]> Pileus Git - ~andy/linux/blob - fs/btrfs/extent_io.c
Btrfs: fix spin_unlock in check_ref_cleanup
[~andy/linux] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37         unsigned long flags;
38
39         spin_lock_irqsave(&leak_lock, flags);
40         list_add(new, head);
41         spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47         unsigned long flags;
48
49         spin_lock_irqsave(&leak_lock, flags);
50         list_del(entry);
51         spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57         struct extent_state *state;
58         struct extent_buffer *eb;
59
60         while (!list_empty(&states)) {
61                 state = list_entry(states.next, struct extent_state, leak_list);
62                 printk(KERN_ERR "BTRFS: state leak: start %llu end %llu "
63                        "state %lu in tree %p refs %d\n",
64                        state->start, state->end, state->state, state->tree,
65                        atomic_read(&state->refs));
66                 list_del(&state->leak_list);
67                 kmem_cache_free(extent_state_cache, state);
68         }
69
70         while (!list_empty(&buffers)) {
71                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72                 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
73                        "refs %d\n",
74                        eb->start, eb->len, atomic_read(&eb->refs));
75                 list_del(&eb->leak_list);
76                 kmem_cache_free(extent_buffer_cache, eb);
77         }
78 }
79
80 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
81         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83                 struct extent_io_tree *tree, u64 start, u64 end)
84 {
85         struct inode *inode;
86         u64 isize;
87
88         if (!tree->mapping)
89                 return;
90
91         inode = tree->mapping->host;
92         isize = i_size_read(inode);
93         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94                 printk_ratelimited(KERN_DEBUG
95                     "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
96                                 caller, btrfs_ino(inode), isize, start, end);
97         }
98 }
99 #else
100 #define btrfs_leak_debug_add(new, head) do {} while (0)
101 #define btrfs_leak_debug_del(entry)     do {} while (0)
102 #define btrfs_leak_debug_check()        do {} while (0)
103 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
104 #endif
105
106 #define BUFFER_LRU_MAX 64
107
108 struct tree_entry {
109         u64 start;
110         u64 end;
111         struct rb_node rb_node;
112 };
113
114 struct extent_page_data {
115         struct bio *bio;
116         struct extent_io_tree *tree;
117         get_extent_t *get_extent;
118         unsigned long bio_flags;
119
120         /* tells writepage not to lock the state bits for this range
121          * it still does the unlocking
122          */
123         unsigned int extent_locked:1;
124
125         /* tells the submit_bio code to use a WRITE_SYNC */
126         unsigned int sync_io:1;
127 };
128
129 static noinline void flush_write_bio(void *data);
130 static inline struct btrfs_fs_info *
131 tree_fs_info(struct extent_io_tree *tree)
132 {
133         if (!tree->mapping)
134                 return NULL;
135         return btrfs_sb(tree->mapping->host->i_sb);
136 }
137
138 int __init extent_io_init(void)
139 {
140         extent_state_cache = kmem_cache_create("btrfs_extent_state",
141                         sizeof(struct extent_state), 0,
142                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
143         if (!extent_state_cache)
144                 return -ENOMEM;
145
146         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
147                         sizeof(struct extent_buffer), 0,
148                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
149         if (!extent_buffer_cache)
150                 goto free_state_cache;
151
152         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153                                      offsetof(struct btrfs_io_bio, bio));
154         if (!btrfs_bioset)
155                 goto free_buffer_cache;
156
157         if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158                 goto free_bioset;
159
160         return 0;
161
162 free_bioset:
163         bioset_free(btrfs_bioset);
164         btrfs_bioset = NULL;
165
166 free_buffer_cache:
167         kmem_cache_destroy(extent_buffer_cache);
168         extent_buffer_cache = NULL;
169
170 free_state_cache:
171         kmem_cache_destroy(extent_state_cache);
172         extent_state_cache = NULL;
173         return -ENOMEM;
174 }
175
176 void extent_io_exit(void)
177 {
178         btrfs_leak_debug_check();
179
180         /*
181          * Make sure all delayed rcu free are flushed before we
182          * destroy caches.
183          */
184         rcu_barrier();
185         if (extent_state_cache)
186                 kmem_cache_destroy(extent_state_cache);
187         if (extent_buffer_cache)
188                 kmem_cache_destroy(extent_buffer_cache);
189         if (btrfs_bioset)
190                 bioset_free(btrfs_bioset);
191 }
192
193 void extent_io_tree_init(struct extent_io_tree *tree,
194                          struct address_space *mapping)
195 {
196         tree->state = RB_ROOT;
197         tree->ops = NULL;
198         tree->dirty_bytes = 0;
199         spin_lock_init(&tree->lock);
200         tree->mapping = mapping;
201 }
202
203 static struct extent_state *alloc_extent_state(gfp_t mask)
204 {
205         struct extent_state *state;
206
207         state = kmem_cache_alloc(extent_state_cache, mask);
208         if (!state)
209                 return state;
210         state->state = 0;
211         state->private = 0;
212         state->tree = NULL;
213         btrfs_leak_debug_add(&state->leak_list, &states);
214         atomic_set(&state->refs, 1);
215         init_waitqueue_head(&state->wq);
216         trace_alloc_extent_state(state, mask, _RET_IP_);
217         return state;
218 }
219
220 void free_extent_state(struct extent_state *state)
221 {
222         if (!state)
223                 return;
224         if (atomic_dec_and_test(&state->refs)) {
225                 WARN_ON(state->tree);
226                 btrfs_leak_debug_del(&state->leak_list);
227                 trace_free_extent_state(state, _RET_IP_);
228                 kmem_cache_free(extent_state_cache, state);
229         }
230 }
231
232 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
233                                    struct rb_node *node,
234                                    struct rb_node ***p_in,
235                                    struct rb_node **parent_in)
236 {
237         struct rb_node **p = &root->rb_node;
238         struct rb_node *parent = NULL;
239         struct tree_entry *entry;
240
241         if (p_in && parent_in) {
242                 p = *p_in;
243                 parent = *parent_in;
244                 goto do_insert;
245         }
246
247         while (*p) {
248                 parent = *p;
249                 entry = rb_entry(parent, struct tree_entry, rb_node);
250
251                 if (offset < entry->start)
252                         p = &(*p)->rb_left;
253                 else if (offset > entry->end)
254                         p = &(*p)->rb_right;
255                 else
256                         return parent;
257         }
258
259 do_insert:
260         rb_link_node(node, parent, p);
261         rb_insert_color(node, root);
262         return NULL;
263 }
264
265 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
266                                       struct rb_node **prev_ret,
267                                       struct rb_node **next_ret,
268                                       struct rb_node ***p_ret,
269                                       struct rb_node **parent_ret)
270 {
271         struct rb_root *root = &tree->state;
272         struct rb_node **n = &root->rb_node;
273         struct rb_node *prev = NULL;
274         struct rb_node *orig_prev = NULL;
275         struct tree_entry *entry;
276         struct tree_entry *prev_entry = NULL;
277
278         while (*n) {
279                 prev = *n;
280                 entry = rb_entry(prev, struct tree_entry, rb_node);
281                 prev_entry = entry;
282
283                 if (offset < entry->start)
284                         n = &(*n)->rb_left;
285                 else if (offset > entry->end)
286                         n = &(*n)->rb_right;
287                 else
288                         return *n;
289         }
290
291         if (p_ret)
292                 *p_ret = n;
293         if (parent_ret)
294                 *parent_ret = prev;
295
296         if (prev_ret) {
297                 orig_prev = prev;
298                 while (prev && offset > prev_entry->end) {
299                         prev = rb_next(prev);
300                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
301                 }
302                 *prev_ret = prev;
303                 prev = orig_prev;
304         }
305
306         if (next_ret) {
307                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
308                 while (prev && offset < prev_entry->start) {
309                         prev = rb_prev(prev);
310                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
311                 }
312                 *next_ret = prev;
313         }
314         return NULL;
315 }
316
317 static inline struct rb_node *
318 tree_search_for_insert(struct extent_io_tree *tree,
319                        u64 offset,
320                        struct rb_node ***p_ret,
321                        struct rb_node **parent_ret)
322 {
323         struct rb_node *prev = NULL;
324         struct rb_node *ret;
325
326         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
327         if (!ret)
328                 return prev;
329         return ret;
330 }
331
332 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
333                                           u64 offset)
334 {
335         return tree_search_for_insert(tree, offset, NULL, NULL);
336 }
337
338 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
339                      struct extent_state *other)
340 {
341         if (tree->ops && tree->ops->merge_extent_hook)
342                 tree->ops->merge_extent_hook(tree->mapping->host, new,
343                                              other);
344 }
345
346 /*
347  * utility function to look for merge candidates inside a given range.
348  * Any extents with matching state are merged together into a single
349  * extent in the tree.  Extents with EXTENT_IO in their state field
350  * are not merged because the end_io handlers need to be able to do
351  * operations on them without sleeping (or doing allocations/splits).
352  *
353  * This should be called with the tree lock held.
354  */
355 static void merge_state(struct extent_io_tree *tree,
356                         struct extent_state *state)
357 {
358         struct extent_state *other;
359         struct rb_node *other_node;
360
361         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
362                 return;
363
364         other_node = rb_prev(&state->rb_node);
365         if (other_node) {
366                 other = rb_entry(other_node, struct extent_state, rb_node);
367                 if (other->end == state->start - 1 &&
368                     other->state == state->state) {
369                         merge_cb(tree, state, other);
370                         state->start = other->start;
371                         other->tree = NULL;
372                         rb_erase(&other->rb_node, &tree->state);
373                         free_extent_state(other);
374                 }
375         }
376         other_node = rb_next(&state->rb_node);
377         if (other_node) {
378                 other = rb_entry(other_node, struct extent_state, rb_node);
379                 if (other->start == state->end + 1 &&
380                     other->state == state->state) {
381                         merge_cb(tree, state, other);
382                         state->end = other->end;
383                         other->tree = NULL;
384                         rb_erase(&other->rb_node, &tree->state);
385                         free_extent_state(other);
386                 }
387         }
388 }
389
390 static void set_state_cb(struct extent_io_tree *tree,
391                          struct extent_state *state, unsigned long *bits)
392 {
393         if (tree->ops && tree->ops->set_bit_hook)
394                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
395 }
396
397 static void clear_state_cb(struct extent_io_tree *tree,
398                            struct extent_state *state, unsigned long *bits)
399 {
400         if (tree->ops && tree->ops->clear_bit_hook)
401                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
402 }
403
404 static void set_state_bits(struct extent_io_tree *tree,
405                            struct extent_state *state, unsigned long *bits);
406
407 /*
408  * insert an extent_state struct into the tree.  'bits' are set on the
409  * struct before it is inserted.
410  *
411  * This may return -EEXIST if the extent is already there, in which case the
412  * state struct is freed.
413  *
414  * The tree lock is not taken internally.  This is a utility function and
415  * probably isn't what you want to call (see set/clear_extent_bit).
416  */
417 static int insert_state(struct extent_io_tree *tree,
418                         struct extent_state *state, u64 start, u64 end,
419                         struct rb_node ***p,
420                         struct rb_node **parent,
421                         unsigned long *bits)
422 {
423         struct rb_node *node;
424
425         if (end < start)
426                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
427                        end, start);
428         state->start = start;
429         state->end = end;
430
431         set_state_bits(tree, state, bits);
432
433         node = tree_insert(&tree->state, end, &state->rb_node, p, parent);
434         if (node) {
435                 struct extent_state *found;
436                 found = rb_entry(node, struct extent_state, rb_node);
437                 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
438                        "%llu %llu\n",
439                        found->start, found->end, start, end);
440                 return -EEXIST;
441         }
442         state->tree = tree;
443         merge_state(tree, state);
444         return 0;
445 }
446
447 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
448                      u64 split)
449 {
450         if (tree->ops && tree->ops->split_extent_hook)
451                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
452 }
453
454 /*
455  * split a given extent state struct in two, inserting the preallocated
456  * struct 'prealloc' as the newly created second half.  'split' indicates an
457  * offset inside 'orig' where it should be split.
458  *
459  * Before calling,
460  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
461  * are two extent state structs in the tree:
462  * prealloc: [orig->start, split - 1]
463  * orig: [ split, orig->end ]
464  *
465  * The tree locks are not taken by this function. They need to be held
466  * by the caller.
467  */
468 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
469                        struct extent_state *prealloc, u64 split)
470 {
471         struct rb_node *node;
472
473         split_cb(tree, orig, split);
474
475         prealloc->start = orig->start;
476         prealloc->end = split - 1;
477         prealloc->state = orig->state;
478         orig->start = split;
479
480         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node,
481                            NULL, NULL);
482         if (node) {
483                 free_extent_state(prealloc);
484                 return -EEXIST;
485         }
486         prealloc->tree = tree;
487         return 0;
488 }
489
490 static struct extent_state *next_state(struct extent_state *state)
491 {
492         struct rb_node *next = rb_next(&state->rb_node);
493         if (next)
494                 return rb_entry(next, struct extent_state, rb_node);
495         else
496                 return NULL;
497 }
498
499 /*
500  * utility function to clear some bits in an extent state struct.
501  * it will optionally wake up any one waiting on this state (wake == 1).
502  *
503  * If no bits are set on the state struct after clearing things, the
504  * struct is freed and removed from the tree
505  */
506 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
507                                             struct extent_state *state,
508                                             unsigned long *bits, int wake)
509 {
510         struct extent_state *next;
511         unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
512
513         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
514                 u64 range = state->end - state->start + 1;
515                 WARN_ON(range > tree->dirty_bytes);
516                 tree->dirty_bytes -= range;
517         }
518         clear_state_cb(tree, state, bits);
519         state->state &= ~bits_to_clear;
520         if (wake)
521                 wake_up(&state->wq);
522         if (state->state == 0) {
523                 next = next_state(state);
524                 if (state->tree) {
525                         rb_erase(&state->rb_node, &tree->state);
526                         state->tree = NULL;
527                         free_extent_state(state);
528                 } else {
529                         WARN_ON(1);
530                 }
531         } else {
532                 merge_state(tree, state);
533                 next = next_state(state);
534         }
535         return next;
536 }
537
538 static struct extent_state *
539 alloc_extent_state_atomic(struct extent_state *prealloc)
540 {
541         if (!prealloc)
542                 prealloc = alloc_extent_state(GFP_ATOMIC);
543
544         return prealloc;
545 }
546
547 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
548 {
549         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
550                     "Extent tree was modified by another "
551                     "thread while locked.");
552 }
553
554 /*
555  * clear some bits on a range in the tree.  This may require splitting
556  * or inserting elements in the tree, so the gfp mask is used to
557  * indicate which allocations or sleeping are allowed.
558  *
559  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
560  * the given range from the tree regardless of state (ie for truncate).
561  *
562  * the range [start, end] is inclusive.
563  *
564  * This takes the tree lock, and returns 0 on success and < 0 on error.
565  */
566 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
567                      unsigned long bits, int wake, int delete,
568                      struct extent_state **cached_state,
569                      gfp_t mask)
570 {
571         struct extent_state *state;
572         struct extent_state *cached;
573         struct extent_state *prealloc = NULL;
574         struct rb_node *node;
575         u64 last_end;
576         int err;
577         int clear = 0;
578
579         btrfs_debug_check_extent_io_range(tree, start, end);
580
581         if (bits & EXTENT_DELALLOC)
582                 bits |= EXTENT_NORESERVE;
583
584         if (delete)
585                 bits |= ~EXTENT_CTLBITS;
586         bits |= EXTENT_FIRST_DELALLOC;
587
588         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
589                 clear = 1;
590 again:
591         if (!prealloc && (mask & __GFP_WAIT)) {
592                 prealloc = alloc_extent_state(mask);
593                 if (!prealloc)
594                         return -ENOMEM;
595         }
596
597         spin_lock(&tree->lock);
598         if (cached_state) {
599                 cached = *cached_state;
600
601                 if (clear) {
602                         *cached_state = NULL;
603                         cached_state = NULL;
604                 }
605
606                 if (cached && cached->tree && cached->start <= start &&
607                     cached->end > start) {
608                         if (clear)
609                                 atomic_dec(&cached->refs);
610                         state = cached;
611                         goto hit_next;
612                 }
613                 if (clear)
614                         free_extent_state(cached);
615         }
616         /*
617          * this search will find the extents that end after
618          * our range starts
619          */
620         node = tree_search(tree, start);
621         if (!node)
622                 goto out;
623         state = rb_entry(node, struct extent_state, rb_node);
624 hit_next:
625         if (state->start > end)
626                 goto out;
627         WARN_ON(state->end < start);
628         last_end = state->end;
629
630         /* the state doesn't have the wanted bits, go ahead */
631         if (!(state->state & bits)) {
632                 state = next_state(state);
633                 goto next;
634         }
635
636         /*
637          *     | ---- desired range ---- |
638          *  | state | or
639          *  | ------------- state -------------- |
640          *
641          * We need to split the extent we found, and may flip
642          * bits on second half.
643          *
644          * If the extent we found extends past our range, we
645          * just split and search again.  It'll get split again
646          * the next time though.
647          *
648          * If the extent we found is inside our range, we clear
649          * the desired bit on it.
650          */
651
652         if (state->start < start) {
653                 prealloc = alloc_extent_state_atomic(prealloc);
654                 BUG_ON(!prealloc);
655                 err = split_state(tree, state, prealloc, start);
656                 if (err)
657                         extent_io_tree_panic(tree, err);
658
659                 prealloc = NULL;
660                 if (err)
661                         goto out;
662                 if (state->end <= end) {
663                         state = clear_state_bit(tree, state, &bits, wake);
664                         goto next;
665                 }
666                 goto search_again;
667         }
668         /*
669          * | ---- desired range ---- |
670          *                        | state |
671          * We need to split the extent, and clear the bit
672          * on the first half
673          */
674         if (state->start <= end && state->end > end) {
675                 prealloc = alloc_extent_state_atomic(prealloc);
676                 BUG_ON(!prealloc);
677                 err = split_state(tree, state, prealloc, end + 1);
678                 if (err)
679                         extent_io_tree_panic(tree, err);
680
681                 if (wake)
682                         wake_up(&state->wq);
683
684                 clear_state_bit(tree, prealloc, &bits, wake);
685
686                 prealloc = NULL;
687                 goto out;
688         }
689
690         state = clear_state_bit(tree, state, &bits, wake);
691 next:
692         if (last_end == (u64)-1)
693                 goto out;
694         start = last_end + 1;
695         if (start <= end && state && !need_resched())
696                 goto hit_next;
697         goto search_again;
698
699 out:
700         spin_unlock(&tree->lock);
701         if (prealloc)
702                 free_extent_state(prealloc);
703
704         return 0;
705
706 search_again:
707         if (start > end)
708                 goto out;
709         spin_unlock(&tree->lock);
710         if (mask & __GFP_WAIT)
711                 cond_resched();
712         goto again;
713 }
714
715 static void wait_on_state(struct extent_io_tree *tree,
716                           struct extent_state *state)
717                 __releases(tree->lock)
718                 __acquires(tree->lock)
719 {
720         DEFINE_WAIT(wait);
721         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
722         spin_unlock(&tree->lock);
723         schedule();
724         spin_lock(&tree->lock);
725         finish_wait(&state->wq, &wait);
726 }
727
728 /*
729  * waits for one or more bits to clear on a range in the state tree.
730  * The range [start, end] is inclusive.
731  * The tree lock is taken by this function
732  */
733 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
734                             unsigned long bits)
735 {
736         struct extent_state *state;
737         struct rb_node *node;
738
739         btrfs_debug_check_extent_io_range(tree, start, end);
740
741         spin_lock(&tree->lock);
742 again:
743         while (1) {
744                 /*
745                  * this search will find all the extents that end after
746                  * our range starts
747                  */
748                 node = tree_search(tree, start);
749                 if (!node)
750                         break;
751
752                 state = rb_entry(node, struct extent_state, rb_node);
753
754                 if (state->start > end)
755                         goto out;
756
757                 if (state->state & bits) {
758                         start = state->start;
759                         atomic_inc(&state->refs);
760                         wait_on_state(tree, state);
761                         free_extent_state(state);
762                         goto again;
763                 }
764                 start = state->end + 1;
765
766                 if (start > end)
767                         break;
768
769                 cond_resched_lock(&tree->lock);
770         }
771 out:
772         spin_unlock(&tree->lock);
773 }
774
775 static void set_state_bits(struct extent_io_tree *tree,
776                            struct extent_state *state,
777                            unsigned long *bits)
778 {
779         unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
780
781         set_state_cb(tree, state, bits);
782         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
783                 u64 range = state->end - state->start + 1;
784                 tree->dirty_bytes += range;
785         }
786         state->state |= bits_to_set;
787 }
788
789 static void cache_state(struct extent_state *state,
790                         struct extent_state **cached_ptr)
791 {
792         if (cached_ptr && !(*cached_ptr)) {
793                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
794                         *cached_ptr = state;
795                         atomic_inc(&state->refs);
796                 }
797         }
798 }
799
800 /*
801  * set some bits on a range in the tree.  This may require allocations or
802  * sleeping, so the gfp mask is used to indicate what is allowed.
803  *
804  * If any of the exclusive bits are set, this will fail with -EEXIST if some
805  * part of the range already has the desired bits set.  The start of the
806  * existing range is returned in failed_start in this case.
807  *
808  * [start, end] is inclusive This takes the tree lock.
809  */
810
811 static int __must_check
812 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
813                  unsigned long bits, unsigned long exclusive_bits,
814                  u64 *failed_start, struct extent_state **cached_state,
815                  gfp_t mask)
816 {
817         struct extent_state *state;
818         struct extent_state *prealloc = NULL;
819         struct rb_node *node;
820         struct rb_node **p;
821         struct rb_node *parent;
822         int err = 0;
823         u64 last_start;
824         u64 last_end;
825
826         btrfs_debug_check_extent_io_range(tree, start, end);
827
828         bits |= EXTENT_FIRST_DELALLOC;
829 again:
830         if (!prealloc && (mask & __GFP_WAIT)) {
831                 prealloc = alloc_extent_state(mask);
832                 BUG_ON(!prealloc);
833         }
834
835         spin_lock(&tree->lock);
836         if (cached_state && *cached_state) {
837                 state = *cached_state;
838                 if (state->start <= start && state->end > start &&
839                     state->tree) {
840                         node = &state->rb_node;
841                         goto hit_next;
842                 }
843         }
844         /*
845          * this search will find all the extents that end after
846          * our range starts.
847          */
848         node = tree_search_for_insert(tree, start, &p, &parent);
849         if (!node) {
850                 prealloc = alloc_extent_state_atomic(prealloc);
851                 BUG_ON(!prealloc);
852                 err = insert_state(tree, prealloc, start, end,
853                                    &p, &parent, &bits);
854                 if (err)
855                         extent_io_tree_panic(tree, err);
856
857                 cache_state(prealloc, cached_state);
858                 prealloc = NULL;
859                 goto out;
860         }
861         state = rb_entry(node, struct extent_state, rb_node);
862 hit_next:
863         last_start = state->start;
864         last_end = state->end;
865
866         /*
867          * | ---- desired range ---- |
868          * | state |
869          *
870          * Just lock what we found and keep going
871          */
872         if (state->start == start && state->end <= end) {
873                 if (state->state & exclusive_bits) {
874                         *failed_start = state->start;
875                         err = -EEXIST;
876                         goto out;
877                 }
878
879                 set_state_bits(tree, state, &bits);
880                 cache_state(state, cached_state);
881                 merge_state(tree, state);
882                 if (last_end == (u64)-1)
883                         goto out;
884                 start = last_end + 1;
885                 state = next_state(state);
886                 if (start < end && state && state->start == start &&
887                     !need_resched())
888                         goto hit_next;
889                 goto search_again;
890         }
891
892         /*
893          *     | ---- desired range ---- |
894          * | state |
895          *   or
896          * | ------------- state -------------- |
897          *
898          * We need to split the extent we found, and may flip bits on
899          * second half.
900          *
901          * If the extent we found extends past our
902          * range, we just split and search again.  It'll get split
903          * again the next time though.
904          *
905          * If the extent we found is inside our range, we set the
906          * desired bit on it.
907          */
908         if (state->start < start) {
909                 if (state->state & exclusive_bits) {
910                         *failed_start = start;
911                         err = -EEXIST;
912                         goto out;
913                 }
914
915                 prealloc = alloc_extent_state_atomic(prealloc);
916                 BUG_ON(!prealloc);
917                 err = split_state(tree, state, prealloc, start);
918                 if (err)
919                         extent_io_tree_panic(tree, err);
920
921                 prealloc = NULL;
922                 if (err)
923                         goto out;
924                 if (state->end <= end) {
925                         set_state_bits(tree, state, &bits);
926                         cache_state(state, cached_state);
927                         merge_state(tree, state);
928                         if (last_end == (u64)-1)
929                                 goto out;
930                         start = last_end + 1;
931                         state = next_state(state);
932                         if (start < end && state && state->start == start &&
933                             !need_resched())
934                                 goto hit_next;
935                 }
936                 goto search_again;
937         }
938         /*
939          * | ---- desired range ---- |
940          *     | state | or               | state |
941          *
942          * There's a hole, we need to insert something in it and
943          * ignore the extent we found.
944          */
945         if (state->start > start) {
946                 u64 this_end;
947                 if (end < last_start)
948                         this_end = end;
949                 else
950                         this_end = last_start - 1;
951
952                 prealloc = alloc_extent_state_atomic(prealloc);
953                 BUG_ON(!prealloc);
954
955                 /*
956                  * Avoid to free 'prealloc' if it can be merged with
957                  * the later extent.
958                  */
959                 err = insert_state(tree, prealloc, start, this_end,
960                                    NULL, NULL, &bits);
961                 if (err)
962                         extent_io_tree_panic(tree, err);
963
964                 cache_state(prealloc, cached_state);
965                 prealloc = NULL;
966                 start = this_end + 1;
967                 goto search_again;
968         }
969         /*
970          * | ---- desired range ---- |
971          *                        | state |
972          * We need to split the extent, and set the bit
973          * on the first half
974          */
975         if (state->start <= end && state->end > end) {
976                 if (state->state & exclusive_bits) {
977                         *failed_start = start;
978                         err = -EEXIST;
979                         goto out;
980                 }
981
982                 prealloc = alloc_extent_state_atomic(prealloc);
983                 BUG_ON(!prealloc);
984                 err = split_state(tree, state, prealloc, end + 1);
985                 if (err)
986                         extent_io_tree_panic(tree, err);
987
988                 set_state_bits(tree, prealloc, &bits);
989                 cache_state(prealloc, cached_state);
990                 merge_state(tree, prealloc);
991                 prealloc = NULL;
992                 goto out;
993         }
994
995         goto search_again;
996
997 out:
998         spin_unlock(&tree->lock);
999         if (prealloc)
1000                 free_extent_state(prealloc);
1001
1002         return err;
1003
1004 search_again:
1005         if (start > end)
1006                 goto out;
1007         spin_unlock(&tree->lock);
1008         if (mask & __GFP_WAIT)
1009                 cond_resched();
1010         goto again;
1011 }
1012
1013 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1014                    unsigned long bits, u64 * failed_start,
1015                    struct extent_state **cached_state, gfp_t mask)
1016 {
1017         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1018                                 cached_state, mask);
1019 }
1020
1021
1022 /**
1023  * convert_extent_bit - convert all bits in a given range from one bit to
1024  *                      another
1025  * @tree:       the io tree to search
1026  * @start:      the start offset in bytes
1027  * @end:        the end offset in bytes (inclusive)
1028  * @bits:       the bits to set in this range
1029  * @clear_bits: the bits to clear in this range
1030  * @cached_state:       state that we're going to cache
1031  * @mask:       the allocation mask
1032  *
1033  * This will go through and set bits for the given range.  If any states exist
1034  * already in this range they are set with the given bit and cleared of the
1035  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1036  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1037  * boundary bits like LOCK.
1038  */
1039 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1040                        unsigned long bits, unsigned long clear_bits,
1041                        struct extent_state **cached_state, gfp_t mask)
1042 {
1043         struct extent_state *state;
1044         struct extent_state *prealloc = NULL;
1045         struct rb_node *node;
1046         struct rb_node **p;
1047         struct rb_node *parent;
1048         int err = 0;
1049         u64 last_start;
1050         u64 last_end;
1051
1052         btrfs_debug_check_extent_io_range(tree, start, end);
1053
1054 again:
1055         if (!prealloc && (mask & __GFP_WAIT)) {
1056                 prealloc = alloc_extent_state(mask);
1057                 if (!prealloc)
1058                         return -ENOMEM;
1059         }
1060
1061         spin_lock(&tree->lock);
1062         if (cached_state && *cached_state) {
1063                 state = *cached_state;
1064                 if (state->start <= start && state->end > start &&
1065                     state->tree) {
1066                         node = &state->rb_node;
1067                         goto hit_next;
1068                 }
1069         }
1070
1071         /*
1072          * this search will find all the extents that end after
1073          * our range starts.
1074          */
1075         node = tree_search_for_insert(tree, start, &p, &parent);
1076         if (!node) {
1077                 prealloc = alloc_extent_state_atomic(prealloc);
1078                 if (!prealloc) {
1079                         err = -ENOMEM;
1080                         goto out;
1081                 }
1082                 err = insert_state(tree, prealloc, start, end,
1083                                    &p, &parent, &bits);
1084                 if (err)
1085                         extent_io_tree_panic(tree, err);
1086                 cache_state(prealloc, cached_state);
1087                 prealloc = NULL;
1088                 goto out;
1089         }
1090         state = rb_entry(node, struct extent_state, rb_node);
1091 hit_next:
1092         last_start = state->start;
1093         last_end = state->end;
1094
1095         /*
1096          * | ---- desired range ---- |
1097          * | state |
1098          *
1099          * Just lock what we found and keep going
1100          */
1101         if (state->start == start && state->end <= end) {
1102                 set_state_bits(tree, state, &bits);
1103                 cache_state(state, cached_state);
1104                 state = clear_state_bit(tree, state, &clear_bits, 0);
1105                 if (last_end == (u64)-1)
1106                         goto out;
1107                 start = last_end + 1;
1108                 if (start < end && state && state->start == start &&
1109                     !need_resched())
1110                         goto hit_next;
1111                 goto search_again;
1112         }
1113
1114         /*
1115          *     | ---- desired range ---- |
1116          * | state |
1117          *   or
1118          * | ------------- state -------------- |
1119          *
1120          * We need to split the extent we found, and may flip bits on
1121          * second half.
1122          *
1123          * If the extent we found extends past our
1124          * range, we just split and search again.  It'll get split
1125          * again the next time though.
1126          *
1127          * If the extent we found is inside our range, we set the
1128          * desired bit on it.
1129          */
1130         if (state->start < start) {
1131                 prealloc = alloc_extent_state_atomic(prealloc);
1132                 if (!prealloc) {
1133                         err = -ENOMEM;
1134                         goto out;
1135                 }
1136                 err = split_state(tree, state, prealloc, start);
1137                 if (err)
1138                         extent_io_tree_panic(tree, err);
1139                 prealloc = NULL;
1140                 if (err)
1141                         goto out;
1142                 if (state->end <= end) {
1143                         set_state_bits(tree, state, &bits);
1144                         cache_state(state, cached_state);
1145                         state = clear_state_bit(tree, state, &clear_bits, 0);
1146                         if (last_end == (u64)-1)
1147                                 goto out;
1148                         start = last_end + 1;
1149                         if (start < end && state && state->start == start &&
1150                             !need_resched())
1151                                 goto hit_next;
1152                 }
1153                 goto search_again;
1154         }
1155         /*
1156          * | ---- desired range ---- |
1157          *     | state | or               | state |
1158          *
1159          * There's a hole, we need to insert something in it and
1160          * ignore the extent we found.
1161          */
1162         if (state->start > start) {
1163                 u64 this_end;
1164                 if (end < last_start)
1165                         this_end = end;
1166                 else
1167                         this_end = last_start - 1;
1168
1169                 prealloc = alloc_extent_state_atomic(prealloc);
1170                 if (!prealloc) {
1171                         err = -ENOMEM;
1172                         goto out;
1173                 }
1174
1175                 /*
1176                  * Avoid to free 'prealloc' if it can be merged with
1177                  * the later extent.
1178                  */
1179                 err = insert_state(tree, prealloc, start, this_end,
1180                                    NULL, NULL, &bits);
1181                 if (err)
1182                         extent_io_tree_panic(tree, err);
1183                 cache_state(prealloc, cached_state);
1184                 prealloc = NULL;
1185                 start = this_end + 1;
1186                 goto search_again;
1187         }
1188         /*
1189          * | ---- desired range ---- |
1190          *                        | state |
1191          * We need to split the extent, and set the bit
1192          * on the first half
1193          */
1194         if (state->start <= end && state->end > end) {
1195                 prealloc = alloc_extent_state_atomic(prealloc);
1196                 if (!prealloc) {
1197                         err = -ENOMEM;
1198                         goto out;
1199                 }
1200
1201                 err = split_state(tree, state, prealloc, end + 1);
1202                 if (err)
1203                         extent_io_tree_panic(tree, err);
1204
1205                 set_state_bits(tree, prealloc, &bits);
1206                 cache_state(prealloc, cached_state);
1207                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1208                 prealloc = NULL;
1209                 goto out;
1210         }
1211
1212         goto search_again;
1213
1214 out:
1215         spin_unlock(&tree->lock);
1216         if (prealloc)
1217                 free_extent_state(prealloc);
1218
1219         return err;
1220
1221 search_again:
1222         if (start > end)
1223                 goto out;
1224         spin_unlock(&tree->lock);
1225         if (mask & __GFP_WAIT)
1226                 cond_resched();
1227         goto again;
1228 }
1229
1230 /* wrappers around set/clear extent bit */
1231 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1232                      gfp_t mask)
1233 {
1234         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1235                               NULL, mask);
1236 }
1237
1238 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1239                     unsigned long bits, gfp_t mask)
1240 {
1241         return set_extent_bit(tree, start, end, bits, NULL,
1242                               NULL, mask);
1243 }
1244
1245 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1246                       unsigned long bits, gfp_t mask)
1247 {
1248         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1249 }
1250
1251 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1252                         struct extent_state **cached_state, gfp_t mask)
1253 {
1254         return set_extent_bit(tree, start, end,
1255                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1256                               NULL, cached_state, mask);
1257 }
1258
1259 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1260                       struct extent_state **cached_state, gfp_t mask)
1261 {
1262         return set_extent_bit(tree, start, end,
1263                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1264                               NULL, cached_state, mask);
1265 }
1266
1267 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1268                        gfp_t mask)
1269 {
1270         return clear_extent_bit(tree, start, end,
1271                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1272                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1273 }
1274
1275 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1276                      gfp_t mask)
1277 {
1278         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1279                               NULL, mask);
1280 }
1281
1282 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1283                         struct extent_state **cached_state, gfp_t mask)
1284 {
1285         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1286                               cached_state, mask);
1287 }
1288
1289 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1290                           struct extent_state **cached_state, gfp_t mask)
1291 {
1292         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1293                                 cached_state, mask);
1294 }
1295
1296 /*
1297  * either insert or lock state struct between start and end use mask to tell
1298  * us if waiting is desired.
1299  */
1300 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1301                      unsigned long bits, struct extent_state **cached_state)
1302 {
1303         int err;
1304         u64 failed_start;
1305         while (1) {
1306                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1307                                        EXTENT_LOCKED, &failed_start,
1308                                        cached_state, GFP_NOFS);
1309                 if (err == -EEXIST) {
1310                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1311                         start = failed_start;
1312                 } else
1313                         break;
1314                 WARN_ON(start > end);
1315         }
1316         return err;
1317 }
1318
1319 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1320 {
1321         return lock_extent_bits(tree, start, end, 0, NULL);
1322 }
1323
1324 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1325 {
1326         int err;
1327         u64 failed_start;
1328
1329         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1330                                &failed_start, NULL, GFP_NOFS);
1331         if (err == -EEXIST) {
1332                 if (failed_start > start)
1333                         clear_extent_bit(tree, start, failed_start - 1,
1334                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1335                 return 0;
1336         }
1337         return 1;
1338 }
1339
1340 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1341                          struct extent_state **cached, gfp_t mask)
1342 {
1343         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1344                                 mask);
1345 }
1346
1347 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1348 {
1349         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1350                                 GFP_NOFS);
1351 }
1352
1353 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1354 {
1355         unsigned long index = start >> PAGE_CACHE_SHIFT;
1356         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1357         struct page *page;
1358
1359         while (index <= end_index) {
1360                 page = find_get_page(inode->i_mapping, index);
1361                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1362                 clear_page_dirty_for_io(page);
1363                 page_cache_release(page);
1364                 index++;
1365         }
1366         return 0;
1367 }
1368
1369 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1370 {
1371         unsigned long index = start >> PAGE_CACHE_SHIFT;
1372         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1373         struct page *page;
1374
1375         while (index <= end_index) {
1376                 page = find_get_page(inode->i_mapping, index);
1377                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378                 account_page_redirty(page);
1379                 __set_page_dirty_nobuffers(page);
1380                 page_cache_release(page);
1381                 index++;
1382         }
1383         return 0;
1384 }
1385
1386 /*
1387  * helper function to set both pages and extents in the tree writeback
1388  */
1389 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1390 {
1391         unsigned long index = start >> PAGE_CACHE_SHIFT;
1392         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1393         struct page *page;
1394
1395         while (index <= end_index) {
1396                 page = find_get_page(tree->mapping, index);
1397                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1398                 set_page_writeback(page);
1399                 page_cache_release(page);
1400                 index++;
1401         }
1402         return 0;
1403 }
1404
1405 /* find the first state struct with 'bits' set after 'start', and
1406  * return it.  tree->lock must be held.  NULL will returned if
1407  * nothing was found after 'start'
1408  */
1409 static struct extent_state *
1410 find_first_extent_bit_state(struct extent_io_tree *tree,
1411                             u64 start, unsigned long bits)
1412 {
1413         struct rb_node *node;
1414         struct extent_state *state;
1415
1416         /*
1417          * this search will find all the extents that end after
1418          * our range starts.
1419          */
1420         node = tree_search(tree, start);
1421         if (!node)
1422                 goto out;
1423
1424         while (1) {
1425                 state = rb_entry(node, struct extent_state, rb_node);
1426                 if (state->end >= start && (state->state & bits))
1427                         return state;
1428
1429                 node = rb_next(node);
1430                 if (!node)
1431                         break;
1432         }
1433 out:
1434         return NULL;
1435 }
1436
1437 /*
1438  * find the first offset in the io tree with 'bits' set. zero is
1439  * returned if we find something, and *start_ret and *end_ret are
1440  * set to reflect the state struct that was found.
1441  *
1442  * If nothing was found, 1 is returned. If found something, return 0.
1443  */
1444 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1445                           u64 *start_ret, u64 *end_ret, unsigned long bits,
1446                           struct extent_state **cached_state)
1447 {
1448         struct extent_state *state;
1449         struct rb_node *n;
1450         int ret = 1;
1451
1452         spin_lock(&tree->lock);
1453         if (cached_state && *cached_state) {
1454                 state = *cached_state;
1455                 if (state->end == start - 1 && state->tree) {
1456                         n = rb_next(&state->rb_node);
1457                         while (n) {
1458                                 state = rb_entry(n, struct extent_state,
1459                                                  rb_node);
1460                                 if (state->state & bits)
1461                                         goto got_it;
1462                                 n = rb_next(n);
1463                         }
1464                         free_extent_state(*cached_state);
1465                         *cached_state = NULL;
1466                         goto out;
1467                 }
1468                 free_extent_state(*cached_state);
1469                 *cached_state = NULL;
1470         }
1471
1472         state = find_first_extent_bit_state(tree, start, bits);
1473 got_it:
1474         if (state) {
1475                 cache_state(state, cached_state);
1476                 *start_ret = state->start;
1477                 *end_ret = state->end;
1478                 ret = 0;
1479         }
1480 out:
1481         spin_unlock(&tree->lock);
1482         return ret;
1483 }
1484
1485 /*
1486  * find a contiguous range of bytes in the file marked as delalloc, not
1487  * more than 'max_bytes'.  start and end are used to return the range,
1488  *
1489  * 1 is returned if we find something, 0 if nothing was in the tree
1490  */
1491 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1492                                         u64 *start, u64 *end, u64 max_bytes,
1493                                         struct extent_state **cached_state)
1494 {
1495         struct rb_node *node;
1496         struct extent_state *state;
1497         u64 cur_start = *start;
1498         u64 found = 0;
1499         u64 total_bytes = 0;
1500
1501         spin_lock(&tree->lock);
1502
1503         /*
1504          * this search will find all the extents that end after
1505          * our range starts.
1506          */
1507         node = tree_search(tree, cur_start);
1508         if (!node) {
1509                 if (!found)
1510                         *end = (u64)-1;
1511                 goto out;
1512         }
1513
1514         while (1) {
1515                 state = rb_entry(node, struct extent_state, rb_node);
1516                 if (found && (state->start != cur_start ||
1517                               (state->state & EXTENT_BOUNDARY))) {
1518                         goto out;
1519                 }
1520                 if (!(state->state & EXTENT_DELALLOC)) {
1521                         if (!found)
1522                                 *end = state->end;
1523                         goto out;
1524                 }
1525                 if (!found) {
1526                         *start = state->start;
1527                         *cached_state = state;
1528                         atomic_inc(&state->refs);
1529                 }
1530                 found++;
1531                 *end = state->end;
1532                 cur_start = state->end + 1;
1533                 node = rb_next(node);
1534                 total_bytes += state->end - state->start + 1;
1535                 if (total_bytes >= max_bytes)
1536                         break;
1537                 if (!node)
1538                         break;
1539         }
1540 out:
1541         spin_unlock(&tree->lock);
1542         return found;
1543 }
1544
1545 static noinline void __unlock_for_delalloc(struct inode *inode,
1546                                            struct page *locked_page,
1547                                            u64 start, u64 end)
1548 {
1549         int ret;
1550         struct page *pages[16];
1551         unsigned long index = start >> PAGE_CACHE_SHIFT;
1552         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1553         unsigned long nr_pages = end_index - index + 1;
1554         int i;
1555
1556         if (index == locked_page->index && end_index == index)
1557                 return;
1558
1559         while (nr_pages > 0) {
1560                 ret = find_get_pages_contig(inode->i_mapping, index,
1561                                      min_t(unsigned long, nr_pages,
1562                                      ARRAY_SIZE(pages)), pages);
1563                 for (i = 0; i < ret; i++) {
1564                         if (pages[i] != locked_page)
1565                                 unlock_page(pages[i]);
1566                         page_cache_release(pages[i]);
1567                 }
1568                 nr_pages -= ret;
1569                 index += ret;
1570                 cond_resched();
1571         }
1572 }
1573
1574 static noinline int lock_delalloc_pages(struct inode *inode,
1575                                         struct page *locked_page,
1576                                         u64 delalloc_start,
1577                                         u64 delalloc_end)
1578 {
1579         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1580         unsigned long start_index = index;
1581         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1582         unsigned long pages_locked = 0;
1583         struct page *pages[16];
1584         unsigned long nrpages;
1585         int ret;
1586         int i;
1587
1588         /* the caller is responsible for locking the start index */
1589         if (index == locked_page->index && index == end_index)
1590                 return 0;
1591
1592         /* skip the page at the start index */
1593         nrpages = end_index - index + 1;
1594         while (nrpages > 0) {
1595                 ret = find_get_pages_contig(inode->i_mapping, index,
1596                                      min_t(unsigned long,
1597                                      nrpages, ARRAY_SIZE(pages)), pages);
1598                 if (ret == 0) {
1599                         ret = -EAGAIN;
1600                         goto done;
1601                 }
1602                 /* now we have an array of pages, lock them all */
1603                 for (i = 0; i < ret; i++) {
1604                         /*
1605                          * the caller is taking responsibility for
1606                          * locked_page
1607                          */
1608                         if (pages[i] != locked_page) {
1609                                 lock_page(pages[i]);
1610                                 if (!PageDirty(pages[i]) ||
1611                                     pages[i]->mapping != inode->i_mapping) {
1612                                         ret = -EAGAIN;
1613                                         unlock_page(pages[i]);
1614                                         page_cache_release(pages[i]);
1615                                         goto done;
1616                                 }
1617                         }
1618                         page_cache_release(pages[i]);
1619                         pages_locked++;
1620                 }
1621                 nrpages -= ret;
1622                 index += ret;
1623                 cond_resched();
1624         }
1625         ret = 0;
1626 done:
1627         if (ret && pages_locked) {
1628                 __unlock_for_delalloc(inode, locked_page,
1629                               delalloc_start,
1630                               ((u64)(start_index + pages_locked - 1)) <<
1631                               PAGE_CACHE_SHIFT);
1632         }
1633         return ret;
1634 }
1635
1636 /*
1637  * find a contiguous range of bytes in the file marked as delalloc, not
1638  * more than 'max_bytes'.  start and end are used to return the range,
1639  *
1640  * 1 is returned if we find something, 0 if nothing was in the tree
1641  */
1642 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1643                                     struct extent_io_tree *tree,
1644                                     struct page *locked_page, u64 *start,
1645                                     u64 *end, u64 max_bytes)
1646 {
1647         u64 delalloc_start;
1648         u64 delalloc_end;
1649         u64 found;
1650         struct extent_state *cached_state = NULL;
1651         int ret;
1652         int loops = 0;
1653
1654 again:
1655         /* step one, find a bunch of delalloc bytes starting at start */
1656         delalloc_start = *start;
1657         delalloc_end = 0;
1658         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1659                                     max_bytes, &cached_state);
1660         if (!found || delalloc_end <= *start) {
1661                 *start = delalloc_start;
1662                 *end = delalloc_end;
1663                 free_extent_state(cached_state);
1664                 return 0;
1665         }
1666
1667         /*
1668          * start comes from the offset of locked_page.  We have to lock
1669          * pages in order, so we can't process delalloc bytes before
1670          * locked_page
1671          */
1672         if (delalloc_start < *start)
1673                 delalloc_start = *start;
1674
1675         /*
1676          * make sure to limit the number of pages we try to lock down
1677          */
1678         if (delalloc_end + 1 - delalloc_start > max_bytes)
1679                 delalloc_end = delalloc_start + max_bytes - 1;
1680
1681         /* step two, lock all the pages after the page that has start */
1682         ret = lock_delalloc_pages(inode, locked_page,
1683                                   delalloc_start, delalloc_end);
1684         if (ret == -EAGAIN) {
1685                 /* some of the pages are gone, lets avoid looping by
1686                  * shortening the size of the delalloc range we're searching
1687                  */
1688                 free_extent_state(cached_state);
1689                 if (!loops) {
1690                         max_bytes = PAGE_CACHE_SIZE;
1691                         loops = 1;
1692                         goto again;
1693                 } else {
1694                         found = 0;
1695                         goto out_failed;
1696                 }
1697         }
1698         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1699
1700         /* step three, lock the state bits for the whole range */
1701         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1702
1703         /* then test to make sure it is all still delalloc */
1704         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1705                              EXTENT_DELALLOC, 1, cached_state);
1706         if (!ret) {
1707                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1708                                      &cached_state, GFP_NOFS);
1709                 __unlock_for_delalloc(inode, locked_page,
1710                               delalloc_start, delalloc_end);
1711                 cond_resched();
1712                 goto again;
1713         }
1714         free_extent_state(cached_state);
1715         *start = delalloc_start;
1716         *end = delalloc_end;
1717 out_failed:
1718         return found;
1719 }
1720
1721 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1722                                  struct page *locked_page,
1723                                  unsigned long clear_bits,
1724                                  unsigned long page_ops)
1725 {
1726         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1727         int ret;
1728         struct page *pages[16];
1729         unsigned long index = start >> PAGE_CACHE_SHIFT;
1730         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1731         unsigned long nr_pages = end_index - index + 1;
1732         int i;
1733
1734         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1735         if (page_ops == 0)
1736                 return 0;
1737
1738         while (nr_pages > 0) {
1739                 ret = find_get_pages_contig(inode->i_mapping, index,
1740                                      min_t(unsigned long,
1741                                      nr_pages, ARRAY_SIZE(pages)), pages);
1742                 for (i = 0; i < ret; i++) {
1743
1744                         if (page_ops & PAGE_SET_PRIVATE2)
1745                                 SetPagePrivate2(pages[i]);
1746
1747                         if (pages[i] == locked_page) {
1748                                 page_cache_release(pages[i]);
1749                                 continue;
1750                         }
1751                         if (page_ops & PAGE_CLEAR_DIRTY)
1752                                 clear_page_dirty_for_io(pages[i]);
1753                         if (page_ops & PAGE_SET_WRITEBACK)
1754                                 set_page_writeback(pages[i]);
1755                         if (page_ops & PAGE_END_WRITEBACK)
1756                                 end_page_writeback(pages[i]);
1757                         if (page_ops & PAGE_UNLOCK)
1758                                 unlock_page(pages[i]);
1759                         page_cache_release(pages[i]);
1760                 }
1761                 nr_pages -= ret;
1762                 index += ret;
1763                 cond_resched();
1764         }
1765         return 0;
1766 }
1767
1768 /*
1769  * count the number of bytes in the tree that have a given bit(s)
1770  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1771  * cached.  The total number found is returned.
1772  */
1773 u64 count_range_bits(struct extent_io_tree *tree,
1774                      u64 *start, u64 search_end, u64 max_bytes,
1775                      unsigned long bits, int contig)
1776 {
1777         struct rb_node *node;
1778         struct extent_state *state;
1779         u64 cur_start = *start;
1780         u64 total_bytes = 0;
1781         u64 last = 0;
1782         int found = 0;
1783
1784         if (WARN_ON(search_end <= cur_start))
1785                 return 0;
1786
1787         spin_lock(&tree->lock);
1788         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1789                 total_bytes = tree->dirty_bytes;
1790                 goto out;
1791         }
1792         /*
1793          * this search will find all the extents that end after
1794          * our range starts.
1795          */
1796         node = tree_search(tree, cur_start);
1797         if (!node)
1798                 goto out;
1799
1800         while (1) {
1801                 state = rb_entry(node, struct extent_state, rb_node);
1802                 if (state->start > search_end)
1803                         break;
1804                 if (contig && found && state->start > last + 1)
1805                         break;
1806                 if (state->end >= cur_start && (state->state & bits) == bits) {
1807                         total_bytes += min(search_end, state->end) + 1 -
1808                                        max(cur_start, state->start);
1809                         if (total_bytes >= max_bytes)
1810                                 break;
1811                         if (!found) {
1812                                 *start = max(cur_start, state->start);
1813                                 found = 1;
1814                         }
1815                         last = state->end;
1816                 } else if (contig && found) {
1817                         break;
1818                 }
1819                 node = rb_next(node);
1820                 if (!node)
1821                         break;
1822         }
1823 out:
1824         spin_unlock(&tree->lock);
1825         return total_bytes;
1826 }
1827
1828 /*
1829  * set the private field for a given byte offset in the tree.  If there isn't
1830  * an extent_state there already, this does nothing.
1831  */
1832 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1833 {
1834         struct rb_node *node;
1835         struct extent_state *state;
1836         int ret = 0;
1837
1838         spin_lock(&tree->lock);
1839         /*
1840          * this search will find all the extents that end after
1841          * our range starts.
1842          */
1843         node = tree_search(tree, start);
1844         if (!node) {
1845                 ret = -ENOENT;
1846                 goto out;
1847         }
1848         state = rb_entry(node, struct extent_state, rb_node);
1849         if (state->start != start) {
1850                 ret = -ENOENT;
1851                 goto out;
1852         }
1853         state->private = private;
1854 out:
1855         spin_unlock(&tree->lock);
1856         return ret;
1857 }
1858
1859 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1860 {
1861         struct rb_node *node;
1862         struct extent_state *state;
1863         int ret = 0;
1864
1865         spin_lock(&tree->lock);
1866         /*
1867          * this search will find all the extents that end after
1868          * our range starts.
1869          */
1870         node = tree_search(tree, start);
1871         if (!node) {
1872                 ret = -ENOENT;
1873                 goto out;
1874         }
1875         state = rb_entry(node, struct extent_state, rb_node);
1876         if (state->start != start) {
1877                 ret = -ENOENT;
1878                 goto out;
1879         }
1880         *private = state->private;
1881 out:
1882         spin_unlock(&tree->lock);
1883         return ret;
1884 }
1885
1886 /*
1887  * searches a range in the state tree for a given mask.
1888  * If 'filled' == 1, this returns 1 only if every extent in the tree
1889  * has the bits set.  Otherwise, 1 is returned if any bit in the
1890  * range is found set.
1891  */
1892 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1893                    unsigned long bits, int filled, struct extent_state *cached)
1894 {
1895         struct extent_state *state = NULL;
1896         struct rb_node *node;
1897         int bitset = 0;
1898
1899         spin_lock(&tree->lock);
1900         if (cached && cached->tree && cached->start <= start &&
1901             cached->end > start)
1902                 node = &cached->rb_node;
1903         else
1904                 node = tree_search(tree, start);
1905         while (node && start <= end) {
1906                 state = rb_entry(node, struct extent_state, rb_node);
1907
1908                 if (filled && state->start > start) {
1909                         bitset = 0;
1910                         break;
1911                 }
1912
1913                 if (state->start > end)
1914                         break;
1915
1916                 if (state->state & bits) {
1917                         bitset = 1;
1918                         if (!filled)
1919                                 break;
1920                 } else if (filled) {
1921                         bitset = 0;
1922                         break;
1923                 }
1924
1925                 if (state->end == (u64)-1)
1926                         break;
1927
1928                 start = state->end + 1;
1929                 if (start > end)
1930                         break;
1931                 node = rb_next(node);
1932                 if (!node) {
1933                         if (filled)
1934                                 bitset = 0;
1935                         break;
1936                 }
1937         }
1938         spin_unlock(&tree->lock);
1939         return bitset;
1940 }
1941
1942 /*
1943  * helper function to set a given page up to date if all the
1944  * extents in the tree for that page are up to date
1945  */
1946 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1947 {
1948         u64 start = page_offset(page);
1949         u64 end = start + PAGE_CACHE_SIZE - 1;
1950         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1951                 SetPageUptodate(page);
1952 }
1953
1954 /*
1955  * When IO fails, either with EIO or csum verification fails, we
1956  * try other mirrors that might have a good copy of the data.  This
1957  * io_failure_record is used to record state as we go through all the
1958  * mirrors.  If another mirror has good data, the page is set up to date
1959  * and things continue.  If a good mirror can't be found, the original
1960  * bio end_io callback is called to indicate things have failed.
1961  */
1962 struct io_failure_record {
1963         struct page *page;
1964         u64 start;
1965         u64 len;
1966         u64 logical;
1967         unsigned long bio_flags;
1968         int this_mirror;
1969         int failed_mirror;
1970         int in_validation;
1971 };
1972
1973 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1974                                 int did_repair)
1975 {
1976         int ret;
1977         int err = 0;
1978         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1979
1980         set_state_private(failure_tree, rec->start, 0);
1981         ret = clear_extent_bits(failure_tree, rec->start,
1982                                 rec->start + rec->len - 1,
1983                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1984         if (ret)
1985                 err = ret;
1986
1987         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1988                                 rec->start + rec->len - 1,
1989                                 EXTENT_DAMAGED, GFP_NOFS);
1990         if (ret && !err)
1991                 err = ret;
1992
1993         kfree(rec);
1994         return err;
1995 }
1996
1997 /*
1998  * this bypasses the standard btrfs submit functions deliberately, as
1999  * the standard behavior is to write all copies in a raid setup. here we only
2000  * want to write the one bad copy. so we do the mapping for ourselves and issue
2001  * submit_bio directly.
2002  * to avoid any synchronization issues, wait for the data after writing, which
2003  * actually prevents the read that triggered the error from finishing.
2004  * currently, there can be no more than two copies of every data bit. thus,
2005  * exactly one rewrite is required.
2006  */
2007 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2008                         u64 length, u64 logical, struct page *page,
2009                         int mirror_num)
2010 {
2011         struct bio *bio;
2012         struct btrfs_device *dev;
2013         u64 map_length = 0;
2014         u64 sector;
2015         struct btrfs_bio *bbio = NULL;
2016         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2017         int ret;
2018
2019         ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2020         BUG_ON(!mirror_num);
2021
2022         /* we can't repair anything in raid56 yet */
2023         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2024                 return 0;
2025
2026         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2027         if (!bio)
2028                 return -EIO;
2029         bio->bi_size = 0;
2030         map_length = length;
2031
2032         ret = btrfs_map_block(fs_info, WRITE, logical,
2033                               &map_length, &bbio, mirror_num);
2034         if (ret) {
2035                 bio_put(bio);
2036                 return -EIO;
2037         }
2038         BUG_ON(mirror_num != bbio->mirror_num);
2039         sector = bbio->stripes[mirror_num-1].physical >> 9;
2040         bio->bi_sector = sector;
2041         dev = bbio->stripes[mirror_num-1].dev;
2042         kfree(bbio);
2043         if (!dev || !dev->bdev || !dev->writeable) {
2044                 bio_put(bio);
2045                 return -EIO;
2046         }
2047         bio->bi_bdev = dev->bdev;
2048         bio_add_page(bio, page, length, start - page_offset(page));
2049
2050         if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2051                 /* try to remap that extent elsewhere? */
2052                 bio_put(bio);
2053                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2054                 return -EIO;
2055         }
2056
2057         printk_ratelimited_in_rcu(KERN_INFO
2058                         "BTRFS: read error corrected: ino %lu off %llu "
2059                     "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2060                     start, rcu_str_deref(dev->name), sector);
2061
2062         bio_put(bio);
2063         return 0;
2064 }
2065
2066 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2067                          int mirror_num)
2068 {
2069         u64 start = eb->start;
2070         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2071         int ret = 0;
2072
2073         if (root->fs_info->sb->s_flags & MS_RDONLY)
2074                 return -EROFS;
2075
2076         for (i = 0; i < num_pages; i++) {
2077                 struct page *p = extent_buffer_page(eb, i);
2078                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2079                                         start, p, mirror_num);
2080                 if (ret)
2081                         break;
2082                 start += PAGE_CACHE_SIZE;
2083         }
2084
2085         return ret;
2086 }
2087
2088 /*
2089  * each time an IO finishes, we do a fast check in the IO failure tree
2090  * to see if we need to process or clean up an io_failure_record
2091  */
2092 static int clean_io_failure(u64 start, struct page *page)
2093 {
2094         u64 private;
2095         u64 private_failure;
2096         struct io_failure_record *failrec;
2097         struct inode *inode = page->mapping->host;
2098         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2099         struct extent_state *state;
2100         int num_copies;
2101         int did_repair = 0;
2102         int ret;
2103
2104         private = 0;
2105         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2106                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2107         if (!ret)
2108                 return 0;
2109
2110         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2111                                 &private_failure);
2112         if (ret)
2113                 return 0;
2114
2115         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2116         BUG_ON(!failrec->this_mirror);
2117
2118         if (failrec->in_validation) {
2119                 /* there was no real error, just free the record */
2120                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2121                          failrec->start);
2122                 did_repair = 1;
2123                 goto out;
2124         }
2125         if (fs_info->sb->s_flags & MS_RDONLY)
2126                 goto out;
2127
2128         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2129         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2130                                             failrec->start,
2131                                             EXTENT_LOCKED);
2132         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2133
2134         if (state && state->start <= failrec->start &&
2135             state->end >= failrec->start + failrec->len - 1) {
2136                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2137                                               failrec->len);
2138                 if (num_copies > 1)  {
2139                         ret = repair_io_failure(fs_info, start, failrec->len,
2140                                                 failrec->logical, page,
2141                                                 failrec->failed_mirror);
2142                         did_repair = !ret;
2143                 }
2144                 ret = 0;
2145         }
2146
2147 out:
2148         if (!ret)
2149                 ret = free_io_failure(inode, failrec, did_repair);
2150
2151         return ret;
2152 }
2153
2154 /*
2155  * this is a generic handler for readpage errors (default
2156  * readpage_io_failed_hook). if other copies exist, read those and write back
2157  * good data to the failed position. does not investigate in remapping the
2158  * failed extent elsewhere, hoping the device will be smart enough to do this as
2159  * needed
2160  */
2161
2162 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2163                               struct page *page, u64 start, u64 end,
2164                               int failed_mirror)
2165 {
2166         struct io_failure_record *failrec = NULL;
2167         u64 private;
2168         struct extent_map *em;
2169         struct inode *inode = page->mapping->host;
2170         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2171         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2172         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2173         struct bio *bio;
2174         struct btrfs_io_bio *btrfs_failed_bio;
2175         struct btrfs_io_bio *btrfs_bio;
2176         int num_copies;
2177         int ret;
2178         int read_mode;
2179         u64 logical;
2180
2181         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2182
2183         ret = get_state_private(failure_tree, start, &private);
2184         if (ret) {
2185                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2186                 if (!failrec)
2187                         return -ENOMEM;
2188                 failrec->start = start;
2189                 failrec->len = end - start + 1;
2190                 failrec->this_mirror = 0;
2191                 failrec->bio_flags = 0;
2192                 failrec->in_validation = 0;
2193
2194                 read_lock(&em_tree->lock);
2195                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2196                 if (!em) {
2197                         read_unlock(&em_tree->lock);
2198                         kfree(failrec);
2199                         return -EIO;
2200                 }
2201
2202                 if (em->start > start || em->start + em->len <= start) {
2203                         free_extent_map(em);
2204                         em = NULL;
2205                 }
2206                 read_unlock(&em_tree->lock);
2207
2208                 if (!em) {
2209                         kfree(failrec);
2210                         return -EIO;
2211                 }
2212                 logical = start - em->start;
2213                 logical = em->block_start + logical;
2214                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2215                         logical = em->block_start;
2216                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2217                         extent_set_compress_type(&failrec->bio_flags,
2218                                                  em->compress_type);
2219                 }
2220                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2221                          "len=%llu\n", logical, start, failrec->len);
2222                 failrec->logical = logical;
2223                 free_extent_map(em);
2224
2225                 /* set the bits in the private failure tree */
2226                 ret = set_extent_bits(failure_tree, start, end,
2227                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2228                 if (ret >= 0)
2229                         ret = set_state_private(failure_tree, start,
2230                                                 (u64)(unsigned long)failrec);
2231                 /* set the bits in the inode's tree */
2232                 if (ret >= 0)
2233                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2234                                                 GFP_NOFS);
2235                 if (ret < 0) {
2236                         kfree(failrec);
2237                         return ret;
2238                 }
2239         } else {
2240                 failrec = (struct io_failure_record *)(unsigned long)private;
2241                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2242                          "start=%llu, len=%llu, validation=%d\n",
2243                          failrec->logical, failrec->start, failrec->len,
2244                          failrec->in_validation);
2245                 /*
2246                  * when data can be on disk more than twice, add to failrec here
2247                  * (e.g. with a list for failed_mirror) to make
2248                  * clean_io_failure() clean all those errors at once.
2249                  */
2250         }
2251         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2252                                       failrec->logical, failrec->len);
2253         if (num_copies == 1) {
2254                 /*
2255                  * we only have a single copy of the data, so don't bother with
2256                  * all the retry and error correction code that follows. no
2257                  * matter what the error is, it is very likely to persist.
2258                  */
2259                 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2260                          num_copies, failrec->this_mirror, failed_mirror);
2261                 free_io_failure(inode, failrec, 0);
2262                 return -EIO;
2263         }
2264
2265         /*
2266          * there are two premises:
2267          *      a) deliver good data to the caller
2268          *      b) correct the bad sectors on disk
2269          */
2270         if (failed_bio->bi_vcnt > 1) {
2271                 /*
2272                  * to fulfill b), we need to know the exact failing sectors, as
2273                  * we don't want to rewrite any more than the failed ones. thus,
2274                  * we need separate read requests for the failed bio
2275                  *
2276                  * if the following BUG_ON triggers, our validation request got
2277                  * merged. we need separate requests for our algorithm to work.
2278                  */
2279                 BUG_ON(failrec->in_validation);
2280                 failrec->in_validation = 1;
2281                 failrec->this_mirror = failed_mirror;
2282                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2283         } else {
2284                 /*
2285                  * we're ready to fulfill a) and b) alongside. get a good copy
2286                  * of the failed sector and if we succeed, we have setup
2287                  * everything for repair_io_failure to do the rest for us.
2288                  */
2289                 if (failrec->in_validation) {
2290                         BUG_ON(failrec->this_mirror != failed_mirror);
2291                         failrec->in_validation = 0;
2292                         failrec->this_mirror = 0;
2293                 }
2294                 failrec->failed_mirror = failed_mirror;
2295                 failrec->this_mirror++;
2296                 if (failrec->this_mirror == failed_mirror)
2297                         failrec->this_mirror++;
2298                 read_mode = READ_SYNC;
2299         }
2300
2301         if (failrec->this_mirror > num_copies) {
2302                 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2303                          num_copies, failrec->this_mirror, failed_mirror);
2304                 free_io_failure(inode, failrec, 0);
2305                 return -EIO;
2306         }
2307
2308         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2309         if (!bio) {
2310                 free_io_failure(inode, failrec, 0);
2311                 return -EIO;
2312         }
2313         bio->bi_end_io = failed_bio->bi_end_io;
2314         bio->bi_sector = failrec->logical >> 9;
2315         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2316         bio->bi_size = 0;
2317
2318         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2319         if (btrfs_failed_bio->csum) {
2320                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2321                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2322
2323                 btrfs_bio = btrfs_io_bio(bio);
2324                 btrfs_bio->csum = btrfs_bio->csum_inline;
2325                 phy_offset >>= inode->i_sb->s_blocksize_bits;
2326                 phy_offset *= csum_size;
2327                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2328                        csum_size);
2329         }
2330
2331         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2332
2333         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2334                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2335                  failrec->this_mirror, num_copies, failrec->in_validation);
2336
2337         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2338                                          failrec->this_mirror,
2339                                          failrec->bio_flags, 0);
2340         return ret;
2341 }
2342
2343 /* lots and lots of room for performance fixes in the end_bio funcs */
2344
2345 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2346 {
2347         int uptodate = (err == 0);
2348         struct extent_io_tree *tree;
2349         int ret;
2350
2351         tree = &BTRFS_I(page->mapping->host)->io_tree;
2352
2353         if (tree->ops && tree->ops->writepage_end_io_hook) {
2354                 ret = tree->ops->writepage_end_io_hook(page, start,
2355                                                end, NULL, uptodate);
2356                 if (ret)
2357                         uptodate = 0;
2358         }
2359
2360         if (!uptodate) {
2361                 ClearPageUptodate(page);
2362                 SetPageError(page);
2363         }
2364         return 0;
2365 }
2366
2367 /*
2368  * after a writepage IO is done, we need to:
2369  * clear the uptodate bits on error
2370  * clear the writeback bits in the extent tree for this IO
2371  * end_page_writeback if the page has no more pending IO
2372  *
2373  * Scheduling is not allowed, so the extent state tree is expected
2374  * to have one and only one object corresponding to this IO.
2375  */
2376 static void end_bio_extent_writepage(struct bio *bio, int err)
2377 {
2378         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2379         u64 start;
2380         u64 end;
2381
2382         do {
2383                 struct page *page = bvec->bv_page;
2384
2385                 /* We always issue full-page reads, but if some block
2386                  * in a page fails to read, blk_update_request() will
2387                  * advance bv_offset and adjust bv_len to compensate.
2388                  * Print a warning for nonzero offsets, and an error
2389                  * if they don't add up to a full page.  */
2390                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2391                         if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2392                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2393                                    "partial page write in btrfs with offset %u and length %u",
2394                                         bvec->bv_offset, bvec->bv_len);
2395                         else
2396                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2397                                    "incomplete page write in btrfs with offset %u and "
2398                                    "length %u",
2399                                         bvec->bv_offset, bvec->bv_len);
2400                 }
2401
2402                 start = page_offset(page);
2403                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2404
2405                 if (--bvec >= bio->bi_io_vec)
2406                         prefetchw(&bvec->bv_page->flags);
2407
2408                 if (end_extent_writepage(page, err, start, end))
2409                         continue;
2410
2411                 end_page_writeback(page);
2412         } while (bvec >= bio->bi_io_vec);
2413
2414         bio_put(bio);
2415 }
2416
2417 static void
2418 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2419                               int uptodate)
2420 {
2421         struct extent_state *cached = NULL;
2422         u64 end = start + len - 1;
2423
2424         if (uptodate && tree->track_uptodate)
2425                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2426         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2427 }
2428
2429 /*
2430  * after a readpage IO is done, we need to:
2431  * clear the uptodate bits on error
2432  * set the uptodate bits if things worked
2433  * set the page up to date if all extents in the tree are uptodate
2434  * clear the lock bit in the extent tree
2435  * unlock the page if there are no other extents locked for it
2436  *
2437  * Scheduling is not allowed, so the extent state tree is expected
2438  * to have one and only one object corresponding to this IO.
2439  */
2440 static void end_bio_extent_readpage(struct bio *bio, int err)
2441 {
2442         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2443         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2444         struct bio_vec *bvec = bio->bi_io_vec;
2445         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2446         struct extent_io_tree *tree;
2447         u64 offset = 0;
2448         u64 start;
2449         u64 end;
2450         u64 len;
2451         u64 extent_start = 0;
2452         u64 extent_len = 0;
2453         int mirror;
2454         int ret;
2455
2456         if (err)
2457                 uptodate = 0;
2458
2459         do {
2460                 struct page *page = bvec->bv_page;
2461                 struct inode *inode = page->mapping->host;
2462
2463                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2464                          "mirror=%lu\n", (u64)bio->bi_sector, err,
2465                          io_bio->mirror_num);
2466                 tree = &BTRFS_I(inode)->io_tree;
2467
2468                 /* We always issue full-page reads, but if some block
2469                  * in a page fails to read, blk_update_request() will
2470                  * advance bv_offset and adjust bv_len to compensate.
2471                  * Print a warning for nonzero offsets, and an error
2472                  * if they don't add up to a full page.  */
2473                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2474                         if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2475                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2476                                    "partial page read in btrfs with offset %u and length %u",
2477                                         bvec->bv_offset, bvec->bv_len);
2478                         else
2479                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2480                                    "incomplete page read in btrfs with offset %u and "
2481                                    "length %u",
2482                                         bvec->bv_offset, bvec->bv_len);
2483                 }
2484
2485                 start = page_offset(page);
2486                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2487                 len = bvec->bv_len;
2488
2489                 if (++bvec <= bvec_end)
2490                         prefetchw(&bvec->bv_page->flags);
2491
2492                 mirror = io_bio->mirror_num;
2493                 if (likely(uptodate && tree->ops &&
2494                            tree->ops->readpage_end_io_hook)) {
2495                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2496                                                               page, start, end,
2497                                                               mirror);
2498                         if (ret)
2499                                 uptodate = 0;
2500                         else
2501                                 clean_io_failure(start, page);
2502                 }
2503
2504                 if (likely(uptodate))
2505                         goto readpage_ok;
2506
2507                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2508                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2509                         if (!ret && !err &&
2510                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2511                                 uptodate = 1;
2512                 } else {
2513                         /*
2514                          * The generic bio_readpage_error handles errors the
2515                          * following way: If possible, new read requests are
2516                          * created and submitted and will end up in
2517                          * end_bio_extent_readpage as well (if we're lucky, not
2518                          * in the !uptodate case). In that case it returns 0 and
2519                          * we just go on with the next page in our bio. If it
2520                          * can't handle the error it will return -EIO and we
2521                          * remain responsible for that page.
2522                          */
2523                         ret = bio_readpage_error(bio, offset, page, start, end,
2524                                                  mirror);
2525                         if (ret == 0) {
2526                                 uptodate =
2527                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2528                                 if (err)
2529                                         uptodate = 0;
2530                                 continue;
2531                         }
2532                 }
2533 readpage_ok:
2534                 if (likely(uptodate)) {
2535                         loff_t i_size = i_size_read(inode);
2536                         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2537                         unsigned offset;
2538
2539                         /* Zero out the end if this page straddles i_size */
2540                         offset = i_size & (PAGE_CACHE_SIZE-1);
2541                         if (page->index == end_index && offset)
2542                                 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2543                         SetPageUptodate(page);
2544                 } else {
2545                         ClearPageUptodate(page);
2546                         SetPageError(page);
2547                 }
2548                 unlock_page(page);
2549                 offset += len;
2550
2551                 if (unlikely(!uptodate)) {
2552                         if (extent_len) {
2553                                 endio_readpage_release_extent(tree,
2554                                                               extent_start,
2555                                                               extent_len, 1);
2556                                 extent_start = 0;
2557                                 extent_len = 0;
2558                         }
2559                         endio_readpage_release_extent(tree, start,
2560                                                       end - start + 1, 0);
2561                 } else if (!extent_len) {
2562                         extent_start = start;
2563                         extent_len = end + 1 - start;
2564                 } else if (extent_start + extent_len == start) {
2565                         extent_len += end + 1 - start;
2566                 } else {
2567                         endio_readpage_release_extent(tree, extent_start,
2568                                                       extent_len, uptodate);
2569                         extent_start = start;
2570                         extent_len = end + 1 - start;
2571                 }
2572         } while (bvec <= bvec_end);
2573
2574         if (extent_len)
2575                 endio_readpage_release_extent(tree, extent_start, extent_len,
2576                                               uptodate);
2577         if (io_bio->end_io)
2578                 io_bio->end_io(io_bio, err);
2579         bio_put(bio);
2580 }
2581
2582 /*
2583  * this allocates from the btrfs_bioset.  We're returning a bio right now
2584  * but you can call btrfs_io_bio for the appropriate container_of magic
2585  */
2586 struct bio *
2587 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2588                 gfp_t gfp_flags)
2589 {
2590         struct btrfs_io_bio *btrfs_bio;
2591         struct bio *bio;
2592
2593         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2594
2595         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2596                 while (!bio && (nr_vecs /= 2)) {
2597                         bio = bio_alloc_bioset(gfp_flags,
2598                                                nr_vecs, btrfs_bioset);
2599                 }
2600         }
2601
2602         if (bio) {
2603                 bio->bi_size = 0;
2604                 bio->bi_bdev = bdev;
2605                 bio->bi_sector = first_sector;
2606                 btrfs_bio = btrfs_io_bio(bio);
2607                 btrfs_bio->csum = NULL;
2608                 btrfs_bio->csum_allocated = NULL;
2609                 btrfs_bio->end_io = NULL;
2610         }
2611         return bio;
2612 }
2613
2614 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2615 {
2616         return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2617 }
2618
2619
2620 /* this also allocates from the btrfs_bioset */
2621 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2622 {
2623         struct btrfs_io_bio *btrfs_bio;
2624         struct bio *bio;
2625
2626         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2627         if (bio) {
2628                 btrfs_bio = btrfs_io_bio(bio);
2629                 btrfs_bio->csum = NULL;
2630                 btrfs_bio->csum_allocated = NULL;
2631                 btrfs_bio->end_io = NULL;
2632         }
2633         return bio;
2634 }
2635
2636
2637 static int __must_check submit_one_bio(int rw, struct bio *bio,
2638                                        int mirror_num, unsigned long bio_flags)
2639 {
2640         int ret = 0;
2641         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2642         struct page *page = bvec->bv_page;
2643         struct extent_io_tree *tree = bio->bi_private;
2644         u64 start;
2645
2646         start = page_offset(page) + bvec->bv_offset;
2647
2648         bio->bi_private = NULL;
2649
2650         bio_get(bio);
2651
2652         if (tree->ops && tree->ops->submit_bio_hook)
2653                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2654                                            mirror_num, bio_flags, start);
2655         else
2656                 btrfsic_submit_bio(rw, bio);
2657
2658         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2659                 ret = -EOPNOTSUPP;
2660         bio_put(bio);
2661         return ret;
2662 }
2663
2664 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2665                      unsigned long offset, size_t size, struct bio *bio,
2666                      unsigned long bio_flags)
2667 {
2668         int ret = 0;
2669         if (tree->ops && tree->ops->merge_bio_hook)
2670                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2671                                                 bio_flags);
2672         BUG_ON(ret < 0);
2673         return ret;
2674
2675 }
2676
2677 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2678                               struct page *page, sector_t sector,
2679                               size_t size, unsigned long offset,
2680                               struct block_device *bdev,
2681                               struct bio **bio_ret,
2682                               unsigned long max_pages,
2683                               bio_end_io_t end_io_func,
2684                               int mirror_num,
2685                               unsigned long prev_bio_flags,
2686                               unsigned long bio_flags)
2687 {
2688         int ret = 0;
2689         struct bio *bio;
2690         int nr;
2691         int contig = 0;
2692         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2693         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2694         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2695
2696         if (bio_ret && *bio_ret) {
2697                 bio = *bio_ret;
2698                 if (old_compressed)
2699                         contig = bio->bi_sector == sector;
2700                 else
2701                         contig = bio_end_sector(bio) == sector;
2702
2703                 if (prev_bio_flags != bio_flags || !contig ||
2704                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2705                     bio_add_page(bio, page, page_size, offset) < page_size) {
2706                         ret = submit_one_bio(rw, bio, mirror_num,
2707                                              prev_bio_flags);
2708                         if (ret < 0)
2709                                 return ret;
2710                         bio = NULL;
2711                 } else {
2712                         return 0;
2713                 }
2714         }
2715         if (this_compressed)
2716                 nr = BIO_MAX_PAGES;
2717         else
2718                 nr = bio_get_nr_vecs(bdev);
2719
2720         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2721         if (!bio)
2722                 return -ENOMEM;
2723
2724         bio_add_page(bio, page, page_size, offset);
2725         bio->bi_end_io = end_io_func;
2726         bio->bi_private = tree;
2727
2728         if (bio_ret)
2729                 *bio_ret = bio;
2730         else
2731                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2732
2733         return ret;
2734 }
2735
2736 static void attach_extent_buffer_page(struct extent_buffer *eb,
2737                                       struct page *page)
2738 {
2739         if (!PagePrivate(page)) {
2740                 SetPagePrivate(page);
2741                 page_cache_get(page);
2742                 set_page_private(page, (unsigned long)eb);
2743         } else {
2744                 WARN_ON(page->private != (unsigned long)eb);
2745         }
2746 }
2747
2748 void set_page_extent_mapped(struct page *page)
2749 {
2750         if (!PagePrivate(page)) {
2751                 SetPagePrivate(page);
2752                 page_cache_get(page);
2753                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2754         }
2755 }
2756
2757 static struct extent_map *
2758 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2759                  u64 start, u64 len, get_extent_t *get_extent,
2760                  struct extent_map **em_cached)
2761 {
2762         struct extent_map *em;
2763
2764         if (em_cached && *em_cached) {
2765                 em = *em_cached;
2766                 if (em->in_tree && start >= em->start &&
2767                     start < extent_map_end(em)) {
2768                         atomic_inc(&em->refs);
2769                         return em;
2770                 }
2771
2772                 free_extent_map(em);
2773                 *em_cached = NULL;
2774         }
2775
2776         em = get_extent(inode, page, pg_offset, start, len, 0);
2777         if (em_cached && !IS_ERR_OR_NULL(em)) {
2778                 BUG_ON(*em_cached);
2779                 atomic_inc(&em->refs);
2780                 *em_cached = em;
2781         }
2782         return em;
2783 }
2784 /*
2785  * basic readpage implementation.  Locked extent state structs are inserted
2786  * into the tree that are removed when the IO is done (by the end_io
2787  * handlers)
2788  * XXX JDM: This needs looking at to ensure proper page locking
2789  */
2790 static int __do_readpage(struct extent_io_tree *tree,
2791                          struct page *page,
2792                          get_extent_t *get_extent,
2793                          struct extent_map **em_cached,
2794                          struct bio **bio, int mirror_num,
2795                          unsigned long *bio_flags, int rw)
2796 {
2797         struct inode *inode = page->mapping->host;
2798         u64 start = page_offset(page);
2799         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2800         u64 end;
2801         u64 cur = start;
2802         u64 extent_offset;
2803         u64 last_byte = i_size_read(inode);
2804         u64 block_start;
2805         u64 cur_end;
2806         sector_t sector;
2807         struct extent_map *em;
2808         struct block_device *bdev;
2809         int ret;
2810         int nr = 0;
2811         int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2812         size_t pg_offset = 0;
2813         size_t iosize;
2814         size_t disk_io_size;
2815         size_t blocksize = inode->i_sb->s_blocksize;
2816         unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2817
2818         set_page_extent_mapped(page);
2819
2820         end = page_end;
2821         if (!PageUptodate(page)) {
2822                 if (cleancache_get_page(page) == 0) {
2823                         BUG_ON(blocksize != PAGE_SIZE);
2824                         unlock_extent(tree, start, end);
2825                         goto out;
2826                 }
2827         }
2828
2829         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2830                 char *userpage;
2831                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2832
2833                 if (zero_offset) {
2834                         iosize = PAGE_CACHE_SIZE - zero_offset;
2835                         userpage = kmap_atomic(page);
2836                         memset(userpage + zero_offset, 0, iosize);
2837                         flush_dcache_page(page);
2838                         kunmap_atomic(userpage);
2839                 }
2840         }
2841         while (cur <= end) {
2842                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2843
2844                 if (cur >= last_byte) {
2845                         char *userpage;
2846                         struct extent_state *cached = NULL;
2847
2848                         iosize = PAGE_CACHE_SIZE - pg_offset;
2849                         userpage = kmap_atomic(page);
2850                         memset(userpage + pg_offset, 0, iosize);
2851                         flush_dcache_page(page);
2852                         kunmap_atomic(userpage);
2853                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2854                                             &cached, GFP_NOFS);
2855                         if (!parent_locked)
2856                                 unlock_extent_cached(tree, cur,
2857                                                      cur + iosize - 1,
2858                                                      &cached, GFP_NOFS);
2859                         break;
2860                 }
2861                 em = __get_extent_map(inode, page, pg_offset, cur,
2862                                       end - cur + 1, get_extent, em_cached);
2863                 if (IS_ERR_OR_NULL(em)) {
2864                         SetPageError(page);
2865                         if (!parent_locked)
2866                                 unlock_extent(tree, cur, end);
2867                         break;
2868                 }
2869                 extent_offset = cur - em->start;
2870                 BUG_ON(extent_map_end(em) <= cur);
2871                 BUG_ON(end < cur);
2872
2873                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2874                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2875                         extent_set_compress_type(&this_bio_flag,
2876                                                  em->compress_type);
2877                 }
2878
2879                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2880                 cur_end = min(extent_map_end(em) - 1, end);
2881                 iosize = ALIGN(iosize, blocksize);
2882                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2883                         disk_io_size = em->block_len;
2884                         sector = em->block_start >> 9;
2885                 } else {
2886                         sector = (em->block_start + extent_offset) >> 9;
2887                         disk_io_size = iosize;
2888                 }
2889                 bdev = em->bdev;
2890                 block_start = em->block_start;
2891                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2892                         block_start = EXTENT_MAP_HOLE;
2893                 free_extent_map(em);
2894                 em = NULL;
2895
2896                 /* we've found a hole, just zero and go on */
2897                 if (block_start == EXTENT_MAP_HOLE) {
2898                         char *userpage;
2899                         struct extent_state *cached = NULL;
2900
2901                         userpage = kmap_atomic(page);
2902                         memset(userpage + pg_offset, 0, iosize);
2903                         flush_dcache_page(page);
2904                         kunmap_atomic(userpage);
2905
2906                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2907                                             &cached, GFP_NOFS);
2908                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2909                                              &cached, GFP_NOFS);
2910                         cur = cur + iosize;
2911                         pg_offset += iosize;
2912                         continue;
2913                 }
2914                 /* the get_extent function already copied into the page */
2915                 if (test_range_bit(tree, cur, cur_end,
2916                                    EXTENT_UPTODATE, 1, NULL)) {
2917                         check_page_uptodate(tree, page);
2918                         if (!parent_locked)
2919                                 unlock_extent(tree, cur, cur + iosize - 1);
2920                         cur = cur + iosize;
2921                         pg_offset += iosize;
2922                         continue;
2923                 }
2924                 /* we have an inline extent but it didn't get marked up
2925                  * to date.  Error out
2926                  */
2927                 if (block_start == EXTENT_MAP_INLINE) {
2928                         SetPageError(page);
2929                         if (!parent_locked)
2930                                 unlock_extent(tree, cur, cur + iosize - 1);
2931                         cur = cur + iosize;
2932                         pg_offset += iosize;
2933                         continue;
2934                 }
2935
2936                 pnr -= page->index;
2937                 ret = submit_extent_page(rw, tree, page,
2938                                          sector, disk_io_size, pg_offset,
2939                                          bdev, bio, pnr,
2940                                          end_bio_extent_readpage, mirror_num,
2941                                          *bio_flags,
2942                                          this_bio_flag);
2943                 if (!ret) {
2944                         nr++;
2945                         *bio_flags = this_bio_flag;
2946                 } else {
2947                         SetPageError(page);
2948                         if (!parent_locked)
2949                                 unlock_extent(tree, cur, cur + iosize - 1);
2950                 }
2951                 cur = cur + iosize;
2952                 pg_offset += iosize;
2953         }
2954 out:
2955         if (!nr) {
2956                 if (!PageError(page))
2957                         SetPageUptodate(page);
2958                 unlock_page(page);
2959         }
2960         return 0;
2961 }
2962
2963 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2964                                              struct page *pages[], int nr_pages,
2965                                              u64 start, u64 end,
2966                                              get_extent_t *get_extent,
2967                                              struct extent_map **em_cached,
2968                                              struct bio **bio, int mirror_num,
2969                                              unsigned long *bio_flags, int rw)
2970 {
2971         struct inode *inode;
2972         struct btrfs_ordered_extent *ordered;
2973         int index;
2974
2975         inode = pages[0]->mapping->host;
2976         while (1) {
2977                 lock_extent(tree, start, end);
2978                 ordered = btrfs_lookup_ordered_range(inode, start,
2979                                                      end - start + 1);
2980                 if (!ordered)
2981                         break;
2982                 unlock_extent(tree, start, end);
2983                 btrfs_start_ordered_extent(inode, ordered, 1);
2984                 btrfs_put_ordered_extent(ordered);
2985         }
2986
2987         for (index = 0; index < nr_pages; index++) {
2988                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2989                               mirror_num, bio_flags, rw);
2990                 page_cache_release(pages[index]);
2991         }
2992 }
2993
2994 static void __extent_readpages(struct extent_io_tree *tree,
2995                                struct page *pages[],
2996                                int nr_pages, get_extent_t *get_extent,
2997                                struct extent_map **em_cached,
2998                                struct bio **bio, int mirror_num,
2999                                unsigned long *bio_flags, int rw)
3000 {
3001         u64 start = 0;
3002         u64 end = 0;
3003         u64 page_start;
3004         int index;
3005         int first_index = 0;
3006
3007         for (index = 0; index < nr_pages; index++) {
3008                 page_start = page_offset(pages[index]);
3009                 if (!end) {
3010                         start = page_start;
3011                         end = start + PAGE_CACHE_SIZE - 1;
3012                         first_index = index;
3013                 } else if (end + 1 == page_start) {
3014                         end += PAGE_CACHE_SIZE;
3015                 } else {
3016                         __do_contiguous_readpages(tree, &pages[first_index],
3017                                                   index - first_index, start,
3018                                                   end, get_extent, em_cached,
3019                                                   bio, mirror_num, bio_flags,
3020                                                   rw);
3021                         start = page_start;
3022                         end = start + PAGE_CACHE_SIZE - 1;
3023                         first_index = index;
3024                 }
3025         }
3026
3027         if (end)
3028                 __do_contiguous_readpages(tree, &pages[first_index],
3029                                           index - first_index, start,
3030                                           end, get_extent, em_cached, bio,
3031                                           mirror_num, bio_flags, rw);
3032 }
3033
3034 static int __extent_read_full_page(struct extent_io_tree *tree,
3035                                    struct page *page,
3036                                    get_extent_t *get_extent,
3037                                    struct bio **bio, int mirror_num,
3038                                    unsigned long *bio_flags, int rw)
3039 {
3040         struct inode *inode = page->mapping->host;
3041         struct btrfs_ordered_extent *ordered;
3042         u64 start = page_offset(page);
3043         u64 end = start + PAGE_CACHE_SIZE - 1;
3044         int ret;
3045
3046         while (1) {
3047                 lock_extent(tree, start, end);
3048                 ordered = btrfs_lookup_ordered_extent(inode, start);
3049                 if (!ordered)
3050                         break;
3051                 unlock_extent(tree, start, end);
3052                 btrfs_start_ordered_extent(inode, ordered, 1);
3053                 btrfs_put_ordered_extent(ordered);
3054         }
3055
3056         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3057                             bio_flags, rw);
3058         return ret;
3059 }
3060
3061 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3062                             get_extent_t *get_extent, int mirror_num)
3063 {
3064         struct bio *bio = NULL;
3065         unsigned long bio_flags = 0;
3066         int ret;
3067
3068         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3069                                       &bio_flags, READ);
3070         if (bio)
3071                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3072         return ret;
3073 }
3074
3075 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3076                                  get_extent_t *get_extent, int mirror_num)
3077 {
3078         struct bio *bio = NULL;
3079         unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3080         int ret;
3081
3082         ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3083                                       &bio_flags, READ);
3084         if (bio)
3085                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3086         return ret;
3087 }
3088
3089 static noinline void update_nr_written(struct page *page,
3090                                       struct writeback_control *wbc,
3091                                       unsigned long nr_written)
3092 {
3093         wbc->nr_to_write -= nr_written;
3094         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3095             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3096                 page->mapping->writeback_index = page->index + nr_written;
3097 }
3098
3099 /*
3100  * the writepage semantics are similar to regular writepage.  extent
3101  * records are inserted to lock ranges in the tree, and as dirty areas
3102  * are found, they are marked writeback.  Then the lock bits are removed
3103  * and the end_io handler clears the writeback ranges
3104  */
3105 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3106                               void *data)
3107 {
3108         struct inode *inode = page->mapping->host;
3109         struct extent_page_data *epd = data;
3110         struct extent_io_tree *tree = epd->tree;
3111         u64 start = page_offset(page);
3112         u64 delalloc_start;
3113         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3114         u64 end;
3115         u64 cur = start;
3116         u64 extent_offset;
3117         u64 last_byte = i_size_read(inode);
3118         u64 block_start;
3119         u64 iosize;
3120         sector_t sector;
3121         struct extent_state *cached_state = NULL;
3122         struct extent_map *em;
3123         struct block_device *bdev;
3124         int ret;
3125         int nr = 0;
3126         size_t pg_offset = 0;
3127         size_t blocksize;
3128         loff_t i_size = i_size_read(inode);
3129         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3130         u64 nr_delalloc;
3131         u64 delalloc_end;
3132         int page_started;
3133         int compressed;
3134         int write_flags;
3135         unsigned long nr_written = 0;
3136         bool fill_delalloc = true;
3137
3138         if (wbc->sync_mode == WB_SYNC_ALL)
3139                 write_flags = WRITE_SYNC;
3140         else
3141                 write_flags = WRITE;
3142
3143         trace___extent_writepage(page, inode, wbc);
3144
3145         WARN_ON(!PageLocked(page));
3146
3147         ClearPageError(page);
3148
3149         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3150         if (page->index > end_index ||
3151            (page->index == end_index && !pg_offset)) {
3152                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3153                 unlock_page(page);
3154                 return 0;
3155         }
3156
3157         if (page->index == end_index) {
3158                 char *userpage;
3159
3160                 userpage = kmap_atomic(page);
3161                 memset(userpage + pg_offset, 0,
3162                        PAGE_CACHE_SIZE - pg_offset);
3163                 kunmap_atomic(userpage);
3164                 flush_dcache_page(page);
3165         }
3166         pg_offset = 0;
3167
3168         set_page_extent_mapped(page);
3169
3170         if (!tree->ops || !tree->ops->fill_delalloc)
3171                 fill_delalloc = false;
3172
3173         delalloc_start = start;
3174         delalloc_end = 0;
3175         page_started = 0;
3176         if (!epd->extent_locked && fill_delalloc) {
3177                 u64 delalloc_to_write = 0;
3178                 /*
3179                  * make sure the wbc mapping index is at least updated
3180                  * to this page.
3181                  */
3182                 update_nr_written(page, wbc, 0);
3183
3184                 while (delalloc_end < page_end) {
3185                         nr_delalloc = find_lock_delalloc_range(inode, tree,
3186                                                        page,
3187                                                        &delalloc_start,
3188                                                        &delalloc_end,
3189                                                        128 * 1024 * 1024);
3190                         if (nr_delalloc == 0) {
3191                                 delalloc_start = delalloc_end + 1;
3192                                 continue;
3193                         }
3194                         ret = tree->ops->fill_delalloc(inode, page,
3195                                                        delalloc_start,
3196                                                        delalloc_end,
3197                                                        &page_started,
3198                                                        &nr_written);
3199                         /* File system has been set read-only */
3200                         if (ret) {
3201                                 SetPageError(page);
3202                                 goto done;
3203                         }
3204                         /*
3205                          * delalloc_end is already one less than the total
3206                          * length, so we don't subtract one from
3207                          * PAGE_CACHE_SIZE
3208                          */
3209                         delalloc_to_write += (delalloc_end - delalloc_start +
3210                                               PAGE_CACHE_SIZE) >>
3211                                               PAGE_CACHE_SHIFT;
3212                         delalloc_start = delalloc_end + 1;
3213                 }
3214                 if (wbc->nr_to_write < delalloc_to_write) {
3215                         int thresh = 8192;
3216
3217                         if (delalloc_to_write < thresh * 2)
3218                                 thresh = delalloc_to_write;
3219                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
3220                                                  thresh);
3221                 }
3222
3223                 /* did the fill delalloc function already unlock and start
3224                  * the IO?
3225                  */
3226                 if (page_started) {
3227                         ret = 0;
3228                         /*
3229                          * we've unlocked the page, so we can't update
3230                          * the mapping's writeback index, just update
3231                          * nr_to_write.
3232                          */
3233                         wbc->nr_to_write -= nr_written;
3234                         goto done_unlocked;
3235                 }
3236         }
3237         if (tree->ops && tree->ops->writepage_start_hook) {
3238                 ret = tree->ops->writepage_start_hook(page, start,
3239                                                       page_end);
3240                 if (ret) {
3241                         /* Fixup worker will requeue */
3242                         if (ret == -EBUSY)
3243                                 wbc->pages_skipped++;
3244                         else
3245                                 redirty_page_for_writepage(wbc, page);
3246                         update_nr_written(page, wbc, nr_written);
3247                         unlock_page(page);
3248                         ret = 0;
3249                         goto done_unlocked;
3250                 }
3251         }
3252
3253         /*
3254          * we don't want to touch the inode after unlocking the page,
3255          * so we update the mapping writeback index now
3256          */
3257         update_nr_written(page, wbc, nr_written + 1);
3258
3259         end = page_end;
3260         if (last_byte <= start) {
3261                 if (tree->ops && tree->ops->writepage_end_io_hook)
3262                         tree->ops->writepage_end_io_hook(page, start,
3263                                                          page_end, NULL, 1);
3264                 goto done;
3265         }
3266
3267         blocksize = inode->i_sb->s_blocksize;
3268
3269         while (cur <= end) {
3270                 if (cur >= last_byte) {
3271                         if (tree->ops && tree->ops->writepage_end_io_hook)
3272                                 tree->ops->writepage_end_io_hook(page, cur,
3273                                                          page_end, NULL, 1);
3274                         break;
3275                 }
3276                 em = epd->get_extent(inode, page, pg_offset, cur,
3277                                      end - cur + 1, 1);
3278                 if (IS_ERR_OR_NULL(em)) {
3279                         SetPageError(page);
3280                         break;
3281                 }
3282
3283                 extent_offset = cur - em->start;
3284                 BUG_ON(extent_map_end(em) <= cur);
3285                 BUG_ON(end < cur);
3286                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3287                 iosize = ALIGN(iosize, blocksize);
3288                 sector = (em->block_start + extent_offset) >> 9;
3289                 bdev = em->bdev;
3290                 block_start = em->block_start;
3291                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3292                 free_extent_map(em);
3293                 em = NULL;
3294
3295                 /*
3296                  * compressed and inline extents are written through other
3297                  * paths in the FS
3298                  */
3299                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3300                     block_start == EXTENT_MAP_INLINE) {
3301                         /*
3302                          * end_io notification does not happen here for
3303                          * compressed extents
3304                          */
3305                         if (!compressed && tree->ops &&
3306                             tree->ops->writepage_end_io_hook)
3307                                 tree->ops->writepage_end_io_hook(page, cur,
3308                                                          cur + iosize - 1,
3309                                                          NULL, 1);
3310                         else if (compressed) {
3311                                 /* we don't want to end_page_writeback on
3312                                  * a compressed extent.  this happens
3313                                  * elsewhere
3314                                  */
3315                                 nr++;
3316                         }
3317
3318                         cur += iosize;
3319                         pg_offset += iosize;
3320                         continue;
3321                 }
3322                 /* leave this out until we have a page_mkwrite call */
3323                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3324                                    EXTENT_DIRTY, 0, NULL)) {
3325                         cur = cur + iosize;
3326                         pg_offset += iosize;
3327                         continue;
3328                 }
3329
3330                 if (tree->ops && tree->ops->writepage_io_hook) {
3331                         ret = tree->ops->writepage_io_hook(page, cur,
3332                                                 cur + iosize - 1);
3333                 } else {
3334                         ret = 0;
3335                 }
3336                 if (ret) {
3337                         SetPageError(page);
3338                 } else {
3339                         unsigned long max_nr = end_index + 1;
3340
3341                         set_range_writeback(tree, cur, cur + iosize - 1);
3342                         if (!PageWriteback(page)) {
3343                                 btrfs_err(BTRFS_I(inode)->root->fs_info,
3344                                            "page %lu not writeback, cur %llu end %llu",
3345                                        page->index, cur, end);
3346                         }
3347
3348                         ret = submit_extent_page(write_flags, tree, page,
3349                                                  sector, iosize, pg_offset,
3350                                                  bdev, &epd->bio, max_nr,
3351                                                  end_bio_extent_writepage,
3352                                                  0, 0, 0);
3353                         if (ret)
3354                                 SetPageError(page);
3355                 }
3356                 cur = cur + iosize;
3357                 pg_offset += iosize;
3358                 nr++;
3359         }
3360 done:
3361         if (nr == 0) {
3362                 /* make sure the mapping tag for page dirty gets cleared */
3363                 set_page_writeback(page);
3364                 end_page_writeback(page);
3365         }
3366         unlock_page(page);
3367
3368 done_unlocked:
3369
3370         /* drop our reference on any cached states */
3371         free_extent_state(cached_state);
3372         return 0;
3373 }
3374
3375 static int eb_wait(void *word)
3376 {
3377         io_schedule();
3378         return 0;
3379 }
3380
3381 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3382 {
3383         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3384                     TASK_UNINTERRUPTIBLE);
3385 }
3386
3387 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3388                                      struct btrfs_fs_info *fs_info,
3389                                      struct extent_page_data *epd)
3390 {
3391         unsigned long i, num_pages;
3392         int flush = 0;
3393         int ret = 0;
3394
3395         if (!btrfs_try_tree_write_lock(eb)) {
3396                 flush = 1;
3397                 flush_write_bio(epd);
3398                 btrfs_tree_lock(eb);
3399         }
3400
3401         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3402                 btrfs_tree_unlock(eb);
3403                 if (!epd->sync_io)
3404                         return 0;
3405                 if (!flush) {
3406                         flush_write_bio(epd);
3407                         flush = 1;
3408                 }
3409                 while (1) {
3410                         wait_on_extent_buffer_writeback(eb);
3411                         btrfs_tree_lock(eb);
3412                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3413                                 break;
3414                         btrfs_tree_unlock(eb);
3415                 }
3416         }
3417
3418         /*
3419          * We need to do this to prevent races in people who check if the eb is
3420          * under IO since we can end up having no IO bits set for a short period
3421          * of time.
3422          */
3423         spin_lock(&eb->refs_lock);
3424         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3425                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3426                 spin_unlock(&eb->refs_lock);
3427                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3428                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3429                                      -eb->len,
3430                                      fs_info->dirty_metadata_batch);
3431                 ret = 1;
3432         } else {
3433                 spin_unlock(&eb->refs_lock);
3434         }
3435
3436         btrfs_tree_unlock(eb);
3437
3438         if (!ret)
3439                 return ret;
3440
3441         num_pages = num_extent_pages(eb->start, eb->len);
3442         for (i = 0; i < num_pages; i++) {
3443                 struct page *p = extent_buffer_page(eb, i);
3444
3445                 if (!trylock_page(p)) {
3446                         if (!flush) {
3447                                 flush_write_bio(epd);
3448                                 flush = 1;
3449                         }
3450                         lock_page(p);
3451                 }
3452         }
3453
3454         return ret;
3455 }
3456
3457 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3458 {
3459         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3460         smp_mb__after_clear_bit();
3461         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3462 }
3463
3464 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3465 {
3466         int uptodate = err == 0;
3467         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3468         struct extent_buffer *eb;
3469         int done;
3470
3471         do {
3472                 struct page *page = bvec->bv_page;
3473
3474                 bvec--;
3475                 eb = (struct extent_buffer *)page->private;
3476                 BUG_ON(!eb);
3477                 done = atomic_dec_and_test(&eb->io_pages);
3478
3479                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3480                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3481                         ClearPageUptodate(page);
3482                         SetPageError(page);
3483                 }
3484
3485                 end_page_writeback(page);
3486
3487                 if (!done)
3488                         continue;
3489
3490                 end_extent_buffer_writeback(eb);
3491         } while (bvec >= bio->bi_io_vec);
3492
3493         bio_put(bio);
3494
3495 }
3496
3497 static int write_one_eb(struct extent_buffer *eb,
3498                         struct btrfs_fs_info *fs_info,
3499                         struct writeback_control *wbc,
3500                         struct extent_page_data *epd)
3501 {
3502         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3503         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3504         u64 offset = eb->start;
3505         unsigned long i, num_pages;
3506         unsigned long bio_flags = 0;
3507         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3508         int ret = 0;
3509
3510         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3511         num_pages = num_extent_pages(eb->start, eb->len);
3512         atomic_set(&eb->io_pages, num_pages);
3513         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3514                 bio_flags = EXTENT_BIO_TREE_LOG;
3515
3516         for (i = 0; i < num_pages; i++) {
3517                 struct page *p = extent_buffer_page(eb, i);
3518
3519                 clear_page_dirty_for_io(p);
3520                 set_page_writeback(p);
3521                 ret = submit_extent_page(rw, tree, p, offset >> 9,
3522                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3523                                          -1, end_bio_extent_buffer_writepage,
3524                                          0, epd->bio_flags, bio_flags);
3525                 epd->bio_flags = bio_flags;
3526                 if (ret) {
3527                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3528                         SetPageError(p);
3529                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3530                                 end_extent_buffer_writeback(eb);
3531                         ret = -EIO;
3532                         break;
3533                 }
3534                 offset += PAGE_CACHE_SIZE;
3535                 update_nr_written(p, wbc, 1);
3536                 unlock_page(p);
3537         }
3538
3539         if (unlikely(ret)) {
3540                 for (; i < num_pages; i++) {
3541                         struct page *p = extent_buffer_page(eb, i);
3542                         unlock_page(p);
3543                 }
3544         }
3545
3546         return ret;
3547 }
3548
3549 int btree_write_cache_pages(struct address_space *mapping,
3550                                    struct writeback_control *wbc)
3551 {
3552         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3553         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3554         struct extent_buffer *eb, *prev_eb = NULL;
3555         struct extent_page_data epd = {
3556                 .bio = NULL,
3557                 .tree = tree,
3558                 .extent_locked = 0,
3559                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3560                 .bio_flags = 0,
3561         };
3562         int ret = 0;
3563         int done = 0;
3564         int nr_to_write_done = 0;
3565         struct pagevec pvec;
3566         int nr_pages;
3567         pgoff_t index;
3568         pgoff_t end;            /* Inclusive */
3569         int scanned = 0;
3570         int tag;
3571
3572         pagevec_init(&pvec, 0);
3573         if (wbc->range_cyclic) {
3574                 index = mapping->writeback_index; /* Start from prev offset */
3575                 end = -1;
3576         } else {
3577                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3578                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3579                 scanned = 1;
3580         }
3581         if (wbc->sync_mode == WB_SYNC_ALL)
3582                 tag = PAGECACHE_TAG_TOWRITE;
3583         else
3584                 tag = PAGECACHE_TAG_DIRTY;
3585 retry:
3586         if (wbc->sync_mode == WB_SYNC_ALL)
3587                 tag_pages_for_writeback(mapping, index, end);
3588         while (!done && !nr_to_write_done && (index <= end) &&
3589                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3590                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3591                 unsigned i;
3592
3593                 scanned = 1;
3594                 for (i = 0; i < nr_pages; i++) {
3595                         struct page *page = pvec.pages[i];
3596
3597                         if (!PagePrivate(page))
3598                                 continue;
3599
3600                         if (!wbc->range_cyclic && page->index > end) {
3601                                 done = 1;
3602                                 break;
3603                         }
3604
3605                         spin_lock(&mapping->private_lock);
3606                         if (!PagePrivate(page)) {
3607                                 spin_unlock(&mapping->private_lock);
3608                                 continue;
3609                         }
3610
3611                         eb = (struct extent_buffer *)page->private;
3612
3613                         /*
3614                          * Shouldn't happen and normally this would be a BUG_ON
3615                          * but no sense in crashing the users box for something
3616                          * we can survive anyway.
3617                          */
3618                         if (WARN_ON(!eb)) {
3619                                 spin_unlock(&mapping->private_lock);
3620                                 continue;
3621                         }
3622
3623                         if (eb == prev_eb) {
3624                                 spin_unlock(&mapping->private_lock);
3625                                 continue;
3626                         }
3627
3628                         ret = atomic_inc_not_zero(&eb->refs);
3629                         spin_unlock(&mapping->private_lock);
3630                         if (!ret)
3631                                 continue;
3632
3633                         prev_eb = eb;
3634                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3635                         if (!ret) {
3636                                 free_extent_buffer(eb);
3637                                 continue;
3638                         }
3639
3640                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3641                         if (ret) {
3642                                 done = 1;
3643                                 free_extent_buffer(eb);
3644                                 break;
3645                         }
3646                         free_extent_buffer(eb);
3647
3648                         /*
3649                          * the filesystem may choose to bump up nr_to_write.
3650                          * We have to make sure to honor the new nr_to_write
3651                          * at any time
3652                          */
3653                         nr_to_write_done = wbc->nr_to_write <= 0;
3654                 }
3655                 pagevec_release(&pvec);
3656                 cond_resched();
3657         }
3658         if (!scanned && !done) {
3659                 /*
3660                  * We hit the last page and there is more work to be done: wrap
3661                  * back to the start of the file
3662                  */
3663                 scanned = 1;
3664                 index = 0;
3665                 goto retry;
3666         }
3667         flush_write_bio(&epd);
3668         return ret;
3669 }
3670
3671 /**
3672  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3673  * @mapping: address space structure to write
3674  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3675  * @writepage: function called for each page
3676  * @data: data passed to writepage function
3677  *
3678  * If a page is already under I/O, write_cache_pages() skips it, even
3679  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3680  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3681  * and msync() need to guarantee that all the data which was dirty at the time
3682  * the call was made get new I/O started against them.  If wbc->sync_mode is
3683  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3684  * existing IO to complete.
3685  */
3686 static int extent_write_cache_pages(struct extent_io_tree *tree,
3687                              struct address_space *mapping,
3688                              struct writeback_control *wbc,
3689                              writepage_t writepage, void *data,
3690                              void (*flush_fn)(void *))
3691 {
3692         struct inode *inode = mapping->host;
3693         int ret = 0;
3694         int done = 0;
3695         int nr_to_write_done = 0;
3696         struct pagevec pvec;
3697         int nr_pages;
3698         pgoff_t index;
3699         pgoff_t end;            /* Inclusive */
3700         int scanned = 0;
3701         int tag;
3702
3703         /*
3704          * We have to hold onto the inode so that ordered extents can do their
3705          * work when the IO finishes.  The alternative to this is failing to add
3706          * an ordered extent if the igrab() fails there and that is a huge pain
3707          * to deal with, so instead just hold onto the inode throughout the
3708          * writepages operation.  If it fails here we are freeing up the inode
3709          * anyway and we'd rather not waste our time writing out stuff that is
3710          * going to be truncated anyway.
3711          */
3712         if (!igrab(inode))
3713                 return 0;
3714
3715         pagevec_init(&pvec, 0);
3716         if (wbc->range_cyclic) {
3717                 index = mapping->writeback_index; /* Start from prev offset */
3718                 end = -1;
3719         } else {
3720                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3721                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3722                 scanned = 1;
3723         }
3724         if (wbc->sync_mode == WB_SYNC_ALL)
3725                 tag = PAGECACHE_TAG_TOWRITE;
3726         else
3727                 tag = PAGECACHE_TAG_DIRTY;
3728 retry:
3729         if (wbc->sync_mode == WB_SYNC_ALL)
3730                 tag_pages_for_writeback(mapping, index, end);
3731         while (!done && !nr_to_write_done && (index <= end) &&
3732                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3733                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3734                 unsigned i;
3735
3736                 scanned = 1;
3737                 for (i = 0; i < nr_pages; i++) {
3738                         struct page *page = pvec.pages[i];
3739
3740                         /*
3741                          * At this point we hold neither mapping->tree_lock nor
3742                          * lock on the page itself: the page may be truncated or
3743                          * invalidated (changing page->mapping to NULL), or even
3744                          * swizzled back from swapper_space to tmpfs file
3745                          * mapping
3746                          */
3747                         if (!trylock_page(page)) {
3748                                 flush_fn(data);
3749                                 lock_page(page);
3750                         }
3751
3752                         if (unlikely(page->mapping != mapping)) {
3753                                 unlock_page(page);
3754                                 continue;
3755                         }
3756
3757                         if (!wbc->range_cyclic && page->index > end) {
3758                                 done = 1;
3759                                 unlock_page(page);
3760                                 continue;
3761                         }
3762
3763                         if (wbc->sync_mode != WB_SYNC_NONE) {
3764                                 if (PageWriteback(page))
3765                                         flush_fn(data);
3766                                 wait_on_page_writeback(page);
3767                         }
3768
3769                         if (PageWriteback(page) ||
3770                             !clear_page_dirty_for_io(page)) {
3771                                 unlock_page(page);
3772                                 continue;
3773                         }
3774
3775                         ret = (*writepage)(page, wbc, data);
3776
3777                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3778                                 unlock_page(page);
3779                                 ret = 0;
3780                         }
3781                         if (ret)
3782                                 done = 1;
3783
3784                         /*
3785                          * the filesystem may choose to bump up nr_to_write.
3786                          * We have to make sure to honor the new nr_to_write
3787                          * at any time
3788                          */
3789                         nr_to_write_done = wbc->nr_to_write <= 0;
3790                 }
3791                 pagevec_release(&pvec);
3792                 cond_resched();
3793         }
3794         if (!scanned && !done) {
3795                 /*
3796                  * We hit the last page and there is more work to be done: wrap
3797                  * back to the start of the file
3798                  */
3799                 scanned = 1;
3800                 index = 0;
3801                 goto retry;
3802         }
3803         btrfs_add_delayed_iput(inode);
3804         return ret;
3805 }
3806
3807 static void flush_epd_write_bio(struct extent_page_data *epd)
3808 {
3809         if (epd->bio) {
3810                 int rw = WRITE;
3811                 int ret;
3812
3813                 if (epd->sync_io)
3814                         rw = WRITE_SYNC;
3815
3816                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3817                 BUG_ON(ret < 0); /* -ENOMEM */
3818                 epd->bio = NULL;
3819         }
3820 }
3821
3822 static noinline void flush_write_bio(void *data)
3823 {
3824         struct extent_page_data *epd = data;
3825         flush_epd_write_bio(epd);
3826 }
3827
3828 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3829                           get_extent_t *get_extent,
3830                           struct writeback_control *wbc)
3831 {
3832         int ret;
3833         struct extent_page_data epd = {
3834                 .bio = NULL,
3835                 .tree = tree,
3836                 .get_extent = get_extent,
3837                 .extent_locked = 0,
3838                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3839                 .bio_flags = 0,
3840         };
3841
3842         ret = __extent_writepage(page, wbc, &epd);
3843
3844         flush_epd_write_bio(&epd);
3845         return ret;
3846 }
3847
3848 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3849                               u64 start, u64 end, get_extent_t *get_extent,
3850                               int mode)
3851 {
3852         int ret = 0;
3853         struct address_space *mapping = inode->i_mapping;
3854         struct page *page;
3855         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3856                 PAGE_CACHE_SHIFT;
3857
3858         struct extent_page_data epd = {
3859                 .bio = NULL,
3860                 .tree = tree,
3861                 .get_extent = get_extent,
3862                 .extent_locked = 1,
3863                 .sync_io = mode == WB_SYNC_ALL,
3864                 .bio_flags = 0,
3865         };
3866         struct writeback_control wbc_writepages = {
3867                 .sync_mode      = mode,
3868                 .nr_to_write    = nr_pages * 2,
3869                 .range_start    = start,
3870                 .range_end      = end + 1,
3871         };
3872
3873         while (start <= end) {
3874                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3875                 if (clear_page_dirty_for_io(page))
3876                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3877                 else {
3878                         if (tree->ops && tree->ops->writepage_end_io_hook)
3879                                 tree->ops->writepage_end_io_hook(page, start,
3880                                                  start + PAGE_CACHE_SIZE - 1,
3881                                                  NULL, 1);
3882                         unlock_page(page);
3883                 }
3884                 page_cache_release(page);
3885                 start += PAGE_CACHE_SIZE;
3886         }
3887
3888         flush_epd_write_bio(&epd);
3889         return ret;
3890 }
3891
3892 int extent_writepages(struct extent_io_tree *tree,
3893                       struct address_space *mapping,
3894                       get_extent_t *get_extent,
3895                       struct writeback_control *wbc)
3896 {
3897         int ret = 0;
3898         struct extent_page_data epd = {
3899                 .bio = NULL,
3900                 .tree = tree,
3901                 .get_extent = get_extent,
3902                 .extent_locked = 0,
3903                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3904                 .bio_flags = 0,
3905         };
3906
3907         ret = extent_write_cache_pages(tree, mapping, wbc,
3908                                        __extent_writepage, &epd,
3909                                        flush_write_bio);
3910         flush_epd_write_bio(&epd);
3911         return ret;
3912 }
3913
3914 int extent_readpages(struct extent_io_tree *tree,
3915                      struct address_space *mapping,
3916                      struct list_head *pages, unsigned nr_pages,
3917                      get_extent_t get_extent)
3918 {
3919         struct bio *bio = NULL;
3920         unsigned page_idx;
3921         unsigned long bio_flags = 0;
3922         struct page *pagepool[16];
3923         struct page *page;
3924         struct extent_map *em_cached = NULL;
3925         int nr = 0;
3926
3927         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3928                 page = list_entry(pages->prev, struct page, lru);
3929
3930                 prefetchw(&page->flags);
3931                 list_del(&page->lru);
3932                 if (add_to_page_cache_lru(page, mapping,
3933                                         page->index, GFP_NOFS)) {
3934                         page_cache_release(page);
3935                         continue;
3936                 }
3937
3938                 pagepool[nr++] = page;
3939                 if (nr < ARRAY_SIZE(pagepool))
3940                         continue;
3941                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3942                                    &bio, 0, &bio_flags, READ);
3943                 nr = 0;
3944         }
3945         if (nr)
3946                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3947                                    &bio, 0, &bio_flags, READ);
3948
3949         if (em_cached)
3950                 free_extent_map(em_cached);
3951
3952         BUG_ON(!list_empty(pages));
3953         if (bio)
3954                 return submit_one_bio(READ, bio, 0, bio_flags);
3955         return 0;
3956 }
3957
3958 /*
3959  * basic invalidatepage code, this waits on any locked or writeback
3960  * ranges corresponding to the page, and then deletes any extent state
3961  * records from the tree
3962  */
3963 int extent_invalidatepage(struct extent_io_tree *tree,
3964                           struct page *page, unsigned long offset)
3965 {
3966         struct extent_state *cached_state = NULL;
3967         u64 start = page_offset(page);
3968         u64 end = start + PAGE_CACHE_SIZE - 1;
3969         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3970
3971         start += ALIGN(offset, blocksize);
3972         if (start > end)
3973                 return 0;
3974
3975         lock_extent_bits(tree, start, end, 0, &cached_state);
3976         wait_on_page_writeback(page);
3977         clear_extent_bit(tree, start, end,
3978                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3979                          EXTENT_DO_ACCOUNTING,
3980                          1, 1, &cached_state, GFP_NOFS);
3981         return 0;
3982 }
3983
3984 /*
3985  * a helper for releasepage, this tests for areas of the page that
3986  * are locked or under IO and drops the related state bits if it is safe
3987  * to drop the page.
3988  */
3989 static int try_release_extent_state(struct extent_map_tree *map,
3990                                     struct extent_io_tree *tree,
3991                                     struct page *page, gfp_t mask)
3992 {
3993         u64 start = page_offset(page);
3994         u64 end = start + PAGE_CACHE_SIZE - 1;
3995         int ret = 1;
3996
3997         if (test_range_bit(tree, start, end,
3998                            EXTENT_IOBITS, 0, NULL))
3999                 ret = 0;
4000         else {
4001                 if ((mask & GFP_NOFS) == GFP_NOFS)
4002                         mask = GFP_NOFS;
4003                 /*
4004                  * at this point we can safely clear everything except the
4005                  * locked bit and the nodatasum bit
4006                  */
4007                 ret = clear_extent_bit(tree, start, end,
4008                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4009                                  0, 0, NULL, mask);
4010
4011                 /* if clear_extent_bit failed for enomem reasons,
4012                  * we can't allow the release to continue.
4013                  */
4014                 if (ret < 0)
4015                         ret = 0;
4016                 else
4017                         ret = 1;
4018         }
4019         return ret;
4020 }
4021
4022 /*
4023  * a helper for releasepage.  As long as there are no locked extents
4024  * in the range corresponding to the page, both state records and extent
4025  * map records are removed
4026  */
4027 int try_release_extent_mapping(struct extent_map_tree *map,
4028                                struct extent_io_tree *tree, struct page *page,
4029                                gfp_t mask)
4030 {
4031         struct extent_map *em;
4032         u64 start = page_offset(page);
4033         u64 end = start + PAGE_CACHE_SIZE - 1;
4034
4035         if ((mask & __GFP_WAIT) &&
4036             page->mapping->host->i_size > 16 * 1024 * 1024) {
4037                 u64 len;
4038                 while (start <= end) {
4039                         len = end - start + 1;
4040                         write_lock(&map->lock);
4041                         em = lookup_extent_mapping(map, start, len);
4042                         if (!em) {
4043                                 write_unlock(&map->lock);
4044                                 break;
4045                         }
4046                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4047                             em->start != start) {
4048                                 write_unlock(&map->lock);
4049                                 free_extent_map(em);
4050                                 break;
4051                         }
4052                         if (!test_range_bit(tree, em->start,
4053                                             extent_map_end(em) - 1,
4054                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4055                                             0, NULL)) {
4056                                 remove_extent_mapping(map, em);
4057                                 /* once for the rb tree */
4058                                 free_extent_map(em);
4059                         }
4060                         start = extent_map_end(em);
4061                         write_unlock(&map->lock);
4062
4063                         /* once for us */
4064                         free_extent_map(em);
4065                 }
4066         }
4067         return try_release_extent_state(map, tree, page, mask);
4068 }
4069
4070 /*
4071  * helper function for fiemap, which doesn't want to see any holes.
4072  * This maps until we find something past 'last'
4073  */
4074 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4075                                                 u64 offset,
4076                                                 u64 last,
4077                                                 get_extent_t *get_extent)
4078 {
4079         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4080         struct extent_map *em;
4081         u64 len;
4082
4083         if (offset >= last)
4084                 return NULL;
4085
4086         while (1) {
4087                 len = last - offset;
4088                 if (len == 0)
4089                         break;
4090                 len = ALIGN(len, sectorsize);
4091                 em = get_extent(inode, NULL, 0, offset, len, 0);
4092                 if (IS_ERR_OR_NULL(em))
4093                         return em;
4094
4095                 /* if this isn't a hole return it */
4096                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4097                     em->block_start != EXTENT_MAP_HOLE) {
4098                         return em;
4099                 }
4100
4101                 /* this is a hole, advance to the next extent */
4102                 offset = extent_map_end(em);
4103                 free_extent_map(em);
4104                 if (offset >= last)
4105                         break;
4106         }
4107         return NULL;
4108 }
4109
4110 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4111 {
4112         unsigned long cnt = *((unsigned long *)ctx);
4113
4114         cnt++;
4115         *((unsigned long *)ctx) = cnt;
4116
4117         /* Now we're sure that the extent is shared. */
4118         if (cnt > 1)
4119                 return 1;
4120         return 0;
4121 }
4122
4123 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4124                 __u64 start, __u64 len, get_extent_t *get_extent)
4125 {
4126         int ret = 0;
4127         u64 off = start;
4128         u64 max = start + len;
4129         u32 flags = 0;
4130         u32 found_type;
4131         u64 last;
4132         u64 last_for_get_extent = 0;
4133         u64 disko = 0;
4134         u64 isize = i_size_read(inode);
4135         struct btrfs_key found_key;
4136         struct extent_map *em = NULL;
4137         struct extent_state *cached_state = NULL;
4138         struct btrfs_path *path;
4139         int end = 0;
4140         u64 em_start = 0;
4141         u64 em_len = 0;
4142         u64 em_end = 0;
4143
4144         if (len == 0)
4145                 return -EINVAL;
4146
4147         path = btrfs_alloc_path();
4148         if (!path)
4149                 return -ENOMEM;
4150         path->leave_spinning = 1;
4151
4152         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4153         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4154
4155         /*
4156          * lookup the last file extent.  We're not using i_size here
4157          * because there might be preallocation past i_size
4158          */
4159         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4160                                        path, btrfs_ino(inode), -1, 0);
4161         if (ret < 0) {
4162                 btrfs_free_path(path);
4163                 return ret;
4164         }
4165         WARN_ON(!ret);
4166         path->slots[0]--;
4167         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4168         found_type = btrfs_key_type(&found_key);
4169
4170         /* No extents, but there might be delalloc bits */
4171         if (found_key.objectid != btrfs_ino(inode) ||
4172             found_type != BTRFS_EXTENT_DATA_KEY) {
4173                 /* have to trust i_size as the end */
4174                 last = (u64)-1;
4175                 last_for_get_extent = isize;
4176         } else {
4177                 /*
4178                  * remember the start of the last extent.  There are a
4179                  * bunch of different factors that go into the length of the
4180                  * extent, so its much less complex to remember where it started
4181                  */
4182                 last = found_key.offset;
4183                 last_for_get_extent = last + 1;
4184         }
4185         btrfs_release_path(path);
4186
4187         /*
4188          * we might have some extents allocated but more delalloc past those
4189          * extents.  so, we trust isize unless the start of the last extent is
4190          * beyond isize
4191          */
4192         if (last < isize) {
4193                 last = (u64)-1;
4194                 last_for_get_extent = isize;
4195         }
4196
4197         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4198                          &cached_state);
4199
4200         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4201                                    get_extent);
4202         if (!em)
4203                 goto out;
4204         if (IS_ERR(em)) {
4205                 ret = PTR_ERR(em);
4206                 goto out;
4207         }
4208
4209         while (!end) {
4210                 u64 offset_in_extent = 0;
4211
4212                 /* break if the extent we found is outside the range */
4213                 if (em->start >= max || extent_map_end(em) < off)
4214                         break;
4215
4216                 /*
4217                  * get_extent may return an extent that starts before our
4218                  * requested range.  We have to make sure the ranges
4219                  * we return to fiemap always move forward and don't
4220                  * overlap, so adjust the offsets here
4221                  */
4222                 em_start = max(em->start, off);
4223
4224                 /*
4225                  * record the offset from the start of the extent
4226                  * for adjusting the disk offset below.  Only do this if the
4227                  * extent isn't compressed since our in ram offset may be past
4228                  * what we have actually allocated on disk.
4229                  */
4230                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4231                         offset_in_extent = em_start - em->start;
4232                 em_end = extent_map_end(em);
4233                 em_len = em_end - em_start;
4234                 disko = 0;
4235                 flags = 0;
4236
4237                 /*
4238                  * bump off for our next call to get_extent
4239                  */
4240                 off = extent_map_end(em);
4241                 if (off >= max)
4242                         end = 1;
4243
4244                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4245                         end = 1;
4246                         flags |= FIEMAP_EXTENT_LAST;
4247                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4248                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4249                                   FIEMAP_EXTENT_NOT_ALIGNED);
4250                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4251                         flags |= (FIEMAP_EXTENT_DELALLOC |
4252                                   FIEMAP_EXTENT_UNKNOWN);
4253                 } else {
4254                         unsigned long ref_cnt = 0;
4255
4256                         disko = em->block_start + offset_in_extent;
4257
4258                         /*
4259                          * As btrfs supports shared space, this information
4260                          * can be exported to userspace tools via
4261                          * flag FIEMAP_EXTENT_SHARED.
4262                          */
4263                         ret = iterate_inodes_from_logical(
4264                                         em->block_start,
4265                                         BTRFS_I(inode)->root->fs_info,
4266                                         path, count_ext_ref, &ref_cnt);
4267                         if (ret < 0 && ret != -ENOENT)
4268                                 goto out_free;
4269
4270                         if (ref_cnt > 1)
4271                                 flags |= FIEMAP_EXTENT_SHARED;
4272                 }
4273                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4274                         flags |= FIEMAP_EXTENT_ENCODED;
4275
4276                 free_extent_map(em);
4277                 em = NULL;
4278                 if ((em_start >= last) || em_len == (u64)-1 ||
4279                    (last == (u64)-1 && isize <= em_end)) {
4280                         flags |= FIEMAP_EXTENT_LAST;
4281                         end = 1;
4282                 }
4283
4284                 /* now scan forward to see if this is really the last extent. */
4285                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4286                                            get_extent);
4287                 if (IS_ERR(em)) {
4288                         ret = PTR_ERR(em);
4289                         goto out;
4290                 }
4291                 if (!em) {
4292                         flags |= FIEMAP_EXTENT_LAST;
4293                         end = 1;
4294                 }
4295                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4296                                               em_len, flags);
4297                 if (ret)
4298                         goto out_free;
4299         }
4300 out_free:
4301         free_extent_map(em);
4302 out:
4303         btrfs_free_path(path);
4304         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4305                              &cached_state, GFP_NOFS);
4306         return ret;
4307 }
4308
4309 static void __free_extent_buffer(struct extent_buffer *eb)
4310 {
4311         btrfs_leak_debug_del(&eb->leak_list);
4312         kmem_cache_free(extent_buffer_cache, eb);
4313 }
4314
4315 static int extent_buffer_under_io(struct extent_buffer *eb)
4316 {
4317         return (atomic_read(&eb->io_pages) ||
4318                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4319                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4320 }
4321
4322 /*
4323  * Helper for releasing extent buffer page.
4324  */
4325 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4326                                                 unsigned long start_idx)
4327 {
4328         unsigned long index;
4329         unsigned long num_pages;
4330         struct page *page;
4331         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4332
4333         BUG_ON(extent_buffer_under_io(eb));
4334
4335         num_pages = num_extent_pages(eb->start, eb->len);
4336         index = start_idx + num_pages;
4337         if (start_idx >= index)
4338                 return;
4339
4340         do {
4341                 index--;
4342                 page = extent_buffer_page(eb, index);
4343                 if (page && mapped) {
4344                         spin_lock(&page->mapping->private_lock);
4345                         /*
4346                          * We do this since we'll remove the pages after we've
4347                          * removed the eb from the radix tree, so we could race
4348                          * and have this page now attached to the new eb.  So
4349                          * only clear page_private if it's still connected to
4350                          * this eb.
4351                          */
4352                         if (PagePrivate(page) &&
4353                             page->private == (unsigned long)eb) {
4354                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4355                                 BUG_ON(PageDirty(page));
4356                                 BUG_ON(PageWriteback(page));
4357                                 /*
4358                                  * We need to make sure we haven't be attached
4359                                  * to a new eb.
4360                                  */
4361                                 ClearPagePrivate(page);
4362                                 set_page_private(page, 0);
4363                                 /* One for the page private */
4364                                 page_cache_release(page);
4365                         }
4366                         spin_unlock(&page->mapping->private_lock);
4367
4368                 }
4369                 if (page) {
4370                         /* One for when we alloced the page */
4371                         page_cache_release(page);
4372                 }
4373         } while (index != start_idx);
4374 }
4375
4376 /*
4377  * Helper for releasing the extent buffer.
4378  */
4379 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4380 {
4381         btrfs_release_extent_buffer_page(eb, 0);
4382         __free_extent_buffer(eb);
4383 }
4384
4385 static struct extent_buffer *
4386 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4387                       unsigned long len, gfp_t mask)
4388 {
4389         struct extent_buffer *eb = NULL;
4390
4391         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4392         if (eb == NULL)
4393                 return NULL;
4394         eb->start = start;
4395         eb->len = len;
4396         eb->fs_info = fs_info;
4397         eb->bflags = 0;
4398         rwlock_init(&eb->lock);
4399         atomic_set(&eb->write_locks, 0);
4400         atomic_set(&eb->read_locks, 0);
4401         atomic_set(&eb->blocking_readers, 0);
4402         atomic_set(&eb->blocking_writers, 0);
4403         atomic_set(&eb->spinning_readers, 0);
4404         atomic_set(&eb->spinning_writers, 0);
4405         eb->lock_nested = 0;
4406         init_waitqueue_head(&eb->write_lock_wq);
4407         init_waitqueue_head(&eb->read_lock_wq);
4408
4409         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4410
4411         spin_lock_init(&eb->refs_lock);
4412         atomic_set(&eb->refs, 1);
4413         atomic_set(&eb->io_pages, 0);
4414
4415         /*
4416          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4417          */
4418         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4419                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4420         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4421
4422         return eb;
4423 }
4424
4425 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4426 {
4427         unsigned long i;
4428         struct page *p;
4429         struct extent_buffer *new;
4430         unsigned long num_pages = num_extent_pages(src->start, src->len);
4431
4432         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4433         if (new == NULL)
4434                 return NULL;
4435
4436         for (i = 0; i < num_pages; i++) {
4437                 p = alloc_page(GFP_NOFS);
4438                 if (!p) {
4439                         btrfs_release_extent_buffer(new);
4440                         return NULL;
4441                 }
4442                 attach_extent_buffer_page(new, p);
4443                 WARN_ON(PageDirty(p));
4444                 SetPageUptodate(p);
4445                 new->pages[i] = p;
4446         }
4447
4448         copy_extent_buffer(new, src, 0, 0, src->len);
4449         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4450         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4451
4452         return new;
4453 }
4454
4455 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4456 {
4457         struct extent_buffer *eb;
4458         unsigned long num_pages = num_extent_pages(0, len);
4459         unsigned long i;
4460
4461         eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4462         if (!eb)
4463                 return NULL;
4464
4465         for (i = 0; i < num_pages; i++) {
4466                 eb->pages[i] = alloc_page(GFP_NOFS);
4467                 if (!eb->pages[i])
4468                         goto err;
4469         }
4470         set_extent_buffer_uptodate(eb);
4471         btrfs_set_header_nritems(eb, 0);
4472         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4473
4474         return eb;
4475 err:
4476         for (; i > 0; i--)
4477                 __free_page(eb->pages[i - 1]);
4478         __free_extent_buffer(eb);
4479         return NULL;
4480 }
4481
4482 static void check_buffer_tree_ref(struct extent_buffer *eb)
4483 {
4484         int refs;
4485         /* the ref bit is tricky.  We have to make sure it is set
4486          * if we have the buffer dirty.   Otherwise the
4487          * code to free a buffer can end up dropping a dirty
4488          * page
4489          *
4490          * Once the ref bit is set, it won't go away while the
4491          * buffer is dirty or in writeback, and it also won't
4492          * go away while we have the reference count on the
4493          * eb bumped.
4494          *
4495          * We can't just set the ref bit without bumping the
4496          * ref on the eb because free_extent_buffer might
4497          * see the ref bit and try to clear it.  If this happens
4498          * free_extent_buffer might end up dropping our original
4499          * ref by mistake and freeing the page before we are able
4500          * to add one more ref.
4501          *
4502          * So bump the ref count first, then set the bit.  If someone
4503          * beat us to it, drop the ref we added.
4504          */
4505         refs = atomic_read(&eb->refs);
4506         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4507                 return;
4508
4509         spin_lock(&eb->refs_lock);
4510         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4511                 atomic_inc(&eb->refs);
4512         spin_unlock(&eb->refs_lock);
4513 }
4514
4515 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4516 {
4517         unsigned long num_pages, i;
4518
4519         check_buffer_tree_ref(eb);
4520
4521         num_pages = num_extent_pages(eb->start, eb->len);
4522         for (i = 0; i < num_pages; i++) {
4523                 struct page *p = extent_buffer_page(eb, i);
4524                 mark_page_accessed(p);
4525         }
4526 }
4527
4528 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4529                                          u64 start)
4530 {
4531         struct extent_buffer *eb;
4532
4533         rcu_read_lock();
4534         eb = radix_tree_lookup(&fs_info->buffer_radix,
4535                                start >> PAGE_CACHE_SHIFT);
4536         if (eb && atomic_inc_not_zero(&eb->refs)) {
4537                 rcu_read_unlock();
4538                 mark_extent_buffer_accessed(eb);
4539                 return eb;
4540         }
4541         rcu_read_unlock();
4542
4543         return NULL;
4544 }
4545
4546 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4547                                           u64 start, unsigned long len)
4548 {
4549         unsigned long num_pages = num_extent_pages(start, len);
4550         unsigned long i;
4551         unsigned long index = start >> PAGE_CACHE_SHIFT;
4552         struct extent_buffer *eb;
4553         struct extent_buffer *exists = NULL;
4554         struct page *p;
4555         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4556         int uptodate = 1;
4557         int ret;
4558
4559         eb = find_extent_buffer(fs_info, start);
4560         if (eb)
4561                 return eb;
4562
4563         eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4564         if (!eb)
4565                 return NULL;
4566
4567         for (i = 0; i < num_pages; i++, index++) {
4568                 p = find_or_create_page(mapping, index, GFP_NOFS);
4569                 if (!p)
4570                         goto free_eb;
4571
4572                 spin_lock(&mapping->private_lock);
4573                 if (PagePrivate(p)) {
4574                         /*
4575                          * We could have already allocated an eb for this page
4576                          * and attached one so lets see if we can get a ref on
4577                          * the existing eb, and if we can we know it's good and
4578                          * we can just return that one, else we know we can just
4579                          * overwrite page->private.
4580                          */
4581                         exists = (struct extent_buffer *)p->private;
4582                         if (atomic_inc_not_zero(&exists->refs)) {
4583                                 spin_unlock(&mapping->private_lock);
4584                                 unlock_page(p);
4585                                 page_cache_release(p);
4586                                 mark_extent_buffer_accessed(exists);
4587                                 goto free_eb;
4588                         }
4589
4590                         /*
4591                          * Do this so attach doesn't complain and we need to
4592                          * drop the ref the old guy had.
4593                          */
4594                         ClearPagePrivate(p);
4595                         WARN_ON(PageDirty(p));
4596                         page_cache_release(p);
4597                 }
4598                 attach_extent_buffer_page(eb, p);
4599                 spin_unlock(&mapping->private_lock);
4600                 WARN_ON(PageDirty(p));
4601                 mark_page_accessed(p);
4602                 eb->pages[i] = p;
4603                 if (!PageUptodate(p))
4604                         uptodate = 0;
4605
4606                 /*
4607                  * see below about how we avoid a nasty race with release page
4608                  * and why we unlock later
4609                  */
4610         }
4611         if (uptodate)
4612                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4613 again:
4614         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4615         if (ret)
4616                 goto free_eb;
4617
4618         spin_lock(&fs_info->buffer_lock);
4619         ret = radix_tree_insert(&fs_info->buffer_radix,
4620                                 start >> PAGE_CACHE_SHIFT, eb);
4621         spin_unlock(&fs_info->buffer_lock);
4622         radix_tree_preload_end();
4623         if (ret == -EEXIST) {
4624                 exists = find_extent_buffer(fs_info, start);
4625                 if (exists)
4626                         goto free_eb;
4627                 else
4628                         goto again;
4629         }
4630         /* add one reference for the tree */
4631         check_buffer_tree_ref(eb);
4632         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4633
4634         /*
4635          * there is a race where release page may have
4636          * tried to find this extent buffer in the radix
4637          * but failed.  It will tell the VM it is safe to
4638          * reclaim the, and it will clear the page private bit.
4639          * We must make sure to set the page private bit properly
4640          * after the extent buffer is in the radix tree so
4641          * it doesn't get lost
4642          */
4643         SetPageChecked(eb->pages[0]);
4644         for (i = 1; i < num_pages; i++) {
4645                 p = extent_buffer_page(eb, i);
4646                 ClearPageChecked(p);
4647                 unlock_page(p);
4648         }
4649         unlock_page(eb->pages[0]);
4650         return eb;
4651
4652 free_eb:
4653         for (i = 0; i < num_pages; i++) {
4654                 if (eb->pages[i])
4655                         unlock_page(eb->pages[i]);
4656         }
4657
4658         WARN_ON(!atomic_dec_and_test(&eb->refs));
4659         btrfs_release_extent_buffer(eb);
4660         return exists;
4661 }
4662
4663 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4664 {
4665         struct extent_buffer *eb =
4666                         container_of(head, struct extent_buffer, rcu_head);
4667
4668         __free_extent_buffer(eb);
4669 }
4670
4671 /* Expects to have eb->eb_lock already held */
4672 static int release_extent_buffer(struct extent_buffer *eb)
4673 {
4674         WARN_ON(atomic_read(&eb->refs) == 0);
4675         if (atomic_dec_and_test(&eb->refs)) {
4676                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4677                         struct btrfs_fs_info *fs_info = eb->fs_info;
4678
4679                         spin_unlock(&eb->refs_lock);
4680
4681                         spin_lock(&fs_info->buffer_lock);
4682                         radix_tree_delete(&fs_info->buffer_radix,
4683                                           eb->start >> PAGE_CACHE_SHIFT);
4684                         spin_unlock(&fs_info->buffer_lock);
4685                 } else {
4686                         spin_unlock(&eb->refs_lock);
4687                 }
4688
4689                 /* Should be safe to release our pages at this point */
4690                 btrfs_release_extent_buffer_page(eb, 0);
4691                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4692                 return 1;
4693         }
4694         spin_unlock(&eb->refs_lock);
4695
4696         return 0;
4697 }
4698
4699 void free_extent_buffer(struct extent_buffer *eb)
4700 {
4701         int refs;
4702         int old;
4703         if (!eb)
4704                 return;
4705
4706         while (1) {
4707                 refs = atomic_read(&eb->refs);
4708                 if (refs <= 3)
4709                         break;
4710                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4711                 if (old == refs)
4712                         return;
4713         }
4714
4715         spin_lock(&eb->refs_lock);
4716         if (atomic_read(&eb->refs) == 2 &&
4717             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4718                 atomic_dec(&eb->refs);
4719
4720         if (atomic_read(&eb->refs) == 2 &&
4721             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4722             !extent_buffer_under_io(eb) &&
4723             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4724                 atomic_dec(&eb->refs);
4725
4726         /*
4727          * I know this is terrible, but it's temporary until we stop tracking
4728          * the uptodate bits and such for the extent buffers.
4729          */
4730         release_extent_buffer(eb);
4731 }
4732
4733 void free_extent_buffer_stale(struct extent_buffer *eb)
4734 {
4735         if (!eb)
4736                 return;
4737
4738         spin_lock(&eb->refs_lock);
4739         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4740
4741         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4742             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4743                 atomic_dec(&eb->refs);
4744         release_extent_buffer(eb);
4745 }
4746
4747 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4748 {
4749         unsigned long i;
4750         unsigned long num_pages;
4751         struct page *page;
4752
4753         num_pages = num_extent_pages(eb->start, eb->len);
4754
4755         for (i = 0; i < num_pages; i++) {
4756                 page = extent_buffer_page(eb, i);
4757                 if (!PageDirty(page))
4758                         continue;
4759
4760                 lock_page(page);
4761                 WARN_ON(!PagePrivate(page));
4762
4763                 clear_page_dirty_for_io(page);
4764                 spin_lock_irq(&page->mapping->tree_lock);
4765                 if (!PageDirty(page)) {
4766                         radix_tree_tag_clear(&page->mapping->page_tree,
4767                                                 page_index(page),
4768                                                 PAGECACHE_TAG_DIRTY);
4769                 }
4770                 spin_unlock_irq(&page->mapping->tree_lock);
4771                 ClearPageError(page);
4772                 unlock_page(page);
4773         }
4774         WARN_ON(atomic_read(&eb->refs) == 0);
4775 }
4776
4777 int set_extent_buffer_dirty(struct extent_buffer *eb)
4778 {
4779         unsigned long i;
4780         unsigned long num_pages;
4781         int was_dirty = 0;
4782
4783         check_buffer_tree_ref(eb);
4784
4785         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4786
4787         num_pages = num_extent_pages(eb->start, eb->len);
4788         WARN_ON(atomic_read(&eb->refs) == 0);
4789         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4790
4791         for (i = 0; i < num_pages; i++)
4792                 set_page_dirty(extent_buffer_page(eb, i));
4793         return was_dirty;
4794 }
4795
4796 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4797 {
4798         unsigned long i;
4799         struct page *page;
4800         unsigned long num_pages;
4801
4802         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4803         num_pages = num_extent_pages(eb->start, eb->len);
4804         for (i = 0; i < num_pages; i++) {
4805                 page = extent_buffer_page(eb, i);
4806                 if (page)
4807                         ClearPageUptodate(page);
4808         }
4809         return 0;
4810 }
4811
4812 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4813 {
4814         unsigned long i;
4815         struct page *page;
4816         unsigned long num_pages;
4817
4818         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4819         num_pages = num_extent_pages(eb->start, eb->len);
4820         for (i = 0; i < num_pages; i++) {
4821                 page = extent_buffer_page(eb, i);
4822                 SetPageUptodate(page);
4823         }
4824         return 0;
4825 }
4826
4827 int extent_buffer_uptodate(struct extent_buffer *eb)
4828 {
4829         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4830 }
4831
4832 int read_extent_buffer_pages(struct extent_io_tree *tree,
4833                              struct extent_buffer *eb, u64 start, int wait,
4834                              get_extent_t *get_extent, int mirror_num)
4835 {
4836         unsigned long i;
4837         unsigned long start_i;
4838         struct page *page;
4839         int err;
4840         int ret = 0;
4841         int locked_pages = 0;
4842         int all_uptodate = 1;
4843         unsigned long num_pages;
4844         unsigned long num_reads = 0;
4845         struct bio *bio = NULL;
4846         unsigned long bio_flags = 0;
4847
4848         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4849                 return 0;
4850
4851         if (start) {
4852                 WARN_ON(start < eb->start);
4853                 start_i = (start >> PAGE_CACHE_SHIFT) -
4854                         (eb->start >> PAGE_CACHE_SHIFT);
4855         } else {
4856                 start_i = 0;
4857         }
4858
4859         num_pages = num_extent_pages(eb->start, eb->len);
4860         for (i = start_i; i < num_pages; i++) {
4861                 page = extent_buffer_page(eb, i);
4862                 if (wait == WAIT_NONE) {
4863                         if (!trylock_page(page))
4864                                 goto unlock_exit;
4865                 } else {
4866                         lock_page(page);
4867                 }
4868                 locked_pages++;
4869                 if (!PageUptodate(page)) {
4870                         num_reads++;
4871                         all_uptodate = 0;
4872                 }
4873         }
4874         if (all_uptodate) {
4875                 if (start_i == 0)
4876                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4877                 goto unlock_exit;
4878         }
4879
4880         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4881         eb->read_mirror = 0;
4882         atomic_set(&eb->io_pages, num_reads);
4883         for (i = start_i; i < num_pages; i++) {
4884                 page = extent_buffer_page(eb, i);
4885                 if (!PageUptodate(page)) {
4886                         ClearPageError(page);
4887                         err = __extent_read_full_page(tree, page,
4888                                                       get_extent, &bio,
4889                                                       mirror_num, &bio_flags,
4890                                                       READ | REQ_META);
4891                         if (err)
4892                                 ret = err;
4893                 } else {
4894                         unlock_page(page);
4895                 }
4896         }
4897
4898         if (bio) {
4899                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4900                                      bio_flags);
4901                 if (err)
4902                         return err;
4903         }
4904
4905         if (ret || wait != WAIT_COMPLETE)
4906                 return ret;
4907
4908         for (i = start_i; i < num_pages; i++) {
4909                 page = extent_buffer_page(eb, i);
4910                 wait_on_page_locked(page);
4911                 if (!PageUptodate(page))
4912                         ret = -EIO;
4913         }
4914
4915         return ret;
4916
4917 unlock_exit:
4918         i = start_i;
4919         while (locked_pages > 0) {
4920                 page = extent_buffer_page(eb, i);
4921                 i++;
4922                 unlock_page(page);
4923                 locked_pages--;
4924         }
4925         return ret;
4926 }
4927
4928 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4929                         unsigned long start,
4930                         unsigned long len)
4931 {
4932         size_t cur;
4933         size_t offset;
4934         struct page *page;
4935         char *kaddr;
4936         char *dst = (char *)dstv;
4937         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4938         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4939
4940         WARN_ON(start > eb->len);
4941         WARN_ON(start + len > eb->start + eb->len);
4942
4943         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4944
4945         while (len > 0) {
4946                 page = extent_buffer_page(eb, i);
4947
4948                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4949                 kaddr = page_address(page);
4950                 memcpy(dst, kaddr + offset, cur);
4951
4952                 dst += cur;
4953                 len -= cur;
4954                 offset = 0;
4955                 i++;
4956         }
4957 }
4958
4959 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4960                                unsigned long min_len, char **map,
4961                                unsigned long *map_start,
4962                                unsigned long *map_len)
4963 {
4964         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4965         char *kaddr;
4966         struct page *p;
4967         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4968         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4969         unsigned long end_i = (start_offset + start + min_len - 1) >>
4970                 PAGE_CACHE_SHIFT;
4971
4972         if (i != end_i)
4973                 return -EINVAL;
4974
4975         if (i == 0) {
4976                 offset = start_offset;
4977                 *map_start = 0;
4978         } else {
4979                 offset = 0;
4980                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4981         }
4982
4983         if (start + min_len > eb->len) {
4984                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4985                        "wanted %lu %lu\n",
4986                        eb->start, eb->len, start, min_len);
4987                 return -EINVAL;
4988         }
4989
4990         p = extent_buffer_page(eb, i);
4991         kaddr = page_address(p);
4992         *map = kaddr + offset;
4993         *map_len = PAGE_CACHE_SIZE - offset;
4994         return 0;
4995 }
4996
4997 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4998                           unsigned long start,
4999                           unsigned long len)
5000 {
5001         size_t cur;
5002         size_t offset;
5003         struct page *page;
5004         char *kaddr;
5005         char *ptr = (char *)ptrv;
5006         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5007         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5008         int ret = 0;
5009
5010         WARN_ON(start > eb->len);
5011         WARN_ON(start + len > eb->start + eb->len);
5012
5013         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5014
5015         while (len > 0) {
5016                 page = extent_buffer_page(eb, i);
5017
5018                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5019
5020                 kaddr = page_address(page);
5021                 ret = memcmp(ptr, kaddr + offset, cur);
5022                 if (ret)
5023                         break;
5024
5025                 ptr += cur;
5026                 len -= cur;
5027                 offset = 0;
5028                 i++;
5029         }
5030         return ret;
5031 }
5032
5033 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5034                          unsigned long start, unsigned long len)
5035 {
5036         size_t cur;
5037         size_t offset;
5038         struct page *page;
5039         char *kaddr;
5040         char *src = (char *)srcv;
5041         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5042         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5043
5044         WARN_ON(start > eb->len);
5045         WARN_ON(start + len > eb->start + eb->len);
5046
5047         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5048
5049         while (len > 0) {
5050                 page = extent_buffer_page(eb, i);
5051                 WARN_ON(!PageUptodate(page));
5052
5053                 cur = min(len, PAGE_CACHE_SIZE - offset);
5054                 kaddr = page_address(page);
5055                 memcpy(kaddr + offset, src, cur);
5056
5057                 src += cur;
5058                 len -= cur;
5059                 offset = 0;
5060                 i++;
5061         }
5062 }
5063
5064 void memset_extent_buffer(struct extent_buffer *eb, char c,
5065                           unsigned long start, unsigned long len)
5066 {
5067         size_t cur;
5068         size_t offset;
5069         struct page *page;
5070         char *kaddr;
5071         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5072         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5073
5074         WARN_ON(start > eb->len);
5075         WARN_ON(start + len > eb->start + eb->len);
5076
5077         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5078
5079         while (len > 0) {
5080                 page = extent_buffer_page(eb, i);
5081                 WARN_ON(!PageUptodate(page));
5082
5083                 cur = min(len, PAGE_CACHE_SIZE - offset);
5084                 kaddr = page_address(page);
5085                 memset(kaddr + offset, c, cur);
5086
5087                 len -= cur;
5088                 offset = 0;
5089                 i++;
5090         }
5091 }
5092
5093 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5094                         unsigned long dst_offset, unsigned long src_offset,
5095                         unsigned long len)
5096 {
5097         u64 dst_len = dst->len;
5098         size_t cur;
5099         size_t offset;
5100         struct page *page;
5101         char *kaddr;
5102         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5103         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5104
5105         WARN_ON(src->len != dst_len);
5106
5107         offset = (start_offset + dst_offset) &
5108                 (PAGE_CACHE_SIZE - 1);
5109
5110         while (len > 0) {
5111                 page = extent_buffer_page(dst, i);
5112                 WARN_ON(!PageUptodate(page));
5113
5114                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5115
5116                 kaddr = page_address(page);
5117                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5118
5119                 src_offset += cur;
5120                 len -= cur;
5121                 offset = 0;
5122                 i++;
5123         }
5124 }
5125
5126 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5127 {
5128         unsigned long distance = (src > dst) ? src - dst : dst - src;
5129         return distance < len;
5130 }
5131
5132 static void copy_pages(struct page *dst_page, struct page *src_page,
5133                        unsigned long dst_off, unsigned long src_off,
5134                        unsigned long len)
5135 {
5136         char *dst_kaddr = page_address(dst_page);
5137         char *src_kaddr;
5138         int must_memmove = 0;
5139
5140         if (dst_page != src_page) {
5141                 src_kaddr = page_address(src_page);
5142         } else {
5143                 src_kaddr = dst_kaddr;
5144                 if (areas_overlap(src_off, dst_off, len))
5145                         must_memmove = 1;
5146         }
5147
5148         if (must_memmove)
5149                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5150         else
5151                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5152 }
5153
5154 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5155                            unsigned long src_offset, unsigned long len)
5156 {
5157         size_t cur;
5158         size_t dst_off_in_page;
5159         size_t src_off_in_page;
5160         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5161         unsigned long dst_i;
5162         unsigned long src_i;
5163
5164         if (src_offset + len > dst->len) {
5165                 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5166                        "len %lu dst len %lu\n", src_offset, len, dst->len);
5167                 BUG_ON(1);
5168         }
5169         if (dst_offset + len > dst->len) {
5170                 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5171                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
5172                 BUG_ON(1);
5173         }
5174
5175         while (len > 0) {
5176                 dst_off_in_page = (start_offset + dst_offset) &
5177                         (PAGE_CACHE_SIZE - 1);
5178                 src_off_in_page = (start_offset + src_offset) &
5179                         (PAGE_CACHE_SIZE - 1);
5180
5181                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5182                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5183
5184                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5185                                                src_off_in_page));
5186                 cur = min_t(unsigned long, cur,
5187                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5188
5189                 copy_pages(extent_buffer_page(dst, dst_i),
5190                            extent_buffer_page(dst, src_i),
5191                            dst_off_in_page, src_off_in_page, cur);
5192
5193                 src_offset += cur;
5194                 dst_offset += cur;
5195                 len -= cur;
5196         }
5197 }
5198
5199 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5200                            unsigned long src_offset, unsigned long len)
5201 {
5202         size_t cur;
5203         size_t dst_off_in_page;
5204         size_t src_off_in_page;
5205         unsigned long dst_end = dst_offset + len - 1;
5206         unsigned long src_end = src_offset + len - 1;
5207         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5208         unsigned long dst_i;
5209         unsigned long src_i;
5210
5211         if (src_offset + len > dst->len) {
5212                 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5213                        "len %lu len %lu\n", src_offset, len, dst->len);
5214                 BUG_ON(1);
5215         }
5216         if (dst_offset + len > dst->len) {
5217                 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5218                        "len %lu len %lu\n", dst_offset, len, dst->len);
5219                 BUG_ON(1);
5220         }
5221         if (dst_offset < src_offset) {
5222                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5223                 return;
5224         }
5225         while (len > 0) {
5226                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5227                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5228
5229                 dst_off_in_page = (start_offset + dst_end) &
5230                         (PAGE_CACHE_SIZE - 1);
5231                 src_off_in_page = (start_offset + src_end) &
5232                         (PAGE_CACHE_SIZE - 1);
5233
5234                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5235                 cur = min(cur, dst_off_in_page + 1);
5236                 copy_pages(extent_buffer_page(dst, dst_i),
5237                            extent_buffer_page(dst, src_i),
5238                            dst_off_in_page - cur + 1,
5239                            src_off_in_page - cur + 1, cur);
5240
5241                 dst_end -= cur;
5242                 src_end -= cur;
5243                 len -= cur;
5244         }
5245 }
5246
5247 int try_release_extent_buffer(struct page *page)
5248 {
5249         struct extent_buffer *eb;
5250
5251         /*
5252          * We need to make sure noboody is attaching this page to an eb right
5253          * now.
5254          */
5255         spin_lock(&page->mapping->private_lock);
5256         if (!PagePrivate(page)) {
5257                 spin_unlock(&page->mapping->private_lock);
5258                 return 1;
5259         }
5260
5261         eb = (struct extent_buffer *)page->private;
5262         BUG_ON(!eb);
5263
5264         /*
5265          * This is a little awful but should be ok, we need to make sure that
5266          * the eb doesn't disappear out from under us while we're looking at
5267          * this page.
5268          */
5269         spin_lock(&eb->refs_lock);
5270         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5271                 spin_unlock(&eb->refs_lock);
5272                 spin_unlock(&page->mapping->private_lock);
5273                 return 0;
5274         }
5275         spin_unlock(&page->mapping->private_lock);
5276
5277         /*
5278          * If tree ref isn't set then we know the ref on this eb is a real ref,
5279          * so just return, this page will likely be freed soon anyway.
5280          */
5281         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5282                 spin_unlock(&eb->refs_lock);
5283                 return 0;
5284         }
5285
5286         return release_extent_buffer(eb);
5287 }