]> Pileus Git - ~andy/linux/blob - fs/btrfs/disk-io.c
btrfs: undo sysfs when open_ctree() fails
[~andy/linux] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO
304                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305                                 "level %d\n",
306                                 root->fs_info->sb->s_id, buf->start,
307                                 val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        eb->start, parent_transid, btrfs_header_generation(eb));
349         ret = 1;
350         clear_extent_buffer_uptodate(eb);
351 out:
352         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353                              &cached_state, GFP_NOFS);
354         return ret;
355 }
356
357 /*
358  * Return 0 if the superblock checksum type matches the checksum value of that
359  * algorithm. Pass the raw disk superblock data.
360  */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363         struct btrfs_super_block *disk_sb =
364                 (struct btrfs_super_block *)raw_disk_sb;
365         u16 csum_type = btrfs_super_csum_type(disk_sb);
366         int ret = 0;
367
368         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369                 u32 crc = ~(u32)0;
370                 const int csum_size = sizeof(crc);
371                 char result[csum_size];
372
373                 /*
374                  * The super_block structure does not span the whole
375                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376                  * is filled with zeros and is included in the checkum.
377                  */
378                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380                 btrfs_csum_final(crc, result);
381
382                 if (memcmp(raw_disk_sb, result, csum_size))
383                         ret = 1;
384
385                 if (ret && btrfs_super_generation(disk_sb) < 10) {
386                         printk(KERN_WARNING
387                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
388                         ret = 0;
389                 }
390         }
391
392         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
394                                 csum_type);
395                 ret = 1;
396         }
397
398         return ret;
399 }
400
401 /*
402  * helper to read a given tree block, doing retries as required when
403  * the checksums don't match and we have alternate mirrors to try.
404  */
405 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406                                           struct extent_buffer *eb,
407                                           u64 start, u64 parent_transid)
408 {
409         struct extent_io_tree *io_tree;
410         int failed = 0;
411         int ret;
412         int num_copies = 0;
413         int mirror_num = 0;
414         int failed_mirror = 0;
415
416         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
417         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418         while (1) {
419                 ret = read_extent_buffer_pages(io_tree, eb, start,
420                                                WAIT_COMPLETE,
421                                                btree_get_extent, mirror_num);
422                 if (!ret) {
423                         if (!verify_parent_transid(io_tree, eb,
424                                                    parent_transid, 0))
425                                 break;
426                         else
427                                 ret = -EIO;
428                 }
429
430                 /*
431                  * This buffer's crc is fine, but its contents are corrupted, so
432                  * there is no reason to read the other copies, they won't be
433                  * any less wrong.
434                  */
435                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
436                         break;
437
438                 num_copies = btrfs_num_copies(root->fs_info,
439                                               eb->start, eb->len);
440                 if (num_copies == 1)
441                         break;
442
443                 if (!failed_mirror) {
444                         failed = 1;
445                         failed_mirror = eb->read_mirror;
446                 }
447
448                 mirror_num++;
449                 if (mirror_num == failed_mirror)
450                         mirror_num++;
451
452                 if (mirror_num > num_copies)
453                         break;
454         }
455
456         if (failed && !ret && failed_mirror)
457                 repair_eb_io_failure(root, eb, failed_mirror);
458
459         return ret;
460 }
461
462 /*
463  * checksum a dirty tree block before IO.  This has extra checks to make sure
464  * we only fill in the checksum field in the first page of a multi-page block
465  */
466
467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 {
469         u64 start = page_offset(page);
470         u64 found_start;
471         struct extent_buffer *eb;
472
473         eb = (struct extent_buffer *)page->private;
474         if (page != eb->pages[0])
475                 return 0;
476         found_start = btrfs_header_bytenr(eb);
477         if (WARN_ON(found_start != start || !PageUptodate(page)))
478                 return 0;
479         csum_tree_block(root, eb, 0);
480         return 0;
481 }
482
483 static int check_tree_block_fsid(struct btrfs_root *root,
484                                  struct extent_buffer *eb)
485 {
486         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
487         u8 fsid[BTRFS_UUID_SIZE];
488         int ret = 1;
489
490         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
491         while (fs_devices) {
492                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
493                         ret = 0;
494                         break;
495                 }
496                 fs_devices = fs_devices->seed;
497         }
498         return ret;
499 }
500
501 #define CORRUPT(reason, eb, root, slot)                         \
502         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
503                    "root=%llu, slot=%d", reason,                        \
504                btrfs_header_bytenr(eb), root->objectid, slot)
505
506 static noinline int check_leaf(struct btrfs_root *root,
507                                struct extent_buffer *leaf)
508 {
509         struct btrfs_key key;
510         struct btrfs_key leaf_key;
511         u32 nritems = btrfs_header_nritems(leaf);
512         int slot;
513
514         if (nritems == 0)
515                 return 0;
516
517         /* Check the 0 item */
518         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
519             BTRFS_LEAF_DATA_SIZE(root)) {
520                 CORRUPT("invalid item offset size pair", leaf, root, 0);
521                 return -EIO;
522         }
523
524         /*
525          * Check to make sure each items keys are in the correct order and their
526          * offsets make sense.  We only have to loop through nritems-1 because
527          * we check the current slot against the next slot, which verifies the
528          * next slot's offset+size makes sense and that the current's slot
529          * offset is correct.
530          */
531         for (slot = 0; slot < nritems - 1; slot++) {
532                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
533                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
534
535                 /* Make sure the keys are in the right order */
536                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
537                         CORRUPT("bad key order", leaf, root, slot);
538                         return -EIO;
539                 }
540
541                 /*
542                  * Make sure the offset and ends are right, remember that the
543                  * item data starts at the end of the leaf and grows towards the
544                  * front.
545                  */
546                 if (btrfs_item_offset_nr(leaf, slot) !=
547                         btrfs_item_end_nr(leaf, slot + 1)) {
548                         CORRUPT("slot offset bad", leaf, root, slot);
549                         return -EIO;
550                 }
551
552                 /*
553                  * Check to make sure that we don't point outside of the leaf,
554                  * just incase all the items are consistent to eachother, but
555                  * all point outside of the leaf.
556                  */
557                 if (btrfs_item_end_nr(leaf, slot) >
558                     BTRFS_LEAF_DATA_SIZE(root)) {
559                         CORRUPT("slot end outside of leaf", leaf, root, slot);
560                         return -EIO;
561                 }
562         }
563
564         return 0;
565 }
566
567 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
568                                       u64 phy_offset, struct page *page,
569                                       u64 start, u64 end, int mirror)
570 {
571         u64 found_start;
572         int found_level;
573         struct extent_buffer *eb;
574         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
575         int ret = 0;
576         int reads_done;
577
578         if (!page->private)
579                 goto out;
580
581         eb = (struct extent_buffer *)page->private;
582
583         /* the pending IO might have been the only thing that kept this buffer
584          * in memory.  Make sure we have a ref for all this other checks
585          */
586         extent_buffer_get(eb);
587
588         reads_done = atomic_dec_and_test(&eb->io_pages);
589         if (!reads_done)
590                 goto err;
591
592         eb->read_mirror = mirror;
593         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594                 ret = -EIO;
595                 goto err;
596         }
597
598         found_start = btrfs_header_bytenr(eb);
599         if (found_start != eb->start) {
600                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
601                                "%llu %llu\n",
602                                found_start, eb->start);
603                 ret = -EIO;
604                 goto err;
605         }
606         if (check_tree_block_fsid(root, eb)) {
607                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
608                                eb->start);
609                 ret = -EIO;
610                 goto err;
611         }
612         found_level = btrfs_header_level(eb);
613         if (found_level >= BTRFS_MAX_LEVEL) {
614                 btrfs_info(root->fs_info, "bad tree block level %d",
615                            (int)btrfs_header_level(eb));
616                 ret = -EIO;
617                 goto err;
618         }
619
620         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621                                        eb, found_level);
622
623         ret = csum_tree_block(root, eb, 1);
624         if (ret) {
625                 ret = -EIO;
626                 goto err;
627         }
628
629         /*
630          * If this is a leaf block and it is corrupt, set the corrupt bit so
631          * that we don't try and read the other copies of this block, just
632          * return -EIO.
633          */
634         if (found_level == 0 && check_leaf(root, eb)) {
635                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636                 ret = -EIO;
637         }
638
639         if (!ret)
640                 set_extent_buffer_uptodate(eb);
641 err:
642         if (reads_done &&
643             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
644                 btree_readahead_hook(root, eb, eb->start, ret);
645
646         if (ret) {
647                 /*
648                  * our io error hook is going to dec the io pages
649                  * again, we have to make sure it has something
650                  * to decrement
651                  */
652                 atomic_inc(&eb->io_pages);
653                 clear_extent_buffer_uptodate(eb);
654         }
655         free_extent_buffer(eb);
656 out:
657         return ret;
658 }
659
660 static int btree_io_failed_hook(struct page *page, int failed_mirror)
661 {
662         struct extent_buffer *eb;
663         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
664
665         eb = (struct extent_buffer *)page->private;
666         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
667         eb->read_mirror = failed_mirror;
668         atomic_dec(&eb->io_pages);
669         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
670                 btree_readahead_hook(root, eb, eb->start, -EIO);
671         return -EIO;    /* we fixed nothing */
672 }
673
674 static void end_workqueue_bio(struct bio *bio, int err)
675 {
676         struct end_io_wq *end_io_wq = bio->bi_private;
677         struct btrfs_fs_info *fs_info;
678
679         fs_info = end_io_wq->info;
680         end_io_wq->error = err;
681         end_io_wq->work.func = end_workqueue_fn;
682         end_io_wq->work.flags = 0;
683
684         if (bio->bi_rw & REQ_WRITE) {
685                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
686                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
687                                            &end_io_wq->work);
688                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
689                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
690                                            &end_io_wq->work);
691                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
692                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
693                                            &end_io_wq->work);
694                 else
695                         btrfs_queue_worker(&fs_info->endio_write_workers,
696                                            &end_io_wq->work);
697         } else {
698                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
699                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
700                                            &end_io_wq->work);
701                 else if (end_io_wq->metadata)
702                         btrfs_queue_worker(&fs_info->endio_meta_workers,
703                                            &end_io_wq->work);
704                 else
705                         btrfs_queue_worker(&fs_info->endio_workers,
706                                            &end_io_wq->work);
707         }
708 }
709
710 /*
711  * For the metadata arg you want
712  *
713  * 0 - if data
714  * 1 - if normal metadta
715  * 2 - if writing to the free space cache area
716  * 3 - raid parity work
717  */
718 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
719                         int metadata)
720 {
721         struct end_io_wq *end_io_wq;
722         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
723         if (!end_io_wq)
724                 return -ENOMEM;
725
726         end_io_wq->private = bio->bi_private;
727         end_io_wq->end_io = bio->bi_end_io;
728         end_io_wq->info = info;
729         end_io_wq->error = 0;
730         end_io_wq->bio = bio;
731         end_io_wq->metadata = metadata;
732
733         bio->bi_private = end_io_wq;
734         bio->bi_end_io = end_workqueue_bio;
735         return 0;
736 }
737
738 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
739 {
740         unsigned long limit = min_t(unsigned long,
741                                     info->workers.max_workers,
742                                     info->fs_devices->open_devices);
743         return 256 * limit;
744 }
745
746 static void run_one_async_start(struct btrfs_work *work)
747 {
748         struct async_submit_bio *async;
749         int ret;
750
751         async = container_of(work, struct  async_submit_bio, work);
752         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
753                                       async->mirror_num, async->bio_flags,
754                                       async->bio_offset);
755         if (ret)
756                 async->error = ret;
757 }
758
759 static void run_one_async_done(struct btrfs_work *work)
760 {
761         struct btrfs_fs_info *fs_info;
762         struct async_submit_bio *async;
763         int limit;
764
765         async = container_of(work, struct  async_submit_bio, work);
766         fs_info = BTRFS_I(async->inode)->root->fs_info;
767
768         limit = btrfs_async_submit_limit(fs_info);
769         limit = limit * 2 / 3;
770
771         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
772             waitqueue_active(&fs_info->async_submit_wait))
773                 wake_up(&fs_info->async_submit_wait);
774
775         /* If an error occured we just want to clean up the bio and move on */
776         if (async->error) {
777                 bio_endio(async->bio, async->error);
778                 return;
779         }
780
781         async->submit_bio_done(async->inode, async->rw, async->bio,
782                                async->mirror_num, async->bio_flags,
783                                async->bio_offset);
784 }
785
786 static void run_one_async_free(struct btrfs_work *work)
787 {
788         struct async_submit_bio *async;
789
790         async = container_of(work, struct  async_submit_bio, work);
791         kfree(async);
792 }
793
794 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
795                         int rw, struct bio *bio, int mirror_num,
796                         unsigned long bio_flags,
797                         u64 bio_offset,
798                         extent_submit_bio_hook_t *submit_bio_start,
799                         extent_submit_bio_hook_t *submit_bio_done)
800 {
801         struct async_submit_bio *async;
802
803         async = kmalloc(sizeof(*async), GFP_NOFS);
804         if (!async)
805                 return -ENOMEM;
806
807         async->inode = inode;
808         async->rw = rw;
809         async->bio = bio;
810         async->mirror_num = mirror_num;
811         async->submit_bio_start = submit_bio_start;
812         async->submit_bio_done = submit_bio_done;
813
814         async->work.func = run_one_async_start;
815         async->work.ordered_func = run_one_async_done;
816         async->work.ordered_free = run_one_async_free;
817
818         async->work.flags = 0;
819         async->bio_flags = bio_flags;
820         async->bio_offset = bio_offset;
821
822         async->error = 0;
823
824         atomic_inc(&fs_info->nr_async_submits);
825
826         if (rw & REQ_SYNC)
827                 btrfs_set_work_high_prio(&async->work);
828
829         btrfs_queue_worker(&fs_info->workers, &async->work);
830
831         while (atomic_read(&fs_info->async_submit_draining) &&
832               atomic_read(&fs_info->nr_async_submits)) {
833                 wait_event(fs_info->async_submit_wait,
834                            (atomic_read(&fs_info->nr_async_submits) == 0));
835         }
836
837         return 0;
838 }
839
840 static int btree_csum_one_bio(struct bio *bio)
841 {
842         struct bio_vec *bvec = bio->bi_io_vec;
843         int bio_index = 0;
844         struct btrfs_root *root;
845         int ret = 0;
846
847         WARN_ON(bio->bi_vcnt <= 0);
848         while (bio_index < bio->bi_vcnt) {
849                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
850                 ret = csum_dirty_buffer(root, bvec->bv_page);
851                 if (ret)
852                         break;
853                 bio_index++;
854                 bvec++;
855         }
856         return ret;
857 }
858
859 static int __btree_submit_bio_start(struct inode *inode, int rw,
860                                     struct bio *bio, int mirror_num,
861                                     unsigned long bio_flags,
862                                     u64 bio_offset)
863 {
864         /*
865          * when we're called for a write, we're already in the async
866          * submission context.  Just jump into btrfs_map_bio
867          */
868         return btree_csum_one_bio(bio);
869 }
870
871 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
872                                  int mirror_num, unsigned long bio_flags,
873                                  u64 bio_offset)
874 {
875         int ret;
876
877         /*
878          * when we're called for a write, we're already in the async
879          * submission context.  Just jump into btrfs_map_bio
880          */
881         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
882         if (ret)
883                 bio_endio(bio, ret);
884         return ret;
885 }
886
887 static int check_async_write(struct inode *inode, unsigned long bio_flags)
888 {
889         if (bio_flags & EXTENT_BIO_TREE_LOG)
890                 return 0;
891 #ifdef CONFIG_X86
892         if (cpu_has_xmm4_2)
893                 return 0;
894 #endif
895         return 1;
896 }
897
898 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
899                                  int mirror_num, unsigned long bio_flags,
900                                  u64 bio_offset)
901 {
902         int async = check_async_write(inode, bio_flags);
903         int ret;
904
905         if (!(rw & REQ_WRITE)) {
906                 /*
907                  * called for a read, do the setup so that checksum validation
908                  * can happen in the async kernel threads
909                  */
910                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
911                                           bio, 1);
912                 if (ret)
913                         goto out_w_error;
914                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
915                                     mirror_num, 0);
916         } else if (!async) {
917                 ret = btree_csum_one_bio(bio);
918                 if (ret)
919                         goto out_w_error;
920                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
921                                     mirror_num, 0);
922         } else {
923                 /*
924                  * kthread helpers are used to submit writes so that
925                  * checksumming can happen in parallel across all CPUs
926                  */
927                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
928                                           inode, rw, bio, mirror_num, 0,
929                                           bio_offset,
930                                           __btree_submit_bio_start,
931                                           __btree_submit_bio_done);
932         }
933
934         if (ret) {
935 out_w_error:
936                 bio_endio(bio, ret);
937         }
938         return ret;
939 }
940
941 #ifdef CONFIG_MIGRATION
942 static int btree_migratepage(struct address_space *mapping,
943                         struct page *newpage, struct page *page,
944                         enum migrate_mode mode)
945 {
946         /*
947          * we can't safely write a btree page from here,
948          * we haven't done the locking hook
949          */
950         if (PageDirty(page))
951                 return -EAGAIN;
952         /*
953          * Buffers may be managed in a filesystem specific way.
954          * We must have no buffers or drop them.
955          */
956         if (page_has_private(page) &&
957             !try_to_release_page(page, GFP_KERNEL))
958                 return -EAGAIN;
959         return migrate_page(mapping, newpage, page, mode);
960 }
961 #endif
962
963
964 static int btree_writepages(struct address_space *mapping,
965                             struct writeback_control *wbc)
966 {
967         struct btrfs_fs_info *fs_info;
968         int ret;
969
970         if (wbc->sync_mode == WB_SYNC_NONE) {
971
972                 if (wbc->for_kupdate)
973                         return 0;
974
975                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
976                 /* this is a bit racy, but that's ok */
977                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978                                              BTRFS_DIRTY_METADATA_THRESH);
979                 if (ret < 0)
980                         return 0;
981         }
982         return btree_write_cache_pages(mapping, wbc);
983 }
984
985 static int btree_readpage(struct file *file, struct page *page)
986 {
987         struct extent_io_tree *tree;
988         tree = &BTRFS_I(page->mapping->host)->io_tree;
989         return extent_read_full_page(tree, page, btree_get_extent, 0);
990 }
991
992 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
993 {
994         if (PageWriteback(page) || PageDirty(page))
995                 return 0;
996
997         return try_release_extent_buffer(page);
998 }
999
1000 static void btree_invalidatepage(struct page *page, unsigned int offset,
1001                                  unsigned int length)
1002 {
1003         struct extent_io_tree *tree;
1004         tree = &BTRFS_I(page->mapping->host)->io_tree;
1005         extent_invalidatepage(tree, page, offset);
1006         btree_releasepage(page, GFP_NOFS);
1007         if (PagePrivate(page)) {
1008                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1009                            "page private not zero on page %llu",
1010                            (unsigned long long)page_offset(page));
1011                 ClearPagePrivate(page);
1012                 set_page_private(page, 0);
1013                 page_cache_release(page);
1014         }
1015 }
1016
1017 static int btree_set_page_dirty(struct page *page)
1018 {
1019 #ifdef DEBUG
1020         struct extent_buffer *eb;
1021
1022         BUG_ON(!PagePrivate(page));
1023         eb = (struct extent_buffer *)page->private;
1024         BUG_ON(!eb);
1025         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1026         BUG_ON(!atomic_read(&eb->refs));
1027         btrfs_assert_tree_locked(eb);
1028 #endif
1029         return __set_page_dirty_nobuffers(page);
1030 }
1031
1032 static const struct address_space_operations btree_aops = {
1033         .readpage       = btree_readpage,
1034         .writepages     = btree_writepages,
1035         .releasepage    = btree_releasepage,
1036         .invalidatepage = btree_invalidatepage,
1037 #ifdef CONFIG_MIGRATION
1038         .migratepage    = btree_migratepage,
1039 #endif
1040         .set_page_dirty = btree_set_page_dirty,
1041 };
1042
1043 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1044                          u64 parent_transid)
1045 {
1046         struct extent_buffer *buf = NULL;
1047         struct inode *btree_inode = root->fs_info->btree_inode;
1048         int ret = 0;
1049
1050         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1051         if (!buf)
1052                 return 0;
1053         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1054                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1055         free_extent_buffer(buf);
1056         return ret;
1057 }
1058
1059 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1060                          int mirror_num, struct extent_buffer **eb)
1061 {
1062         struct extent_buffer *buf = NULL;
1063         struct inode *btree_inode = root->fs_info->btree_inode;
1064         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1065         int ret;
1066
1067         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1068         if (!buf)
1069                 return 0;
1070
1071         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1072
1073         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1074                                        btree_get_extent, mirror_num);
1075         if (ret) {
1076                 free_extent_buffer(buf);
1077                 return ret;
1078         }
1079
1080         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1081                 free_extent_buffer(buf);
1082                 return -EIO;
1083         } else if (extent_buffer_uptodate(buf)) {
1084                 *eb = buf;
1085         } else {
1086                 free_extent_buffer(buf);
1087         }
1088         return 0;
1089 }
1090
1091 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1092                                             u64 bytenr, u32 blocksize)
1093 {
1094         return find_extent_buffer(root->fs_info, bytenr);
1095 }
1096
1097 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1098                                                  u64 bytenr, u32 blocksize)
1099 {
1100         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1101 }
1102
1103
1104 int btrfs_write_tree_block(struct extent_buffer *buf)
1105 {
1106         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1107                                         buf->start + buf->len - 1);
1108 }
1109
1110 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1111 {
1112         return filemap_fdatawait_range(buf->pages[0]->mapping,
1113                                        buf->start, buf->start + buf->len - 1);
1114 }
1115
1116 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1117                                       u32 blocksize, u64 parent_transid)
1118 {
1119         struct extent_buffer *buf = NULL;
1120         int ret;
1121
1122         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1123         if (!buf)
1124                 return NULL;
1125
1126         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1127         if (ret) {
1128                 free_extent_buffer(buf);
1129                 return NULL;
1130         }
1131         return buf;
1132
1133 }
1134
1135 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1136                       struct extent_buffer *buf)
1137 {
1138         struct btrfs_fs_info *fs_info = root->fs_info;
1139
1140         if (btrfs_header_generation(buf) ==
1141             fs_info->running_transaction->transid) {
1142                 btrfs_assert_tree_locked(buf);
1143
1144                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1145                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1146                                              -buf->len,
1147                                              fs_info->dirty_metadata_batch);
1148                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1149                         btrfs_set_lock_blocking(buf);
1150                         clear_extent_buffer_dirty(buf);
1151                 }
1152         }
1153 }
1154
1155 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1156                          u32 stripesize, struct btrfs_root *root,
1157                          struct btrfs_fs_info *fs_info,
1158                          u64 objectid)
1159 {
1160         root->node = NULL;
1161         root->commit_root = NULL;
1162         root->sectorsize = sectorsize;
1163         root->nodesize = nodesize;
1164         root->leafsize = leafsize;
1165         root->stripesize = stripesize;
1166         root->ref_cows = 0;
1167         root->track_dirty = 0;
1168         root->in_radix = 0;
1169         root->orphan_item_inserted = 0;
1170         root->orphan_cleanup_state = 0;
1171
1172         root->objectid = objectid;
1173         root->last_trans = 0;
1174         root->highest_objectid = 0;
1175         root->nr_delalloc_inodes = 0;
1176         root->nr_ordered_extents = 0;
1177         root->name = NULL;
1178         root->inode_tree = RB_ROOT;
1179         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1180         root->block_rsv = NULL;
1181         root->orphan_block_rsv = NULL;
1182
1183         INIT_LIST_HEAD(&root->dirty_list);
1184         INIT_LIST_HEAD(&root->root_list);
1185         INIT_LIST_HEAD(&root->delalloc_inodes);
1186         INIT_LIST_HEAD(&root->delalloc_root);
1187         INIT_LIST_HEAD(&root->ordered_extents);
1188         INIT_LIST_HEAD(&root->ordered_root);
1189         INIT_LIST_HEAD(&root->logged_list[0]);
1190         INIT_LIST_HEAD(&root->logged_list[1]);
1191         spin_lock_init(&root->orphan_lock);
1192         spin_lock_init(&root->inode_lock);
1193         spin_lock_init(&root->delalloc_lock);
1194         spin_lock_init(&root->ordered_extent_lock);
1195         spin_lock_init(&root->accounting_lock);
1196         spin_lock_init(&root->log_extents_lock[0]);
1197         spin_lock_init(&root->log_extents_lock[1]);
1198         mutex_init(&root->objectid_mutex);
1199         mutex_init(&root->log_mutex);
1200         init_waitqueue_head(&root->log_writer_wait);
1201         init_waitqueue_head(&root->log_commit_wait[0]);
1202         init_waitqueue_head(&root->log_commit_wait[1]);
1203         atomic_set(&root->log_commit[0], 0);
1204         atomic_set(&root->log_commit[1], 0);
1205         atomic_set(&root->log_writers, 0);
1206         atomic_set(&root->log_batch, 0);
1207         atomic_set(&root->orphan_inodes, 0);
1208         atomic_set(&root->refs, 1);
1209         root->log_transid = 0;
1210         root->last_log_commit = 0;
1211         if (fs_info)
1212                 extent_io_tree_init(&root->dirty_log_pages,
1213                                      fs_info->btree_inode->i_mapping);
1214
1215         memset(&root->root_key, 0, sizeof(root->root_key));
1216         memset(&root->root_item, 0, sizeof(root->root_item));
1217         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1218         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1219         if (fs_info)
1220                 root->defrag_trans_start = fs_info->generation;
1221         else
1222                 root->defrag_trans_start = 0;
1223         init_completion(&root->kobj_unregister);
1224         root->defrag_running = 0;
1225         root->root_key.objectid = objectid;
1226         root->anon_dev = 0;
1227
1228         spin_lock_init(&root->root_item_lock);
1229 }
1230
1231 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1232 {
1233         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1234         if (root)
1235                 root->fs_info = fs_info;
1236         return root;
1237 }
1238
1239 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1240 /* Should only be used by the testing infrastructure */
1241 struct btrfs_root *btrfs_alloc_dummy_root(void)
1242 {
1243         struct btrfs_root *root;
1244
1245         root = btrfs_alloc_root(NULL);
1246         if (!root)
1247                 return ERR_PTR(-ENOMEM);
1248         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1249         root->dummy_root = 1;
1250
1251         return root;
1252 }
1253 #endif
1254
1255 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1256                                      struct btrfs_fs_info *fs_info,
1257                                      u64 objectid)
1258 {
1259         struct extent_buffer *leaf;
1260         struct btrfs_root *tree_root = fs_info->tree_root;
1261         struct btrfs_root *root;
1262         struct btrfs_key key;
1263         int ret = 0;
1264         uuid_le uuid;
1265
1266         root = btrfs_alloc_root(fs_info);
1267         if (!root)
1268                 return ERR_PTR(-ENOMEM);
1269
1270         __setup_root(tree_root->nodesize, tree_root->leafsize,
1271                      tree_root->sectorsize, tree_root->stripesize,
1272                      root, fs_info, objectid);
1273         root->root_key.objectid = objectid;
1274         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1275         root->root_key.offset = 0;
1276
1277         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1278                                       0, objectid, NULL, 0, 0, 0);
1279         if (IS_ERR(leaf)) {
1280                 ret = PTR_ERR(leaf);
1281                 leaf = NULL;
1282                 goto fail;
1283         }
1284
1285         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1286         btrfs_set_header_bytenr(leaf, leaf->start);
1287         btrfs_set_header_generation(leaf, trans->transid);
1288         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1289         btrfs_set_header_owner(leaf, objectid);
1290         root->node = leaf;
1291
1292         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1293                             BTRFS_FSID_SIZE);
1294         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1295                             btrfs_header_chunk_tree_uuid(leaf),
1296                             BTRFS_UUID_SIZE);
1297         btrfs_mark_buffer_dirty(leaf);
1298
1299         root->commit_root = btrfs_root_node(root);
1300         root->track_dirty = 1;
1301
1302
1303         root->root_item.flags = 0;
1304         root->root_item.byte_limit = 0;
1305         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1306         btrfs_set_root_generation(&root->root_item, trans->transid);
1307         btrfs_set_root_level(&root->root_item, 0);
1308         btrfs_set_root_refs(&root->root_item, 1);
1309         btrfs_set_root_used(&root->root_item, leaf->len);
1310         btrfs_set_root_last_snapshot(&root->root_item, 0);
1311         btrfs_set_root_dirid(&root->root_item, 0);
1312         uuid_le_gen(&uuid);
1313         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1314         root->root_item.drop_level = 0;
1315
1316         key.objectid = objectid;
1317         key.type = BTRFS_ROOT_ITEM_KEY;
1318         key.offset = 0;
1319         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1320         if (ret)
1321                 goto fail;
1322
1323         btrfs_tree_unlock(leaf);
1324
1325         return root;
1326
1327 fail:
1328         if (leaf) {
1329                 btrfs_tree_unlock(leaf);
1330                 free_extent_buffer(leaf);
1331         }
1332         kfree(root);
1333
1334         return ERR_PTR(ret);
1335 }
1336
1337 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1338                                          struct btrfs_fs_info *fs_info)
1339 {
1340         struct btrfs_root *root;
1341         struct btrfs_root *tree_root = fs_info->tree_root;
1342         struct extent_buffer *leaf;
1343
1344         root = btrfs_alloc_root(fs_info);
1345         if (!root)
1346                 return ERR_PTR(-ENOMEM);
1347
1348         __setup_root(tree_root->nodesize, tree_root->leafsize,
1349                      tree_root->sectorsize, tree_root->stripesize,
1350                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1351
1352         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1353         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1354         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1355         /*
1356          * log trees do not get reference counted because they go away
1357          * before a real commit is actually done.  They do store pointers
1358          * to file data extents, and those reference counts still get
1359          * updated (along with back refs to the log tree).
1360          */
1361         root->ref_cows = 0;
1362
1363         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1364                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1365                                       0, 0, 0);
1366         if (IS_ERR(leaf)) {
1367                 kfree(root);
1368                 return ERR_CAST(leaf);
1369         }
1370
1371         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1372         btrfs_set_header_bytenr(leaf, leaf->start);
1373         btrfs_set_header_generation(leaf, trans->transid);
1374         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1375         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1376         root->node = leaf;
1377
1378         write_extent_buffer(root->node, root->fs_info->fsid,
1379                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1380         btrfs_mark_buffer_dirty(root->node);
1381         btrfs_tree_unlock(root->node);
1382         return root;
1383 }
1384
1385 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1386                              struct btrfs_fs_info *fs_info)
1387 {
1388         struct btrfs_root *log_root;
1389
1390         log_root = alloc_log_tree(trans, fs_info);
1391         if (IS_ERR(log_root))
1392                 return PTR_ERR(log_root);
1393         WARN_ON(fs_info->log_root_tree);
1394         fs_info->log_root_tree = log_root;
1395         return 0;
1396 }
1397
1398 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1399                        struct btrfs_root *root)
1400 {
1401         struct btrfs_root *log_root;
1402         struct btrfs_inode_item *inode_item;
1403
1404         log_root = alloc_log_tree(trans, root->fs_info);
1405         if (IS_ERR(log_root))
1406                 return PTR_ERR(log_root);
1407
1408         log_root->last_trans = trans->transid;
1409         log_root->root_key.offset = root->root_key.objectid;
1410
1411         inode_item = &log_root->root_item.inode;
1412         btrfs_set_stack_inode_generation(inode_item, 1);
1413         btrfs_set_stack_inode_size(inode_item, 3);
1414         btrfs_set_stack_inode_nlink(inode_item, 1);
1415         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1416         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1417
1418         btrfs_set_root_node(&log_root->root_item, log_root->node);
1419
1420         WARN_ON(root->log_root);
1421         root->log_root = log_root;
1422         root->log_transid = 0;
1423         root->last_log_commit = 0;
1424         return 0;
1425 }
1426
1427 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1428                                                struct btrfs_key *key)
1429 {
1430         struct btrfs_root *root;
1431         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1432         struct btrfs_path *path;
1433         u64 generation;
1434         u32 blocksize;
1435         int ret;
1436
1437         path = btrfs_alloc_path();
1438         if (!path)
1439                 return ERR_PTR(-ENOMEM);
1440
1441         root = btrfs_alloc_root(fs_info);
1442         if (!root) {
1443                 ret = -ENOMEM;
1444                 goto alloc_fail;
1445         }
1446
1447         __setup_root(tree_root->nodesize, tree_root->leafsize,
1448                      tree_root->sectorsize, tree_root->stripesize,
1449                      root, fs_info, key->objectid);
1450
1451         ret = btrfs_find_root(tree_root, key, path,
1452                               &root->root_item, &root->root_key);
1453         if (ret) {
1454                 if (ret > 0)
1455                         ret = -ENOENT;
1456                 goto find_fail;
1457         }
1458
1459         generation = btrfs_root_generation(&root->root_item);
1460         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1461         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1462                                      blocksize, generation);
1463         if (!root->node) {
1464                 ret = -ENOMEM;
1465                 goto find_fail;
1466         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1467                 ret = -EIO;
1468                 goto read_fail;
1469         }
1470         root->commit_root = btrfs_root_node(root);
1471 out:
1472         btrfs_free_path(path);
1473         return root;
1474
1475 read_fail:
1476         free_extent_buffer(root->node);
1477 find_fail:
1478         kfree(root);
1479 alloc_fail:
1480         root = ERR_PTR(ret);
1481         goto out;
1482 }
1483
1484 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1485                                       struct btrfs_key *location)
1486 {
1487         struct btrfs_root *root;
1488
1489         root = btrfs_read_tree_root(tree_root, location);
1490         if (IS_ERR(root))
1491                 return root;
1492
1493         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1494                 root->ref_cows = 1;
1495                 btrfs_check_and_init_root_item(&root->root_item);
1496         }
1497
1498         return root;
1499 }
1500
1501 int btrfs_init_fs_root(struct btrfs_root *root)
1502 {
1503         int ret;
1504
1505         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1506         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1507                                         GFP_NOFS);
1508         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1509                 ret = -ENOMEM;
1510                 goto fail;
1511         }
1512
1513         btrfs_init_free_ino_ctl(root);
1514         mutex_init(&root->fs_commit_mutex);
1515         spin_lock_init(&root->cache_lock);
1516         init_waitqueue_head(&root->cache_wait);
1517
1518         ret = get_anon_bdev(&root->anon_dev);
1519         if (ret)
1520                 goto fail;
1521         return 0;
1522 fail:
1523         kfree(root->free_ino_ctl);
1524         kfree(root->free_ino_pinned);
1525         return ret;
1526 }
1527
1528 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1529                                                u64 root_id)
1530 {
1531         struct btrfs_root *root;
1532
1533         spin_lock(&fs_info->fs_roots_radix_lock);
1534         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1535                                  (unsigned long)root_id);
1536         spin_unlock(&fs_info->fs_roots_radix_lock);
1537         return root;
1538 }
1539
1540 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1541                          struct btrfs_root *root)
1542 {
1543         int ret;
1544
1545         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1546         if (ret)
1547                 return ret;
1548
1549         spin_lock(&fs_info->fs_roots_radix_lock);
1550         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1551                                 (unsigned long)root->root_key.objectid,
1552                                 root);
1553         if (ret == 0)
1554                 root->in_radix = 1;
1555         spin_unlock(&fs_info->fs_roots_radix_lock);
1556         radix_tree_preload_end();
1557
1558         return ret;
1559 }
1560
1561 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1562                                      struct btrfs_key *location,
1563                                      bool check_ref)
1564 {
1565         struct btrfs_root *root;
1566         int ret;
1567
1568         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1569                 return fs_info->tree_root;
1570         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1571                 return fs_info->extent_root;
1572         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1573                 return fs_info->chunk_root;
1574         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1575                 return fs_info->dev_root;
1576         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1577                 return fs_info->csum_root;
1578         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1579                 return fs_info->quota_root ? fs_info->quota_root :
1580                                              ERR_PTR(-ENOENT);
1581         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1582                 return fs_info->uuid_root ? fs_info->uuid_root :
1583                                             ERR_PTR(-ENOENT);
1584 again:
1585         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1586         if (root) {
1587                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1588                         return ERR_PTR(-ENOENT);
1589                 return root;
1590         }
1591
1592         root = btrfs_read_fs_root(fs_info->tree_root, location);
1593         if (IS_ERR(root))
1594                 return root;
1595
1596         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1597                 ret = -ENOENT;
1598                 goto fail;
1599         }
1600
1601         ret = btrfs_init_fs_root(root);
1602         if (ret)
1603                 goto fail;
1604
1605         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1606                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1607         if (ret < 0)
1608                 goto fail;
1609         if (ret == 0)
1610                 root->orphan_item_inserted = 1;
1611
1612         ret = btrfs_insert_fs_root(fs_info, root);
1613         if (ret) {
1614                 if (ret == -EEXIST) {
1615                         free_fs_root(root);
1616                         goto again;
1617                 }
1618                 goto fail;
1619         }
1620         return root;
1621 fail:
1622         free_fs_root(root);
1623         return ERR_PTR(ret);
1624 }
1625
1626 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1627 {
1628         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1629         int ret = 0;
1630         struct btrfs_device *device;
1631         struct backing_dev_info *bdi;
1632
1633         rcu_read_lock();
1634         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1635                 if (!device->bdev)
1636                         continue;
1637                 bdi = blk_get_backing_dev_info(device->bdev);
1638                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1639                         ret = 1;
1640                         break;
1641                 }
1642         }
1643         rcu_read_unlock();
1644         return ret;
1645 }
1646
1647 /*
1648  * If this fails, caller must call bdi_destroy() to get rid of the
1649  * bdi again.
1650  */
1651 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1652 {
1653         int err;
1654
1655         bdi->capabilities = BDI_CAP_MAP_COPY;
1656         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1657         if (err)
1658                 return err;
1659
1660         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1661         bdi->congested_fn       = btrfs_congested_fn;
1662         bdi->congested_data     = info;
1663         return 0;
1664 }
1665
1666 /*
1667  * called by the kthread helper functions to finally call the bio end_io
1668  * functions.  This is where read checksum verification actually happens
1669  */
1670 static void end_workqueue_fn(struct btrfs_work *work)
1671 {
1672         struct bio *bio;
1673         struct end_io_wq *end_io_wq;
1674         int error;
1675
1676         end_io_wq = container_of(work, struct end_io_wq, work);
1677         bio = end_io_wq->bio;
1678
1679         error = end_io_wq->error;
1680         bio->bi_private = end_io_wq->private;
1681         bio->bi_end_io = end_io_wq->end_io;
1682         kfree(end_io_wq);
1683         bio_endio(bio, error);
1684 }
1685
1686 static int cleaner_kthread(void *arg)
1687 {
1688         struct btrfs_root *root = arg;
1689         int again;
1690
1691         do {
1692                 again = 0;
1693
1694                 /* Make the cleaner go to sleep early. */
1695                 if (btrfs_need_cleaner_sleep(root))
1696                         goto sleep;
1697
1698                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1699                         goto sleep;
1700
1701                 /*
1702                  * Avoid the problem that we change the status of the fs
1703                  * during the above check and trylock.
1704                  */
1705                 if (btrfs_need_cleaner_sleep(root)) {
1706                         mutex_unlock(&root->fs_info->cleaner_mutex);
1707                         goto sleep;
1708                 }
1709
1710                 btrfs_run_delayed_iputs(root);
1711                 again = btrfs_clean_one_deleted_snapshot(root);
1712                 mutex_unlock(&root->fs_info->cleaner_mutex);
1713
1714                 /*
1715                  * The defragger has dealt with the R/O remount and umount,
1716                  * needn't do anything special here.
1717                  */
1718                 btrfs_run_defrag_inodes(root->fs_info);
1719 sleep:
1720                 if (!try_to_freeze() && !again) {
1721                         set_current_state(TASK_INTERRUPTIBLE);
1722                         if (!kthread_should_stop())
1723                                 schedule();
1724                         __set_current_state(TASK_RUNNING);
1725                 }
1726         } while (!kthread_should_stop());
1727         return 0;
1728 }
1729
1730 static int transaction_kthread(void *arg)
1731 {
1732         struct btrfs_root *root = arg;
1733         struct btrfs_trans_handle *trans;
1734         struct btrfs_transaction *cur;
1735         u64 transid;
1736         unsigned long now;
1737         unsigned long delay;
1738         bool cannot_commit;
1739
1740         do {
1741                 cannot_commit = false;
1742                 delay = HZ * root->fs_info->commit_interval;
1743                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1744
1745                 spin_lock(&root->fs_info->trans_lock);
1746                 cur = root->fs_info->running_transaction;
1747                 if (!cur) {
1748                         spin_unlock(&root->fs_info->trans_lock);
1749                         goto sleep;
1750                 }
1751
1752                 now = get_seconds();
1753                 if (cur->state < TRANS_STATE_BLOCKED &&
1754                     (now < cur->start_time ||
1755                      now - cur->start_time < root->fs_info->commit_interval)) {
1756                         spin_unlock(&root->fs_info->trans_lock);
1757                         delay = HZ * 5;
1758                         goto sleep;
1759                 }
1760                 transid = cur->transid;
1761                 spin_unlock(&root->fs_info->trans_lock);
1762
1763                 /* If the file system is aborted, this will always fail. */
1764                 trans = btrfs_attach_transaction(root);
1765                 if (IS_ERR(trans)) {
1766                         if (PTR_ERR(trans) != -ENOENT)
1767                                 cannot_commit = true;
1768                         goto sleep;
1769                 }
1770                 if (transid == trans->transid) {
1771                         btrfs_commit_transaction(trans, root);
1772                 } else {
1773                         btrfs_end_transaction(trans, root);
1774                 }
1775 sleep:
1776                 wake_up_process(root->fs_info->cleaner_kthread);
1777                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1778
1779                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1780                                       &root->fs_info->fs_state)))
1781                         btrfs_cleanup_transaction(root);
1782                 if (!try_to_freeze()) {
1783                         set_current_state(TASK_INTERRUPTIBLE);
1784                         if (!kthread_should_stop() &&
1785                             (!btrfs_transaction_blocked(root->fs_info) ||
1786                              cannot_commit))
1787                                 schedule_timeout(delay);
1788                         __set_current_state(TASK_RUNNING);
1789                 }
1790         } while (!kthread_should_stop());
1791         return 0;
1792 }
1793
1794 /*
1795  * this will find the highest generation in the array of
1796  * root backups.  The index of the highest array is returned,
1797  * or -1 if we can't find anything.
1798  *
1799  * We check to make sure the array is valid by comparing the
1800  * generation of the latest  root in the array with the generation
1801  * in the super block.  If they don't match we pitch it.
1802  */
1803 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804 {
1805         u64 cur;
1806         int newest_index = -1;
1807         struct btrfs_root_backup *root_backup;
1808         int i;
1809
1810         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811                 root_backup = info->super_copy->super_roots + i;
1812                 cur = btrfs_backup_tree_root_gen(root_backup);
1813                 if (cur == newest_gen)
1814                         newest_index = i;
1815         }
1816
1817         /* check to see if we actually wrapped around */
1818         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1819                 root_backup = info->super_copy->super_roots;
1820                 cur = btrfs_backup_tree_root_gen(root_backup);
1821                 if (cur == newest_gen)
1822                         newest_index = 0;
1823         }
1824         return newest_index;
1825 }
1826
1827
1828 /*
1829  * find the oldest backup so we know where to store new entries
1830  * in the backup array.  This will set the backup_root_index
1831  * field in the fs_info struct
1832  */
1833 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1834                                      u64 newest_gen)
1835 {
1836         int newest_index = -1;
1837
1838         newest_index = find_newest_super_backup(info, newest_gen);
1839         /* if there was garbage in there, just move along */
1840         if (newest_index == -1) {
1841                 info->backup_root_index = 0;
1842         } else {
1843                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1844         }
1845 }
1846
1847 /*
1848  * copy all the root pointers into the super backup array.
1849  * this will bump the backup pointer by one when it is
1850  * done
1851  */
1852 static void backup_super_roots(struct btrfs_fs_info *info)
1853 {
1854         int next_backup;
1855         struct btrfs_root_backup *root_backup;
1856         int last_backup;
1857
1858         next_backup = info->backup_root_index;
1859         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1860                 BTRFS_NUM_BACKUP_ROOTS;
1861
1862         /*
1863          * just overwrite the last backup if we're at the same generation
1864          * this happens only at umount
1865          */
1866         root_backup = info->super_for_commit->super_roots + last_backup;
1867         if (btrfs_backup_tree_root_gen(root_backup) ==
1868             btrfs_header_generation(info->tree_root->node))
1869                 next_backup = last_backup;
1870
1871         root_backup = info->super_for_commit->super_roots + next_backup;
1872
1873         /*
1874          * make sure all of our padding and empty slots get zero filled
1875          * regardless of which ones we use today
1876          */
1877         memset(root_backup, 0, sizeof(*root_backup));
1878
1879         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880
1881         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1882         btrfs_set_backup_tree_root_gen(root_backup,
1883                                btrfs_header_generation(info->tree_root->node));
1884
1885         btrfs_set_backup_tree_root_level(root_backup,
1886                                btrfs_header_level(info->tree_root->node));
1887
1888         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1889         btrfs_set_backup_chunk_root_gen(root_backup,
1890                                btrfs_header_generation(info->chunk_root->node));
1891         btrfs_set_backup_chunk_root_level(root_backup,
1892                                btrfs_header_level(info->chunk_root->node));
1893
1894         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1895         btrfs_set_backup_extent_root_gen(root_backup,
1896                                btrfs_header_generation(info->extent_root->node));
1897         btrfs_set_backup_extent_root_level(root_backup,
1898                                btrfs_header_level(info->extent_root->node));
1899
1900         /*
1901          * we might commit during log recovery, which happens before we set
1902          * the fs_root.  Make sure it is valid before we fill it in.
1903          */
1904         if (info->fs_root && info->fs_root->node) {
1905                 btrfs_set_backup_fs_root(root_backup,
1906                                          info->fs_root->node->start);
1907                 btrfs_set_backup_fs_root_gen(root_backup,
1908                                btrfs_header_generation(info->fs_root->node));
1909                 btrfs_set_backup_fs_root_level(root_backup,
1910                                btrfs_header_level(info->fs_root->node));
1911         }
1912
1913         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1914         btrfs_set_backup_dev_root_gen(root_backup,
1915                                btrfs_header_generation(info->dev_root->node));
1916         btrfs_set_backup_dev_root_level(root_backup,
1917                                        btrfs_header_level(info->dev_root->node));
1918
1919         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1920         btrfs_set_backup_csum_root_gen(root_backup,
1921                                btrfs_header_generation(info->csum_root->node));
1922         btrfs_set_backup_csum_root_level(root_backup,
1923                                btrfs_header_level(info->csum_root->node));
1924
1925         btrfs_set_backup_total_bytes(root_backup,
1926                              btrfs_super_total_bytes(info->super_copy));
1927         btrfs_set_backup_bytes_used(root_backup,
1928                              btrfs_super_bytes_used(info->super_copy));
1929         btrfs_set_backup_num_devices(root_backup,
1930                              btrfs_super_num_devices(info->super_copy));
1931
1932         /*
1933          * if we don't copy this out to the super_copy, it won't get remembered
1934          * for the next commit
1935          */
1936         memcpy(&info->super_copy->super_roots,
1937                &info->super_for_commit->super_roots,
1938                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1939 }
1940
1941 /*
1942  * this copies info out of the root backup array and back into
1943  * the in-memory super block.  It is meant to help iterate through
1944  * the array, so you send it the number of backups you've already
1945  * tried and the last backup index you used.
1946  *
1947  * this returns -1 when it has tried all the backups
1948  */
1949 static noinline int next_root_backup(struct btrfs_fs_info *info,
1950                                      struct btrfs_super_block *super,
1951                                      int *num_backups_tried, int *backup_index)
1952 {
1953         struct btrfs_root_backup *root_backup;
1954         int newest = *backup_index;
1955
1956         if (*num_backups_tried == 0) {
1957                 u64 gen = btrfs_super_generation(super);
1958
1959                 newest = find_newest_super_backup(info, gen);
1960                 if (newest == -1)
1961                         return -1;
1962
1963                 *backup_index = newest;
1964                 *num_backups_tried = 1;
1965         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1966                 /* we've tried all the backups, all done */
1967                 return -1;
1968         } else {
1969                 /* jump to the next oldest backup */
1970                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971                         BTRFS_NUM_BACKUP_ROOTS;
1972                 *backup_index = newest;
1973                 *num_backups_tried += 1;
1974         }
1975         root_backup = super->super_roots + newest;
1976
1977         btrfs_set_super_generation(super,
1978                                    btrfs_backup_tree_root_gen(root_backup));
1979         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980         btrfs_set_super_root_level(super,
1981                                    btrfs_backup_tree_root_level(root_backup));
1982         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984         /*
1985          * fixme: the total bytes and num_devices need to match or we should
1986          * need a fsck
1987          */
1988         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990         return 0;
1991 }
1992
1993 /* helper to cleanup workers */
1994 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995 {
1996         btrfs_stop_workers(&fs_info->generic_worker);
1997         btrfs_stop_workers(&fs_info->fixup_workers);
1998         btrfs_stop_workers(&fs_info->delalloc_workers);
1999         btrfs_stop_workers(&fs_info->workers);
2000         btrfs_stop_workers(&fs_info->endio_workers);
2001         btrfs_stop_workers(&fs_info->endio_meta_workers);
2002         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2003         btrfs_stop_workers(&fs_info->rmw_workers);
2004         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2005         btrfs_stop_workers(&fs_info->endio_write_workers);
2006         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2007         btrfs_stop_workers(&fs_info->submit_workers);
2008         btrfs_stop_workers(&fs_info->delayed_workers);
2009         btrfs_stop_workers(&fs_info->caching_workers);
2010         btrfs_stop_workers(&fs_info->readahead_workers);
2011         btrfs_stop_workers(&fs_info->flush_workers);
2012         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2013 }
2014
2015 static void free_root_extent_buffers(struct btrfs_root *root)
2016 {
2017         if (root) {
2018                 free_extent_buffer(root->node);
2019                 free_extent_buffer(root->commit_root);
2020                 root->node = NULL;
2021                 root->commit_root = NULL;
2022         }
2023 }
2024
2025 /* helper to cleanup tree roots */
2026 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2027 {
2028         free_root_extent_buffers(info->tree_root);
2029
2030         free_root_extent_buffers(info->dev_root);
2031         free_root_extent_buffers(info->extent_root);
2032         free_root_extent_buffers(info->csum_root);
2033         free_root_extent_buffers(info->quota_root);
2034         free_root_extent_buffers(info->uuid_root);
2035         if (chunk_root)
2036                 free_root_extent_buffers(info->chunk_root);
2037 }
2038
2039 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2040 {
2041         int ret;
2042         struct btrfs_root *gang[8];
2043         int i;
2044
2045         while (!list_empty(&fs_info->dead_roots)) {
2046                 gang[0] = list_entry(fs_info->dead_roots.next,
2047                                      struct btrfs_root, root_list);
2048                 list_del(&gang[0]->root_list);
2049
2050                 if (gang[0]->in_radix) {
2051                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2052                 } else {
2053                         free_extent_buffer(gang[0]->node);
2054                         free_extent_buffer(gang[0]->commit_root);
2055                         btrfs_put_fs_root(gang[0]);
2056                 }
2057         }
2058
2059         while (1) {
2060                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2061                                              (void **)gang, 0,
2062                                              ARRAY_SIZE(gang));
2063                 if (!ret)
2064                         break;
2065                 for (i = 0; i < ret; i++)
2066                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2067         }
2068
2069         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2070                 btrfs_free_log_root_tree(NULL, fs_info);
2071                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2072                                             fs_info->pinned_extents);
2073         }
2074 }
2075
2076 int open_ctree(struct super_block *sb,
2077                struct btrfs_fs_devices *fs_devices,
2078                char *options)
2079 {
2080         u32 sectorsize;
2081         u32 nodesize;
2082         u32 leafsize;
2083         u32 blocksize;
2084         u32 stripesize;
2085         u64 generation;
2086         u64 features;
2087         struct btrfs_key location;
2088         struct buffer_head *bh;
2089         struct btrfs_super_block *disk_super;
2090         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2091         struct btrfs_root *tree_root;
2092         struct btrfs_root *extent_root;
2093         struct btrfs_root *csum_root;
2094         struct btrfs_root *chunk_root;
2095         struct btrfs_root *dev_root;
2096         struct btrfs_root *quota_root;
2097         struct btrfs_root *uuid_root;
2098         struct btrfs_root *log_tree_root;
2099         int ret;
2100         int err = -EINVAL;
2101         int num_backups_tried = 0;
2102         int backup_index = 0;
2103         bool create_uuid_tree;
2104         bool check_uuid_tree;
2105
2106         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2107         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2108         if (!tree_root || !chunk_root) {
2109                 err = -ENOMEM;
2110                 goto fail;
2111         }
2112
2113         ret = init_srcu_struct(&fs_info->subvol_srcu);
2114         if (ret) {
2115                 err = ret;
2116                 goto fail;
2117         }
2118
2119         ret = setup_bdi(fs_info, &fs_info->bdi);
2120         if (ret) {
2121                 err = ret;
2122                 goto fail_srcu;
2123         }
2124
2125         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2126         if (ret) {
2127                 err = ret;
2128                 goto fail_bdi;
2129         }
2130         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2131                                         (1 + ilog2(nr_cpu_ids));
2132
2133         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2134         if (ret) {
2135                 err = ret;
2136                 goto fail_dirty_metadata_bytes;
2137         }
2138
2139         fs_info->btree_inode = new_inode(sb);
2140         if (!fs_info->btree_inode) {
2141                 err = -ENOMEM;
2142                 goto fail_delalloc_bytes;
2143         }
2144
2145         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2146
2147         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2148         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2149         INIT_LIST_HEAD(&fs_info->trans_list);
2150         INIT_LIST_HEAD(&fs_info->dead_roots);
2151         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2152         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2153         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2154         spin_lock_init(&fs_info->delalloc_root_lock);
2155         spin_lock_init(&fs_info->trans_lock);
2156         spin_lock_init(&fs_info->fs_roots_radix_lock);
2157         spin_lock_init(&fs_info->delayed_iput_lock);
2158         spin_lock_init(&fs_info->defrag_inodes_lock);
2159         spin_lock_init(&fs_info->free_chunk_lock);
2160         spin_lock_init(&fs_info->tree_mod_seq_lock);
2161         spin_lock_init(&fs_info->super_lock);
2162         spin_lock_init(&fs_info->buffer_lock);
2163         rwlock_init(&fs_info->tree_mod_log_lock);
2164         mutex_init(&fs_info->reloc_mutex);
2165         seqlock_init(&fs_info->profiles_lock);
2166
2167         init_completion(&fs_info->kobj_unregister);
2168         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2169         INIT_LIST_HEAD(&fs_info->space_info);
2170         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2171         btrfs_mapping_init(&fs_info->mapping_tree);
2172         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2173                              BTRFS_BLOCK_RSV_GLOBAL);
2174         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2175                              BTRFS_BLOCK_RSV_DELALLOC);
2176         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2177         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2178         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2179         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2180                              BTRFS_BLOCK_RSV_DELOPS);
2181         atomic_set(&fs_info->nr_async_submits, 0);
2182         atomic_set(&fs_info->async_delalloc_pages, 0);
2183         atomic_set(&fs_info->async_submit_draining, 0);
2184         atomic_set(&fs_info->nr_async_bios, 0);
2185         atomic_set(&fs_info->defrag_running, 0);
2186         atomic64_set(&fs_info->tree_mod_seq, 0);
2187         fs_info->sb = sb;
2188         fs_info->max_inline = 8192 * 1024;
2189         fs_info->metadata_ratio = 0;
2190         fs_info->defrag_inodes = RB_ROOT;
2191         fs_info->free_chunk_space = 0;
2192         fs_info->tree_mod_log = RB_ROOT;
2193         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2194         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2195         /* readahead state */
2196         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2197         spin_lock_init(&fs_info->reada_lock);
2198
2199         fs_info->thread_pool_size = min_t(unsigned long,
2200                                           num_online_cpus() + 2, 8);
2201
2202         INIT_LIST_HEAD(&fs_info->ordered_roots);
2203         spin_lock_init(&fs_info->ordered_root_lock);
2204         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2205                                         GFP_NOFS);
2206         if (!fs_info->delayed_root) {
2207                 err = -ENOMEM;
2208                 goto fail_iput;
2209         }
2210         btrfs_init_delayed_root(fs_info->delayed_root);
2211
2212         mutex_init(&fs_info->scrub_lock);
2213         atomic_set(&fs_info->scrubs_running, 0);
2214         atomic_set(&fs_info->scrub_pause_req, 0);
2215         atomic_set(&fs_info->scrubs_paused, 0);
2216         atomic_set(&fs_info->scrub_cancel_req, 0);
2217         init_waitqueue_head(&fs_info->scrub_pause_wait);
2218         fs_info->scrub_workers_refcnt = 0;
2219 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2220         fs_info->check_integrity_print_mask = 0;
2221 #endif
2222
2223         spin_lock_init(&fs_info->balance_lock);
2224         mutex_init(&fs_info->balance_mutex);
2225         atomic_set(&fs_info->balance_running, 0);
2226         atomic_set(&fs_info->balance_pause_req, 0);
2227         atomic_set(&fs_info->balance_cancel_req, 0);
2228         fs_info->balance_ctl = NULL;
2229         init_waitqueue_head(&fs_info->balance_wait_q);
2230
2231         sb->s_blocksize = 4096;
2232         sb->s_blocksize_bits = blksize_bits(4096);
2233         sb->s_bdi = &fs_info->bdi;
2234
2235         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2236         set_nlink(fs_info->btree_inode, 1);
2237         /*
2238          * we set the i_size on the btree inode to the max possible int.
2239          * the real end of the address space is determined by all of
2240          * the devices in the system
2241          */
2242         fs_info->btree_inode->i_size = OFFSET_MAX;
2243         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2244         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2245
2246         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2247         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2248                              fs_info->btree_inode->i_mapping);
2249         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2250         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2251
2252         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2253
2254         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2255         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2256                sizeof(struct btrfs_key));
2257         set_bit(BTRFS_INODE_DUMMY,
2258                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2259         btrfs_insert_inode_hash(fs_info->btree_inode);
2260
2261         spin_lock_init(&fs_info->block_group_cache_lock);
2262         fs_info->block_group_cache_tree = RB_ROOT;
2263         fs_info->first_logical_byte = (u64)-1;
2264
2265         extent_io_tree_init(&fs_info->freed_extents[0],
2266                              fs_info->btree_inode->i_mapping);
2267         extent_io_tree_init(&fs_info->freed_extents[1],
2268                              fs_info->btree_inode->i_mapping);
2269         fs_info->pinned_extents = &fs_info->freed_extents[0];
2270         fs_info->do_barriers = 1;
2271
2272
2273         mutex_init(&fs_info->ordered_operations_mutex);
2274         mutex_init(&fs_info->ordered_extent_flush_mutex);
2275         mutex_init(&fs_info->tree_log_mutex);
2276         mutex_init(&fs_info->chunk_mutex);
2277         mutex_init(&fs_info->transaction_kthread_mutex);
2278         mutex_init(&fs_info->cleaner_mutex);
2279         mutex_init(&fs_info->volume_mutex);
2280         init_rwsem(&fs_info->extent_commit_sem);
2281         init_rwsem(&fs_info->cleanup_work_sem);
2282         init_rwsem(&fs_info->subvol_sem);
2283         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2284         fs_info->dev_replace.lock_owner = 0;
2285         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2286         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2287         mutex_init(&fs_info->dev_replace.lock_management_lock);
2288         mutex_init(&fs_info->dev_replace.lock);
2289
2290         spin_lock_init(&fs_info->qgroup_lock);
2291         mutex_init(&fs_info->qgroup_ioctl_lock);
2292         fs_info->qgroup_tree = RB_ROOT;
2293         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2294         fs_info->qgroup_seq = 1;
2295         fs_info->quota_enabled = 0;
2296         fs_info->pending_quota_state = 0;
2297         fs_info->qgroup_ulist = NULL;
2298         mutex_init(&fs_info->qgroup_rescan_lock);
2299
2300         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2301         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2302
2303         init_waitqueue_head(&fs_info->transaction_throttle);
2304         init_waitqueue_head(&fs_info->transaction_wait);
2305         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2306         init_waitqueue_head(&fs_info->async_submit_wait);
2307
2308         ret = btrfs_alloc_stripe_hash_table(fs_info);
2309         if (ret) {
2310                 err = ret;
2311                 goto fail_alloc;
2312         }
2313
2314         __setup_root(4096, 4096, 4096, 4096, tree_root,
2315                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2316
2317         invalidate_bdev(fs_devices->latest_bdev);
2318
2319         /*
2320          * Read super block and check the signature bytes only
2321          */
2322         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2323         if (!bh) {
2324                 err = -EINVAL;
2325                 goto fail_alloc;
2326         }
2327
2328         /*
2329          * We want to check superblock checksum, the type is stored inside.
2330          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2331          */
2332         if (btrfs_check_super_csum(bh->b_data)) {
2333                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2334                 err = -EINVAL;
2335                 goto fail_alloc;
2336         }
2337
2338         /*
2339          * super_copy is zeroed at allocation time and we never touch the
2340          * following bytes up to INFO_SIZE, the checksum is calculated from
2341          * the whole block of INFO_SIZE
2342          */
2343         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2344         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2345                sizeof(*fs_info->super_for_commit));
2346         brelse(bh);
2347
2348         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2349
2350         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2351         if (ret) {
2352                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2353                 err = -EINVAL;
2354                 goto fail_alloc;
2355         }
2356
2357         disk_super = fs_info->super_copy;
2358         if (!btrfs_super_root(disk_super))
2359                 goto fail_alloc;
2360
2361         /* check FS state, whether FS is broken. */
2362         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2363                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2364
2365         /*
2366          * run through our array of backup supers and setup
2367          * our ring pointer to the oldest one
2368          */
2369         generation = btrfs_super_generation(disk_super);
2370         find_oldest_super_backup(fs_info, generation);
2371
2372         /*
2373          * In the long term, we'll store the compression type in the super
2374          * block, and it'll be used for per file compression control.
2375          */
2376         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2377
2378         ret = btrfs_parse_options(tree_root, options);
2379         if (ret) {
2380                 err = ret;
2381                 goto fail_alloc;
2382         }
2383
2384         features = btrfs_super_incompat_flags(disk_super) &
2385                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2386         if (features) {
2387                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2388                        "unsupported optional features (%Lx).\n",
2389                        features);
2390                 err = -EINVAL;
2391                 goto fail_alloc;
2392         }
2393
2394         if (btrfs_super_leafsize(disk_super) !=
2395             btrfs_super_nodesize(disk_super)) {
2396                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2397                        "blocksizes don't match.  node %d leaf %d\n",
2398                        btrfs_super_nodesize(disk_super),
2399                        btrfs_super_leafsize(disk_super));
2400                 err = -EINVAL;
2401                 goto fail_alloc;
2402         }
2403         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2404                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2405                        "blocksize (%d) was too large\n",
2406                        btrfs_super_leafsize(disk_super));
2407                 err = -EINVAL;
2408                 goto fail_alloc;
2409         }
2410
2411         features = btrfs_super_incompat_flags(disk_super);
2412         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2413         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2414                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2415
2416         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2417                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2418
2419         /*
2420          * flag our filesystem as having big metadata blocks if
2421          * they are bigger than the page size
2422          */
2423         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2424                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2425                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2426                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2427         }
2428
2429         nodesize = btrfs_super_nodesize(disk_super);
2430         leafsize = btrfs_super_leafsize(disk_super);
2431         sectorsize = btrfs_super_sectorsize(disk_super);
2432         stripesize = btrfs_super_stripesize(disk_super);
2433         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2434         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2435
2436         /*
2437          * mixed block groups end up with duplicate but slightly offset
2438          * extent buffers for the same range.  It leads to corruptions
2439          */
2440         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2441             (sectorsize != leafsize)) {
2442                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2443                                 "are not allowed for mixed block groups on %s\n",
2444                                 sb->s_id);
2445                 goto fail_alloc;
2446         }
2447
2448         /*
2449          * Needn't use the lock because there is no other task which will
2450          * update the flag.
2451          */
2452         btrfs_set_super_incompat_flags(disk_super, features);
2453
2454         features = btrfs_super_compat_ro_flags(disk_super) &
2455                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2456         if (!(sb->s_flags & MS_RDONLY) && features) {
2457                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2458                        "unsupported option features (%Lx).\n",
2459                        features);
2460                 err = -EINVAL;
2461                 goto fail_alloc;
2462         }
2463
2464         btrfs_init_workers(&fs_info->generic_worker,
2465                            "genwork", 1, NULL);
2466
2467         btrfs_init_workers(&fs_info->workers, "worker",
2468                            fs_info->thread_pool_size,
2469                            &fs_info->generic_worker);
2470
2471         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2472                            fs_info->thread_pool_size, NULL);
2473
2474         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2475                            fs_info->thread_pool_size, NULL);
2476
2477         btrfs_init_workers(&fs_info->submit_workers, "submit",
2478                            min_t(u64, fs_devices->num_devices,
2479                            fs_info->thread_pool_size), NULL);
2480
2481         btrfs_init_workers(&fs_info->caching_workers, "cache",
2482                            fs_info->thread_pool_size, NULL);
2483
2484         /* a higher idle thresh on the submit workers makes it much more
2485          * likely that bios will be send down in a sane order to the
2486          * devices
2487          */
2488         fs_info->submit_workers.idle_thresh = 64;
2489
2490         fs_info->workers.idle_thresh = 16;
2491         fs_info->workers.ordered = 1;
2492
2493         fs_info->delalloc_workers.idle_thresh = 2;
2494         fs_info->delalloc_workers.ordered = 1;
2495
2496         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2497                            &fs_info->generic_worker);
2498         btrfs_init_workers(&fs_info->endio_workers, "endio",
2499                            fs_info->thread_pool_size,
2500                            &fs_info->generic_worker);
2501         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2502                            fs_info->thread_pool_size,
2503                            &fs_info->generic_worker);
2504         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2505                            "endio-meta-write", fs_info->thread_pool_size,
2506                            &fs_info->generic_worker);
2507         btrfs_init_workers(&fs_info->endio_raid56_workers,
2508                            "endio-raid56", fs_info->thread_pool_size,
2509                            &fs_info->generic_worker);
2510         btrfs_init_workers(&fs_info->rmw_workers,
2511                            "rmw", fs_info->thread_pool_size,
2512                            &fs_info->generic_worker);
2513         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2514                            fs_info->thread_pool_size,
2515                            &fs_info->generic_worker);
2516         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2517                            1, &fs_info->generic_worker);
2518         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2519                            fs_info->thread_pool_size,
2520                            &fs_info->generic_worker);
2521         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2522                            fs_info->thread_pool_size,
2523                            &fs_info->generic_worker);
2524         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2525                            &fs_info->generic_worker);
2526
2527         /*
2528          * endios are largely parallel and should have a very
2529          * low idle thresh
2530          */
2531         fs_info->endio_workers.idle_thresh = 4;
2532         fs_info->endio_meta_workers.idle_thresh = 4;
2533         fs_info->endio_raid56_workers.idle_thresh = 4;
2534         fs_info->rmw_workers.idle_thresh = 2;
2535
2536         fs_info->endio_write_workers.idle_thresh = 2;
2537         fs_info->endio_meta_write_workers.idle_thresh = 2;
2538         fs_info->readahead_workers.idle_thresh = 2;
2539
2540         /*
2541          * btrfs_start_workers can really only fail because of ENOMEM so just
2542          * return -ENOMEM if any of these fail.
2543          */
2544         ret = btrfs_start_workers(&fs_info->workers);
2545         ret |= btrfs_start_workers(&fs_info->generic_worker);
2546         ret |= btrfs_start_workers(&fs_info->submit_workers);
2547         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2548         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2549         ret |= btrfs_start_workers(&fs_info->endio_workers);
2550         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2551         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2552         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2553         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2554         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2555         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2556         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2557         ret |= btrfs_start_workers(&fs_info->caching_workers);
2558         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2559         ret |= btrfs_start_workers(&fs_info->flush_workers);
2560         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2561         if (ret) {
2562                 err = -ENOMEM;
2563                 goto fail_sb_buffer;
2564         }
2565
2566         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2567         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2568                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2569
2570         tree_root->nodesize = nodesize;
2571         tree_root->leafsize = leafsize;
2572         tree_root->sectorsize = sectorsize;
2573         tree_root->stripesize = stripesize;
2574
2575         sb->s_blocksize = sectorsize;
2576         sb->s_blocksize_bits = blksize_bits(sectorsize);
2577
2578         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2579                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2580                 goto fail_sb_buffer;
2581         }
2582
2583         if (sectorsize != PAGE_SIZE) {
2584                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2585                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2586                 goto fail_sb_buffer;
2587         }
2588
2589         mutex_lock(&fs_info->chunk_mutex);
2590         ret = btrfs_read_sys_array(tree_root);
2591         mutex_unlock(&fs_info->chunk_mutex);
2592         if (ret) {
2593                 printk(KERN_WARNING "BTRFS: failed to read the system "
2594                        "array on %s\n", sb->s_id);
2595                 goto fail_sb_buffer;
2596         }
2597
2598         blocksize = btrfs_level_size(tree_root,
2599                                      btrfs_super_chunk_root_level(disk_super));
2600         generation = btrfs_super_chunk_root_generation(disk_super);
2601
2602         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2603                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2604
2605         chunk_root->node = read_tree_block(chunk_root,
2606                                            btrfs_super_chunk_root(disk_super),
2607                                            blocksize, generation);
2608         if (!chunk_root->node ||
2609             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2610                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2611                        sb->s_id);
2612                 goto fail_tree_roots;
2613         }
2614         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2615         chunk_root->commit_root = btrfs_root_node(chunk_root);
2616
2617         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2618            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2619
2620         ret = btrfs_read_chunk_tree(chunk_root);
2621         if (ret) {
2622                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2623                        sb->s_id);
2624                 goto fail_tree_roots;
2625         }
2626
2627         /*
2628          * keep the device that is marked to be the target device for the
2629          * dev_replace procedure
2630          */
2631         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2632
2633         if (!fs_devices->latest_bdev) {
2634                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2635                        sb->s_id);
2636                 goto fail_tree_roots;
2637         }
2638
2639 retry_root_backup:
2640         blocksize = btrfs_level_size(tree_root,
2641                                      btrfs_super_root_level(disk_super));
2642         generation = btrfs_super_generation(disk_super);
2643
2644         tree_root->node = read_tree_block(tree_root,
2645                                           btrfs_super_root(disk_super),
2646                                           blocksize, generation);
2647         if (!tree_root->node ||
2648             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2649                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2650                        sb->s_id);
2651
2652                 goto recovery_tree_root;
2653         }
2654
2655         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2656         tree_root->commit_root = btrfs_root_node(tree_root);
2657         btrfs_set_root_refs(&tree_root->root_item, 1);
2658
2659         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2660         location.type = BTRFS_ROOT_ITEM_KEY;
2661         location.offset = 0;
2662
2663         extent_root = btrfs_read_tree_root(tree_root, &location);
2664         if (IS_ERR(extent_root)) {
2665                 ret = PTR_ERR(extent_root);
2666                 goto recovery_tree_root;
2667         }
2668         extent_root->track_dirty = 1;
2669         fs_info->extent_root = extent_root;
2670
2671         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2672         dev_root = btrfs_read_tree_root(tree_root, &location);
2673         if (IS_ERR(dev_root)) {
2674                 ret = PTR_ERR(dev_root);
2675                 goto recovery_tree_root;
2676         }
2677         dev_root->track_dirty = 1;
2678         fs_info->dev_root = dev_root;
2679         btrfs_init_devices_late(fs_info);
2680
2681         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2682         csum_root = btrfs_read_tree_root(tree_root, &location);
2683         if (IS_ERR(csum_root)) {
2684                 ret = PTR_ERR(csum_root);
2685                 goto recovery_tree_root;
2686         }
2687         csum_root->track_dirty = 1;
2688         fs_info->csum_root = csum_root;
2689
2690         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2691         quota_root = btrfs_read_tree_root(tree_root, &location);
2692         if (!IS_ERR(quota_root)) {
2693                 quota_root->track_dirty = 1;
2694                 fs_info->quota_enabled = 1;
2695                 fs_info->pending_quota_state = 1;
2696                 fs_info->quota_root = quota_root;
2697         }
2698
2699         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2700         uuid_root = btrfs_read_tree_root(tree_root, &location);
2701         if (IS_ERR(uuid_root)) {
2702                 ret = PTR_ERR(uuid_root);
2703                 if (ret != -ENOENT)
2704                         goto recovery_tree_root;
2705                 create_uuid_tree = true;
2706                 check_uuid_tree = false;
2707         } else {
2708                 uuid_root->track_dirty = 1;
2709                 fs_info->uuid_root = uuid_root;
2710                 create_uuid_tree = false;
2711                 check_uuid_tree =
2712                     generation != btrfs_super_uuid_tree_generation(disk_super);
2713         }
2714
2715         fs_info->generation = generation;
2716         fs_info->last_trans_committed = generation;
2717
2718         ret = btrfs_recover_balance(fs_info);
2719         if (ret) {
2720                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2721                 goto fail_block_groups;
2722         }
2723
2724         ret = btrfs_init_dev_stats(fs_info);
2725         if (ret) {
2726                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2727                        ret);
2728                 goto fail_block_groups;
2729         }
2730
2731         ret = btrfs_init_dev_replace(fs_info);
2732         if (ret) {
2733                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2734                 goto fail_block_groups;
2735         }
2736
2737         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2738
2739         ret = btrfs_sysfs_add_one(fs_info);
2740         if (ret) {
2741                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2742                 goto fail_block_groups;
2743         }
2744
2745         ret = btrfs_init_space_info(fs_info);
2746         if (ret) {
2747                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2748                 goto fail_sysfs;
2749         }
2750
2751         ret = btrfs_read_block_groups(extent_root);
2752         if (ret) {
2753                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2754                 goto fail_sysfs;
2755         }
2756         fs_info->num_tolerated_disk_barrier_failures =
2757                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2758         if (fs_info->fs_devices->missing_devices >
2759              fs_info->num_tolerated_disk_barrier_failures &&
2760             !(sb->s_flags & MS_RDONLY)) {
2761                 printk(KERN_WARNING "BTRFS: "
2762                         "too many missing devices, writeable mount is not allowed\n");
2763                 goto fail_sysfs;
2764         }
2765
2766         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2767                                                "btrfs-cleaner");
2768         if (IS_ERR(fs_info->cleaner_kthread))
2769                 goto fail_sysfs;
2770
2771         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2772                                                    tree_root,
2773                                                    "btrfs-transaction");
2774         if (IS_ERR(fs_info->transaction_kthread))
2775                 goto fail_cleaner;
2776
2777         if (!btrfs_test_opt(tree_root, SSD) &&
2778             !btrfs_test_opt(tree_root, NOSSD) &&
2779             !fs_info->fs_devices->rotating) {
2780                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2781                        "mode\n");
2782                 btrfs_set_opt(fs_info->mount_opt, SSD);
2783         }
2784
2785         /* Set the real inode map cache flag */
2786         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2787                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2788
2789 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2790         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2791                 ret = btrfsic_mount(tree_root, fs_devices,
2792                                     btrfs_test_opt(tree_root,
2793                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2794                                     1 : 0,
2795                                     fs_info->check_integrity_print_mask);
2796                 if (ret)
2797                         printk(KERN_WARNING "BTRFS: failed to initialize"
2798                                " integrity check module %s\n", sb->s_id);
2799         }
2800 #endif
2801         ret = btrfs_read_qgroup_config(fs_info);
2802         if (ret)
2803                 goto fail_trans_kthread;
2804
2805         /* do not make disk changes in broken FS */
2806         if (btrfs_super_log_root(disk_super) != 0) {
2807                 u64 bytenr = btrfs_super_log_root(disk_super);
2808
2809                 if (fs_devices->rw_devices == 0) {
2810                         printk(KERN_WARNING "BTRFS: log replay required "
2811                                "on RO media\n");
2812                         err = -EIO;
2813                         goto fail_qgroup;
2814                 }
2815                 blocksize =
2816                      btrfs_level_size(tree_root,
2817                                       btrfs_super_log_root_level(disk_super));
2818
2819                 log_tree_root = btrfs_alloc_root(fs_info);
2820                 if (!log_tree_root) {
2821                         err = -ENOMEM;
2822                         goto fail_qgroup;
2823                 }
2824
2825                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2826                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2827
2828                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2829                                                       blocksize,
2830                                                       generation + 1);
2831                 if (!log_tree_root->node ||
2832                     !extent_buffer_uptodate(log_tree_root->node)) {
2833                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2834                         free_extent_buffer(log_tree_root->node);
2835                         kfree(log_tree_root);
2836                         goto fail_trans_kthread;
2837                 }
2838                 /* returns with log_tree_root freed on success */
2839                 ret = btrfs_recover_log_trees(log_tree_root);
2840                 if (ret) {
2841                         btrfs_error(tree_root->fs_info, ret,
2842                                     "Failed to recover log tree");
2843                         free_extent_buffer(log_tree_root->node);
2844                         kfree(log_tree_root);
2845                         goto fail_trans_kthread;
2846                 }
2847
2848                 if (sb->s_flags & MS_RDONLY) {
2849                         ret = btrfs_commit_super(tree_root);
2850                         if (ret)
2851                                 goto fail_trans_kthread;
2852                 }
2853         }
2854
2855         ret = btrfs_find_orphan_roots(tree_root);
2856         if (ret)
2857                 goto fail_trans_kthread;
2858
2859         if (!(sb->s_flags & MS_RDONLY)) {
2860                 ret = btrfs_cleanup_fs_roots(fs_info);
2861                 if (ret)
2862                         goto fail_trans_kthread;
2863
2864                 ret = btrfs_recover_relocation(tree_root);
2865                 if (ret < 0) {
2866                         printk(KERN_WARNING
2867                                "BTRFS: failed to recover relocation\n");
2868                         err = -EINVAL;
2869                         goto fail_qgroup;
2870                 }
2871         }
2872
2873         location.objectid = BTRFS_FS_TREE_OBJECTID;
2874         location.type = BTRFS_ROOT_ITEM_KEY;
2875         location.offset = 0;
2876
2877         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2878         if (IS_ERR(fs_info->fs_root)) {
2879                 err = PTR_ERR(fs_info->fs_root);
2880                 goto fail_qgroup;
2881         }
2882
2883         if (sb->s_flags & MS_RDONLY)
2884                 return 0;
2885
2886         down_read(&fs_info->cleanup_work_sem);
2887         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2888             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2889                 up_read(&fs_info->cleanup_work_sem);
2890                 close_ctree(tree_root);
2891                 return ret;
2892         }
2893         up_read(&fs_info->cleanup_work_sem);
2894
2895         ret = btrfs_resume_balance_async(fs_info);
2896         if (ret) {
2897                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2898                 close_ctree(tree_root);
2899                 return ret;
2900         }
2901
2902         ret = btrfs_resume_dev_replace_async(fs_info);
2903         if (ret) {
2904                 pr_warn("BTRFS: failed to resume dev_replace\n");
2905                 close_ctree(tree_root);
2906                 return ret;
2907         }
2908
2909         btrfs_qgroup_rescan_resume(fs_info);
2910
2911         if (create_uuid_tree) {
2912                 pr_info("BTRFS: creating UUID tree\n");
2913                 ret = btrfs_create_uuid_tree(fs_info);
2914                 if (ret) {
2915                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2916                                 ret);
2917                         close_ctree(tree_root);
2918                         return ret;
2919                 }
2920         } else if (check_uuid_tree ||
2921                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2922                 pr_info("BTRFS: checking UUID tree\n");
2923                 ret = btrfs_check_uuid_tree(fs_info);
2924                 if (ret) {
2925                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2926                                 ret);
2927                         close_ctree(tree_root);
2928                         return ret;
2929                 }
2930         } else {
2931                 fs_info->update_uuid_tree_gen = 1;
2932         }
2933
2934         return 0;
2935
2936 fail_qgroup:
2937         btrfs_free_qgroup_config(fs_info);
2938 fail_trans_kthread:
2939         kthread_stop(fs_info->transaction_kthread);
2940         btrfs_cleanup_transaction(fs_info->tree_root);
2941         del_fs_roots(fs_info);
2942 fail_cleaner:
2943         kthread_stop(fs_info->cleaner_kthread);
2944
2945         /*
2946          * make sure we're done with the btree inode before we stop our
2947          * kthreads
2948          */
2949         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2950
2951 fail_sysfs:
2952         btrfs_sysfs_remove_one(fs_info);
2953
2954 fail_block_groups:
2955         btrfs_put_block_group_cache(fs_info);
2956         btrfs_free_block_groups(fs_info);
2957
2958 fail_tree_roots:
2959         free_root_pointers(fs_info, 1);
2960         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2961
2962 fail_sb_buffer:
2963         btrfs_stop_all_workers(fs_info);
2964 fail_alloc:
2965 fail_iput:
2966         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2967
2968         iput(fs_info->btree_inode);
2969 fail_delalloc_bytes:
2970         percpu_counter_destroy(&fs_info->delalloc_bytes);
2971 fail_dirty_metadata_bytes:
2972         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2973 fail_bdi:
2974         bdi_destroy(&fs_info->bdi);
2975 fail_srcu:
2976         cleanup_srcu_struct(&fs_info->subvol_srcu);
2977 fail:
2978         btrfs_free_stripe_hash_table(fs_info);
2979         btrfs_close_devices(fs_info->fs_devices);
2980         return err;
2981
2982 recovery_tree_root:
2983         if (!btrfs_test_opt(tree_root, RECOVERY))
2984                 goto fail_tree_roots;
2985
2986         free_root_pointers(fs_info, 0);
2987
2988         /* don't use the log in recovery mode, it won't be valid */
2989         btrfs_set_super_log_root(disk_super, 0);
2990
2991         /* we can't trust the free space cache either */
2992         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2993
2994         ret = next_root_backup(fs_info, fs_info->super_copy,
2995                                &num_backups_tried, &backup_index);
2996         if (ret == -1)
2997                 goto fail_block_groups;
2998         goto retry_root_backup;
2999 }
3000
3001 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3002 {
3003         if (uptodate) {
3004                 set_buffer_uptodate(bh);
3005         } else {
3006                 struct btrfs_device *device = (struct btrfs_device *)
3007                         bh->b_private;
3008
3009                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3010                                           "I/O error on %s\n",
3011                                           rcu_str_deref(device->name));
3012                 /* note, we dont' set_buffer_write_io_error because we have
3013                  * our own ways of dealing with the IO errors
3014                  */
3015                 clear_buffer_uptodate(bh);
3016                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3017         }
3018         unlock_buffer(bh);
3019         put_bh(bh);
3020 }
3021
3022 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3023 {
3024         struct buffer_head *bh;
3025         struct buffer_head *latest = NULL;
3026         struct btrfs_super_block *super;
3027         int i;
3028         u64 transid = 0;
3029         u64 bytenr;
3030
3031         /* we would like to check all the supers, but that would make
3032          * a btrfs mount succeed after a mkfs from a different FS.
3033          * So, we need to add a special mount option to scan for
3034          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3035          */
3036         for (i = 0; i < 1; i++) {
3037                 bytenr = btrfs_sb_offset(i);
3038                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3039                                         i_size_read(bdev->bd_inode))
3040                         break;
3041                 bh = __bread(bdev, bytenr / 4096,
3042                                         BTRFS_SUPER_INFO_SIZE);
3043                 if (!bh)
3044                         continue;
3045
3046                 super = (struct btrfs_super_block *)bh->b_data;
3047                 if (btrfs_super_bytenr(super) != bytenr ||
3048                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3049                         brelse(bh);
3050                         continue;
3051                 }
3052
3053                 if (!latest || btrfs_super_generation(super) > transid) {
3054                         brelse(latest);
3055                         latest = bh;
3056                         transid = btrfs_super_generation(super);
3057                 } else {
3058                         brelse(bh);
3059                 }
3060         }
3061         return latest;
3062 }
3063
3064 /*
3065  * this should be called twice, once with wait == 0 and
3066  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3067  * we write are pinned.
3068  *
3069  * They are released when wait == 1 is done.
3070  * max_mirrors must be the same for both runs, and it indicates how
3071  * many supers on this one device should be written.
3072  *
3073  * max_mirrors == 0 means to write them all.
3074  */
3075 static int write_dev_supers(struct btrfs_device *device,
3076                             struct btrfs_super_block *sb,
3077                             int do_barriers, int wait, int max_mirrors)
3078 {
3079         struct buffer_head *bh;
3080         int i;
3081         int ret;
3082         int errors = 0;
3083         u32 crc;
3084         u64 bytenr;
3085
3086         if (max_mirrors == 0)
3087                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3088
3089         for (i = 0; i < max_mirrors; i++) {
3090                 bytenr = btrfs_sb_offset(i);
3091                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3092                         break;
3093
3094                 if (wait) {
3095                         bh = __find_get_block(device->bdev, bytenr / 4096,
3096                                               BTRFS_SUPER_INFO_SIZE);
3097                         if (!bh) {
3098                                 errors++;
3099                                 continue;
3100                         }
3101                         wait_on_buffer(bh);
3102                         if (!buffer_uptodate(bh))
3103                                 errors++;
3104
3105                         /* drop our reference */
3106                         brelse(bh);
3107
3108                         /* drop the reference from the wait == 0 run */
3109                         brelse(bh);
3110                         continue;
3111                 } else {
3112                         btrfs_set_super_bytenr(sb, bytenr);
3113
3114                         crc = ~(u32)0;
3115                         crc = btrfs_csum_data((char *)sb +
3116                                               BTRFS_CSUM_SIZE, crc,
3117                                               BTRFS_SUPER_INFO_SIZE -
3118                                               BTRFS_CSUM_SIZE);
3119                         btrfs_csum_final(crc, sb->csum);
3120
3121                         /*
3122                          * one reference for us, and we leave it for the
3123                          * caller
3124                          */
3125                         bh = __getblk(device->bdev, bytenr / 4096,
3126                                       BTRFS_SUPER_INFO_SIZE);
3127                         if (!bh) {
3128                                 printk(KERN_ERR "BTRFS: couldn't get super "
3129                                        "buffer head for bytenr %Lu\n", bytenr);
3130                                 errors++;
3131                                 continue;
3132                         }
3133
3134                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3135
3136                         /* one reference for submit_bh */
3137                         get_bh(bh);
3138
3139                         set_buffer_uptodate(bh);
3140                         lock_buffer(bh);
3141                         bh->b_end_io = btrfs_end_buffer_write_sync;
3142                         bh->b_private = device;
3143                 }
3144
3145                 /*
3146                  * we fua the first super.  The others we allow
3147                  * to go down lazy.
3148                  */
3149                 if (i == 0)
3150                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3151                 else
3152                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3153                 if (ret)
3154                         errors++;
3155         }
3156         return errors < i ? 0 : -1;
3157 }
3158
3159 /*
3160  * endio for the write_dev_flush, this will wake anyone waiting
3161  * for the barrier when it is done
3162  */
3163 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3164 {
3165         if (err) {
3166                 if (err == -EOPNOTSUPP)
3167                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3168                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3169         }
3170         if (bio->bi_private)
3171                 complete(bio->bi_private);
3172         bio_put(bio);
3173 }
3174
3175 /*
3176  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3177  * sent down.  With wait == 1, it waits for the previous flush.
3178  *
3179  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3180  * capable
3181  */
3182 static int write_dev_flush(struct btrfs_device *device, int wait)
3183 {
3184         struct bio *bio;
3185         int ret = 0;
3186
3187         if (device->nobarriers)
3188                 return 0;
3189
3190         if (wait) {
3191                 bio = device->flush_bio;
3192                 if (!bio)
3193                         return 0;
3194
3195                 wait_for_completion(&device->flush_wait);
3196
3197                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3198                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3199                                       rcu_str_deref(device->name));
3200                         device->nobarriers = 1;
3201                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3202                         ret = -EIO;
3203                         btrfs_dev_stat_inc_and_print(device,
3204                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3205                 }
3206
3207                 /* drop the reference from the wait == 0 run */
3208                 bio_put(bio);
3209                 device->flush_bio = NULL;
3210
3211                 return ret;
3212         }
3213
3214         /*
3215          * one reference for us, and we leave it for the
3216          * caller
3217          */
3218         device->flush_bio = NULL;
3219         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3220         if (!bio)
3221                 return -ENOMEM;
3222
3223         bio->bi_end_io = btrfs_end_empty_barrier;
3224         bio->bi_bdev = device->bdev;
3225         init_completion(&device->flush_wait);
3226         bio->bi_private = &device->flush_wait;
3227         device->flush_bio = bio;
3228
3229         bio_get(bio);
3230         btrfsic_submit_bio(WRITE_FLUSH, bio);
3231
3232         return 0;
3233 }
3234
3235 /*
3236  * send an empty flush down to each device in parallel,
3237  * then wait for them
3238  */
3239 static int barrier_all_devices(struct btrfs_fs_info *info)
3240 {
3241         struct list_head *head;
3242         struct btrfs_device *dev;
3243         int errors_send = 0;
3244         int errors_wait = 0;
3245         int ret;
3246
3247         /* send down all the barriers */
3248         head = &info->fs_devices->devices;
3249         list_for_each_entry_rcu(dev, head, dev_list) {
3250                 if (!dev->bdev) {
3251                         errors_send++;
3252                         continue;
3253                 }
3254                 if (!dev->in_fs_metadata || !dev->writeable)
3255                         continue;
3256
3257                 ret = write_dev_flush(dev, 0);
3258                 if (ret)
3259                         errors_send++;
3260         }
3261
3262         /* wait for all the barriers */
3263         list_for_each_entry_rcu(dev, head, dev_list) {
3264                 if (!dev->bdev) {
3265                         errors_wait++;
3266                         continue;
3267                 }
3268                 if (!dev->in_fs_metadata || !dev->writeable)
3269                         continue;
3270
3271                 ret = write_dev_flush(dev, 1);
3272                 if (ret)
3273                         errors_wait++;
3274         }
3275         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3276             errors_wait > info->num_tolerated_disk_barrier_failures)
3277                 return -EIO;
3278         return 0;
3279 }
3280
3281 int btrfs_calc_num_tolerated_disk_barrier_failures(
3282         struct btrfs_fs_info *fs_info)
3283 {
3284         struct btrfs_ioctl_space_info space;
3285         struct btrfs_space_info *sinfo;
3286         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3287                        BTRFS_BLOCK_GROUP_SYSTEM,
3288                        BTRFS_BLOCK_GROUP_METADATA,
3289                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3290         int num_types = 4;
3291         int i;
3292         int c;
3293         int num_tolerated_disk_barrier_failures =
3294                 (int)fs_info->fs_devices->num_devices;
3295
3296         for (i = 0; i < num_types; i++) {
3297                 struct btrfs_space_info *tmp;
3298
3299                 sinfo = NULL;
3300                 rcu_read_lock();
3301                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3302                         if (tmp->flags == types[i]) {
3303                                 sinfo = tmp;
3304                                 break;
3305                         }
3306                 }
3307                 rcu_read_unlock();
3308
3309                 if (!sinfo)
3310                         continue;
3311
3312                 down_read(&sinfo->groups_sem);
3313                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3314                         if (!list_empty(&sinfo->block_groups[c])) {
3315                                 u64 flags;
3316
3317                                 btrfs_get_block_group_info(
3318                                         &sinfo->block_groups[c], &space);
3319                                 if (space.total_bytes == 0 ||
3320                                     space.used_bytes == 0)
3321                                         continue;
3322                                 flags = space.flags;
3323                                 /*
3324                                  * return
3325                                  * 0: if dup, single or RAID0 is configured for
3326                                  *    any of metadata, system or data, else
3327                                  * 1: if RAID5 is configured, or if RAID1 or
3328                                  *    RAID10 is configured and only two mirrors
3329                                  *    are used, else
3330                                  * 2: if RAID6 is configured, else
3331                                  * num_mirrors - 1: if RAID1 or RAID10 is
3332                                  *                  configured and more than
3333                                  *                  2 mirrors are used.
3334                                  */
3335                                 if (num_tolerated_disk_barrier_failures > 0 &&
3336                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3337                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3338                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3339                                       == 0)))
3340                                         num_tolerated_disk_barrier_failures = 0;
3341                                 else if (num_tolerated_disk_barrier_failures > 1) {
3342                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3343                                             BTRFS_BLOCK_GROUP_RAID5 |
3344                                             BTRFS_BLOCK_GROUP_RAID10)) {
3345                                                 num_tolerated_disk_barrier_failures = 1;
3346                                         } else if (flags &
3347                                                    BTRFS_BLOCK_GROUP_RAID6) {
3348                                                 num_tolerated_disk_barrier_failures = 2;
3349                                         }
3350                                 }
3351                         }
3352                 }
3353                 up_read(&sinfo->groups_sem);
3354         }
3355
3356         return num_tolerated_disk_barrier_failures;
3357 }
3358
3359 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3360 {
3361         struct list_head *head;
3362         struct btrfs_device *dev;
3363         struct btrfs_super_block *sb;
3364         struct btrfs_dev_item *dev_item;
3365         int ret;
3366         int do_barriers;
3367         int max_errors;
3368         int total_errors = 0;
3369         u64 flags;
3370
3371         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3372         backup_super_roots(root->fs_info);
3373
3374         sb = root->fs_info->super_for_commit;
3375         dev_item = &sb->dev_item;
3376
3377         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3378         head = &root->fs_info->fs_devices->devices;
3379         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3380
3381         if (do_barriers) {
3382                 ret = barrier_all_devices(root->fs_info);
3383                 if (ret) {
3384                         mutex_unlock(
3385                                 &root->fs_info->fs_devices->device_list_mutex);
3386                         btrfs_error(root->fs_info, ret,
3387                                     "errors while submitting device barriers.");
3388                         return ret;
3389                 }
3390         }
3391
3392         list_for_each_entry_rcu(dev, head, dev_list) {
3393                 if (!dev->bdev) {
3394                         total_errors++;
3395                         continue;
3396                 }
3397                 if (!dev->in_fs_metadata || !dev->writeable)
3398                         continue;
3399
3400                 btrfs_set_stack_device_generation(dev_item, 0);
3401                 btrfs_set_stack_device_type(dev_item, dev->type);
3402                 btrfs_set_stack_device_id(dev_item, dev->devid);
3403                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3404                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3405                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3406                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3407                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3408                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3409                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3410
3411                 flags = btrfs_super_flags(sb);
3412                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3413
3414                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3415                 if (ret)
3416                         total_errors++;
3417         }
3418         if (total_errors > max_errors) {
3419                 btrfs_err(root->fs_info, "%d errors while writing supers",
3420                        total_errors);
3421                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3422
3423                 /* FUA is masked off if unsupported and can't be the reason */
3424                 btrfs_error(root->fs_info, -EIO,
3425                             "%d errors while writing supers", total_errors);
3426                 return -EIO;
3427         }
3428
3429         total_errors = 0;
3430         list_for_each_entry_rcu(dev, head, dev_list) {
3431                 if (!dev->bdev)
3432                         continue;
3433                 if (!dev->in_fs_metadata || !dev->writeable)
3434                         continue;
3435
3436                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3437                 if (ret)
3438                         total_errors++;
3439         }
3440         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3441         if (total_errors > max_errors) {
3442                 btrfs_error(root->fs_info, -EIO,
3443                             "%d errors while writing supers", total_errors);
3444                 return -EIO;
3445         }
3446         return 0;
3447 }
3448
3449 int write_ctree_super(struct btrfs_trans_handle *trans,
3450                       struct btrfs_root *root, int max_mirrors)
3451 {
3452         return write_all_supers(root, max_mirrors);
3453 }
3454
3455 /* Drop a fs root from the radix tree and free it. */
3456 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3457                                   struct btrfs_root *root)
3458 {
3459         spin_lock(&fs_info->fs_roots_radix_lock);
3460         radix_tree_delete(&fs_info->fs_roots_radix,
3461                           (unsigned long)root->root_key.objectid);
3462         spin_unlock(&fs_info->fs_roots_radix_lock);
3463
3464         if (btrfs_root_refs(&root->root_item) == 0)
3465                 synchronize_srcu(&fs_info->subvol_srcu);
3466
3467         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3468                 btrfs_free_log(NULL, root);
3469
3470         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3471         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3472         free_fs_root(root);
3473 }
3474
3475 static void free_fs_root(struct btrfs_root *root)
3476 {
3477         iput(root->cache_inode);
3478         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3479         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3480         root->orphan_block_rsv = NULL;
3481         if (root->anon_dev)
3482                 free_anon_bdev(root->anon_dev);
3483         free_extent_buffer(root->node);
3484         free_extent_buffer(root->commit_root);
3485         kfree(root->free_ino_ctl);
3486         kfree(root->free_ino_pinned);
3487         kfree(root->name);
3488         btrfs_put_fs_root(root);
3489 }
3490
3491 void btrfs_free_fs_root(struct btrfs_root *root)
3492 {
3493         free_fs_root(root);
3494 }
3495
3496 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3497 {
3498         u64 root_objectid = 0;
3499         struct btrfs_root *gang[8];
3500         int i;
3501         int ret;
3502
3503         while (1) {
3504                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3505                                              (void **)gang, root_objectid,
3506                                              ARRAY_SIZE(gang));
3507                 if (!ret)
3508                         break;
3509
3510                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3511                 for (i = 0; i < ret; i++) {
3512                         int err;
3513
3514                         root_objectid = gang[i]->root_key.objectid;
3515                         err = btrfs_orphan_cleanup(gang[i]);
3516                         if (err)
3517                                 return err;
3518                 }
3519                 root_objectid++;
3520         }
3521         return 0;
3522 }
3523
3524 int btrfs_commit_super(struct btrfs_root *root)
3525 {
3526         struct btrfs_trans_handle *trans;
3527
3528         mutex_lock(&root->fs_info->cleaner_mutex);
3529         btrfs_run_delayed_iputs(root);
3530         mutex_unlock(&root->fs_info->cleaner_mutex);
3531         wake_up_process(root->fs_info->cleaner_kthread);
3532
3533         /* wait until ongoing cleanup work done */
3534         down_write(&root->fs_info->cleanup_work_sem);
3535         up_write(&root->fs_info->cleanup_work_sem);
3536
3537         trans = btrfs_join_transaction(root);
3538         if (IS_ERR(trans))
3539                 return PTR_ERR(trans);
3540         return btrfs_commit_transaction(trans, root);
3541 }
3542
3543 int close_ctree(struct btrfs_root *root)
3544 {
3545         struct btrfs_fs_info *fs_info = root->fs_info;
3546         int ret;
3547
3548         fs_info->closing = 1;
3549         smp_mb();
3550
3551         /* wait for the uuid_scan task to finish */
3552         down(&fs_info->uuid_tree_rescan_sem);
3553         /* avoid complains from lockdep et al., set sem back to initial state */
3554         up(&fs_info->uuid_tree_rescan_sem);
3555
3556         /* pause restriper - we want to resume on mount */
3557         btrfs_pause_balance(fs_info);
3558
3559         btrfs_dev_replace_suspend_for_unmount(fs_info);
3560
3561         btrfs_scrub_cancel(fs_info);
3562
3563         /* wait for any defraggers to finish */
3564         wait_event(fs_info->transaction_wait,
3565                    (atomic_read(&fs_info->defrag_running) == 0));
3566
3567         /* clear out the rbtree of defraggable inodes */
3568         btrfs_cleanup_defrag_inodes(fs_info);
3569
3570         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3571                 ret = btrfs_commit_super(root);
3572                 if (ret)
3573                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3574         }
3575
3576         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3577                 btrfs_error_commit_super(root);
3578
3579         kthread_stop(fs_info->transaction_kthread);
3580         kthread_stop(fs_info->cleaner_kthread);
3581
3582         fs_info->closing = 2;
3583         smp_mb();
3584
3585         btrfs_free_qgroup_config(root->fs_info);
3586
3587         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3588                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3589                        percpu_counter_sum(&fs_info->delalloc_bytes));
3590         }
3591
3592         btrfs_sysfs_remove_one(fs_info);
3593
3594         del_fs_roots(fs_info);
3595
3596         btrfs_put_block_group_cache(fs_info);
3597
3598         btrfs_free_block_groups(fs_info);
3599
3600         btrfs_stop_all_workers(fs_info);
3601
3602         free_root_pointers(fs_info, 1);
3603
3604         iput(fs_info->btree_inode);
3605
3606 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3607         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3608                 btrfsic_unmount(root, fs_info->fs_devices);
3609 #endif
3610
3611         btrfs_close_devices(fs_info->fs_devices);
3612         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3613
3614         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3615         percpu_counter_destroy(&fs_info->delalloc_bytes);
3616         bdi_destroy(&fs_info->bdi);
3617         cleanup_srcu_struct(&fs_info->subvol_srcu);
3618
3619         btrfs_free_stripe_hash_table(fs_info);
3620
3621         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3622         root->orphan_block_rsv = NULL;
3623
3624         return 0;
3625 }
3626
3627 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3628                           int atomic)
3629 {
3630         int ret;
3631         struct inode *btree_inode = buf->pages[0]->mapping->host;
3632
3633         ret = extent_buffer_uptodate(buf);
3634         if (!ret)
3635                 return ret;
3636
3637         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3638                                     parent_transid, atomic);
3639         if (ret == -EAGAIN)
3640                 return ret;
3641         return !ret;
3642 }
3643
3644 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3645 {
3646         return set_extent_buffer_uptodate(buf);
3647 }
3648
3649 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3650 {
3651         struct btrfs_root *root;
3652         u64 transid = btrfs_header_generation(buf);
3653         int was_dirty;
3654
3655 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3656         /*
3657          * This is a fast path so only do this check if we have sanity tests
3658          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3659          * outside of the sanity tests.
3660          */
3661         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3662                 return;
3663 #endif
3664         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3665         btrfs_assert_tree_locked(buf);
3666         if (transid != root->fs_info->generation)
3667                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3668                        "found %llu running %llu\n",
3669                         buf->start, transid, root->fs_info->generation);
3670         was_dirty = set_extent_buffer_dirty(buf);
3671         if (!was_dirty)
3672                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3673                                      buf->len,
3674                                      root->fs_info->dirty_metadata_batch);
3675 }
3676
3677 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3678                                         int flush_delayed)
3679 {
3680         /*
3681          * looks as though older kernels can get into trouble with
3682          * this code, they end up stuck in balance_dirty_pages forever
3683          */
3684         int ret;
3685
3686         if (current->flags & PF_MEMALLOC)
3687                 return;
3688
3689         if (flush_delayed)
3690                 btrfs_balance_delayed_items(root);
3691
3692         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3693                                      BTRFS_DIRTY_METADATA_THRESH);
3694         if (ret > 0) {
3695                 balance_dirty_pages_ratelimited(
3696                                    root->fs_info->btree_inode->i_mapping);
3697         }
3698         return;
3699 }
3700
3701 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3702 {
3703         __btrfs_btree_balance_dirty(root, 1);
3704 }
3705
3706 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3707 {
3708         __btrfs_btree_balance_dirty(root, 0);
3709 }
3710
3711 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3712 {
3713         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3714         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3715 }
3716
3717 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3718                               int read_only)
3719 {
3720         /*
3721          * Placeholder for checks
3722          */
3723         return 0;
3724 }
3725
3726 static void btrfs_error_commit_super(struct btrfs_root *root)
3727 {
3728         mutex_lock(&root->fs_info->cleaner_mutex);
3729         btrfs_run_delayed_iputs(root);
3730         mutex_unlock(&root->fs_info->cleaner_mutex);
3731
3732         down_write(&root->fs_info->cleanup_work_sem);
3733         up_write(&root->fs_info->cleanup_work_sem);
3734
3735         /* cleanup FS via transaction */
3736         btrfs_cleanup_transaction(root);
3737 }
3738
3739 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3740                                              struct btrfs_root *root)
3741 {
3742         struct btrfs_inode *btrfs_inode;
3743         struct list_head splice;
3744
3745         INIT_LIST_HEAD(&splice);
3746
3747         mutex_lock(&root->fs_info->ordered_operations_mutex);
3748         spin_lock(&root->fs_info->ordered_root_lock);
3749
3750         list_splice_init(&t->ordered_operations, &splice);
3751         while (!list_empty(&splice)) {
3752                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3753                                          ordered_operations);
3754
3755                 list_del_init(&btrfs_inode->ordered_operations);
3756                 spin_unlock(&root->fs_info->ordered_root_lock);
3757
3758                 btrfs_invalidate_inodes(btrfs_inode->root);
3759
3760                 spin_lock(&root->fs_info->ordered_root_lock);
3761         }
3762
3763         spin_unlock(&root->fs_info->ordered_root_lock);
3764         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3765 }
3766
3767 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3768 {
3769         struct btrfs_ordered_extent *ordered;
3770
3771         spin_lock(&root->ordered_extent_lock);
3772         /*
3773          * This will just short circuit the ordered completion stuff which will
3774          * make sure the ordered extent gets properly cleaned up.
3775          */
3776         list_for_each_entry(ordered, &root->ordered_extents,
3777                             root_extent_list)
3778                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3779         spin_unlock(&root->ordered_extent_lock);
3780 }
3781
3782 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3783 {
3784         struct btrfs_root *root;
3785         struct list_head splice;
3786
3787         INIT_LIST_HEAD(&splice);
3788
3789         spin_lock(&fs_info->ordered_root_lock);
3790         list_splice_init(&fs_info->ordered_roots, &splice);
3791         while (!list_empty(&splice)) {
3792                 root = list_first_entry(&splice, struct btrfs_root,
3793                                         ordered_root);
3794                 list_move_tail(&root->ordered_root,
3795                                &fs_info->ordered_roots);
3796
3797                 btrfs_destroy_ordered_extents(root);
3798
3799                 cond_resched_lock(&fs_info->ordered_root_lock);
3800         }
3801         spin_unlock(&fs_info->ordered_root_lock);
3802 }
3803
3804 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3805                                       struct btrfs_root *root)
3806 {
3807         struct rb_node *node;
3808         struct btrfs_delayed_ref_root *delayed_refs;
3809         struct btrfs_delayed_ref_node *ref;
3810         int ret = 0;
3811
3812         delayed_refs = &trans->delayed_refs;
3813
3814         spin_lock(&delayed_refs->lock);
3815         if (atomic_read(&delayed_refs->num_entries) == 0) {
3816                 spin_unlock(&delayed_refs->lock);
3817                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3818                 return ret;
3819         }
3820
3821         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3822                 struct btrfs_delayed_ref_head *head;
3823                 bool pin_bytes = false;
3824
3825                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3826                                 href_node);
3827                 if (!mutex_trylock(&head->mutex)) {
3828                         atomic_inc(&head->node.refs);
3829                         spin_unlock(&delayed_refs->lock);
3830
3831                         mutex_lock(&head->mutex);
3832                         mutex_unlock(&head->mutex);
3833                         btrfs_put_delayed_ref(&head->node);
3834                         spin_lock(&delayed_refs->lock);
3835                         continue;
3836                 }
3837                 spin_lock(&head->lock);
3838                 while ((node = rb_first(&head->ref_root)) != NULL) {
3839                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3840                                        rb_node);
3841                         ref->in_tree = 0;
3842                         rb_erase(&ref->rb_node, &head->ref_root);
3843                         atomic_dec(&delayed_refs->num_entries);
3844                         btrfs_put_delayed_ref(ref);
3845                         cond_resched_lock(&head->lock);
3846                 }
3847                 if (head->must_insert_reserved)
3848                         pin_bytes = true;
3849                 btrfs_free_delayed_extent_op(head->extent_op);
3850                 delayed_refs->num_heads--;
3851                 if (head->processing == 0)
3852                         delayed_refs->num_heads_ready--;
3853                 atomic_dec(&delayed_refs->num_entries);
3854                 head->node.in_tree = 0;
3855                 rb_erase(&head->href_node, &delayed_refs->href_root);
3856                 spin_unlock(&head->lock);
3857                 spin_unlock(&delayed_refs->lock);
3858                 mutex_unlock(&head->mutex);
3859
3860                 if (pin_bytes)
3861                         btrfs_pin_extent(root, head->node.bytenr,
3862                                          head->node.num_bytes, 1);
3863                 btrfs_put_delayed_ref(&head->node);
3864                 cond_resched();
3865                 spin_lock(&delayed_refs->lock);
3866         }
3867
3868         spin_unlock(&delayed_refs->lock);
3869
3870         return ret;
3871 }
3872
3873 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3874 {
3875         struct btrfs_inode *btrfs_inode;
3876         struct list_head splice;
3877
3878         INIT_LIST_HEAD(&splice);
3879
3880         spin_lock(&root->delalloc_lock);
3881         list_splice_init(&root->delalloc_inodes, &splice);
3882
3883         while (!list_empty(&splice)) {
3884                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3885                                                delalloc_inodes);
3886
3887                 list_del_init(&btrfs_inode->delalloc_inodes);
3888                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3889                           &btrfs_inode->runtime_flags);
3890                 spin_unlock(&root->delalloc_lock);
3891
3892                 btrfs_invalidate_inodes(btrfs_inode->root);
3893
3894                 spin_lock(&root->delalloc_lock);
3895         }
3896
3897         spin_unlock(&root->delalloc_lock);
3898 }
3899
3900 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3901 {
3902         struct btrfs_root *root;
3903         struct list_head splice;
3904
3905         INIT_LIST_HEAD(&splice);
3906
3907         spin_lock(&fs_info->delalloc_root_lock);
3908         list_splice_init(&fs_info->delalloc_roots, &splice);
3909         while (!list_empty(&splice)) {
3910                 root = list_first_entry(&splice, struct btrfs_root,
3911                                          delalloc_root);
3912                 list_del_init(&root->delalloc_root);
3913                 root = btrfs_grab_fs_root(root);
3914                 BUG_ON(!root);
3915                 spin_unlock(&fs_info->delalloc_root_lock);
3916
3917                 btrfs_destroy_delalloc_inodes(root);
3918                 btrfs_put_fs_root(root);
3919
3920                 spin_lock(&fs_info->delalloc_root_lock);
3921         }
3922         spin_unlock(&fs_info->delalloc_root_lock);
3923 }
3924
3925 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3926                                         struct extent_io_tree *dirty_pages,
3927                                         int mark)
3928 {
3929         int ret;
3930         struct extent_buffer *eb;
3931         u64 start = 0;
3932         u64 end;
3933
3934         while (1) {
3935                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3936                                             mark, NULL);
3937                 if (ret)
3938                         break;
3939
3940                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3941                 while (start <= end) {
3942                         eb = btrfs_find_tree_block(root, start,
3943                                                    root->leafsize);
3944                         start += root->leafsize;
3945                         if (!eb)
3946                                 continue;
3947                         wait_on_extent_buffer_writeback(eb);
3948
3949                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3950                                                &eb->bflags))
3951                                 clear_extent_buffer_dirty(eb);
3952                         free_extent_buffer_stale(eb);
3953                 }
3954         }
3955
3956         return ret;
3957 }
3958
3959 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3960                                        struct extent_io_tree *pinned_extents)
3961 {
3962         struct extent_io_tree *unpin;
3963         u64 start;
3964         u64 end;
3965         int ret;
3966         bool loop = true;
3967
3968         unpin = pinned_extents;
3969 again:
3970         while (1) {
3971                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3972                                             EXTENT_DIRTY, NULL);
3973                 if (ret)
3974                         break;
3975
3976                 /* opt_discard */
3977                 if (btrfs_test_opt(root, DISCARD))
3978                         ret = btrfs_error_discard_extent(root, start,
3979                                                          end + 1 - start,
3980                                                          NULL);
3981
3982                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3983                 btrfs_error_unpin_extent_range(root, start, end);
3984                 cond_resched();
3985         }
3986
3987         if (loop) {
3988                 if (unpin == &root->fs_info->freed_extents[0])
3989                         unpin = &root->fs_info->freed_extents[1];
3990                 else
3991                         unpin = &root->fs_info->freed_extents[0];
3992                 loop = false;
3993                 goto again;
3994         }
3995
3996         return 0;
3997 }
3998
3999 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4000                                    struct btrfs_root *root)
4001 {
4002         btrfs_destroy_ordered_operations(cur_trans, root);
4003
4004         btrfs_destroy_delayed_refs(cur_trans, root);
4005
4006         cur_trans->state = TRANS_STATE_COMMIT_START;
4007         wake_up(&root->fs_info->transaction_blocked_wait);
4008
4009         cur_trans->state = TRANS_STATE_UNBLOCKED;
4010         wake_up(&root->fs_info->transaction_wait);
4011
4012         btrfs_destroy_delayed_inodes(root);
4013         btrfs_assert_delayed_root_empty(root);
4014
4015         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4016                                      EXTENT_DIRTY);
4017         btrfs_destroy_pinned_extent(root,
4018                                     root->fs_info->pinned_extents);
4019
4020         cur_trans->state =TRANS_STATE_COMPLETED;
4021         wake_up(&cur_trans->commit_wait);
4022
4023         /*
4024         memset(cur_trans, 0, sizeof(*cur_trans));
4025         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4026         */
4027 }
4028
4029 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4030 {
4031         struct btrfs_transaction *t;
4032
4033         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4034
4035         spin_lock(&root->fs_info->trans_lock);
4036         while (!list_empty(&root->fs_info->trans_list)) {
4037                 t = list_first_entry(&root->fs_info->trans_list,
4038                                      struct btrfs_transaction, list);
4039                 if (t->state >= TRANS_STATE_COMMIT_START) {
4040                         atomic_inc(&t->use_count);
4041                         spin_unlock(&root->fs_info->trans_lock);
4042                         btrfs_wait_for_commit(root, t->transid);
4043                         btrfs_put_transaction(t);
4044                         spin_lock(&root->fs_info->trans_lock);
4045                         continue;
4046                 }
4047                 if (t == root->fs_info->running_transaction) {
4048                         t->state = TRANS_STATE_COMMIT_DOING;
4049                         spin_unlock(&root->fs_info->trans_lock);
4050                         /*
4051                          * We wait for 0 num_writers since we don't hold a trans
4052                          * handle open currently for this transaction.
4053                          */
4054                         wait_event(t->writer_wait,
4055                                    atomic_read(&t->num_writers) == 0);
4056                 } else {
4057                         spin_unlock(&root->fs_info->trans_lock);
4058                 }
4059                 btrfs_cleanup_one_transaction(t, root);
4060
4061                 spin_lock(&root->fs_info->trans_lock);
4062                 if (t == root->fs_info->running_transaction)
4063                         root->fs_info->running_transaction = NULL;
4064                 list_del_init(&t->list);
4065                 spin_unlock(&root->fs_info->trans_lock);
4066
4067                 btrfs_put_transaction(t);
4068                 trace_btrfs_transaction_commit(root);
4069                 spin_lock(&root->fs_info->trans_lock);
4070         }
4071         spin_unlock(&root->fs_info->trans_lock);
4072         btrfs_destroy_all_ordered_extents(root->fs_info);
4073         btrfs_destroy_delayed_inodes(root);
4074         btrfs_assert_delayed_root_empty(root);
4075         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4076         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4077         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4078
4079         return 0;
4080 }
4081
4082 static struct extent_io_ops btree_extent_io_ops = {
4083         .readpage_end_io_hook = btree_readpage_end_io_hook,
4084         .readpage_io_failed_hook = btree_io_failed_hook,
4085         .submit_bio_hook = btree_submit_bio_hook,
4086         /* note we're sharing with inode.c for the merge bio hook */
4087         .merge_bio_hook = btrfs_merge_bio_hook,
4088 };