]> Pileus Git - ~andy/linux/blob - fs/btrfs/extent_io.c
Merge tag 'upstream-3.14-rc1' of git://git.infradead.org/linux-ubifs
[~andy/linux] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37         unsigned long flags;
38
39         spin_lock_irqsave(&leak_lock, flags);
40         list_add(new, head);
41         spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47         unsigned long flags;
48
49         spin_lock_irqsave(&leak_lock, flags);
50         list_del(entry);
51         spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57         struct extent_state *state;
58         struct extent_buffer *eb;
59
60         while (!list_empty(&states)) {
61                 state = list_entry(states.next, struct extent_state, leak_list);
62                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63                        "state %lu in tree %p refs %d\n",
64                        state->start, state->end, state->state, state->tree,
65                        atomic_read(&state->refs));
66                 list_del(&state->leak_list);
67                 kmem_cache_free(extent_state_cache, state);
68         }
69
70         while (!list_empty(&buffers)) {
71                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
73                        "refs %d\n",
74                        eb->start, eb->len, atomic_read(&eb->refs));
75                 list_del(&eb->leak_list);
76                 kmem_cache_free(extent_buffer_cache, eb);
77         }
78 }
79
80 #define btrfs_debug_check_extent_io_range(inode, start, end)            \
81         __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83                 struct inode *inode, u64 start, u64 end)
84 {
85         u64 isize = i_size_read(inode);
86
87         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
88                 printk_ratelimited(KERN_DEBUG
89                     "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
90                                 caller, btrfs_ino(inode), isize, start, end);
91         }
92 }
93 #else
94 #define btrfs_leak_debug_add(new, head) do {} while (0)
95 #define btrfs_leak_debug_del(entry)     do {} while (0)
96 #define btrfs_leak_debug_check()        do {} while (0)
97 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
98 #endif
99
100 #define BUFFER_LRU_MAX 64
101
102 struct tree_entry {
103         u64 start;
104         u64 end;
105         struct rb_node rb_node;
106 };
107
108 struct extent_page_data {
109         struct bio *bio;
110         struct extent_io_tree *tree;
111         get_extent_t *get_extent;
112         unsigned long bio_flags;
113
114         /* tells writepage not to lock the state bits for this range
115          * it still does the unlocking
116          */
117         unsigned int extent_locked:1;
118
119         /* tells the submit_bio code to use a WRITE_SYNC */
120         unsigned int sync_io:1;
121 };
122
123 static noinline void flush_write_bio(void *data);
124 static inline struct btrfs_fs_info *
125 tree_fs_info(struct extent_io_tree *tree)
126 {
127         return btrfs_sb(tree->mapping->host->i_sb);
128 }
129
130 int __init extent_io_init(void)
131 {
132         extent_state_cache = kmem_cache_create("btrfs_extent_state",
133                         sizeof(struct extent_state), 0,
134                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
135         if (!extent_state_cache)
136                 return -ENOMEM;
137
138         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
139                         sizeof(struct extent_buffer), 0,
140                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
141         if (!extent_buffer_cache)
142                 goto free_state_cache;
143
144         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
145                                      offsetof(struct btrfs_io_bio, bio));
146         if (!btrfs_bioset)
147                 goto free_buffer_cache;
148
149         if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
150                 goto free_bioset;
151
152         return 0;
153
154 free_bioset:
155         bioset_free(btrfs_bioset);
156         btrfs_bioset = NULL;
157
158 free_buffer_cache:
159         kmem_cache_destroy(extent_buffer_cache);
160         extent_buffer_cache = NULL;
161
162 free_state_cache:
163         kmem_cache_destroy(extent_state_cache);
164         extent_state_cache = NULL;
165         return -ENOMEM;
166 }
167
168 void extent_io_exit(void)
169 {
170         btrfs_leak_debug_check();
171
172         /*
173          * Make sure all delayed rcu free are flushed before we
174          * destroy caches.
175          */
176         rcu_barrier();
177         if (extent_state_cache)
178                 kmem_cache_destroy(extent_state_cache);
179         if (extent_buffer_cache)
180                 kmem_cache_destroy(extent_buffer_cache);
181         if (btrfs_bioset)
182                 bioset_free(btrfs_bioset);
183 }
184
185 void extent_io_tree_init(struct extent_io_tree *tree,
186                          struct address_space *mapping)
187 {
188         tree->state = RB_ROOT;
189         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
190         tree->ops = NULL;
191         tree->dirty_bytes = 0;
192         spin_lock_init(&tree->lock);
193         spin_lock_init(&tree->buffer_lock);
194         tree->mapping = mapping;
195 }
196
197 static struct extent_state *alloc_extent_state(gfp_t mask)
198 {
199         struct extent_state *state;
200
201         state = kmem_cache_alloc(extent_state_cache, mask);
202         if (!state)
203                 return state;
204         state->state = 0;
205         state->private = 0;
206         state->tree = NULL;
207         btrfs_leak_debug_add(&state->leak_list, &states);
208         atomic_set(&state->refs, 1);
209         init_waitqueue_head(&state->wq);
210         trace_alloc_extent_state(state, mask, _RET_IP_);
211         return state;
212 }
213
214 void free_extent_state(struct extent_state *state)
215 {
216         if (!state)
217                 return;
218         if (atomic_dec_and_test(&state->refs)) {
219                 WARN_ON(state->tree);
220                 btrfs_leak_debug_del(&state->leak_list);
221                 trace_free_extent_state(state, _RET_IP_);
222                 kmem_cache_free(extent_state_cache, state);
223         }
224 }
225
226 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
227                                    struct rb_node *node)
228 {
229         struct rb_node **p = &root->rb_node;
230         struct rb_node *parent = NULL;
231         struct tree_entry *entry;
232
233         while (*p) {
234                 parent = *p;
235                 entry = rb_entry(parent, struct tree_entry, rb_node);
236
237                 if (offset < entry->start)
238                         p = &(*p)->rb_left;
239                 else if (offset > entry->end)
240                         p = &(*p)->rb_right;
241                 else
242                         return parent;
243         }
244
245         rb_link_node(node, parent, p);
246         rb_insert_color(node, root);
247         return NULL;
248 }
249
250 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
251                                      struct rb_node **prev_ret,
252                                      struct rb_node **next_ret)
253 {
254         struct rb_root *root = &tree->state;
255         struct rb_node *n = root->rb_node;
256         struct rb_node *prev = NULL;
257         struct rb_node *orig_prev = NULL;
258         struct tree_entry *entry;
259         struct tree_entry *prev_entry = NULL;
260
261         while (n) {
262                 entry = rb_entry(n, struct tree_entry, rb_node);
263                 prev = n;
264                 prev_entry = entry;
265
266                 if (offset < entry->start)
267                         n = n->rb_left;
268                 else if (offset > entry->end)
269                         n = n->rb_right;
270                 else
271                         return n;
272         }
273
274         if (prev_ret) {
275                 orig_prev = prev;
276                 while (prev && offset > prev_entry->end) {
277                         prev = rb_next(prev);
278                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
279                 }
280                 *prev_ret = prev;
281                 prev = orig_prev;
282         }
283
284         if (next_ret) {
285                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286                 while (prev && offset < prev_entry->start) {
287                         prev = rb_prev(prev);
288                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
289                 }
290                 *next_ret = prev;
291         }
292         return NULL;
293 }
294
295 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
296                                           u64 offset)
297 {
298         struct rb_node *prev = NULL;
299         struct rb_node *ret;
300
301         ret = __etree_search(tree, offset, &prev, NULL);
302         if (!ret)
303                 return prev;
304         return ret;
305 }
306
307 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
308                      struct extent_state *other)
309 {
310         if (tree->ops && tree->ops->merge_extent_hook)
311                 tree->ops->merge_extent_hook(tree->mapping->host, new,
312                                              other);
313 }
314
315 /*
316  * utility function to look for merge candidates inside a given range.
317  * Any extents with matching state are merged together into a single
318  * extent in the tree.  Extents with EXTENT_IO in their state field
319  * are not merged because the end_io handlers need to be able to do
320  * operations on them without sleeping (or doing allocations/splits).
321  *
322  * This should be called with the tree lock held.
323  */
324 static void merge_state(struct extent_io_tree *tree,
325                         struct extent_state *state)
326 {
327         struct extent_state *other;
328         struct rb_node *other_node;
329
330         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
331                 return;
332
333         other_node = rb_prev(&state->rb_node);
334         if (other_node) {
335                 other = rb_entry(other_node, struct extent_state, rb_node);
336                 if (other->end == state->start - 1 &&
337                     other->state == state->state) {
338                         merge_cb(tree, state, other);
339                         state->start = other->start;
340                         other->tree = NULL;
341                         rb_erase(&other->rb_node, &tree->state);
342                         free_extent_state(other);
343                 }
344         }
345         other_node = rb_next(&state->rb_node);
346         if (other_node) {
347                 other = rb_entry(other_node, struct extent_state, rb_node);
348                 if (other->start == state->end + 1 &&
349                     other->state == state->state) {
350                         merge_cb(tree, state, other);
351                         state->end = other->end;
352                         other->tree = NULL;
353                         rb_erase(&other->rb_node, &tree->state);
354                         free_extent_state(other);
355                 }
356         }
357 }
358
359 static void set_state_cb(struct extent_io_tree *tree,
360                          struct extent_state *state, unsigned long *bits)
361 {
362         if (tree->ops && tree->ops->set_bit_hook)
363                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
364 }
365
366 static void clear_state_cb(struct extent_io_tree *tree,
367                            struct extent_state *state, unsigned long *bits)
368 {
369         if (tree->ops && tree->ops->clear_bit_hook)
370                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
371 }
372
373 static void set_state_bits(struct extent_io_tree *tree,
374                            struct extent_state *state, unsigned long *bits);
375
376 /*
377  * insert an extent_state struct into the tree.  'bits' are set on the
378  * struct before it is inserted.
379  *
380  * This may return -EEXIST if the extent is already there, in which case the
381  * state struct is freed.
382  *
383  * The tree lock is not taken internally.  This is a utility function and
384  * probably isn't what you want to call (see set/clear_extent_bit).
385  */
386 static int insert_state(struct extent_io_tree *tree,
387                         struct extent_state *state, u64 start, u64 end,
388                         unsigned long *bits)
389 {
390         struct rb_node *node;
391
392         if (end < start)
393                 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
394                        end, start);
395         state->start = start;
396         state->end = end;
397
398         set_state_bits(tree, state, bits);
399
400         node = tree_insert(&tree->state, end, &state->rb_node);
401         if (node) {
402                 struct extent_state *found;
403                 found = rb_entry(node, struct extent_state, rb_node);
404                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
405                        "%llu %llu\n",
406                        found->start, found->end, start, end);
407                 return -EEXIST;
408         }
409         state->tree = tree;
410         merge_state(tree, state);
411         return 0;
412 }
413
414 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
415                      u64 split)
416 {
417         if (tree->ops && tree->ops->split_extent_hook)
418                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
419 }
420
421 /*
422  * split a given extent state struct in two, inserting the preallocated
423  * struct 'prealloc' as the newly created second half.  'split' indicates an
424  * offset inside 'orig' where it should be split.
425  *
426  * Before calling,
427  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
428  * are two extent state structs in the tree:
429  * prealloc: [orig->start, split - 1]
430  * orig: [ split, orig->end ]
431  *
432  * The tree locks are not taken by this function. They need to be held
433  * by the caller.
434  */
435 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
436                        struct extent_state *prealloc, u64 split)
437 {
438         struct rb_node *node;
439
440         split_cb(tree, orig, split);
441
442         prealloc->start = orig->start;
443         prealloc->end = split - 1;
444         prealloc->state = orig->state;
445         orig->start = split;
446
447         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
448         if (node) {
449                 free_extent_state(prealloc);
450                 return -EEXIST;
451         }
452         prealloc->tree = tree;
453         return 0;
454 }
455
456 static struct extent_state *next_state(struct extent_state *state)
457 {
458         struct rb_node *next = rb_next(&state->rb_node);
459         if (next)
460                 return rb_entry(next, struct extent_state, rb_node);
461         else
462                 return NULL;
463 }
464
465 /*
466  * utility function to clear some bits in an extent state struct.
467  * it will optionally wake up any one waiting on this state (wake == 1).
468  *
469  * If no bits are set on the state struct after clearing things, the
470  * struct is freed and removed from the tree
471  */
472 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
473                                             struct extent_state *state,
474                                             unsigned long *bits, int wake)
475 {
476         struct extent_state *next;
477         unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
478
479         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
480                 u64 range = state->end - state->start + 1;
481                 WARN_ON(range > tree->dirty_bytes);
482                 tree->dirty_bytes -= range;
483         }
484         clear_state_cb(tree, state, bits);
485         state->state &= ~bits_to_clear;
486         if (wake)
487                 wake_up(&state->wq);
488         if (state->state == 0) {
489                 next = next_state(state);
490                 if (state->tree) {
491                         rb_erase(&state->rb_node, &tree->state);
492                         state->tree = NULL;
493                         free_extent_state(state);
494                 } else {
495                         WARN_ON(1);
496                 }
497         } else {
498                 merge_state(tree, state);
499                 next = next_state(state);
500         }
501         return next;
502 }
503
504 static struct extent_state *
505 alloc_extent_state_atomic(struct extent_state *prealloc)
506 {
507         if (!prealloc)
508                 prealloc = alloc_extent_state(GFP_ATOMIC);
509
510         return prealloc;
511 }
512
513 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
514 {
515         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
516                     "Extent tree was modified by another "
517                     "thread while locked.");
518 }
519
520 /*
521  * clear some bits on a range in the tree.  This may require splitting
522  * or inserting elements in the tree, so the gfp mask is used to
523  * indicate which allocations or sleeping are allowed.
524  *
525  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
526  * the given range from the tree regardless of state (ie for truncate).
527  *
528  * the range [start, end] is inclusive.
529  *
530  * This takes the tree lock, and returns 0 on success and < 0 on error.
531  */
532 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
533                      unsigned long bits, int wake, int delete,
534                      struct extent_state **cached_state,
535                      gfp_t mask)
536 {
537         struct extent_state *state;
538         struct extent_state *cached;
539         struct extent_state *prealloc = NULL;
540         struct rb_node *node;
541         u64 last_end;
542         int err;
543         int clear = 0;
544
545         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
546
547         if (bits & EXTENT_DELALLOC)
548                 bits |= EXTENT_NORESERVE;
549
550         if (delete)
551                 bits |= ~EXTENT_CTLBITS;
552         bits |= EXTENT_FIRST_DELALLOC;
553
554         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
555                 clear = 1;
556 again:
557         if (!prealloc && (mask & __GFP_WAIT)) {
558                 prealloc = alloc_extent_state(mask);
559                 if (!prealloc)
560                         return -ENOMEM;
561         }
562
563         spin_lock(&tree->lock);
564         if (cached_state) {
565                 cached = *cached_state;
566
567                 if (clear) {
568                         *cached_state = NULL;
569                         cached_state = NULL;
570                 }
571
572                 if (cached && cached->tree && cached->start <= start &&
573                     cached->end > start) {
574                         if (clear)
575                                 atomic_dec(&cached->refs);
576                         state = cached;
577                         goto hit_next;
578                 }
579                 if (clear)
580                         free_extent_state(cached);
581         }
582         /*
583          * this search will find the extents that end after
584          * our range starts
585          */
586         node = tree_search(tree, start);
587         if (!node)
588                 goto out;
589         state = rb_entry(node, struct extent_state, rb_node);
590 hit_next:
591         if (state->start > end)
592                 goto out;
593         WARN_ON(state->end < start);
594         last_end = state->end;
595
596         /* the state doesn't have the wanted bits, go ahead */
597         if (!(state->state & bits)) {
598                 state = next_state(state);
599                 goto next;
600         }
601
602         /*
603          *     | ---- desired range ---- |
604          *  | state | or
605          *  | ------------- state -------------- |
606          *
607          * We need to split the extent we found, and may flip
608          * bits on second half.
609          *
610          * If the extent we found extends past our range, we
611          * just split and search again.  It'll get split again
612          * the next time though.
613          *
614          * If the extent we found is inside our range, we clear
615          * the desired bit on it.
616          */
617
618         if (state->start < start) {
619                 prealloc = alloc_extent_state_atomic(prealloc);
620                 BUG_ON(!prealloc);
621                 err = split_state(tree, state, prealloc, start);
622                 if (err)
623                         extent_io_tree_panic(tree, err);
624
625                 prealloc = NULL;
626                 if (err)
627                         goto out;
628                 if (state->end <= end) {
629                         state = clear_state_bit(tree, state, &bits, wake);
630                         goto next;
631                 }
632                 goto search_again;
633         }
634         /*
635          * | ---- desired range ---- |
636          *                        | state |
637          * We need to split the extent, and clear the bit
638          * on the first half
639          */
640         if (state->start <= end && state->end > end) {
641                 prealloc = alloc_extent_state_atomic(prealloc);
642                 BUG_ON(!prealloc);
643                 err = split_state(tree, state, prealloc, end + 1);
644                 if (err)
645                         extent_io_tree_panic(tree, err);
646
647                 if (wake)
648                         wake_up(&state->wq);
649
650                 clear_state_bit(tree, prealloc, &bits, wake);
651
652                 prealloc = NULL;
653                 goto out;
654         }
655
656         state = clear_state_bit(tree, state, &bits, wake);
657 next:
658         if (last_end == (u64)-1)
659                 goto out;
660         start = last_end + 1;
661         if (start <= end && state && !need_resched())
662                 goto hit_next;
663         goto search_again;
664
665 out:
666         spin_unlock(&tree->lock);
667         if (prealloc)
668                 free_extent_state(prealloc);
669
670         return 0;
671
672 search_again:
673         if (start > end)
674                 goto out;
675         spin_unlock(&tree->lock);
676         if (mask & __GFP_WAIT)
677                 cond_resched();
678         goto again;
679 }
680
681 static void wait_on_state(struct extent_io_tree *tree,
682                           struct extent_state *state)
683                 __releases(tree->lock)
684                 __acquires(tree->lock)
685 {
686         DEFINE_WAIT(wait);
687         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
688         spin_unlock(&tree->lock);
689         schedule();
690         spin_lock(&tree->lock);
691         finish_wait(&state->wq, &wait);
692 }
693
694 /*
695  * waits for one or more bits to clear on a range in the state tree.
696  * The range [start, end] is inclusive.
697  * The tree lock is taken by this function
698  */
699 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
700                             unsigned long bits)
701 {
702         struct extent_state *state;
703         struct rb_node *node;
704
705         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
706
707         spin_lock(&tree->lock);
708 again:
709         while (1) {
710                 /*
711                  * this search will find all the extents that end after
712                  * our range starts
713                  */
714                 node = tree_search(tree, start);
715                 if (!node)
716                         break;
717
718                 state = rb_entry(node, struct extent_state, rb_node);
719
720                 if (state->start > end)
721                         goto out;
722
723                 if (state->state & bits) {
724                         start = state->start;
725                         atomic_inc(&state->refs);
726                         wait_on_state(tree, state);
727                         free_extent_state(state);
728                         goto again;
729                 }
730                 start = state->end + 1;
731
732                 if (start > end)
733                         break;
734
735                 cond_resched_lock(&tree->lock);
736         }
737 out:
738         spin_unlock(&tree->lock);
739 }
740
741 static void set_state_bits(struct extent_io_tree *tree,
742                            struct extent_state *state,
743                            unsigned long *bits)
744 {
745         unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
746
747         set_state_cb(tree, state, bits);
748         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
749                 u64 range = state->end - state->start + 1;
750                 tree->dirty_bytes += range;
751         }
752         state->state |= bits_to_set;
753 }
754
755 static void cache_state(struct extent_state *state,
756                         struct extent_state **cached_ptr)
757 {
758         if (cached_ptr && !(*cached_ptr)) {
759                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
760                         *cached_ptr = state;
761                         atomic_inc(&state->refs);
762                 }
763         }
764 }
765
766 /*
767  * set some bits on a range in the tree.  This may require allocations or
768  * sleeping, so the gfp mask is used to indicate what is allowed.
769  *
770  * If any of the exclusive bits are set, this will fail with -EEXIST if some
771  * part of the range already has the desired bits set.  The start of the
772  * existing range is returned in failed_start in this case.
773  *
774  * [start, end] is inclusive This takes the tree lock.
775  */
776
777 static int __must_check
778 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
779                  unsigned long bits, unsigned long exclusive_bits,
780                  u64 *failed_start, struct extent_state **cached_state,
781                  gfp_t mask)
782 {
783         struct extent_state *state;
784         struct extent_state *prealloc = NULL;
785         struct rb_node *node;
786         int err = 0;
787         u64 last_start;
788         u64 last_end;
789
790         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
791
792         bits |= EXTENT_FIRST_DELALLOC;
793 again:
794         if (!prealloc && (mask & __GFP_WAIT)) {
795                 prealloc = alloc_extent_state(mask);
796                 BUG_ON(!prealloc);
797         }
798
799         spin_lock(&tree->lock);
800         if (cached_state && *cached_state) {
801                 state = *cached_state;
802                 if (state->start <= start && state->end > start &&
803                     state->tree) {
804                         node = &state->rb_node;
805                         goto hit_next;
806                 }
807         }
808         /*
809          * this search will find all the extents that end after
810          * our range starts.
811          */
812         node = tree_search(tree, start);
813         if (!node) {
814                 prealloc = alloc_extent_state_atomic(prealloc);
815                 BUG_ON(!prealloc);
816                 err = insert_state(tree, prealloc, start, end, &bits);
817                 if (err)
818                         extent_io_tree_panic(tree, err);
819
820                 prealloc = NULL;
821                 goto out;
822         }
823         state = rb_entry(node, struct extent_state, rb_node);
824 hit_next:
825         last_start = state->start;
826         last_end = state->end;
827
828         /*
829          * | ---- desired range ---- |
830          * | state |
831          *
832          * Just lock what we found and keep going
833          */
834         if (state->start == start && state->end <= end) {
835                 if (state->state & exclusive_bits) {
836                         *failed_start = state->start;
837                         err = -EEXIST;
838                         goto out;
839                 }
840
841                 set_state_bits(tree, state, &bits);
842                 cache_state(state, cached_state);
843                 merge_state(tree, state);
844                 if (last_end == (u64)-1)
845                         goto out;
846                 start = last_end + 1;
847                 state = next_state(state);
848                 if (start < end && state && state->start == start &&
849                     !need_resched())
850                         goto hit_next;
851                 goto search_again;
852         }
853
854         /*
855          *     | ---- desired range ---- |
856          * | state |
857          *   or
858          * | ------------- state -------------- |
859          *
860          * We need to split the extent we found, and may flip bits on
861          * second half.
862          *
863          * If the extent we found extends past our
864          * range, we just split and search again.  It'll get split
865          * again the next time though.
866          *
867          * If the extent we found is inside our range, we set the
868          * desired bit on it.
869          */
870         if (state->start < start) {
871                 if (state->state & exclusive_bits) {
872                         *failed_start = start;
873                         err = -EEXIST;
874                         goto out;
875                 }
876
877                 prealloc = alloc_extent_state_atomic(prealloc);
878                 BUG_ON(!prealloc);
879                 err = split_state(tree, state, prealloc, start);
880                 if (err)
881                         extent_io_tree_panic(tree, err);
882
883                 prealloc = NULL;
884                 if (err)
885                         goto out;
886                 if (state->end <= end) {
887                         set_state_bits(tree, state, &bits);
888                         cache_state(state, cached_state);
889                         merge_state(tree, state);
890                         if (last_end == (u64)-1)
891                                 goto out;
892                         start = last_end + 1;
893                         state = next_state(state);
894                         if (start < end && state && state->start == start &&
895                             !need_resched())
896                                 goto hit_next;
897                 }
898                 goto search_again;
899         }
900         /*
901          * | ---- desired range ---- |
902          *     | state | or               | state |
903          *
904          * There's a hole, we need to insert something in it and
905          * ignore the extent we found.
906          */
907         if (state->start > start) {
908                 u64 this_end;
909                 if (end < last_start)
910                         this_end = end;
911                 else
912                         this_end = last_start - 1;
913
914                 prealloc = alloc_extent_state_atomic(prealloc);
915                 BUG_ON(!prealloc);
916
917                 /*
918                  * Avoid to free 'prealloc' if it can be merged with
919                  * the later extent.
920                  */
921                 err = insert_state(tree, prealloc, start, this_end,
922                                    &bits);
923                 if (err)
924                         extent_io_tree_panic(tree, err);
925
926                 cache_state(prealloc, cached_state);
927                 prealloc = NULL;
928                 start = this_end + 1;
929                 goto search_again;
930         }
931         /*
932          * | ---- desired range ---- |
933          *                        | state |
934          * We need to split the extent, and set the bit
935          * on the first half
936          */
937         if (state->start <= end && state->end > end) {
938                 if (state->state & exclusive_bits) {
939                         *failed_start = start;
940                         err = -EEXIST;
941                         goto out;
942                 }
943
944                 prealloc = alloc_extent_state_atomic(prealloc);
945                 BUG_ON(!prealloc);
946                 err = split_state(tree, state, prealloc, end + 1);
947                 if (err)
948                         extent_io_tree_panic(tree, err);
949
950                 set_state_bits(tree, prealloc, &bits);
951                 cache_state(prealloc, cached_state);
952                 merge_state(tree, prealloc);
953                 prealloc = NULL;
954                 goto out;
955         }
956
957         goto search_again;
958
959 out:
960         spin_unlock(&tree->lock);
961         if (prealloc)
962                 free_extent_state(prealloc);
963
964         return err;
965
966 search_again:
967         if (start > end)
968                 goto out;
969         spin_unlock(&tree->lock);
970         if (mask & __GFP_WAIT)
971                 cond_resched();
972         goto again;
973 }
974
975 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
976                    unsigned long bits, u64 * failed_start,
977                    struct extent_state **cached_state, gfp_t mask)
978 {
979         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
980                                 cached_state, mask);
981 }
982
983
984 /**
985  * convert_extent_bit - convert all bits in a given range from one bit to
986  *                      another
987  * @tree:       the io tree to search
988  * @start:      the start offset in bytes
989  * @end:        the end offset in bytes (inclusive)
990  * @bits:       the bits to set in this range
991  * @clear_bits: the bits to clear in this range
992  * @cached_state:       state that we're going to cache
993  * @mask:       the allocation mask
994  *
995  * This will go through and set bits for the given range.  If any states exist
996  * already in this range they are set with the given bit and cleared of the
997  * clear_bits.  This is only meant to be used by things that are mergeable, ie
998  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
999  * boundary bits like LOCK.
1000  */
1001 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1002                        unsigned long bits, unsigned long clear_bits,
1003                        struct extent_state **cached_state, gfp_t mask)
1004 {
1005         struct extent_state *state;
1006         struct extent_state *prealloc = NULL;
1007         struct rb_node *node;
1008         int err = 0;
1009         u64 last_start;
1010         u64 last_end;
1011
1012         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1013
1014 again:
1015         if (!prealloc && (mask & __GFP_WAIT)) {
1016                 prealloc = alloc_extent_state(mask);
1017                 if (!prealloc)
1018                         return -ENOMEM;
1019         }
1020
1021         spin_lock(&tree->lock);
1022         if (cached_state && *cached_state) {
1023                 state = *cached_state;
1024                 if (state->start <= start && state->end > start &&
1025                     state->tree) {
1026                         node = &state->rb_node;
1027                         goto hit_next;
1028                 }
1029         }
1030
1031         /*
1032          * this search will find all the extents that end after
1033          * our range starts.
1034          */
1035         node = tree_search(tree, start);
1036         if (!node) {
1037                 prealloc = alloc_extent_state_atomic(prealloc);
1038                 if (!prealloc) {
1039                         err = -ENOMEM;
1040                         goto out;
1041                 }
1042                 err = insert_state(tree, prealloc, start, end, &bits);
1043                 prealloc = NULL;
1044                 if (err)
1045                         extent_io_tree_panic(tree, err);
1046                 goto out;
1047         }
1048         state = rb_entry(node, struct extent_state, rb_node);
1049 hit_next:
1050         last_start = state->start;
1051         last_end = state->end;
1052
1053         /*
1054          * | ---- desired range ---- |
1055          * | state |
1056          *
1057          * Just lock what we found and keep going
1058          */
1059         if (state->start == start && state->end <= end) {
1060                 set_state_bits(tree, state, &bits);
1061                 cache_state(state, cached_state);
1062                 state = clear_state_bit(tree, state, &clear_bits, 0);
1063                 if (last_end == (u64)-1)
1064                         goto out;
1065                 start = last_end + 1;
1066                 if (start < end && state && state->start == start &&
1067                     !need_resched())
1068                         goto hit_next;
1069                 goto search_again;
1070         }
1071
1072         /*
1073          *     | ---- desired range ---- |
1074          * | state |
1075          *   or
1076          * | ------------- state -------------- |
1077          *
1078          * We need to split the extent we found, and may flip bits on
1079          * second half.
1080          *
1081          * If the extent we found extends past our
1082          * range, we just split and search again.  It'll get split
1083          * again the next time though.
1084          *
1085          * If the extent we found is inside our range, we set the
1086          * desired bit on it.
1087          */
1088         if (state->start < start) {
1089                 prealloc = alloc_extent_state_atomic(prealloc);
1090                 if (!prealloc) {
1091                         err = -ENOMEM;
1092                         goto out;
1093                 }
1094                 err = split_state(tree, state, prealloc, start);
1095                 if (err)
1096                         extent_io_tree_panic(tree, err);
1097                 prealloc = NULL;
1098                 if (err)
1099                         goto out;
1100                 if (state->end <= end) {
1101                         set_state_bits(tree, state, &bits);
1102                         cache_state(state, cached_state);
1103                         state = clear_state_bit(tree, state, &clear_bits, 0);
1104                         if (last_end == (u64)-1)
1105                                 goto out;
1106                         start = last_end + 1;
1107                         if (start < end && state && state->start == start &&
1108                             !need_resched())
1109                                 goto hit_next;
1110                 }
1111                 goto search_again;
1112         }
1113         /*
1114          * | ---- desired range ---- |
1115          *     | state | or               | state |
1116          *
1117          * There's a hole, we need to insert something in it and
1118          * ignore the extent we found.
1119          */
1120         if (state->start > start) {
1121                 u64 this_end;
1122                 if (end < last_start)
1123                         this_end = end;
1124                 else
1125                         this_end = last_start - 1;
1126
1127                 prealloc = alloc_extent_state_atomic(prealloc);
1128                 if (!prealloc) {
1129                         err = -ENOMEM;
1130                         goto out;
1131                 }
1132
1133                 /*
1134                  * Avoid to free 'prealloc' if it can be merged with
1135                  * the later extent.
1136                  */
1137                 err = insert_state(tree, prealloc, start, this_end,
1138                                    &bits);
1139                 if (err)
1140                         extent_io_tree_panic(tree, err);
1141                 cache_state(prealloc, cached_state);
1142                 prealloc = NULL;
1143                 start = this_end + 1;
1144                 goto search_again;
1145         }
1146         /*
1147          * | ---- desired range ---- |
1148          *                        | state |
1149          * We need to split the extent, and set the bit
1150          * on the first half
1151          */
1152         if (state->start <= end && state->end > end) {
1153                 prealloc = alloc_extent_state_atomic(prealloc);
1154                 if (!prealloc) {
1155                         err = -ENOMEM;
1156                         goto out;
1157                 }
1158
1159                 err = split_state(tree, state, prealloc, end + 1);
1160                 if (err)
1161                         extent_io_tree_panic(tree, err);
1162
1163                 set_state_bits(tree, prealloc, &bits);
1164                 cache_state(prealloc, cached_state);
1165                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1166                 prealloc = NULL;
1167                 goto out;
1168         }
1169
1170         goto search_again;
1171
1172 out:
1173         spin_unlock(&tree->lock);
1174         if (prealloc)
1175                 free_extent_state(prealloc);
1176
1177         return err;
1178
1179 search_again:
1180         if (start > end)
1181                 goto out;
1182         spin_unlock(&tree->lock);
1183         if (mask & __GFP_WAIT)
1184                 cond_resched();
1185         goto again;
1186 }
1187
1188 /* wrappers around set/clear extent bit */
1189 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1190                      gfp_t mask)
1191 {
1192         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1193                               NULL, mask);
1194 }
1195
1196 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1197                     unsigned long bits, gfp_t mask)
1198 {
1199         return set_extent_bit(tree, start, end, bits, NULL,
1200                               NULL, mask);
1201 }
1202
1203 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1204                       unsigned long bits, gfp_t mask)
1205 {
1206         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1207 }
1208
1209 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1210                         struct extent_state **cached_state, gfp_t mask)
1211 {
1212         return set_extent_bit(tree, start, end,
1213                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1214                               NULL, cached_state, mask);
1215 }
1216
1217 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1218                       struct extent_state **cached_state, gfp_t mask)
1219 {
1220         return set_extent_bit(tree, start, end,
1221                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1222                               NULL, cached_state, mask);
1223 }
1224
1225 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1226                        gfp_t mask)
1227 {
1228         return clear_extent_bit(tree, start, end,
1229                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1230                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1231 }
1232
1233 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1234                      gfp_t mask)
1235 {
1236         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1237                               NULL, mask);
1238 }
1239
1240 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1241                         struct extent_state **cached_state, gfp_t mask)
1242 {
1243         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1244                               cached_state, mask);
1245 }
1246
1247 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1248                           struct extent_state **cached_state, gfp_t mask)
1249 {
1250         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1251                                 cached_state, mask);
1252 }
1253
1254 /*
1255  * either insert or lock state struct between start and end use mask to tell
1256  * us if waiting is desired.
1257  */
1258 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1259                      unsigned long bits, struct extent_state **cached_state)
1260 {
1261         int err;
1262         u64 failed_start;
1263         while (1) {
1264                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1265                                        EXTENT_LOCKED, &failed_start,
1266                                        cached_state, GFP_NOFS);
1267                 if (err == -EEXIST) {
1268                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1269                         start = failed_start;
1270                 } else
1271                         break;
1272                 WARN_ON(start > end);
1273         }
1274         return err;
1275 }
1276
1277 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1278 {
1279         return lock_extent_bits(tree, start, end, 0, NULL);
1280 }
1281
1282 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1283 {
1284         int err;
1285         u64 failed_start;
1286
1287         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1288                                &failed_start, NULL, GFP_NOFS);
1289         if (err == -EEXIST) {
1290                 if (failed_start > start)
1291                         clear_extent_bit(tree, start, failed_start - 1,
1292                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1293                 return 0;
1294         }
1295         return 1;
1296 }
1297
1298 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1299                          struct extent_state **cached, gfp_t mask)
1300 {
1301         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1302                                 mask);
1303 }
1304
1305 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1306 {
1307         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1308                                 GFP_NOFS);
1309 }
1310
1311 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1312 {
1313         unsigned long index = start >> PAGE_CACHE_SHIFT;
1314         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1315         struct page *page;
1316
1317         while (index <= end_index) {
1318                 page = find_get_page(inode->i_mapping, index);
1319                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1320                 clear_page_dirty_for_io(page);
1321                 page_cache_release(page);
1322                 index++;
1323         }
1324         return 0;
1325 }
1326
1327 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1328 {
1329         unsigned long index = start >> PAGE_CACHE_SHIFT;
1330         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1331         struct page *page;
1332
1333         while (index <= end_index) {
1334                 page = find_get_page(inode->i_mapping, index);
1335                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1336                 account_page_redirty(page);
1337                 __set_page_dirty_nobuffers(page);
1338                 page_cache_release(page);
1339                 index++;
1340         }
1341         return 0;
1342 }
1343
1344 /*
1345  * helper function to set both pages and extents in the tree writeback
1346  */
1347 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1348 {
1349         unsigned long index = start >> PAGE_CACHE_SHIFT;
1350         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1351         struct page *page;
1352
1353         while (index <= end_index) {
1354                 page = find_get_page(tree->mapping, index);
1355                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1356                 set_page_writeback(page);
1357                 page_cache_release(page);
1358                 index++;
1359         }
1360         return 0;
1361 }
1362
1363 /* find the first state struct with 'bits' set after 'start', and
1364  * return it.  tree->lock must be held.  NULL will returned if
1365  * nothing was found after 'start'
1366  */
1367 static struct extent_state *
1368 find_first_extent_bit_state(struct extent_io_tree *tree,
1369                             u64 start, unsigned long bits)
1370 {
1371         struct rb_node *node;
1372         struct extent_state *state;
1373
1374         /*
1375          * this search will find all the extents that end after
1376          * our range starts.
1377          */
1378         node = tree_search(tree, start);
1379         if (!node)
1380                 goto out;
1381
1382         while (1) {
1383                 state = rb_entry(node, struct extent_state, rb_node);
1384                 if (state->end >= start && (state->state & bits))
1385                         return state;
1386
1387                 node = rb_next(node);
1388                 if (!node)
1389                         break;
1390         }
1391 out:
1392         return NULL;
1393 }
1394
1395 /*
1396  * find the first offset in the io tree with 'bits' set. zero is
1397  * returned if we find something, and *start_ret and *end_ret are
1398  * set to reflect the state struct that was found.
1399  *
1400  * If nothing was found, 1 is returned. If found something, return 0.
1401  */
1402 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1403                           u64 *start_ret, u64 *end_ret, unsigned long bits,
1404                           struct extent_state **cached_state)
1405 {
1406         struct extent_state *state;
1407         struct rb_node *n;
1408         int ret = 1;
1409
1410         spin_lock(&tree->lock);
1411         if (cached_state && *cached_state) {
1412                 state = *cached_state;
1413                 if (state->end == start - 1 && state->tree) {
1414                         n = rb_next(&state->rb_node);
1415                         while (n) {
1416                                 state = rb_entry(n, struct extent_state,
1417                                                  rb_node);
1418                                 if (state->state & bits)
1419                                         goto got_it;
1420                                 n = rb_next(n);
1421                         }
1422                         free_extent_state(*cached_state);
1423                         *cached_state = NULL;
1424                         goto out;
1425                 }
1426                 free_extent_state(*cached_state);
1427                 *cached_state = NULL;
1428         }
1429
1430         state = find_first_extent_bit_state(tree, start, bits);
1431 got_it:
1432         if (state) {
1433                 cache_state(state, cached_state);
1434                 *start_ret = state->start;
1435                 *end_ret = state->end;
1436                 ret = 0;
1437         }
1438 out:
1439         spin_unlock(&tree->lock);
1440         return ret;
1441 }
1442
1443 /*
1444  * find a contiguous range of bytes in the file marked as delalloc, not
1445  * more than 'max_bytes'.  start and end are used to return the range,
1446  *
1447  * 1 is returned if we find something, 0 if nothing was in the tree
1448  */
1449 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1450                                         u64 *start, u64 *end, u64 max_bytes,
1451                                         struct extent_state **cached_state)
1452 {
1453         struct rb_node *node;
1454         struct extent_state *state;
1455         u64 cur_start = *start;
1456         u64 found = 0;
1457         u64 total_bytes = 0;
1458
1459         spin_lock(&tree->lock);
1460
1461         /*
1462          * this search will find all the extents that end after
1463          * our range starts.
1464          */
1465         node = tree_search(tree, cur_start);
1466         if (!node) {
1467                 if (!found)
1468                         *end = (u64)-1;
1469                 goto out;
1470         }
1471
1472         while (1) {
1473                 state = rb_entry(node, struct extent_state, rb_node);
1474                 if (found && (state->start != cur_start ||
1475                               (state->state & EXTENT_BOUNDARY))) {
1476                         goto out;
1477                 }
1478                 if (!(state->state & EXTENT_DELALLOC)) {
1479                         if (!found)
1480                                 *end = state->end;
1481                         goto out;
1482                 }
1483                 if (!found) {
1484                         *start = state->start;
1485                         *cached_state = state;
1486                         atomic_inc(&state->refs);
1487                 }
1488                 found++;
1489                 *end = state->end;
1490                 cur_start = state->end + 1;
1491                 node = rb_next(node);
1492                 total_bytes += state->end - state->start + 1;
1493                 if (total_bytes >= max_bytes)
1494                         break;
1495                 if (!node)
1496                         break;
1497         }
1498 out:
1499         spin_unlock(&tree->lock);
1500         return found;
1501 }
1502
1503 static noinline void __unlock_for_delalloc(struct inode *inode,
1504                                            struct page *locked_page,
1505                                            u64 start, u64 end)
1506 {
1507         int ret;
1508         struct page *pages[16];
1509         unsigned long index = start >> PAGE_CACHE_SHIFT;
1510         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1511         unsigned long nr_pages = end_index - index + 1;
1512         int i;
1513
1514         if (index == locked_page->index && end_index == index)
1515                 return;
1516
1517         while (nr_pages > 0) {
1518                 ret = find_get_pages_contig(inode->i_mapping, index,
1519                                      min_t(unsigned long, nr_pages,
1520                                      ARRAY_SIZE(pages)), pages);
1521                 for (i = 0; i < ret; i++) {
1522                         if (pages[i] != locked_page)
1523                                 unlock_page(pages[i]);
1524                         page_cache_release(pages[i]);
1525                 }
1526                 nr_pages -= ret;
1527                 index += ret;
1528                 cond_resched();
1529         }
1530 }
1531
1532 static noinline int lock_delalloc_pages(struct inode *inode,
1533                                         struct page *locked_page,
1534                                         u64 delalloc_start,
1535                                         u64 delalloc_end)
1536 {
1537         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1538         unsigned long start_index = index;
1539         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1540         unsigned long pages_locked = 0;
1541         struct page *pages[16];
1542         unsigned long nrpages;
1543         int ret;
1544         int i;
1545
1546         /* the caller is responsible for locking the start index */
1547         if (index == locked_page->index && index == end_index)
1548                 return 0;
1549
1550         /* skip the page at the start index */
1551         nrpages = end_index - index + 1;
1552         while (nrpages > 0) {
1553                 ret = find_get_pages_contig(inode->i_mapping, index,
1554                                      min_t(unsigned long,
1555                                      nrpages, ARRAY_SIZE(pages)), pages);
1556                 if (ret == 0) {
1557                         ret = -EAGAIN;
1558                         goto done;
1559                 }
1560                 /* now we have an array of pages, lock them all */
1561                 for (i = 0; i < ret; i++) {
1562                         /*
1563                          * the caller is taking responsibility for
1564                          * locked_page
1565                          */
1566                         if (pages[i] != locked_page) {
1567                                 lock_page(pages[i]);
1568                                 if (!PageDirty(pages[i]) ||
1569                                     pages[i]->mapping != inode->i_mapping) {
1570                                         ret = -EAGAIN;
1571                                         unlock_page(pages[i]);
1572                                         page_cache_release(pages[i]);
1573                                         goto done;
1574                                 }
1575                         }
1576                         page_cache_release(pages[i]);
1577                         pages_locked++;
1578                 }
1579                 nrpages -= ret;
1580                 index += ret;
1581                 cond_resched();
1582         }
1583         ret = 0;
1584 done:
1585         if (ret && pages_locked) {
1586                 __unlock_for_delalloc(inode, locked_page,
1587                               delalloc_start,
1588                               ((u64)(start_index + pages_locked - 1)) <<
1589                               PAGE_CACHE_SHIFT);
1590         }
1591         return ret;
1592 }
1593
1594 /*
1595  * find a contiguous range of bytes in the file marked as delalloc, not
1596  * more than 'max_bytes'.  start and end are used to return the range,
1597  *
1598  * 1 is returned if we find something, 0 if nothing was in the tree
1599  */
1600 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1601                                     struct extent_io_tree *tree,
1602                                     struct page *locked_page, u64 *start,
1603                                     u64 *end, u64 max_bytes)
1604 {
1605         u64 delalloc_start;
1606         u64 delalloc_end;
1607         u64 found;
1608         struct extent_state *cached_state = NULL;
1609         int ret;
1610         int loops = 0;
1611
1612 again:
1613         /* step one, find a bunch of delalloc bytes starting at start */
1614         delalloc_start = *start;
1615         delalloc_end = 0;
1616         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1617                                     max_bytes, &cached_state);
1618         if (!found || delalloc_end <= *start) {
1619                 *start = delalloc_start;
1620                 *end = delalloc_end;
1621                 free_extent_state(cached_state);
1622                 return 0;
1623         }
1624
1625         /*
1626          * start comes from the offset of locked_page.  We have to lock
1627          * pages in order, so we can't process delalloc bytes before
1628          * locked_page
1629          */
1630         if (delalloc_start < *start)
1631                 delalloc_start = *start;
1632
1633         /*
1634          * make sure to limit the number of pages we try to lock down
1635          */
1636         if (delalloc_end + 1 - delalloc_start > max_bytes)
1637                 delalloc_end = delalloc_start + max_bytes - 1;
1638
1639         /* step two, lock all the pages after the page that has start */
1640         ret = lock_delalloc_pages(inode, locked_page,
1641                                   delalloc_start, delalloc_end);
1642         if (ret == -EAGAIN) {
1643                 /* some of the pages are gone, lets avoid looping by
1644                  * shortening the size of the delalloc range we're searching
1645                  */
1646                 free_extent_state(cached_state);
1647                 if (!loops) {
1648                         max_bytes = PAGE_CACHE_SIZE;
1649                         loops = 1;
1650                         goto again;
1651                 } else {
1652                         found = 0;
1653                         goto out_failed;
1654                 }
1655         }
1656         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1657
1658         /* step three, lock the state bits for the whole range */
1659         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1660
1661         /* then test to make sure it is all still delalloc */
1662         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1663                              EXTENT_DELALLOC, 1, cached_state);
1664         if (!ret) {
1665                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1666                                      &cached_state, GFP_NOFS);
1667                 __unlock_for_delalloc(inode, locked_page,
1668                               delalloc_start, delalloc_end);
1669                 cond_resched();
1670                 goto again;
1671         }
1672         free_extent_state(cached_state);
1673         *start = delalloc_start;
1674         *end = delalloc_end;
1675 out_failed:
1676         return found;
1677 }
1678
1679 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1680                                  struct page *locked_page,
1681                                  unsigned long clear_bits,
1682                                  unsigned long page_ops)
1683 {
1684         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1685         int ret;
1686         struct page *pages[16];
1687         unsigned long index = start >> PAGE_CACHE_SHIFT;
1688         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1689         unsigned long nr_pages = end_index - index + 1;
1690         int i;
1691
1692         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1693         if (page_ops == 0)
1694                 return 0;
1695
1696         while (nr_pages > 0) {
1697                 ret = find_get_pages_contig(inode->i_mapping, index,
1698                                      min_t(unsigned long,
1699                                      nr_pages, ARRAY_SIZE(pages)), pages);
1700                 for (i = 0; i < ret; i++) {
1701
1702                         if (page_ops & PAGE_SET_PRIVATE2)
1703                                 SetPagePrivate2(pages[i]);
1704
1705                         if (pages[i] == locked_page) {
1706                                 page_cache_release(pages[i]);
1707                                 continue;
1708                         }
1709                         if (page_ops & PAGE_CLEAR_DIRTY)
1710                                 clear_page_dirty_for_io(pages[i]);
1711                         if (page_ops & PAGE_SET_WRITEBACK)
1712                                 set_page_writeback(pages[i]);
1713                         if (page_ops & PAGE_END_WRITEBACK)
1714                                 end_page_writeback(pages[i]);
1715                         if (page_ops & PAGE_UNLOCK)
1716                                 unlock_page(pages[i]);
1717                         page_cache_release(pages[i]);
1718                 }
1719                 nr_pages -= ret;
1720                 index += ret;
1721                 cond_resched();
1722         }
1723         return 0;
1724 }
1725
1726 /*
1727  * count the number of bytes in the tree that have a given bit(s)
1728  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1729  * cached.  The total number found is returned.
1730  */
1731 u64 count_range_bits(struct extent_io_tree *tree,
1732                      u64 *start, u64 search_end, u64 max_bytes,
1733                      unsigned long bits, int contig)
1734 {
1735         struct rb_node *node;
1736         struct extent_state *state;
1737         u64 cur_start = *start;
1738         u64 total_bytes = 0;
1739         u64 last = 0;
1740         int found = 0;
1741
1742         if (WARN_ON(search_end <= cur_start))
1743                 return 0;
1744
1745         spin_lock(&tree->lock);
1746         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1747                 total_bytes = tree->dirty_bytes;
1748                 goto out;
1749         }
1750         /*
1751          * this search will find all the extents that end after
1752          * our range starts.
1753          */
1754         node = tree_search(tree, cur_start);
1755         if (!node)
1756                 goto out;
1757
1758         while (1) {
1759                 state = rb_entry(node, struct extent_state, rb_node);
1760                 if (state->start > search_end)
1761                         break;
1762                 if (contig && found && state->start > last + 1)
1763                         break;
1764                 if (state->end >= cur_start && (state->state & bits) == bits) {
1765                         total_bytes += min(search_end, state->end) + 1 -
1766                                        max(cur_start, state->start);
1767                         if (total_bytes >= max_bytes)
1768                                 break;
1769                         if (!found) {
1770                                 *start = max(cur_start, state->start);
1771                                 found = 1;
1772                         }
1773                         last = state->end;
1774                 } else if (contig && found) {
1775                         break;
1776                 }
1777                 node = rb_next(node);
1778                 if (!node)
1779                         break;
1780         }
1781 out:
1782         spin_unlock(&tree->lock);
1783         return total_bytes;
1784 }
1785
1786 /*
1787  * set the private field for a given byte offset in the tree.  If there isn't
1788  * an extent_state there already, this does nothing.
1789  */
1790 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1791 {
1792         struct rb_node *node;
1793         struct extent_state *state;
1794         int ret = 0;
1795
1796         spin_lock(&tree->lock);
1797         /*
1798          * this search will find all the extents that end after
1799          * our range starts.
1800          */
1801         node = tree_search(tree, start);
1802         if (!node) {
1803                 ret = -ENOENT;
1804                 goto out;
1805         }
1806         state = rb_entry(node, struct extent_state, rb_node);
1807         if (state->start != start) {
1808                 ret = -ENOENT;
1809                 goto out;
1810         }
1811         state->private = private;
1812 out:
1813         spin_unlock(&tree->lock);
1814         return ret;
1815 }
1816
1817 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1818 {
1819         struct rb_node *node;
1820         struct extent_state *state;
1821         int ret = 0;
1822
1823         spin_lock(&tree->lock);
1824         /*
1825          * this search will find all the extents that end after
1826          * our range starts.
1827          */
1828         node = tree_search(tree, start);
1829         if (!node) {
1830                 ret = -ENOENT;
1831                 goto out;
1832         }
1833         state = rb_entry(node, struct extent_state, rb_node);
1834         if (state->start != start) {
1835                 ret = -ENOENT;
1836                 goto out;
1837         }
1838         *private = state->private;
1839 out:
1840         spin_unlock(&tree->lock);
1841         return ret;
1842 }
1843
1844 /*
1845  * searches a range in the state tree for a given mask.
1846  * If 'filled' == 1, this returns 1 only if every extent in the tree
1847  * has the bits set.  Otherwise, 1 is returned if any bit in the
1848  * range is found set.
1849  */
1850 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1851                    unsigned long bits, int filled, struct extent_state *cached)
1852 {
1853         struct extent_state *state = NULL;
1854         struct rb_node *node;
1855         int bitset = 0;
1856
1857         spin_lock(&tree->lock);
1858         if (cached && cached->tree && cached->start <= start &&
1859             cached->end > start)
1860                 node = &cached->rb_node;
1861         else
1862                 node = tree_search(tree, start);
1863         while (node && start <= end) {
1864                 state = rb_entry(node, struct extent_state, rb_node);
1865
1866                 if (filled && state->start > start) {
1867                         bitset = 0;
1868                         break;
1869                 }
1870
1871                 if (state->start > end)
1872                         break;
1873
1874                 if (state->state & bits) {
1875                         bitset = 1;
1876                         if (!filled)
1877                                 break;
1878                 } else if (filled) {
1879                         bitset = 0;
1880                         break;
1881                 }
1882
1883                 if (state->end == (u64)-1)
1884                         break;
1885
1886                 start = state->end + 1;
1887                 if (start > end)
1888                         break;
1889                 node = rb_next(node);
1890                 if (!node) {
1891                         if (filled)
1892                                 bitset = 0;
1893                         break;
1894                 }
1895         }
1896         spin_unlock(&tree->lock);
1897         return bitset;
1898 }
1899
1900 /*
1901  * helper function to set a given page up to date if all the
1902  * extents in the tree for that page are up to date
1903  */
1904 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1905 {
1906         u64 start = page_offset(page);
1907         u64 end = start + PAGE_CACHE_SIZE - 1;
1908         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1909                 SetPageUptodate(page);
1910 }
1911
1912 /*
1913  * When IO fails, either with EIO or csum verification fails, we
1914  * try other mirrors that might have a good copy of the data.  This
1915  * io_failure_record is used to record state as we go through all the
1916  * mirrors.  If another mirror has good data, the page is set up to date
1917  * and things continue.  If a good mirror can't be found, the original
1918  * bio end_io callback is called to indicate things have failed.
1919  */
1920 struct io_failure_record {
1921         struct page *page;
1922         u64 start;
1923         u64 len;
1924         u64 logical;
1925         unsigned long bio_flags;
1926         int this_mirror;
1927         int failed_mirror;
1928         int in_validation;
1929 };
1930
1931 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1932                                 int did_repair)
1933 {
1934         int ret;
1935         int err = 0;
1936         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1937
1938         set_state_private(failure_tree, rec->start, 0);
1939         ret = clear_extent_bits(failure_tree, rec->start,
1940                                 rec->start + rec->len - 1,
1941                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1942         if (ret)
1943                 err = ret;
1944
1945         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1946                                 rec->start + rec->len - 1,
1947                                 EXTENT_DAMAGED, GFP_NOFS);
1948         if (ret && !err)
1949                 err = ret;
1950
1951         kfree(rec);
1952         return err;
1953 }
1954
1955 /*
1956  * this bypasses the standard btrfs submit functions deliberately, as
1957  * the standard behavior is to write all copies in a raid setup. here we only
1958  * want to write the one bad copy. so we do the mapping for ourselves and issue
1959  * submit_bio directly.
1960  * to avoid any synchronization issues, wait for the data after writing, which
1961  * actually prevents the read that triggered the error from finishing.
1962  * currently, there can be no more than two copies of every data bit. thus,
1963  * exactly one rewrite is required.
1964  */
1965 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1966                         u64 length, u64 logical, struct page *page,
1967                         int mirror_num)
1968 {
1969         struct bio *bio;
1970         struct btrfs_device *dev;
1971         u64 map_length = 0;
1972         u64 sector;
1973         struct btrfs_bio *bbio = NULL;
1974         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1975         int ret;
1976
1977         ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
1978         BUG_ON(!mirror_num);
1979
1980         /* we can't repair anything in raid56 yet */
1981         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1982                 return 0;
1983
1984         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1985         if (!bio)
1986                 return -EIO;
1987         bio->bi_iter.bi_size = 0;
1988         map_length = length;
1989
1990         ret = btrfs_map_block(fs_info, WRITE, logical,
1991                               &map_length, &bbio, mirror_num);
1992         if (ret) {
1993                 bio_put(bio);
1994                 return -EIO;
1995         }
1996         BUG_ON(mirror_num != bbio->mirror_num);
1997         sector = bbio->stripes[mirror_num-1].physical >> 9;
1998         bio->bi_iter.bi_sector = sector;
1999         dev = bbio->stripes[mirror_num-1].dev;
2000         kfree(bbio);
2001         if (!dev || !dev->bdev || !dev->writeable) {
2002                 bio_put(bio);
2003                 return -EIO;
2004         }
2005         bio->bi_bdev = dev->bdev;
2006         bio_add_page(bio, page, length, start - page_offset(page));
2007
2008         if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2009                 /* try to remap that extent elsewhere? */
2010                 bio_put(bio);
2011                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2012                 return -EIO;
2013         }
2014
2015         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2016                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2017                       start, rcu_str_deref(dev->name), sector);
2018
2019         bio_put(bio);
2020         return 0;
2021 }
2022
2023 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2024                          int mirror_num)
2025 {
2026         u64 start = eb->start;
2027         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2028         int ret = 0;
2029
2030         if (root->fs_info->sb->s_flags & MS_RDONLY)
2031                 return -EROFS;
2032
2033         for (i = 0; i < num_pages; i++) {
2034                 struct page *p = extent_buffer_page(eb, i);
2035                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2036                                         start, p, mirror_num);
2037                 if (ret)
2038                         break;
2039                 start += PAGE_CACHE_SIZE;
2040         }
2041
2042         return ret;
2043 }
2044
2045 /*
2046  * each time an IO finishes, we do a fast check in the IO failure tree
2047  * to see if we need to process or clean up an io_failure_record
2048  */
2049 static int clean_io_failure(u64 start, struct page *page)
2050 {
2051         u64 private;
2052         u64 private_failure;
2053         struct io_failure_record *failrec;
2054         struct inode *inode = page->mapping->host;
2055         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2056         struct extent_state *state;
2057         int num_copies;
2058         int did_repair = 0;
2059         int ret;
2060
2061         private = 0;
2062         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2063                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2064         if (!ret)
2065                 return 0;
2066
2067         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2068                                 &private_failure);
2069         if (ret)
2070                 return 0;
2071
2072         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2073         BUG_ON(!failrec->this_mirror);
2074
2075         if (failrec->in_validation) {
2076                 /* there was no real error, just free the record */
2077                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2078                          failrec->start);
2079                 did_repair = 1;
2080                 goto out;
2081         }
2082         if (fs_info->sb->s_flags & MS_RDONLY)
2083                 goto out;
2084
2085         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2086         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2087                                             failrec->start,
2088                                             EXTENT_LOCKED);
2089         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2090
2091         if (state && state->start <= failrec->start &&
2092             state->end >= failrec->start + failrec->len - 1) {
2093                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2094                                               failrec->len);
2095                 if (num_copies > 1)  {
2096                         ret = repair_io_failure(fs_info, start, failrec->len,
2097                                                 failrec->logical, page,
2098                                                 failrec->failed_mirror);
2099                         did_repair = !ret;
2100                 }
2101                 ret = 0;
2102         }
2103
2104 out:
2105         if (!ret)
2106                 ret = free_io_failure(inode, failrec, did_repair);
2107
2108         return ret;
2109 }
2110
2111 /*
2112  * this is a generic handler for readpage errors (default
2113  * readpage_io_failed_hook). if other copies exist, read those and write back
2114  * good data to the failed position. does not investigate in remapping the
2115  * failed extent elsewhere, hoping the device will be smart enough to do this as
2116  * needed
2117  */
2118
2119 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2120                               struct page *page, u64 start, u64 end,
2121                               int failed_mirror)
2122 {
2123         struct io_failure_record *failrec = NULL;
2124         u64 private;
2125         struct extent_map *em;
2126         struct inode *inode = page->mapping->host;
2127         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2128         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2129         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2130         struct bio *bio;
2131         struct btrfs_io_bio *btrfs_failed_bio;
2132         struct btrfs_io_bio *btrfs_bio;
2133         int num_copies;
2134         int ret;
2135         int read_mode;
2136         u64 logical;
2137
2138         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2139
2140         ret = get_state_private(failure_tree, start, &private);
2141         if (ret) {
2142                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2143                 if (!failrec)
2144                         return -ENOMEM;
2145                 failrec->start = start;
2146                 failrec->len = end - start + 1;
2147                 failrec->this_mirror = 0;
2148                 failrec->bio_flags = 0;
2149                 failrec->in_validation = 0;
2150
2151                 read_lock(&em_tree->lock);
2152                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2153                 if (!em) {
2154                         read_unlock(&em_tree->lock);
2155                         kfree(failrec);
2156                         return -EIO;
2157                 }
2158
2159                 if (em->start > start || em->start + em->len < start) {
2160                         free_extent_map(em);
2161                         em = NULL;
2162                 }
2163                 read_unlock(&em_tree->lock);
2164
2165                 if (!em) {
2166                         kfree(failrec);
2167                         return -EIO;
2168                 }
2169                 logical = start - em->start;
2170                 logical = em->block_start + logical;
2171                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2172                         logical = em->block_start;
2173                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2174                         extent_set_compress_type(&failrec->bio_flags,
2175                                                  em->compress_type);
2176                 }
2177                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2178                          "len=%llu\n", logical, start, failrec->len);
2179                 failrec->logical = logical;
2180                 free_extent_map(em);
2181
2182                 /* set the bits in the private failure tree */
2183                 ret = set_extent_bits(failure_tree, start, end,
2184                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2185                 if (ret >= 0)
2186                         ret = set_state_private(failure_tree, start,
2187                                                 (u64)(unsigned long)failrec);
2188                 /* set the bits in the inode's tree */
2189                 if (ret >= 0)
2190                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2191                                                 GFP_NOFS);
2192                 if (ret < 0) {
2193                         kfree(failrec);
2194                         return ret;
2195                 }
2196         } else {
2197                 failrec = (struct io_failure_record *)(unsigned long)private;
2198                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2199                          "start=%llu, len=%llu, validation=%d\n",
2200                          failrec->logical, failrec->start, failrec->len,
2201                          failrec->in_validation);
2202                 /*
2203                  * when data can be on disk more than twice, add to failrec here
2204                  * (e.g. with a list for failed_mirror) to make
2205                  * clean_io_failure() clean all those errors at once.
2206                  */
2207         }
2208         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2209                                       failrec->logical, failrec->len);
2210         if (num_copies == 1) {
2211                 /*
2212                  * we only have a single copy of the data, so don't bother with
2213                  * all the retry and error correction code that follows. no
2214                  * matter what the error is, it is very likely to persist.
2215                  */
2216                 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2217                          num_copies, failrec->this_mirror, failed_mirror);
2218                 free_io_failure(inode, failrec, 0);
2219                 return -EIO;
2220         }
2221
2222         /*
2223          * there are two premises:
2224          *      a) deliver good data to the caller
2225          *      b) correct the bad sectors on disk
2226          */
2227         if (failed_bio->bi_vcnt > 1) {
2228                 /*
2229                  * to fulfill b), we need to know the exact failing sectors, as
2230                  * we don't want to rewrite any more than the failed ones. thus,
2231                  * we need separate read requests for the failed bio
2232                  *
2233                  * if the following BUG_ON triggers, our validation request got
2234                  * merged. we need separate requests for our algorithm to work.
2235                  */
2236                 BUG_ON(failrec->in_validation);
2237                 failrec->in_validation = 1;
2238                 failrec->this_mirror = failed_mirror;
2239                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2240         } else {
2241                 /*
2242                  * we're ready to fulfill a) and b) alongside. get a good copy
2243                  * of the failed sector and if we succeed, we have setup
2244                  * everything for repair_io_failure to do the rest for us.
2245                  */
2246                 if (failrec->in_validation) {
2247                         BUG_ON(failrec->this_mirror != failed_mirror);
2248                         failrec->in_validation = 0;
2249                         failrec->this_mirror = 0;
2250                 }
2251                 failrec->failed_mirror = failed_mirror;
2252                 failrec->this_mirror++;
2253                 if (failrec->this_mirror == failed_mirror)
2254                         failrec->this_mirror++;
2255                 read_mode = READ_SYNC;
2256         }
2257
2258         if (failrec->this_mirror > num_copies) {
2259                 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2260                          num_copies, failrec->this_mirror, failed_mirror);
2261                 free_io_failure(inode, failrec, 0);
2262                 return -EIO;
2263         }
2264
2265         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2266         if (!bio) {
2267                 free_io_failure(inode, failrec, 0);
2268                 return -EIO;
2269         }
2270         bio->bi_end_io = failed_bio->bi_end_io;
2271         bio->bi_iter.bi_sector = failrec->logical >> 9;
2272         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2273         bio->bi_iter.bi_size = 0;
2274
2275         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2276         if (btrfs_failed_bio->csum) {
2277                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2278                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2279
2280                 btrfs_bio = btrfs_io_bio(bio);
2281                 btrfs_bio->csum = btrfs_bio->csum_inline;
2282                 phy_offset >>= inode->i_sb->s_blocksize_bits;
2283                 phy_offset *= csum_size;
2284                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2285                        csum_size);
2286         }
2287
2288         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2289
2290         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2291                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2292                  failrec->this_mirror, num_copies, failrec->in_validation);
2293
2294         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2295                                          failrec->this_mirror,
2296                                          failrec->bio_flags, 0);
2297         return ret;
2298 }
2299
2300 /* lots and lots of room for performance fixes in the end_bio funcs */
2301
2302 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2303 {
2304         int uptodate = (err == 0);
2305         struct extent_io_tree *tree;
2306         int ret;
2307
2308         tree = &BTRFS_I(page->mapping->host)->io_tree;
2309
2310         if (tree->ops && tree->ops->writepage_end_io_hook) {
2311                 ret = tree->ops->writepage_end_io_hook(page, start,
2312                                                end, NULL, uptodate);
2313                 if (ret)
2314                         uptodate = 0;
2315         }
2316
2317         if (!uptodate) {
2318                 ClearPageUptodate(page);
2319                 SetPageError(page);
2320         }
2321         return 0;
2322 }
2323
2324 /*
2325  * after a writepage IO is done, we need to:
2326  * clear the uptodate bits on error
2327  * clear the writeback bits in the extent tree for this IO
2328  * end_page_writeback if the page has no more pending IO
2329  *
2330  * Scheduling is not allowed, so the extent state tree is expected
2331  * to have one and only one object corresponding to this IO.
2332  */
2333 static void end_bio_extent_writepage(struct bio *bio, int err)
2334 {
2335         struct bio_vec *bvec;
2336         struct extent_io_tree *tree;
2337         u64 start;
2338         u64 end;
2339         int i;
2340
2341         bio_for_each_segment_all(bvec, bio, i) {
2342                 struct page *page = bvec->bv_page;
2343                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2344
2345                 /* We always issue full-page reads, but if some block
2346                  * in a page fails to read, blk_update_request() will
2347                  * advance bv_offset and adjust bv_len to compensate.
2348                  * Print a warning for nonzero offsets, and an error
2349                  * if they don't add up to a full page.  */
2350                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2351                         printk("%s page write in btrfs with offset %u and length %u\n",
2352                                bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2353                                ? KERN_ERR "partial" : KERN_INFO "incomplete",
2354                                bvec->bv_offset, bvec->bv_len);
2355
2356                 start = page_offset(page);
2357                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2358
2359                 if (end_extent_writepage(page, err, start, end))
2360                         continue;
2361
2362                 end_page_writeback(page);
2363         }
2364
2365         bio_put(bio);
2366 }
2367
2368 static void
2369 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2370                               int uptodate)
2371 {
2372         struct extent_state *cached = NULL;
2373         u64 end = start + len - 1;
2374
2375         if (uptodate && tree->track_uptodate)
2376                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2377         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2378 }
2379
2380 /*
2381  * after a readpage IO is done, we need to:
2382  * clear the uptodate bits on error
2383  * set the uptodate bits if things worked
2384  * set the page up to date if all extents in the tree are uptodate
2385  * clear the lock bit in the extent tree
2386  * unlock the page if there are no other extents locked for it
2387  *
2388  * Scheduling is not allowed, so the extent state tree is expected
2389  * to have one and only one object corresponding to this IO.
2390  */
2391 static void end_bio_extent_readpage(struct bio *bio, int err)
2392 {
2393         struct bio_vec *bvec;
2394         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2395         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2396         struct extent_io_tree *tree;
2397         u64 offset = 0;
2398         u64 start;
2399         u64 end;
2400         u64 len;
2401         u64 extent_start = 0;
2402         u64 extent_len = 0;
2403         int mirror;
2404         int ret;
2405         int i;
2406
2407         if (err)
2408                 uptodate = 0;
2409
2410         bio_for_each_segment_all(bvec, bio, i) {
2411                 struct page *page = bvec->bv_page;
2412                 struct inode *inode = page->mapping->host;
2413
2414                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2415                          "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err,
2416                          io_bio->mirror_num);
2417                 tree = &BTRFS_I(inode)->io_tree;
2418
2419                 /* We always issue full-page reads, but if some block
2420                  * in a page fails to read, blk_update_request() will
2421                  * advance bv_offset and adjust bv_len to compensate.
2422                  * Print a warning for nonzero offsets, and an error
2423                  * if they don't add up to a full page.  */
2424                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2425                         printk("%s page read in btrfs with offset %u and length %u\n",
2426                                bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2427                                ? KERN_ERR "partial" : KERN_INFO "incomplete",
2428                                bvec->bv_offset, bvec->bv_len);
2429
2430                 start = page_offset(page);
2431                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2432                 len = bvec->bv_len;
2433
2434                 mirror = io_bio->mirror_num;
2435                 if (likely(uptodate && tree->ops &&
2436                            tree->ops->readpage_end_io_hook)) {
2437                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2438                                                               page, start, end,
2439                                                               mirror);
2440                         if (ret)
2441                                 uptodate = 0;
2442                         else
2443                                 clean_io_failure(start, page);
2444                 }
2445
2446                 if (likely(uptodate))
2447                         goto readpage_ok;
2448
2449                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2450                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2451                         if (!ret && !err &&
2452                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2453                                 uptodate = 1;
2454                 } else {
2455                         /*
2456                          * The generic bio_readpage_error handles errors the
2457                          * following way: If possible, new read requests are
2458                          * created and submitted and will end up in
2459                          * end_bio_extent_readpage as well (if we're lucky, not
2460                          * in the !uptodate case). In that case it returns 0 and
2461                          * we just go on with the next page in our bio. If it
2462                          * can't handle the error it will return -EIO and we
2463                          * remain responsible for that page.
2464                          */
2465                         ret = bio_readpage_error(bio, offset, page, start, end,
2466                                                  mirror);
2467                         if (ret == 0) {
2468                                 uptodate =
2469                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2470                                 if (err)
2471                                         uptodate = 0;
2472                                 continue;
2473                         }
2474                 }
2475 readpage_ok:
2476                 if (likely(uptodate)) {
2477                         loff_t i_size = i_size_read(inode);
2478                         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2479                         unsigned offset;
2480
2481                         /* Zero out the end if this page straddles i_size */
2482                         offset = i_size & (PAGE_CACHE_SIZE-1);
2483                         if (page->index == end_index && offset)
2484                                 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2485                         SetPageUptodate(page);
2486                 } else {
2487                         ClearPageUptodate(page);
2488                         SetPageError(page);
2489                 }
2490                 unlock_page(page);
2491                 offset += len;
2492
2493                 if (unlikely(!uptodate)) {
2494                         if (extent_len) {
2495                                 endio_readpage_release_extent(tree,
2496                                                               extent_start,
2497                                                               extent_len, 1);
2498                                 extent_start = 0;
2499                                 extent_len = 0;
2500                         }
2501                         endio_readpage_release_extent(tree, start,
2502                                                       end - start + 1, 0);
2503                 } else if (!extent_len) {
2504                         extent_start = start;
2505                         extent_len = end + 1 - start;
2506                 } else if (extent_start + extent_len == start) {
2507                         extent_len += end + 1 - start;
2508                 } else {
2509                         endio_readpage_release_extent(tree, extent_start,
2510                                                       extent_len, uptodate);
2511                         extent_start = start;
2512                         extent_len = end + 1 - start;
2513                 }
2514         }
2515
2516         if (extent_len)
2517                 endio_readpage_release_extent(tree, extent_start, extent_len,
2518                                               uptodate);
2519         if (io_bio->end_io)
2520                 io_bio->end_io(io_bio, err);
2521         bio_put(bio);
2522 }
2523
2524 /*
2525  * this allocates from the btrfs_bioset.  We're returning a bio right now
2526  * but you can call btrfs_io_bio for the appropriate container_of magic
2527  */
2528 struct bio *
2529 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2530                 gfp_t gfp_flags)
2531 {
2532         struct btrfs_io_bio *btrfs_bio;
2533         struct bio *bio;
2534
2535         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2536
2537         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2538                 while (!bio && (nr_vecs /= 2)) {
2539                         bio = bio_alloc_bioset(gfp_flags,
2540                                                nr_vecs, btrfs_bioset);
2541                 }
2542         }
2543
2544         if (bio) {
2545                 bio->bi_bdev = bdev;
2546                 bio->bi_iter.bi_sector = first_sector;
2547                 btrfs_bio = btrfs_io_bio(bio);
2548                 btrfs_bio->csum = NULL;
2549                 btrfs_bio->csum_allocated = NULL;
2550                 btrfs_bio->end_io = NULL;
2551         }
2552         return bio;
2553 }
2554
2555 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2556 {
2557         return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2558 }
2559
2560
2561 /* this also allocates from the btrfs_bioset */
2562 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2563 {
2564         struct btrfs_io_bio *btrfs_bio;
2565         struct bio *bio;
2566
2567         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2568         if (bio) {
2569                 btrfs_bio = btrfs_io_bio(bio);
2570                 btrfs_bio->csum = NULL;
2571                 btrfs_bio->csum_allocated = NULL;
2572                 btrfs_bio->end_io = NULL;
2573         }
2574         return bio;
2575 }
2576
2577
2578 static int __must_check submit_one_bio(int rw, struct bio *bio,
2579                                        int mirror_num, unsigned long bio_flags)
2580 {
2581         int ret = 0;
2582         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2583         struct page *page = bvec->bv_page;
2584         struct extent_io_tree *tree = bio->bi_private;
2585         u64 start;
2586
2587         start = page_offset(page) + bvec->bv_offset;
2588
2589         bio->bi_private = NULL;
2590
2591         bio_get(bio);
2592
2593         if (tree->ops && tree->ops->submit_bio_hook)
2594                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2595                                            mirror_num, bio_flags, start);
2596         else
2597                 btrfsic_submit_bio(rw, bio);
2598
2599         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2600                 ret = -EOPNOTSUPP;
2601         bio_put(bio);
2602         return ret;
2603 }
2604
2605 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2606                      unsigned long offset, size_t size, struct bio *bio,
2607                      unsigned long bio_flags)
2608 {
2609         int ret = 0;
2610         if (tree->ops && tree->ops->merge_bio_hook)
2611                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2612                                                 bio_flags);
2613         BUG_ON(ret < 0);
2614         return ret;
2615
2616 }
2617
2618 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2619                               struct page *page, sector_t sector,
2620                               size_t size, unsigned long offset,
2621                               struct block_device *bdev,
2622                               struct bio **bio_ret,
2623                               unsigned long max_pages,
2624                               bio_end_io_t end_io_func,
2625                               int mirror_num,
2626                               unsigned long prev_bio_flags,
2627                               unsigned long bio_flags)
2628 {
2629         int ret = 0;
2630         struct bio *bio;
2631         int nr;
2632         int contig = 0;
2633         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2634         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2635         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2636
2637         if (bio_ret && *bio_ret) {
2638                 bio = *bio_ret;
2639                 if (old_compressed)
2640                         contig = bio->bi_iter.bi_sector == sector;
2641                 else
2642                         contig = bio_end_sector(bio) == sector;
2643
2644                 if (prev_bio_flags != bio_flags || !contig ||
2645                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2646                     bio_add_page(bio, page, page_size, offset) < page_size) {
2647                         ret = submit_one_bio(rw, bio, mirror_num,
2648                                              prev_bio_flags);
2649                         if (ret < 0)
2650                                 return ret;
2651                         bio = NULL;
2652                 } else {
2653                         return 0;
2654                 }
2655         }
2656         if (this_compressed)
2657                 nr = BIO_MAX_PAGES;
2658         else
2659                 nr = bio_get_nr_vecs(bdev);
2660
2661         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2662         if (!bio)
2663                 return -ENOMEM;
2664
2665         bio_add_page(bio, page, page_size, offset);
2666         bio->bi_end_io = end_io_func;
2667         bio->bi_private = tree;
2668
2669         if (bio_ret)
2670                 *bio_ret = bio;
2671         else
2672                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2673
2674         return ret;
2675 }
2676
2677 static void attach_extent_buffer_page(struct extent_buffer *eb,
2678                                       struct page *page)
2679 {
2680         if (!PagePrivate(page)) {
2681                 SetPagePrivate(page);
2682                 page_cache_get(page);
2683                 set_page_private(page, (unsigned long)eb);
2684         } else {
2685                 WARN_ON(page->private != (unsigned long)eb);
2686         }
2687 }
2688
2689 void set_page_extent_mapped(struct page *page)
2690 {
2691         if (!PagePrivate(page)) {
2692                 SetPagePrivate(page);
2693                 page_cache_get(page);
2694                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2695         }
2696 }
2697
2698 static struct extent_map *
2699 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2700                  u64 start, u64 len, get_extent_t *get_extent,
2701                  struct extent_map **em_cached)
2702 {
2703         struct extent_map *em;
2704
2705         if (em_cached && *em_cached) {
2706                 em = *em_cached;
2707                 if (em->in_tree && start >= em->start &&
2708                     start < extent_map_end(em)) {
2709                         atomic_inc(&em->refs);
2710                         return em;
2711                 }
2712
2713                 free_extent_map(em);
2714                 *em_cached = NULL;
2715         }
2716
2717         em = get_extent(inode, page, pg_offset, start, len, 0);
2718         if (em_cached && !IS_ERR_OR_NULL(em)) {
2719                 BUG_ON(*em_cached);
2720                 atomic_inc(&em->refs);
2721                 *em_cached = em;
2722         }
2723         return em;
2724 }
2725 /*
2726  * basic readpage implementation.  Locked extent state structs are inserted
2727  * into the tree that are removed when the IO is done (by the end_io
2728  * handlers)
2729  * XXX JDM: This needs looking at to ensure proper page locking
2730  */
2731 static int __do_readpage(struct extent_io_tree *tree,
2732                          struct page *page,
2733                          get_extent_t *get_extent,
2734                          struct extent_map **em_cached,
2735                          struct bio **bio, int mirror_num,
2736                          unsigned long *bio_flags, int rw)
2737 {
2738         struct inode *inode = page->mapping->host;
2739         u64 start = page_offset(page);
2740         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2741         u64 end;
2742         u64 cur = start;
2743         u64 extent_offset;
2744         u64 last_byte = i_size_read(inode);
2745         u64 block_start;
2746         u64 cur_end;
2747         sector_t sector;
2748         struct extent_map *em;
2749         struct block_device *bdev;
2750         int ret;
2751         int nr = 0;
2752         int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2753         size_t pg_offset = 0;
2754         size_t iosize;
2755         size_t disk_io_size;
2756         size_t blocksize = inode->i_sb->s_blocksize;
2757         unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2758
2759         set_page_extent_mapped(page);
2760
2761         end = page_end;
2762         if (!PageUptodate(page)) {
2763                 if (cleancache_get_page(page) == 0) {
2764                         BUG_ON(blocksize != PAGE_SIZE);
2765                         unlock_extent(tree, start, end);
2766                         goto out;
2767                 }
2768         }
2769
2770         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2771                 char *userpage;
2772                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2773
2774                 if (zero_offset) {
2775                         iosize = PAGE_CACHE_SIZE - zero_offset;
2776                         userpage = kmap_atomic(page);
2777                         memset(userpage + zero_offset, 0, iosize);
2778                         flush_dcache_page(page);
2779                         kunmap_atomic(userpage);
2780                 }
2781         }
2782         while (cur <= end) {
2783                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2784
2785                 if (cur >= last_byte) {
2786                         char *userpage;
2787                         struct extent_state *cached = NULL;
2788
2789                         iosize = PAGE_CACHE_SIZE - pg_offset;
2790                         userpage = kmap_atomic(page);
2791                         memset(userpage + pg_offset, 0, iosize);
2792                         flush_dcache_page(page);
2793                         kunmap_atomic(userpage);
2794                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2795                                             &cached, GFP_NOFS);
2796                         if (!parent_locked)
2797                                 unlock_extent_cached(tree, cur,
2798                                                      cur + iosize - 1,
2799                                                      &cached, GFP_NOFS);
2800                         break;
2801                 }
2802                 em = __get_extent_map(inode, page, pg_offset, cur,
2803                                       end - cur + 1, get_extent, em_cached);
2804                 if (IS_ERR_OR_NULL(em)) {
2805                         SetPageError(page);
2806                         if (!parent_locked)
2807                                 unlock_extent(tree, cur, end);
2808                         break;
2809                 }
2810                 extent_offset = cur - em->start;
2811                 BUG_ON(extent_map_end(em) <= cur);
2812                 BUG_ON(end < cur);
2813
2814                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2815                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2816                         extent_set_compress_type(&this_bio_flag,
2817                                                  em->compress_type);
2818                 }
2819
2820                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2821                 cur_end = min(extent_map_end(em) - 1, end);
2822                 iosize = ALIGN(iosize, blocksize);
2823                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2824                         disk_io_size = em->block_len;
2825                         sector = em->block_start >> 9;
2826                 } else {
2827                         sector = (em->block_start + extent_offset) >> 9;
2828                         disk_io_size = iosize;
2829                 }
2830                 bdev = em->bdev;
2831                 block_start = em->block_start;
2832                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2833                         block_start = EXTENT_MAP_HOLE;
2834                 free_extent_map(em);
2835                 em = NULL;
2836
2837                 /* we've found a hole, just zero and go on */
2838                 if (block_start == EXTENT_MAP_HOLE) {
2839                         char *userpage;
2840                         struct extent_state *cached = NULL;
2841
2842                         userpage = kmap_atomic(page);
2843                         memset(userpage + pg_offset, 0, iosize);
2844                         flush_dcache_page(page);
2845                         kunmap_atomic(userpage);
2846
2847                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2848                                             &cached, GFP_NOFS);
2849                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2850                                              &cached, GFP_NOFS);
2851                         cur = cur + iosize;
2852                         pg_offset += iosize;
2853                         continue;
2854                 }
2855                 /* the get_extent function already copied into the page */
2856                 if (test_range_bit(tree, cur, cur_end,
2857                                    EXTENT_UPTODATE, 1, NULL)) {
2858                         check_page_uptodate(tree, page);
2859                         if (!parent_locked)
2860                                 unlock_extent(tree, cur, cur + iosize - 1);
2861                         cur = cur + iosize;
2862                         pg_offset += iosize;
2863                         continue;
2864                 }
2865                 /* we have an inline extent but it didn't get marked up
2866                  * to date.  Error out
2867                  */
2868                 if (block_start == EXTENT_MAP_INLINE) {
2869                         SetPageError(page);
2870                         if (!parent_locked)
2871                                 unlock_extent(tree, cur, cur + iosize - 1);
2872                         cur = cur + iosize;
2873                         pg_offset += iosize;
2874                         continue;
2875                 }
2876
2877                 pnr -= page->index;
2878                 ret = submit_extent_page(rw, tree, page,
2879                                          sector, disk_io_size, pg_offset,
2880                                          bdev, bio, pnr,
2881                                          end_bio_extent_readpage, mirror_num,
2882                                          *bio_flags,
2883                                          this_bio_flag);
2884                 if (!ret) {
2885                         nr++;
2886                         *bio_flags = this_bio_flag;
2887                 } else {
2888                         SetPageError(page);
2889                         if (!parent_locked)
2890                                 unlock_extent(tree, cur, cur + iosize - 1);
2891                 }
2892                 cur = cur + iosize;
2893                 pg_offset += iosize;
2894         }
2895 out:
2896         if (!nr) {
2897                 if (!PageError(page))
2898                         SetPageUptodate(page);
2899                 unlock_page(page);
2900         }
2901         return 0;
2902 }
2903
2904 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2905                                              struct page *pages[], int nr_pages,
2906                                              u64 start, u64 end,
2907                                              get_extent_t *get_extent,
2908                                              struct extent_map **em_cached,
2909                                              struct bio **bio, int mirror_num,
2910                                              unsigned long *bio_flags, int rw)
2911 {
2912         struct inode *inode;
2913         struct btrfs_ordered_extent *ordered;
2914         int index;
2915
2916         inode = pages[0]->mapping->host;
2917         while (1) {
2918                 lock_extent(tree, start, end);
2919                 ordered = btrfs_lookup_ordered_range(inode, start,
2920                                                      end - start + 1);
2921                 if (!ordered)
2922                         break;
2923                 unlock_extent(tree, start, end);
2924                 btrfs_start_ordered_extent(inode, ordered, 1);
2925                 btrfs_put_ordered_extent(ordered);
2926         }
2927
2928         for (index = 0; index < nr_pages; index++) {
2929                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2930                               mirror_num, bio_flags, rw);
2931                 page_cache_release(pages[index]);
2932         }
2933 }
2934
2935 static void __extent_readpages(struct extent_io_tree *tree,
2936                                struct page *pages[],
2937                                int nr_pages, get_extent_t *get_extent,
2938                                struct extent_map **em_cached,
2939                                struct bio **bio, int mirror_num,
2940                                unsigned long *bio_flags, int rw)
2941 {
2942         u64 start = 0;
2943         u64 end = 0;
2944         u64 page_start;
2945         int index;
2946         int first_index = 0;
2947
2948         for (index = 0; index < nr_pages; index++) {
2949                 page_start = page_offset(pages[index]);
2950                 if (!end) {
2951                         start = page_start;
2952                         end = start + PAGE_CACHE_SIZE - 1;
2953                         first_index = index;
2954                 } else if (end + 1 == page_start) {
2955                         end += PAGE_CACHE_SIZE;
2956                 } else {
2957                         __do_contiguous_readpages(tree, &pages[first_index],
2958                                                   index - first_index, start,
2959                                                   end, get_extent, em_cached,
2960                                                   bio, mirror_num, bio_flags,
2961                                                   rw);
2962                         start = page_start;
2963                         end = start + PAGE_CACHE_SIZE - 1;
2964                         first_index = index;
2965                 }
2966         }
2967
2968         if (end)
2969                 __do_contiguous_readpages(tree, &pages[first_index],
2970                                           index - first_index, start,
2971                                           end, get_extent, em_cached, bio,
2972                                           mirror_num, bio_flags, rw);
2973 }
2974
2975 static int __extent_read_full_page(struct extent_io_tree *tree,
2976                                    struct page *page,
2977                                    get_extent_t *get_extent,
2978                                    struct bio **bio, int mirror_num,
2979                                    unsigned long *bio_flags, int rw)
2980 {
2981         struct inode *inode = page->mapping->host;
2982         struct btrfs_ordered_extent *ordered;
2983         u64 start = page_offset(page);
2984         u64 end = start + PAGE_CACHE_SIZE - 1;
2985         int ret;
2986
2987         while (1) {
2988                 lock_extent(tree, start, end);
2989                 ordered = btrfs_lookup_ordered_extent(inode, start);
2990                 if (!ordered)
2991                         break;
2992                 unlock_extent(tree, start, end);
2993                 btrfs_start_ordered_extent(inode, ordered, 1);
2994                 btrfs_put_ordered_extent(ordered);
2995         }
2996
2997         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
2998                             bio_flags, rw);
2999         return ret;
3000 }
3001
3002 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3003                             get_extent_t *get_extent, int mirror_num)
3004 {
3005         struct bio *bio = NULL;
3006         unsigned long bio_flags = 0;
3007         int ret;
3008
3009         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3010                                       &bio_flags, READ);
3011         if (bio)
3012                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3013         return ret;
3014 }
3015
3016 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3017                                  get_extent_t *get_extent, int mirror_num)
3018 {
3019         struct bio *bio = NULL;
3020         unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3021         int ret;
3022
3023         ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3024                                       &bio_flags, READ);
3025         if (bio)
3026                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3027         return ret;
3028 }
3029
3030 static noinline void update_nr_written(struct page *page,
3031                                       struct writeback_control *wbc,
3032                                       unsigned long nr_written)
3033 {
3034         wbc->nr_to_write -= nr_written;
3035         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3036             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3037                 page->mapping->writeback_index = page->index + nr_written;
3038 }
3039
3040 /*
3041  * the writepage semantics are similar to regular writepage.  extent
3042  * records are inserted to lock ranges in the tree, and as dirty areas
3043  * are found, they are marked writeback.  Then the lock bits are removed
3044  * and the end_io handler clears the writeback ranges
3045  */
3046 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3047                               void *data)
3048 {
3049         struct inode *inode = page->mapping->host;
3050         struct extent_page_data *epd = data;
3051         struct extent_io_tree *tree = epd->tree;
3052         u64 start = page_offset(page);
3053         u64 delalloc_start;
3054         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3055         u64 end;
3056         u64 cur = start;
3057         u64 extent_offset;
3058         u64 last_byte = i_size_read(inode);
3059         u64 block_start;
3060         u64 iosize;
3061         sector_t sector;
3062         struct extent_state *cached_state = NULL;
3063         struct extent_map *em;
3064         struct block_device *bdev;
3065         int ret;
3066         int nr = 0;
3067         size_t pg_offset = 0;
3068         size_t blocksize;
3069         loff_t i_size = i_size_read(inode);
3070         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3071         u64 nr_delalloc;
3072         u64 delalloc_end;
3073         int page_started;
3074         int compressed;
3075         int write_flags;
3076         unsigned long nr_written = 0;
3077         bool fill_delalloc = true;
3078
3079         if (wbc->sync_mode == WB_SYNC_ALL)
3080                 write_flags = WRITE_SYNC;
3081         else
3082                 write_flags = WRITE;
3083
3084         trace___extent_writepage(page, inode, wbc);
3085
3086         WARN_ON(!PageLocked(page));
3087
3088         ClearPageError(page);
3089
3090         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3091         if (page->index > end_index ||
3092            (page->index == end_index && !pg_offset)) {
3093                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3094                 unlock_page(page);
3095                 return 0;
3096         }
3097
3098         if (page->index == end_index) {
3099                 char *userpage;
3100
3101                 userpage = kmap_atomic(page);
3102                 memset(userpage + pg_offset, 0,
3103                        PAGE_CACHE_SIZE - pg_offset);
3104                 kunmap_atomic(userpage);
3105                 flush_dcache_page(page);
3106         }
3107         pg_offset = 0;
3108
3109         set_page_extent_mapped(page);
3110
3111         if (!tree->ops || !tree->ops->fill_delalloc)
3112                 fill_delalloc = false;
3113
3114         delalloc_start = start;
3115         delalloc_end = 0;
3116         page_started = 0;
3117         if (!epd->extent_locked && fill_delalloc) {
3118                 u64 delalloc_to_write = 0;
3119                 /*
3120                  * make sure the wbc mapping index is at least updated
3121                  * to this page.
3122                  */
3123                 update_nr_written(page, wbc, 0);
3124
3125                 while (delalloc_end < page_end) {
3126                         nr_delalloc = find_lock_delalloc_range(inode, tree,
3127                                                        page,
3128                                                        &delalloc_start,
3129                                                        &delalloc_end,
3130                                                        128 * 1024 * 1024);
3131                         if (nr_delalloc == 0) {
3132                                 delalloc_start = delalloc_end + 1;
3133                                 continue;
3134                         }
3135                         ret = tree->ops->fill_delalloc(inode, page,
3136                                                        delalloc_start,
3137                                                        delalloc_end,
3138                                                        &page_started,
3139                                                        &nr_written);
3140                         /* File system has been set read-only */
3141                         if (ret) {
3142                                 SetPageError(page);
3143                                 goto done;
3144                         }
3145                         /*
3146                          * delalloc_end is already one less than the total
3147                          * length, so we don't subtract one from
3148                          * PAGE_CACHE_SIZE
3149                          */
3150                         delalloc_to_write += (delalloc_end - delalloc_start +
3151                                               PAGE_CACHE_SIZE) >>
3152                                               PAGE_CACHE_SHIFT;
3153                         delalloc_start = delalloc_end + 1;
3154                 }
3155                 if (wbc->nr_to_write < delalloc_to_write) {
3156                         int thresh = 8192;
3157
3158                         if (delalloc_to_write < thresh * 2)
3159                                 thresh = delalloc_to_write;
3160                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
3161                                                  thresh);
3162                 }
3163
3164                 /* did the fill delalloc function already unlock and start
3165                  * the IO?
3166                  */
3167                 if (page_started) {
3168                         ret = 0;
3169                         /*
3170                          * we've unlocked the page, so we can't update
3171                          * the mapping's writeback index, just update
3172                          * nr_to_write.
3173                          */
3174                         wbc->nr_to_write -= nr_written;
3175                         goto done_unlocked;
3176                 }
3177         }
3178         if (tree->ops && tree->ops->writepage_start_hook) {
3179                 ret = tree->ops->writepage_start_hook(page, start,
3180                                                       page_end);
3181                 if (ret) {
3182                         /* Fixup worker will requeue */
3183                         if (ret == -EBUSY)
3184                                 wbc->pages_skipped++;
3185                         else
3186                                 redirty_page_for_writepage(wbc, page);
3187                         update_nr_written(page, wbc, nr_written);
3188                         unlock_page(page);
3189                         ret = 0;
3190                         goto done_unlocked;
3191                 }
3192         }
3193
3194         /*
3195          * we don't want to touch the inode after unlocking the page,
3196          * so we update the mapping writeback index now
3197          */
3198         update_nr_written(page, wbc, nr_written + 1);
3199
3200         end = page_end;
3201         if (last_byte <= start) {
3202                 if (tree->ops && tree->ops->writepage_end_io_hook)
3203                         tree->ops->writepage_end_io_hook(page, start,
3204                                                          page_end, NULL, 1);
3205                 goto done;
3206         }
3207
3208         blocksize = inode->i_sb->s_blocksize;
3209
3210         while (cur <= end) {
3211                 if (cur >= last_byte) {
3212                         if (tree->ops && tree->ops->writepage_end_io_hook)
3213                                 tree->ops->writepage_end_io_hook(page, cur,
3214                                                          page_end, NULL, 1);
3215                         break;
3216                 }
3217                 em = epd->get_extent(inode, page, pg_offset, cur,
3218                                      end - cur + 1, 1);
3219                 if (IS_ERR_OR_NULL(em)) {
3220                         SetPageError(page);
3221                         break;
3222                 }
3223
3224                 extent_offset = cur - em->start;
3225                 BUG_ON(extent_map_end(em) <= cur);
3226                 BUG_ON(end < cur);
3227                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3228                 iosize = ALIGN(iosize, blocksize);
3229                 sector = (em->block_start + extent_offset) >> 9;
3230                 bdev = em->bdev;
3231                 block_start = em->block_start;
3232                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3233                 free_extent_map(em);
3234                 em = NULL;
3235
3236                 /*
3237                  * compressed and inline extents are written through other
3238                  * paths in the FS
3239                  */
3240                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3241                     block_start == EXTENT_MAP_INLINE) {
3242                         /*
3243                          * end_io notification does not happen here for
3244                          * compressed extents
3245                          */
3246                         if (!compressed && tree->ops &&
3247                             tree->ops->writepage_end_io_hook)
3248                                 tree->ops->writepage_end_io_hook(page, cur,
3249                                                          cur + iosize - 1,
3250                                                          NULL, 1);
3251                         else if (compressed) {
3252                                 /* we don't want to end_page_writeback on
3253                                  * a compressed extent.  this happens
3254                                  * elsewhere
3255                                  */
3256                                 nr++;
3257                         }
3258
3259                         cur += iosize;
3260                         pg_offset += iosize;
3261                         continue;
3262                 }
3263                 /* leave this out until we have a page_mkwrite call */
3264                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3265                                    EXTENT_DIRTY, 0, NULL)) {
3266                         cur = cur + iosize;
3267                         pg_offset += iosize;
3268                         continue;
3269                 }
3270
3271                 if (tree->ops && tree->ops->writepage_io_hook) {
3272                         ret = tree->ops->writepage_io_hook(page, cur,
3273                                                 cur + iosize - 1);
3274                 } else {
3275                         ret = 0;
3276                 }
3277                 if (ret) {
3278                         SetPageError(page);
3279                 } else {
3280                         unsigned long max_nr = end_index + 1;
3281
3282                         set_range_writeback(tree, cur, cur + iosize - 1);
3283                         if (!PageWriteback(page)) {
3284                                 printk(KERN_ERR "btrfs warning page %lu not "
3285                                        "writeback, cur %llu end %llu\n",
3286                                        page->index, cur, end);
3287                         }
3288
3289                         ret = submit_extent_page(write_flags, tree, page,
3290                                                  sector, iosize, pg_offset,
3291                                                  bdev, &epd->bio, max_nr,
3292                                                  end_bio_extent_writepage,
3293                                                  0, 0, 0);
3294                         if (ret)
3295                                 SetPageError(page);
3296                 }
3297                 cur = cur + iosize;
3298                 pg_offset += iosize;
3299                 nr++;
3300         }
3301 done:
3302         if (nr == 0) {
3303                 /* make sure the mapping tag for page dirty gets cleared */
3304                 set_page_writeback(page);
3305                 end_page_writeback(page);
3306         }
3307         unlock_page(page);
3308
3309 done_unlocked:
3310
3311         /* drop our reference on any cached states */
3312         free_extent_state(cached_state);
3313         return 0;
3314 }
3315
3316 static int eb_wait(void *word)
3317 {
3318         io_schedule();
3319         return 0;
3320 }
3321
3322 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3323 {
3324         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3325                     TASK_UNINTERRUPTIBLE);
3326 }
3327
3328 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3329                                      struct btrfs_fs_info *fs_info,
3330                                      struct extent_page_data *epd)
3331 {
3332         unsigned long i, num_pages;
3333         int flush = 0;
3334         int ret = 0;
3335
3336         if (!btrfs_try_tree_write_lock(eb)) {
3337                 flush = 1;
3338                 flush_write_bio(epd);
3339                 btrfs_tree_lock(eb);
3340         }
3341
3342         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3343                 btrfs_tree_unlock(eb);
3344                 if (!epd->sync_io)
3345                         return 0;
3346                 if (!flush) {
3347                         flush_write_bio(epd);
3348                         flush = 1;
3349                 }
3350                 while (1) {
3351                         wait_on_extent_buffer_writeback(eb);
3352                         btrfs_tree_lock(eb);
3353                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3354                                 break;
3355                         btrfs_tree_unlock(eb);
3356                 }
3357         }
3358
3359         /*
3360          * We need to do this to prevent races in people who check if the eb is
3361          * under IO since we can end up having no IO bits set for a short period
3362          * of time.
3363          */
3364         spin_lock(&eb->refs_lock);
3365         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3366                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3367                 spin_unlock(&eb->refs_lock);
3368                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3369                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3370                                      -eb->len,
3371                                      fs_info->dirty_metadata_batch);
3372                 ret = 1;
3373         } else {
3374                 spin_unlock(&eb->refs_lock);
3375         }
3376
3377         btrfs_tree_unlock(eb);
3378
3379         if (!ret)
3380                 return ret;
3381
3382         num_pages = num_extent_pages(eb->start, eb->len);
3383         for (i = 0; i < num_pages; i++) {
3384                 struct page *p = extent_buffer_page(eb, i);
3385
3386                 if (!trylock_page(p)) {
3387                         if (!flush) {
3388                                 flush_write_bio(epd);
3389                                 flush = 1;
3390                         }
3391                         lock_page(p);
3392                 }
3393         }
3394
3395         return ret;
3396 }
3397
3398 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3399 {
3400         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3401         smp_mb__after_clear_bit();
3402         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3403 }
3404
3405 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3406 {
3407         struct bio_vec *bvec;
3408         struct extent_buffer *eb;
3409         int i, done;
3410
3411         bio_for_each_segment_all(bvec, bio, i) {
3412                 struct page *page = bvec->bv_page;
3413
3414                 eb = (struct extent_buffer *)page->private;
3415                 BUG_ON(!eb);
3416                 done = atomic_dec_and_test(&eb->io_pages);
3417
3418                 if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3419                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3420                         ClearPageUptodate(page);
3421                         SetPageError(page);
3422                 }
3423
3424                 end_page_writeback(page);
3425
3426                 if (!done)
3427                         continue;
3428
3429                 end_extent_buffer_writeback(eb);
3430         }
3431
3432         bio_put(bio);
3433 }
3434
3435 static int write_one_eb(struct extent_buffer *eb,
3436                         struct btrfs_fs_info *fs_info,
3437                         struct writeback_control *wbc,
3438                         struct extent_page_data *epd)
3439 {
3440         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3441         u64 offset = eb->start;
3442         unsigned long i, num_pages;
3443         unsigned long bio_flags = 0;
3444         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3445         int ret = 0;
3446
3447         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3448         num_pages = num_extent_pages(eb->start, eb->len);
3449         atomic_set(&eb->io_pages, num_pages);
3450         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3451                 bio_flags = EXTENT_BIO_TREE_LOG;
3452
3453         for (i = 0; i < num_pages; i++) {
3454                 struct page *p = extent_buffer_page(eb, i);
3455
3456                 clear_page_dirty_for_io(p);
3457                 set_page_writeback(p);
3458                 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3459                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3460                                          -1, end_bio_extent_buffer_writepage,
3461                                          0, epd->bio_flags, bio_flags);
3462                 epd->bio_flags = bio_flags;
3463                 if (ret) {
3464                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3465                         SetPageError(p);
3466                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3467                                 end_extent_buffer_writeback(eb);
3468                         ret = -EIO;
3469                         break;
3470                 }
3471                 offset += PAGE_CACHE_SIZE;
3472                 update_nr_written(p, wbc, 1);
3473                 unlock_page(p);
3474         }
3475
3476         if (unlikely(ret)) {
3477                 for (; i < num_pages; i++) {
3478                         struct page *p = extent_buffer_page(eb, i);
3479                         unlock_page(p);
3480                 }
3481         }
3482
3483         return ret;
3484 }
3485
3486 int btree_write_cache_pages(struct address_space *mapping,
3487                                    struct writeback_control *wbc)
3488 {
3489         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3490         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3491         struct extent_buffer *eb, *prev_eb = NULL;
3492         struct extent_page_data epd = {
3493                 .bio = NULL,
3494                 .tree = tree,
3495                 .extent_locked = 0,
3496                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3497                 .bio_flags = 0,
3498         };
3499         int ret = 0;
3500         int done = 0;
3501         int nr_to_write_done = 0;
3502         struct pagevec pvec;
3503         int nr_pages;
3504         pgoff_t index;
3505         pgoff_t end;            /* Inclusive */
3506         int scanned = 0;
3507         int tag;
3508
3509         pagevec_init(&pvec, 0);
3510         if (wbc->range_cyclic) {
3511                 index = mapping->writeback_index; /* Start from prev offset */
3512                 end = -1;
3513         } else {
3514                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3515                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3516                 scanned = 1;
3517         }
3518         if (wbc->sync_mode == WB_SYNC_ALL)
3519                 tag = PAGECACHE_TAG_TOWRITE;
3520         else
3521                 tag = PAGECACHE_TAG_DIRTY;
3522 retry:
3523         if (wbc->sync_mode == WB_SYNC_ALL)
3524                 tag_pages_for_writeback(mapping, index, end);
3525         while (!done && !nr_to_write_done && (index <= end) &&
3526                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3527                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3528                 unsigned i;
3529
3530                 scanned = 1;
3531                 for (i = 0; i < nr_pages; i++) {
3532                         struct page *page = pvec.pages[i];
3533
3534                         if (!PagePrivate(page))
3535                                 continue;
3536
3537                         if (!wbc->range_cyclic && page->index > end) {
3538                                 done = 1;
3539                                 break;
3540                         }
3541
3542                         spin_lock(&mapping->private_lock);
3543                         if (!PagePrivate(page)) {
3544                                 spin_unlock(&mapping->private_lock);
3545                                 continue;
3546                         }
3547
3548                         eb = (struct extent_buffer *)page->private;
3549
3550                         /*
3551                          * Shouldn't happen and normally this would be a BUG_ON
3552                          * but no sense in crashing the users box for something
3553                          * we can survive anyway.
3554                          */
3555                         if (WARN_ON(!eb)) {
3556                                 spin_unlock(&mapping->private_lock);
3557                                 continue;
3558                         }
3559
3560                         if (eb == prev_eb) {
3561                                 spin_unlock(&mapping->private_lock);
3562                                 continue;
3563                         }
3564
3565                         ret = atomic_inc_not_zero(&eb->refs);
3566                         spin_unlock(&mapping->private_lock);
3567                         if (!ret)
3568                                 continue;
3569
3570                         prev_eb = eb;
3571                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3572                         if (!ret) {
3573                                 free_extent_buffer(eb);
3574                                 continue;
3575                         }
3576
3577                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3578                         if (ret) {
3579                                 done = 1;
3580                                 free_extent_buffer(eb);
3581                                 break;
3582                         }
3583                         free_extent_buffer(eb);
3584
3585                         /*
3586                          * the filesystem may choose to bump up nr_to_write.
3587                          * We have to make sure to honor the new nr_to_write
3588                          * at any time
3589                          */
3590                         nr_to_write_done = wbc->nr_to_write <= 0;
3591                 }
3592                 pagevec_release(&pvec);
3593                 cond_resched();
3594         }
3595         if (!scanned && !done) {
3596                 /*
3597                  * We hit the last page and there is more work to be done: wrap
3598                  * back to the start of the file
3599                  */
3600                 scanned = 1;
3601                 index = 0;
3602                 goto retry;
3603         }
3604         flush_write_bio(&epd);
3605         return ret;
3606 }
3607
3608 /**
3609  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3610  * @mapping: address space structure to write
3611  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3612  * @writepage: function called for each page
3613  * @data: data passed to writepage function
3614  *
3615  * If a page is already under I/O, write_cache_pages() skips it, even
3616  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3617  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3618  * and msync() need to guarantee that all the data which was dirty at the time
3619  * the call was made get new I/O started against them.  If wbc->sync_mode is
3620  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3621  * existing IO to complete.
3622  */
3623 static int extent_write_cache_pages(struct extent_io_tree *tree,
3624                              struct address_space *mapping,
3625                              struct writeback_control *wbc,
3626                              writepage_t writepage, void *data,
3627                              void (*flush_fn)(void *))
3628 {
3629         struct inode *inode = mapping->host;
3630         int ret = 0;
3631         int done = 0;
3632         int nr_to_write_done = 0;
3633         struct pagevec pvec;
3634         int nr_pages;
3635         pgoff_t index;
3636         pgoff_t end;            /* Inclusive */
3637         int scanned = 0;
3638         int tag;
3639
3640         /*
3641          * We have to hold onto the inode so that ordered extents can do their
3642          * work when the IO finishes.  The alternative to this is failing to add
3643          * an ordered extent if the igrab() fails there and that is a huge pain
3644          * to deal with, so instead just hold onto the inode throughout the
3645          * writepages operation.  If it fails here we are freeing up the inode
3646          * anyway and we'd rather not waste our time writing out stuff that is
3647          * going to be truncated anyway.
3648          */
3649         if (!igrab(inode))
3650                 return 0;
3651
3652         pagevec_init(&pvec, 0);
3653         if (wbc->range_cyclic) {
3654                 index = mapping->writeback_index; /* Start from prev offset */
3655                 end = -1;
3656         } else {
3657                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3658                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3659                 scanned = 1;
3660         }
3661         if (wbc->sync_mode == WB_SYNC_ALL)
3662                 tag = PAGECACHE_TAG_TOWRITE;
3663         else
3664                 tag = PAGECACHE_TAG_DIRTY;
3665 retry:
3666         if (wbc->sync_mode == WB_SYNC_ALL)
3667                 tag_pages_for_writeback(mapping, index, end);
3668         while (!done && !nr_to_write_done && (index <= end) &&
3669                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3670                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3671                 unsigned i;
3672
3673                 scanned = 1;
3674                 for (i = 0; i < nr_pages; i++) {
3675                         struct page *page = pvec.pages[i];
3676
3677                         /*
3678                          * At this point we hold neither mapping->tree_lock nor
3679                          * lock on the page itself: the page may be truncated or
3680                          * invalidated (changing page->mapping to NULL), or even
3681                          * swizzled back from swapper_space to tmpfs file
3682                          * mapping
3683                          */
3684                         if (!trylock_page(page)) {
3685                                 flush_fn(data);
3686                                 lock_page(page);
3687                         }
3688
3689                         if (unlikely(page->mapping != mapping)) {
3690                                 unlock_page(page);
3691                                 continue;
3692                         }
3693
3694                         if (!wbc->range_cyclic && page->index > end) {
3695                                 done = 1;
3696                                 unlock_page(page);
3697                                 continue;
3698                         }
3699
3700                         if (wbc->sync_mode != WB_SYNC_NONE) {
3701                                 if (PageWriteback(page))
3702                                         flush_fn(data);
3703                                 wait_on_page_writeback(page);
3704                         }
3705
3706                         if (PageWriteback(page) ||
3707                             !clear_page_dirty_for_io(page)) {
3708                                 unlock_page(page);
3709                                 continue;
3710                         }
3711
3712                         ret = (*writepage)(page, wbc, data);
3713
3714                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3715                                 unlock_page(page);
3716                                 ret = 0;
3717                         }
3718                         if (ret)
3719                                 done = 1;
3720
3721                         /*
3722                          * the filesystem may choose to bump up nr_to_write.
3723                          * We have to make sure to honor the new nr_to_write
3724                          * at any time
3725                          */
3726                         nr_to_write_done = wbc->nr_to_write <= 0;
3727                 }
3728                 pagevec_release(&pvec);
3729                 cond_resched();
3730         }
3731         if (!scanned && !done) {
3732                 /*
3733                  * We hit the last page and there is more work to be done: wrap
3734                  * back to the start of the file
3735                  */
3736                 scanned = 1;
3737                 index = 0;
3738                 goto retry;
3739         }
3740         btrfs_add_delayed_iput(inode);
3741         return ret;
3742 }
3743
3744 static void flush_epd_write_bio(struct extent_page_data *epd)
3745 {
3746         if (epd->bio) {
3747                 int rw = WRITE;
3748                 int ret;
3749
3750                 if (epd->sync_io)
3751                         rw = WRITE_SYNC;
3752
3753                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3754                 BUG_ON(ret < 0); /* -ENOMEM */
3755                 epd->bio = NULL;
3756         }
3757 }
3758
3759 static noinline void flush_write_bio(void *data)
3760 {
3761         struct extent_page_data *epd = data;
3762         flush_epd_write_bio(epd);
3763 }
3764
3765 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3766                           get_extent_t *get_extent,
3767                           struct writeback_control *wbc)
3768 {
3769         int ret;
3770         struct extent_page_data epd = {
3771                 .bio = NULL,
3772                 .tree = tree,
3773                 .get_extent = get_extent,
3774                 .extent_locked = 0,
3775                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3776                 .bio_flags = 0,
3777         };
3778
3779         ret = __extent_writepage(page, wbc, &epd);
3780
3781         flush_epd_write_bio(&epd);
3782         return ret;
3783 }
3784
3785 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3786                               u64 start, u64 end, get_extent_t *get_extent,
3787                               int mode)
3788 {
3789         int ret = 0;
3790         struct address_space *mapping = inode->i_mapping;
3791         struct page *page;
3792         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3793                 PAGE_CACHE_SHIFT;
3794
3795         struct extent_page_data epd = {
3796                 .bio = NULL,
3797                 .tree = tree,
3798                 .get_extent = get_extent,
3799                 .extent_locked = 1,
3800                 .sync_io = mode == WB_SYNC_ALL,
3801                 .bio_flags = 0,
3802         };
3803         struct writeback_control wbc_writepages = {
3804                 .sync_mode      = mode,
3805                 .nr_to_write    = nr_pages * 2,
3806                 .range_start    = start,
3807                 .range_end      = end + 1,
3808         };
3809
3810         while (start <= end) {
3811                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3812                 if (clear_page_dirty_for_io(page))
3813                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3814                 else {
3815                         if (tree->ops && tree->ops->writepage_end_io_hook)
3816                                 tree->ops->writepage_end_io_hook(page, start,
3817                                                  start + PAGE_CACHE_SIZE - 1,
3818                                                  NULL, 1);
3819                         unlock_page(page);
3820                 }
3821                 page_cache_release(page);
3822                 start += PAGE_CACHE_SIZE;
3823         }
3824
3825         flush_epd_write_bio(&epd);
3826         return ret;
3827 }
3828
3829 int extent_writepages(struct extent_io_tree *tree,
3830                       struct address_space *mapping,
3831                       get_extent_t *get_extent,
3832                       struct writeback_control *wbc)
3833 {
3834         int ret = 0;
3835         struct extent_page_data epd = {
3836                 .bio = NULL,
3837                 .tree = tree,
3838                 .get_extent = get_extent,
3839                 .extent_locked = 0,
3840                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3841                 .bio_flags = 0,
3842         };
3843
3844         ret = extent_write_cache_pages(tree, mapping, wbc,
3845                                        __extent_writepage, &epd,
3846                                        flush_write_bio);
3847         flush_epd_write_bio(&epd);
3848         return ret;
3849 }
3850
3851 int extent_readpages(struct extent_io_tree *tree,
3852                      struct address_space *mapping,
3853                      struct list_head *pages, unsigned nr_pages,
3854                      get_extent_t get_extent)
3855 {
3856         struct bio *bio = NULL;
3857         unsigned page_idx;
3858         unsigned long bio_flags = 0;
3859         struct page *pagepool[16];
3860         struct page *page;
3861         struct extent_map *em_cached = NULL;
3862         int nr = 0;
3863
3864         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3865                 page = list_entry(pages->prev, struct page, lru);
3866
3867                 prefetchw(&page->flags);
3868                 list_del(&page->lru);
3869                 if (add_to_page_cache_lru(page, mapping,
3870                                         page->index, GFP_NOFS)) {
3871                         page_cache_release(page);
3872                         continue;
3873                 }
3874
3875                 pagepool[nr++] = page;
3876                 if (nr < ARRAY_SIZE(pagepool))
3877                         continue;
3878                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3879                                    &bio, 0, &bio_flags, READ);
3880                 nr = 0;
3881         }
3882         if (nr)
3883                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3884                                    &bio, 0, &bio_flags, READ);
3885
3886         if (em_cached)
3887                 free_extent_map(em_cached);
3888
3889         BUG_ON(!list_empty(pages));
3890         if (bio)
3891                 return submit_one_bio(READ, bio, 0, bio_flags);
3892         return 0;
3893 }
3894
3895 /*
3896  * basic invalidatepage code, this waits on any locked or writeback
3897  * ranges corresponding to the page, and then deletes any extent state
3898  * records from the tree
3899  */
3900 int extent_invalidatepage(struct extent_io_tree *tree,
3901                           struct page *page, unsigned long offset)
3902 {
3903         struct extent_state *cached_state = NULL;
3904         u64 start = page_offset(page);
3905         u64 end = start + PAGE_CACHE_SIZE - 1;
3906         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3907
3908         start += ALIGN(offset, blocksize);
3909         if (start > end)
3910                 return 0;
3911
3912         lock_extent_bits(tree, start, end, 0, &cached_state);
3913         wait_on_page_writeback(page);
3914         clear_extent_bit(tree, start, end,
3915                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3916                          EXTENT_DO_ACCOUNTING,
3917                          1, 1, &cached_state, GFP_NOFS);
3918         return 0;
3919 }
3920
3921 /*
3922  * a helper for releasepage, this tests for areas of the page that
3923  * are locked or under IO and drops the related state bits if it is safe
3924  * to drop the page.
3925  */
3926 static int try_release_extent_state(struct extent_map_tree *map,
3927                                     struct extent_io_tree *tree,
3928                                     struct page *page, gfp_t mask)
3929 {
3930         u64 start = page_offset(page);
3931         u64 end = start + PAGE_CACHE_SIZE - 1;
3932         int ret = 1;
3933
3934         if (test_range_bit(tree, start, end,
3935                            EXTENT_IOBITS, 0, NULL))
3936                 ret = 0;
3937         else {
3938                 if ((mask & GFP_NOFS) == GFP_NOFS)
3939                         mask = GFP_NOFS;
3940                 /*
3941                  * at this point we can safely clear everything except the
3942                  * locked bit and the nodatasum bit
3943                  */
3944                 ret = clear_extent_bit(tree, start, end,
3945                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3946                                  0, 0, NULL, mask);
3947
3948                 /* if clear_extent_bit failed for enomem reasons,
3949                  * we can't allow the release to continue.
3950                  */
3951                 if (ret < 0)
3952                         ret = 0;
3953                 else
3954                         ret = 1;
3955         }
3956         return ret;
3957 }
3958
3959 /*
3960  * a helper for releasepage.  As long as there are no locked extents
3961  * in the range corresponding to the page, both state records and extent
3962  * map records are removed
3963  */
3964 int try_release_extent_mapping(struct extent_map_tree *map,
3965                                struct extent_io_tree *tree, struct page *page,
3966                                gfp_t mask)
3967 {
3968         struct extent_map *em;
3969         u64 start = page_offset(page);
3970         u64 end = start + PAGE_CACHE_SIZE - 1;
3971
3972         if ((mask & __GFP_WAIT) &&
3973             page->mapping->host->i_size > 16 * 1024 * 1024) {
3974                 u64 len;
3975                 while (start <= end) {
3976                         len = end - start + 1;
3977                         write_lock(&map->lock);
3978                         em = lookup_extent_mapping(map, start, len);
3979                         if (!em) {
3980                                 write_unlock(&map->lock);
3981                                 break;
3982                         }
3983                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3984                             em->start != start) {
3985                                 write_unlock(&map->lock);
3986                                 free_extent_map(em);
3987                                 break;
3988                         }
3989                         if (!test_range_bit(tree, em->start,
3990                                             extent_map_end(em) - 1,
3991                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3992                                             0, NULL)) {
3993                                 remove_extent_mapping(map, em);
3994                                 /* once for the rb tree */
3995                                 free_extent_map(em);
3996                         }
3997                         start = extent_map_end(em);
3998                         write_unlock(&map->lock);
3999
4000                         /* once for us */
4001                         free_extent_map(em);
4002                 }
4003         }
4004         return try_release_extent_state(map, tree, page, mask);
4005 }
4006
4007 /*
4008  * helper function for fiemap, which doesn't want to see any holes.
4009  * This maps until we find something past 'last'
4010  */
4011 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4012                                                 u64 offset,
4013                                                 u64 last,
4014                                                 get_extent_t *get_extent)
4015 {
4016         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4017         struct extent_map *em;
4018         u64 len;
4019
4020         if (offset >= last)
4021                 return NULL;
4022
4023         while (1) {
4024                 len = last - offset;
4025                 if (len == 0)
4026                         break;
4027                 len = ALIGN(len, sectorsize);
4028                 em = get_extent(inode, NULL, 0, offset, len, 0);
4029                 if (IS_ERR_OR_NULL(em))
4030                         return em;
4031
4032                 /* if this isn't a hole return it */
4033                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4034                     em->block_start != EXTENT_MAP_HOLE) {
4035                         return em;
4036                 }
4037
4038                 /* this is a hole, advance to the next extent */
4039                 offset = extent_map_end(em);
4040                 free_extent_map(em);
4041                 if (offset >= last)
4042                         break;
4043         }
4044         return NULL;
4045 }
4046
4047 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4048 {
4049         unsigned long cnt = *((unsigned long *)ctx);
4050
4051         cnt++;
4052         *((unsigned long *)ctx) = cnt;
4053
4054         /* Now we're sure that the extent is shared. */
4055         if (cnt > 1)
4056                 return 1;
4057         return 0;
4058 }
4059
4060 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4061                 __u64 start, __u64 len, get_extent_t *get_extent)
4062 {
4063         int ret = 0;
4064         u64 off = start;
4065         u64 max = start + len;
4066         u32 flags = 0;
4067         u32 found_type;
4068         u64 last;
4069         u64 last_for_get_extent = 0;
4070         u64 disko = 0;
4071         u64 isize = i_size_read(inode);
4072         struct btrfs_key found_key;
4073         struct extent_map *em = NULL;
4074         struct extent_state *cached_state = NULL;
4075         struct btrfs_path *path;
4076         struct btrfs_file_extent_item *item;
4077         int end = 0;
4078         u64 em_start = 0;
4079         u64 em_len = 0;
4080         u64 em_end = 0;
4081         unsigned long emflags;
4082
4083         if (len == 0)
4084                 return -EINVAL;
4085
4086         path = btrfs_alloc_path();
4087         if (!path)
4088                 return -ENOMEM;
4089         path->leave_spinning = 1;
4090
4091         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4092         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4093
4094         /*
4095          * lookup the last file extent.  We're not using i_size here
4096          * because there might be preallocation past i_size
4097          */
4098         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4099                                        path, btrfs_ino(inode), -1, 0);
4100         if (ret < 0) {
4101                 btrfs_free_path(path);
4102                 return ret;
4103         }
4104         WARN_ON(!ret);
4105         path->slots[0]--;
4106         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4107                               struct btrfs_file_extent_item);
4108         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4109         found_type = btrfs_key_type(&found_key);
4110
4111         /* No extents, but there might be delalloc bits */
4112         if (found_key.objectid != btrfs_ino(inode) ||
4113             found_type != BTRFS_EXTENT_DATA_KEY) {
4114                 /* have to trust i_size as the end */
4115                 last = (u64)-1;
4116                 last_for_get_extent = isize;
4117         } else {
4118                 /*
4119                  * remember the start of the last extent.  There are a
4120                  * bunch of different factors that go into the length of the
4121                  * extent, so its much less complex to remember where it started
4122                  */
4123                 last = found_key.offset;
4124                 last_for_get_extent = last + 1;
4125         }
4126         btrfs_release_path(path);
4127
4128         /*
4129          * we might have some extents allocated but more delalloc past those
4130          * extents.  so, we trust isize unless the start of the last extent is
4131          * beyond isize
4132          */
4133         if (last < isize) {
4134                 last = (u64)-1;
4135                 last_for_get_extent = isize;
4136         }
4137
4138         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4139                          &cached_state);
4140
4141         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4142                                    get_extent);
4143         if (!em)
4144                 goto out;
4145         if (IS_ERR(em)) {
4146                 ret = PTR_ERR(em);
4147                 goto out;
4148         }
4149
4150         while (!end) {
4151                 u64 offset_in_extent = 0;
4152
4153                 /* break if the extent we found is outside the range */
4154                 if (em->start >= max || extent_map_end(em) < off)
4155                         break;
4156
4157                 /*
4158                  * get_extent may return an extent that starts before our
4159                  * requested range.  We have to make sure the ranges
4160                  * we return to fiemap always move forward and don't
4161                  * overlap, so adjust the offsets here
4162                  */
4163                 em_start = max(em->start, off);
4164
4165                 /*
4166                  * record the offset from the start of the extent
4167                  * for adjusting the disk offset below.  Only do this if the
4168                  * extent isn't compressed since our in ram offset may be past
4169                  * what we have actually allocated on disk.
4170                  */
4171                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4172                         offset_in_extent = em_start - em->start;
4173                 em_end = extent_map_end(em);
4174                 em_len = em_end - em_start;
4175                 emflags = em->flags;
4176                 disko = 0;
4177                 flags = 0;
4178
4179                 /*
4180                  * bump off for our next call to get_extent
4181                  */
4182                 off = extent_map_end(em);
4183                 if (off >= max)
4184                         end = 1;
4185
4186                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4187                         end = 1;
4188                         flags |= FIEMAP_EXTENT_LAST;
4189                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4190                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4191                                   FIEMAP_EXTENT_NOT_ALIGNED);
4192                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4193                         flags |= (FIEMAP_EXTENT_DELALLOC |
4194                                   FIEMAP_EXTENT_UNKNOWN);
4195                 } else {
4196                         unsigned long ref_cnt = 0;
4197
4198                         disko = em->block_start + offset_in_extent;
4199
4200                         /*
4201                          * As btrfs supports shared space, this information
4202                          * can be exported to userspace tools via
4203                          * flag FIEMAP_EXTENT_SHARED.
4204                          */
4205                         ret = iterate_inodes_from_logical(
4206                                         em->block_start,
4207                                         BTRFS_I(inode)->root->fs_info,
4208                                         path, count_ext_ref, &ref_cnt);
4209                         if (ret < 0 && ret != -ENOENT)
4210                                 goto out_free;
4211
4212                         if (ref_cnt > 1)
4213                                 flags |= FIEMAP_EXTENT_SHARED;
4214                 }
4215                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4216                         flags |= FIEMAP_EXTENT_ENCODED;
4217
4218                 free_extent_map(em);
4219                 em = NULL;
4220                 if ((em_start >= last) || em_len == (u64)-1 ||
4221                    (last == (u64)-1 && isize <= em_end)) {
4222                         flags |= FIEMAP_EXTENT_LAST;
4223                         end = 1;
4224                 }
4225
4226                 /* now scan forward to see if this is really the last extent. */
4227                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4228                                            get_extent);
4229                 if (IS_ERR(em)) {
4230                         ret = PTR_ERR(em);
4231                         goto out;
4232                 }
4233                 if (!em) {
4234                         flags |= FIEMAP_EXTENT_LAST;
4235                         end = 1;
4236                 }
4237                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4238                                               em_len, flags);
4239                 if (ret)
4240                         goto out_free;
4241         }
4242 out_free:
4243         free_extent_map(em);
4244 out:
4245         btrfs_free_path(path);
4246         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4247                              &cached_state, GFP_NOFS);
4248         return ret;
4249 }
4250
4251 static void __free_extent_buffer(struct extent_buffer *eb)
4252 {
4253         btrfs_leak_debug_del(&eb->leak_list);
4254         kmem_cache_free(extent_buffer_cache, eb);
4255 }
4256
4257 static int extent_buffer_under_io(struct extent_buffer *eb)
4258 {
4259         return (atomic_read(&eb->io_pages) ||
4260                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4261                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4262 }
4263
4264 /*
4265  * Helper for releasing extent buffer page.
4266  */
4267 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4268                                                 unsigned long start_idx)
4269 {
4270         unsigned long index;
4271         unsigned long num_pages;
4272         struct page *page;
4273         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4274
4275         BUG_ON(extent_buffer_under_io(eb));
4276
4277         num_pages = num_extent_pages(eb->start, eb->len);
4278         index = start_idx + num_pages;
4279         if (start_idx >= index)
4280                 return;
4281
4282         do {
4283                 index--;
4284                 page = extent_buffer_page(eb, index);
4285                 if (page && mapped) {
4286                         spin_lock(&page->mapping->private_lock);
4287                         /*
4288                          * We do this since we'll remove the pages after we've
4289                          * removed the eb from the radix tree, so we could race
4290                          * and have this page now attached to the new eb.  So
4291                          * only clear page_private if it's still connected to
4292                          * this eb.
4293                          */
4294                         if (PagePrivate(page) &&
4295                             page->private == (unsigned long)eb) {
4296                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4297                                 BUG_ON(PageDirty(page));
4298                                 BUG_ON(PageWriteback(page));
4299                                 /*
4300                                  * We need to make sure we haven't be attached
4301                                  * to a new eb.
4302                                  */
4303                                 ClearPagePrivate(page);
4304                                 set_page_private(page, 0);
4305                                 /* One for the page private */
4306                                 page_cache_release(page);
4307                         }
4308                         spin_unlock(&page->mapping->private_lock);
4309
4310                 }
4311                 if (page) {
4312                         /* One for when we alloced the page */
4313                         page_cache_release(page);
4314                 }
4315         } while (index != start_idx);
4316 }
4317
4318 /*
4319  * Helper for releasing the extent buffer.
4320  */
4321 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4322 {
4323         btrfs_release_extent_buffer_page(eb, 0);
4324         __free_extent_buffer(eb);
4325 }
4326
4327 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4328                                                    u64 start,
4329                                                    unsigned long len,
4330                                                    gfp_t mask)
4331 {
4332         struct extent_buffer *eb = NULL;
4333
4334         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4335         if (eb == NULL)
4336                 return NULL;
4337         eb->start = start;
4338         eb->len = len;
4339         eb->tree = tree;
4340         eb->bflags = 0;
4341         rwlock_init(&eb->lock);
4342         atomic_set(&eb->write_locks, 0);
4343         atomic_set(&eb->read_locks, 0);
4344         atomic_set(&eb->blocking_readers, 0);
4345         atomic_set(&eb->blocking_writers, 0);
4346         atomic_set(&eb->spinning_readers, 0);
4347         atomic_set(&eb->spinning_writers, 0);
4348         eb->lock_nested = 0;
4349         init_waitqueue_head(&eb->write_lock_wq);
4350         init_waitqueue_head(&eb->read_lock_wq);
4351
4352         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4353
4354         spin_lock_init(&eb->refs_lock);
4355         atomic_set(&eb->refs, 1);
4356         atomic_set(&eb->io_pages, 0);
4357
4358         /*
4359          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4360          */
4361         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4362                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4363         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4364
4365         return eb;
4366 }
4367
4368 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4369 {
4370         unsigned long i;
4371         struct page *p;
4372         struct extent_buffer *new;
4373         unsigned long num_pages = num_extent_pages(src->start, src->len);
4374
4375         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4376         if (new == NULL)
4377                 return NULL;
4378
4379         for (i = 0; i < num_pages; i++) {
4380                 p = alloc_page(GFP_NOFS);
4381                 if (!p) {
4382                         btrfs_release_extent_buffer(new);
4383                         return NULL;
4384                 }
4385                 attach_extent_buffer_page(new, p);
4386                 WARN_ON(PageDirty(p));
4387                 SetPageUptodate(p);
4388                 new->pages[i] = p;
4389         }
4390
4391         copy_extent_buffer(new, src, 0, 0, src->len);
4392         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4393         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4394
4395         return new;
4396 }
4397
4398 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4399 {
4400         struct extent_buffer *eb;
4401         unsigned long num_pages = num_extent_pages(0, len);
4402         unsigned long i;
4403
4404         eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4405         if (!eb)
4406                 return NULL;
4407
4408         for (i = 0; i < num_pages; i++) {
4409                 eb->pages[i] = alloc_page(GFP_NOFS);
4410                 if (!eb->pages[i])
4411                         goto err;
4412         }
4413         set_extent_buffer_uptodate(eb);
4414         btrfs_set_header_nritems(eb, 0);
4415         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4416
4417         return eb;
4418 err:
4419         for (; i > 0; i--)
4420                 __free_page(eb->pages[i - 1]);
4421         __free_extent_buffer(eb);
4422         return NULL;
4423 }
4424
4425 static void check_buffer_tree_ref(struct extent_buffer *eb)
4426 {
4427         int refs;
4428         /* the ref bit is tricky.  We have to make sure it is set
4429          * if we have the buffer dirty.   Otherwise the
4430          * code to free a buffer can end up dropping a dirty
4431          * page
4432          *
4433          * Once the ref bit is set, it won't go away while the
4434          * buffer is dirty or in writeback, and it also won't
4435          * go away while we have the reference count on the
4436          * eb bumped.
4437          *
4438          * We can't just set the ref bit without bumping the
4439          * ref on the eb because free_extent_buffer might
4440          * see the ref bit and try to clear it.  If this happens
4441          * free_extent_buffer might end up dropping our original
4442          * ref by mistake and freeing the page before we are able
4443          * to add one more ref.
4444          *
4445          * So bump the ref count first, then set the bit.  If someone
4446          * beat us to it, drop the ref we added.
4447          */
4448         refs = atomic_read(&eb->refs);
4449         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4450                 return;
4451
4452         spin_lock(&eb->refs_lock);
4453         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4454                 atomic_inc(&eb->refs);
4455         spin_unlock(&eb->refs_lock);
4456 }
4457
4458 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4459 {
4460         unsigned long num_pages, i;
4461
4462         check_buffer_tree_ref(eb);
4463
4464         num_pages = num_extent_pages(eb->start, eb->len);
4465         for (i = 0; i < num_pages; i++) {
4466                 struct page *p = extent_buffer_page(eb, i);
4467                 mark_page_accessed(p);
4468         }
4469 }
4470
4471 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4472                                                         u64 start)
4473 {
4474         struct extent_buffer *eb;
4475
4476         rcu_read_lock();
4477         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4478         if (eb && atomic_inc_not_zero(&eb->refs)) {
4479                 rcu_read_unlock();
4480                 mark_extent_buffer_accessed(eb);
4481                 return eb;
4482         }
4483         rcu_read_unlock();
4484
4485         return NULL;
4486 }
4487
4488 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4489                                           u64 start, unsigned long len)
4490 {
4491         unsigned long num_pages = num_extent_pages(start, len);
4492         unsigned long i;
4493         unsigned long index = start >> PAGE_CACHE_SHIFT;
4494         struct extent_buffer *eb;
4495         struct extent_buffer *exists = NULL;
4496         struct page *p;
4497         struct address_space *mapping = tree->mapping;
4498         int uptodate = 1;
4499         int ret;
4500
4501
4502         eb = find_extent_buffer(tree, start);
4503         if (eb)
4504                 return eb;
4505
4506         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4507         if (!eb)
4508                 return NULL;
4509
4510         for (i = 0; i < num_pages; i++, index++) {
4511                 p = find_or_create_page(mapping, index, GFP_NOFS);
4512                 if (!p)
4513                         goto free_eb;
4514
4515                 spin_lock(&mapping->private_lock);
4516                 if (PagePrivate(p)) {
4517                         /*
4518                          * We could have already allocated an eb for this page
4519                          * and attached one so lets see if we can get a ref on
4520                          * the existing eb, and if we can we know it's good and
4521                          * we can just return that one, else we know we can just
4522                          * overwrite page->private.
4523                          */
4524                         exists = (struct extent_buffer *)p->private;
4525                         if (atomic_inc_not_zero(&exists->refs)) {
4526                                 spin_unlock(&mapping->private_lock);
4527                                 unlock_page(p);
4528                                 page_cache_release(p);
4529                                 mark_extent_buffer_accessed(exists);
4530                                 goto free_eb;
4531                         }
4532
4533                         /*
4534                          * Do this so attach doesn't complain and we need to
4535                          * drop the ref the old guy had.
4536                          */
4537                         ClearPagePrivate(p);
4538                         WARN_ON(PageDirty(p));
4539                         page_cache_release(p);
4540                 }
4541                 attach_extent_buffer_page(eb, p);
4542                 spin_unlock(&mapping->private_lock);
4543                 WARN_ON(PageDirty(p));
4544                 mark_page_accessed(p);
4545                 eb->pages[i] = p;
4546                 if (!PageUptodate(p))
4547                         uptodate = 0;
4548
4549                 /*
4550                  * see below about how we avoid a nasty race with release page
4551                  * and why we unlock later
4552                  */
4553         }
4554         if (uptodate)
4555                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4556 again:
4557         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4558         if (ret)
4559                 goto free_eb;
4560
4561         spin_lock(&tree->buffer_lock);
4562         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4563         spin_unlock(&tree->buffer_lock);
4564         radix_tree_preload_end();
4565         if (ret == -EEXIST) {
4566                 exists = find_extent_buffer(tree, start);
4567                 if (exists)
4568                         goto free_eb;
4569                 else
4570                         goto again;
4571         }
4572         /* add one reference for the tree */
4573         check_buffer_tree_ref(eb);
4574
4575         /*
4576          * there is a race where release page may have
4577          * tried to find this extent buffer in the radix
4578          * but failed.  It will tell the VM it is safe to
4579          * reclaim the, and it will clear the page private bit.
4580          * We must make sure to set the page private bit properly
4581          * after the extent buffer is in the radix tree so
4582          * it doesn't get lost
4583          */
4584         SetPageChecked(eb->pages[0]);
4585         for (i = 1; i < num_pages; i++) {
4586                 p = extent_buffer_page(eb, i);
4587                 ClearPageChecked(p);
4588                 unlock_page(p);
4589         }
4590         unlock_page(eb->pages[0]);
4591         return eb;
4592
4593 free_eb:
4594         for (i = 0; i < num_pages; i++) {
4595                 if (eb->pages[i])
4596                         unlock_page(eb->pages[i]);
4597         }
4598
4599         WARN_ON(!atomic_dec_and_test(&eb->refs));
4600         btrfs_release_extent_buffer(eb);
4601         return exists;
4602 }
4603
4604 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4605 {
4606         struct extent_buffer *eb =
4607                         container_of(head, struct extent_buffer, rcu_head);
4608
4609         __free_extent_buffer(eb);
4610 }
4611
4612 /* Expects to have eb->eb_lock already held */
4613 static int release_extent_buffer(struct extent_buffer *eb)
4614 {
4615         WARN_ON(atomic_read(&eb->refs) == 0);
4616         if (atomic_dec_and_test(&eb->refs)) {
4617                 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4618                         spin_unlock(&eb->refs_lock);
4619                 } else {
4620                         struct extent_io_tree *tree = eb->tree;
4621
4622                         spin_unlock(&eb->refs_lock);
4623
4624                         spin_lock(&tree->buffer_lock);
4625                         radix_tree_delete(&tree->buffer,
4626                                           eb->start >> PAGE_CACHE_SHIFT);
4627                         spin_unlock(&tree->buffer_lock);
4628                 }
4629
4630                 /* Should be safe to release our pages at this point */
4631                 btrfs_release_extent_buffer_page(eb, 0);
4632                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4633                 return 1;
4634         }
4635         spin_unlock(&eb->refs_lock);
4636
4637         return 0;
4638 }
4639
4640 void free_extent_buffer(struct extent_buffer *eb)
4641 {
4642         int refs;
4643         int old;
4644         if (!eb)
4645                 return;
4646
4647         while (1) {
4648                 refs = atomic_read(&eb->refs);
4649                 if (refs <= 3)
4650                         break;
4651                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4652                 if (old == refs)
4653                         return;
4654         }
4655
4656         spin_lock(&eb->refs_lock);
4657         if (atomic_read(&eb->refs) == 2 &&
4658             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4659                 atomic_dec(&eb->refs);
4660
4661         if (atomic_read(&eb->refs) == 2 &&
4662             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4663             !extent_buffer_under_io(eb) &&
4664             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4665                 atomic_dec(&eb->refs);
4666
4667         /*
4668          * I know this is terrible, but it's temporary until we stop tracking
4669          * the uptodate bits and such for the extent buffers.
4670          */
4671         release_extent_buffer(eb);
4672 }
4673
4674 void free_extent_buffer_stale(struct extent_buffer *eb)
4675 {
4676         if (!eb)
4677                 return;
4678
4679         spin_lock(&eb->refs_lock);
4680         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4681
4682         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4683             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4684                 atomic_dec(&eb->refs);
4685         release_extent_buffer(eb);
4686 }
4687
4688 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4689 {
4690         unsigned long i;
4691         unsigned long num_pages;
4692         struct page *page;
4693
4694         num_pages = num_extent_pages(eb->start, eb->len);
4695
4696         for (i = 0; i < num_pages; i++) {
4697                 page = extent_buffer_page(eb, i);
4698                 if (!PageDirty(page))
4699                         continue;
4700
4701                 lock_page(page);
4702                 WARN_ON(!PagePrivate(page));
4703
4704                 clear_page_dirty_for_io(page);
4705                 spin_lock_irq(&page->mapping->tree_lock);
4706                 if (!PageDirty(page)) {
4707                         radix_tree_tag_clear(&page->mapping->page_tree,
4708                                                 page_index(page),
4709                                                 PAGECACHE_TAG_DIRTY);
4710                 }
4711                 spin_unlock_irq(&page->mapping->tree_lock);
4712                 ClearPageError(page);
4713                 unlock_page(page);
4714         }
4715         WARN_ON(atomic_read(&eb->refs) == 0);
4716 }
4717
4718 int set_extent_buffer_dirty(struct extent_buffer *eb)
4719 {
4720         unsigned long i;
4721         unsigned long num_pages;
4722         int was_dirty = 0;
4723
4724         check_buffer_tree_ref(eb);
4725
4726         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4727
4728         num_pages = num_extent_pages(eb->start, eb->len);
4729         WARN_ON(atomic_read(&eb->refs) == 0);
4730         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4731
4732         for (i = 0; i < num_pages; i++)
4733                 set_page_dirty(extent_buffer_page(eb, i));
4734         return was_dirty;
4735 }
4736
4737 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4738 {
4739         unsigned long i;
4740         struct page *page;
4741         unsigned long num_pages;
4742
4743         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4744         num_pages = num_extent_pages(eb->start, eb->len);
4745         for (i = 0; i < num_pages; i++) {
4746                 page = extent_buffer_page(eb, i);
4747                 if (page)
4748                         ClearPageUptodate(page);
4749         }
4750         return 0;
4751 }
4752
4753 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4754 {
4755         unsigned long i;
4756         struct page *page;
4757         unsigned long num_pages;
4758
4759         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4760         num_pages = num_extent_pages(eb->start, eb->len);
4761         for (i = 0; i < num_pages; i++) {
4762                 page = extent_buffer_page(eb, i);
4763                 SetPageUptodate(page);
4764         }
4765         return 0;
4766 }
4767
4768 int extent_buffer_uptodate(struct extent_buffer *eb)
4769 {
4770         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4771 }
4772
4773 int read_extent_buffer_pages(struct extent_io_tree *tree,
4774                              struct extent_buffer *eb, u64 start, int wait,
4775                              get_extent_t *get_extent, int mirror_num)
4776 {
4777         unsigned long i;
4778         unsigned long start_i;
4779         struct page *page;
4780         int err;
4781         int ret = 0;
4782         int locked_pages = 0;
4783         int all_uptodate = 1;
4784         unsigned long num_pages;
4785         unsigned long num_reads = 0;
4786         struct bio *bio = NULL;
4787         unsigned long bio_flags = 0;
4788
4789         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4790                 return 0;
4791
4792         if (start) {
4793                 WARN_ON(start < eb->start);
4794                 start_i = (start >> PAGE_CACHE_SHIFT) -
4795                         (eb->start >> PAGE_CACHE_SHIFT);
4796         } else {
4797                 start_i = 0;
4798         }
4799
4800         num_pages = num_extent_pages(eb->start, eb->len);
4801         for (i = start_i; i < num_pages; i++) {
4802                 page = extent_buffer_page(eb, i);
4803                 if (wait == WAIT_NONE) {
4804                         if (!trylock_page(page))
4805                                 goto unlock_exit;
4806                 } else {
4807                         lock_page(page);
4808                 }
4809                 locked_pages++;
4810                 if (!PageUptodate(page)) {
4811                         num_reads++;
4812                         all_uptodate = 0;
4813                 }
4814         }
4815         if (all_uptodate) {
4816                 if (start_i == 0)
4817                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4818                 goto unlock_exit;
4819         }
4820
4821         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4822         eb->read_mirror = 0;
4823         atomic_set(&eb->io_pages, num_reads);
4824         for (i = start_i; i < num_pages; i++) {
4825                 page = extent_buffer_page(eb, i);
4826                 if (!PageUptodate(page)) {
4827                         ClearPageError(page);
4828                         err = __extent_read_full_page(tree, page,
4829                                                       get_extent, &bio,
4830                                                       mirror_num, &bio_flags,
4831                                                       READ | REQ_META);
4832                         if (err)
4833                                 ret = err;
4834                 } else {
4835                         unlock_page(page);
4836                 }
4837         }
4838
4839         if (bio) {
4840                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4841                                      bio_flags);
4842                 if (err)
4843                         return err;
4844         }
4845
4846         if (ret || wait != WAIT_COMPLETE)
4847                 return ret;
4848
4849         for (i = start_i; i < num_pages; i++) {
4850                 page = extent_buffer_page(eb, i);
4851                 wait_on_page_locked(page);
4852                 if (!PageUptodate(page))
4853                         ret = -EIO;
4854         }
4855
4856         return ret;
4857
4858 unlock_exit:
4859         i = start_i;
4860         while (locked_pages > 0) {
4861                 page = extent_buffer_page(eb, i);
4862                 i++;
4863                 unlock_page(page);
4864                 locked_pages--;
4865         }
4866         return ret;
4867 }
4868
4869 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4870                         unsigned long start,
4871                         unsigned long len)
4872 {
4873         size_t cur;
4874         size_t offset;
4875         struct page *page;
4876         char *kaddr;
4877         char *dst = (char *)dstv;
4878         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4879         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4880
4881         WARN_ON(start > eb->len);
4882         WARN_ON(start + len > eb->start + eb->len);
4883
4884         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4885
4886         while (len > 0) {
4887                 page = extent_buffer_page(eb, i);
4888
4889                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4890                 kaddr = page_address(page);
4891                 memcpy(dst, kaddr + offset, cur);
4892
4893                 dst += cur;
4894                 len -= cur;
4895                 offset = 0;
4896                 i++;
4897         }
4898 }
4899
4900 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4901                                unsigned long min_len, char **map,
4902                                unsigned long *map_start,
4903                                unsigned long *map_len)
4904 {
4905         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4906         char *kaddr;
4907         struct page *p;
4908         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4909         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4910         unsigned long end_i = (start_offset + start + min_len - 1) >>
4911                 PAGE_CACHE_SHIFT;
4912
4913         if (i != end_i)
4914                 return -EINVAL;
4915
4916         if (i == 0) {
4917                 offset = start_offset;
4918                 *map_start = 0;
4919         } else {
4920                 offset = 0;
4921                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4922         }
4923
4924         if (start + min_len > eb->len) {
4925                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4926                        "wanted %lu %lu\n",
4927                        eb->start, eb->len, start, min_len);
4928                 return -EINVAL;
4929         }
4930
4931         p = extent_buffer_page(eb, i);
4932         kaddr = page_address(p);
4933         *map = kaddr + offset;
4934         *map_len = PAGE_CACHE_SIZE - offset;
4935         return 0;
4936 }
4937
4938 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4939                           unsigned long start,
4940                           unsigned long len)
4941 {
4942         size_t cur;
4943         size_t offset;
4944         struct page *page;
4945         char *kaddr;
4946         char *ptr = (char *)ptrv;
4947         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4948         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4949         int ret = 0;
4950
4951         WARN_ON(start > eb->len);
4952         WARN_ON(start + len > eb->start + eb->len);
4953
4954         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4955
4956         while (len > 0) {
4957                 page = extent_buffer_page(eb, i);
4958
4959                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4960
4961                 kaddr = page_address(page);
4962                 ret = memcmp(ptr, kaddr + offset, cur);
4963                 if (ret)
4964                         break;
4965
4966                 ptr += cur;
4967                 len -= cur;
4968                 offset = 0;
4969                 i++;
4970         }
4971         return ret;
4972 }
4973
4974 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4975                          unsigned long start, unsigned long len)
4976 {
4977         size_t cur;
4978         size_t offset;
4979         struct page *page;
4980         char *kaddr;
4981         char *src = (char *)srcv;
4982         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4983         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4984
4985         WARN_ON(start > eb->len);
4986         WARN_ON(start + len > eb->start + eb->len);
4987
4988         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4989
4990         while (len > 0) {
4991                 page = extent_buffer_page(eb, i);
4992                 WARN_ON(!PageUptodate(page));
4993
4994                 cur = min(len, PAGE_CACHE_SIZE - offset);
4995                 kaddr = page_address(page);
4996                 memcpy(kaddr + offset, src, cur);
4997
4998                 src += cur;
4999                 len -= cur;
5000                 offset = 0;
5001                 i++;
5002         }
5003 }
5004
5005 void memset_extent_buffer(struct extent_buffer *eb, char c,
5006                           unsigned long start, unsigned long len)
5007 {
5008         size_t cur;
5009         size_t offset;
5010         struct page *page;
5011         char *kaddr;
5012         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5013         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5014
5015         WARN_ON(start > eb->len);
5016         WARN_ON(start + len > eb->start + eb->len);
5017
5018         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5019
5020         while (len > 0) {
5021                 page = extent_buffer_page(eb, i);
5022                 WARN_ON(!PageUptodate(page));
5023
5024                 cur = min(len, PAGE_CACHE_SIZE - offset);
5025                 kaddr = page_address(page);
5026                 memset(kaddr + offset, c, cur);
5027
5028                 len -= cur;
5029                 offset = 0;
5030                 i++;
5031         }
5032 }
5033
5034 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5035                         unsigned long dst_offset, unsigned long src_offset,
5036                         unsigned long len)
5037 {
5038         u64 dst_len = dst->len;
5039         size_t cur;
5040         size_t offset;
5041         struct page *page;
5042         char *kaddr;
5043         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5044         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5045
5046         WARN_ON(src->len != dst_len);
5047
5048         offset = (start_offset + dst_offset) &
5049                 (PAGE_CACHE_SIZE - 1);
5050
5051         while (len > 0) {
5052                 page = extent_buffer_page(dst, i);
5053                 WARN_ON(!PageUptodate(page));
5054
5055                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5056
5057                 kaddr = page_address(page);
5058                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5059
5060                 src_offset += cur;
5061                 len -= cur;
5062                 offset = 0;
5063                 i++;
5064         }
5065 }
5066
5067 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5068 {
5069         unsigned long distance = (src > dst) ? src - dst : dst - src;
5070         return distance < len;
5071 }
5072
5073 static void copy_pages(struct page *dst_page, struct page *src_page,
5074                        unsigned long dst_off, unsigned long src_off,
5075                        unsigned long len)
5076 {
5077         char *dst_kaddr = page_address(dst_page);
5078         char *src_kaddr;
5079         int must_memmove = 0;
5080
5081         if (dst_page != src_page) {
5082                 src_kaddr = page_address(src_page);
5083         } else {
5084                 src_kaddr = dst_kaddr;
5085                 if (areas_overlap(src_off, dst_off, len))
5086                         must_memmove = 1;
5087         }
5088
5089         if (must_memmove)
5090                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5091         else
5092                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5093 }
5094
5095 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5096                            unsigned long src_offset, unsigned long len)
5097 {
5098         size_t cur;
5099         size_t dst_off_in_page;
5100         size_t src_off_in_page;
5101         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5102         unsigned long dst_i;
5103         unsigned long src_i;
5104
5105         if (src_offset + len > dst->len) {
5106                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5107                        "len %lu dst len %lu\n", src_offset, len, dst->len);
5108                 BUG_ON(1);
5109         }
5110         if (dst_offset + len > dst->len) {
5111                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5112                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
5113                 BUG_ON(1);
5114         }
5115
5116         while (len > 0) {
5117                 dst_off_in_page = (start_offset + dst_offset) &
5118                         (PAGE_CACHE_SIZE - 1);
5119                 src_off_in_page = (start_offset + src_offset) &
5120                         (PAGE_CACHE_SIZE - 1);
5121
5122                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5123                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5124
5125                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5126                                                src_off_in_page));
5127                 cur = min_t(unsigned long, cur,
5128                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5129
5130                 copy_pages(extent_buffer_page(dst, dst_i),
5131                            extent_buffer_page(dst, src_i),
5132                            dst_off_in_page, src_off_in_page, cur);
5133
5134                 src_offset += cur;
5135                 dst_offset += cur;
5136                 len -= cur;
5137         }
5138 }
5139
5140 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5141                            unsigned long src_offset, unsigned long len)
5142 {
5143         size_t cur;
5144         size_t dst_off_in_page;
5145         size_t src_off_in_page;
5146         unsigned long dst_end = dst_offset + len - 1;
5147         unsigned long src_end = src_offset + len - 1;
5148         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5149         unsigned long dst_i;
5150         unsigned long src_i;
5151
5152         if (src_offset + len > dst->len) {
5153                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5154                        "len %lu len %lu\n", src_offset, len, dst->len);
5155                 BUG_ON(1);
5156         }
5157         if (dst_offset + len > dst->len) {
5158                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5159                        "len %lu len %lu\n", dst_offset, len, dst->len);
5160                 BUG_ON(1);
5161         }
5162         if (dst_offset < src_offset) {
5163                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5164                 return;
5165         }
5166         while (len > 0) {
5167                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5168                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5169
5170                 dst_off_in_page = (start_offset + dst_end) &
5171                         (PAGE_CACHE_SIZE - 1);
5172                 src_off_in_page = (start_offset + src_end) &
5173                         (PAGE_CACHE_SIZE - 1);
5174
5175                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5176                 cur = min(cur, dst_off_in_page + 1);
5177                 copy_pages(extent_buffer_page(dst, dst_i),
5178                            extent_buffer_page(dst, src_i),
5179                            dst_off_in_page - cur + 1,
5180                            src_off_in_page - cur + 1, cur);
5181
5182                 dst_end -= cur;
5183                 src_end -= cur;
5184                 len -= cur;
5185         }
5186 }
5187
5188 int try_release_extent_buffer(struct page *page)
5189 {
5190         struct extent_buffer *eb;
5191
5192         /*
5193          * We need to make sure noboody is attaching this page to an eb right
5194          * now.
5195          */
5196         spin_lock(&page->mapping->private_lock);
5197         if (!PagePrivate(page)) {
5198                 spin_unlock(&page->mapping->private_lock);
5199                 return 1;
5200         }
5201
5202         eb = (struct extent_buffer *)page->private;
5203         BUG_ON(!eb);
5204
5205         /*
5206          * This is a little awful but should be ok, we need to make sure that
5207          * the eb doesn't disappear out from under us while we're looking at
5208          * this page.
5209          */
5210         spin_lock(&eb->refs_lock);
5211         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5212                 spin_unlock(&eb->refs_lock);
5213                 spin_unlock(&page->mapping->private_lock);
5214                 return 0;
5215         }
5216         spin_unlock(&page->mapping->private_lock);
5217
5218         /*
5219          * If tree ref isn't set then we know the ref on this eb is a real ref,
5220          * so just return, this page will likely be freed soon anyway.
5221          */
5222         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5223                 spin_unlock(&eb->refs_lock);
5224                 return 0;
5225         }
5226
5227         return release_extent_buffer(eb);
5228 }