]> Pileus Git - ~andy/linux/blob - fs/btrfs/scrub.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[~andy/linux] / fs / btrfs / scrub.c
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45
46 struct scrub_block;
47 struct scrub_ctx;
48
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
58
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
65
66 struct scrub_page {
67         struct scrub_block      *sblock;
68         struct page             *page;
69         struct btrfs_device     *dev;
70         u64                     flags;  /* extent flags */
71         u64                     generation;
72         u64                     logical;
73         u64                     physical;
74         u64                     physical_for_dev_replace;
75         atomic_t                ref_count;
76         struct {
77                 unsigned int    mirror_num:8;
78                 unsigned int    have_csum:1;
79                 unsigned int    io_error:1;
80         };
81         u8                      csum[BTRFS_CSUM_SIZE];
82 };
83
84 struct scrub_bio {
85         int                     index;
86         struct scrub_ctx        *sctx;
87         struct btrfs_device     *dev;
88         struct bio              *bio;
89         int                     err;
90         u64                     logical;
91         u64                     physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93         struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95         struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97         int                     page_count;
98         int                     next_free;
99         struct btrfs_work       work;
100 };
101
102 struct scrub_block {
103         struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104         int                     page_count;
105         atomic_t                outstanding_pages;
106         atomic_t                ref_count; /* free mem on transition to zero */
107         struct scrub_ctx        *sctx;
108         struct {
109                 unsigned int    header_error:1;
110                 unsigned int    checksum_error:1;
111                 unsigned int    no_io_error_seen:1;
112                 unsigned int    generation_error:1; /* also sets header_error */
113         };
114 };
115
116 struct scrub_wr_ctx {
117         struct scrub_bio *wr_curr_bio;
118         struct btrfs_device *tgtdev;
119         int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120         atomic_t flush_all_writes;
121         struct mutex wr_lock;
122 };
123
124 struct scrub_ctx {
125         struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
126         struct btrfs_root       *dev_root;
127         int                     first_free;
128         int                     curr;
129         atomic_t                bios_in_flight;
130         atomic_t                workers_pending;
131         spinlock_t              list_lock;
132         wait_queue_head_t       list_wait;
133         u16                     csum_size;
134         struct list_head        csum_list;
135         atomic_t                cancel_req;
136         int                     readonly;
137         int                     pages_per_rd_bio;
138         u32                     sectorsize;
139         u32                     nodesize;
140         u32                     leafsize;
141
142         int                     is_dev_replace;
143         struct scrub_wr_ctx     wr_ctx;
144
145         /*
146          * statistics
147          */
148         struct btrfs_scrub_progress stat;
149         spinlock_t              stat_lock;
150 };
151
152 struct scrub_fixup_nodatasum {
153         struct scrub_ctx        *sctx;
154         struct btrfs_device     *dev;
155         u64                     logical;
156         struct btrfs_root       *root;
157         struct btrfs_work       work;
158         int                     mirror_num;
159 };
160
161 struct scrub_nocow_inode {
162         u64                     inum;
163         u64                     offset;
164         u64                     root;
165         struct list_head        list;
166 };
167
168 struct scrub_copy_nocow_ctx {
169         struct scrub_ctx        *sctx;
170         u64                     logical;
171         u64                     len;
172         int                     mirror_num;
173         u64                     physical_for_dev_replace;
174         struct list_head        inodes;
175         struct btrfs_work       work;
176 };
177
178 struct scrub_warning {
179         struct btrfs_path       *path;
180         u64                     extent_item_size;
181         char                    *scratch_buf;
182         char                    *msg_buf;
183         const char              *errstr;
184         sector_t                sector;
185         u64                     logical;
186         struct btrfs_device     *dev;
187         int                     msg_bufsize;
188         int                     scratch_bufsize;
189 };
190
191
192 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
193 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
194 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
195 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
196 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
198                                      struct btrfs_fs_info *fs_info,
199                                      struct scrub_block *original_sblock,
200                                      u64 length, u64 logical,
201                                      struct scrub_block *sblocks_for_recheck);
202 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
203                                 struct scrub_block *sblock, int is_metadata,
204                                 int have_csum, u8 *csum, u64 generation,
205                                 u16 csum_size);
206 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
207                                          struct scrub_block *sblock,
208                                          int is_metadata, int have_csum,
209                                          const u8 *csum, u64 generation,
210                                          u16 csum_size);
211 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
212                                              struct scrub_block *sblock_good,
213                                              int force_write);
214 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
215                                             struct scrub_block *sblock_good,
216                                             int page_num, int force_write);
217 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
218 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
219                                            int page_num);
220 static int scrub_checksum_data(struct scrub_block *sblock);
221 static int scrub_checksum_tree_block(struct scrub_block *sblock);
222 static int scrub_checksum_super(struct scrub_block *sblock);
223 static void scrub_block_get(struct scrub_block *sblock);
224 static void scrub_block_put(struct scrub_block *sblock);
225 static void scrub_page_get(struct scrub_page *spage);
226 static void scrub_page_put(struct scrub_page *spage);
227 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
228                                     struct scrub_page *spage);
229 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
230                        u64 physical, struct btrfs_device *dev, u64 flags,
231                        u64 gen, int mirror_num, u8 *csum, int force,
232                        u64 physical_for_dev_replace);
233 static void scrub_bio_end_io(struct bio *bio, int err);
234 static void scrub_bio_end_io_worker(struct btrfs_work *work);
235 static void scrub_block_complete(struct scrub_block *sblock);
236 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237                                u64 extent_logical, u64 extent_len,
238                                u64 *extent_physical,
239                                struct btrfs_device **extent_dev,
240                                int *extent_mirror_num);
241 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
242                               struct scrub_wr_ctx *wr_ctx,
243                               struct btrfs_fs_info *fs_info,
244                               struct btrfs_device *dev,
245                               int is_dev_replace);
246 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248                                     struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio, int err);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static int write_page_nocow(struct scrub_ctx *sctx,
253                             u64 physical_for_dev_replace, struct page *page);
254 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
255                                       struct scrub_copy_nocow_ctx *ctx);
256 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
257                             int mirror_num, u64 physical_for_dev_replace);
258 static void copy_nocow_pages_worker(struct btrfs_work *work);
259 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
260 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
261
262
263 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264 {
265         atomic_inc(&sctx->bios_in_flight);
266 }
267
268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
269 {
270         atomic_dec(&sctx->bios_in_flight);
271         wake_up(&sctx->list_wait);
272 }
273
274 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
275 {
276         while (atomic_read(&fs_info->scrub_pause_req)) {
277                 mutex_unlock(&fs_info->scrub_lock);
278                 wait_event(fs_info->scrub_pause_wait,
279                    atomic_read(&fs_info->scrub_pause_req) == 0);
280                 mutex_lock(&fs_info->scrub_lock);
281         }
282 }
283
284 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
285 {
286         atomic_inc(&fs_info->scrubs_paused);
287         wake_up(&fs_info->scrub_pause_wait);
288
289         mutex_lock(&fs_info->scrub_lock);
290         __scrub_blocked_if_needed(fs_info);
291         atomic_dec(&fs_info->scrubs_paused);
292         mutex_unlock(&fs_info->scrub_lock);
293
294         wake_up(&fs_info->scrub_pause_wait);
295 }
296
297 /*
298  * used for workers that require transaction commits (i.e., for the
299  * NOCOW case)
300  */
301 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
302 {
303         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
304
305         /*
306          * increment scrubs_running to prevent cancel requests from
307          * completing as long as a worker is running. we must also
308          * increment scrubs_paused to prevent deadlocking on pause
309          * requests used for transactions commits (as the worker uses a
310          * transaction context). it is safe to regard the worker
311          * as paused for all matters practical. effectively, we only
312          * avoid cancellation requests from completing.
313          */
314         mutex_lock(&fs_info->scrub_lock);
315         atomic_inc(&fs_info->scrubs_running);
316         atomic_inc(&fs_info->scrubs_paused);
317         mutex_unlock(&fs_info->scrub_lock);
318         atomic_inc(&sctx->workers_pending);
319 }
320
321 /* used for workers that require transaction commits */
322 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
323 {
324         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
325
326         /*
327          * see scrub_pending_trans_workers_inc() why we're pretending
328          * to be paused in the scrub counters
329          */
330         mutex_lock(&fs_info->scrub_lock);
331         atomic_dec(&fs_info->scrubs_running);
332         atomic_dec(&fs_info->scrubs_paused);
333         mutex_unlock(&fs_info->scrub_lock);
334         atomic_dec(&sctx->workers_pending);
335         wake_up(&fs_info->scrub_pause_wait);
336         wake_up(&sctx->list_wait);
337 }
338
339 static void scrub_free_csums(struct scrub_ctx *sctx)
340 {
341         while (!list_empty(&sctx->csum_list)) {
342                 struct btrfs_ordered_sum *sum;
343                 sum = list_first_entry(&sctx->csum_list,
344                                        struct btrfs_ordered_sum, list);
345                 list_del(&sum->list);
346                 kfree(sum);
347         }
348 }
349
350 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
351 {
352         int i;
353
354         if (!sctx)
355                 return;
356
357         scrub_free_wr_ctx(&sctx->wr_ctx);
358
359         /* this can happen when scrub is cancelled */
360         if (sctx->curr != -1) {
361                 struct scrub_bio *sbio = sctx->bios[sctx->curr];
362
363                 for (i = 0; i < sbio->page_count; i++) {
364                         WARN_ON(!sbio->pagev[i]->page);
365                         scrub_block_put(sbio->pagev[i]->sblock);
366                 }
367                 bio_put(sbio->bio);
368         }
369
370         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
371                 struct scrub_bio *sbio = sctx->bios[i];
372
373                 if (!sbio)
374                         break;
375                 kfree(sbio);
376         }
377
378         scrub_free_csums(sctx);
379         kfree(sctx);
380 }
381
382 static noinline_for_stack
383 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
384 {
385         struct scrub_ctx *sctx;
386         int             i;
387         struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
388         int pages_per_rd_bio;
389         int ret;
390
391         /*
392          * the setting of pages_per_rd_bio is correct for scrub but might
393          * be wrong for the dev_replace code where we might read from
394          * different devices in the initial huge bios. However, that
395          * code is able to correctly handle the case when adding a page
396          * to a bio fails.
397          */
398         if (dev->bdev)
399                 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
400                                          bio_get_nr_vecs(dev->bdev));
401         else
402                 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
403         sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
404         if (!sctx)
405                 goto nomem;
406         sctx->is_dev_replace = is_dev_replace;
407         sctx->pages_per_rd_bio = pages_per_rd_bio;
408         sctx->curr = -1;
409         sctx->dev_root = dev->dev_root;
410         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
411                 struct scrub_bio *sbio;
412
413                 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
414                 if (!sbio)
415                         goto nomem;
416                 sctx->bios[i] = sbio;
417
418                 sbio->index = i;
419                 sbio->sctx = sctx;
420                 sbio->page_count = 0;
421                 sbio->work.func = scrub_bio_end_io_worker;
422
423                 if (i != SCRUB_BIOS_PER_SCTX - 1)
424                         sctx->bios[i]->next_free = i + 1;
425                 else
426                         sctx->bios[i]->next_free = -1;
427         }
428         sctx->first_free = 0;
429         sctx->nodesize = dev->dev_root->nodesize;
430         sctx->leafsize = dev->dev_root->leafsize;
431         sctx->sectorsize = dev->dev_root->sectorsize;
432         atomic_set(&sctx->bios_in_flight, 0);
433         atomic_set(&sctx->workers_pending, 0);
434         atomic_set(&sctx->cancel_req, 0);
435         sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
436         INIT_LIST_HEAD(&sctx->csum_list);
437
438         spin_lock_init(&sctx->list_lock);
439         spin_lock_init(&sctx->stat_lock);
440         init_waitqueue_head(&sctx->list_wait);
441
442         ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
443                                  fs_info->dev_replace.tgtdev, is_dev_replace);
444         if (ret) {
445                 scrub_free_ctx(sctx);
446                 return ERR_PTR(ret);
447         }
448         return sctx;
449
450 nomem:
451         scrub_free_ctx(sctx);
452         return ERR_PTR(-ENOMEM);
453 }
454
455 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
456                                      void *warn_ctx)
457 {
458         u64 isize;
459         u32 nlink;
460         int ret;
461         int i;
462         struct extent_buffer *eb;
463         struct btrfs_inode_item *inode_item;
464         struct scrub_warning *swarn = warn_ctx;
465         struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
466         struct inode_fs_paths *ipath = NULL;
467         struct btrfs_root *local_root;
468         struct btrfs_key root_key;
469
470         root_key.objectid = root;
471         root_key.type = BTRFS_ROOT_ITEM_KEY;
472         root_key.offset = (u64)-1;
473         local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
474         if (IS_ERR(local_root)) {
475                 ret = PTR_ERR(local_root);
476                 goto err;
477         }
478
479         ret = inode_item_info(inum, 0, local_root, swarn->path);
480         if (ret) {
481                 btrfs_release_path(swarn->path);
482                 goto err;
483         }
484
485         eb = swarn->path->nodes[0];
486         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
487                                         struct btrfs_inode_item);
488         isize = btrfs_inode_size(eb, inode_item);
489         nlink = btrfs_inode_nlink(eb, inode_item);
490         btrfs_release_path(swarn->path);
491
492         ipath = init_ipath(4096, local_root, swarn->path);
493         if (IS_ERR(ipath)) {
494                 ret = PTR_ERR(ipath);
495                 ipath = NULL;
496                 goto err;
497         }
498         ret = paths_from_inode(inum, ipath);
499
500         if (ret < 0)
501                 goto err;
502
503         /*
504          * we deliberately ignore the bit ipath might have been too small to
505          * hold all of the paths here
506          */
507         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
508                 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
509                         "%s, sector %llu, root %llu, inode %llu, offset %llu, "
510                         "length %llu, links %u (path: %s)\n", swarn->errstr,
511                         swarn->logical, rcu_str_deref(swarn->dev->name),
512                         (unsigned long long)swarn->sector, root, inum, offset,
513                         min(isize - offset, (u64)PAGE_SIZE), nlink,
514                         (char *)(unsigned long)ipath->fspath->val[i]);
515
516         free_ipath(ipath);
517         return 0;
518
519 err:
520         printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
521                 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
522                 "resolving failed with ret=%d\n", swarn->errstr,
523                 swarn->logical, rcu_str_deref(swarn->dev->name),
524                 (unsigned long long)swarn->sector, root, inum, offset, ret);
525
526         free_ipath(ipath);
527         return 0;
528 }
529
530 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
531 {
532         struct btrfs_device *dev;
533         struct btrfs_fs_info *fs_info;
534         struct btrfs_path *path;
535         struct btrfs_key found_key;
536         struct extent_buffer *eb;
537         struct btrfs_extent_item *ei;
538         struct scrub_warning swarn;
539         unsigned long ptr = 0;
540         u64 extent_item_pos;
541         u64 flags = 0;
542         u64 ref_root;
543         u32 item_size;
544         u8 ref_level;
545         const int bufsize = 4096;
546         int ret;
547
548         WARN_ON(sblock->page_count < 1);
549         dev = sblock->pagev[0]->dev;
550         fs_info = sblock->sctx->dev_root->fs_info;
551
552         path = btrfs_alloc_path();
553
554         swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
555         swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
556         swarn.sector = (sblock->pagev[0]->physical) >> 9;
557         swarn.logical = sblock->pagev[0]->logical;
558         swarn.errstr = errstr;
559         swarn.dev = NULL;
560         swarn.msg_bufsize = bufsize;
561         swarn.scratch_bufsize = bufsize;
562
563         if (!path || !swarn.scratch_buf || !swarn.msg_buf)
564                 goto out;
565
566         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
567                                   &flags);
568         if (ret < 0)
569                 goto out;
570
571         extent_item_pos = swarn.logical - found_key.objectid;
572         swarn.extent_item_size = found_key.offset;
573
574         eb = path->nodes[0];
575         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
576         item_size = btrfs_item_size_nr(eb, path->slots[0]);
577
578         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
579                 do {
580                         ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
581                                                         &ref_root, &ref_level);
582                         printk_in_rcu(KERN_WARNING
583                                 "BTRFS: %s at logical %llu on dev %s, "
584                                 "sector %llu: metadata %s (level %d) in tree "
585                                 "%llu\n", errstr, swarn.logical,
586                                 rcu_str_deref(dev->name),
587                                 (unsigned long long)swarn.sector,
588                                 ref_level ? "node" : "leaf",
589                                 ret < 0 ? -1 : ref_level,
590                                 ret < 0 ? -1 : ref_root);
591                 } while (ret != 1);
592                 btrfs_release_path(path);
593         } else {
594                 btrfs_release_path(path);
595                 swarn.path = path;
596                 swarn.dev = dev;
597                 iterate_extent_inodes(fs_info, found_key.objectid,
598                                         extent_item_pos, 1,
599                                         scrub_print_warning_inode, &swarn);
600         }
601
602 out:
603         btrfs_free_path(path);
604         kfree(swarn.scratch_buf);
605         kfree(swarn.msg_buf);
606 }
607
608 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
609 {
610         struct page *page = NULL;
611         unsigned long index;
612         struct scrub_fixup_nodatasum *fixup = fixup_ctx;
613         int ret;
614         int corrected = 0;
615         struct btrfs_key key;
616         struct inode *inode = NULL;
617         struct btrfs_fs_info *fs_info;
618         u64 end = offset + PAGE_SIZE - 1;
619         struct btrfs_root *local_root;
620         int srcu_index;
621
622         key.objectid = root;
623         key.type = BTRFS_ROOT_ITEM_KEY;
624         key.offset = (u64)-1;
625
626         fs_info = fixup->root->fs_info;
627         srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
628
629         local_root = btrfs_read_fs_root_no_name(fs_info, &key);
630         if (IS_ERR(local_root)) {
631                 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
632                 return PTR_ERR(local_root);
633         }
634
635         key.type = BTRFS_INODE_ITEM_KEY;
636         key.objectid = inum;
637         key.offset = 0;
638         inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
639         srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
640         if (IS_ERR(inode))
641                 return PTR_ERR(inode);
642
643         index = offset >> PAGE_CACHE_SHIFT;
644
645         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
646         if (!page) {
647                 ret = -ENOMEM;
648                 goto out;
649         }
650
651         if (PageUptodate(page)) {
652                 if (PageDirty(page)) {
653                         /*
654                          * we need to write the data to the defect sector. the
655                          * data that was in that sector is not in memory,
656                          * because the page was modified. we must not write the
657                          * modified page to that sector.
658                          *
659                          * TODO: what could be done here: wait for the delalloc
660                          *       runner to write out that page (might involve
661                          *       COW) and see whether the sector is still
662                          *       referenced afterwards.
663                          *
664                          * For the meantime, we'll treat this error
665                          * incorrectable, although there is a chance that a
666                          * later scrub will find the bad sector again and that
667                          * there's no dirty page in memory, then.
668                          */
669                         ret = -EIO;
670                         goto out;
671                 }
672                 fs_info = BTRFS_I(inode)->root->fs_info;
673                 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
674                                         fixup->logical, page,
675                                         fixup->mirror_num);
676                 unlock_page(page);
677                 corrected = !ret;
678         } else {
679                 /*
680                  * we need to get good data first. the general readpage path
681                  * will call repair_io_failure for us, we just have to make
682                  * sure we read the bad mirror.
683                  */
684                 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
685                                         EXTENT_DAMAGED, GFP_NOFS);
686                 if (ret) {
687                         /* set_extent_bits should give proper error */
688                         WARN_ON(ret > 0);
689                         if (ret > 0)
690                                 ret = -EFAULT;
691                         goto out;
692                 }
693
694                 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
695                                                 btrfs_get_extent,
696                                                 fixup->mirror_num);
697                 wait_on_page_locked(page);
698
699                 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
700                                                 end, EXTENT_DAMAGED, 0, NULL);
701                 if (!corrected)
702                         clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
703                                                 EXTENT_DAMAGED, GFP_NOFS);
704         }
705
706 out:
707         if (page)
708                 put_page(page);
709         if (inode)
710                 iput(inode);
711
712         if (ret < 0)
713                 return ret;
714
715         if (ret == 0 && corrected) {
716                 /*
717                  * we only need to call readpage for one of the inodes belonging
718                  * to this extent. so make iterate_extent_inodes stop
719                  */
720                 return 1;
721         }
722
723         return -EIO;
724 }
725
726 static void scrub_fixup_nodatasum(struct btrfs_work *work)
727 {
728         int ret;
729         struct scrub_fixup_nodatasum *fixup;
730         struct scrub_ctx *sctx;
731         struct btrfs_trans_handle *trans = NULL;
732         struct btrfs_path *path;
733         int uncorrectable = 0;
734
735         fixup = container_of(work, struct scrub_fixup_nodatasum, work);
736         sctx = fixup->sctx;
737
738         path = btrfs_alloc_path();
739         if (!path) {
740                 spin_lock(&sctx->stat_lock);
741                 ++sctx->stat.malloc_errors;
742                 spin_unlock(&sctx->stat_lock);
743                 uncorrectable = 1;
744                 goto out;
745         }
746
747         trans = btrfs_join_transaction(fixup->root);
748         if (IS_ERR(trans)) {
749                 uncorrectable = 1;
750                 goto out;
751         }
752
753         /*
754          * the idea is to trigger a regular read through the standard path. we
755          * read a page from the (failed) logical address by specifying the
756          * corresponding copynum of the failed sector. thus, that readpage is
757          * expected to fail.
758          * that is the point where on-the-fly error correction will kick in
759          * (once it's finished) and rewrite the failed sector if a good copy
760          * can be found.
761          */
762         ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
763                                                 path, scrub_fixup_readpage,
764                                                 fixup);
765         if (ret < 0) {
766                 uncorrectable = 1;
767                 goto out;
768         }
769         WARN_ON(ret != 1);
770
771         spin_lock(&sctx->stat_lock);
772         ++sctx->stat.corrected_errors;
773         spin_unlock(&sctx->stat_lock);
774
775 out:
776         if (trans && !IS_ERR(trans))
777                 btrfs_end_transaction(trans, fixup->root);
778         if (uncorrectable) {
779                 spin_lock(&sctx->stat_lock);
780                 ++sctx->stat.uncorrectable_errors;
781                 spin_unlock(&sctx->stat_lock);
782                 btrfs_dev_replace_stats_inc(
783                         &sctx->dev_root->fs_info->dev_replace.
784                         num_uncorrectable_read_errors);
785                 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
786                     "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
787                         fixup->logical, rcu_str_deref(fixup->dev->name));
788         }
789
790         btrfs_free_path(path);
791         kfree(fixup);
792
793         scrub_pending_trans_workers_dec(sctx);
794 }
795
796 /*
797  * scrub_handle_errored_block gets called when either verification of the
798  * pages failed or the bio failed to read, e.g. with EIO. In the latter
799  * case, this function handles all pages in the bio, even though only one
800  * may be bad.
801  * The goal of this function is to repair the errored block by using the
802  * contents of one of the mirrors.
803  */
804 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
805 {
806         struct scrub_ctx *sctx = sblock_to_check->sctx;
807         struct btrfs_device *dev;
808         struct btrfs_fs_info *fs_info;
809         u64 length;
810         u64 logical;
811         u64 generation;
812         unsigned int failed_mirror_index;
813         unsigned int is_metadata;
814         unsigned int have_csum;
815         u8 *csum;
816         struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
817         struct scrub_block *sblock_bad;
818         int ret;
819         int mirror_index;
820         int page_num;
821         int success;
822         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
823                                       DEFAULT_RATELIMIT_BURST);
824
825         BUG_ON(sblock_to_check->page_count < 1);
826         fs_info = sctx->dev_root->fs_info;
827         if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
828                 /*
829                  * if we find an error in a super block, we just report it.
830                  * They will get written with the next transaction commit
831                  * anyway
832                  */
833                 spin_lock(&sctx->stat_lock);
834                 ++sctx->stat.super_errors;
835                 spin_unlock(&sctx->stat_lock);
836                 return 0;
837         }
838         length = sblock_to_check->page_count * PAGE_SIZE;
839         logical = sblock_to_check->pagev[0]->logical;
840         generation = sblock_to_check->pagev[0]->generation;
841         BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
842         failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
843         is_metadata = !(sblock_to_check->pagev[0]->flags &
844                         BTRFS_EXTENT_FLAG_DATA);
845         have_csum = sblock_to_check->pagev[0]->have_csum;
846         csum = sblock_to_check->pagev[0]->csum;
847         dev = sblock_to_check->pagev[0]->dev;
848
849         if (sctx->is_dev_replace && !is_metadata && !have_csum) {
850                 sblocks_for_recheck = NULL;
851                 goto nodatasum_case;
852         }
853
854         /*
855          * read all mirrors one after the other. This includes to
856          * re-read the extent or metadata block that failed (that was
857          * the cause that this fixup code is called) another time,
858          * page by page this time in order to know which pages
859          * caused I/O errors and which ones are good (for all mirrors).
860          * It is the goal to handle the situation when more than one
861          * mirror contains I/O errors, but the errors do not
862          * overlap, i.e. the data can be repaired by selecting the
863          * pages from those mirrors without I/O error on the
864          * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
865          * would be that mirror #1 has an I/O error on the first page,
866          * the second page is good, and mirror #2 has an I/O error on
867          * the second page, but the first page is good.
868          * Then the first page of the first mirror can be repaired by
869          * taking the first page of the second mirror, and the
870          * second page of the second mirror can be repaired by
871          * copying the contents of the 2nd page of the 1st mirror.
872          * One more note: if the pages of one mirror contain I/O
873          * errors, the checksum cannot be verified. In order to get
874          * the best data for repairing, the first attempt is to find
875          * a mirror without I/O errors and with a validated checksum.
876          * Only if this is not possible, the pages are picked from
877          * mirrors with I/O errors without considering the checksum.
878          * If the latter is the case, at the end, the checksum of the
879          * repaired area is verified in order to correctly maintain
880          * the statistics.
881          */
882
883         sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
884                                      sizeof(*sblocks_for_recheck),
885                                      GFP_NOFS);
886         if (!sblocks_for_recheck) {
887                 spin_lock(&sctx->stat_lock);
888                 sctx->stat.malloc_errors++;
889                 sctx->stat.read_errors++;
890                 sctx->stat.uncorrectable_errors++;
891                 spin_unlock(&sctx->stat_lock);
892                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
893                 goto out;
894         }
895
896         /* setup the context, map the logical blocks and alloc the pages */
897         ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
898                                         logical, sblocks_for_recheck);
899         if (ret) {
900                 spin_lock(&sctx->stat_lock);
901                 sctx->stat.read_errors++;
902                 sctx->stat.uncorrectable_errors++;
903                 spin_unlock(&sctx->stat_lock);
904                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
905                 goto out;
906         }
907         BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
908         sblock_bad = sblocks_for_recheck + failed_mirror_index;
909
910         /* build and submit the bios for the failed mirror, check checksums */
911         scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
912                             csum, generation, sctx->csum_size);
913
914         if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
915             sblock_bad->no_io_error_seen) {
916                 /*
917                  * the error disappeared after reading page by page, or
918                  * the area was part of a huge bio and other parts of the
919                  * bio caused I/O errors, or the block layer merged several
920                  * read requests into one and the error is caused by a
921                  * different bio (usually one of the two latter cases is
922                  * the cause)
923                  */
924                 spin_lock(&sctx->stat_lock);
925                 sctx->stat.unverified_errors++;
926                 spin_unlock(&sctx->stat_lock);
927
928                 if (sctx->is_dev_replace)
929                         scrub_write_block_to_dev_replace(sblock_bad);
930                 goto out;
931         }
932
933         if (!sblock_bad->no_io_error_seen) {
934                 spin_lock(&sctx->stat_lock);
935                 sctx->stat.read_errors++;
936                 spin_unlock(&sctx->stat_lock);
937                 if (__ratelimit(&_rs))
938                         scrub_print_warning("i/o error", sblock_to_check);
939                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
940         } else if (sblock_bad->checksum_error) {
941                 spin_lock(&sctx->stat_lock);
942                 sctx->stat.csum_errors++;
943                 spin_unlock(&sctx->stat_lock);
944                 if (__ratelimit(&_rs))
945                         scrub_print_warning("checksum error", sblock_to_check);
946                 btrfs_dev_stat_inc_and_print(dev,
947                                              BTRFS_DEV_STAT_CORRUPTION_ERRS);
948         } else if (sblock_bad->header_error) {
949                 spin_lock(&sctx->stat_lock);
950                 sctx->stat.verify_errors++;
951                 spin_unlock(&sctx->stat_lock);
952                 if (__ratelimit(&_rs))
953                         scrub_print_warning("checksum/header error",
954                                             sblock_to_check);
955                 if (sblock_bad->generation_error)
956                         btrfs_dev_stat_inc_and_print(dev,
957                                 BTRFS_DEV_STAT_GENERATION_ERRS);
958                 else
959                         btrfs_dev_stat_inc_and_print(dev,
960                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
961         }
962
963         if (sctx->readonly) {
964                 ASSERT(!sctx->is_dev_replace);
965                 goto out;
966         }
967
968         if (!is_metadata && !have_csum) {
969                 struct scrub_fixup_nodatasum *fixup_nodatasum;
970
971 nodatasum_case:
972                 WARN_ON(sctx->is_dev_replace);
973
974                 /*
975                  * !is_metadata and !have_csum, this means that the data
976                  * might not be COW'ed, that it might be modified
977                  * concurrently. The general strategy to work on the
978                  * commit root does not help in the case when COW is not
979                  * used.
980                  */
981                 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
982                 if (!fixup_nodatasum)
983                         goto did_not_correct_error;
984                 fixup_nodatasum->sctx = sctx;
985                 fixup_nodatasum->dev = dev;
986                 fixup_nodatasum->logical = logical;
987                 fixup_nodatasum->root = fs_info->extent_root;
988                 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
989                 scrub_pending_trans_workers_inc(sctx);
990                 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
991                 btrfs_queue_worker(&fs_info->scrub_workers,
992                                    &fixup_nodatasum->work);
993                 goto out;
994         }
995
996         /*
997          * now build and submit the bios for the other mirrors, check
998          * checksums.
999          * First try to pick the mirror which is completely without I/O
1000          * errors and also does not have a checksum error.
1001          * If one is found, and if a checksum is present, the full block
1002          * that is known to contain an error is rewritten. Afterwards
1003          * the block is known to be corrected.
1004          * If a mirror is found which is completely correct, and no
1005          * checksum is present, only those pages are rewritten that had
1006          * an I/O error in the block to be repaired, since it cannot be
1007          * determined, which copy of the other pages is better (and it
1008          * could happen otherwise that a correct page would be
1009          * overwritten by a bad one).
1010          */
1011         for (mirror_index = 0;
1012              mirror_index < BTRFS_MAX_MIRRORS &&
1013              sblocks_for_recheck[mirror_index].page_count > 0;
1014              mirror_index++) {
1015                 struct scrub_block *sblock_other;
1016
1017                 if (mirror_index == failed_mirror_index)
1018                         continue;
1019                 sblock_other = sblocks_for_recheck + mirror_index;
1020
1021                 /* build and submit the bios, check checksums */
1022                 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1023                                     have_csum, csum, generation,
1024                                     sctx->csum_size);
1025
1026                 if (!sblock_other->header_error &&
1027                     !sblock_other->checksum_error &&
1028                     sblock_other->no_io_error_seen) {
1029                         if (sctx->is_dev_replace) {
1030                                 scrub_write_block_to_dev_replace(sblock_other);
1031                         } else {
1032                                 int force_write = is_metadata || have_csum;
1033
1034                                 ret = scrub_repair_block_from_good_copy(
1035                                                 sblock_bad, sblock_other,
1036                                                 force_write);
1037                         }
1038                         if (0 == ret)
1039                                 goto corrected_error;
1040                 }
1041         }
1042
1043         /*
1044          * for dev_replace, pick good pages and write to the target device.
1045          */
1046         if (sctx->is_dev_replace) {
1047                 success = 1;
1048                 for (page_num = 0; page_num < sblock_bad->page_count;
1049                      page_num++) {
1050                         int sub_success;
1051
1052                         sub_success = 0;
1053                         for (mirror_index = 0;
1054                              mirror_index < BTRFS_MAX_MIRRORS &&
1055                              sblocks_for_recheck[mirror_index].page_count > 0;
1056                              mirror_index++) {
1057                                 struct scrub_block *sblock_other =
1058                                         sblocks_for_recheck + mirror_index;
1059                                 struct scrub_page *page_other =
1060                                         sblock_other->pagev[page_num];
1061
1062                                 if (!page_other->io_error) {
1063                                         ret = scrub_write_page_to_dev_replace(
1064                                                         sblock_other, page_num);
1065                                         if (ret == 0) {
1066                                                 /* succeeded for this page */
1067                                                 sub_success = 1;
1068                                                 break;
1069                                         } else {
1070                                                 btrfs_dev_replace_stats_inc(
1071                                                         &sctx->dev_root->
1072                                                         fs_info->dev_replace.
1073                                                         num_write_errors);
1074                                         }
1075                                 }
1076                         }
1077
1078                         if (!sub_success) {
1079                                 /*
1080                                  * did not find a mirror to fetch the page
1081                                  * from. scrub_write_page_to_dev_replace()
1082                                  * handles this case (page->io_error), by
1083                                  * filling the block with zeros before
1084                                  * submitting the write request
1085                                  */
1086                                 success = 0;
1087                                 ret = scrub_write_page_to_dev_replace(
1088                                                 sblock_bad, page_num);
1089                                 if (ret)
1090                                         btrfs_dev_replace_stats_inc(
1091                                                 &sctx->dev_root->fs_info->
1092                                                 dev_replace.num_write_errors);
1093                         }
1094                 }
1095
1096                 goto out;
1097         }
1098
1099         /*
1100          * for regular scrub, repair those pages that are errored.
1101          * In case of I/O errors in the area that is supposed to be
1102          * repaired, continue by picking good copies of those pages.
1103          * Select the good pages from mirrors to rewrite bad pages from
1104          * the area to fix. Afterwards verify the checksum of the block
1105          * that is supposed to be repaired. This verification step is
1106          * only done for the purpose of statistic counting and for the
1107          * final scrub report, whether errors remain.
1108          * A perfect algorithm could make use of the checksum and try
1109          * all possible combinations of pages from the different mirrors
1110          * until the checksum verification succeeds. For example, when
1111          * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1112          * of mirror #2 is readable but the final checksum test fails,
1113          * then the 2nd page of mirror #3 could be tried, whether now
1114          * the final checksum succeedes. But this would be a rare
1115          * exception and is therefore not implemented. At least it is
1116          * avoided that the good copy is overwritten.
1117          * A more useful improvement would be to pick the sectors
1118          * without I/O error based on sector sizes (512 bytes on legacy
1119          * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1120          * mirror could be repaired by taking 512 byte of a different
1121          * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1122          * area are unreadable.
1123          */
1124
1125         /* can only fix I/O errors from here on */
1126         if (sblock_bad->no_io_error_seen)
1127                 goto did_not_correct_error;
1128
1129         success = 1;
1130         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1131                 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1132
1133                 if (!page_bad->io_error)
1134                         continue;
1135
1136                 for (mirror_index = 0;
1137                      mirror_index < BTRFS_MAX_MIRRORS &&
1138                      sblocks_for_recheck[mirror_index].page_count > 0;
1139                      mirror_index++) {
1140                         struct scrub_block *sblock_other = sblocks_for_recheck +
1141                                                            mirror_index;
1142                         struct scrub_page *page_other = sblock_other->pagev[
1143                                                         page_num];
1144
1145                         if (!page_other->io_error) {
1146                                 ret = scrub_repair_page_from_good_copy(
1147                                         sblock_bad, sblock_other, page_num, 0);
1148                                 if (0 == ret) {
1149                                         page_bad->io_error = 0;
1150                                         break; /* succeeded for this page */
1151                                 }
1152                         }
1153                 }
1154
1155                 if (page_bad->io_error) {
1156                         /* did not find a mirror to copy the page from */
1157                         success = 0;
1158                 }
1159         }
1160
1161         if (success) {
1162                 if (is_metadata || have_csum) {
1163                         /*
1164                          * need to verify the checksum now that all
1165                          * sectors on disk are repaired (the write
1166                          * request for data to be repaired is on its way).
1167                          * Just be lazy and use scrub_recheck_block()
1168                          * which re-reads the data before the checksum
1169                          * is verified, but most likely the data comes out
1170                          * of the page cache.
1171                          */
1172                         scrub_recheck_block(fs_info, sblock_bad,
1173                                             is_metadata, have_csum, csum,
1174                                             generation, sctx->csum_size);
1175                         if (!sblock_bad->header_error &&
1176                             !sblock_bad->checksum_error &&
1177                             sblock_bad->no_io_error_seen)
1178                                 goto corrected_error;
1179                         else
1180                                 goto did_not_correct_error;
1181                 } else {
1182 corrected_error:
1183                         spin_lock(&sctx->stat_lock);
1184                         sctx->stat.corrected_errors++;
1185                         spin_unlock(&sctx->stat_lock);
1186                         printk_ratelimited_in_rcu(KERN_ERR
1187                                 "BTRFS: fixed up error at logical %llu on dev %s\n",
1188                                 logical, rcu_str_deref(dev->name));
1189                 }
1190         } else {
1191 did_not_correct_error:
1192                 spin_lock(&sctx->stat_lock);
1193                 sctx->stat.uncorrectable_errors++;
1194                 spin_unlock(&sctx->stat_lock);
1195                 printk_ratelimited_in_rcu(KERN_ERR
1196                         "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1197                         logical, rcu_str_deref(dev->name));
1198         }
1199
1200 out:
1201         if (sblocks_for_recheck) {
1202                 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1203                      mirror_index++) {
1204                         struct scrub_block *sblock = sblocks_for_recheck +
1205                                                      mirror_index;
1206                         int page_index;
1207
1208                         for (page_index = 0; page_index < sblock->page_count;
1209                              page_index++) {
1210                                 sblock->pagev[page_index]->sblock = NULL;
1211                                 scrub_page_put(sblock->pagev[page_index]);
1212                         }
1213                 }
1214                 kfree(sblocks_for_recheck);
1215         }
1216
1217         return 0;
1218 }
1219
1220 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1221                                      struct btrfs_fs_info *fs_info,
1222                                      struct scrub_block *original_sblock,
1223                                      u64 length, u64 logical,
1224                                      struct scrub_block *sblocks_for_recheck)
1225 {
1226         int page_index;
1227         int mirror_index;
1228         int ret;
1229
1230         /*
1231          * note: the two members ref_count and outstanding_pages
1232          * are not used (and not set) in the blocks that are used for
1233          * the recheck procedure
1234          */
1235
1236         page_index = 0;
1237         while (length > 0) {
1238                 u64 sublen = min_t(u64, length, PAGE_SIZE);
1239                 u64 mapped_length = sublen;
1240                 struct btrfs_bio *bbio = NULL;
1241
1242                 /*
1243                  * with a length of PAGE_SIZE, each returned stripe
1244                  * represents one mirror
1245                  */
1246                 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1247                                       &mapped_length, &bbio, 0);
1248                 if (ret || !bbio || mapped_length < sublen) {
1249                         kfree(bbio);
1250                         return -EIO;
1251                 }
1252
1253                 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1254                 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1255                      mirror_index++) {
1256                         struct scrub_block *sblock;
1257                         struct scrub_page *page;
1258
1259                         if (mirror_index >= BTRFS_MAX_MIRRORS)
1260                                 continue;
1261
1262                         sblock = sblocks_for_recheck + mirror_index;
1263                         sblock->sctx = sctx;
1264                         page = kzalloc(sizeof(*page), GFP_NOFS);
1265                         if (!page) {
1266 leave_nomem:
1267                                 spin_lock(&sctx->stat_lock);
1268                                 sctx->stat.malloc_errors++;
1269                                 spin_unlock(&sctx->stat_lock);
1270                                 kfree(bbio);
1271                                 return -ENOMEM;
1272                         }
1273                         scrub_page_get(page);
1274                         sblock->pagev[page_index] = page;
1275                         page->logical = logical;
1276                         page->physical = bbio->stripes[mirror_index].physical;
1277                         BUG_ON(page_index >= original_sblock->page_count);
1278                         page->physical_for_dev_replace =
1279                                 original_sblock->pagev[page_index]->
1280                                 physical_for_dev_replace;
1281                         /* for missing devices, dev->bdev is NULL */
1282                         page->dev = bbio->stripes[mirror_index].dev;
1283                         page->mirror_num = mirror_index + 1;
1284                         sblock->page_count++;
1285                         page->page = alloc_page(GFP_NOFS);
1286                         if (!page->page)
1287                                 goto leave_nomem;
1288                 }
1289                 kfree(bbio);
1290                 length -= sublen;
1291                 logical += sublen;
1292                 page_index++;
1293         }
1294
1295         return 0;
1296 }
1297
1298 /*
1299  * this function will check the on disk data for checksum errors, header
1300  * errors and read I/O errors. If any I/O errors happen, the exact pages
1301  * which are errored are marked as being bad. The goal is to enable scrub
1302  * to take those pages that are not errored from all the mirrors so that
1303  * the pages that are errored in the just handled mirror can be repaired.
1304  */
1305 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1306                                 struct scrub_block *sblock, int is_metadata,
1307                                 int have_csum, u8 *csum, u64 generation,
1308                                 u16 csum_size)
1309 {
1310         int page_num;
1311
1312         sblock->no_io_error_seen = 1;
1313         sblock->header_error = 0;
1314         sblock->checksum_error = 0;
1315
1316         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1317                 struct bio *bio;
1318                 struct scrub_page *page = sblock->pagev[page_num];
1319
1320                 if (page->dev->bdev == NULL) {
1321                         page->io_error = 1;
1322                         sblock->no_io_error_seen = 0;
1323                         continue;
1324                 }
1325
1326                 WARN_ON(!page->page);
1327                 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1328                 if (!bio) {
1329                         page->io_error = 1;
1330                         sblock->no_io_error_seen = 0;
1331                         continue;
1332                 }
1333                 bio->bi_bdev = page->dev->bdev;
1334                 bio->bi_iter.bi_sector = page->physical >> 9;
1335
1336                 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1337                 if (btrfsic_submit_bio_wait(READ, bio))
1338                         sblock->no_io_error_seen = 0;
1339
1340                 bio_put(bio);
1341         }
1342
1343         if (sblock->no_io_error_seen)
1344                 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1345                                              have_csum, csum, generation,
1346                                              csum_size);
1347
1348         return;
1349 }
1350
1351 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1352                                          struct scrub_block *sblock,
1353                                          int is_metadata, int have_csum,
1354                                          const u8 *csum, u64 generation,
1355                                          u16 csum_size)
1356 {
1357         int page_num;
1358         u8 calculated_csum[BTRFS_CSUM_SIZE];
1359         u32 crc = ~(u32)0;
1360         void *mapped_buffer;
1361
1362         WARN_ON(!sblock->pagev[0]->page);
1363         if (is_metadata) {
1364                 struct btrfs_header *h;
1365
1366                 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1367                 h = (struct btrfs_header *)mapped_buffer;
1368
1369                 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1370                     memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1371                     memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1372                            BTRFS_UUID_SIZE)) {
1373                         sblock->header_error = 1;
1374                 } else if (generation != btrfs_stack_header_generation(h)) {
1375                         sblock->header_error = 1;
1376                         sblock->generation_error = 1;
1377                 }
1378                 csum = h->csum;
1379         } else {
1380                 if (!have_csum)
1381                         return;
1382
1383                 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1384         }
1385
1386         for (page_num = 0;;) {
1387                 if (page_num == 0 && is_metadata)
1388                         crc = btrfs_csum_data(
1389                                 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1390                                 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1391                 else
1392                         crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1393
1394                 kunmap_atomic(mapped_buffer);
1395                 page_num++;
1396                 if (page_num >= sblock->page_count)
1397                         break;
1398                 WARN_ON(!sblock->pagev[page_num]->page);
1399
1400                 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1401         }
1402
1403         btrfs_csum_final(crc, calculated_csum);
1404         if (memcmp(calculated_csum, csum, csum_size))
1405                 sblock->checksum_error = 1;
1406 }
1407
1408 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1409                                              struct scrub_block *sblock_good,
1410                                              int force_write)
1411 {
1412         int page_num;
1413         int ret = 0;
1414
1415         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1416                 int ret_sub;
1417
1418                 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1419                                                            sblock_good,
1420                                                            page_num,
1421                                                            force_write);
1422                 if (ret_sub)
1423                         ret = ret_sub;
1424         }
1425
1426         return ret;
1427 }
1428
1429 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1430                                             struct scrub_block *sblock_good,
1431                                             int page_num, int force_write)
1432 {
1433         struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1434         struct scrub_page *page_good = sblock_good->pagev[page_num];
1435
1436         BUG_ON(page_bad->page == NULL);
1437         BUG_ON(page_good->page == NULL);
1438         if (force_write || sblock_bad->header_error ||
1439             sblock_bad->checksum_error || page_bad->io_error) {
1440                 struct bio *bio;
1441                 int ret;
1442
1443                 if (!page_bad->dev->bdev) {
1444                         printk_ratelimited(KERN_WARNING "BTRFS: "
1445                                 "scrub_repair_page_from_good_copy(bdev == NULL) "
1446                                 "is unexpected!\n");
1447                         return -EIO;
1448                 }
1449
1450                 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1451                 if (!bio)
1452                         return -EIO;
1453                 bio->bi_bdev = page_bad->dev->bdev;
1454                 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1455
1456                 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1457                 if (PAGE_SIZE != ret) {
1458                         bio_put(bio);
1459                         return -EIO;
1460                 }
1461
1462                 if (btrfsic_submit_bio_wait(WRITE, bio)) {
1463                         btrfs_dev_stat_inc_and_print(page_bad->dev,
1464                                 BTRFS_DEV_STAT_WRITE_ERRS);
1465                         btrfs_dev_replace_stats_inc(
1466                                 &sblock_bad->sctx->dev_root->fs_info->
1467                                 dev_replace.num_write_errors);
1468                         bio_put(bio);
1469                         return -EIO;
1470                 }
1471                 bio_put(bio);
1472         }
1473
1474         return 0;
1475 }
1476
1477 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1478 {
1479         int page_num;
1480
1481         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1482                 int ret;
1483
1484                 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1485                 if (ret)
1486                         btrfs_dev_replace_stats_inc(
1487                                 &sblock->sctx->dev_root->fs_info->dev_replace.
1488                                 num_write_errors);
1489         }
1490 }
1491
1492 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1493                                            int page_num)
1494 {
1495         struct scrub_page *spage = sblock->pagev[page_num];
1496
1497         BUG_ON(spage->page == NULL);
1498         if (spage->io_error) {
1499                 void *mapped_buffer = kmap_atomic(spage->page);
1500
1501                 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1502                 flush_dcache_page(spage->page);
1503                 kunmap_atomic(mapped_buffer);
1504         }
1505         return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1506 }
1507
1508 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1509                                     struct scrub_page *spage)
1510 {
1511         struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1512         struct scrub_bio *sbio;
1513         int ret;
1514
1515         mutex_lock(&wr_ctx->wr_lock);
1516 again:
1517         if (!wr_ctx->wr_curr_bio) {
1518                 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1519                                               GFP_NOFS);
1520                 if (!wr_ctx->wr_curr_bio) {
1521                         mutex_unlock(&wr_ctx->wr_lock);
1522                         return -ENOMEM;
1523                 }
1524                 wr_ctx->wr_curr_bio->sctx = sctx;
1525                 wr_ctx->wr_curr_bio->page_count = 0;
1526         }
1527         sbio = wr_ctx->wr_curr_bio;
1528         if (sbio->page_count == 0) {
1529                 struct bio *bio;
1530
1531                 sbio->physical = spage->physical_for_dev_replace;
1532                 sbio->logical = spage->logical;
1533                 sbio->dev = wr_ctx->tgtdev;
1534                 bio = sbio->bio;
1535                 if (!bio) {
1536                         bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1537                         if (!bio) {
1538                                 mutex_unlock(&wr_ctx->wr_lock);
1539                                 return -ENOMEM;
1540                         }
1541                         sbio->bio = bio;
1542                 }
1543
1544                 bio->bi_private = sbio;
1545                 bio->bi_end_io = scrub_wr_bio_end_io;
1546                 bio->bi_bdev = sbio->dev->bdev;
1547                 bio->bi_iter.bi_sector = sbio->physical >> 9;
1548                 sbio->err = 0;
1549         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1550                    spage->physical_for_dev_replace ||
1551                    sbio->logical + sbio->page_count * PAGE_SIZE !=
1552                    spage->logical) {
1553                 scrub_wr_submit(sctx);
1554                 goto again;
1555         }
1556
1557         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1558         if (ret != PAGE_SIZE) {
1559                 if (sbio->page_count < 1) {
1560                         bio_put(sbio->bio);
1561                         sbio->bio = NULL;
1562                         mutex_unlock(&wr_ctx->wr_lock);
1563                         return -EIO;
1564                 }
1565                 scrub_wr_submit(sctx);
1566                 goto again;
1567         }
1568
1569         sbio->pagev[sbio->page_count] = spage;
1570         scrub_page_get(spage);
1571         sbio->page_count++;
1572         if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1573                 scrub_wr_submit(sctx);
1574         mutex_unlock(&wr_ctx->wr_lock);
1575
1576         return 0;
1577 }
1578
1579 static void scrub_wr_submit(struct scrub_ctx *sctx)
1580 {
1581         struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1582         struct scrub_bio *sbio;
1583
1584         if (!wr_ctx->wr_curr_bio)
1585                 return;
1586
1587         sbio = wr_ctx->wr_curr_bio;
1588         wr_ctx->wr_curr_bio = NULL;
1589         WARN_ON(!sbio->bio->bi_bdev);
1590         scrub_pending_bio_inc(sctx);
1591         /* process all writes in a single worker thread. Then the block layer
1592          * orders the requests before sending them to the driver which
1593          * doubled the write performance on spinning disks when measured
1594          * with Linux 3.5 */
1595         btrfsic_submit_bio(WRITE, sbio->bio);
1596 }
1597
1598 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1599 {
1600         struct scrub_bio *sbio = bio->bi_private;
1601         struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1602
1603         sbio->err = err;
1604         sbio->bio = bio;
1605
1606         sbio->work.func = scrub_wr_bio_end_io_worker;
1607         btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1608 }
1609
1610 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1611 {
1612         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1613         struct scrub_ctx *sctx = sbio->sctx;
1614         int i;
1615
1616         WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1617         if (sbio->err) {
1618                 struct btrfs_dev_replace *dev_replace =
1619                         &sbio->sctx->dev_root->fs_info->dev_replace;
1620
1621                 for (i = 0; i < sbio->page_count; i++) {
1622                         struct scrub_page *spage = sbio->pagev[i];
1623
1624                         spage->io_error = 1;
1625                         btrfs_dev_replace_stats_inc(&dev_replace->
1626                                                     num_write_errors);
1627                 }
1628         }
1629
1630         for (i = 0; i < sbio->page_count; i++)
1631                 scrub_page_put(sbio->pagev[i]);
1632
1633         bio_put(sbio->bio);
1634         kfree(sbio);
1635         scrub_pending_bio_dec(sctx);
1636 }
1637
1638 static int scrub_checksum(struct scrub_block *sblock)
1639 {
1640         u64 flags;
1641         int ret;
1642
1643         WARN_ON(sblock->page_count < 1);
1644         flags = sblock->pagev[0]->flags;
1645         ret = 0;
1646         if (flags & BTRFS_EXTENT_FLAG_DATA)
1647                 ret = scrub_checksum_data(sblock);
1648         else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1649                 ret = scrub_checksum_tree_block(sblock);
1650         else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1651                 (void)scrub_checksum_super(sblock);
1652         else
1653                 WARN_ON(1);
1654         if (ret)
1655                 scrub_handle_errored_block(sblock);
1656
1657         return ret;
1658 }
1659
1660 static int scrub_checksum_data(struct scrub_block *sblock)
1661 {
1662         struct scrub_ctx *sctx = sblock->sctx;
1663         u8 csum[BTRFS_CSUM_SIZE];
1664         u8 *on_disk_csum;
1665         struct page *page;
1666         void *buffer;
1667         u32 crc = ~(u32)0;
1668         int fail = 0;
1669         u64 len;
1670         int index;
1671
1672         BUG_ON(sblock->page_count < 1);
1673         if (!sblock->pagev[0]->have_csum)
1674                 return 0;
1675
1676         on_disk_csum = sblock->pagev[0]->csum;
1677         page = sblock->pagev[0]->page;
1678         buffer = kmap_atomic(page);
1679
1680         len = sctx->sectorsize;
1681         index = 0;
1682         for (;;) {
1683                 u64 l = min_t(u64, len, PAGE_SIZE);
1684
1685                 crc = btrfs_csum_data(buffer, crc, l);
1686                 kunmap_atomic(buffer);
1687                 len -= l;
1688                 if (len == 0)
1689                         break;
1690                 index++;
1691                 BUG_ON(index >= sblock->page_count);
1692                 BUG_ON(!sblock->pagev[index]->page);
1693                 page = sblock->pagev[index]->page;
1694                 buffer = kmap_atomic(page);
1695         }
1696
1697         btrfs_csum_final(crc, csum);
1698         if (memcmp(csum, on_disk_csum, sctx->csum_size))
1699                 fail = 1;
1700
1701         return fail;
1702 }
1703
1704 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1705 {
1706         struct scrub_ctx *sctx = sblock->sctx;
1707         struct btrfs_header *h;
1708         struct btrfs_root *root = sctx->dev_root;
1709         struct btrfs_fs_info *fs_info = root->fs_info;
1710         u8 calculated_csum[BTRFS_CSUM_SIZE];
1711         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1712         struct page *page;
1713         void *mapped_buffer;
1714         u64 mapped_size;
1715         void *p;
1716         u32 crc = ~(u32)0;
1717         int fail = 0;
1718         int crc_fail = 0;
1719         u64 len;
1720         int index;
1721
1722         BUG_ON(sblock->page_count < 1);
1723         page = sblock->pagev[0]->page;
1724         mapped_buffer = kmap_atomic(page);
1725         h = (struct btrfs_header *)mapped_buffer;
1726         memcpy(on_disk_csum, h->csum, sctx->csum_size);
1727
1728         /*
1729          * we don't use the getter functions here, as we
1730          * a) don't have an extent buffer and
1731          * b) the page is already kmapped
1732          */
1733
1734         if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1735                 ++fail;
1736
1737         if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1738                 ++fail;
1739
1740         if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1741                 ++fail;
1742
1743         if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1744                    BTRFS_UUID_SIZE))
1745                 ++fail;
1746
1747         WARN_ON(sctx->nodesize != sctx->leafsize);
1748         len = sctx->nodesize - BTRFS_CSUM_SIZE;
1749         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1750         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1751         index = 0;
1752         for (;;) {
1753                 u64 l = min_t(u64, len, mapped_size);
1754
1755                 crc = btrfs_csum_data(p, crc, l);
1756                 kunmap_atomic(mapped_buffer);
1757                 len -= l;
1758                 if (len == 0)
1759                         break;
1760                 index++;
1761                 BUG_ON(index >= sblock->page_count);
1762                 BUG_ON(!sblock->pagev[index]->page);
1763                 page = sblock->pagev[index]->page;
1764                 mapped_buffer = kmap_atomic(page);
1765                 mapped_size = PAGE_SIZE;
1766                 p = mapped_buffer;
1767         }
1768
1769         btrfs_csum_final(crc, calculated_csum);
1770         if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1771                 ++crc_fail;
1772
1773         return fail || crc_fail;
1774 }
1775
1776 static int scrub_checksum_super(struct scrub_block *sblock)
1777 {
1778         struct btrfs_super_block *s;
1779         struct scrub_ctx *sctx = sblock->sctx;
1780         struct btrfs_root *root = sctx->dev_root;
1781         struct btrfs_fs_info *fs_info = root->fs_info;
1782         u8 calculated_csum[BTRFS_CSUM_SIZE];
1783         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1784         struct page *page;
1785         void *mapped_buffer;
1786         u64 mapped_size;
1787         void *p;
1788         u32 crc = ~(u32)0;
1789         int fail_gen = 0;
1790         int fail_cor = 0;
1791         u64 len;
1792         int index;
1793
1794         BUG_ON(sblock->page_count < 1);
1795         page = sblock->pagev[0]->page;
1796         mapped_buffer = kmap_atomic(page);
1797         s = (struct btrfs_super_block *)mapped_buffer;
1798         memcpy(on_disk_csum, s->csum, sctx->csum_size);
1799
1800         if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1801                 ++fail_cor;
1802
1803         if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1804                 ++fail_gen;
1805
1806         if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1807                 ++fail_cor;
1808
1809         len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1810         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1811         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1812         index = 0;
1813         for (;;) {
1814                 u64 l = min_t(u64, len, mapped_size);
1815
1816                 crc = btrfs_csum_data(p, crc, l);
1817                 kunmap_atomic(mapped_buffer);
1818                 len -= l;
1819                 if (len == 0)
1820                         break;
1821                 index++;
1822                 BUG_ON(index >= sblock->page_count);
1823                 BUG_ON(!sblock->pagev[index]->page);
1824                 page = sblock->pagev[index]->page;
1825                 mapped_buffer = kmap_atomic(page);
1826                 mapped_size = PAGE_SIZE;
1827                 p = mapped_buffer;
1828         }
1829
1830         btrfs_csum_final(crc, calculated_csum);
1831         if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1832                 ++fail_cor;
1833
1834         if (fail_cor + fail_gen) {
1835                 /*
1836                  * if we find an error in a super block, we just report it.
1837                  * They will get written with the next transaction commit
1838                  * anyway
1839                  */
1840                 spin_lock(&sctx->stat_lock);
1841                 ++sctx->stat.super_errors;
1842                 spin_unlock(&sctx->stat_lock);
1843                 if (fail_cor)
1844                         btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1845                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1846                 else
1847                         btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1848                                 BTRFS_DEV_STAT_GENERATION_ERRS);
1849         }
1850
1851         return fail_cor + fail_gen;
1852 }
1853
1854 static void scrub_block_get(struct scrub_block *sblock)
1855 {
1856         atomic_inc(&sblock->ref_count);
1857 }
1858
1859 static void scrub_block_put(struct scrub_block *sblock)
1860 {
1861         if (atomic_dec_and_test(&sblock->ref_count)) {
1862                 int i;
1863
1864                 for (i = 0; i < sblock->page_count; i++)
1865                         scrub_page_put(sblock->pagev[i]);
1866                 kfree(sblock);
1867         }
1868 }
1869
1870 static void scrub_page_get(struct scrub_page *spage)
1871 {
1872         atomic_inc(&spage->ref_count);
1873 }
1874
1875 static void scrub_page_put(struct scrub_page *spage)
1876 {
1877         if (atomic_dec_and_test(&spage->ref_count)) {
1878                 if (spage->page)
1879                         __free_page(spage->page);
1880                 kfree(spage);
1881         }
1882 }
1883
1884 static void scrub_submit(struct scrub_ctx *sctx)
1885 {
1886         struct scrub_bio *sbio;
1887
1888         if (sctx->curr == -1)
1889                 return;
1890
1891         sbio = sctx->bios[sctx->curr];
1892         sctx->curr = -1;
1893         scrub_pending_bio_inc(sctx);
1894
1895         if (!sbio->bio->bi_bdev) {
1896                 /*
1897                  * this case should not happen. If btrfs_map_block() is
1898                  * wrong, it could happen for dev-replace operations on
1899                  * missing devices when no mirrors are available, but in
1900                  * this case it should already fail the mount.
1901                  * This case is handled correctly (but _very_ slowly).
1902                  */
1903                 printk_ratelimited(KERN_WARNING
1904                         "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1905                 bio_endio(sbio->bio, -EIO);
1906         } else {
1907                 btrfsic_submit_bio(READ, sbio->bio);
1908         }
1909 }
1910
1911 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1912                                     struct scrub_page *spage)
1913 {
1914         struct scrub_block *sblock = spage->sblock;
1915         struct scrub_bio *sbio;
1916         int ret;
1917
1918 again:
1919         /*
1920          * grab a fresh bio or wait for one to become available
1921          */
1922         while (sctx->curr == -1) {
1923                 spin_lock(&sctx->list_lock);
1924                 sctx->curr = sctx->first_free;
1925                 if (sctx->curr != -1) {
1926                         sctx->first_free = sctx->bios[sctx->curr]->next_free;
1927                         sctx->bios[sctx->curr]->next_free = -1;
1928                         sctx->bios[sctx->curr]->page_count = 0;
1929                         spin_unlock(&sctx->list_lock);
1930                 } else {
1931                         spin_unlock(&sctx->list_lock);
1932                         wait_event(sctx->list_wait, sctx->first_free != -1);
1933                 }
1934         }
1935         sbio = sctx->bios[sctx->curr];
1936         if (sbio->page_count == 0) {
1937                 struct bio *bio;
1938
1939                 sbio->physical = spage->physical;
1940                 sbio->logical = spage->logical;
1941                 sbio->dev = spage->dev;
1942                 bio = sbio->bio;
1943                 if (!bio) {
1944                         bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1945                         if (!bio)
1946                                 return -ENOMEM;
1947                         sbio->bio = bio;
1948                 }
1949
1950                 bio->bi_private = sbio;
1951                 bio->bi_end_io = scrub_bio_end_io;
1952                 bio->bi_bdev = sbio->dev->bdev;
1953                 bio->bi_iter.bi_sector = sbio->physical >> 9;
1954                 sbio->err = 0;
1955         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1956                    spage->physical ||
1957                    sbio->logical + sbio->page_count * PAGE_SIZE !=
1958                    spage->logical ||
1959                    sbio->dev != spage->dev) {
1960                 scrub_submit(sctx);
1961                 goto again;
1962         }
1963
1964         sbio->pagev[sbio->page_count] = spage;
1965         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1966         if (ret != PAGE_SIZE) {
1967                 if (sbio->page_count < 1) {
1968                         bio_put(sbio->bio);
1969                         sbio->bio = NULL;
1970                         return -EIO;
1971                 }
1972                 scrub_submit(sctx);
1973                 goto again;
1974         }
1975
1976         scrub_block_get(sblock); /* one for the page added to the bio */
1977         atomic_inc(&sblock->outstanding_pages);
1978         sbio->page_count++;
1979         if (sbio->page_count == sctx->pages_per_rd_bio)
1980                 scrub_submit(sctx);
1981
1982         return 0;
1983 }
1984
1985 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1986                        u64 physical, struct btrfs_device *dev, u64 flags,
1987                        u64 gen, int mirror_num, u8 *csum, int force,
1988                        u64 physical_for_dev_replace)
1989 {
1990         struct scrub_block *sblock;
1991         int index;
1992
1993         sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1994         if (!sblock) {
1995                 spin_lock(&sctx->stat_lock);
1996                 sctx->stat.malloc_errors++;
1997                 spin_unlock(&sctx->stat_lock);
1998                 return -ENOMEM;
1999         }
2000
2001         /* one ref inside this function, plus one for each page added to
2002          * a bio later on */
2003         atomic_set(&sblock->ref_count, 1);
2004         sblock->sctx = sctx;
2005         sblock->no_io_error_seen = 1;
2006
2007         for (index = 0; len > 0; index++) {
2008                 struct scrub_page *spage;
2009                 u64 l = min_t(u64, len, PAGE_SIZE);
2010
2011                 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2012                 if (!spage) {
2013 leave_nomem:
2014                         spin_lock(&sctx->stat_lock);
2015                         sctx->stat.malloc_errors++;
2016                         spin_unlock(&sctx->stat_lock);
2017                         scrub_block_put(sblock);
2018                         return -ENOMEM;
2019                 }
2020                 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2021                 scrub_page_get(spage);
2022                 sblock->pagev[index] = spage;
2023                 spage->sblock = sblock;
2024                 spage->dev = dev;
2025                 spage->flags = flags;
2026                 spage->generation = gen;
2027                 spage->logical = logical;
2028                 spage->physical = physical;
2029                 spage->physical_for_dev_replace = physical_for_dev_replace;
2030                 spage->mirror_num = mirror_num;
2031                 if (csum) {
2032                         spage->have_csum = 1;
2033                         memcpy(spage->csum, csum, sctx->csum_size);
2034                 } else {
2035                         spage->have_csum = 0;
2036                 }
2037                 sblock->page_count++;
2038                 spage->page = alloc_page(GFP_NOFS);
2039                 if (!spage->page)
2040                         goto leave_nomem;
2041                 len -= l;
2042                 logical += l;
2043                 physical += l;
2044                 physical_for_dev_replace += l;
2045         }
2046
2047         WARN_ON(sblock->page_count == 0);
2048         for (index = 0; index < sblock->page_count; index++) {
2049                 struct scrub_page *spage = sblock->pagev[index];
2050                 int ret;
2051
2052                 ret = scrub_add_page_to_rd_bio(sctx, spage);
2053                 if (ret) {
2054                         scrub_block_put(sblock);
2055                         return ret;
2056                 }
2057         }
2058
2059         if (force)
2060                 scrub_submit(sctx);
2061
2062         /* last one frees, either here or in bio completion for last page */
2063         scrub_block_put(sblock);
2064         return 0;
2065 }
2066
2067 static void scrub_bio_end_io(struct bio *bio, int err)
2068 {
2069         struct scrub_bio *sbio = bio->bi_private;
2070         struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2071
2072         sbio->err = err;
2073         sbio->bio = bio;
2074
2075         btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2076 }
2077
2078 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2079 {
2080         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2081         struct scrub_ctx *sctx = sbio->sctx;
2082         int i;
2083
2084         BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2085         if (sbio->err) {
2086                 for (i = 0; i < sbio->page_count; i++) {
2087                         struct scrub_page *spage = sbio->pagev[i];
2088
2089                         spage->io_error = 1;
2090                         spage->sblock->no_io_error_seen = 0;
2091                 }
2092         }
2093
2094         /* now complete the scrub_block items that have all pages completed */
2095         for (i = 0; i < sbio->page_count; i++) {
2096                 struct scrub_page *spage = sbio->pagev[i];
2097                 struct scrub_block *sblock = spage->sblock;
2098
2099                 if (atomic_dec_and_test(&sblock->outstanding_pages))
2100                         scrub_block_complete(sblock);
2101                 scrub_block_put(sblock);
2102         }
2103
2104         bio_put(sbio->bio);
2105         sbio->bio = NULL;
2106         spin_lock(&sctx->list_lock);
2107         sbio->next_free = sctx->first_free;
2108         sctx->first_free = sbio->index;
2109         spin_unlock(&sctx->list_lock);
2110
2111         if (sctx->is_dev_replace &&
2112             atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2113                 mutex_lock(&sctx->wr_ctx.wr_lock);
2114                 scrub_wr_submit(sctx);
2115                 mutex_unlock(&sctx->wr_ctx.wr_lock);
2116         }
2117
2118         scrub_pending_bio_dec(sctx);
2119 }
2120
2121 static void scrub_block_complete(struct scrub_block *sblock)
2122 {
2123         if (!sblock->no_io_error_seen) {
2124                 scrub_handle_errored_block(sblock);
2125         } else {
2126                 /*
2127                  * if has checksum error, write via repair mechanism in
2128                  * dev replace case, otherwise write here in dev replace
2129                  * case.
2130                  */
2131                 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2132                         scrub_write_block_to_dev_replace(sblock);
2133         }
2134 }
2135
2136 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2137                            u8 *csum)
2138 {
2139         struct btrfs_ordered_sum *sum = NULL;
2140         unsigned long index;
2141         unsigned long num_sectors;
2142
2143         while (!list_empty(&sctx->csum_list)) {
2144                 sum = list_first_entry(&sctx->csum_list,
2145                                        struct btrfs_ordered_sum, list);
2146                 if (sum->bytenr > logical)
2147                         return 0;
2148                 if (sum->bytenr + sum->len > logical)
2149                         break;
2150
2151                 ++sctx->stat.csum_discards;
2152                 list_del(&sum->list);
2153                 kfree(sum);
2154                 sum = NULL;
2155         }
2156         if (!sum)
2157                 return 0;
2158
2159         index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2160         num_sectors = sum->len / sctx->sectorsize;
2161         memcpy(csum, sum->sums + index, sctx->csum_size);
2162         if (index == num_sectors - 1) {
2163                 list_del(&sum->list);
2164                 kfree(sum);
2165         }
2166         return 1;
2167 }
2168
2169 /* scrub extent tries to collect up to 64 kB for each bio */
2170 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2171                         u64 physical, struct btrfs_device *dev, u64 flags,
2172                         u64 gen, int mirror_num, u64 physical_for_dev_replace)
2173 {
2174         int ret;
2175         u8 csum[BTRFS_CSUM_SIZE];
2176         u32 blocksize;
2177
2178         if (flags & BTRFS_EXTENT_FLAG_DATA) {
2179                 blocksize = sctx->sectorsize;
2180                 spin_lock(&sctx->stat_lock);
2181                 sctx->stat.data_extents_scrubbed++;
2182                 sctx->stat.data_bytes_scrubbed += len;
2183                 spin_unlock(&sctx->stat_lock);
2184         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2185                 WARN_ON(sctx->nodesize != sctx->leafsize);
2186                 blocksize = sctx->nodesize;
2187                 spin_lock(&sctx->stat_lock);
2188                 sctx->stat.tree_extents_scrubbed++;
2189                 sctx->stat.tree_bytes_scrubbed += len;
2190                 spin_unlock(&sctx->stat_lock);
2191         } else {
2192                 blocksize = sctx->sectorsize;
2193                 WARN_ON(1);
2194         }
2195
2196         while (len) {
2197                 u64 l = min_t(u64, len, blocksize);
2198                 int have_csum = 0;
2199
2200                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2201                         /* push csums to sbio */
2202                         have_csum = scrub_find_csum(sctx, logical, l, csum);
2203                         if (have_csum == 0)
2204                                 ++sctx->stat.no_csum;
2205                         if (sctx->is_dev_replace && !have_csum) {
2206                                 ret = copy_nocow_pages(sctx, logical, l,
2207                                                        mirror_num,
2208                                                       physical_for_dev_replace);
2209                                 goto behind_scrub_pages;
2210                         }
2211                 }
2212                 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2213                                   mirror_num, have_csum ? csum : NULL, 0,
2214                                   physical_for_dev_replace);
2215 behind_scrub_pages:
2216                 if (ret)
2217                         return ret;
2218                 len -= l;
2219                 logical += l;
2220                 physical += l;
2221                 physical_for_dev_replace += l;
2222         }
2223         return 0;
2224 }
2225
2226 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2227                                            struct map_lookup *map,
2228                                            struct btrfs_device *scrub_dev,
2229                                            int num, u64 base, u64 length,
2230                                            int is_dev_replace)
2231 {
2232         struct btrfs_path *path;
2233         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2234         struct btrfs_root *root = fs_info->extent_root;
2235         struct btrfs_root *csum_root = fs_info->csum_root;
2236         struct btrfs_extent_item *extent;
2237         struct blk_plug plug;
2238         u64 flags;
2239         int ret;
2240         int slot;
2241         u64 nstripes;
2242         struct extent_buffer *l;
2243         struct btrfs_key key;
2244         u64 physical;
2245         u64 logical;
2246         u64 logic_end;
2247         u64 generation;
2248         int mirror_num;
2249         struct reada_control *reada1;
2250         struct reada_control *reada2;
2251         struct btrfs_key key_start;
2252         struct btrfs_key key_end;
2253         u64 increment = map->stripe_len;
2254         u64 offset;
2255         u64 extent_logical;
2256         u64 extent_physical;
2257         u64 extent_len;
2258         struct btrfs_device *extent_dev;
2259         int extent_mirror_num;
2260         int stop_loop;
2261
2262         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2263                          BTRFS_BLOCK_GROUP_RAID6)) {
2264                 if (num >= nr_data_stripes(map)) {
2265                         return 0;
2266                 }
2267         }
2268
2269         nstripes = length;
2270         offset = 0;
2271         do_div(nstripes, map->stripe_len);
2272         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2273                 offset = map->stripe_len * num;
2274                 increment = map->stripe_len * map->num_stripes;
2275                 mirror_num = 1;
2276         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2277                 int factor = map->num_stripes / map->sub_stripes;
2278                 offset = map->stripe_len * (num / map->sub_stripes);
2279                 increment = map->stripe_len * factor;
2280                 mirror_num = num % map->sub_stripes + 1;
2281         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2282                 increment = map->stripe_len;
2283                 mirror_num = num % map->num_stripes + 1;
2284         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2285                 increment = map->stripe_len;
2286                 mirror_num = num % map->num_stripes + 1;
2287         } else {
2288                 increment = map->stripe_len;
2289                 mirror_num = 1;
2290         }
2291
2292         path = btrfs_alloc_path();
2293         if (!path)
2294                 return -ENOMEM;
2295
2296         /*
2297          * work on commit root. The related disk blocks are static as
2298          * long as COW is applied. This means, it is save to rewrite
2299          * them to repair disk errors without any race conditions
2300          */
2301         path->search_commit_root = 1;
2302         path->skip_locking = 1;
2303
2304         /*
2305          * trigger the readahead for extent tree csum tree and wait for
2306          * completion. During readahead, the scrub is officially paused
2307          * to not hold off transaction commits
2308          */
2309         logical = base + offset;
2310
2311         wait_event(sctx->list_wait,
2312                    atomic_read(&sctx->bios_in_flight) == 0);
2313         scrub_blocked_if_needed(fs_info);
2314
2315         /* FIXME it might be better to start readahead at commit root */
2316         key_start.objectid = logical;
2317         key_start.type = BTRFS_EXTENT_ITEM_KEY;
2318         key_start.offset = (u64)0;
2319         key_end.objectid = base + offset + nstripes * increment;
2320         key_end.type = BTRFS_METADATA_ITEM_KEY;
2321         key_end.offset = (u64)-1;
2322         reada1 = btrfs_reada_add(root, &key_start, &key_end);
2323
2324         key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2325         key_start.type = BTRFS_EXTENT_CSUM_KEY;
2326         key_start.offset = logical;
2327         key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2328         key_end.type = BTRFS_EXTENT_CSUM_KEY;
2329         key_end.offset = base + offset + nstripes * increment;
2330         reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2331
2332         if (!IS_ERR(reada1))
2333                 btrfs_reada_wait(reada1);
2334         if (!IS_ERR(reada2))
2335                 btrfs_reada_wait(reada2);
2336
2337
2338         /*
2339          * collect all data csums for the stripe to avoid seeking during
2340          * the scrub. This might currently (crc32) end up to be about 1MB
2341          */
2342         blk_start_plug(&plug);
2343
2344         /*
2345          * now find all extents for each stripe and scrub them
2346          */
2347         logical = base + offset;
2348         physical = map->stripes[num].physical;
2349         logic_end = logical + increment * nstripes;
2350         ret = 0;
2351         while (logical < logic_end) {
2352                 /*
2353                  * canceled?
2354                  */
2355                 if (atomic_read(&fs_info->scrub_cancel_req) ||
2356                     atomic_read(&sctx->cancel_req)) {
2357                         ret = -ECANCELED;
2358                         goto out;
2359                 }
2360                 /*
2361                  * check to see if we have to pause
2362                  */
2363                 if (atomic_read(&fs_info->scrub_pause_req)) {
2364                         /* push queued extents */
2365                         atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2366                         scrub_submit(sctx);
2367                         mutex_lock(&sctx->wr_ctx.wr_lock);
2368                         scrub_wr_submit(sctx);
2369                         mutex_unlock(&sctx->wr_ctx.wr_lock);
2370                         wait_event(sctx->list_wait,
2371                                    atomic_read(&sctx->bios_in_flight) == 0);
2372                         atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2373                         scrub_blocked_if_needed(fs_info);
2374                 }
2375
2376                 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2377                         key.type = BTRFS_METADATA_ITEM_KEY;
2378                 else
2379                         key.type = BTRFS_EXTENT_ITEM_KEY;
2380                 key.objectid = logical;
2381                 key.offset = (u64)-1;
2382
2383                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2384                 if (ret < 0)
2385                         goto out;
2386
2387                 if (ret > 0) {
2388                         ret = btrfs_previous_extent_item(root, path, 0);
2389                         if (ret < 0)
2390                                 goto out;
2391                         if (ret > 0) {
2392                                 /* there's no smaller item, so stick with the
2393                                  * larger one */
2394                                 btrfs_release_path(path);
2395                                 ret = btrfs_search_slot(NULL, root, &key,
2396                                                         path, 0, 0);
2397                                 if (ret < 0)
2398                                         goto out;
2399                         }
2400                 }
2401
2402                 stop_loop = 0;
2403                 while (1) {
2404                         u64 bytes;
2405
2406                         l = path->nodes[0];
2407                         slot = path->slots[0];
2408                         if (slot >= btrfs_header_nritems(l)) {
2409                                 ret = btrfs_next_leaf(root, path);
2410                                 if (ret == 0)
2411                                         continue;
2412                                 if (ret < 0)
2413                                         goto out;
2414
2415                                 stop_loop = 1;
2416                                 break;
2417                         }
2418                         btrfs_item_key_to_cpu(l, &key, slot);
2419
2420                         if (key.type == BTRFS_METADATA_ITEM_KEY)
2421                                 bytes = root->leafsize;
2422                         else
2423                                 bytes = key.offset;
2424
2425                         if (key.objectid + bytes <= logical)
2426                                 goto next;
2427
2428                         if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2429                             key.type != BTRFS_METADATA_ITEM_KEY)
2430                                 goto next;
2431
2432                         if (key.objectid >= logical + map->stripe_len) {
2433                                 /* out of this device extent */
2434                                 if (key.objectid >= logic_end)
2435                                         stop_loop = 1;
2436                                 break;
2437                         }
2438
2439                         extent = btrfs_item_ptr(l, slot,
2440                                                 struct btrfs_extent_item);
2441                         flags = btrfs_extent_flags(l, extent);
2442                         generation = btrfs_extent_generation(l, extent);
2443
2444                         if (key.objectid < logical &&
2445                             (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2446                                 btrfs_err(fs_info,
2447                                            "scrub: tree block %llu spanning "
2448                                            "stripes, ignored. logical=%llu",
2449                                        key.objectid, logical);
2450                                 goto next;
2451                         }
2452
2453 again:
2454                         extent_logical = key.objectid;
2455                         extent_len = bytes;
2456
2457                         /*
2458                          * trim extent to this stripe
2459                          */
2460                         if (extent_logical < logical) {
2461                                 extent_len -= logical - extent_logical;
2462                                 extent_logical = logical;
2463                         }
2464                         if (extent_logical + extent_len >
2465                             logical + map->stripe_len) {
2466                                 extent_len = logical + map->stripe_len -
2467                                              extent_logical;
2468                         }
2469
2470                         extent_physical = extent_logical - logical + physical;
2471                         extent_dev = scrub_dev;
2472                         extent_mirror_num = mirror_num;
2473                         if (is_dev_replace)
2474                                 scrub_remap_extent(fs_info, extent_logical,
2475                                                    extent_len, &extent_physical,
2476                                                    &extent_dev,
2477                                                    &extent_mirror_num);
2478
2479                         ret = btrfs_lookup_csums_range(csum_root, logical,
2480                                                 logical + map->stripe_len - 1,
2481                                                 &sctx->csum_list, 1);
2482                         if (ret)
2483                                 goto out;
2484
2485                         ret = scrub_extent(sctx, extent_logical, extent_len,
2486                                            extent_physical, extent_dev, flags,
2487                                            generation, extent_mirror_num,
2488                                            extent_logical - logical + physical);
2489                         if (ret)
2490                                 goto out;
2491
2492                         scrub_free_csums(sctx);
2493                         if (extent_logical + extent_len <
2494                             key.objectid + bytes) {
2495                                 logical += increment;
2496                                 physical += map->stripe_len;
2497
2498                                 if (logical < key.objectid + bytes) {
2499                                         cond_resched();
2500                                         goto again;
2501                                 }
2502
2503                                 if (logical >= logic_end) {
2504                                         stop_loop = 1;
2505                                         break;
2506                                 }
2507                         }
2508 next:
2509                         path->slots[0]++;
2510                 }
2511                 btrfs_release_path(path);
2512                 logical += increment;
2513                 physical += map->stripe_len;
2514                 spin_lock(&sctx->stat_lock);
2515                 if (stop_loop)
2516                         sctx->stat.last_physical = map->stripes[num].physical +
2517                                                    length;
2518                 else
2519                         sctx->stat.last_physical = physical;
2520                 spin_unlock(&sctx->stat_lock);
2521                 if (stop_loop)
2522                         break;
2523         }
2524 out:
2525         /* push queued extents */
2526         scrub_submit(sctx);
2527         mutex_lock(&sctx->wr_ctx.wr_lock);
2528         scrub_wr_submit(sctx);
2529         mutex_unlock(&sctx->wr_ctx.wr_lock);
2530
2531         blk_finish_plug(&plug);
2532         btrfs_free_path(path);
2533         return ret < 0 ? ret : 0;
2534 }
2535
2536 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2537                                           struct btrfs_device *scrub_dev,
2538                                           u64 chunk_tree, u64 chunk_objectid,
2539                                           u64 chunk_offset, u64 length,
2540                                           u64 dev_offset, int is_dev_replace)
2541 {
2542         struct btrfs_mapping_tree *map_tree =
2543                 &sctx->dev_root->fs_info->mapping_tree;
2544         struct map_lookup *map;
2545         struct extent_map *em;
2546         int i;
2547         int ret = 0;
2548
2549         read_lock(&map_tree->map_tree.lock);
2550         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2551         read_unlock(&map_tree->map_tree.lock);
2552
2553         if (!em)
2554                 return -EINVAL;
2555
2556         map = (struct map_lookup *)em->bdev;
2557         if (em->start != chunk_offset)
2558                 goto out;
2559
2560         if (em->len < length)
2561                 goto out;
2562
2563         for (i = 0; i < map->num_stripes; ++i) {
2564                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2565                     map->stripes[i].physical == dev_offset) {
2566                         ret = scrub_stripe(sctx, map, scrub_dev, i,
2567                                            chunk_offset, length,
2568                                            is_dev_replace);
2569                         if (ret)
2570                                 goto out;
2571                 }
2572         }
2573 out:
2574         free_extent_map(em);
2575
2576         return ret;
2577 }
2578
2579 static noinline_for_stack
2580 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2581                            struct btrfs_device *scrub_dev, u64 start, u64 end,
2582                            int is_dev_replace)
2583 {
2584         struct btrfs_dev_extent *dev_extent = NULL;
2585         struct btrfs_path *path;
2586         struct btrfs_root *root = sctx->dev_root;
2587         struct btrfs_fs_info *fs_info = root->fs_info;
2588         u64 length;
2589         u64 chunk_tree;
2590         u64 chunk_objectid;
2591         u64 chunk_offset;
2592         int ret;
2593         int slot;
2594         struct extent_buffer *l;
2595         struct btrfs_key key;
2596         struct btrfs_key found_key;
2597         struct btrfs_block_group_cache *cache;
2598         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2599
2600         path = btrfs_alloc_path();
2601         if (!path)
2602                 return -ENOMEM;
2603
2604         path->reada = 2;
2605         path->search_commit_root = 1;
2606         path->skip_locking = 1;
2607
2608         key.objectid = scrub_dev->devid;
2609         key.offset = 0ull;
2610         key.type = BTRFS_DEV_EXTENT_KEY;
2611
2612         while (1) {
2613                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2614                 if (ret < 0)
2615                         break;
2616                 if (ret > 0) {
2617                         if (path->slots[0] >=
2618                             btrfs_header_nritems(path->nodes[0])) {
2619                                 ret = btrfs_next_leaf(root, path);
2620                                 if (ret)
2621                                         break;
2622                         }
2623                 }
2624
2625                 l = path->nodes[0];
2626                 slot = path->slots[0];
2627
2628                 btrfs_item_key_to_cpu(l, &found_key, slot);
2629
2630                 if (found_key.objectid != scrub_dev->devid)
2631                         break;
2632
2633                 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2634                         break;
2635
2636                 if (found_key.offset >= end)
2637                         break;
2638
2639                 if (found_key.offset < key.offset)
2640                         break;
2641
2642                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2643                 length = btrfs_dev_extent_length(l, dev_extent);
2644
2645                 if (found_key.offset + length <= start) {
2646                         key.offset = found_key.offset + length;
2647                         btrfs_release_path(path);
2648                         continue;
2649                 }
2650
2651                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2652                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2653                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2654
2655                 /*
2656                  * get a reference on the corresponding block group to prevent
2657                  * the chunk from going away while we scrub it
2658                  */
2659                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2660                 if (!cache) {
2661                         ret = -ENOENT;
2662                         break;
2663                 }
2664                 dev_replace->cursor_right = found_key.offset + length;
2665                 dev_replace->cursor_left = found_key.offset;
2666                 dev_replace->item_needs_writeback = 1;
2667                 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2668                                   chunk_offset, length, found_key.offset,
2669                                   is_dev_replace);
2670
2671                 /*
2672                  * flush, submit all pending read and write bios, afterwards
2673                  * wait for them.
2674                  * Note that in the dev replace case, a read request causes
2675                  * write requests that are submitted in the read completion
2676                  * worker. Therefore in the current situation, it is required
2677                  * that all write requests are flushed, so that all read and
2678                  * write requests are really completed when bios_in_flight
2679                  * changes to 0.
2680                  */
2681                 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2682                 scrub_submit(sctx);
2683                 mutex_lock(&sctx->wr_ctx.wr_lock);
2684                 scrub_wr_submit(sctx);
2685                 mutex_unlock(&sctx->wr_ctx.wr_lock);
2686
2687                 wait_event(sctx->list_wait,
2688                            atomic_read(&sctx->bios_in_flight) == 0);
2689                 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2690                 wait_event(sctx->list_wait,
2691                            atomic_read(&sctx->workers_pending) == 0);
2692                 scrub_blocked_if_needed(fs_info);
2693
2694                 btrfs_put_block_group(cache);
2695                 if (ret)
2696                         break;
2697                 if (is_dev_replace &&
2698                     atomic64_read(&dev_replace->num_write_errors) > 0) {
2699                         ret = -EIO;
2700                         break;
2701                 }
2702                 if (sctx->stat.malloc_errors > 0) {
2703                         ret = -ENOMEM;
2704                         break;
2705                 }
2706
2707                 dev_replace->cursor_left = dev_replace->cursor_right;
2708                 dev_replace->item_needs_writeback = 1;
2709
2710                 key.offset = found_key.offset + length;
2711                 btrfs_release_path(path);
2712         }
2713
2714         btrfs_free_path(path);
2715
2716         /*
2717          * ret can still be 1 from search_slot or next_leaf,
2718          * that's not an error
2719          */
2720         return ret < 0 ? ret : 0;
2721 }
2722
2723 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2724                                            struct btrfs_device *scrub_dev)
2725 {
2726         int     i;
2727         u64     bytenr;
2728         u64     gen;
2729         int     ret;
2730         struct btrfs_root *root = sctx->dev_root;
2731
2732         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2733                 return -EIO;
2734
2735         gen = root->fs_info->last_trans_committed;
2736
2737         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2738                 bytenr = btrfs_sb_offset(i);
2739                 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2740                         break;
2741
2742                 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2743                                   scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2744                                   NULL, 1, bytenr);
2745                 if (ret)
2746                         return ret;
2747         }
2748         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2749
2750         return 0;
2751 }
2752
2753 /*
2754  * get a reference count on fs_info->scrub_workers. start worker if necessary
2755  */
2756 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2757                                                 int is_dev_replace)
2758 {
2759         int ret = 0;
2760
2761         if (fs_info->scrub_workers_refcnt == 0) {
2762                 if (is_dev_replace)
2763                         btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2764                                         &fs_info->generic_worker);
2765                 else
2766                         btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2767                                         fs_info->thread_pool_size,
2768                                         &fs_info->generic_worker);
2769                 fs_info->scrub_workers.idle_thresh = 4;
2770                 ret = btrfs_start_workers(&fs_info->scrub_workers);
2771                 if (ret)
2772                         goto out;
2773                 btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2774                                    "scrubwrc",
2775                                    fs_info->thread_pool_size,
2776                                    &fs_info->generic_worker);
2777                 fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2778                 ret = btrfs_start_workers(
2779                                 &fs_info->scrub_wr_completion_workers);
2780                 if (ret)
2781                         goto out;
2782                 btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2783                                    &fs_info->generic_worker);
2784                 ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2785                 if (ret)
2786                         goto out;
2787         }
2788         ++fs_info->scrub_workers_refcnt;
2789 out:
2790         return ret;
2791 }
2792
2793 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2794 {
2795         if (--fs_info->scrub_workers_refcnt == 0) {
2796                 btrfs_stop_workers(&fs_info->scrub_workers);
2797                 btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2798                 btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2799         }
2800         WARN_ON(fs_info->scrub_workers_refcnt < 0);
2801 }
2802
2803 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2804                     u64 end, struct btrfs_scrub_progress *progress,
2805                     int readonly, int is_dev_replace)
2806 {
2807         struct scrub_ctx *sctx;
2808         int ret;
2809         struct btrfs_device *dev;
2810
2811         if (btrfs_fs_closing(fs_info))
2812                 return -EINVAL;
2813
2814         /*
2815          * check some assumptions
2816          */
2817         if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2818                 btrfs_err(fs_info,
2819                            "scrub: size assumption nodesize == leafsize (%d == %d) fails",
2820                        fs_info->chunk_root->nodesize,
2821                        fs_info->chunk_root->leafsize);
2822                 return -EINVAL;
2823         }
2824
2825         if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2826                 /*
2827                  * in this case scrub is unable to calculate the checksum
2828                  * the way scrub is implemented. Do not handle this
2829                  * situation at all because it won't ever happen.
2830                  */
2831                 btrfs_err(fs_info,
2832                            "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2833                        fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2834                 return -EINVAL;
2835         }
2836
2837         if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2838                 /* not supported for data w/o checksums */
2839                 btrfs_err(fs_info,
2840                            "scrub: size assumption sectorsize != PAGE_SIZE "
2841                            "(%d != %lu) fails",
2842                        fs_info->chunk_root->sectorsize, PAGE_SIZE);
2843                 return -EINVAL;
2844         }
2845
2846         if (fs_info->chunk_root->nodesize >
2847             PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2848             fs_info->chunk_root->sectorsize >
2849             PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2850                 /*
2851                  * would exhaust the array bounds of pagev member in
2852                  * struct scrub_block
2853                  */
2854                 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2855                            "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2856                        fs_info->chunk_root->nodesize,
2857                        SCRUB_MAX_PAGES_PER_BLOCK,
2858                        fs_info->chunk_root->sectorsize,
2859                        SCRUB_MAX_PAGES_PER_BLOCK);
2860                 return -EINVAL;
2861         }
2862
2863
2864         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2865         dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2866         if (!dev || (dev->missing && !is_dev_replace)) {
2867                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2868                 return -ENODEV;
2869         }
2870
2871         mutex_lock(&fs_info->scrub_lock);
2872         if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2873                 mutex_unlock(&fs_info->scrub_lock);
2874                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2875                 return -EIO;
2876         }
2877
2878         btrfs_dev_replace_lock(&fs_info->dev_replace);
2879         if (dev->scrub_device ||
2880             (!is_dev_replace &&
2881              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2882                 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2883                 mutex_unlock(&fs_info->scrub_lock);
2884                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2885                 return -EINPROGRESS;
2886         }
2887         btrfs_dev_replace_unlock(&fs_info->dev_replace);
2888
2889         ret = scrub_workers_get(fs_info, is_dev_replace);
2890         if (ret) {
2891                 mutex_unlock(&fs_info->scrub_lock);
2892                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2893                 return ret;
2894         }
2895
2896         sctx = scrub_setup_ctx(dev, is_dev_replace);
2897         if (IS_ERR(sctx)) {
2898                 mutex_unlock(&fs_info->scrub_lock);
2899                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2900                 scrub_workers_put(fs_info);
2901                 return PTR_ERR(sctx);
2902         }
2903         sctx->readonly = readonly;
2904         dev->scrub_device = sctx;
2905         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2906
2907         /*
2908          * checking @scrub_pause_req here, we can avoid
2909          * race between committing transaction and scrubbing.
2910          */
2911         __scrub_blocked_if_needed(fs_info);
2912         atomic_inc(&fs_info->scrubs_running);
2913         mutex_unlock(&fs_info->scrub_lock);
2914
2915         if (!is_dev_replace) {
2916                 /*
2917                  * by holding device list mutex, we can
2918                  * kick off writing super in log tree sync.
2919                  */
2920                 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2921                 ret = scrub_supers(sctx, dev);
2922                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2923         }
2924
2925         if (!ret)
2926                 ret = scrub_enumerate_chunks(sctx, dev, start, end,
2927                                              is_dev_replace);
2928
2929         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2930         atomic_dec(&fs_info->scrubs_running);
2931         wake_up(&fs_info->scrub_pause_wait);
2932
2933         wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2934
2935         if (progress)
2936                 memcpy(progress, &sctx->stat, sizeof(*progress));
2937
2938         mutex_lock(&fs_info->scrub_lock);
2939         dev->scrub_device = NULL;
2940         scrub_workers_put(fs_info);
2941         mutex_unlock(&fs_info->scrub_lock);
2942
2943         scrub_free_ctx(sctx);
2944
2945         return ret;
2946 }
2947
2948 void btrfs_scrub_pause(struct btrfs_root *root)
2949 {
2950         struct btrfs_fs_info *fs_info = root->fs_info;
2951
2952         mutex_lock(&fs_info->scrub_lock);
2953         atomic_inc(&fs_info->scrub_pause_req);
2954         while (atomic_read(&fs_info->scrubs_paused) !=
2955                atomic_read(&fs_info->scrubs_running)) {
2956                 mutex_unlock(&fs_info->scrub_lock);
2957                 wait_event(fs_info->scrub_pause_wait,
2958                            atomic_read(&fs_info->scrubs_paused) ==
2959                            atomic_read(&fs_info->scrubs_running));
2960                 mutex_lock(&fs_info->scrub_lock);
2961         }
2962         mutex_unlock(&fs_info->scrub_lock);
2963 }
2964
2965 void btrfs_scrub_continue(struct btrfs_root *root)
2966 {
2967         struct btrfs_fs_info *fs_info = root->fs_info;
2968
2969         atomic_dec(&fs_info->scrub_pause_req);
2970         wake_up(&fs_info->scrub_pause_wait);
2971 }
2972
2973 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2974 {
2975         mutex_lock(&fs_info->scrub_lock);
2976         if (!atomic_read(&fs_info->scrubs_running)) {
2977                 mutex_unlock(&fs_info->scrub_lock);
2978                 return -ENOTCONN;
2979         }
2980
2981         atomic_inc(&fs_info->scrub_cancel_req);
2982         while (atomic_read(&fs_info->scrubs_running)) {
2983                 mutex_unlock(&fs_info->scrub_lock);
2984                 wait_event(fs_info->scrub_pause_wait,
2985                            atomic_read(&fs_info->scrubs_running) == 0);
2986                 mutex_lock(&fs_info->scrub_lock);
2987         }
2988         atomic_dec(&fs_info->scrub_cancel_req);
2989         mutex_unlock(&fs_info->scrub_lock);
2990
2991         return 0;
2992 }
2993
2994 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
2995                            struct btrfs_device *dev)
2996 {
2997         struct scrub_ctx *sctx;
2998
2999         mutex_lock(&fs_info->scrub_lock);
3000         sctx = dev->scrub_device;
3001         if (!sctx) {
3002                 mutex_unlock(&fs_info->scrub_lock);
3003                 return -ENOTCONN;
3004         }
3005         atomic_inc(&sctx->cancel_req);
3006         while (dev->scrub_device) {
3007                 mutex_unlock(&fs_info->scrub_lock);
3008                 wait_event(fs_info->scrub_pause_wait,
3009                            dev->scrub_device == NULL);
3010                 mutex_lock(&fs_info->scrub_lock);
3011         }
3012         mutex_unlock(&fs_info->scrub_lock);
3013
3014         return 0;
3015 }
3016
3017 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3018                          struct btrfs_scrub_progress *progress)
3019 {
3020         struct btrfs_device *dev;
3021         struct scrub_ctx *sctx = NULL;
3022
3023         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3024         dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3025         if (dev)
3026                 sctx = dev->scrub_device;
3027         if (sctx)
3028                 memcpy(progress, &sctx->stat, sizeof(*progress));
3029         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3030
3031         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3032 }
3033
3034 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3035                                u64 extent_logical, u64 extent_len,
3036                                u64 *extent_physical,
3037                                struct btrfs_device **extent_dev,
3038                                int *extent_mirror_num)
3039 {
3040         u64 mapped_length;
3041         struct btrfs_bio *bbio = NULL;
3042         int ret;
3043
3044         mapped_length = extent_len;
3045         ret = btrfs_map_block(fs_info, READ, extent_logical,
3046                               &mapped_length, &bbio, 0);
3047         if (ret || !bbio || mapped_length < extent_len ||
3048             !bbio->stripes[0].dev->bdev) {
3049                 kfree(bbio);
3050                 return;
3051         }
3052
3053         *extent_physical = bbio->stripes[0].physical;
3054         *extent_mirror_num = bbio->mirror_num;
3055         *extent_dev = bbio->stripes[0].dev;
3056         kfree(bbio);
3057 }
3058
3059 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3060                               struct scrub_wr_ctx *wr_ctx,
3061                               struct btrfs_fs_info *fs_info,
3062                               struct btrfs_device *dev,
3063                               int is_dev_replace)
3064 {
3065         WARN_ON(wr_ctx->wr_curr_bio != NULL);
3066
3067         mutex_init(&wr_ctx->wr_lock);
3068         wr_ctx->wr_curr_bio = NULL;
3069         if (!is_dev_replace)
3070                 return 0;
3071
3072         WARN_ON(!dev->bdev);
3073         wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3074                                          bio_get_nr_vecs(dev->bdev));
3075         wr_ctx->tgtdev = dev;
3076         atomic_set(&wr_ctx->flush_all_writes, 0);
3077         return 0;
3078 }
3079
3080 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3081 {
3082         mutex_lock(&wr_ctx->wr_lock);
3083         kfree(wr_ctx->wr_curr_bio);
3084         wr_ctx->wr_curr_bio = NULL;
3085         mutex_unlock(&wr_ctx->wr_lock);
3086 }
3087
3088 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3089                             int mirror_num, u64 physical_for_dev_replace)
3090 {
3091         struct scrub_copy_nocow_ctx *nocow_ctx;
3092         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3093
3094         nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3095         if (!nocow_ctx) {
3096                 spin_lock(&sctx->stat_lock);
3097                 sctx->stat.malloc_errors++;
3098                 spin_unlock(&sctx->stat_lock);
3099                 return -ENOMEM;
3100         }
3101
3102         scrub_pending_trans_workers_inc(sctx);
3103
3104         nocow_ctx->sctx = sctx;
3105         nocow_ctx->logical = logical;
3106         nocow_ctx->len = len;
3107         nocow_ctx->mirror_num = mirror_num;
3108         nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3109         nocow_ctx->work.func = copy_nocow_pages_worker;
3110         INIT_LIST_HEAD(&nocow_ctx->inodes);
3111         btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3112                            &nocow_ctx->work);
3113
3114         return 0;
3115 }
3116
3117 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3118 {
3119         struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3120         struct scrub_nocow_inode *nocow_inode;
3121
3122         nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3123         if (!nocow_inode)
3124                 return -ENOMEM;
3125         nocow_inode->inum = inum;
3126         nocow_inode->offset = offset;
3127         nocow_inode->root = root;
3128         list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3129         return 0;
3130 }
3131
3132 #define COPY_COMPLETE 1
3133
3134 static void copy_nocow_pages_worker(struct btrfs_work *work)
3135 {
3136         struct scrub_copy_nocow_ctx *nocow_ctx =
3137                 container_of(work, struct scrub_copy_nocow_ctx, work);
3138         struct scrub_ctx *sctx = nocow_ctx->sctx;
3139         u64 logical = nocow_ctx->logical;
3140         u64 len = nocow_ctx->len;
3141         int mirror_num = nocow_ctx->mirror_num;
3142         u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3143         int ret;
3144         struct btrfs_trans_handle *trans = NULL;
3145         struct btrfs_fs_info *fs_info;
3146         struct btrfs_path *path;
3147         struct btrfs_root *root;
3148         int not_written = 0;
3149
3150         fs_info = sctx->dev_root->fs_info;
3151         root = fs_info->extent_root;
3152
3153         path = btrfs_alloc_path();
3154         if (!path) {
3155                 spin_lock(&sctx->stat_lock);
3156                 sctx->stat.malloc_errors++;
3157                 spin_unlock(&sctx->stat_lock);
3158                 not_written = 1;
3159                 goto out;
3160         }
3161
3162         trans = btrfs_join_transaction(root);
3163         if (IS_ERR(trans)) {
3164                 not_written = 1;
3165                 goto out;
3166         }
3167
3168         ret = iterate_inodes_from_logical(logical, fs_info, path,
3169                                           record_inode_for_nocow, nocow_ctx);
3170         if (ret != 0 && ret != -ENOENT) {
3171                 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3172                         "phys %llu, len %llu, mir %u, ret %d",
3173                         logical, physical_for_dev_replace, len, mirror_num,
3174                         ret);
3175                 not_written = 1;
3176                 goto out;
3177         }
3178
3179         btrfs_end_transaction(trans, root);
3180         trans = NULL;
3181         while (!list_empty(&nocow_ctx->inodes)) {
3182                 struct scrub_nocow_inode *entry;
3183                 entry = list_first_entry(&nocow_ctx->inodes,
3184                                          struct scrub_nocow_inode,
3185                                          list);
3186                 list_del_init(&entry->list);
3187                 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3188                                                  entry->root, nocow_ctx);
3189                 kfree(entry);
3190                 if (ret == COPY_COMPLETE) {
3191                         ret = 0;
3192                         break;
3193                 } else if (ret) {
3194                         break;
3195                 }
3196         }
3197 out:
3198         while (!list_empty(&nocow_ctx->inodes)) {
3199                 struct scrub_nocow_inode *entry;
3200                 entry = list_first_entry(&nocow_ctx->inodes,
3201                                          struct scrub_nocow_inode,
3202                                          list);
3203                 list_del_init(&entry->list);
3204                 kfree(entry);
3205         }
3206         if (trans && !IS_ERR(trans))
3207                 btrfs_end_transaction(trans, root);
3208         if (not_written)
3209                 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3210                                             num_uncorrectable_read_errors);
3211
3212         btrfs_free_path(path);
3213         kfree(nocow_ctx);
3214
3215         scrub_pending_trans_workers_dec(sctx);
3216 }
3217
3218 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3219                                       struct scrub_copy_nocow_ctx *nocow_ctx)
3220 {
3221         struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3222         struct btrfs_key key;
3223         struct inode *inode;
3224         struct page *page;
3225         struct btrfs_root *local_root;
3226         struct btrfs_ordered_extent *ordered;
3227         struct extent_map *em;
3228         struct extent_state *cached_state = NULL;
3229         struct extent_io_tree *io_tree;
3230         u64 physical_for_dev_replace;
3231         u64 len = nocow_ctx->len;
3232         u64 lockstart = offset, lockend = offset + len - 1;
3233         unsigned long index;
3234         int srcu_index;
3235         int ret = 0;
3236         int err = 0;
3237
3238         key.objectid = root;
3239         key.type = BTRFS_ROOT_ITEM_KEY;
3240         key.offset = (u64)-1;
3241
3242         srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3243
3244         local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3245         if (IS_ERR(local_root)) {
3246                 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3247                 return PTR_ERR(local_root);
3248         }
3249
3250         key.type = BTRFS_INODE_ITEM_KEY;
3251         key.objectid = inum;
3252         key.offset = 0;
3253         inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3254         srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3255         if (IS_ERR(inode))
3256                 return PTR_ERR(inode);
3257
3258         /* Avoid truncate/dio/punch hole.. */
3259         mutex_lock(&inode->i_mutex);
3260         inode_dio_wait(inode);
3261
3262         physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3263         io_tree = &BTRFS_I(inode)->io_tree;
3264
3265         lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3266         ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3267         if (ordered) {
3268                 btrfs_put_ordered_extent(ordered);
3269                 goto out_unlock;
3270         }
3271
3272         em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3273         if (IS_ERR(em)) {
3274                 ret = PTR_ERR(em);
3275                 goto out_unlock;
3276         }
3277
3278         /*
3279          * This extent does not actually cover the logical extent anymore,
3280          * move on to the next inode.
3281          */
3282         if (em->block_start > nocow_ctx->logical ||
3283             em->block_start + em->block_len < nocow_ctx->logical + len) {
3284                 free_extent_map(em);
3285                 goto out_unlock;
3286         }
3287         free_extent_map(em);
3288
3289         while (len >= PAGE_CACHE_SIZE) {
3290                 index = offset >> PAGE_CACHE_SHIFT;
3291 again:
3292                 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3293                 if (!page) {
3294                         btrfs_err(fs_info, "find_or_create_page() failed");
3295                         ret = -ENOMEM;
3296                         goto out;
3297                 }
3298
3299                 if (PageUptodate(page)) {
3300                         if (PageDirty(page))
3301                                 goto next_page;
3302                 } else {
3303                         ClearPageError(page);
3304                         err = extent_read_full_page_nolock(io_tree, page,
3305                                                            btrfs_get_extent,
3306                                                            nocow_ctx->mirror_num);
3307                         if (err) {
3308                                 ret = err;
3309                                 goto next_page;
3310                         }
3311
3312                         lock_page(page);
3313                         /*
3314                          * If the page has been remove from the page cache,
3315                          * the data on it is meaningless, because it may be
3316                          * old one, the new data may be written into the new
3317                          * page in the page cache.
3318                          */
3319                         if (page->mapping != inode->i_mapping) {
3320                                 unlock_page(page);
3321                                 page_cache_release(page);
3322                                 goto again;
3323                         }
3324                         if (!PageUptodate(page)) {
3325                                 ret = -EIO;
3326                                 goto next_page;
3327                         }
3328                 }
3329                 err = write_page_nocow(nocow_ctx->sctx,
3330                                        physical_for_dev_replace, page);
3331                 if (err)
3332                         ret = err;
3333 next_page:
3334                 unlock_page(page);
3335                 page_cache_release(page);
3336
3337                 if (ret)
3338                         break;
3339
3340                 offset += PAGE_CACHE_SIZE;
3341                 physical_for_dev_replace += PAGE_CACHE_SIZE;
3342                 len -= PAGE_CACHE_SIZE;
3343         }
3344         ret = COPY_COMPLETE;
3345 out_unlock:
3346         unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3347                              GFP_NOFS);
3348 out:
3349         mutex_unlock(&inode->i_mutex);
3350         iput(inode);
3351         return ret;
3352 }
3353
3354 static int write_page_nocow(struct scrub_ctx *sctx,
3355                             u64 physical_for_dev_replace, struct page *page)
3356 {
3357         struct bio *bio;
3358         struct btrfs_device *dev;
3359         int ret;
3360
3361         dev = sctx->wr_ctx.tgtdev;
3362         if (!dev)
3363                 return -EIO;
3364         if (!dev->bdev) {
3365                 printk_ratelimited(KERN_WARNING
3366                         "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3367                 return -EIO;
3368         }
3369         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3370         if (!bio) {
3371                 spin_lock(&sctx->stat_lock);
3372                 sctx->stat.malloc_errors++;
3373                 spin_unlock(&sctx->stat_lock);
3374                 return -ENOMEM;
3375         }
3376         bio->bi_iter.bi_size = 0;
3377         bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3378         bio->bi_bdev = dev->bdev;
3379         ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3380         if (ret != PAGE_CACHE_SIZE) {
3381 leave_with_eio:
3382                 bio_put(bio);
3383                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3384                 return -EIO;
3385         }
3386
3387         if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3388                 goto leave_with_eio;
3389
3390         bio_put(bio);
3391         return 0;
3392 }