]> Pileus Git - ~andy/linux/blob - fs/btrfs/delayed-inode.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[~andy/linux] / fs / btrfs / delayed-inode.c
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24
25 #define BTRFS_DELAYED_WRITEBACK         512
26 #define BTRFS_DELAYED_BACKGROUND        128
27 #define BTRFS_DELAYED_BATCH             16
28
29 static struct kmem_cache *delayed_node_cache;
30
31 int __init btrfs_delayed_inode_init(void)
32 {
33         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
34                                         sizeof(struct btrfs_delayed_node),
35                                         0,
36                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
37                                         NULL);
38         if (!delayed_node_cache)
39                 return -ENOMEM;
40         return 0;
41 }
42
43 void btrfs_delayed_inode_exit(void)
44 {
45         if (delayed_node_cache)
46                 kmem_cache_destroy(delayed_node_cache);
47 }
48
49 static inline void btrfs_init_delayed_node(
50                                 struct btrfs_delayed_node *delayed_node,
51                                 struct btrfs_root *root, u64 inode_id)
52 {
53         delayed_node->root = root;
54         delayed_node->inode_id = inode_id;
55         atomic_set(&delayed_node->refs, 0);
56         delayed_node->count = 0;
57         delayed_node->in_list = 0;
58         delayed_node->inode_dirty = 0;
59         delayed_node->ins_root = RB_ROOT;
60         delayed_node->del_root = RB_ROOT;
61         mutex_init(&delayed_node->mutex);
62         delayed_node->index_cnt = 0;
63         INIT_LIST_HEAD(&delayed_node->n_list);
64         INIT_LIST_HEAD(&delayed_node->p_list);
65         delayed_node->bytes_reserved = 0;
66         memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
67 }
68
69 static inline int btrfs_is_continuous_delayed_item(
70                                         struct btrfs_delayed_item *item1,
71                                         struct btrfs_delayed_item *item2)
72 {
73         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
74             item1->key.objectid == item2->key.objectid &&
75             item1->key.type == item2->key.type &&
76             item1->key.offset + 1 == item2->key.offset)
77                 return 1;
78         return 0;
79 }
80
81 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
82                                                         struct btrfs_root *root)
83 {
84         return root->fs_info->delayed_root;
85 }
86
87 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
88 {
89         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90         struct btrfs_root *root = btrfs_inode->root;
91         u64 ino = btrfs_ino(inode);
92         struct btrfs_delayed_node *node;
93
94         node = ACCESS_ONCE(btrfs_inode->delayed_node);
95         if (node) {
96                 atomic_inc(&node->refs);
97                 return node;
98         }
99
100         spin_lock(&root->inode_lock);
101         node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
102         if (node) {
103                 if (btrfs_inode->delayed_node) {
104                         atomic_inc(&node->refs);        /* can be accessed */
105                         BUG_ON(btrfs_inode->delayed_node != node);
106                         spin_unlock(&root->inode_lock);
107                         return node;
108                 }
109                 btrfs_inode->delayed_node = node;
110                 atomic_inc(&node->refs);        /* can be accessed */
111                 atomic_inc(&node->refs);        /* cached in the inode */
112                 spin_unlock(&root->inode_lock);
113                 return node;
114         }
115         spin_unlock(&root->inode_lock);
116
117         return NULL;
118 }
119
120 /* Will return either the node or PTR_ERR(-ENOMEM) */
121 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122                                                         struct inode *inode)
123 {
124         struct btrfs_delayed_node *node;
125         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
126         struct btrfs_root *root = btrfs_inode->root;
127         u64 ino = btrfs_ino(inode);
128         int ret;
129
130 again:
131         node = btrfs_get_delayed_node(inode);
132         if (node)
133                 return node;
134
135         node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
136         if (!node)
137                 return ERR_PTR(-ENOMEM);
138         btrfs_init_delayed_node(node, root, ino);
139
140         atomic_inc(&node->refs);        /* cached in the btrfs inode */
141         atomic_inc(&node->refs);        /* can be accessed */
142
143         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
144         if (ret) {
145                 kmem_cache_free(delayed_node_cache, node);
146                 return ERR_PTR(ret);
147         }
148
149         spin_lock(&root->inode_lock);
150         ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151         if (ret == -EEXIST) {
152                 kmem_cache_free(delayed_node_cache, node);
153                 spin_unlock(&root->inode_lock);
154                 radix_tree_preload_end();
155                 goto again;
156         }
157         btrfs_inode->delayed_node = node;
158         spin_unlock(&root->inode_lock);
159         radix_tree_preload_end();
160
161         return node;
162 }
163
164 /*
165  * Call it when holding delayed_node->mutex
166  *
167  * If mod = 1, add this node into the prepared list.
168  */
169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170                                      struct btrfs_delayed_node *node,
171                                      int mod)
172 {
173         spin_lock(&root->lock);
174         if (node->in_list) {
175                 if (!list_empty(&node->p_list))
176                         list_move_tail(&node->p_list, &root->prepare_list);
177                 else if (mod)
178                         list_add_tail(&node->p_list, &root->prepare_list);
179         } else {
180                 list_add_tail(&node->n_list, &root->node_list);
181                 list_add_tail(&node->p_list, &root->prepare_list);
182                 atomic_inc(&node->refs);        /* inserted into list */
183                 root->nodes++;
184                 node->in_list = 1;
185         }
186         spin_unlock(&root->lock);
187 }
188
189 /* Call it when holding delayed_node->mutex */
190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191                                        struct btrfs_delayed_node *node)
192 {
193         spin_lock(&root->lock);
194         if (node->in_list) {
195                 root->nodes--;
196                 atomic_dec(&node->refs);        /* not in the list */
197                 list_del_init(&node->n_list);
198                 if (!list_empty(&node->p_list))
199                         list_del_init(&node->p_list);
200                 node->in_list = 0;
201         }
202         spin_unlock(&root->lock);
203 }
204
205 static struct btrfs_delayed_node *btrfs_first_delayed_node(
206                         struct btrfs_delayed_root *delayed_root)
207 {
208         struct list_head *p;
209         struct btrfs_delayed_node *node = NULL;
210
211         spin_lock(&delayed_root->lock);
212         if (list_empty(&delayed_root->node_list))
213                 goto out;
214
215         p = delayed_root->node_list.next;
216         node = list_entry(p, struct btrfs_delayed_node, n_list);
217         atomic_inc(&node->refs);
218 out:
219         spin_unlock(&delayed_root->lock);
220
221         return node;
222 }
223
224 static struct btrfs_delayed_node *btrfs_next_delayed_node(
225                                                 struct btrfs_delayed_node *node)
226 {
227         struct btrfs_delayed_root *delayed_root;
228         struct list_head *p;
229         struct btrfs_delayed_node *next = NULL;
230
231         delayed_root = node->root->fs_info->delayed_root;
232         spin_lock(&delayed_root->lock);
233         if (!node->in_list) {   /* not in the list */
234                 if (list_empty(&delayed_root->node_list))
235                         goto out;
236                 p = delayed_root->node_list.next;
237         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
238                 goto out;
239         else
240                 p = node->n_list.next;
241
242         next = list_entry(p, struct btrfs_delayed_node, n_list);
243         atomic_inc(&next->refs);
244 out:
245         spin_unlock(&delayed_root->lock);
246
247         return next;
248 }
249
250 static void __btrfs_release_delayed_node(
251                                 struct btrfs_delayed_node *delayed_node,
252                                 int mod)
253 {
254         struct btrfs_delayed_root *delayed_root;
255
256         if (!delayed_node)
257                 return;
258
259         delayed_root = delayed_node->root->fs_info->delayed_root;
260
261         mutex_lock(&delayed_node->mutex);
262         if (delayed_node->count)
263                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
264         else
265                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
266         mutex_unlock(&delayed_node->mutex);
267
268         if (atomic_dec_and_test(&delayed_node->refs)) {
269                 struct btrfs_root *root = delayed_node->root;
270                 spin_lock(&root->inode_lock);
271                 if (atomic_read(&delayed_node->refs) == 0) {
272                         radix_tree_delete(&root->delayed_nodes_tree,
273                                           delayed_node->inode_id);
274                         kmem_cache_free(delayed_node_cache, delayed_node);
275                 }
276                 spin_unlock(&root->inode_lock);
277         }
278 }
279
280 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
281 {
282         __btrfs_release_delayed_node(node, 0);
283 }
284
285 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
286                                         struct btrfs_delayed_root *delayed_root)
287 {
288         struct list_head *p;
289         struct btrfs_delayed_node *node = NULL;
290
291         spin_lock(&delayed_root->lock);
292         if (list_empty(&delayed_root->prepare_list))
293                 goto out;
294
295         p = delayed_root->prepare_list.next;
296         list_del_init(p);
297         node = list_entry(p, struct btrfs_delayed_node, p_list);
298         atomic_inc(&node->refs);
299 out:
300         spin_unlock(&delayed_root->lock);
301
302         return node;
303 }
304
305 static inline void btrfs_release_prepared_delayed_node(
306                                         struct btrfs_delayed_node *node)
307 {
308         __btrfs_release_delayed_node(node, 1);
309 }
310
311 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
312 {
313         struct btrfs_delayed_item *item;
314         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
315         if (item) {
316                 item->data_len = data_len;
317                 item->ins_or_del = 0;
318                 item->bytes_reserved = 0;
319                 item->delayed_node = NULL;
320                 atomic_set(&item->refs, 1);
321         }
322         return item;
323 }
324
325 /*
326  * __btrfs_lookup_delayed_item - look up the delayed item by key
327  * @delayed_node: pointer to the delayed node
328  * @key:          the key to look up
329  * @prev:         used to store the prev item if the right item isn't found
330  * @next:         used to store the next item if the right item isn't found
331  *
332  * Note: if we don't find the right item, we will return the prev item and
333  * the next item.
334  */
335 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
336                                 struct rb_root *root,
337                                 struct btrfs_key *key,
338                                 struct btrfs_delayed_item **prev,
339                                 struct btrfs_delayed_item **next)
340 {
341         struct rb_node *node, *prev_node = NULL;
342         struct btrfs_delayed_item *delayed_item = NULL;
343         int ret = 0;
344
345         node = root->rb_node;
346
347         while (node) {
348                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
349                                         rb_node);
350                 prev_node = node;
351                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
352                 if (ret < 0)
353                         node = node->rb_right;
354                 else if (ret > 0)
355                         node = node->rb_left;
356                 else
357                         return delayed_item;
358         }
359
360         if (prev) {
361                 if (!prev_node)
362                         *prev = NULL;
363                 else if (ret < 0)
364                         *prev = delayed_item;
365                 else if ((node = rb_prev(prev_node)) != NULL) {
366                         *prev = rb_entry(node, struct btrfs_delayed_item,
367                                          rb_node);
368                 } else
369                         *prev = NULL;
370         }
371
372         if (next) {
373                 if (!prev_node)
374                         *next = NULL;
375                 else if (ret > 0)
376                         *next = delayed_item;
377                 else if ((node = rb_next(prev_node)) != NULL) {
378                         *next = rb_entry(node, struct btrfs_delayed_item,
379                                          rb_node);
380                 } else
381                         *next = NULL;
382         }
383         return NULL;
384 }
385
386 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
387                                         struct btrfs_delayed_node *delayed_node,
388                                         struct btrfs_key *key)
389 {
390         struct btrfs_delayed_item *item;
391
392         item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
393                                            NULL, NULL);
394         return item;
395 }
396
397 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
398                                     struct btrfs_delayed_item *ins,
399                                     int action)
400 {
401         struct rb_node **p, *node;
402         struct rb_node *parent_node = NULL;
403         struct rb_root *root;
404         struct btrfs_delayed_item *item;
405         int cmp;
406
407         if (action == BTRFS_DELAYED_INSERTION_ITEM)
408                 root = &delayed_node->ins_root;
409         else if (action == BTRFS_DELAYED_DELETION_ITEM)
410                 root = &delayed_node->del_root;
411         else
412                 BUG();
413         p = &root->rb_node;
414         node = &ins->rb_node;
415
416         while (*p) {
417                 parent_node = *p;
418                 item = rb_entry(parent_node, struct btrfs_delayed_item,
419                                  rb_node);
420
421                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
422                 if (cmp < 0)
423                         p = &(*p)->rb_right;
424                 else if (cmp > 0)
425                         p = &(*p)->rb_left;
426                 else
427                         return -EEXIST;
428         }
429
430         rb_link_node(node, parent_node, p);
431         rb_insert_color(node, root);
432         ins->delayed_node = delayed_node;
433         ins->ins_or_del = action;
434
435         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
436             action == BTRFS_DELAYED_INSERTION_ITEM &&
437             ins->key.offset >= delayed_node->index_cnt)
438                         delayed_node->index_cnt = ins->key.offset + 1;
439
440         delayed_node->count++;
441         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
442         return 0;
443 }
444
445 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
446                                               struct btrfs_delayed_item *item)
447 {
448         return __btrfs_add_delayed_item(node, item,
449                                         BTRFS_DELAYED_INSERTION_ITEM);
450 }
451
452 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
453                                              struct btrfs_delayed_item *item)
454 {
455         return __btrfs_add_delayed_item(node, item,
456                                         BTRFS_DELAYED_DELETION_ITEM);
457 }
458
459 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
460 {
461         int seq = atomic_inc_return(&delayed_root->items_seq);
462         if ((atomic_dec_return(&delayed_root->items) <
463             BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
464             waitqueue_active(&delayed_root->wait))
465                 wake_up(&delayed_root->wait);
466 }
467
468 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
469 {
470         struct rb_root *root;
471         struct btrfs_delayed_root *delayed_root;
472
473         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
474
475         BUG_ON(!delayed_root);
476         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
477                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
478
479         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
480                 root = &delayed_item->delayed_node->ins_root;
481         else
482                 root = &delayed_item->delayed_node->del_root;
483
484         rb_erase(&delayed_item->rb_node, root);
485         delayed_item->delayed_node->count--;
486
487         finish_one_item(delayed_root);
488 }
489
490 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
491 {
492         if (item) {
493                 __btrfs_remove_delayed_item(item);
494                 if (atomic_dec_and_test(&item->refs))
495                         kfree(item);
496         }
497 }
498
499 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
500                                         struct btrfs_delayed_node *delayed_node)
501 {
502         struct rb_node *p;
503         struct btrfs_delayed_item *item = NULL;
504
505         p = rb_first(&delayed_node->ins_root);
506         if (p)
507                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
508
509         return item;
510 }
511
512 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
513                                         struct btrfs_delayed_node *delayed_node)
514 {
515         struct rb_node *p;
516         struct btrfs_delayed_item *item = NULL;
517
518         p = rb_first(&delayed_node->del_root);
519         if (p)
520                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
521
522         return item;
523 }
524
525 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
526                                                 struct btrfs_delayed_item *item)
527 {
528         struct rb_node *p;
529         struct btrfs_delayed_item *next = NULL;
530
531         p = rb_next(&item->rb_node);
532         if (p)
533                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
534
535         return next;
536 }
537
538 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
539                                                struct btrfs_root *root,
540                                                struct btrfs_delayed_item *item)
541 {
542         struct btrfs_block_rsv *src_rsv;
543         struct btrfs_block_rsv *dst_rsv;
544         u64 num_bytes;
545         int ret;
546
547         if (!trans->bytes_reserved)
548                 return 0;
549
550         src_rsv = trans->block_rsv;
551         dst_rsv = &root->fs_info->delayed_block_rsv;
552
553         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
554         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
555         if (!ret) {
556                 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
557                                               item->key.objectid,
558                                               num_bytes, 1);
559                 item->bytes_reserved = num_bytes;
560         }
561
562         return ret;
563 }
564
565 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
566                                                 struct btrfs_delayed_item *item)
567 {
568         struct btrfs_block_rsv *rsv;
569
570         if (!item->bytes_reserved)
571                 return;
572
573         rsv = &root->fs_info->delayed_block_rsv;
574         trace_btrfs_space_reservation(root->fs_info, "delayed_item",
575                                       item->key.objectid, item->bytes_reserved,
576                                       0);
577         btrfs_block_rsv_release(root, rsv,
578                                 item->bytes_reserved);
579 }
580
581 static int btrfs_delayed_inode_reserve_metadata(
582                                         struct btrfs_trans_handle *trans,
583                                         struct btrfs_root *root,
584                                         struct inode *inode,
585                                         struct btrfs_delayed_node *node)
586 {
587         struct btrfs_block_rsv *src_rsv;
588         struct btrfs_block_rsv *dst_rsv;
589         u64 num_bytes;
590         int ret;
591         bool release = false;
592
593         src_rsv = trans->block_rsv;
594         dst_rsv = &root->fs_info->delayed_block_rsv;
595
596         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
597
598         /*
599          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
600          * which doesn't reserve space for speed.  This is a problem since we
601          * still need to reserve space for this update, so try to reserve the
602          * space.
603          *
604          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
605          * we're accounted for.
606          */
607         if (!src_rsv || (!trans->bytes_reserved &&
608                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
609                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
610                                           BTRFS_RESERVE_NO_FLUSH);
611                 /*
612                  * Since we're under a transaction reserve_metadata_bytes could
613                  * try to commit the transaction which will make it return
614                  * EAGAIN to make us stop the transaction we have, so return
615                  * ENOSPC instead so that btrfs_dirty_inode knows what to do.
616                  */
617                 if (ret == -EAGAIN)
618                         ret = -ENOSPC;
619                 if (!ret) {
620                         node->bytes_reserved = num_bytes;
621                         trace_btrfs_space_reservation(root->fs_info,
622                                                       "delayed_inode",
623                                                       btrfs_ino(inode),
624                                                       num_bytes, 1);
625                 }
626                 return ret;
627         } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
628                 spin_lock(&BTRFS_I(inode)->lock);
629                 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
630                                        &BTRFS_I(inode)->runtime_flags)) {
631                         spin_unlock(&BTRFS_I(inode)->lock);
632                         release = true;
633                         goto migrate;
634                 }
635                 spin_unlock(&BTRFS_I(inode)->lock);
636
637                 /* Ok we didn't have space pre-reserved.  This shouldn't happen
638                  * too often but it can happen if we do delalloc to an existing
639                  * inode which gets dirtied because of the time update, and then
640                  * isn't touched again until after the transaction commits and
641                  * then we try to write out the data.  First try to be nice and
642                  * reserve something strictly for us.  If not be a pain and try
643                  * to steal from the delalloc block rsv.
644                  */
645                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
646                                           BTRFS_RESERVE_NO_FLUSH);
647                 if (!ret)
648                         goto out;
649
650                 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
651                 if (!ret)
652                         goto out;
653
654                 /*
655                  * Ok this is a problem, let's just steal from the global rsv
656                  * since this really shouldn't happen that often.
657                  */
658                 WARN_ON(1);
659                 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
660                                               dst_rsv, num_bytes);
661                 goto out;
662         }
663
664 migrate:
665         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
666
667 out:
668         /*
669          * Migrate only takes a reservation, it doesn't touch the size of the
670          * block_rsv.  This is to simplify people who don't normally have things
671          * migrated from their block rsv.  If they go to release their
672          * reservation, that will decrease the size as well, so if migrate
673          * reduced size we'd end up with a negative size.  But for the
674          * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
675          * but we could in fact do this reserve/migrate dance several times
676          * between the time we did the original reservation and we'd clean it
677          * up.  So to take care of this, release the space for the meta
678          * reservation here.  I think it may be time for a documentation page on
679          * how block rsvs. work.
680          */
681         if (!ret) {
682                 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
683                                               btrfs_ino(inode), num_bytes, 1);
684                 node->bytes_reserved = num_bytes;
685         }
686
687         if (release) {
688                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
689                                               btrfs_ino(inode), num_bytes, 0);
690                 btrfs_block_rsv_release(root, src_rsv, num_bytes);
691         }
692
693         return ret;
694 }
695
696 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
697                                                 struct btrfs_delayed_node *node)
698 {
699         struct btrfs_block_rsv *rsv;
700
701         if (!node->bytes_reserved)
702                 return;
703
704         rsv = &root->fs_info->delayed_block_rsv;
705         trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
706                                       node->inode_id, node->bytes_reserved, 0);
707         btrfs_block_rsv_release(root, rsv,
708                                 node->bytes_reserved);
709         node->bytes_reserved = 0;
710 }
711
712 /*
713  * This helper will insert some continuous items into the same leaf according
714  * to the free space of the leaf.
715  */
716 static int btrfs_batch_insert_items(struct btrfs_root *root,
717                                     struct btrfs_path *path,
718                                     struct btrfs_delayed_item *item)
719 {
720         struct btrfs_delayed_item *curr, *next;
721         int free_space;
722         int total_data_size = 0, total_size = 0;
723         struct extent_buffer *leaf;
724         char *data_ptr;
725         struct btrfs_key *keys;
726         u32 *data_size;
727         struct list_head head;
728         int slot;
729         int nitems;
730         int i;
731         int ret = 0;
732
733         BUG_ON(!path->nodes[0]);
734
735         leaf = path->nodes[0];
736         free_space = btrfs_leaf_free_space(root, leaf);
737         INIT_LIST_HEAD(&head);
738
739         next = item;
740         nitems = 0;
741
742         /*
743          * count the number of the continuous items that we can insert in batch
744          */
745         while (total_size + next->data_len + sizeof(struct btrfs_item) <=
746                free_space) {
747                 total_data_size += next->data_len;
748                 total_size += next->data_len + sizeof(struct btrfs_item);
749                 list_add_tail(&next->tree_list, &head);
750                 nitems++;
751
752                 curr = next;
753                 next = __btrfs_next_delayed_item(curr);
754                 if (!next)
755                         break;
756
757                 if (!btrfs_is_continuous_delayed_item(curr, next))
758                         break;
759         }
760
761         if (!nitems) {
762                 ret = 0;
763                 goto out;
764         }
765
766         /*
767          * we need allocate some memory space, but it might cause the task
768          * to sleep, so we set all locked nodes in the path to blocking locks
769          * first.
770          */
771         btrfs_set_path_blocking(path);
772
773         keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
774         if (!keys) {
775                 ret = -ENOMEM;
776                 goto out;
777         }
778
779         data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
780         if (!data_size) {
781                 ret = -ENOMEM;
782                 goto error;
783         }
784
785         /* get keys of all the delayed items */
786         i = 0;
787         list_for_each_entry(next, &head, tree_list) {
788                 keys[i] = next->key;
789                 data_size[i] = next->data_len;
790                 i++;
791         }
792
793         /* reset all the locked nodes in the patch to spinning locks. */
794         btrfs_clear_path_blocking(path, NULL, 0);
795
796         /* insert the keys of the items */
797         setup_items_for_insert(root, path, keys, data_size,
798                                total_data_size, total_size, nitems);
799
800         /* insert the dir index items */
801         slot = path->slots[0];
802         list_for_each_entry_safe(curr, next, &head, tree_list) {
803                 data_ptr = btrfs_item_ptr(leaf, slot, char);
804                 write_extent_buffer(leaf, &curr->data,
805                                     (unsigned long)data_ptr,
806                                     curr->data_len);
807                 slot++;
808
809                 btrfs_delayed_item_release_metadata(root, curr);
810
811                 list_del(&curr->tree_list);
812                 btrfs_release_delayed_item(curr);
813         }
814
815 error:
816         kfree(data_size);
817         kfree(keys);
818 out:
819         return ret;
820 }
821
822 /*
823  * This helper can just do simple insertion that needn't extend item for new
824  * data, such as directory name index insertion, inode insertion.
825  */
826 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
827                                      struct btrfs_root *root,
828                                      struct btrfs_path *path,
829                                      struct btrfs_delayed_item *delayed_item)
830 {
831         struct extent_buffer *leaf;
832         char *ptr;
833         int ret;
834
835         ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
836                                       delayed_item->data_len);
837         if (ret < 0 && ret != -EEXIST)
838                 return ret;
839
840         leaf = path->nodes[0];
841
842         ptr = btrfs_item_ptr(leaf, path->slots[0], char);
843
844         write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
845                             delayed_item->data_len);
846         btrfs_mark_buffer_dirty(leaf);
847
848         btrfs_delayed_item_release_metadata(root, delayed_item);
849         return 0;
850 }
851
852 /*
853  * we insert an item first, then if there are some continuous items, we try
854  * to insert those items into the same leaf.
855  */
856 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
857                                       struct btrfs_path *path,
858                                       struct btrfs_root *root,
859                                       struct btrfs_delayed_node *node)
860 {
861         struct btrfs_delayed_item *curr, *prev;
862         int ret = 0;
863
864 do_again:
865         mutex_lock(&node->mutex);
866         curr = __btrfs_first_delayed_insertion_item(node);
867         if (!curr)
868                 goto insert_end;
869
870         ret = btrfs_insert_delayed_item(trans, root, path, curr);
871         if (ret < 0) {
872                 btrfs_release_path(path);
873                 goto insert_end;
874         }
875
876         prev = curr;
877         curr = __btrfs_next_delayed_item(prev);
878         if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
879                 /* insert the continuous items into the same leaf */
880                 path->slots[0]++;
881                 btrfs_batch_insert_items(root, path, curr);
882         }
883         btrfs_release_delayed_item(prev);
884         btrfs_mark_buffer_dirty(path->nodes[0]);
885
886         btrfs_release_path(path);
887         mutex_unlock(&node->mutex);
888         goto do_again;
889
890 insert_end:
891         mutex_unlock(&node->mutex);
892         return ret;
893 }
894
895 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
896                                     struct btrfs_root *root,
897                                     struct btrfs_path *path,
898                                     struct btrfs_delayed_item *item)
899 {
900         struct btrfs_delayed_item *curr, *next;
901         struct extent_buffer *leaf;
902         struct btrfs_key key;
903         struct list_head head;
904         int nitems, i, last_item;
905         int ret = 0;
906
907         BUG_ON(!path->nodes[0]);
908
909         leaf = path->nodes[0];
910
911         i = path->slots[0];
912         last_item = btrfs_header_nritems(leaf) - 1;
913         if (i > last_item)
914                 return -ENOENT; /* FIXME: Is errno suitable? */
915
916         next = item;
917         INIT_LIST_HEAD(&head);
918         btrfs_item_key_to_cpu(leaf, &key, i);
919         nitems = 0;
920         /*
921          * count the number of the dir index items that we can delete in batch
922          */
923         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
924                 list_add_tail(&next->tree_list, &head);
925                 nitems++;
926
927                 curr = next;
928                 next = __btrfs_next_delayed_item(curr);
929                 if (!next)
930                         break;
931
932                 if (!btrfs_is_continuous_delayed_item(curr, next))
933                         break;
934
935                 i++;
936                 if (i > last_item)
937                         break;
938                 btrfs_item_key_to_cpu(leaf, &key, i);
939         }
940
941         if (!nitems)
942                 return 0;
943
944         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
945         if (ret)
946                 goto out;
947
948         list_for_each_entry_safe(curr, next, &head, tree_list) {
949                 btrfs_delayed_item_release_metadata(root, curr);
950                 list_del(&curr->tree_list);
951                 btrfs_release_delayed_item(curr);
952         }
953
954 out:
955         return ret;
956 }
957
958 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
959                                       struct btrfs_path *path,
960                                       struct btrfs_root *root,
961                                       struct btrfs_delayed_node *node)
962 {
963         struct btrfs_delayed_item *curr, *prev;
964         int ret = 0;
965
966 do_again:
967         mutex_lock(&node->mutex);
968         curr = __btrfs_first_delayed_deletion_item(node);
969         if (!curr)
970                 goto delete_fail;
971
972         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
973         if (ret < 0)
974                 goto delete_fail;
975         else if (ret > 0) {
976                 /*
977                  * can't find the item which the node points to, so this node
978                  * is invalid, just drop it.
979                  */
980                 prev = curr;
981                 curr = __btrfs_next_delayed_item(prev);
982                 btrfs_release_delayed_item(prev);
983                 ret = 0;
984                 btrfs_release_path(path);
985                 if (curr) {
986                         mutex_unlock(&node->mutex);
987                         goto do_again;
988                 } else
989                         goto delete_fail;
990         }
991
992         btrfs_batch_delete_items(trans, root, path, curr);
993         btrfs_release_path(path);
994         mutex_unlock(&node->mutex);
995         goto do_again;
996
997 delete_fail:
998         btrfs_release_path(path);
999         mutex_unlock(&node->mutex);
1000         return ret;
1001 }
1002
1003 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1004 {
1005         struct btrfs_delayed_root *delayed_root;
1006
1007         if (delayed_node && delayed_node->inode_dirty) {
1008                 BUG_ON(!delayed_node->root);
1009                 delayed_node->inode_dirty = 0;
1010                 delayed_node->count--;
1011
1012                 delayed_root = delayed_node->root->fs_info->delayed_root;
1013                 finish_one_item(delayed_root);
1014         }
1015 }
1016
1017 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1018                                         struct btrfs_root *root,
1019                                         struct btrfs_path *path,
1020                                         struct btrfs_delayed_node *node)
1021 {
1022         struct btrfs_key key;
1023         struct btrfs_inode_item *inode_item;
1024         struct extent_buffer *leaf;
1025         int ret;
1026
1027         key.objectid = node->inode_id;
1028         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1029         key.offset = 0;
1030
1031         ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1032         if (ret > 0) {
1033                 btrfs_release_path(path);
1034                 return -ENOENT;
1035         } else if (ret < 0) {
1036                 return ret;
1037         }
1038
1039         btrfs_unlock_up_safe(path, 1);
1040         leaf = path->nodes[0];
1041         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1042                                     struct btrfs_inode_item);
1043         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1044                             sizeof(struct btrfs_inode_item));
1045         btrfs_mark_buffer_dirty(leaf);
1046         btrfs_release_path(path);
1047
1048         btrfs_delayed_inode_release_metadata(root, node);
1049         btrfs_release_delayed_inode(node);
1050
1051         return 0;
1052 }
1053
1054 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1055                                              struct btrfs_root *root,
1056                                              struct btrfs_path *path,
1057                                              struct btrfs_delayed_node *node)
1058 {
1059         int ret;
1060
1061         mutex_lock(&node->mutex);
1062         if (!node->inode_dirty) {
1063                 mutex_unlock(&node->mutex);
1064                 return 0;
1065         }
1066
1067         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1068         mutex_unlock(&node->mutex);
1069         return ret;
1070 }
1071
1072 static inline int
1073 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1074                                    struct btrfs_path *path,
1075                                    struct btrfs_delayed_node *node)
1076 {
1077         int ret;
1078
1079         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1080         if (ret)
1081                 return ret;
1082
1083         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1084         if (ret)
1085                 return ret;
1086
1087         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1088         return ret;
1089 }
1090
1091 /*
1092  * Called when committing the transaction.
1093  * Returns 0 on success.
1094  * Returns < 0 on error and returns with an aborted transaction with any
1095  * outstanding delayed items cleaned up.
1096  */
1097 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1098                                      struct btrfs_root *root, int nr)
1099 {
1100         struct btrfs_delayed_root *delayed_root;
1101         struct btrfs_delayed_node *curr_node, *prev_node;
1102         struct btrfs_path *path;
1103         struct btrfs_block_rsv *block_rsv;
1104         int ret = 0;
1105         bool count = (nr > 0);
1106
1107         if (trans->aborted)
1108                 return -EIO;
1109
1110         path = btrfs_alloc_path();
1111         if (!path)
1112                 return -ENOMEM;
1113         path->leave_spinning = 1;
1114
1115         block_rsv = trans->block_rsv;
1116         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1117
1118         delayed_root = btrfs_get_delayed_root(root);
1119
1120         curr_node = btrfs_first_delayed_node(delayed_root);
1121         while (curr_node && (!count || (count && nr--))) {
1122                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1123                                                          curr_node);
1124                 if (ret) {
1125                         btrfs_release_delayed_node(curr_node);
1126                         curr_node = NULL;
1127                         btrfs_abort_transaction(trans, root, ret);
1128                         break;
1129                 }
1130
1131                 prev_node = curr_node;
1132                 curr_node = btrfs_next_delayed_node(curr_node);
1133                 btrfs_release_delayed_node(prev_node);
1134         }
1135
1136         if (curr_node)
1137                 btrfs_release_delayed_node(curr_node);
1138         btrfs_free_path(path);
1139         trans->block_rsv = block_rsv;
1140
1141         return ret;
1142 }
1143
1144 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1145                             struct btrfs_root *root)
1146 {
1147         return __btrfs_run_delayed_items(trans, root, -1);
1148 }
1149
1150 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1151                                struct btrfs_root *root, int nr)
1152 {
1153         return __btrfs_run_delayed_items(trans, root, nr);
1154 }
1155
1156 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1157                                      struct inode *inode)
1158 {
1159         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1160         struct btrfs_path *path;
1161         struct btrfs_block_rsv *block_rsv;
1162         int ret;
1163
1164         if (!delayed_node)
1165                 return 0;
1166
1167         mutex_lock(&delayed_node->mutex);
1168         if (!delayed_node->count) {
1169                 mutex_unlock(&delayed_node->mutex);
1170                 btrfs_release_delayed_node(delayed_node);
1171                 return 0;
1172         }
1173         mutex_unlock(&delayed_node->mutex);
1174
1175         path = btrfs_alloc_path();
1176         if (!path)
1177                 return -ENOMEM;
1178         path->leave_spinning = 1;
1179
1180         block_rsv = trans->block_rsv;
1181         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1182
1183         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1184
1185         btrfs_release_delayed_node(delayed_node);
1186         btrfs_free_path(path);
1187         trans->block_rsv = block_rsv;
1188
1189         return ret;
1190 }
1191
1192 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1193 {
1194         struct btrfs_trans_handle *trans;
1195         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1196         struct btrfs_path *path;
1197         struct btrfs_block_rsv *block_rsv;
1198         int ret;
1199
1200         if (!delayed_node)
1201                 return 0;
1202
1203         mutex_lock(&delayed_node->mutex);
1204         if (!delayed_node->inode_dirty) {
1205                 mutex_unlock(&delayed_node->mutex);
1206                 btrfs_release_delayed_node(delayed_node);
1207                 return 0;
1208         }
1209         mutex_unlock(&delayed_node->mutex);
1210
1211         trans = btrfs_join_transaction(delayed_node->root);
1212         if (IS_ERR(trans)) {
1213                 ret = PTR_ERR(trans);
1214                 goto out;
1215         }
1216
1217         path = btrfs_alloc_path();
1218         if (!path) {
1219                 ret = -ENOMEM;
1220                 goto trans_out;
1221         }
1222         path->leave_spinning = 1;
1223
1224         block_rsv = trans->block_rsv;
1225         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1226
1227         mutex_lock(&delayed_node->mutex);
1228         if (delayed_node->inode_dirty)
1229                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1230                                                    path, delayed_node);
1231         else
1232                 ret = 0;
1233         mutex_unlock(&delayed_node->mutex);
1234
1235         btrfs_free_path(path);
1236         trans->block_rsv = block_rsv;
1237 trans_out:
1238         btrfs_end_transaction(trans, delayed_node->root);
1239         btrfs_btree_balance_dirty(delayed_node->root);
1240 out:
1241         btrfs_release_delayed_node(delayed_node);
1242
1243         return ret;
1244 }
1245
1246 void btrfs_remove_delayed_node(struct inode *inode)
1247 {
1248         struct btrfs_delayed_node *delayed_node;
1249
1250         delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1251         if (!delayed_node)
1252                 return;
1253
1254         BTRFS_I(inode)->delayed_node = NULL;
1255         btrfs_release_delayed_node(delayed_node);
1256 }
1257
1258 struct btrfs_async_delayed_work {
1259         struct btrfs_delayed_root *delayed_root;
1260         int nr;
1261         struct btrfs_work work;
1262 };
1263
1264 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1265 {
1266         struct btrfs_async_delayed_work *async_work;
1267         struct btrfs_delayed_root *delayed_root;
1268         struct btrfs_trans_handle *trans;
1269         struct btrfs_path *path;
1270         struct btrfs_delayed_node *delayed_node = NULL;
1271         struct btrfs_root *root;
1272         struct btrfs_block_rsv *block_rsv;
1273         int total_done = 0;
1274
1275         async_work = container_of(work, struct btrfs_async_delayed_work, work);
1276         delayed_root = async_work->delayed_root;
1277
1278         path = btrfs_alloc_path();
1279         if (!path)
1280                 goto out;
1281
1282 again:
1283         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1284                 goto free_path;
1285
1286         delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1287         if (!delayed_node)
1288                 goto free_path;
1289
1290         path->leave_spinning = 1;
1291         root = delayed_node->root;
1292
1293         trans = btrfs_join_transaction(root);
1294         if (IS_ERR(trans))
1295                 goto release_path;
1296
1297         block_rsv = trans->block_rsv;
1298         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1299
1300         __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1301         /*
1302          * Maybe new delayed items have been inserted, so we need requeue
1303          * the work. Besides that, we must dequeue the empty delayed nodes
1304          * to avoid the race between delayed items balance and the worker.
1305          * The race like this:
1306          *      Task1                           Worker thread
1307          *                                      count == 0, needn't requeue
1308          *                                        also needn't insert the
1309          *                                        delayed node into prepare
1310          *                                        list again.
1311          *      add lots of delayed items
1312          *      queue the delayed node
1313          *        already in the list,
1314          *        and not in the prepare
1315          *        list, it means the delayed
1316          *        node is being dealt with
1317          *        by the worker.
1318          *      do delayed items balance
1319          *        the delayed node is being
1320          *        dealt with by the worker
1321          *        now, just wait.
1322          *                                      the worker goto idle.
1323          * Task1 will sleep until the transaction is commited.
1324          */
1325         mutex_lock(&delayed_node->mutex);
1326         btrfs_dequeue_delayed_node(root->fs_info->delayed_root, delayed_node);
1327         mutex_unlock(&delayed_node->mutex);
1328
1329         trans->block_rsv = block_rsv;
1330         btrfs_end_transaction_dmeta(trans, root);
1331         btrfs_btree_balance_dirty_nodelay(root);
1332
1333 release_path:
1334         btrfs_release_path(path);
1335         total_done++;
1336
1337         btrfs_release_prepared_delayed_node(delayed_node);
1338         if (async_work->nr == 0 || total_done < async_work->nr)
1339                 goto again;
1340
1341 free_path:
1342         btrfs_free_path(path);
1343 out:
1344         wake_up(&delayed_root->wait);
1345         kfree(async_work);
1346 }
1347
1348
1349 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1350                                      struct btrfs_root *root, int nr)
1351 {
1352         struct btrfs_async_delayed_work *async_work;
1353
1354         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1355                 return 0;
1356
1357         async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1358         if (!async_work)
1359                 return -ENOMEM;
1360
1361         async_work->delayed_root = delayed_root;
1362         async_work->work.func = btrfs_async_run_delayed_root;
1363         async_work->work.flags = 0;
1364         async_work->nr = nr;
1365
1366         btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work);
1367         return 0;
1368 }
1369
1370 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1371 {
1372         struct btrfs_delayed_root *delayed_root;
1373         delayed_root = btrfs_get_delayed_root(root);
1374         WARN_ON(btrfs_first_delayed_node(delayed_root));
1375 }
1376
1377 static int refs_newer(struct btrfs_delayed_root *delayed_root,
1378                       int seq, int count)
1379 {
1380         int val = atomic_read(&delayed_root->items_seq);
1381
1382         if (val < seq || val >= seq + count)
1383                 return 1;
1384         return 0;
1385 }
1386
1387 void btrfs_balance_delayed_items(struct btrfs_root *root)
1388 {
1389         struct btrfs_delayed_root *delayed_root;
1390         int seq;
1391
1392         delayed_root = btrfs_get_delayed_root(root);
1393
1394         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1395                 return;
1396
1397         seq = atomic_read(&delayed_root->items_seq);
1398
1399         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1400                 int ret;
1401                 DEFINE_WAIT(__wait);
1402
1403                 ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
1404                 if (ret)
1405                         return;
1406
1407                 while (1) {
1408                         prepare_to_wait(&delayed_root->wait, &__wait,
1409                                         TASK_INTERRUPTIBLE);
1410
1411                         if (refs_newer(delayed_root, seq,
1412                                        BTRFS_DELAYED_BATCH) ||
1413                             atomic_read(&delayed_root->items) <
1414                             BTRFS_DELAYED_BACKGROUND) {
1415                                 break;
1416                         }
1417                         if (!signal_pending(current))
1418                                 schedule();
1419                         else
1420                                 break;
1421                 }
1422                 finish_wait(&delayed_root->wait, &__wait);
1423         }
1424
1425         btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
1426 }
1427
1428 /* Will return 0 or -ENOMEM */
1429 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1430                                    struct btrfs_root *root, const char *name,
1431                                    int name_len, struct inode *dir,
1432                                    struct btrfs_disk_key *disk_key, u8 type,
1433                                    u64 index)
1434 {
1435         struct btrfs_delayed_node *delayed_node;
1436         struct btrfs_delayed_item *delayed_item;
1437         struct btrfs_dir_item *dir_item;
1438         int ret;
1439
1440         delayed_node = btrfs_get_or_create_delayed_node(dir);
1441         if (IS_ERR(delayed_node))
1442                 return PTR_ERR(delayed_node);
1443
1444         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1445         if (!delayed_item) {
1446                 ret = -ENOMEM;
1447                 goto release_node;
1448         }
1449
1450         delayed_item->key.objectid = btrfs_ino(dir);
1451         btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1452         delayed_item->key.offset = index;
1453
1454         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1455         dir_item->location = *disk_key;
1456         dir_item->transid = cpu_to_le64(trans->transid);
1457         dir_item->data_len = 0;
1458         dir_item->name_len = cpu_to_le16(name_len);
1459         dir_item->type = type;
1460         memcpy((char *)(dir_item + 1), name, name_len);
1461
1462         ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1463         /*
1464          * we have reserved enough space when we start a new transaction,
1465          * so reserving metadata failure is impossible
1466          */
1467         BUG_ON(ret);
1468
1469
1470         mutex_lock(&delayed_node->mutex);
1471         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1472         if (unlikely(ret)) {
1473                 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1474                                 "the insertion tree of the delayed node"
1475                                 "(root id: %llu, inode id: %llu, errno: %d)\n",
1476                                 name,
1477                                 (unsigned long long)delayed_node->root->objectid,
1478                                 (unsigned long long)delayed_node->inode_id,
1479                                 ret);
1480                 BUG();
1481         }
1482         mutex_unlock(&delayed_node->mutex);
1483
1484 release_node:
1485         btrfs_release_delayed_node(delayed_node);
1486         return ret;
1487 }
1488
1489 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1490                                                struct btrfs_delayed_node *node,
1491                                                struct btrfs_key *key)
1492 {
1493         struct btrfs_delayed_item *item;
1494
1495         mutex_lock(&node->mutex);
1496         item = __btrfs_lookup_delayed_insertion_item(node, key);
1497         if (!item) {
1498                 mutex_unlock(&node->mutex);
1499                 return 1;
1500         }
1501
1502         btrfs_delayed_item_release_metadata(root, item);
1503         btrfs_release_delayed_item(item);
1504         mutex_unlock(&node->mutex);
1505         return 0;
1506 }
1507
1508 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1509                                    struct btrfs_root *root, struct inode *dir,
1510                                    u64 index)
1511 {
1512         struct btrfs_delayed_node *node;
1513         struct btrfs_delayed_item *item;
1514         struct btrfs_key item_key;
1515         int ret;
1516
1517         node = btrfs_get_or_create_delayed_node(dir);
1518         if (IS_ERR(node))
1519                 return PTR_ERR(node);
1520
1521         item_key.objectid = btrfs_ino(dir);
1522         btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1523         item_key.offset = index;
1524
1525         ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1526         if (!ret)
1527                 goto end;
1528
1529         item = btrfs_alloc_delayed_item(0);
1530         if (!item) {
1531                 ret = -ENOMEM;
1532                 goto end;
1533         }
1534
1535         item->key = item_key;
1536
1537         ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1538         /*
1539          * we have reserved enough space when we start a new transaction,
1540          * so reserving metadata failure is impossible.
1541          */
1542         BUG_ON(ret);
1543
1544         mutex_lock(&node->mutex);
1545         ret = __btrfs_add_delayed_deletion_item(node, item);
1546         if (unlikely(ret)) {
1547                 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1548                                 "into the deletion tree of the delayed node"
1549                                 "(root id: %llu, inode id: %llu, errno: %d)\n",
1550                                 (unsigned long long)index,
1551                                 (unsigned long long)node->root->objectid,
1552                                 (unsigned long long)node->inode_id,
1553                                 ret);
1554                 BUG();
1555         }
1556         mutex_unlock(&node->mutex);
1557 end:
1558         btrfs_release_delayed_node(node);
1559         return ret;
1560 }
1561
1562 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1563 {
1564         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1565
1566         if (!delayed_node)
1567                 return -ENOENT;
1568
1569         /*
1570          * Since we have held i_mutex of this directory, it is impossible that
1571          * a new directory index is added into the delayed node and index_cnt
1572          * is updated now. So we needn't lock the delayed node.
1573          */
1574         if (!delayed_node->index_cnt) {
1575                 btrfs_release_delayed_node(delayed_node);
1576                 return -EINVAL;
1577         }
1578
1579         BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1580         btrfs_release_delayed_node(delayed_node);
1581         return 0;
1582 }
1583
1584 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1585                              struct list_head *del_list)
1586 {
1587         struct btrfs_delayed_node *delayed_node;
1588         struct btrfs_delayed_item *item;
1589
1590         delayed_node = btrfs_get_delayed_node(inode);
1591         if (!delayed_node)
1592                 return;
1593
1594         mutex_lock(&delayed_node->mutex);
1595         item = __btrfs_first_delayed_insertion_item(delayed_node);
1596         while (item) {
1597                 atomic_inc(&item->refs);
1598                 list_add_tail(&item->readdir_list, ins_list);
1599                 item = __btrfs_next_delayed_item(item);
1600         }
1601
1602         item = __btrfs_first_delayed_deletion_item(delayed_node);
1603         while (item) {
1604                 atomic_inc(&item->refs);
1605                 list_add_tail(&item->readdir_list, del_list);
1606                 item = __btrfs_next_delayed_item(item);
1607         }
1608         mutex_unlock(&delayed_node->mutex);
1609         /*
1610          * This delayed node is still cached in the btrfs inode, so refs
1611          * must be > 1 now, and we needn't check it is going to be freed
1612          * or not.
1613          *
1614          * Besides that, this function is used to read dir, we do not
1615          * insert/delete delayed items in this period. So we also needn't
1616          * requeue or dequeue this delayed node.
1617          */
1618         atomic_dec(&delayed_node->refs);
1619 }
1620
1621 void btrfs_put_delayed_items(struct list_head *ins_list,
1622                              struct list_head *del_list)
1623 {
1624         struct btrfs_delayed_item *curr, *next;
1625
1626         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1627                 list_del(&curr->readdir_list);
1628                 if (atomic_dec_and_test(&curr->refs))
1629                         kfree(curr);
1630         }
1631
1632         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1633                 list_del(&curr->readdir_list);
1634                 if (atomic_dec_and_test(&curr->refs))
1635                         kfree(curr);
1636         }
1637 }
1638
1639 int btrfs_should_delete_dir_index(struct list_head *del_list,
1640                                   u64 index)
1641 {
1642         struct btrfs_delayed_item *curr, *next;
1643         int ret;
1644
1645         if (list_empty(del_list))
1646                 return 0;
1647
1648         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1649                 if (curr->key.offset > index)
1650                         break;
1651
1652                 list_del(&curr->readdir_list);
1653                 ret = (curr->key.offset == index);
1654
1655                 if (atomic_dec_and_test(&curr->refs))
1656                         kfree(curr);
1657
1658                 if (ret)
1659                         return 1;
1660                 else
1661                         continue;
1662         }
1663         return 0;
1664 }
1665
1666 /*
1667  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1668  *
1669  */
1670 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1671                                     struct list_head *ins_list)
1672 {
1673         struct btrfs_dir_item *di;
1674         struct btrfs_delayed_item *curr, *next;
1675         struct btrfs_key location;
1676         char *name;
1677         int name_len;
1678         int over = 0;
1679         unsigned char d_type;
1680
1681         if (list_empty(ins_list))
1682                 return 0;
1683
1684         /*
1685          * Changing the data of the delayed item is impossible. So
1686          * we needn't lock them. And we have held i_mutex of the
1687          * directory, nobody can delete any directory indexes now.
1688          */
1689         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1690                 list_del(&curr->readdir_list);
1691
1692                 if (curr->key.offset < ctx->pos) {
1693                         if (atomic_dec_and_test(&curr->refs))
1694                                 kfree(curr);
1695                         continue;
1696                 }
1697
1698                 ctx->pos = curr->key.offset;
1699
1700                 di = (struct btrfs_dir_item *)curr->data;
1701                 name = (char *)(di + 1);
1702                 name_len = le16_to_cpu(di->name_len);
1703
1704                 d_type = btrfs_filetype_table[di->type];
1705                 btrfs_disk_key_to_cpu(&location, &di->location);
1706
1707                 over = !dir_emit(ctx, name, name_len,
1708                                location.objectid, d_type);
1709
1710                 if (atomic_dec_and_test(&curr->refs))
1711                         kfree(curr);
1712
1713                 if (over)
1714                         return 1;
1715         }
1716         return 0;
1717 }
1718
1719 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1720                          generation, 64);
1721 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1722                          sequence, 64);
1723 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1724                          transid, 64);
1725 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1726 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1727                          nbytes, 64);
1728 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1729                          block_group, 64);
1730 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1731 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1732 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1733 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1734 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1735 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1736
1737 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1738 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1739
1740 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1741                                   struct btrfs_inode_item *inode_item,
1742                                   struct inode *inode)
1743 {
1744         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1745         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1746         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1747         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1748         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1749         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1750         btrfs_set_stack_inode_generation(inode_item,
1751                                          BTRFS_I(inode)->generation);
1752         btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1753         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1754         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1755         btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1756         btrfs_set_stack_inode_block_group(inode_item, 0);
1757
1758         btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1759                                      inode->i_atime.tv_sec);
1760         btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1761                                       inode->i_atime.tv_nsec);
1762
1763         btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1764                                      inode->i_mtime.tv_sec);
1765         btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1766                                       inode->i_mtime.tv_nsec);
1767
1768         btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1769                                      inode->i_ctime.tv_sec);
1770         btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1771                                       inode->i_ctime.tv_nsec);
1772 }
1773
1774 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1775 {
1776         struct btrfs_delayed_node *delayed_node;
1777         struct btrfs_inode_item *inode_item;
1778         struct btrfs_timespec *tspec;
1779
1780         delayed_node = btrfs_get_delayed_node(inode);
1781         if (!delayed_node)
1782                 return -ENOENT;
1783
1784         mutex_lock(&delayed_node->mutex);
1785         if (!delayed_node->inode_dirty) {
1786                 mutex_unlock(&delayed_node->mutex);
1787                 btrfs_release_delayed_node(delayed_node);
1788                 return -ENOENT;
1789         }
1790
1791         inode_item = &delayed_node->inode_item;
1792
1793         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1794         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1795         btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1796         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1797         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1798         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1799         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1800         inode->i_version = btrfs_stack_inode_sequence(inode_item);
1801         inode->i_rdev = 0;
1802         *rdev = btrfs_stack_inode_rdev(inode_item);
1803         BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1804
1805         tspec = btrfs_inode_atime(inode_item);
1806         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1807         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1808
1809         tspec = btrfs_inode_mtime(inode_item);
1810         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1811         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1812
1813         tspec = btrfs_inode_ctime(inode_item);
1814         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1815         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1816
1817         inode->i_generation = BTRFS_I(inode)->generation;
1818         BTRFS_I(inode)->index_cnt = (u64)-1;
1819
1820         mutex_unlock(&delayed_node->mutex);
1821         btrfs_release_delayed_node(delayed_node);
1822         return 0;
1823 }
1824
1825 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1826                                struct btrfs_root *root, struct inode *inode)
1827 {
1828         struct btrfs_delayed_node *delayed_node;
1829         int ret = 0;
1830
1831         delayed_node = btrfs_get_or_create_delayed_node(inode);
1832         if (IS_ERR(delayed_node))
1833                 return PTR_ERR(delayed_node);
1834
1835         mutex_lock(&delayed_node->mutex);
1836         if (delayed_node->inode_dirty) {
1837                 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1838                 goto release_node;
1839         }
1840
1841         ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1842                                                    delayed_node);
1843         if (ret)
1844                 goto release_node;
1845
1846         fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1847         delayed_node->inode_dirty = 1;
1848         delayed_node->count++;
1849         atomic_inc(&root->fs_info->delayed_root->items);
1850 release_node:
1851         mutex_unlock(&delayed_node->mutex);
1852         btrfs_release_delayed_node(delayed_node);
1853         return ret;
1854 }
1855
1856 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1857 {
1858         struct btrfs_root *root = delayed_node->root;
1859         struct btrfs_delayed_item *curr_item, *prev_item;
1860
1861         mutex_lock(&delayed_node->mutex);
1862         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1863         while (curr_item) {
1864                 btrfs_delayed_item_release_metadata(root, curr_item);
1865                 prev_item = curr_item;
1866                 curr_item = __btrfs_next_delayed_item(prev_item);
1867                 btrfs_release_delayed_item(prev_item);
1868         }
1869
1870         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1871         while (curr_item) {
1872                 btrfs_delayed_item_release_metadata(root, curr_item);
1873                 prev_item = curr_item;
1874                 curr_item = __btrfs_next_delayed_item(prev_item);
1875                 btrfs_release_delayed_item(prev_item);
1876         }
1877
1878         if (delayed_node->inode_dirty) {
1879                 btrfs_delayed_inode_release_metadata(root, delayed_node);
1880                 btrfs_release_delayed_inode(delayed_node);
1881         }
1882         mutex_unlock(&delayed_node->mutex);
1883 }
1884
1885 void btrfs_kill_delayed_inode_items(struct inode *inode)
1886 {
1887         struct btrfs_delayed_node *delayed_node;
1888
1889         delayed_node = btrfs_get_delayed_node(inode);
1890         if (!delayed_node)
1891                 return;
1892
1893         __btrfs_kill_delayed_node(delayed_node);
1894         btrfs_release_delayed_node(delayed_node);
1895 }
1896
1897 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1898 {
1899         u64 inode_id = 0;
1900         struct btrfs_delayed_node *delayed_nodes[8];
1901         int i, n;
1902
1903         while (1) {
1904                 spin_lock(&root->inode_lock);
1905                 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1906                                            (void **)delayed_nodes, inode_id,
1907                                            ARRAY_SIZE(delayed_nodes));
1908                 if (!n) {
1909                         spin_unlock(&root->inode_lock);
1910                         break;
1911                 }
1912
1913                 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1914
1915                 for (i = 0; i < n; i++)
1916                         atomic_inc(&delayed_nodes[i]->refs);
1917                 spin_unlock(&root->inode_lock);
1918
1919                 for (i = 0; i < n; i++) {
1920                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1921                         btrfs_release_delayed_node(delayed_nodes[i]);
1922                 }
1923         }
1924 }
1925
1926 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1927 {
1928         struct btrfs_delayed_root *delayed_root;
1929         struct btrfs_delayed_node *curr_node, *prev_node;
1930
1931         delayed_root = btrfs_get_delayed_root(root);
1932
1933         curr_node = btrfs_first_delayed_node(delayed_root);
1934         while (curr_node) {
1935                 __btrfs_kill_delayed_node(curr_node);
1936
1937                 prev_node = curr_node;
1938                 curr_node = btrfs_next_delayed_node(curr_node);
1939                 btrfs_release_delayed_node(prev_node);
1940         }
1941 }
1942