specific directory
731  * item
732  */
733 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
734                                       struct btrfs_root *root,
735                                       struct btrfs_path *path,
736                                       struct inode *dir,
737                                       struct btrfs_dir_item *di)
738 {
739         struct inode *inode;
740         char *name;
741         int name_len;
742         struct extent_buffer *leaf;
743         struct btrfs_key location;
744         int ret;
745
746         leaf = path->nodes[0];
747
748         btrfs_dir_item_key_to_cpu(leaf, di, &location);
749         name_len = btrfs_dir_name_len(leaf, di);
750         name = kmalloc(name_len, GFP_NOFS);
751         if (!name)
752                 return -ENOMEM;
753
754         read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
755         btrfs_release_path(path);
756
757         inode = read_one_inode(root, location.objectid);
758         if (!inode) {
759                 ret = -EIO;
760                 goto out;
761         }
762
763         ret = link_to_fixup_dir(trans, root, path, location.objectid);
764         if (ret)
765                 goto out;
766
767         ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
768         if (ret)
769                 goto out;
770         else
771                 ret = btrfs_run_delayed_items(trans, root);
772 out:
773         kfree(name);
774         iput(inode);
775         return ret;
776 }
777
778 /*
779  * helper function to see if a given name and sequence number found
780  * in an inode back reference are already in a directory and correctly
781  * point to this inode
782  */
783 static noinline int inode_in_dir(struct btrfs_root *root,
784                                  struct btrfs_path *path,
785                                  u64 dirid, u64 objectid, u64 index,
786                                  const char *name, int name_len)
787 {
788         struct btrfs_dir_item *di;
789         struct btrfs_key location;
790         int match = 0;
791
792         di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
793                                          index, name, name_len, 0);
794         if (di && !IS_ERR(di)) {
795                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
796                 if (location.objectid != objectid)
797                         goto out;
798         } else
799                 goto out;
800         btrfs_release_path(path);
801
802         di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
803         if (di && !IS_ERR(di)) {
804                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
805                 if (location.objectid != objectid)
806                         goto out;
807         } else
808                 goto out;
809         match = 1;
810 out:
811         btrfs_release_path(path);
812         return match;
813 }
814
815 /*
816  * helper function to check a log tree for a named back reference in
817  * an inode.  This is used to decide if a back reference that is
818  * found in the subvolume conflicts with what we find in the log.
819  *
820  * inode backreferences may have multiple refs in a single item,
821  * during replay we process one reference at a time, and we don't
822  * want to delete valid links to a file from the subvolume if that
823  * link is also in the log.
824  */
825 static noinline int backref_in_log(struct btrfs_root *log,
826                                    struct btrfs_key *key,
827                                    u64 ref_objectid,
828                                    char *name, int namelen)
829 {
830         struct btrfs_path *path;
831         struct btrfs_inode_ref *ref;
832         unsigned long ptr;
833         unsigned long ptr_end;
834         unsigned long name_ptr;
835         int found_name_len;
836         int item_size;
837         int ret;
838         int match = 0;
839
840         path = btrfs_alloc_path();
841         if (!path)
842                 return -ENOMEM;
843
844         ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
845         if (ret != 0)
846                 goto out;
847
848         ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
849
850         if (key->type == BTRFS_INODE_EXTREF_KEY) {
851                 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
852                                                    name, namelen, NULL))
853                         match = 1;
854
855                 goto out;
856         }
857
858         item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
859         ptr_end = ptr + item_size;
860         while (ptr < ptr_end) {
861                 ref = (struct btrfs_inode_ref *)ptr;
862                 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
863                 if (found_name_len == namelen) {
864                         name_ptr = (unsigned long)(ref + 1);
865                         ret = memcmp_extent_buffer(path->nodes[0], name,
866                                                    name_ptr, namelen);
867                         if (ret == 0) {
868                                 match = 1;
869                                 goto out;
870                         }
871                 }
872                 ptr = (unsigned long)(ref + 1) + found_name_len;
873         }
874 out:
875         btrfs_free_path(path);
876         return match;
877 }
878
879 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
880                                   struct btrfs_root *root,
881                                   struct btrfs_path *path,
882                                   struct btrfs_root *log_root,
883                                   struct inode *dir, struct inode *inode,
884                                   struct extent_buffer *eb,
885                                   u64 inode_objectid, u64 parent_objectid,
886                                   u64 ref_index, char *name, int namelen,
887                                   int *search_done)
888 {
889         int ret;
890         char *victim_name;
891         int victim_name_len;
892         struct extent_buffer *leaf;
893         struct btrfs_dir_item *di;
894         struct btrfs_key search_key;
895         struct btrfs_inode_extref *extref;
896
897 again:
898         /* Search old style refs */
899         search_key.objectid = inode_objectid;
900         search_key.type = BTRFS_INODE_REF_KEY;
901         search_key.offset = parent_objectid;
902         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
903         if (ret == 0) {
904                 struct btrfs_inode_ref *victim_ref;
905                 unsigned long ptr;
906                 unsigned long ptr_end;
907
908                 leaf = path->nodes[0];
909
910                 /* are we trying to overwrite a back ref for the root directory
911                  * if so, just jump out, we're done
912                  */
913                 if (search_key.objectid == search_key.offset)
914                         return 1;
915
916                 /* check all the names in this back reference to see
917                  * if they are in the log.  if so, we allow them to stay
918                  * otherwise they must be unlinked as a conflict
919                  */
920                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
921                 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
922                 while (ptr < ptr_end) {
923                         victim_ref = (struct btrfs_inode_ref *)ptr;
924                         victim_name_len = btrfs_inode_ref_name_len(leaf,
925                                                                    victim_ref);
926                         victim_name = kmalloc(victim_name_len, GFP_NOFS);
927                         if (!victim_name)
928                                 return -ENOMEM;
929
930                         read_extent_buffer(leaf, victim_name,
931                                            (unsigned long)(victim_ref + 1),
932                                            victim_name_len);
933
934                         if (!backref_in_log(log_root, &search_key,
935                                             parent_objectid,
936                                             victim_name,
937                                             victim_name_len)) {
938                                 inc_nlink(inode);
939                                 btrfs_release_path(path);
940
941                                 ret = btrfs_unlink_inode(trans, root, dir,
942                                                          inode, victim_name,
943                                                          victim_name_len);
944                                 kfree(victim_name);
945                                 if (ret)
946                                         return ret;
947                                 ret = btrfs_run_delayed_items(trans, root);
948                                 if (ret)
949                                         return ret;
950                                 *search_done = 1;
951                                 goto again;
952                         }
953                         kfree(victim_name);
954
955                         ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
956                 }
957
958                 /*
959                  * NOTE: we have searched root tree and checked the
960                  * coresponding ref, it does not need to check again.
961                  */
962                 *search_done = 1;
963         }
964         btrfs_release_path(path);
965
966         /* Same search but for extended refs */
967         extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
968                                            inode_objectid, parent_objectid, 0,
969                                            0);
970         if (!IS_ERR_OR_NULL(extref)) {
971                 u32 item_size;
972                 u32 cur_offset = 0;
973                 unsigned long base;
974                 struct inode *victim_parent;
975
976                 leaf = path->nodes[0];
977
978                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
979                 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
980
981                 while (cur_offset < item_size) {
982                         extref = (struct btrfs_inode_extref *)base + cur_offset;
983
984                         victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
985
986                         if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
987                                 goto next;
988
989                         victim_name = kmalloc(victim_name_len, GFP_NOFS);
990                         if (!victim_name)
991                                 return -ENOMEM;
992                         read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
993                                            victim_name_len);
994
995                         search_key.objectid = inode_objectid;
996                         search_key.type = BTRFS_INODE_EXTREF_KEY;
997                         search_key.offset = btrfs_extref_hash(parent_objectid,
998                                                               victim_name,
999                                                               victim_name_len);
1000                         ret = 0;
1001                         if (!backref_in_log(log_root, &search_key,
1002                                             parent_objectid, victim_name,
1003                                             victim_name_len)) {
1004                                 ret = -ENOENT;
1005                                 victim_parent = read_one_inode(root,
1006                                                                parent_objectid);
1007                                 if (victim_parent) {
1008                                         inc_nlink(inode);
1009                                         btrfs_release_path(path);
1010
1011                                         ret = btrfs_unlink_inode(trans, root,
1012                                                                  victim_parent,
1013                                                                  inode,
1014                                                                  victim_name,
1015                                                                  victim_name_len);
1016                                         if (!ret)
1017                                                 ret = btrfs_run_delayed_items(
1018                                                                   trans, root);
1019                                 }
1020                                 iput(victim_parent);
1021                                 kfree(victim_name);
1022                                 if (ret)
1023                                         return ret;
1024                                 *search_done = 1;
1025                                 goto again;
1026                         }
1027                         kfree(victim_name);
1028                         if (ret)
1029                                 return ret;
1030 next:
1031                         cur_offset += victim_name_len + sizeof(*extref);
1032                 }
1033                 *search_done = 1;
1034         }
1035         btrfs_release_path(path);
1036
1037         /* look for a conflicting sequence number */
1038         di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1039                                          ref_index, name, namelen, 0);
1040         if (di && !IS_ERR(di)) {
1041                 ret = drop_one_dir_item(trans, root, path, dir, di);
1042                 if (ret)
1043                         return ret;
1044         }
1045         btrfs_release_path(path);
1046
1047         /* look for a conflicing name */
1048         di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1049                                    name, namelen, 0);
1050         if (di && !IS_ERR(di)) {
1051                 ret = drop_one_dir_item(trans, root, path, dir, di);
1052                 if (ret)
1053                         return ret;
1054         }
1055         btrfs_release_path(path);
1056
1057         return 0;
1058 }
1059
1060 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1061                              u32 *namelen, char **name, u64 *index,
1062                              u64 *parent_objectid)
1063 {
1064         struct btrfs_inode_extref *extref;
1065
1066         extref = (struct btrfs_inode_extref *)ref_ptr;
1067
1068         *namelen = btrfs_inode_extref_name_len(eb, extref);
1069         *name = kmalloc(*namelen, GFP_NOFS);
1070         if (*name == NULL)
1071                 return -ENOMEM;
1072
1073         read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1074                            *namelen);
1075
1076         *index = btrfs_inode_extref_index(eb, extref);
1077         if (parent_objectid)
1078                 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1079
1080         return 0;
1081 }
1082
1083 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1084                           u32 *namelen, char **name, u64 *index)
1085 {
1086         struct btrfs_inode_ref *ref;
1087
1088         ref = (struct btrfs_inode_ref *)ref_ptr;
1089
1090         *namelen = btrfs_inode_ref_name_len(eb, ref);
1091         *name = kmalloc(*namelen, GFP_NOFS);
1092         if (*name == NULL)
1093                 return -ENOMEM;
1094
1095         read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1096
1097         *index = btrfs_inode_ref_index(eb, ref);
1098
1099         return 0;
1100 }
1101
1102 /*
1103  * replay one inode back reference item found in the log tree.
1104  * eb, slot and key refer to the buffer and key found in the log tree.
1105  * root is the destination we are replaying into, and path is for temp
1106  * use by this function.  (it should be released on return).
1107  */
1108 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1109                                   struct btrfs_root *root,
1110                                   struct btrfs_root *log,
1111                                   struct btrfs_path *path,
1112                                   struct extent_buffer *eb, int slot,
1113                                   struct btrfs_key *key)
1114 {
1115         struct inode *dir = NULL;
1116         struct inode *inode = NULL;
1117         unsigned long ref_ptr;
1118         unsigned long ref_end;
1119         char *name = NULL;
1120         int namelen;
1121         int ret;
1122         int search_done = 0;
1123         int log_ref_ver = 0;
1124         u64 parent_objectid;
1125         u64 inode_objectid;
1126         u64 ref_index = 0;
1127         int ref_struct_size;
1128
1129         ref_ptr = btrfs_item_ptr_offset(eb, slot);
1130         ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1131
1132         if (key->type == BTRFS_INODE_EXTREF_KEY) {
1133                 struct btrfs_inode_extref *r;
1134
1135                 ref_struct_size = sizeof(struct btrfs_inode_extref);
1136                 log_ref_ver = 1;
1137                 r = (struct btrfs_inode_extref *)ref_ptr;
1138                 parent_objectid = btrfs_inode_extref_parent(eb, r);
1139         } else {
1140                 ref_struct_size = sizeof(struct btrfs_inode_ref);
1141                 parent_objectid = key->offset;
1142         }
1143         inode_objectid = key->objectid;
1144
1145         /*
1146          * it is possible that we didn't log all the parent directories
1147          * for a given inode.  If we don't find the dir, just don't
1148          * copy the back ref in.  The link count fixup code will take
1149          * care of the rest
1150          */
1151         dir = read_one_inode(root, parent_objectid);
1152         if (!dir) {
1153                 ret = -ENOENT;
1154                 goto out;
1155         }
1156
1157         inode = read_one_inode(root, inode_objectid);
1158         if (!inode) {
1159                 ret = -EIO;
1160                 goto out;
1161         }
1162
1163         while (ref_ptr < ref_end) {
1164                 if (log_ref_ver) {
1165                         ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1166                                                 &ref_index, &parent_objectid);
1167                         /*
1168                          * parent object can change from one array
1169                          * item to another.
1170                          */
1171                         if (!dir)
1172                                 dir = read_one_inode(root, parent_objectid);
1173                         if (!dir) {
1174                                 ret = -ENOENT;
1175                                 goto out;
1176                         }
1177                 } else {
1178                         ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1179                                              &ref_index);
1180                 }
1181                 if (ret)
1182                         goto out;
1183
1184                 /* if we already have a perfect match, we're done */
1185                 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1186                                   ref_index, name, namelen)) {
1187                         /*
1188                          * look for a conflicting back reference in the
1189                          * metadata. if we find one we have to unlink that name
1190                          * of the file before we add our new link.  Later on, we
1191                          * overwrite any existing back reference, and we don't
1192                          * want to create dangling pointers in the directory.
1193                          */
1194
1195                         if (!search_done) {
1196                                 ret = __add_inode_ref(trans, root, path, log,
1197                                                       dir, inode, eb,
1198                                                       inode_objectid,
1199                                                       parent_objectid,
1200                                                       ref_index, name, namelen,
1201                                                       &search_done);
1202                                 if (ret) {
1203                                         if (ret == 1)
1204                                                 ret = 0;
1205                                         goto out;
1206                                 }
1207                         }
1208
1209                         /* insert our name */
1210                         ret = btrfs_add_link(trans, dir, inode, name, namelen,
1211                                              0, ref_index);
1212                         if (ret)
1213                                 goto out;
1214
1215                         btrfs_update_inode(trans, root, inode);
1216                 }
1217
1218                 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1219                 kfree(name);
1220                 name = NULL;
1221                 if (log_ref_ver) {
1222                         iput(dir);
1223                         dir = NULL;
1224                 }
1225         }
1226
1227         /* finally write the back reference in the inode */
1228         ret = overwrite_item(trans, root, path, eb, slot, key);
1229 out:
1230         btrfs_release_path(path);
1231         kfree(name);
1232         iput(dir);
1233         iput(inode);
1234         return ret;
1235 }
1236
1237 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1238                               struct btrfs_root *root, u64 offset)
1239 {
1240         int ret;
1241         ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1242                         offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
1243         if (ret > 0)
1244                 ret = btrfs_insert_orphan_item(trans, root, offset);
1245         return ret;
1246 }
1247
1248 static int count_inode_extrefs(struct btrfs_root *root,
1249                                struct inode *inode, struct btrfs_path *path)
1250 {
1251         int ret = 0;
1252         int name_len;
1253         unsigned int nlink = 0;
1254         u32 item_size;
1255         u32 cur_offset = 0;
1256         u64 inode_objectid = btrfs_ino(inode);
1257         u64 offset = 0;
1258         unsigned long ptr;
1259         struct btrfs_inode_extref *extref;
1260         struct extent_buffer *leaf;
1261
1262         while (1) {
1263                 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1264                                             &extref, &offset);
1265                 if (ret)
1266                         break;
1267
1268                 leaf = path->nodes[0];
1269                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1270                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1271
1272                 while (cur_offset < item_size) {
1273                         extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1274                         name_len = btrfs_inode_extref_name_len(leaf, extref);
1275
1276                         nlink++;
1277
1278                         cur_offset += name_len + sizeof(*extref);
1279                 }
1280
1281                 offset++;
1282                 btrfs_release_path(path);
1283         }
1284         btrfs_release_path(path);
1285
1286         if (ret < 0)
1287                 return ret;
1288         return nlink;
1289 }
1290
1291 static int count_inode_refs(struct btrfs_root *root,
1292                                struct inode *inode, struct btrfs_path *path)
1293 {
1294         int ret;
1295         struct btrfs_key key;
1296         unsigned int nlink = 0;
1297         unsigned long ptr;
1298         unsigned long ptr_end;
1299         int name_len;
1300         u64 ino = btrfs_ino(inode);
1301
1302         key.objectid = ino;
1303         key.type = BTRFS_INODE_REF_KEY;
1304         key.offset = (u64)-1;
1305
1306         while (1) {
1307                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1308                 if (ret < 0)
1309                         break;
1310                 if (ret > 0) {
1311                         if (path->slots[0] == 0)
1312                                 break;
1313                         path->slots[0]--;
1314                 }
1315 process_slot:
1316                 btrfs_item_key_to_cpu(path->nodes[0], &key,
1317                                       path->slots[0]);
1318                 if (key.objectid != ino ||
1319                     key.type != BTRFS_INODE_REF_KEY)
1320                         break;
1321                 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1322                 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1323                                                    path->slots[0]);
1324                 while (ptr < ptr_end) {
1325                         struct btrfs_inode_ref *ref;
1326
1327                         ref = (struct btrfs_inode_ref *)ptr;
1328                         name_len = btrfs_inode_ref_name_len(path->nodes[0],
1329                                                             ref);
1330                         ptr = (unsigned long)(ref + 1) + name_len;
1331                         nlink++;
1332                 }
1333
1334                 if (key.offset == 0)
1335                         break;
1336                 if (path->slots[0] > 0) {
1337                         path->slots[0]--;
1338                         goto process_slot;
1339                 }
1340                 key.offset--;
1341                 btrfs_release_path(path);
1342         }
1343         btrfs_release_path(path);
1344
1345         return nlink;
1346 }
1347
1348 /*
1349  * There are a few corners where the link count of the file can't
1350  * be properly maintained during replay.  So, instead of adding
1351  * lots of complexity to the log code, we just scan the backrefs
1352  * for any file that has been through replay.
1353  *
1354  * The scan will update the link count on the inode to reflect the
1355  * number of back refs found.  If it goes down to zero, the iput
1356  * will free the inode.
1357  */
1358 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1359                                            struct btrfs_root *root,
1360                                            struct inode *inode)
1361 {
1362         struct btrfs_path *path;
1363         int ret;
1364         u64 nlink = 0;
1365         u64 ino = btrfs_ino(inode);
1366
1367         path = btrfs_alloc_path();
1368         if (!path)
1369                 return -ENOMEM;
1370
1371         ret = count_inode_refs(root, inode, path);
1372         if (ret < 0)
1373                 goto out;
1374
1375         nlink = ret;
1376
1377         ret = count_inode_extrefs(root, inode, path);
1378         if (ret == -ENOENT)
1379                 ret = 0;
1380
1381         if (ret < 0)
1382                 goto out;
1383
1384         nlink += ret;
1385
1386         ret = 0;
1387
1388         if (nlink != inode->i_nlink) {
1389                 set_nlink(inode, nlink);
1390                 btrfs_update_inode(trans, root, inode);
1391         }
1392         BTRFS_I(inode)->index_cnt = (u64)-1;
1393
1394         if (inode->i_nlink == 0) {
1395                 if (S_ISDIR(inode->i_mode)) {
1396                         ret = replay_dir_deletes(trans, root, NULL, path,
1397                                                  ino, 1);
1398                         if (ret)
1399                                 goto out;
1400                 }
1401                 ret = insert_orphan_item(trans, root, ino);
1402         }
1403
1404 out:
1405         btrfs_free_path(path);
1406         return ret;
1407 }
1408
1409 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1410                                             struct btrfs_root *root,
1411                                             struct btrfs_path *path)
1412 {
1413         int ret;
1414         struct btrfs_key key;
1415         struct inode *inode;
1416
1417         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1418         key.type = BTRFS_ORPHAN_ITEM_KEY;
1419         key.offset = (u64)-1;
1420         while (1) {
1421                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1422                 if (ret < 0)
1423                         break;
1424
1425                 if (ret == 1) {
1426                         if (path->slots[0] == 0)
1427                                 break;
1428                         path->slots[0]--;
1429                 }
1430
1431                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1432                 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1433                     key.type != BTRFS_ORPHAN_ITEM_KEY)
1434                         break;
1435
1436                 ret = btrfs_del_item(trans, root, path);
1437                 if (ret)
1438                         goto out;
1439
1440                 btrfs_release_path(path);
1441                 inode = read_one_inode(root, key.offset);
1442                 if (!inode)
1443                         return -EIO;
1444
1445                 ret = fixup_inode_link_count(trans, root, inode);
1446                 iput(inode);
1447                 if (ret)
1448                         goto out;
1449
1450                 /*
1451                  * fixup on a directory may create new entries,
1452                  * make sure we always look for the highset possible
1453                  * offset
1454                  */
1455                 key.offset = (u64)-1;
1456         }
1457         ret = 0;
1458 out:
1459         btrfs_release_path(path);
1460         return ret;
1461 }
1462
1463
1464 /*
1465  * record a given inode in the fixup dir so we can check its link
1466  * count when replay is done.  The link count is incremented here
1467  * so the inode won't go away until we check it
1468  */
1469 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1470                                       struct btrfs_root *root,
1471                                       struct btrfs_path *path,
1472                                       u64 objectid)
1473 {
1474         struct btrfs_key key;
1475         int ret = 0;
1476         struct inode *inode;
1477
1478         inode = read_one_inode(root, objectid);
1479         if (!inode)
1480                 return -EIO;
1481
1482         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1483         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1484         key.offset = objectid;
1485
1486         ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1487
1488         btrfs_release_path(path);
1489         if (ret == 0) {
1490                 if (!inode->i_nlink)
1491                         set_nlink(inode, 1);
1492                 else
1493                         inc_nlink(inode);
1494                 ret = btrfs_update_inode(trans, root, inode);
1495         } else if (ret == -EEXIST) {
1496                 ret = 0;
1497         } else {
1498                 BUG(); /* Logic Error */
1499         }
1500         iput(inode);
1501
1502         return ret;
1503 }
1504
1505 /*
1506  * when replaying the log for a directory, we only insert names
1507  * for inodes that actually exist.  This means an fsync on a directory
1508  * does not implicitly fsync all the new files in it
1509  */
1510 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1511                                     struct btrfs_root *root,
1512                                     struct btrfs_path *path,
1513                                     u64 dirid, u64 index,
1514                                     char *name, int name_len, u8 type,
1515                                     struct btrfs_key *location)
1516 {
1517         struct inode *inode;
1518         struct inode *dir;
1519         int ret;
1520
1521         inode = read_one_inode(root, location->objectid);
1522         if (!inode)
1523                 return -ENOENT;
1524
1525         dir = read_one_inode(root, dirid);
1526         if (!dir) {
1527                 iput(inode);
1528                 return -EIO;
1529         }
1530
1531         ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1532
1533         /* FIXME, put inode into FIXUP list */
1534
1535         iput(inode);
1536         iput(dir);
1537         return ret;
1538 }
1539
1540 /*
1541  * take a single entry in a log directory item and replay it into
1542  * the subvolume.
1543  *
1544  * if a conflicting item exists in the subdirectory already,
1545  * the inode it points to is unlinked and put into the link count
1546  * fix up tree.
1547  *
1548  * If a name from the log points to a file or directory that does
1549  * not exist in the FS, it is skipped.  fsyncs on directories
1550  * do not force down inodes inside that directory, just changes to the
1551  * names or unlinks in a directory.
1552  */
1553 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1554                                     struct btrfs_root *root,
1555                                     struct btrfs_path *path,
1556                                     struct extent_buffer *eb,
1557                                     struct btrfs_dir_item *di,
1558                                     struct btrfs_key *key)
1559 {
1560         char *name;
1561         int name_len;
1562         struct btrfs_dir_item *dst_di;
1563         struct btrfs_key found_key;
1564         struct btrfs_key log_key;
1565         struct inode *dir;
1566         u8 log_type;
1567         int exists;
1568         int ret = 0;
1569         bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1570
1571         dir = read_one_inode(root, key->objectid);
1572         if (!dir)
1573                 return -EIO;
1574
1575         name_len = btrfs_dir_name_len(eb, di);
1576         name = kmalloc(name_len, GFP_NOFS);
1577         if (!name) {
1578                 ret = -ENOMEM;
1579                 goto out;
1580         }
1581
1582         log_type = btrfs_dir_type(eb, di);
1583         read_extent_buffer(eb, name, (unsigned long)(di + 1),
1584                    name_len);
1585
1586         btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1587         exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1588         if (exists == 0)
1589                 exists = 1;
1590         else
1591                 exists = 0;
1592         btrfs_release_path(path);
1593
1594         if (key->type == BTRFS_DIR_ITEM_KEY) {
1595                 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1596                                        name, name_len, 1);
1597         } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1598                 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1599                                                      key->objectid,
1600                                                      key->offset, name,
1601                                                      name_len, 1);
1602         } else {
1603                 /* Corruption */
1604                 ret = -EINVAL;
1605                 goto out;
1606         }
1607         if (IS_ERR_OR_NULL(dst_di)) {
1608                 /* we need a sequence number to insert, so we only
1609                  * do inserts for the BTRFS_DIR_INDEX_KEY types
1610                  */
1611                 if (key->type != BTRFS_DIR_INDEX_KEY)
1612                         goto out;
1613                 goto insert;
1614         }
1615
1616         btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1617         /* the existing item matches the logged item */
1618         if (found_key.objectid == log_key.objectid &&
1619             found_key.type == log_key.type &&
1620             found_key.offset == log_key.offset &&
1621             btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1622                 goto out;
1623         }
1624
1625         /*
1626          * don't drop the conflicting directory entry if the inode
1627          * for the new entry doesn't exist
1628          */
1629         if (!exists)
1630                 goto out;
1631
1632         ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1633         if (ret)
1634                 goto out;
1635
1636         if (key->type == BTRFS_DIR_INDEX_KEY)
1637                 goto insert;
1638 out:
1639         btrfs_release_path(path);
1640         if (!ret && update_size) {
1641                 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1642                 ret = btrfs_update_inode(trans, root, dir);
1643         }
1644         kfree(name);
1645         iput(dir);
1646         return ret;
1647
1648 insert:
1649         btrfs_release_path(path);
1650         ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1651                               name, name_len, log_type, &log_key);
1652         if (ret && ret != -ENOENT)
1653                 goto out;
1654         update_size = false;
1655         ret = 0;
1656         goto out;
1657 }
1658
1659 /*
1660  * find all the names in a directory item and reconcile them into
1661  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1662  * one name in a directory item, but the same code gets used for
1663  * both directory index types
1664  */
1665 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1666                                         struct btrfs_root *root,
1667                                         struct btrfs_path *path,
1668                                         struct extent_buffer *eb, int slot,
1669                                         struct btrfs_key *key)
1670 {
1671         int ret;
1672         u32 item_size = btrfs_item_size_nr(eb, slot);
1673         struct btrfs_dir_item *di;
1674         int name_len;
1675         unsigned long ptr;
1676         unsigned long ptr_end;
1677
1678         ptr = btrfs_item_ptr_offset(eb, slot);
1679         ptr_end = ptr + item_size;
1680         while (ptr < ptr_end) {
1681                 di = (struct btrfs_dir_item *)ptr;
1682                 if (verify_dir_item(root, eb, di))
1683                         return -EIO;
1684                 name_len = btrfs_dir_name_len(eb, di);
1685                 ret = replay_one_name(trans, root, path, eb, di, key);
1686                 if (ret)
1687                         return ret;
1688                 ptr = (unsigned long)(di + 1);
1689                 ptr += name_len;
1690         }
1691         return 0;
1692 }
1693
1694 /*
1695  * directory replay has two parts.  There are the standard directory
1696  * items in the log copied from the subvolume, and range items
1697  * created in the log while the subvolume was logged.
1698  *
1699  * The range items tell us which parts of the key space the log
1700  * is authoritative for.  During replay, if a key in the subvolume
1701  * directory is in a logged range item, but not actually in the log
1702  * that means it was deleted from the directory before the fsync
1703  * and should be removed.
1704  */
1705 static noinline int find_dir_range(struct btrfs_root *root,
1706                                    struct btrfs_path *path,
1707                                    u64 dirid, int key_type,
1708                                    u64 *start_ret, u64 *end_ret)
1709 {
1710         struct btrfs_key key;
1711         u64 found_end;
1712         struct btrfs_dir_log_item *item;
1713         int ret;
1714         int nritems;
1715
1716         if (*start_ret == (u64)-1)
1717                 return 1;
1718
1719         key.objectid = dirid;
1720         key.type = key_type;
1721         key.offset = *start_ret;
1722
1723         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1724         if (ret < 0)
1725                 goto out;
1726         if (ret > 0) {
1727                 if (path->slots[0] == 0)
1728                         goto out;
1729                 path->slots[0]--;
1730         }
1731         if (ret != 0)
1732                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1733
1734         if (key.type != key_type || key.objectid != dirid) {
1735                 ret = 1;
1736                 goto next;
1737         }
1738         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1739                               struct btrfs_dir_log_item);
1740         found_end = btrfs_dir_log_end(path->nodes[0], item);
1741
1742         if (*start_ret >= key.offset && *start_ret <= found_end) {
1743                 ret = 0;
1744                 *start_ret = key.offset;
1745                 *end_ret = found_end;
1746                 goto out;
1747         }
1748         ret = 1;
1749 next:
1750         /* check the next slot in the tree to see if it is a valid item */
1751         nritems = btrfs_header_nritems(path->nodes[0]);
1752         if (path->slots[0] >= nritems) {
1753                 ret = btrfs_next_leaf(root, path);
1754                 if (ret)
1755                         goto out;
1756         } else {
1757                 path->slots[0]++;
1758         }
1759
1760         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1761
1762         if (key.type != key_type || key.objectid != dirid) {
1763                 ret = 1;
1764                 goto out;
1765         }
1766         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1767                               struct btrfs_dir_log_item);
1768         found_end = btrfs_dir_log_end(path->nodes[0], item);
1769         *start_ret = key.offset;
1770         *end_ret = found_end;
1771         ret = 0;
1772 out:
1773         btrfs_release_path(path);
1774         return ret;
1775 }
1776
1777 /*
1778  * this looks for a given directory item in the log.  If the directory
1779  * item is not in the log, the item is removed and the inode it points
1780  * to is unlinked
1781  */
1782 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1783                                       struct btrfs_root *root,
1784                                       struct btrfs_root *log,
1785                                       struct btrfs_path *path,
1786                                       struct btrfs_path *log_path,
1787                                       struct inode *dir,
1788                                       struct btrfs_key *dir_key)
1789 {
1790         int ret;
1791         struct extent_buffer *eb;
1792         int slot;
1793         u32 item_size;
1794         struct btrfs_dir_item *di;
1795         struct btrfs_dir_item *log_di;
1796         int name_len;
1797         unsigned long ptr;
1798         unsigned long ptr_end;
1799         char *name;
1800         struct inode *inode;
1801         struct btrfs_key location;
1802
1803 again:
1804         eb = path->nodes[0];
1805         slot = path->slots[0];
1806         item_size = btrfs_item_size_nr(eb, slot);
1807         ptr = btrfs_item_ptr_offset(eb, slot);
1808         ptr_end = ptr + item_size;
1809         while (ptr < ptr_end) {
1810                 di = (struct btrfs_dir_item *)ptr;
1811                 if (verify_dir_item(root, eb, di)) {
1812                         ret = -EIO;
1813                         goto out;
1814                 }
1815
1816                 name_len = btrfs_dir_name_len(eb, di);
1817                 name = kmalloc(name_len, GFP_NOFS);
1818                 if (!name) {
1819                         ret = -ENOMEM;
1820                         goto out;
1821                 }
1822                 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1823                                   name_len);
1824                 log_di = NULL;
1825                 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1826                         log_di = btrfs_lookup_dir_item(trans, log, log_path,
1827                                                        dir_key->objectid,
1828                                                        name, name_len, 0);
1829                 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1830                         log_di = btrfs_lookup_dir_index_item(trans, log,
1831                                                      log_path,
1832                                                      dir_key->objectid,
1833                                                      dir_key->offset,
1834                                                      name, name_len, 0);
1835                 }
1836                 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1837                         btrfs_dir_item_key_to_cpu(eb, di, &location);
1838                         btrfs_release_path(path);
1839                         btrfs_release_path(log_path);
1840                         inode = read_one_inode(root, location.objectid);
1841                         if (!inode) {
1842                                 kfree(name);
1843                                 return -EIO;
1844                         }
1845
1846                         ret = link_to_fixup_dir(trans, root,
1847                                                 path, location.objectid);
1848                         if (ret) {
1849                                 kfree(name);
1850                                 iput(inode);
1851                                 goto out;
1852                         }
1853
1854                         inc_nlink(inode);
1855                         ret = btrfs_unlink_inode(trans, root, dir, inode,
1856                                                  name, name_len);
1857                         if (!ret)
1858                                 ret = btrfs_run_delayed_items(trans, root);
1859                         kfree(name);
1860                         iput(inode);
1861                         if (ret)
1862                                 goto out;
1863
1864                         /* there might still be more names under this key
1865                          * check and repeat if required
1866                          */
1867                         ret = btrfs_search_slot(NULL, root, dir_key, path,
1868                                                 0, 0);
1869                         if (ret == 0)
1870                                 goto again;
1871                         ret = 0;
1872                         goto out;
1873                 } else if (IS_ERR(log_di)) {
1874                         kfree(name);
1875                         return PTR_ERR(log_di);
1876                 }
1877                 btrfs_release_path(log_path);
1878                 kfree(name);
1879
1880                 ptr = (unsigned long)(di + 1);
1881                 ptr += name_len;
1882         }
1883         ret = 0;
1884 out:
1885         btrfs_release_path(path);
1886         btrfs_release_path(log_path);
1887         return ret;
1888 }
1889
1890 /*
1891  * deletion replay happens before we copy any new directory items
1892  * out of the log or out of backreferences from inodes.  It
1893  * scans the log to find ranges of keys that log is authoritative for,
1894  * and then scans the directory to find items in those ranges that are
1895  * not present in the log.
1896  *
1897  * Anything we don't find in the log is unlinked and removed from the
1898  * directory.
1899  */
1900 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1901                                        struct btrfs_root *root,
1902                                        struct btrfs_root *log,
1903                                        struct btrfs_path *path,
1904                                        u64 dirid, int del_all)
1905 {
1906         u64 range_start;
1907         u64 range_end;
1908         int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1909         int ret = 0;
1910         struct btrfs_key dir_key;
1911         struct btrfs_key found_key;
1912         struct btrfs_path *log_path;
1913         struct inode *dir;
1914
1915         dir_key.objectid = dirid;
1916         dir_key.type = BTRFS_DIR_ITEM_KEY;
1917         log_path = btrfs_alloc_path();
1918         if (!log_path)
1919                 return -ENOMEM;
1920
1921         dir = read_one_inode(root, dirid);
1922         /* it isn't an error if the inode isn't there, that can happen
1923          * because we replay the deletes before we copy in the inode item
1924          * from the log
1925          */
1926         if (!dir) {
1927                 btrfs_free_path(log_path);
1928                 return 0;
1929         }
1930 again:
1931         range_start = 0;
1932         range_end = 0;
1933         while (1) {
1934                 if (del_all)
1935                         range_end = (u64)-1;
1936                 else {
1937                         ret = find_dir_range(log, path, dirid, key_type,
1938                                              &range_start, &range_end);
1939                         if (ret != 0)
1940                                 break;
1941                 }
1942
1943                 dir_key.offset = range_start;
1944                 while (1) {
1945                         int nritems;
1946                         ret = btrfs_search_slot(NULL, root, &dir_key, path,
1947                                                 0, 0);
1948                         if (ret < 0)
1949                                 goto out;
1950
1951                         nritems = btrfs_header_nritems(path->nodes[0]);
1952                         if (path->slots[0] >= nritems) {
1953                                 ret = btrfs_next_leaf(root, path);
1954                                 if (ret)
1955                                         break;
1956                         }
1957                         btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1958                                               path->slots[0]);
1959                         if (found_key.objectid != dirid ||
1960                             found_key.type != dir_key.type)
1961                                 goto next_type;
1962
1963                         if (found_key.offset > range_end)
1964                                 break;
1965
1966                         ret = check_item_in_log(trans, root, log, path,
1967                                                 log_path, dir,
1968                                                 &found_key);
1969                         if (ret)
1970                                 goto out;
1971                         if (found_key.offset == (u64)-1)
1972                                 break;
1973                         dir_key.offset = found_key.offset + 1;
1974                 }
1975                 btrfs_release_path(path);
1976                 if (range_end == (u64)-1)
1977                         break;
1978                 range_start = range_end + 1;
1979         }
1980
1981 next_type:
1982         ret = 0;
1983         if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1984                 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1985                 dir_key.type = BTRFS_DIR_INDEX_KEY;
1986                 btrfs_release_path(path);
1987                 goto again;
1988         }
1989 out:
1990         btrfs_release_path(path);
1991         btrfs_free_path(log_path);
1992         iput(dir);
1993         return ret;
1994 }
1995
1996 /*
1997  * the process_func used to replay items from the log tree.  This
1998  * gets called in two different stages.  The first stage just looks
1999  * for inodes and makes sure they are all copied into the subvolume.
2000  *
2001  * The second stage copies all the other item types from the log into
2002  * the subvolume.  The two stage approach is slower, but gets rid of
2003  * lots of complexity around inodes referencing other inodes that exist
2004  * only in the log (references come from either directory items or inode
2005  * back refs).
2006  */
2007 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2008                              struct walk_control *wc, u64 gen)
2009 {
2010         int nritems;
2011         struct btrfs_path *path;
2012         struct btrfs_root *root = wc->replay_dest;
2013         struct btrfs_key key;
2014         int level;
2015         int i;
2016         int ret;
2017
2018         ret = btrfs_read_buffer(eb, gen);
2019         if (ret)
2020                 return ret;
2021
2022         level = btrfs_header_level(eb);
2023
2024         if (level != 0)
2025                 return 0;
2026
2027         path = btrfs_alloc_path();
2028         if (!path)
2029                 return -ENOMEM;
2030
2031         nritems = btrfs_header_nritems(eb);
2032         for (i = 0; i < nritems; i++) {
2033                 btrfs_item_key_to_cpu(eb, &key, i);
2034
2035                 /* inode keys are done during the first stage */
2036                 if (key.type == BTRFS_INODE_ITEM_KEY &&
2037                     wc->stage == LOG_WALK_REPLAY_INODES) {
2038                         struct btrfs_inode_item *inode_item;
2039                         u32 mode;
2040
2041                         inode_item = btrfs_item_ptr(eb, i,
2042                                             struct btrfs_inode_item);
2043                         mode = btrfs_inode_mode(eb, inode_item);
2044                         if (S_ISDIR(mode)) {
2045                                 ret = replay_dir_deletes(wc->trans,
2046                                          root, log, path, key.objectid, 0);
2047                                 if (ret)
2048                                         break;
2049                         }
2050                         ret = overwrite_item(wc->trans, root, path,
2051                                              eb, i, &key);
2052                         if (ret)
2053                                 break;
2054
2055                         /* for regular files, make sure corresponding
2056                          * orhpan item exist. extents past the new EOF
2057                          * will be truncated later by orphan cleanup.
2058                          */
2059                         if (S_ISREG(mode)) {
2060                                 ret = insert_orphan_item(wc->trans, root,
2061                                                          key.objectid);
2062                                 if (ret)
2063                                         break;
2064                         }
2065
2066                         ret = link_to_fixup_dir(wc->trans, root,
2067                                                 path, key.objectid);
2068                         if (ret)
2069                                 break;
2070                 }
2071
2072                 if (key.type == BTRFS_DIR_INDEX_KEY &&
2073                     wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2074                         ret = replay_one_dir_item(wc->trans, root, path,
2075                                                   eb, i, &key);
2076                         if (ret)
2077                                 break;
2078                 }
2079
2080                 if (wc->stage < LOG_WALK_REPLAY_ALL)
2081                         continue;
2082
2083                 /* these keys are simply copied */
2084                 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2085                         ret = overwrite_item(wc->trans, root, path,
2086                                              eb, i, &key);
2087                         if (ret)
2088                                 break;
2089                 } else if (key.type == BTRFS_INODE_REF_KEY ||
2090                            key.type == BTRFS_INODE_EXTREF_KEY) {
2091                         ret = add_inode_ref(wc->trans, root, log, path,
2092                                             eb, i, &key);
2093                         if (ret && ret != -ENOENT)
2094                                 break;
2095                         ret = 0;
2096                 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2097                         ret = replay_one_extent(wc->trans, root, path,
2098                                                 eb, i, &key);
2099                         if (ret)
2100                                 break;
2101                 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2102                         ret = replay_one_dir_item(wc->trans, root, path,
2103                                                   eb, i, &key);
2104                         if (ret)
2105                                 break;
2106                 }
2107         }
2108         btrfs_free_path(path);
2109         return ret;
2110 }
2111
2112 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2113                                    struct btrfs_root *root,
2114                                    struct btrfs_path *path, int *level,
2115                                    struct walk_control *wc)
2116 {
2117         u64 root_owner;
2118         u64 bytenr;
2119         u64 ptr_gen;
2120         struct extent_buffer *next;
2121         struct extent_buffer *cur;
2122         struct extent_buffer *parent;
2123         u32 blocksize;
2124         int ret = 0;
2125
2126         WARN_ON(*level < 0);
2127         WARN_ON(*level >= BTRFS_MAX_LEVEL);
2128
2129         while (*level > 0) {
2130                 WARN_ON(*level < 0);
2131                 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2132                 cur = path->nodes[*level];
2133
2134                 WARN_ON(btrfs_header_level(cur) != *level);
2135
2136                 if (path->slots[*level] >=
2137                     btrfs_header_nritems(cur))
2138                         break;
2139
2140                 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2141                 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2142                 blocksize = btrfs_level_size(root, *level - 1);
2143
2144                 parent = path->nodes[*level];
2145                 root_owner = btrfs_header_owner(parent);
2146
2147                 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2148                 if (!next)
2149                         return -ENOMEM;
2150
2151                 if (*level == 1) {
2152                         ret = wc->process_func(root, next, wc, ptr_gen);
2153                         if (ret) {
2154                                 free_extent_buffer(next);
2155                                 return ret;
2156                         }
2157
2158                         path->slots[*level]++;
2159                         if (wc->free) {
2160                                 ret = btrfs_read_buffer(next, ptr_gen);
2161                                 if (ret) {
2162                                         free_extent_buffer(next);
2163                                         return ret;
2164                                 }
2165
2166                                 if (trans) {
2167                                         btrfs_tree_lock(next);
2168                                         btrfs_set_lock_blocking(next);
2169                                         clean_tree_block(trans, root, next);
2170                                         btrfs_wait_tree_block_writeback(next);
2171                                         btrfs_tree_unlock(next);
2172                                 }
2173
2174                                 WARN_ON(root_owner !=
2175                                         BTRFS_TREE_LOG_OBJECTID);
2176                                 ret = btrfs_free_and_pin_reserved_extent(root,
2177                                                          bytenr, blocksize);
2178                                 if (ret) {
2179                                         free_extent_buffer(next);
2180                                         return ret;
2181                                 }
2182                         }
2183                         free_extent_buffer(next);
2184                         continue;
2185                 }
2186                 ret = btrfs_read_buffer(next, ptr_gen);
2187                 if (ret) {
2188                         free_extent_buffer(next);
2189                         return ret;
2190                 }
2191
2192                 WARN_ON(*level <= 0);
2193                 if (path->nodes[*level-1])
2194                         free_extent_buffer(path->nodes[*level-1]);
2195                 path->nodes[*level-1] = next;
2196                 *level = btrfs_header_level(next);
2197                 path->slots[*level] = 0;
2198                 cond_resched();
2199         }
2200         WARN_ON(*level < 0);
2201         WARN_ON(*level >= BTRFS_MAX_LEVEL);
2202
2203         path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2204
2205         cond_resched();
2206         return 0;
2207 }
2208
2209 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2210                                  struct btrfs_root *root,
2211                                  struct btrfs_path *path, int *level,
2212                                  struct walk_control *wc)
2213 {
2214         u64 root_owner;
2215         int i;
2216         int slot;
2217         int ret;
2218
2219         for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2220                 slot = path->slots[i];
2221                 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2222                         path->slots[i]++;
2223                         *level = i;
2224                         WARN_ON(*level == 0);
2225                         return 0;
2226                 } else {
2227                         struct extent_buffer *parent;
2228                         if (path->nodes[*level] == root->node)
2229                                 parent = path->nodes[*level];
2230                         else
2231                                 parent = path->nodes[*level + 1];
2232
2233                         root_owner = btrfs_header_owner(parent);
2234                         ret = wc->process_func(root, path->nodes[*level], wc,
2235                                  btrfs_header_generation(path->nodes[*level]));
2236                         if (ret)
2237                                 return ret;
2238
2239                         if (wc->free) {
2240                                 struct extent_buffer *next;
2241
2242                                 next = path->nodes[*level];
2243
2244                                 if (trans) {
2245                                         btrfs_tree_lock(next);
2246                                         btrfs_set_lock_blocking(next);
2247                                         clean_tree_block(trans, root, next);
2248                                         btrfs_wait_tree_block_writeback(next);
2249                                         btrfs_tree_unlock(next);
2250                                 }
2251
2252                                 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2253                                 ret = btrfs_free_and_pin_reserved_extent(root,
2254                                                 path->nodes[*level]->start,
2255                                                 path->nodes[*level]->len);
2256                                 if (ret)
2257                                         return ret;
2258                         }
2259                         free_extent_buffer(path->nodes[*level]);
2260                         path->nodes[*level] = NULL;
2261                         *level = i + 1;
2262                 }
2263         }
2264         return 1;
2265 }
2266
2267 /*
2268  * drop the reference count on the tree rooted at 'snap'.  This traverses
2269  * the tree freeing any blocks that have a ref count of zero after being
2270  * decremented.
2271  */
2272 static int walk_log_tree(struct btrfs_trans_handle *trans,
2273                          struct btrfs_root *log, struct walk_control *wc)
2274 {
2275         int ret = 0;
2276         int wret;
2277         int level;
2278         struct btrfs_path *path;
2279         int orig_level;
2280
2281         path = btrfs_alloc_path();
2282         if (!path)
2283                 return -ENOMEM;
2284
2285         level = btrfs_header_level(log->node);
2286         orig_level = level;
2287         path->nodes[level] = log->node;
2288         extent_buffer_get(log->node);
2289         path->slots[level] = 0;
2290
2291         while (1) {
2292                 wret = walk_down_log_tree(trans, log, path, &level, wc);
2293                 if (wret > 0)
2294                         break;
2295                 if (wret < 0) {
2296                         ret = wret;
2297                         goto out;
2298                 }
2299
2300                 wret = walk_up_log_tree(trans, log, path, &level, wc);
2301                 if (wret > 0)
2302                         break;
2303                 if (wret < 0) {
2304                         ret = wret;
2305                         goto out;
2306                 }
2307         }
2308
2309         /* was the root node processed? if not, catch it here */
2310         if (path->nodes[orig_level]) {
2311                 ret = wc->process_func(log, path->nodes[orig_level], wc,
2312                          btrfs_header_generation(path->nodes[orig_level]));
2313                 if (ret)
2314                         goto out;
2315                 if (wc->free) {
2316                         struct extent_buffer *next;
2317
2318                         next = path->nodes[orig_level];
2319
2320                         if (trans) {
2321                                 btrfs_tree_lock(next);
2322                                 btrfs_set_lock_blocking(next);
2323                                 clean_tree_block(trans, log, next);
2324                                 btrfs_wait_tree_block_writeback(next);
2325                                 btrfs_tree_unlock(next);
2326                         }
2327
2328                         WARN_ON(log->root_key.objectid !=
2329                                 BTRFS_TREE_LOG_OBJECTID);
2330                         ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2331                                                          next->len);
2332                         if (ret)
2333                                 goto out;
2334                 }
2335         }
2336
2337 out:
2338         btrfs_free_path(path);
2339         return ret;
2340 }
2341
2342 /*
2343  * helper function to update the item for a given subvolumes log root
2344  * in the tree of log roots
2345  */
2346 static int update_log_root(struct btrfs_trans_handle *trans,
2347                            struct btrfs_root *log)
2348 {
2349         int ret;
2350
2351         if (log->log_transid == 1) {
2352                 /* insert root item on the first sync */
2353                 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2354                                 &log->root_key, &log->root_item);
2355         } else {
2356                 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2357                                 &log->root_key, &log->root_item);
2358         }
2359         return ret;
2360 }
2361
2362 static int wait_log_commit(struct btrfs_trans_handle *trans,
2363                            struct btrfs_root *root, unsigned long transid)
2364 {
2365         DEFINE_WAIT(wait);
2366         int index = transid % 2;
2367
2368         /*
2369          * we only allow two pending log transactions at a time,
2370          * so we know that if ours is more than 2 older than the
2371          * current transaction, we're done
2372          */
2373         do {
2374                 prepare_to_wait(&root->log_commit_wait[index],
2375                                 &wait, TASK_UNINTERRUPTIBLE);
2376                 mutex_unlock(&root->log_mutex);
2377
2378                 if (root->fs_info->last_trans_log_full_commit !=
2379                     trans->transid && root->log_transid < transid + 2 &&
2380                     atomic_read(&root->log_commit[index]))
2381                         schedule();
2382
2383                 finish_wait(&root->log_commit_wait[index], &wait);
2384                 mutex_lock(&root->log_mutex);
2385         } while (root->fs_info->last_trans_log_full_commit !=
2386                  trans->transid && root->log_transid < transid + 2 &&
2387                  atomic_read(&root->log_commit[index]));
2388         return 0;
2389 }
2390
2391 static void wait_for_writer(struct btrfs_trans_handle *trans,
2392                             struct btrfs_root *root)
2393 {
2394         DEFINE_WAIT(wait);
2395         while (root->fs_info->last_trans_log_full_commit !=
2396                trans->transid && atomic_read(&root->log_writers)) {
2397                 prepare_to_wait(&root->log_writer_wait,
2398                                 &wait, TASK_UNINTERRUPTIBLE);
2399                 mutex_unlock(&root->log_mutex);
2400                 if (root->fs_info->last_trans_log_full_commit !=
2401                     trans->transid && atomic_read(&root->log_writers))
2402                         schedule();
2403                 mutex_lock(&root->log_mutex);
2404                 finish_wait(&root->log_writer_wait, &wait);
2405         }
2406 }
2407
2408 /*
2409  * btrfs_sync_log does sends a given tree log down to the disk and
2410  * updates the super blocks to record it.  When this call is done,
2411  * you know that any inodes previously logged are safely on disk only
2412  * if it returns 0.
2413  *
2414  * Any other return value means you need to call btrfs_commit_transaction.
2415  * Some of the edge cases for fsyncing directories that have had unlinks
2416  * or renames done in the past mean that sometimes the only safe
2417  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2418  * that has happened.
2419  */
2420 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2421                    struct btrfs_root *root)
2422 {
2423         int index1;
2424         int index2;
2425         int mark;
2426         int ret;
2427         struct btrfs_root *log = root->log_root;
2428         struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2429         unsigned long log_transid = 0;
2430         struct blk_plug plug;
2431
2432         mutex_lock(&root->log_mutex);
2433         log_transid = root->log_transid;
2434         index1 = root->log_transid % 2;
2435         if (atomic_read(&root->log_commit[index1])) {
2436                 wait_log_commit(trans, root, root->log_transid);
2437                 mutex_unlock(&root->log_mutex);
2438                 return 0;
2439         }
2440         atomic_set(&root->log_commit[index1], 1);
2441
2442         /* wait for previous tree log sync to complete */
2443         if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2444                 wait_log_commit(trans, root, root->log_transid - 1);
2445         while (1) {
2446                 int batch = atomic_read(&root->log_batch);
2447                 /* when we're on an ssd, just kick the log commit out */
2448                 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2449                         mutex_unlock(&root->log_mutex);
2450                         schedule_timeout_uninterruptible(1);
2451                         mutex_lock(&root->log_mutex);
2452                 }
2453                 wait_for_writer(trans, root);
2454                 if (batch == atomic_read(&root->log_batch))
2455                         break;
2456         }
2457
2458         /* bail out if we need to do a full commit */
2459         if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2460                 ret = -EAGAIN;
2461                 btrfs_free_logged_extents(log, log_transid);
2462                 mutex_unlock(&root->log_mutex);
2463                 goto out;
2464         }
2465
2466         if (log_transid % 2 == 0)
2467                 mark = EXTENT_DIRTY;
2468         else
2469                 mark = EXTENT_NEW;
2470
2471         /* we start IO on  all the marked extents here, but we don't actually
2472          * wait for them until later.
2473          */
2474         blk_start_plug(&plug);
2475         ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2476         if (ret) {
2477                 blk_finish_plug(&plug);
2478                 btrfs_abort_transaction(trans, root, ret);
2479                 btrfs_free_logged_extents(log, log_transid);
2480                 mutex_unlock(&root->log_mutex);
2481                 goto out;
2482         }
2483
2484         btrfs_set_root_node(&log->root_item, log->node);
2485
2486         root->log_transid++;
2487         log->log_transid = root->log_transid;
2488         root->log_start_pid = 0;
2489         smp_mb();
2490         /*
2491          * IO has been started, blocks of the log tree have WRITTEN flag set
2492          * in their headers. new modifications of the log will be written to
2493          * new positions. so it's safe to allow log writers to go in.
2494          */
2495         mutex_unlock(&root->log_mutex);
2496
2497         mutex_lock(&log_root_tree->log_mutex);
2498         atomic_inc(&log_root_tree->log_batch);
2499         atomic_inc(&log_root_tree->log_writers);
2500         mutex_unlock(&log_root_tree->log_mutex);
2501
2502         ret = update_log_root(trans, log);
2503
2504         mutex_lock(&log_root_tree->log_mutex);
2505         if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2506                 smp_mb();
2507                 if (waitqueue_active(&log_root_tree->log_writer_wait))
2508                         wake_up(&log_root_tree->log_writer_wait);
2509         }
2510
2511         if (ret) {
2512                 blk_finish_plug(&plug);
2513                 if (ret != -ENOSPC) {
2514                         btrfs_abort_transaction(trans, root, ret);
2515                         mutex_unlock(&log_root_tree->log_mutex);
2516                         goto out;
2517                 }
2518                 root->fs_info->last_trans_log_full_commit = trans->transid;
2519                 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2520                 btrfs_free_logged_extents(log, log_transid);
2521                 mutex_unlock(&log_root_tree->log_mutex);
2522                 ret = -EAGAIN;
2523                 goto out;
2524         }
2525
2526         index2 = log_root_tree->log_transid % 2;
2527         if (atomic_read(&log_root_tree->log_commit[index2])) {
2528                 blk_finish_plug(&plug);
2529                 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2530                 wait_log_commit(trans, log_root_tree,
2531                                 log_root_tree->log_transid);
2532                 btrfs_free_logged_extents(log, log_transid);
2533                 mutex_unlock(&log_root_tree->log_mutex);
2534                 ret = 0;
2535                 goto out;
2536         }
2537         atomic_set(&log_root_tree->log_commit[index2], 1);
2538
2539         if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2540                 wait_log_commit(trans, log_root_tree,
2541                                 log_root_tree->log_transid - 1);
2542         }
2543
2544         wait_for_writer(trans, log_root_tree);
2545
2546         /*
2547          * now that we've moved on to the tree of log tree roots,
2548          * check the full commit flag again
2549          */
2550         if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2551                 blk_finish_plug(&plug);
2552                 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2553                 btrfs_free_logged_extents(log, log_transid);
2554                 mutex_unlock(&log_root_tree->log_mutex);
2555                 ret = -EAGAIN;
2556                 goto out_wake_log_root;
2557         }
2558
2559         ret = btrfs_write_marked_extents(log_root_tree,
2560                                          &log_root_tree->dirty_log_pages,
2561                                          EXTENT_DIRTY | EXTENT_NEW);
2562         blk_finish_plug(&plug);
2563         if (ret) {
2564                 btrfs_abort_transaction(trans, root, ret);
2565                 btrfs_free_logged_extents(log, log_transid);
2566                 mutex_unlock(&log_root_tree->log_mutex);
2567                 goto out_wake_log_root;
2568         }
2569         btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2570         btrfs_wait_marked_extents(log_root_tree,
2571                                   &log_root_tree->dirty_log_pages,
2572                                   EXTENT_NEW | EXTENT_DIRTY);
2573         btrfs_wait_logged_extents(log, log_transid);
2574
2575         btrfs_set_super_log_root(root->fs_info->super_for_commit,
2576                                 log_root_tree->node->start);
2577         btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2578                                 btrfs_header_level(log_root_tree->node));
2579
2580         log_root_tree->log_transid++;
2581         smp_mb();
2582
2583         mutex_unlock(&log_root_tree->log_mutex);
2584
2585         /*
2586          * nobody else is going to jump in and write the the ctree
2587          * super here because the log_commit atomic below is protecting
2588          * us.  We must be called with a transaction handle pinning
2589          * the running transaction open, so a full commit can't hop
2590          * in and cause problems either.
2591          */
2592         ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2593         if (ret) {
2594                 btrfs_abort_transaction(trans, root, ret);
2595                 goto out_wake_log_root;
2596         }
2597
2598         mutex_lock(&root->log_mutex);
2599         if (root->last_log_commit < log_transid)
2600                 root->last_log_commit = log_transid;
2601         mutex_unlock(&root->log_mutex);
2602
2603 out_wake_log_root:
2604         atomic_set(&log_root_tree->log_commit[index2], 0);
2605         smp_mb();
2606         if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2607                 wake_up(&log_root_tree->log_commit_wait[index2]);
2608 out:
2609         atomic_set(&root->log_commit[index1], 0);
2610         smp_mb();
2611         if (waitqueue_active(&root->log_commit_wait[index1]))
2612                 wake_up(&root->log_commit_wait[index1]);
2613         return ret;
2614 }
2615
2616 static void free_log_tree(struct btrfs_trans_handle *trans,
2617                           struct btrfs_root *log)
2618 {
2619         int ret;
2620         u64 start;
2621         u64 end;
2622         struct walk_control wc = {
2623                 .free = 1,
2624                 .process_func = process_one_buffer
2625         };
2626
2627         ret = walk_log_tree(trans, log, &wc);
2628         /* I don't think this can happen but just in case */
2629         if (ret)
2630                 btrfs_abort_transaction(trans, log, ret);
2631
2632         while (1) {
2633                 ret = find_first_extent_bit(&log->dirty_log_pages,
2634                                 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2635                                 NULL);
2636                 if (ret)
2637                         break;
2638
2639                 clear_extent_bits(&log->dirty_log_pages, start, end,
2640                                   EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2641         }
2642
2643         /*
2644          * We may have short-circuited the log tree with the full commit logic
2645          * and left ordered extents on our list, so clear these out to keep us
2646          * from leaking inodes and memory.
2647          */
2648         btrfs_free_logged_extents(log, 0);
2649         btrfs_free_logged_extents(log, 1);
2650
2651         free_extent_buffer(log->node);
2652         kfree(log);
2653 }
2654
2655 /*
2656  * free all the extents used by the tree log.  This should be called
2657  * at commit time of the full transaction
2658  */
2659 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2660 {
2661         if (root->log_root) {
2662                 free_log_tree(trans, root->log_root);
2663                 root->log_root = NULL;
2664         }
2665         return 0;
2666 }
2667
2668 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2669                              struct btrfs_fs_info *fs_info)
2670 {
2671         if (fs_info->log_root_tree) {
2672                 free_log_tree(trans, fs_info->log_root_tree);
2673                 fs_info->log_root_tree = NULL;
2674         }
2675         return 0;
2676 }
2677
2678 /*
2679  * If both a file and directory are logged, and unlinks or renames are
2680  * mixed in, we have a few interesting corners:
2681  *
2682  * create file X in dir Y
2683  * link file X to X.link in dir Y
2684  * fsync file X
2685  * unlink file X but leave X.link
2686  * fsync dir Y
2687  *
2688  * After a crash we would expect only X.link to exist.  But file X
2689  * didn't get fsync'd again so the log has back refs for X and X.link.
2690  *
2691  * We solve this by removing directory entries and inode backrefs from the
2692  * log when a file that was logged in the current transaction is
2693  * unlinked.  Any later fsync will include the updated log entries, and
2694  * we'll be able to reconstruct the proper directory items from backrefs.
2695  *
2696  * This optimizations allows us to avoid relogging the entire inode
2697  * or the entire directory.
2698  */
2699 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2700                                  struct btrfs_root *root,
2701                                  const char *name, int name_len,
2702                                  struct inode *dir, u64 index)
2703 {
2704         struct btrfs_root *log;
2705         struct btrfs_dir_item *di;
2706         struct btrfs_path *path;
2707         int ret;
2708         int err = 0;
2709         int bytes_del = 0;
2710         u64 dir_ino = btrfs_ino(dir);
2711
2712         if (BTRFS_I(dir)->logged_trans < trans->transid)
2713                 return 0;
2714
2715         ret = join_running_log_trans(root);
2716         if (ret)
2717                 return 0;
2718
2719         mutex_lock(&BTRFS_I(dir)->log_mutex);
2720
2721         log = root->log_root;
2722         path = btrfs_alloc_path();
2723         if (!path) {
2724                 err = -ENOMEM;
2725                 goto out_unlock;
2726         }
2727
2728         di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2729                                    name, name_len, -1);
2730         if (IS_ERR(di)) {
2731                 err = PTR_ERR(di);
2732                 goto fail;
2733         }
2734         if (di) {
2735                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2736                 bytes_del += name_len;
2737                 if (ret) {
2738                         err = ret;
2739                         goto fail;
2740                 }
2741         }
2742         btrfs_release_path(path);
2743         di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2744                                          index, name, name_len, -1);
2745         if (IS_ERR(di)) {
2746                 err = PTR_ERR(di);
2747                 goto fail;
2748         }
2749         if (di) {
2750                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2751                 bytes_del += name_len;
2752                 if (ret) {
2753                         err = ret;
2754                         goto fail;
2755                 }
2756         }
2757
2758         /* update the directory size in the log to reflect the names
2759          * we have removed
2760          */
2761         if (bytes_del) {
2762                 struct btrfs_key key;
2763
2764                 key.objectid = dir_ino;
2765                 key.offset = 0;
2766                 key.type = BTRFS_INODE_ITEM_KEY;
2767                 btrfs_release_path(path);
2768
2769                 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2770                 if (ret < 0) {
2771                         err = ret;
2772                         goto fail;
2773                 }
2774                 if (ret == 0) {
2775                         struct btrfs_inode_item *item;
2776                         u64 i_size;
2777
2778                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2779                                               struct btrfs_inode_item);
2780                         i_size = btrfs_inode_size(path->nodes[0], item);
2781                         if (i_size > bytes_del)
2782                                 i_size -= bytes_del;
2783                         else
2784                                 i_size = 0;
2785                         btrfs_set_inode_size(path->nodes[0], item, i_size);
2786                         btrfs_mark_buffer_dirty(path->nodes[0]);
2787                 } else
2788                         ret = 0;
2789                 btrfs_release_path(path);
2790         }
2791 fail:
2792         btrfs_free_path(path);
2793 out_unlock:
2794         mutex_unlock(&BTRFS_I(dir)->log_mutex);
2795         if (ret == -ENOSPC) {
2796                 root->fs_info->last_trans_log_full_commit = trans->transid;
2797                 ret = 0;
2798         } else if (ret < 0)
2799                 btrfs_abort_transaction(trans, root, ret);
2800
2801         btrfs_end_log_trans(root);
2802
2803         return err;
2804 }
2805
2806 /* see comments for btrfs_del_dir_entries_in_log */
2807 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2808                                struct btrfs_root *root,
2809                                const char *name, int name_len,
2810                                struct inode *inode, u64 dirid)
2811 {
2812         struct btrfs_root *log;
2813         u64 index;
2814         int ret;
2815
2816         if (BTRFS_I(inode)->logged_trans < trans->transid)
2817                 return 0;
2818
2819         ret = join_running_log_trans(root);
2820         if (ret)
2821                 return 0;
2822         log = root->log_root;
2823         mutex_lock(&BTRFS_I(inode)->log_mutex);
2824
2825         ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2826                                   dirid, &index);
2827         mutex_unlock(&BTRFS_I(inode)->log_mutex);
2828         if (ret == -ENOSPC) {
2829                 root->fs_info->last_trans_log_full_commit = trans->transid;
2830                 ret = 0;
2831         } else if (ret < 0 && ret != -ENOENT)
2832                 btrfs_abort_transaction(trans, root, ret);
2833         btrfs_end_log_trans(root);
2834
2835         return ret;
2836 }
2837
2838 /*
2839  * creates a range item in the log for 'dirid'.  first_offset and
2840  * last_offset tell us which parts of the key space the log should
2841  * be considered authoritative for.
2842  */
2843 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2844                                        struct btrfs_root *log,
2845                                        struct btrfs_path *path,
2846                                        int key_type, u64 dirid,
2847                                        u64 first_offset, u64 last_offset)
2848 {
2849         int ret;
2850         struct btrfs_key key;
2851         struct btrfs_dir_log_item *item;
2852
2853         key.objectid = dirid;
2854         key.offset = first_offset;
2855         if (key_type == BTRFS_DIR_ITEM_KEY)
2856                 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2857         else
2858                 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2859         ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2860         if (ret)
2861                 return ret;
2862
2863         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2864                               struct btrfs_dir_log_item);
2865         btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2866         btrfs_mark_buffer_dirty(path->nodes[0]);
2867         btrfs_release_path(path);
2868         return 0;
2869 }
2870
2871 /*
2872  * log all the items included in the current transaction for a given
2873  * directory.  This also creates the range items in the log tree required
2874  * to replay anything deleted before the fsync
2875  */
2876 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2877                           struct btrfs_root *root, struct inode *inode,
2878                           struct btrfs_path *path,
2879                           struct btrfs_path *dst_path, int key_type,
2880                           u64 min_offset, u64 *last_offset_ret)
2881 {
2882         struct btrfs_key min_key;
2883         struct btrfs_root *log = root->log_root;
2884         struct extent_buffer *src;
2885         int err = 0;
2886         int ret;
2887         int i;
2888         int nritems;
2889         u64 first_offset = min_offset;
2890         u64 last_offset = (u64)-1;
2891         u64 ino = btrfs_ino(inode);
2892
2893         log = root->log_root;
2894
2895         min_key.objectid = ino;
2896         min_key.type = key_type;
2897         min_key.offset = min_offset;
2898
2899         path->keep_locks = 1;
2900
2901         ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2902
2903         /*
2904          * we didn't find anything from this transaction, see if there
2905          * is anything at all
2906          */
2907         if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2908                 min_key.objectid = ino;
2909                 min_key.type = key_type;
2910                 min_key.offset = (u64)-1;
2911                 btrfs_release_path(path);
2912                 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2913                 if (ret < 0) {
2914                         btrfs_release_path(path);
2915                         return ret;
2916                 }
2917                 ret = btrfs_previous_item(root, path, ino, key_type);
2918
2919                 /* if ret == 0 there are items for this type,
2920                  * create a range to tell us the last key of this type.
2921                  * otherwise, there are no items in this directory after
2922                  * *min_offset, and we create a range to indicate that.
2923                  */
2924                 if (ret == 0) {
2925                         struct btrfs_key tmp;
2926                         btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2927                                               path->slots[0]);
2928                         if (key_type == tmp.type)
2929                                 first_offset = max(min_offset, tmp.offset) + 1;
2930                 }
2931                 goto done;
2932         }
2933
2934         /* go backward to find any previous key */
2935         ret = btrfs_previous_item(root, path, ino, key_type);
2936         if (ret == 0) {
2937                 struct btrfs_key tmp;
2938                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2939                 if (key_type == tmp.type) {
2940                         first_offset = tmp.offset;
2941                         ret = overwrite_item(trans, log, dst_path,
2942                                              path->nodes[0], path->slots[0],
2943                                              &tmp);
2944                         if (ret) {
2945                                 err = ret;
2946                                 goto done;
2947                         }
2948                 }
2949         }
2950         btrfs_release_path(path);
2951
2952         /* find the first key from this transaction again */
2953         ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2954         if (WARN_ON(ret != 0))
2955                 goto done;
2956
2957         /*
2958          * we have a block from this transaction, log every item in it
2959          * from our directory
2960          */
2961         while (1) {
2962                 struct btrfs_key tmp;
2963                 src = path->nodes[0];
2964                 nritems = btrfs_header_nritems(src);
2965                 for (i = path->slots[0]; i < nritems; i++) {
2966                         btrfs_item_key_to_cpu(src, &min_key, i);
2967
2968                         if (min_key.objectid != ino || min_key.type != key_type)
2969                                 goto done;
2970                         ret = overwrite_item(trans, log, dst_path, src, i,
2971                                              &min_key);
2972                         if (ret) {
2973                                 err = ret;
2974                                 goto done;
2975                         }
2976                 }
2977                 path->slots[0] = nritems;
2978
2979                 /*
2980                  * look ahead to the next item and see if it is also
2981                  * from this directory and from this transaction
2982                  */
2983                 ret = btrfs_next_leaf(root, path);
2984                 if (ret == 1) {
2985                         last_offset = (u64)-1;
2986                         goto done;
2987                 }
2988                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2989                 if (tmp.objectid != ino || tmp.type != key_type) {
2990                         last_offset = (u64)-1;
2991                         goto done;
2992                 }
2993                 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2994                         ret = overwrite_item(trans, log, dst_path,
2995                                              path->nodes[0], path->slots[0],
2996                                              &tmp);
2997                         if (ret)
2998                                 err = ret;
2999                         else
3000                                 last_offset = tmp.offset;
3001                         goto done;
3002                 }
3003         }
3004 done:
3005         btrfs_release_path(path);
3006         btrfs_release_path(dst_path);
3007
3008         if (err == 0) {
3009                 *last_offset_ret = last_offset;
3010                 /*
3011                  * insert the log range keys to indicate where the log
3012                  * is valid
3013                  */
3014                 ret = insert_dir_log_key(trans, log, path, key_type,
3015                                          ino, first_offset, last_offset);
3016                 if (ret)
3017                         err = ret;
3018         }
3019         return err;
3020 }
3021
3022 /*
3023  * logging directories is very similar to logging inodes, We find all the items
3024  * from the current transaction and write them to the log.
3025  *
3026  * The recovery code scans the directory in the subvolume, and if it finds a
3027  * key in the range logged that is not present in the log tree, then it means
3028  * that dir entry was unlinked during the transaction.
3029  *
3030  * In order for that scan to work, we must include one key smaller than
3031  * the smallest logged by this transaction and one key larger than the largest
3032  * key logged by this transaction.
3033  */
3034 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3035                           struct btrfs_root *root, struct inode *inode,
3036                           struct btrfs_path *path,
3037                           struct btrfs_path *dst_path)
3038 {
3039         u64 min_key;
3040         u64 max_key;
3041         int ret;
3042         int key_type = BTRFS_DIR_ITEM_KEY;
3043
3044 again:
3045         min_key = 0;
3046         max_key = 0;
3047         while (1) {
3048                 ret = log_dir_items(trans, root, inode, path,
3049                                     dst_path, key_type, min_key,
3050                                     &max_key);
3051                 if (ret)
3052                         return ret;
3053                 if (max_key == (u64)-1)
3054                         break;
3055                 min_key = max_key + 1;
3056         }
3057
3058         if (key_type == BTRFS_DIR_ITEM_KEY) {
3059                 key_type = BTRFS_DIR_INDEX_KEY;
3060                 goto again;
3061         }
3062         return 0;
3063 }
3064
3065 /*
3066  * a helper function to drop items from the log before we relog an
3067  * inode.  max_key_type indicates the highest item type to remove.
3068  * This cannot be run for file data extents because it does not
3069  * free the extents they point to.
3070  */
3071 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3072                                   struct btrfs_root *log,
3073                                   struct btrfs_path *path,
3074                                   u64 objectid, int max_key_type)
3075 {
3076         int ret;
3077         struct btrfs_key key;
3078         struct btrfs_key found_key;
3079         int start_slot;
3080
3081         key.objectid = objectid;
3082         key.type = max_key_type;
3083         key.offset = (u64)-1;
3084
3085         while (1) {
3086                 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3087                 BUG_ON(ret == 0); /* Logic error */
3088                 if (ret < 0)
3089                         break;
3090
3091                 if (path->slots[0] == 0)
3092                         break;
3093
3094                 path->slots[0]--;
3095                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3096                                       path->slots[0]);
3097
3098                 if (found_key.objectid != objectid)
3099                         break;
3100
3101                 found_key.offset = 0;
3102                 found_key.type = 0;
3103                 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3104                                        &start_slot);
3105
3106                 ret = btrfs_del_items(trans, log, path, start_slot,
3107                                       path->slots[0] - start_slot + 1);
3108                 /*
3109                  * If start slot isn't 0 then we don't need to re-search, we've
3110                  * found the last guy with the objectid in this tree.
3111                  */
3112                 if (ret || start_slot != 0)
3113                         break;
3114                 btrfs_release_path(path);
3115         }
3116         btrfs_release_path(path);
3117         if (ret > 0)
3118                 ret = 0;
3119         return ret;
3120 }
3121
3122 static void fill_inode_item(struct btrfs_trans_handle *trans,
3123                             struct extent_buffer *leaf,
3124                             struct btrfs_inode_item *item,
3125                             struct inode *inode, int log_inode_only)
3126 {
3127         struct btrfs_map_token token;
3128
3129         btrfs_init_map_token(&token);
3130
3131         if (log_inode_only) {
3132                 /* set the generation to zero so the recover code
3133                  * can tell the difference between an logging
3134                  * just to say 'this inode exists' and a logging
3135                  * to say 'update this inode with these values'
3136                  */
3137                 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3138                 btrfs_set_token_inode_size(leaf, item, 0, &token);
3139         } else {
3140                 btrfs_set_token_inode_generation(leaf, item,
3141                                                  BTRFS_I(inode)->generation,
3142                                                  &token);
3143                 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3144         }
3145
3146         btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3147         btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3148         btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3149         btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3150
3151         btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3152                                      inode->i_atime.tv_sec, &token);
3153         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3154                                       inode->i_atime.tv_nsec, &token);
3155
3156         btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3157                                      inode->i_mtime.tv_sec, &token);
3158         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3159                                       inode->i_mtime.tv_nsec, &token);
3160
3161         btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3162                                      inode->i_ctime.tv_sec, &token);
3163         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3164                                       inode->i_ctime.tv_nsec, &token);
3165
3166         btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3167                                      &token);
3168
3169         btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3170         btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3171         btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3172         btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3173         btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3174 }
3175
3176 static int log_inode_item(struct btrfs_trans_handle *trans,
3177                           struct btrfs_root *log, struct btrfs_path *path,
3178                           struct inode *inode)
3179 {
3180         struct btrfs_inode_item *inode_item;
3181         int ret;
3182
3183         ret = btrfs_insert_empty_item(trans, log, path,
3184                                       &BTRFS_I(inode)->location,
3185                                       sizeof(*inode_item));
3186         if (ret && ret != -EEXIST)
3187                 return ret;
3188         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3189                                     struct btrfs_inode_item);
3190         fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3191         btrfs_release_path(path);
3192         return 0;
3193 }
3194
3195 static noinline int copy_items(struct btrfs_trans_handle *trans,
3196                                struct inode *inode,
3197                                struct btrfs_path *dst_path,
3198                                struct btrfs_path *src_path, u64 *last_extent,
3199                                int start_slot, int nr, int inode_only)
3200 {
3201         unsigned long src_offset;
3202         unsigned long dst_offset;
3203         struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3204         struct btrfs_file_extent_item *extent;
3205         struct btrfs_inode_item *inode_item;
3206         struct extent_buffer *src = src_path->nodes[0];
3207         struct btrfs_key first_key, last_key, key;
3208         int ret;
3209         struct btrfs_key *ins_keys;
3210         u32 *ins_sizes;
3211         char *ins_data;
3212         int i;
3213         struct list_head ordered_sums;
3214         int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3215         bool has_extents = false;
3216         bool need_find_last_extent = (*last_extent == 0);
3217         bool done = false;
3218
3219         INIT_LIST_HEAD(&ordered_sums);
3220
3221         ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3222                            nr * sizeof(u32), GFP_NOFS);
3223         if (!ins_data)
3224                 return -ENOMEM;
3225
3226         first_key.objectid = (u64)-1;
3227
3228         ins_sizes = (u32 *)ins_data;
3229         ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3230
3231         for (i = 0; i < nr; i++) {
3232                 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3233                 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3234         }
3235         ret = btrfs_insert_empty_items(trans, log, dst_path,
3236                                        ins_keys, ins_sizes, nr);
3237         if (ret) {
3238                 kfree(ins_data);
3239                 return ret;
3240         }
3241
3242         for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3243                 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3244                                                    dst_path->slots[0]);
3245
3246                 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3247
3248                 if ((i == (nr - 1)))
3249                         last_key = ins_keys[i];
3250
3251                 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3252                         inode_item = btrfs_item_ptr(dst_path->nodes[0],
3253                                                     dst_path->slots[0],
3254                                                     struct btrfs_inode_item);
3255                         fill_inode_item(trans, dst_path->nodes[0], inode_item,
3256                                         inode, inode_only == LOG_INODE_EXISTS);
3257                 } else {
3258                         copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3259                                            src_offset, ins_sizes[i]);
3260                 }
3261
3262                 /*
3263                  * We set need_find_last_extent here in case we know we were
3264                  * processing other items and then walk into the first extent in
3265                  * the inode.  If we don't hit an extent then nothing changes,
3266                  * we'll do the last search the next time around.
3267                  */
3268                 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3269                         has_extents = true;
3270                         if (need_find_last_extent &&
3271                             first_key.objectid == (u64)-1)
3272                                 first_key = ins_keys[i];
3273                 } else {
3274                         need_find_last_extent = false;
3275                 }
3276
3277                 /* take a reference on file data extents so that truncates
3278                  * or deletes of this inode don't have to relog the inode
3279                  * again
3280                  */
3281                 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3282                     !skip_csum) {
3283                         int found_type;
3284                         extent = btrfs_item_ptr(src, start_slot + i,
3285                                                 struct btrfs_file_extent_item);
3286
3287                         if (btrfs_file_extent_generation(src, extent) < trans->transid)
3288                                 continue;
3289
3290                         found_type = btrfs_file_extent_type(src, extent);
3291                         if (found_type == BTRFS_FILE_EXTENT_REG) {
3292                                 u64 ds, dl, cs, cl;
3293                                 ds = btrfs_file_extent_disk_bytenr(src,
3294                                                                 extent);
3295                                 /* ds == 0 is a hole */
3296                                 if (ds == 0)
3297                                         continue;
3298
3299                                 dl = btrfs_file_extent_disk_num_bytes(src,
3300                                                                 extent);
3301                                 cs = btrfs_file_extent_offset(src, extent);
3302                                 cl = btrfs_file_extent_num_bytes(src,
3303                                                                 extent);
3304                                 if (btrfs_file_extent_compression(src,
3305                                                                   extent)) {
3306                                         cs = 0;
3307                                         cl = dl;
3308                                 }
3309
3310                                 ret = btrfs_lookup_csums_range(
3311                                                 log->fs_info->csum_root,
3312                                                 ds + cs, ds + cs + cl - 1,
3313                                                 &ordered_sums, 0);
3314                                 if (ret) {
3315                                         btrfs_release_path(dst_path);
3316                                         kfree(ins_data);
3317                                         return ret;
3318                                 }
3319                         }
3320                 }
3321         }
3322
3323         btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3324         btrfs_release_path(dst_path);
3325         kfree(ins_data);
3326
3327         /*
3328          * we have to do this after the loop above to avoid changing the
3329          * log tree while trying to change the log tree.
3330          */
3331         ret = 0;
3332         while (!list_empty(&ordered_sums)) {
3333                 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3334                                                    struct btrfs_ordered_sum,
3335                                                    list);
3336                 if (!ret)
3337                         ret = btrfs_csum_file_blocks(trans, log, sums);
3338                 list_del(&sums->list);
3339                 kfree(sums);
3340         }
3341
3342         if (!has_extents)
3343                 return ret;
3344
3345         /*
3346          * Because we use btrfs_search_forward we could skip leaves that were
3347          * not modified and then assume *last_extent is valid when it really
3348          * isn't.  So back up to the previous leaf and read the end of the last
3349          * extent before we go and fill in holes.
3350          */
3351         if (need_find_last_extent) {
3352                 u64 len;
3353
3354                 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3355                 if (ret < 0)
3356                         return ret;
3357                 if (ret)
3358                         goto fill_holes;
3359                 if (src_path->slots[0])
3360                         src_path->slots[0]--;
3361                 src = src_path->nodes[0];
3362                 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3363                 if (key.objectid != btrfs_ino(inode) ||
3364                     key.type != BTRFS_EXTENT_DATA_KEY)
3365                         goto fill_holes;
3366                 extent = btrfs_item_ptr(src, src_path->slots[0],
3367                                         struct btrfs_file_extent_item);
3368                 if (btrfs_file_extent_type(src, extent) ==
3369                     BTRFS_FILE_EXTENT_INLINE) {
3370                         len = btrfs_file_extent_inline_len(src,
3371                                                            src_path->slots[0],
3372                                                            extent);
3373                         *last_extent = ALIGN(key.offset + len,
3374                                              log->sectorsize);
3375                 } else {
3376                         len = btrfs_file_extent_num_bytes(src, extent);
3377                         *last_extent = key.offset + len;
3378                 }
3379         }
3380 fill_holes:
3381         /* So we did prev_leaf, now we need to move to the next leaf, but a few
3382          * things could have happened
3383          *
3384          * 1) A merge could have happened, so we could currently be on a leaf
3385          * that holds what we were copying in the first place.
3386          * 2) A split could have happened, and now not all of the items we want
3387          * are on the same leaf.
3388          *
3389          * So we need to adjust how we search for holes, we need to drop the
3390          * path and re-search for the first extent key we found, and then walk
3391          * forward until we hit the last one we copied.
3392          */
3393         if (need_find_last_extent) {
3394                 /* btrfs_prev_leaf could return 1 without releasing the path */
3395                 btrfs_release_path(src_path);
3396                 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3397                                         src_path, 0, 0);
3398                 if (ret < 0)
3399                         return ret;
3400                 ASSERT(ret == 0);
3401                 src = src_path->nodes[0];
3402                 i = src_path->slots[0];
3403         } else {
3404                 i = start_slot;
3405         }
3406
3407         /*
3408          * Ok so here we need to go through and fill in any holes we may have
3409          * to make sure that holes are punched for those areas in case they had
3410          * extents previously.
3411          */
3412         while (!done) {
3413                 u64 offset, len;
3414                 u64 extent_end;
3415
3416                 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3417                         ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3418                         if (ret < 0)
3419                                 return ret;
3420                         ASSERT(ret == 0);
3421                         src = src_path->nodes[0];
3422                         i = 0;
3423                 }
3424
3425                 btrfs_item_key_to_cpu(src, &key, i);
3426                 if (!btrfs_comp_cpu_keys(&key, &last_key))
3427                         done = true;
3428                 if (key.objectid != btrfs_ino(inode) ||
3429                     key.type != BTRFS_EXTENT_DATA_KEY) {
3430                         i++;
3431                         continue;
3432                 }
3433                 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3434                 if (btrfs_file_extent_type(src, extent) ==
3435                     BTRFS_FILE_EXTENT_INLINE) {
3436                         len = btrfs_file_extent_inline_len(src, i, extent);
3437                         extent_end = ALIGN(key.offset + len, log->sectorsize);
3438                 } else {
3439                         len = btrfs_file_extent_num_bytes(src, extent);
3440                         extent_end = key.offset + len;
3441                 }
3442                 i++;
3443
3444                 if (*last_extent == key.offset) {
3445                         *last_extent = extent_end;
3446                         continue;
3447                 }
3448                 offset = *last_extent;
3449                 len = key.offset - *last_extent;
3450                 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3451                                                offset, 0, 0, len, 0, len, 0,
3452                                                0, 0);
3453                 if (ret)
3454                         break;
3455                 *last_extent = offset + len;
3456         }
3457         /*
3458          * Need to let the callers know we dropped the path so they should
3459          * re-search.
3460          */
3461         if (!ret && need_find_last_extent)
3462                 ret = 1;
3463         return ret;
3464 }
3465
3466 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3467 {
3468         struct extent_map *em1, *em2;
3469
3470         em1 = list_entry(a, struct extent_map, list);
3471         em2 = list_entry(b, struct extent_map, list);
3472
3473         if (em1->start < em2->start)
3474                 return -1;
3475         else if (em1->start > em2->start)
3476                 return 1;
3477         return 0;
3478 }
3479
3480 static int log_one_extent(struct btrfs_trans_handle *trans,
3481                           struct inode *inode, struct btrfs_root *root,
3482                           struct extent_map *em, struct btrfs_path *path)
3483 {
3484         struct btrfs_root *log = root->log_root;
3485         struct btrfs_file_extent_item *fi;
3486         struct extent_buffer *leaf;
3487         struct btrfs_ordered_extent *ordered;
3488         struct list_head ordered_sums;
3489         struct btrfs_map_token token;
3490         struct btrfs_key key;
3491         u64 mod_start = em->mod_start;
3492         u64 mod_len = em->mod_len;
3493         u64 csum_offset;
3494         u64 csum_len;
3495         u64 extent_offset = em->start - em->orig_start;
3496         u64 block_len;
3497         int ret;
3498         int index = log->log_transid % 2;
3499         bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3500         int extent_inserted = 0;
3501
3502         INIT_LIST_HEAD(&ordered_sums);
3503         btrfs_init_map_token(&token);
3504
3505         ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3506                                    em->start + em->len, NULL, 0, 1,
3507                                    sizeof(*fi), &extent_inserted);
3508         if (ret)
3509                 return ret;
3510
3511         if (!extent_inserted) {
3512                 key.objectid = btrfs_ino(inode);
3513                 key.type = BTRFS_EXTENT_DATA_KEY;
3514                 key.offset = em->start;
3515
3516                 ret = btrfs_insert_empty_item(trans, log, path, &key,
3517                                               sizeof(*fi));
3518                 if (ret)
3519                         return ret;
3520         }
3521         leaf = path->nodes[0];
3522         fi = btrfs_item_ptr(leaf, path->slots[0],
3523                             struct btrfs_file_extent_item);
3524
3525         btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3526                                                &token);
3527         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3528                 skip_csum = true;
3529                 btrfs_set_token_file_extent_type(leaf, fi,
3530                                                  BTRFS_FILE_EXTENT_PREALLOC,
3531                                                  &token);
3532         } else {
3533                 btrfs_set_token_file_extent_type(leaf, fi,
3534                                                  BTRFS_FILE_EXTENT_REG,
3535                                                  &token);
3536                 if (em->block_start == EXTENT_MAP_HOLE)
3537                         skip_csum = true;
3538         }
3539
3540         block_len = max(em->block_len, em->orig_block_len);
3541         if (em->compress_type != BTRFS_COMPRESS_NONE) {
3542                 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3543                                                         em->block_start,
3544                                                         &token);
3545                 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3546                                                            &token);
3547         } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3548                 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3549                                                         em->block_start -
3550                                                         extent_offset, &token);
3551                 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3552                                                            &token);
3553         } else {
3554                 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3555                 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3556                                                            &token);
3557         }
3558
3559         btrfs_set_token_file_extent_offset(leaf, fi,
3560                                            em->start - em->orig_start,
3561                                            &token);
3562         btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3563         btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3564         btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3565                                                 &token);
3566         btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3567         btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3568         btrfs_mark_buffer_dirty(leaf);
3569
3570         btrfs_release_path(path);
3571         if (ret) {
3572                 return ret;
3573         }
3574
3575         if (skip_csum)
3576                 return 0;
3577
3578         /*
3579          * First check and see if our csums are on our outstanding ordered
3580          * extents.
3581          */
3582 again:
3583         spin_lock_irq(&log->log_extents_lock[index]);
3584         list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3585                 struct btrfs_ordered_sum *sum;
3586
3587                 if (!mod_len)
3588                         break;
3589
3590                 if (ordered->inode != inode)
3591                         continue;
3592
3593                 if (ordered->file_offset + ordered->len <= mod_start ||
3594                     mod_start + mod_len <= ordered->file_offset)
3595                         continue;
3596
3597                 /*
3598                  * We are going to copy all the csums on this ordered extent, so
3599                  * go ahead and adjust mod_start and mod_len in case this
3600                  * ordered extent has already been logged.
3601                  */
3602                 if (ordered->file_offset > mod_start) {
3603                         if (ordered->file_offset + ordered->len >=
3604                             mod_start + mod_len)
3605                                 mod_len = ordered->file_offset - mod_start;
3606                         /*
3607                          * If we have this case
3608                          *
3609                          * |--------- logged extent ---------|
3610                          *       |----- ordered extent ----|
3611                          *
3612                          * Just don't mess with mod_start and mod_len, we'll
3613                          * just end up logging more csums than we need and it
3614                          * will be ok.
3615                          */
3616                 } else {
3617                         if (ordered->file_offset + ordered->len <
3618                             mod_start + mod_len) {
3619                                 mod_len = (mod_start + mod_len) -
3620                                         (ordered->file_offset + ordered->len);
3621                                 mod_start = ordered->file_offset +
3622                                         ordered->len;
3623                         } else {
3624                                 mod_len = 0;
3625                         }
3626                 }
3627
3628                 /*
3629                  * To keep us from looping for the above case of an ordered
3630                  * extent that falls inside of the logged extent.
3631                  */
3632                 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3633                                      &ordered->flags))
3634                         continue;
3635                 atomic_inc(&ordered->refs);
3636                 spin_unlock_irq(&log->log_extents_lock[index]);
3637                 /*
3638                  * we've dropped the lock, we must either break or
3639                  * start over after this.
3640                  */
3641
3642                 if (ordered->csum_bytes_left) {
3643                         btrfs_start_ordered_extent(inode, ordered, 0);
3644                         wait_event(ordered->wait,
3645                                    ordered->csum_bytes_left == 0);
3646                 }
3647
3648                 list_for_each_entry(sum, &ordered->list, list) {
3649                         ret = btrfs_csum_file_blocks(trans, log, sum);
3650                         if (ret) {
3651                                 btrfs_put_ordered_extent(ordered);
3652                                 goto unlocked;
3653                         }
3654                 }
3655                 btrfs_put_ordered_extent(ordered);
3656                 goto again;
3657
3658         }
3659         spin_unlock_irq(&log->log_extents_lock[index]);
3660 unlocked:
3661
3662         if (!mod_len || ret)
3663                 return ret;
3664
3665         if (em->compress_type) {
3666                 csum_offset = 0;
3667                 csum_len = block_len;
3668         } else {
3669                 csum_offset = mod_start - em->start;
3670                 csum_len = mod_len;
3671         }
3672
3673         /* block start is already adjusted for the file extent offset. */
3674         ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3675                                        em->block_start + csum_offset,
3676                                        em->block_start + csum_offset +
3677                                        csum_len - 1, &ordered_sums, 0);
3678         if (ret)
3679                 return ret;
3680
3681         while (!list_empty(&ordered_sums)) {
3682                 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3683                                                    struct btrfs_ordered_sum,
3684                                                    list);
3685                 if (!ret)
3686                         ret = btrfs_csum_file_blocks(trans, log, sums);
3687                 list_del(&sums->list);
3688                 kfree(sums);
3689         }
3690
3691         return ret;
3692 }
3693
3694 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3695                                      struct btrfs_root *root,
3696                                      struct inode *inode,
3697                                      struct btrfs_path *path)
3698 {
3699         struct extent_map *em, *n;
3700         struct list_head extents;
3701         struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3702         u64 test_gen;
3703         int ret = 0;
3704         int num = 0;
3705
3706         INIT_LIST_HEAD(&extents);
3707
3708         write_lock(&tree->lock);
3709         test_gen = root->fs_info->last_trans_committed;
3710
3711         list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3712                 list_del_init(&em->list);
3713
3714                 /*
3715                  * Just an arbitrary number, this can be really CPU intensive
3716                  * once we start getting a lot of extents, and really once we
3717                  * have a bunch of extents we just want to commit since it will
3718                  * be faster.
3719                  */
3720                 if (++num > 32768) {
3721                         list_del_init(&tree->modified_extents);
3722                         ret = -EFBIG;
3723                         goto process;
3724                 }
3725
3726                 if (em->generation <= test_gen)
3727                         continue;
3728                 /* Need a ref to keep it from getting evicted from cache */
3729                 atomic_inc(&em->refs);
3730                 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3731                 list_add_tail(&em->list, &extents);
3732                 num++;
3733         }
3734
3735         list_sort(NULL, &extents, extent_cmp);
3736
3737 process:
3738         while (!list_empty(&extents)) {
3739                 em = list_entry(extents.next, struct extent_map, list);
3740
3741                 list_del_init(&em->list);
3742
3743                 /*
3744                  * If we had an error we just need to delete everybody from our
3745                  * private list.
3746                  */
3747                 if (ret) {
3748                         clear_em_logging(tree, em);
3749                         free_extent_map(em);
3750                         continue;
3751                 }
3752
3753                 write_unlock(&tree->lock);
3754
3755                 ret = log_one_extent(trans, inode, root, em, path);
3756                 write_lock(&tree->lock);
3757                 clear_em_logging(tree, em);
3758                 free_extent_map(em);
3759         }
3760         WARN_ON(!list_empty(&extents));
3761         write_unlock(&tree->lock);
3762
3763         btrfs_release_path(path);
3764         return ret;
3765 }
3766
3767 /* log a single inode in the tree log.
3768  * At least one parent directory for this inode must exist in the tree
3769  * or be logged already.
3770  *
3771  * Any items from this inode changed by the current transaction are copied
3772  * to the log tree.  An extra reference is taken on any extents in this
3773  * file, allowing us to avoid a whole pile of corner cases around logging
3774  * blocks that have been removed from the tree.
3775  *
3776  * See LOG_INODE_ALL and related defines for a description of what inode_only
3777  * does.
3778  *
3779  * This handles both files and directories.
3780  */
3781 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3782                              struct btrfs_root *root, struct inode *inode,
3783                              int inode_only)
3784 {
3785         struct btrfs_path *path;
3786         struct btrfs_path *dst_path;
3787         struct btrfs_key min_key;
3788         struct btrfs_key max_key;
3789         struct btrfs_root *log = root->log_root;
3790         struct extent_buffer *src = NULL;
3791         u64 last_extent = 0;
3792         int err = 0;
3793         int ret;
3794         int nritems;
3795         int ins_start_slot = 0;
3796         int ins_nr;
3797         bool fast_search = false;
3798         u64 ino = btrfs_ino(inode);
3799
3800         path = btrfs_alloc_path();
3801         if (!path)
3802                 return -ENOMEM;
3803         dst_path = btrfs_alloc_path();
3804         if (!dst_path) {
3805                 btrfs_free_path(path);
3806                 return -ENOMEM;
3807         }
3808
3809         min_key.objectid = ino;
3810         min_key.type = BTRFS_INODE_ITEM_KEY;
3811         min_key.offset = 0;
3812
3813         max_key.objectid = ino;
3814
3815
3816         /* today the code can only do partial logging of directories */
3817         if (S_ISDIR(inode->i_mode) ||
3818             (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3819                        &BTRFS_I(inode)->runtime_flags) &&
3820              inode_only == LOG_INODE_EXISTS))
3821                 max_key.type = BTRFS_XATTR_ITEM_KEY;
3822         else
3823                 max_key.type = (u8)-1;
3824         max_key.offset = (u64)-1;
3825
3826         /* Only run delayed items if we are a dir or a new file */
3827         if (S_ISDIR(inode->i_mode) ||
3828             BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3829                 ret = btrfs_commit_inode_delayed_items(trans, inode);
3830                 if (ret) {
3831                         btrfs_free_path(path);
3832                         btrfs_free_path(dst_path);
3833                         return ret;
3834                 }
3835         }
3836
3837         mutex_lock(&BTRFS_I(inode)->log_mutex);
3838
3839         btrfs_get_logged_extents(log, inode);
3840
3841         /*
3842          * a brute force approach to making sure we get the most uptodate
3843          * copies of everything.
3844          */
3845         if (S_ISDIR(inode->i_mode)) {
3846                 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3847
3848                 if (inode_only == LOG_INODE_EXISTS)
3849                         max_key_type = BTRFS_XATTR_ITEM_KEY;
3850                 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3851         } else {
3852                 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3853                                        &BTRFS_I(inode)->runtime_flags)) {
3854                         clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3855                                   &BTRFS_I(inode)->runtime_flags);
3856                         ret = btrfs_truncate_inode_items(trans, log,
3857                                                          inode, 0, 0);
3858                 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3859                                               &BTRFS_I(inode)->runtime_flags) ||
3860                            inode_only == LOG_INODE_EXISTS) {
3861                         if (inode_only == LOG_INODE_ALL)
3862                                 fast_search = true;
3863                         max_key.type = BTRFS_XATTR_ITEM_KEY;
3864                         ret = drop_objectid_items(trans, log, path, ino,
3865                                                   max_key.type);
3866                 } else {
3867                         if (inode_only == LOG_INODE_ALL)
3868                                 fast_search = true;
3869                         ret = log_inode_item(trans, log, dst_path, inode);
3870                         if (ret) {
3871                                 err = ret;
3872                                 goto out_unlock;
3873                         }
3874                         goto log_extents;
3875                 }
3876
3877         }
3878         if (ret) {
3879                 err = ret;
3880                 goto out_unlock;
3881         }
3882         path->keep_locks = 1;
3883
3884         while (1) {
3885                 ins_nr = 0;
3886                 ret = btrfs_search_forward(root, &min_key,
3887                                            path, trans->transid);
3888                 if (ret != 0)
3889                         break;
3890 again:
3891                 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3892                 if (min_key.objectid != ino)
3893                         break;
3894                 if (min_key.type > max_key.type)
3895                         break;
3896
3897                 src = path->nodes[0];
3898                 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3899                         ins_nr++;
3900                         goto next_slot;
3901                 } else if (!ins_nr) {
3902                         ins_start_slot = path->slots[0];
3903                         ins_nr = 1;
3904                         goto next_slot;
3905                 }
3906
3907                 ret = copy_items(trans, inode, dst_path, path, &last_extent,
3908                                  ins_start_slot, ins_nr, inode_only);
3909                 if (ret < 0) {
3910                         err = ret;
3911                         goto out_unlock;
3912                 } if (ret) {
3913                         ins_nr = 0;
3914                         btrfs_release_path(path);
3915                         continue;
3916                 }
3917                 ins_nr = 1;
3918                 ins_start_slot = path->slots[0];
3919 next_slot:
3920
3921                 nritems = btrfs_header_nritems(path->nodes[0]);
3922                 path->slots[0]++;
3923                 if (path->slots[0] < nritems) {
3924                         btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3925                                               path->slots[0]);
3926                         goto again;
3927                 }
3928                 if (ins_nr) {
3929                         ret = copy_items(trans, inode, dst_path, path,
3930                                          &last_extent, ins_start_slot,
3931                                          ins_nr, inode_only);
3932                         if (ret < 0) {
3933                                 err = ret;
3934                                 goto out_unlock;
3935                         }
3936                         ret = 0;
3937                         ins_nr = 0;
3938                 }
3939                 btrfs_release_path(path);
3940
3941                 if (min_key.offset < (u64)-1) {
3942                         min_key.offset++;
3943                 } else if (min_key.type < max_key.type) {
3944                         min_key.type++;
3945                         min_key.offset = 0;
3946                 } else {
3947                         break;
3948                 }
3949         }
3950         if (ins_nr) {
3951                 ret = copy_items(trans, inode, dst_path, path, &last_extent,
3952                                  ins_start_slot, ins_nr, inode_only);
3953                 if (ret < 0) {
3954                         err = ret;
3955                         goto out_unlock;
3956                 }
3957                 ret = 0;
3958                 ins_nr = 0;
3959         }
3960
3961 log_extents:
3962         btrfs_release_path(path);
3963         btrfs_release_path(dst_path);
3964         if (fast_search) {
3965                 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3966                 if (ret) {
3967                         err = ret;
3968                         goto out_unlock;
3969                 }
3970         } else if (inode_only == LOG_INODE_ALL) {
3971                 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3972                 struct extent_map *em, *n;
3973
3974                 write_lock(&tree->lock);
3975                 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3976                         list_del_init(&em->list);
3977                 write_unlock(&tree->lock);
3978         }
3979
3980         if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3981                 ret = log_directory_changes(trans, root, inode, path, dst_path);
3982                 if (ret) {
3983                         err = ret;
3984                         goto out_unlock;
3985                 }
3986         }
3987         BTRFS_I(inode)->logged_trans = trans->transid;
3988         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3989 out_unlock:
3990         if (err)
3991                 btrfs_free_logged_extents(log, log->log_transid);
3992         mutex_unlock(&BTRFS_I(inode)->log_mutex);
3993
3994         btrfs_free_path(path);
3995         btrfs_free_path(dst_path);
3996         return err;
3997 }
3998
3999 /*
4000  * follow the dentry parent pointers up the chain and see if any
4001  * of the directories in it require a full commit before they can
4002  * be logged.  Returns zero if nothing special needs to be done or 1 if
4003  * a full commit is required.
4004  */
4005 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4006                                                struct inode *inode,
4007                                                struct dentry *parent,
4008                                                struct super_block *sb,
4009                                                u64 last_committed)
4010 {
4011         int ret = 0;
4012         struct btrfs_root *root;
4013         struct dentry *old_parent = NULL;
4014         struct inode *orig_inode = inode;
4015
4016         /*
4017          * for regular files, if its inode is already on disk, we don't
4018          * have to worry about the parents at all.  This is because
4019          * we can use the last_unlink_trans field to record renames
4020          * and other fun in this file.
4021          */
4022         if (S_ISREG(inode->i_mode) &&
4023             BTRFS_I(inode)->generation <= last_committed &&
4024             BTRFS_I(inode)->last_unlink_trans <= last_committed)
4025                         goto out;
4026
4027         if (!S_ISDIR(inode->i_mode)) {
4028                 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4029                         goto out;
4030                 inode = parent->d_inode;
4031         }
4032
4033         while (1) {
4034                 /*
4035                  * If we are logging a directory then we start with our inode,
4036                  * not our parents inode, so we need to skipp setting the
4037                  * logged_trans so that further down in the log code we don't
4038                  * think this inode has already been logged.
4039                  */
4040                 if (inode != orig_inode)
4041                         BTRFS_I(inode)->logged_trans = trans->transid;
4042                 smp_mb();
4043
4044                 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4045                         root = BTRFS_I(inode)->root;
4046
4047                         /*
4048                          * make sure any commits to the log are forced
4049                          * to be full commits
4050                          */
4051                         root->fs_info->last_trans_log_full_commit =
4052                                 trans->transid;
4053                         ret = 1;
4054                         break;
4055                 }
4056
4057                 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4058                         break;
4059
4060                 if (IS_ROOT(parent))
4061                         break;
4062
4063                 parent = dget_parent(parent);
4064                 dput(old_parent);
4065                 old_parent = parent;
4066                 inode = parent->d_inode;
4067
4068         }
4069         dput(old_parent);
4070 out:
4071         return ret;
4072 }
4073
4074 /*
4075  * helper function around btrfs_log_inode to make sure newly created
4076  * parent directories also end up in the log.  A minimal inode and backref
4077  * only logging is done of any parent directories that are older than
4078  * the last committed transaction
4079  */
4080 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4081                                   struct btrfs_root *root, struct inode *inode,
4082                                   struct dentry *parent, int exists_only)
4083 {
4084         int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4085         struct super_block *sb;
4086         struct dentry *old_parent = NULL;
4087         int ret = 0;
4088         u64 last_committed = root->fs_info->last_trans_committed;
4089
4090         sb = inode->i_sb;
4091
4092         if (btrfs_test_opt(root, NOTREELOG)) {
4093                 ret = 1;
4094                 goto end_no_trans;
4095         }
4096
4097         if (root->fs_info->last_trans_log_full_commit >
4098             root->fs_info->last_trans_committed) {
4099                 ret = 1;
4100                 goto end_no_trans;
4101         }
4102
4103         if (root != BTRFS_I(inode)->root ||
4104             btrfs_root_refs(&root->root_item) == 0) {
4105                 ret = 1;
4106                 goto end_no_trans;
4107         }
4108
4109         ret = check_parent_dirs_for_sync(trans, inode, parent,
4110                                          sb, last_committed);
4111         if (ret)
4112                 goto end_no_trans;
4113
4114         if (btrfs_inode_in_log(inode, trans->transid)) {
4115                 ret = BTRFS_NO_LOG_SYNC;
4116                 goto end_no_trans;
4117         }
4118
4119         ret = start_log_trans(trans, root);
4120         if (ret)
4121                 goto end_trans;
4122
4123         ret = btrfs_log_inode(trans, root, inode, inode_only);
4124         if (ret)
4125                 goto end_trans;
4126
4127         /*
4128          * for regular files, if its inode is already on disk, we don't
4129          * have to worry about the parents at all.  This is because
4130          * we can use the last_unlink_trans field to record renames
4131          * and other fun in this file.
4132          */
4133         if (S_ISREG(inode->i_mode) &&
4134             BTRFS_I(inode)->generation <= last_committed &&
4135             BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4136                 ret = 0;
4137                 goto end_trans;
4138         }
4139
4140         inode_only = LOG_INODE_EXISTS;
4141         while (1) {
4142                 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4143                         break;
4144
4145                 inode = parent->d_inode;
4146                 if (root != BTRFS_I(inode)->root)
4147                         break;
4148
4149                 if (BTRFS_I(inode)->generation >
4150                     root->fs_info->last_trans_committed) {
4151                         ret = btrfs_log_inode(trans, root, inode, inode_only);
4152                         if (ret)
4153                                 goto end_trans;
4154                 }
4155                 if (IS_ROOT(parent))
4156                         break;
4157
4158                 parent = dget_parent(parent);
4159                 dput(old_parent);
4160                 old_parent = parent;
4161         }
4162         ret = 0;
4163 end_trans:
4164         dput(old_parent);
4165         if (ret < 0) {
4166                 root->fs_info->last_trans_log_full_commit = trans->transid;
4167                 ret = 1;
4168         }
4169         btrfs_end_log_trans(root);
4170 end_no_trans:
4171         return ret;
4172 }
4173
4174 /*
4175  * it is not safe to log dentry if the chunk root has added new
4176  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
4177  * If this returns 1, you must commit the transaction to safely get your
4178  * data on disk.
4179  */
4180 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4181                           struct btrfs_root *root, struct dentry *dentry)
4182 {
4183         struct dentry *parent = dget_parent(dentry);
4184         int ret;
4185
4186         ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
4187         dput(parent);
4188
4189         return ret;
4190 }
4191
4192 /*
4193  * should be called during mount to recover any replay any log trees
4194  * from the FS
4195  */
4196 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4197 {
4198         int ret;
4199         struct btrfs_path *path;
4200         struct btrfs_trans_handle *trans;
4201         struct btrfs_key key;
4202         struct btrfs_key found_key;
4203         struct btrfs_key tmp_key;
4204         struct btrfs_root *log;
4205         struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4206         struct walk_control wc = {
4207                 .process_func = process_one_buffer,
4208                 .stage = 0,
4209         };
4210
4211         path = btrfs_alloc_path();
4212         if (!path)
4213                 return -ENOMEM;
4214
4215         fs_info->log_root_recovering = 1;
4216
4217         trans = btrfs_start_transaction(fs_info->tree_root, 0);
4218         if (IS_ERR(trans)) {
4219                 ret = PTR_ERR(trans);
4220                 goto error;
4221         }
4222
4223         wc.trans = trans;
4224         wc.pin = 1;
4225
4226         ret = walk_log_tree(trans, log_root_tree, &wc);
4227         if (ret) {
4228                 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4229                             "recovering log root tree.");
4230                 goto error;
4231         }
4232
4233 again:
4234         key.objectid = BTRFS_TREE_LOG_OBJECTID;
4235         key.offset = (u64)-1;
4236         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4237
4238         while (1) {
4239                 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4240
4241                 if (ret < 0) {
4242                         btrfs_error(fs_info, ret,
4243                                     "Couldn't find tree log root.");
4244                         goto error;
4245                 }
4246                 if (ret > 0) {
4247                         if (path->slots[0] == 0)
4248                                 break;
4249                         path->slots[0]--;
4250                 }
4251                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4252                                       path->slots[0]);
4253                 btrfs_release_path(path);
4254                 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4255                         break;
4256
4257                 log = btrfs_read_fs_root(log_root_tree, &found_key);
4258                 if (IS_ERR(log)) {
4259                         ret = PTR_ERR(log);
4260                         btrfs_error(fs_info, ret,
4261                                     "Couldn't read tree log root.");
4262                         goto error;
4263                 }
4264
4265                 tmp_key.objectid = found_key.offset;
4266                 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4267                 tmp_key.offset = (u64)-1;
4268
4269                 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4270                 if (IS_ERR(wc.replay_dest)) {
4271                         ret = PTR_ERR(wc.replay_dest);
4272                         free_extent_buffer(log->node);
4273                         free_extent_buffer(log->commit_root);
4274                         kfree(log);
4275                         btrfs_error(fs_info, ret, "Couldn't read target root "
4276                                     "for tree log recovery.");
4277                         goto error;
4278                 }
4279
4280                 wc.replay_dest->log_root = log;
4281                 btrfs_record_root_in_trans(trans, wc.replay_dest);
4282                 ret = walk_log_tree(trans, log, &wc);
4283
4284                 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4285                         ret = fixup_inode_link_counts(trans, wc.replay_dest,
4286                                                       path);
4287                 }
4288
4289                 key.offset = found_key.offset - 1;
4290                 wc.replay_dest->log_root = NULL;
4291                 free_extent_buffer(log->node);
4292                 free_extent_buffer(log->commit_root);
4293                 kfree(log);
4294
4295                 if (ret)
4296                         goto error;
4297
4298                 if (found_key.offset == 0)
4299                         break;
4300         }
4301         btrfs_release_path(path);
4302
4303         /* step one is to pin it all, step two is to replay just inodes */
4304         if (wc.pin) {
4305                 wc.pin = 0;
4306                 wc.process_func = replay_one_buffer;
4307                 wc.stage = LOG_WALK_REPLAY_INODES;
4308                 goto again;
4309         }
4310         /* step three is to replay everything */
4311         if (wc.stage < LOG_WALK_REPLAY_ALL) {
4312                 wc.stage++;
4313                 goto again;
4314         }
4315
4316         btrfs_free_path(path);
4317
4318         /* step 4: commit the transaction, which also unpins the blocks */
4319         ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4320         if (ret)
4321                 return ret;
4322
4323         free_extent_buffer(log_root_tree->node);
4324         log_root_tree->log_root = NULL;
4325         fs_info->log_root_recovering = 0;
4326         kfree(log_root_tree);
4327
4328         return 0;
4329 error:
4330         if (wc.trans)
4331                 btrfs_end_transaction(wc.trans, fs_info->tree_root);
4332         btrfs_free_path(path);
4333         return ret;
4334 }
4335
4336 /*
4337  * there are some corner cases where we want to force a full
4338  * commit instead of allowing a directory to be logged.
4339  *
4340  * They revolve around files there were unlinked from the directory, and
4341  * this function updates the parent directory so that a full commit is
4342  * properly done if it is fsync'd later after the unlinks are done.
4343  */
4344 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4345                              struct inode *dir, struct inode *inode,
4346                              int for_rename)
4347 {
4348         /*
4349          * when we're logging a file, if it hasn't been renamed
4350          * or unlinked, and its inode is fully committed on disk,
4351          * we don't have to worry about walking up the directory chain
4352          * to log its parents.
4353          *
4354          * So, we use the last_unlink_trans field to put this transid
4355          * into the file.  When the file is logged we check it and
4356          * don't log the parents if the file is fully on disk.
4357          */
4358         if (S_ISREG(inode->i_mode))
4359                 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4360
4361         /*
4362          * if this directory was already logged any new
4363          * names for this file/dir will get recorded
4364          */
4365         smp_mb();
4366         if (BTRFS_I(dir)->logged_trans == trans->transid)
4367                 return;
4368
4369         /*
4370          * if the inode we're about to unlink was logged,
4371          * the log will be properly updated for any new names
4372          */
4373         if (BTRFS_I(inode)->logged_trans == trans->transid)
4374                 return;
4375
4376         /*
4377          * when renaming files across directories, if the directory
4378          * there we're unlinking from gets fsync'd later on, there's
4379          * no way to find the destination directory later and fsync it
4380          * properly.  So, we have to be conservative and force commits
4381          * so the new name gets discovered.
4382          */
4383         if (for_rename)
4384                 goto record;
4385
4386         /* we can safely do the unlink without any special recording */
4387         return;
4388
4389 record:
4390         BTRFS_I(dir)->last_unlink_trans = trans->transid;
4391 }
4392
4393 /*
4394  * Call this after adding a new name for a file and it will properly
4395  * update the log to reflect the new name.
4396  *
4397  * It will return zero if all goes well, and it will return 1 if a
4398  * full transaction commit is required.
4399  */
4400 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4401                         struct inode *inode, struct inode *old_dir,
4402                         struct dentry *parent)
4403 {
4404         struct btrfs_root * root = BTRFS_I(inode)->root;
4405
4406         /*
4407          * this will force the logging code to walk the dentry chain
4408          * up for the file
4409          */
4410         if (S_ISREG(inode->i_mode))
4411                 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4412
4413         /*
4414          * if this inode hasn't been logged and directory we're renaming it
4415          * from hasn't been logged, we don't need to log it
4416          */
4417         if (BTRFS_I(inode)->logged_trans <=
4418             root->fs_info->last_trans_committed &&
4419             (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4420                     root->fs_info->last_trans_committed))
4421                 return 0;
4422
4423         return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4424 }
4425