]> Pileus Git - ~andy/linux/blob - fs/btrfs/reada.c
Merge tag 'upstream-3.14-rc1' of git://git.infradead.org/linux-ubifs
[~andy/linux] / fs / btrfs / reada.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "dev-replace.h"
31
32 #undef DEBUG
33
34 /*
35  * This is the implementation for the generic read ahead framework.
36  *
37  * To trigger a readahead, btrfs_reada_add must be called. It will start
38  * a read ahead for the given range [start, end) on tree root. The returned
39  * handle can either be used to wait on the readahead to finish
40  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41  *
42  * The read ahead works as follows:
43  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44  * reada_start_machine will then search for extents to prefetch and trigger
45  * some reads. When a read finishes for a node, all contained node/leaf
46  * pointers that lie in the given range will also be enqueued. The reads will
47  * be triggered in sequential order, thus giving a big win over a naive
48  * enumeration. It will also make use of multi-device layouts. Each disk
49  * will have its on read pointer and all disks will by utilized in parallel.
50  * Also will no two disks read both sides of a mirror simultaneously, as this
51  * would waste seeking capacity. Instead both disks will read different parts
52  * of the filesystem.
53  * Any number of readaheads can be started in parallel. The read order will be
54  * determined globally, i.e. 2 parallel readaheads will normally finish faster
55  * than the 2 started one after another.
56  */
57
58 #define MAX_IN_FLIGHT 6
59
60 struct reada_extctl {
61         struct list_head        list;
62         struct reada_control    *rc;
63         u64                     generation;
64 };
65
66 struct reada_extent {
67         u64                     logical;
68         struct btrfs_key        top;
69         u32                     blocksize;
70         int                     err;
71         struct list_head        extctl;
72         int                     refcnt;
73         spinlock_t              lock;
74         struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
75         int                     nzones;
76         struct btrfs_device     *scheduled_for;
77 };
78
79 struct reada_zone {
80         u64                     start;
81         u64                     end;
82         u64                     elems;
83         struct list_head        list;
84         spinlock_t              lock;
85         int                     locked;
86         struct btrfs_device     *device;
87         struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
88                                                            * self */
89         int                     ndevs;
90         struct kref             refcnt;
91 };
92
93 struct reada_machine_work {
94         struct btrfs_work       work;
95         struct btrfs_fs_info    *fs_info;
96 };
97
98 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
99 static void reada_control_release(struct kref *kref);
100 static void reada_zone_release(struct kref *kref);
101 static void reada_start_machine(struct btrfs_fs_info *fs_info);
102 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
103
104 static int reada_add_block(struct reada_control *rc, u64 logical,
105                            struct btrfs_key *top, int level, u64 generation);
106
107 /* recurses */
108 /* in case of err, eb might be NULL */
109 static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
110                             u64 start, int err)
111 {
112         int level = 0;
113         int nritems;
114         int i;
115         u64 bytenr;
116         u64 generation;
117         struct reada_extent *re;
118         struct btrfs_fs_info *fs_info = root->fs_info;
119         struct list_head list;
120         unsigned long index = start >> PAGE_CACHE_SHIFT;
121         struct btrfs_device *for_dev;
122
123         if (eb)
124                 level = btrfs_header_level(eb);
125
126         /* find extent */
127         spin_lock(&fs_info->reada_lock);
128         re = radix_tree_lookup(&fs_info->reada_tree, index);
129         if (re)
130                 re->refcnt++;
131         spin_unlock(&fs_info->reada_lock);
132
133         if (!re)
134                 return -1;
135
136         spin_lock(&re->lock);
137         /*
138          * just take the full list from the extent. afterwards we
139          * don't need the lock anymore
140          */
141         list_replace_init(&re->extctl, &list);
142         for_dev = re->scheduled_for;
143         re->scheduled_for = NULL;
144         spin_unlock(&re->lock);
145
146         if (err == 0) {
147                 nritems = level ? btrfs_header_nritems(eb) : 0;
148                 generation = btrfs_header_generation(eb);
149                 /*
150                  * FIXME: currently we just set nritems to 0 if this is a leaf,
151                  * effectively ignoring the content. In a next step we could
152                  * trigger more readahead depending from the content, e.g.
153                  * fetch the checksums for the extents in the leaf.
154                  */
155         } else {
156                 /*
157                  * this is the error case, the extent buffer has not been
158                  * read correctly. We won't access anything from it and
159                  * just cleanup our data structures. Effectively this will
160                  * cut the branch below this node from read ahead.
161                  */
162                 nritems = 0;
163                 generation = 0;
164         }
165
166         for (i = 0; i < nritems; i++) {
167                 struct reada_extctl *rec;
168                 u64 n_gen;
169                 struct btrfs_key key;
170                 struct btrfs_key next_key;
171
172                 btrfs_node_key_to_cpu(eb, &key, i);
173                 if (i + 1 < nritems)
174                         btrfs_node_key_to_cpu(eb, &next_key, i + 1);
175                 else
176                         next_key = re->top;
177                 bytenr = btrfs_node_blockptr(eb, i);
178                 n_gen = btrfs_node_ptr_generation(eb, i);
179
180                 list_for_each_entry(rec, &list, list) {
181                         struct reada_control *rc = rec->rc;
182
183                         /*
184                          * if the generation doesn't match, just ignore this
185                          * extctl. This will probably cut off a branch from
186                          * prefetch. Alternatively one could start a new (sub-)
187                          * prefetch for this branch, starting again from root.
188                          * FIXME: move the generation check out of this loop
189                          */
190 #ifdef DEBUG
191                         if (rec->generation != generation) {
192                                 printk(KERN_DEBUG "generation mismatch for "
193                                                 "(%llu,%d,%llu) %llu != %llu\n",
194                                        key.objectid, key.type, key.offset,
195                                        rec->generation, generation);
196                         }
197 #endif
198                         if (rec->generation == generation &&
199                             btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
200                             btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
201                                 reada_add_block(rc, bytenr, &next_key,
202                                                 level - 1, n_gen);
203                 }
204         }
205         /*
206          * free extctl records
207          */
208         while (!list_empty(&list)) {
209                 struct reada_control *rc;
210                 struct reada_extctl *rec;
211
212                 rec = list_first_entry(&list, struct reada_extctl, list);
213                 list_del(&rec->list);
214                 rc = rec->rc;
215                 kfree(rec);
216
217                 kref_get(&rc->refcnt);
218                 if (atomic_dec_and_test(&rc->elems)) {
219                         kref_put(&rc->refcnt, reada_control_release);
220                         wake_up(&rc->wait);
221                 }
222                 kref_put(&rc->refcnt, reada_control_release);
223
224                 reada_extent_put(fs_info, re);  /* one ref for each entry */
225         }
226         reada_extent_put(fs_info, re);  /* our ref */
227         if (for_dev)
228                 atomic_dec(&for_dev->reada_in_flight);
229
230         return 0;
231 }
232
233 /*
234  * start is passed separately in case eb in NULL, which may be the case with
235  * failed I/O
236  */
237 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
238                          u64 start, int err)
239 {
240         int ret;
241
242         ret = __readahead_hook(root, eb, start, err);
243
244         reada_start_machine(root->fs_info);
245
246         return ret;
247 }
248
249 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
250                                           struct btrfs_device *dev, u64 logical,
251                                           struct btrfs_bio *bbio)
252 {
253         int ret;
254         struct reada_zone *zone;
255         struct btrfs_block_group_cache *cache = NULL;
256         u64 start;
257         u64 end;
258         int i;
259
260         zone = NULL;
261         spin_lock(&fs_info->reada_lock);
262         ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
263                                      logical >> PAGE_CACHE_SHIFT, 1);
264         if (ret == 1)
265                 kref_get(&zone->refcnt);
266         spin_unlock(&fs_info->reada_lock);
267
268         if (ret == 1) {
269                 if (logical >= zone->start && logical < zone->end)
270                         return zone;
271                 spin_lock(&fs_info->reada_lock);
272                 kref_put(&zone->refcnt, reada_zone_release);
273                 spin_unlock(&fs_info->reada_lock);
274         }
275
276         cache = btrfs_lookup_block_group(fs_info, logical);
277         if (!cache)
278                 return NULL;
279
280         start = cache->key.objectid;
281         end = start + cache->key.offset - 1;
282         btrfs_put_block_group(cache);
283
284         zone = kzalloc(sizeof(*zone), GFP_NOFS);
285         if (!zone)
286                 return NULL;
287
288         zone->start = start;
289         zone->end = end;
290         INIT_LIST_HEAD(&zone->list);
291         spin_lock_init(&zone->lock);
292         zone->locked = 0;
293         kref_init(&zone->refcnt);
294         zone->elems = 0;
295         zone->device = dev; /* our device always sits at index 0 */
296         for (i = 0; i < bbio->num_stripes; ++i) {
297                 /* bounds have already been checked */
298                 zone->devs[i] = bbio->stripes[i].dev;
299         }
300         zone->ndevs = bbio->num_stripes;
301
302         spin_lock(&fs_info->reada_lock);
303         ret = radix_tree_insert(&dev->reada_zones,
304                                 (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
305                                 zone);
306
307         if (ret == -EEXIST) {
308                 kfree(zone);
309                 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
310                                              logical >> PAGE_CACHE_SHIFT, 1);
311                 if (ret == 1)
312                         kref_get(&zone->refcnt);
313         }
314         spin_unlock(&fs_info->reada_lock);
315
316         return zone;
317 }
318
319 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
320                                               u64 logical,
321                                               struct btrfs_key *top, int level)
322 {
323         int ret;
324         struct reada_extent *re = NULL;
325         struct reada_extent *re_exist = NULL;
326         struct btrfs_fs_info *fs_info = root->fs_info;
327         struct btrfs_bio *bbio = NULL;
328         struct btrfs_device *dev;
329         struct btrfs_device *prev_dev;
330         u32 blocksize;
331         u64 length;
332         int nzones = 0;
333         int i;
334         unsigned long index = logical >> PAGE_CACHE_SHIFT;
335         int dev_replace_is_ongoing;
336
337         spin_lock(&fs_info->reada_lock);
338         re = radix_tree_lookup(&fs_info->reada_tree, index);
339         if (re)
340                 re->refcnt++;
341         spin_unlock(&fs_info->reada_lock);
342
343         if (re)
344                 return re;
345
346         re = kzalloc(sizeof(*re), GFP_NOFS);
347         if (!re)
348                 return NULL;
349
350         blocksize = btrfs_level_size(root, level);
351         re->logical = logical;
352         re->blocksize = blocksize;
353         re->top = *top;
354         INIT_LIST_HEAD(&re->extctl);
355         spin_lock_init(&re->lock);
356         re->refcnt = 1;
357
358         /*
359          * map block
360          */
361         length = blocksize;
362         ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
363                               &bbio, 0);
364         if (ret || !bbio || length < blocksize)
365                 goto error;
366
367         if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
368                 printk(KERN_ERR "btrfs readahead: more than %d copies not "
369                                 "supported", BTRFS_MAX_MIRRORS);
370                 goto error;
371         }
372
373         for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
374                 struct reada_zone *zone;
375
376                 dev = bbio->stripes[nzones].dev;
377                 zone = reada_find_zone(fs_info, dev, logical, bbio);
378                 if (!zone)
379                         break;
380
381                 re->zones[nzones] = zone;
382                 spin_lock(&zone->lock);
383                 if (!zone->elems)
384                         kref_get(&zone->refcnt);
385                 ++zone->elems;
386                 spin_unlock(&zone->lock);
387                 spin_lock(&fs_info->reada_lock);
388                 kref_put(&zone->refcnt, reada_zone_release);
389                 spin_unlock(&fs_info->reada_lock);
390         }
391         re->nzones = nzones;
392         if (nzones == 0) {
393                 /* not a single zone found, error and out */
394                 goto error;
395         }
396
397         /* insert extent in reada_tree + all per-device trees, all or nothing */
398         btrfs_dev_replace_lock(&fs_info->dev_replace);
399         spin_lock(&fs_info->reada_lock);
400         ret = radix_tree_insert(&fs_info->reada_tree, index, re);
401         if (ret == -EEXIST) {
402                 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
403                 BUG_ON(!re_exist);
404                 re_exist->refcnt++;
405                 spin_unlock(&fs_info->reada_lock);
406                 btrfs_dev_replace_unlock(&fs_info->dev_replace);
407                 goto error;
408         }
409         if (ret) {
410                 spin_unlock(&fs_info->reada_lock);
411                 btrfs_dev_replace_unlock(&fs_info->dev_replace);
412                 goto error;
413         }
414         prev_dev = NULL;
415         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
416                         &fs_info->dev_replace);
417         for (i = 0; i < nzones; ++i) {
418                 dev = bbio->stripes[i].dev;
419                 if (dev == prev_dev) {
420                         /*
421                          * in case of DUP, just add the first zone. As both
422                          * are on the same device, there's nothing to gain
423                          * from adding both.
424                          * Also, it wouldn't work, as the tree is per device
425                          * and adding would fail with EEXIST
426                          */
427                         continue;
428                 }
429                 if (!dev->bdev) {
430                         /* cannot read ahead on missing device */
431                         continue;
432                 }
433                 if (dev_replace_is_ongoing &&
434                     dev == fs_info->dev_replace.tgtdev) {
435                         /*
436                          * as this device is selected for reading only as
437                          * a last resort, skip it for read ahead.
438                          */
439                         continue;
440                 }
441                 prev_dev = dev;
442                 ret = radix_tree_insert(&dev->reada_extents, index, re);
443                 if (ret) {
444                         while (--i >= 0) {
445                                 dev = bbio->stripes[i].dev;
446                                 BUG_ON(dev == NULL);
447                                 /* ignore whether the entry was inserted */
448                                 radix_tree_delete(&dev->reada_extents, index);
449                         }
450                         BUG_ON(fs_info == NULL);
451                         radix_tree_delete(&fs_info->reada_tree, index);
452                         spin_unlock(&fs_info->reada_lock);
453                         btrfs_dev_replace_unlock(&fs_info->dev_replace);
454                         goto error;
455                 }
456         }
457         spin_unlock(&fs_info->reada_lock);
458         btrfs_dev_replace_unlock(&fs_info->dev_replace);
459
460         kfree(bbio);
461         return re;
462
463 error:
464         while (nzones) {
465                 struct reada_zone *zone;
466
467                 --nzones;
468                 zone = re->zones[nzones];
469                 kref_get(&zone->refcnt);
470                 spin_lock(&zone->lock);
471                 --zone->elems;
472                 if (zone->elems == 0) {
473                         /*
474                          * no fs_info->reada_lock needed, as this can't be
475                          * the last ref
476                          */
477                         kref_put(&zone->refcnt, reada_zone_release);
478                 }
479                 spin_unlock(&zone->lock);
480
481                 spin_lock(&fs_info->reada_lock);
482                 kref_put(&zone->refcnt, reada_zone_release);
483                 spin_unlock(&fs_info->reada_lock);
484         }
485         kfree(bbio);
486         kfree(re);
487         return re_exist;
488 }
489
490 static void reada_extent_put(struct btrfs_fs_info *fs_info,
491                              struct reada_extent *re)
492 {
493         int i;
494         unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
495
496         spin_lock(&fs_info->reada_lock);
497         if (--re->refcnt) {
498                 spin_unlock(&fs_info->reada_lock);
499                 return;
500         }
501
502         radix_tree_delete(&fs_info->reada_tree, index);
503         for (i = 0; i < re->nzones; ++i) {
504                 struct reada_zone *zone = re->zones[i];
505
506                 radix_tree_delete(&zone->device->reada_extents, index);
507         }
508
509         spin_unlock(&fs_info->reada_lock);
510
511         for (i = 0; i < re->nzones; ++i) {
512                 struct reada_zone *zone = re->zones[i];
513
514                 kref_get(&zone->refcnt);
515                 spin_lock(&zone->lock);
516                 --zone->elems;
517                 if (zone->elems == 0) {
518                         /* no fs_info->reada_lock needed, as this can't be
519                          * the last ref */
520                         kref_put(&zone->refcnt, reada_zone_release);
521                 }
522                 spin_unlock(&zone->lock);
523
524                 spin_lock(&fs_info->reada_lock);
525                 kref_put(&zone->refcnt, reada_zone_release);
526                 spin_unlock(&fs_info->reada_lock);
527         }
528         if (re->scheduled_for)
529                 atomic_dec(&re->scheduled_for->reada_in_flight);
530
531         kfree(re);
532 }
533
534 static void reada_zone_release(struct kref *kref)
535 {
536         struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
537
538         radix_tree_delete(&zone->device->reada_zones,
539                           zone->end >> PAGE_CACHE_SHIFT);
540
541         kfree(zone);
542 }
543
544 static void reada_control_release(struct kref *kref)
545 {
546         struct reada_control *rc = container_of(kref, struct reada_control,
547                                                 refcnt);
548
549         kfree(rc);
550 }
551
552 static int reada_add_block(struct reada_control *rc, u64 logical,
553                            struct btrfs_key *top, int level, u64 generation)
554 {
555         struct btrfs_root *root = rc->root;
556         struct reada_extent *re;
557         struct reada_extctl *rec;
558
559         re = reada_find_extent(root, logical, top, level); /* takes one ref */
560         if (!re)
561                 return -1;
562
563         rec = kzalloc(sizeof(*rec), GFP_NOFS);
564         if (!rec) {
565                 reada_extent_put(root->fs_info, re);
566                 return -1;
567         }
568
569         rec->rc = rc;
570         rec->generation = generation;
571         atomic_inc(&rc->elems);
572
573         spin_lock(&re->lock);
574         list_add_tail(&rec->list, &re->extctl);
575         spin_unlock(&re->lock);
576
577         /* leave the ref on the extent */
578
579         return 0;
580 }
581
582 /*
583  * called with fs_info->reada_lock held
584  */
585 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
586 {
587         int i;
588         unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
589
590         for (i = 0; i < zone->ndevs; ++i) {
591                 struct reada_zone *peer;
592                 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
593                 if (peer && peer->device != zone->device)
594                         peer->locked = lock;
595         }
596 }
597
598 /*
599  * called with fs_info->reada_lock held
600  */
601 static int reada_pick_zone(struct btrfs_device *dev)
602 {
603         struct reada_zone *top_zone = NULL;
604         struct reada_zone *top_locked_zone = NULL;
605         u64 top_elems = 0;
606         u64 top_locked_elems = 0;
607         unsigned long index = 0;
608         int ret;
609
610         if (dev->reada_curr_zone) {
611                 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
612                 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
613                 dev->reada_curr_zone = NULL;
614         }
615         /* pick the zone with the most elements */
616         while (1) {
617                 struct reada_zone *zone;
618
619                 ret = radix_tree_gang_lookup(&dev->reada_zones,
620                                              (void **)&zone, index, 1);
621                 if (ret == 0)
622                         break;
623                 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
624                 if (zone->locked) {
625                         if (zone->elems > top_locked_elems) {
626                                 top_locked_elems = zone->elems;
627                                 top_locked_zone = zone;
628                         }
629                 } else {
630                         if (zone->elems > top_elems) {
631                                 top_elems = zone->elems;
632                                 top_zone = zone;
633                         }
634                 }
635         }
636         if (top_zone)
637                 dev->reada_curr_zone = top_zone;
638         else if (top_locked_zone)
639                 dev->reada_curr_zone = top_locked_zone;
640         else
641                 return 0;
642
643         dev->reada_next = dev->reada_curr_zone->start;
644         kref_get(&dev->reada_curr_zone->refcnt);
645         reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
646
647         return 1;
648 }
649
650 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
651                                    struct btrfs_device *dev)
652 {
653         struct reada_extent *re = NULL;
654         int mirror_num = 0;
655         struct extent_buffer *eb = NULL;
656         u64 logical;
657         u32 blocksize;
658         int ret;
659         int i;
660         int need_kick = 0;
661
662         spin_lock(&fs_info->reada_lock);
663         if (dev->reada_curr_zone == NULL) {
664                 ret = reada_pick_zone(dev);
665                 if (!ret) {
666                         spin_unlock(&fs_info->reada_lock);
667                         return 0;
668                 }
669         }
670         /*
671          * FIXME currently we issue the reads one extent at a time. If we have
672          * a contiguous block of extents, we could also coagulate them or use
673          * plugging to speed things up
674          */
675         ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
676                                      dev->reada_next >> PAGE_CACHE_SHIFT, 1);
677         if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
678                 ret = reada_pick_zone(dev);
679                 if (!ret) {
680                         spin_unlock(&fs_info->reada_lock);
681                         return 0;
682                 }
683                 re = NULL;
684                 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
685                                         dev->reada_next >> PAGE_CACHE_SHIFT, 1);
686         }
687         if (ret == 0) {
688                 spin_unlock(&fs_info->reada_lock);
689                 return 0;
690         }
691         dev->reada_next = re->logical + re->blocksize;
692         re->refcnt++;
693
694         spin_unlock(&fs_info->reada_lock);
695
696         /*
697          * find mirror num
698          */
699         for (i = 0; i < re->nzones; ++i) {
700                 if (re->zones[i]->device == dev) {
701                         mirror_num = i + 1;
702                         break;
703                 }
704         }
705         logical = re->logical;
706         blocksize = re->blocksize;
707
708         spin_lock(&re->lock);
709         if (re->scheduled_for == NULL) {
710                 re->scheduled_for = dev;
711                 need_kick = 1;
712         }
713         spin_unlock(&re->lock);
714
715         reada_extent_put(fs_info, re);
716
717         if (!need_kick)
718                 return 0;
719
720         atomic_inc(&dev->reada_in_flight);
721         ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
722                          mirror_num, &eb);
723         if (ret)
724                 __readahead_hook(fs_info->extent_root, NULL, logical, ret);
725         else if (eb)
726                 __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
727
728         if (eb)
729                 free_extent_buffer(eb);
730
731         return 1;
732
733 }
734
735 static void reada_start_machine_worker(struct btrfs_work *work)
736 {
737         struct reada_machine_work *rmw;
738         struct btrfs_fs_info *fs_info;
739         int old_ioprio;
740
741         rmw = container_of(work, struct reada_machine_work, work);
742         fs_info = rmw->fs_info;
743
744         kfree(rmw);
745
746         old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
747                                        task_nice_ioprio(current));
748         set_task_ioprio(current, BTRFS_IOPRIO_READA);
749         __reada_start_machine(fs_info);
750         set_task_ioprio(current, old_ioprio);
751 }
752
753 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
754 {
755         struct btrfs_device *device;
756         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
757         u64 enqueued;
758         u64 total = 0;
759         int i;
760
761         do {
762                 enqueued = 0;
763                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
764                         if (atomic_read(&device->reada_in_flight) <
765                             MAX_IN_FLIGHT)
766                                 enqueued += reada_start_machine_dev(fs_info,
767                                                                     device);
768                 }
769                 total += enqueued;
770         } while (enqueued && total < 10000);
771
772         if (enqueued == 0)
773                 return;
774
775         /*
776          * If everything is already in the cache, this is effectively single
777          * threaded. To a) not hold the caller for too long and b) to utilize
778          * more cores, we broke the loop above after 10000 iterations and now
779          * enqueue to workers to finish it. This will distribute the load to
780          * the cores.
781          */
782         for (i = 0; i < 2; ++i)
783                 reada_start_machine(fs_info);
784 }
785
786 static void reada_start_machine(struct btrfs_fs_info *fs_info)
787 {
788         struct reada_machine_work *rmw;
789
790         rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
791         if (!rmw) {
792                 /* FIXME we cannot handle this properly right now */
793                 BUG();
794         }
795         rmw->work.func = reada_start_machine_worker;
796         rmw->fs_info = fs_info;
797
798         btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
799 }
800
801 #ifdef DEBUG
802 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
803 {
804         struct btrfs_device *device;
805         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
806         unsigned long index;
807         int ret;
808         int i;
809         int j;
810         int cnt;
811
812         spin_lock(&fs_info->reada_lock);
813         list_for_each_entry(device, &fs_devices->devices, dev_list) {
814                 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
815                         atomic_read(&device->reada_in_flight));
816                 index = 0;
817                 while (1) {
818                         struct reada_zone *zone;
819                         ret = radix_tree_gang_lookup(&device->reada_zones,
820                                                      (void **)&zone, index, 1);
821                         if (ret == 0)
822                                 break;
823                         printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
824                                 "%d devs", zone->start, zone->end, zone->elems,
825                                 zone->locked);
826                         for (j = 0; j < zone->ndevs; ++j) {
827                                 printk(KERN_CONT " %lld",
828                                         zone->devs[j]->devid);
829                         }
830                         if (device->reada_curr_zone == zone)
831                                 printk(KERN_CONT " curr off %llu",
832                                         device->reada_next - zone->start);
833                         printk(KERN_CONT "\n");
834                         index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
835                 }
836                 cnt = 0;
837                 index = 0;
838                 while (all) {
839                         struct reada_extent *re = NULL;
840
841                         ret = radix_tree_gang_lookup(&device->reada_extents,
842                                                      (void **)&re, index, 1);
843                         if (ret == 0)
844                                 break;
845                         printk(KERN_DEBUG
846                                 "  re: logical %llu size %u empty %d for %lld",
847                                 re->logical, re->blocksize,
848                                 list_empty(&re->extctl), re->scheduled_for ?
849                                 re->scheduled_for->devid : -1);
850
851                         for (i = 0; i < re->nzones; ++i) {
852                                 printk(KERN_CONT " zone %llu-%llu devs",
853                                         re->zones[i]->start,
854                                         re->zones[i]->end);
855                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
856                                         printk(KERN_CONT " %lld",
857                                                 re->zones[i]->devs[j]->devid);
858                                 }
859                         }
860                         printk(KERN_CONT "\n");
861                         index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
862                         if (++cnt > 15)
863                                 break;
864                 }
865         }
866
867         index = 0;
868         cnt = 0;
869         while (all) {
870                 struct reada_extent *re = NULL;
871
872                 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
873                                              index, 1);
874                 if (ret == 0)
875                         break;
876                 if (!re->scheduled_for) {
877                         index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
878                         continue;
879                 }
880                 printk(KERN_DEBUG
881                         "re: logical %llu size %u list empty %d for %lld",
882                         re->logical, re->blocksize, list_empty(&re->extctl),
883                         re->scheduled_for ? re->scheduled_for->devid : -1);
884                 for (i = 0; i < re->nzones; ++i) {
885                         printk(KERN_CONT " zone %llu-%llu devs",
886                                 re->zones[i]->start,
887                                 re->zones[i]->end);
888                         for (i = 0; i < re->nzones; ++i) {
889                                 printk(KERN_CONT " zone %llu-%llu devs",
890                                         re->zones[i]->start,
891                                         re->zones[i]->end);
892                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
893                                         printk(KERN_CONT " %lld",
894                                                 re->zones[i]->devs[j]->devid);
895                                 }
896                         }
897                 }
898                 printk(KERN_CONT "\n");
899                 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
900         }
901         spin_unlock(&fs_info->reada_lock);
902 }
903 #endif
904
905 /*
906  * interface
907  */
908 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
909                         struct btrfs_key *key_start, struct btrfs_key *key_end)
910 {
911         struct reada_control *rc;
912         u64 start;
913         u64 generation;
914         int level;
915         struct extent_buffer *node;
916         static struct btrfs_key max_key = {
917                 .objectid = (u64)-1,
918                 .type = (u8)-1,
919                 .offset = (u64)-1
920         };
921
922         rc = kzalloc(sizeof(*rc), GFP_NOFS);
923         if (!rc)
924                 return ERR_PTR(-ENOMEM);
925
926         rc->root = root;
927         rc->key_start = *key_start;
928         rc->key_end = *key_end;
929         atomic_set(&rc->elems, 0);
930         init_waitqueue_head(&rc->wait);
931         kref_init(&rc->refcnt);
932         kref_get(&rc->refcnt); /* one ref for having elements */
933
934         node = btrfs_root_node(root);
935         start = node->start;
936         level = btrfs_header_level(node);
937         generation = btrfs_header_generation(node);
938         free_extent_buffer(node);
939
940         if (reada_add_block(rc, start, &max_key, level, generation)) {
941                 kfree(rc);
942                 return ERR_PTR(-ENOMEM);
943         }
944
945         reada_start_machine(root->fs_info);
946
947         return rc;
948 }
949
950 #ifdef DEBUG
951 int btrfs_reada_wait(void *handle)
952 {
953         struct reada_control *rc = handle;
954
955         while (atomic_read(&rc->elems)) {
956                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
957                                    5 * HZ);
958                 dump_devs(rc->root->fs_info,
959                           atomic_read(&rc->elems) < 10 ? 1 : 0);
960         }
961
962         dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
963
964         kref_put(&rc->refcnt, reada_control_release);
965
966         return 0;
967 }
968 #else
969 int btrfs_reada_wait(void *handle)
970 {
971         struct reada_control *rc = handle;
972
973         while (atomic_read(&rc->elems)) {
974                 wait_event(rc->wait, atomic_read(&rc->elems) == 0);
975         }
976
977         kref_put(&rc->refcnt, reada_control_release);
978
979         return 0;
980 }
981 #endif
982
983 void btrfs_reada_detach(void *handle)
984 {
985         struct reada_control *rc = handle;
986
987         kref_put(&rc->refcnt, reada_control_release);
988 }