]> Pileus Git - ~andy/linux/blob - fs/btrfs/check-integrity.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[~andy/linux] / fs / btrfs / check-integrity.c
1 /*
2  * Copyright (C) STRATO AG 2011.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 /*
20  * This module can be used to catch cases when the btrfs kernel
21  * code executes write requests to the disk that bring the file
22  * system in an inconsistent state. In such a state, a power-loss
23  * or kernel panic event would cause that the data on disk is
24  * lost or at least damaged.
25  *
26  * Code is added that examines all block write requests during
27  * runtime (including writes of the super block). Three rules
28  * are verified and an error is printed on violation of the
29  * rules:
30  * 1. It is not allowed to write a disk block which is
31  *    currently referenced by the super block (either directly
32  *    or indirectly).
33  * 2. When a super block is written, it is verified that all
34  *    referenced (directly or indirectly) blocks fulfill the
35  *    following requirements:
36  *    2a. All referenced blocks have either been present when
37  *        the file system was mounted, (i.e., they have been
38  *        referenced by the super block) or they have been
39  *        written since then and the write completion callback
40  *        was called and no write error was indicated and a
41  *        FLUSH request to the device where these blocks are
42  *        located was received and completed.
43  *    2b. All referenced blocks need to have a generation
44  *        number which is equal to the parent's number.
45  *
46  * One issue that was found using this module was that the log
47  * tree on disk became temporarily corrupted because disk blocks
48  * that had been in use for the log tree had been freed and
49  * reused too early, while being referenced by the written super
50  * block.
51  *
52  * The search term in the kernel log that can be used to filter
53  * on the existence of detected integrity issues is
54  * "btrfs: attempt".
55  *
56  * The integrity check is enabled via mount options. These
57  * mount options are only supported if the integrity check
58  * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59  *
60  * Example #1, apply integrity checks to all metadata:
61  * mount /dev/sdb1 /mnt -o check_int
62  *
63  * Example #2, apply integrity checks to all metadata and
64  * to data extents:
65  * mount /dev/sdb1 /mnt -o check_int_data
66  *
67  * Example #3, apply integrity checks to all metadata and dump
68  * the tree that the super block references to kernel messages
69  * each time after a super block was written:
70  * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71  *
72  * If the integrity check tool is included and activated in
73  * the mount options, plenty of kernel memory is used, and
74  * plenty of additional CPU cycles are spent. Enabling this
75  * functionality is not intended for normal use. In most
76  * cases, unless you are a btrfs developer who needs to verify
77  * the integrity of (super)-block write requests, do not
78  * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79  * include and compile the integrity check tool.
80  *
81  * Expect millions of lines of information in the kernel log with an
82  * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83  * kernel config to at least 26 (which is 64MB). Usually the value is
84  * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85  * changed like this before LOG_BUF_SHIFT can be set to a high value:
86  * config LOG_BUF_SHIFT
87  *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88  *       range 12 30
89  */
90
91 #include <linux/sched.h>
92 #include <linux/slab.h>
93 #include <linux/buffer_head.h>
94 #include <linux/mutex.h>
95 #include <linux/crc32c.h>
96 #include <linux/genhd.h>
97 #include <linux/blkdev.h>
98 #include "ctree.h"
99 #include "disk-io.h"
100 #include "transaction.h"
101 #include "extent_io.h"
102 #include "volumes.h"
103 #include "print-tree.h"
104 #include "locking.h"
105 #include "check-integrity.h"
106 #include "rcu-string.h"
107
108 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
109 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
110 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
111 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
112 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
113 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
114 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
115 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)    /* in characters,
116                                                          * excluding " [...]" */
117 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
118
119 /*
120  * The definition of the bitmask fields for the print_mask.
121  * They are specified with the mount option check_integrity_print_mask.
122  */
123 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE                     0x00000001
124 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION         0x00000002
125 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE                  0x00000004
126 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE                 0x00000008
127 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH                        0x00000010
128 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH                        0x00000020
129 #define BTRFSIC_PRINT_MASK_VERBOSE                              0x00000040
130 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE                         0x00000080
131 #define BTRFSIC_PRINT_MASK_INITIAL_TREE                         0x00000100
132 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES                    0x00000200
133 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE                     0x00000400
134 #define BTRFSIC_PRINT_MASK_NUM_COPIES                           0x00000800
135 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS                0x00001000
136 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE                0x00002000
137
138 struct btrfsic_dev_state;
139 struct btrfsic_state;
140
141 struct btrfsic_block {
142         u32 magic_num;          /* only used for debug purposes */
143         unsigned int is_metadata:1;     /* if it is meta-data, not data-data */
144         unsigned int is_superblock:1;   /* if it is one of the superblocks */
145         unsigned int is_iodone:1;       /* if is done by lower subsystem */
146         unsigned int iodone_w_error:1;  /* error was indicated to endio */
147         unsigned int never_written:1;   /* block was added because it was
148                                          * referenced, not because it was
149                                          * written */
150         unsigned int mirror_num;        /* large enough to hold
151                                          * BTRFS_SUPER_MIRROR_MAX */
152         struct btrfsic_dev_state *dev_state;
153         u64 dev_bytenr;         /* key, physical byte num on disk */
154         u64 logical_bytenr;     /* logical byte num on disk */
155         u64 generation;
156         struct btrfs_disk_key disk_key; /* extra info to print in case of
157                                          * issues, will not always be correct */
158         struct list_head collision_resolving_node;      /* list node */
159         struct list_head all_blocks_node;       /* list node */
160
161         /* the following two lists contain block_link items */
162         struct list_head ref_to_list;   /* list */
163         struct list_head ref_from_list; /* list */
164         struct btrfsic_block *next_in_same_bio;
165         void *orig_bio_bh_private;
166         union {
167                 bio_end_io_t *bio;
168                 bh_end_io_t *bh;
169         } orig_bio_bh_end_io;
170         int submit_bio_bh_rw;
171         u64 flush_gen; /* only valid if !never_written */
172 };
173
174 /*
175  * Elements of this type are allocated dynamically and required because
176  * each block object can refer to and can be ref from multiple blocks.
177  * The key to lookup them in the hashtable is the dev_bytenr of
178  * the block ref to plus the one from the block refered from.
179  * The fact that they are searchable via a hashtable and that a
180  * ref_cnt is maintained is not required for the btrfs integrity
181  * check algorithm itself, it is only used to make the output more
182  * beautiful in case that an error is detected (an error is defined
183  * as a write operation to a block while that block is still referenced).
184  */
185 struct btrfsic_block_link {
186         u32 magic_num;          /* only used for debug purposes */
187         u32 ref_cnt;
188         struct list_head node_ref_to;   /* list node */
189         struct list_head node_ref_from; /* list node */
190         struct list_head collision_resolving_node;      /* list node */
191         struct btrfsic_block *block_ref_to;
192         struct btrfsic_block *block_ref_from;
193         u64 parent_generation;
194 };
195
196 struct btrfsic_dev_state {
197         u32 magic_num;          /* only used for debug purposes */
198         struct block_device *bdev;
199         struct btrfsic_state *state;
200         struct list_head collision_resolving_node;      /* list node */
201         struct btrfsic_block dummy_block_for_bio_bh_flush;
202         u64 last_flush_gen;
203         char name[BDEVNAME_SIZE];
204 };
205
206 struct btrfsic_block_hashtable {
207         struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
208 };
209
210 struct btrfsic_block_link_hashtable {
211         struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
212 };
213
214 struct btrfsic_dev_state_hashtable {
215         struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
216 };
217
218 struct btrfsic_block_data_ctx {
219         u64 start;              /* virtual bytenr */
220         u64 dev_bytenr;         /* physical bytenr on device */
221         u32 len;
222         struct btrfsic_dev_state *dev;
223         char **datav;
224         struct page **pagev;
225         void *mem_to_free;
226 };
227
228 /* This structure is used to implement recursion without occupying
229  * any stack space, refer to btrfsic_process_metablock() */
230 struct btrfsic_stack_frame {
231         u32 magic;
232         u32 nr;
233         int error;
234         int i;
235         int limit_nesting;
236         int num_copies;
237         int mirror_num;
238         struct btrfsic_block *block;
239         struct btrfsic_block_data_ctx *block_ctx;
240         struct btrfsic_block *next_block;
241         struct btrfsic_block_data_ctx next_block_ctx;
242         struct btrfs_header *hdr;
243         struct btrfsic_stack_frame *prev;
244 };
245
246 /* Some state per mounted filesystem */
247 struct btrfsic_state {
248         u32 print_mask;
249         int include_extent_data;
250         int csum_size;
251         struct list_head all_blocks_list;
252         struct btrfsic_block_hashtable block_hashtable;
253         struct btrfsic_block_link_hashtable block_link_hashtable;
254         struct btrfs_root *root;
255         u64 max_superblock_generation;
256         struct btrfsic_block *latest_superblock;
257         u32 metablock_size;
258         u32 datablock_size;
259 };
260
261 static void btrfsic_block_init(struct btrfsic_block *b);
262 static struct btrfsic_block *btrfsic_block_alloc(void);
263 static void btrfsic_block_free(struct btrfsic_block *b);
264 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
265 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
266 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
267 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
268 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
269 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
270 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
271 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
272                                         struct btrfsic_block_hashtable *h);
273 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
274 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
275                 struct block_device *bdev,
276                 u64 dev_bytenr,
277                 struct btrfsic_block_hashtable *h);
278 static void btrfsic_block_link_hashtable_init(
279                 struct btrfsic_block_link_hashtable *h);
280 static void btrfsic_block_link_hashtable_add(
281                 struct btrfsic_block_link *l,
282                 struct btrfsic_block_link_hashtable *h);
283 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
284 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
285                 struct block_device *bdev_ref_to,
286                 u64 dev_bytenr_ref_to,
287                 struct block_device *bdev_ref_from,
288                 u64 dev_bytenr_ref_from,
289                 struct btrfsic_block_link_hashtable *h);
290 static void btrfsic_dev_state_hashtable_init(
291                 struct btrfsic_dev_state_hashtable *h);
292 static void btrfsic_dev_state_hashtable_add(
293                 struct btrfsic_dev_state *ds,
294                 struct btrfsic_dev_state_hashtable *h);
295 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
296 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
297                 struct block_device *bdev,
298                 struct btrfsic_dev_state_hashtable *h);
299 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
300 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
301 static int btrfsic_process_superblock(struct btrfsic_state *state,
302                                       struct btrfs_fs_devices *fs_devices);
303 static int btrfsic_process_metablock(struct btrfsic_state *state,
304                                      struct btrfsic_block *block,
305                                      struct btrfsic_block_data_ctx *block_ctx,
306                                      int limit_nesting, int force_iodone_flag);
307 static void btrfsic_read_from_block_data(
308         struct btrfsic_block_data_ctx *block_ctx,
309         void *dst, u32 offset, size_t len);
310 static int btrfsic_create_link_to_next_block(
311                 struct btrfsic_state *state,
312                 struct btrfsic_block *block,
313                 struct btrfsic_block_data_ctx
314                 *block_ctx, u64 next_bytenr,
315                 int limit_nesting,
316                 struct btrfsic_block_data_ctx *next_block_ctx,
317                 struct btrfsic_block **next_blockp,
318                 int force_iodone_flag,
319                 int *num_copiesp, int *mirror_nump,
320                 struct btrfs_disk_key *disk_key,
321                 u64 parent_generation);
322 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
323                                       struct btrfsic_block *block,
324                                       struct btrfsic_block_data_ctx *block_ctx,
325                                       u32 item_offset, int force_iodone_flag);
326 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
327                              struct btrfsic_block_data_ctx *block_ctx_out,
328                              int mirror_num);
329 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
330                                   u32 len, struct block_device *bdev,
331                                   struct btrfsic_block_data_ctx *block_ctx_out);
332 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333 static int btrfsic_read_block(struct btrfsic_state *state,
334                               struct btrfsic_block_data_ctx *block_ctx);
335 static void btrfsic_dump_database(struct btrfsic_state *state);
336 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
337                                      char **datav, unsigned int num_pages);
338 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
339                                           u64 dev_bytenr, char **mapped_datav,
340                                           unsigned int num_pages,
341                                           struct bio *bio, int *bio_is_patched,
342                                           struct buffer_head *bh,
343                                           int submit_bio_bh_rw);
344 static int btrfsic_process_written_superblock(
345                 struct btrfsic_state *state,
346                 struct btrfsic_block *const block,
347                 struct btrfs_super_block *const super_hdr);
348 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
349 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
350 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
351                                               const struct btrfsic_block *block,
352                                               int recursion_level);
353 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
354                                         struct btrfsic_block *const block,
355                                         int recursion_level);
356 static void btrfsic_print_add_link(const struct btrfsic_state *state,
357                                    const struct btrfsic_block_link *l);
358 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
359                                    const struct btrfsic_block_link *l);
360 static char btrfsic_get_block_type(const struct btrfsic_state *state,
361                                    const struct btrfsic_block *block);
362 static void btrfsic_dump_tree(const struct btrfsic_state *state);
363 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
364                                   const struct btrfsic_block *block,
365                                   int indent_level);
366 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
367                 struct btrfsic_state *state,
368                 struct btrfsic_block_data_ctx *next_block_ctx,
369                 struct btrfsic_block *next_block,
370                 struct btrfsic_block *from_block,
371                 u64 parent_generation);
372 static struct btrfsic_block *btrfsic_block_lookup_or_add(
373                 struct btrfsic_state *state,
374                 struct btrfsic_block_data_ctx *block_ctx,
375                 const char *additional_string,
376                 int is_metadata,
377                 int is_iodone,
378                 int never_written,
379                 int mirror_num,
380                 int *was_created);
381 static int btrfsic_process_superblock_dev_mirror(
382                 struct btrfsic_state *state,
383                 struct btrfsic_dev_state *dev_state,
384                 struct btrfs_device *device,
385                 int superblock_mirror_num,
386                 struct btrfsic_dev_state **selected_dev_state,
387                 struct btrfs_super_block *selected_super);
388 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
389                 struct block_device *bdev);
390 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
391                                            u64 bytenr,
392                                            struct btrfsic_dev_state *dev_state,
393                                            u64 dev_bytenr);
394
395 static struct mutex btrfsic_mutex;
396 static int btrfsic_is_initialized;
397 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
398
399
400 static void btrfsic_block_init(struct btrfsic_block *b)
401 {
402         b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
403         b->dev_state = NULL;
404         b->dev_bytenr = 0;
405         b->logical_bytenr = 0;
406         b->generation = BTRFSIC_GENERATION_UNKNOWN;
407         b->disk_key.objectid = 0;
408         b->disk_key.type = 0;
409         b->disk_key.offset = 0;
410         b->is_metadata = 0;
411         b->is_superblock = 0;
412         b->is_iodone = 0;
413         b->iodone_w_error = 0;
414         b->never_written = 0;
415         b->mirror_num = 0;
416         b->next_in_same_bio = NULL;
417         b->orig_bio_bh_private = NULL;
418         b->orig_bio_bh_end_io.bio = NULL;
419         INIT_LIST_HEAD(&b->collision_resolving_node);
420         INIT_LIST_HEAD(&b->all_blocks_node);
421         INIT_LIST_HEAD(&b->ref_to_list);
422         INIT_LIST_HEAD(&b->ref_from_list);
423         b->submit_bio_bh_rw = 0;
424         b->flush_gen = 0;
425 }
426
427 static struct btrfsic_block *btrfsic_block_alloc(void)
428 {
429         struct btrfsic_block *b;
430
431         b = kzalloc(sizeof(*b), GFP_NOFS);
432         if (NULL != b)
433                 btrfsic_block_init(b);
434
435         return b;
436 }
437
438 static void btrfsic_block_free(struct btrfsic_block *b)
439 {
440         BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
441         kfree(b);
442 }
443
444 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
445 {
446         l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
447         l->ref_cnt = 1;
448         INIT_LIST_HEAD(&l->node_ref_to);
449         INIT_LIST_HEAD(&l->node_ref_from);
450         INIT_LIST_HEAD(&l->collision_resolving_node);
451         l->block_ref_to = NULL;
452         l->block_ref_from = NULL;
453 }
454
455 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
456 {
457         struct btrfsic_block_link *l;
458
459         l = kzalloc(sizeof(*l), GFP_NOFS);
460         if (NULL != l)
461                 btrfsic_block_link_init(l);
462
463         return l;
464 }
465
466 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
467 {
468         BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
469         kfree(l);
470 }
471
472 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
473 {
474         ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
475         ds->bdev = NULL;
476         ds->state = NULL;
477         ds->name[0] = '\0';
478         INIT_LIST_HEAD(&ds->collision_resolving_node);
479         ds->last_flush_gen = 0;
480         btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
481         ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
482         ds->dummy_block_for_bio_bh_flush.dev_state = ds;
483 }
484
485 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
486 {
487         struct btrfsic_dev_state *ds;
488
489         ds = kzalloc(sizeof(*ds), GFP_NOFS);
490         if (NULL != ds)
491                 btrfsic_dev_state_init(ds);
492
493         return ds;
494 }
495
496 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
497 {
498         BUG_ON(!(NULL == ds ||
499                  BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
500         kfree(ds);
501 }
502
503 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
504 {
505         int i;
506
507         for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
508                 INIT_LIST_HEAD(h->table + i);
509 }
510
511 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
512                                         struct btrfsic_block_hashtable *h)
513 {
514         const unsigned int hashval =
515             (((unsigned int)(b->dev_bytenr >> 16)) ^
516              ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
517              (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
518
519         list_add(&b->collision_resolving_node, h->table + hashval);
520 }
521
522 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
523 {
524         list_del(&b->collision_resolving_node);
525 }
526
527 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
528                 struct block_device *bdev,
529                 u64 dev_bytenr,
530                 struct btrfsic_block_hashtable *h)
531 {
532         const unsigned int hashval =
533             (((unsigned int)(dev_bytenr >> 16)) ^
534              ((unsigned int)((uintptr_t)bdev))) &
535              (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536         struct list_head *elem;
537
538         list_for_each(elem, h->table + hashval) {
539                 struct btrfsic_block *const b =
540                     list_entry(elem, struct btrfsic_block,
541                                collision_resolving_node);
542
543                 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
544                         return b;
545         }
546
547         return NULL;
548 }
549
550 static void btrfsic_block_link_hashtable_init(
551                 struct btrfsic_block_link_hashtable *h)
552 {
553         int i;
554
555         for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
556                 INIT_LIST_HEAD(h->table + i);
557 }
558
559 static void btrfsic_block_link_hashtable_add(
560                 struct btrfsic_block_link *l,
561                 struct btrfsic_block_link_hashtable *h)
562 {
563         const unsigned int hashval =
564             (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
565              ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
566              ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
567              ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
568              & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
569
570         BUG_ON(NULL == l->block_ref_to);
571         BUG_ON(NULL == l->block_ref_from);
572         list_add(&l->collision_resolving_node, h->table + hashval);
573 }
574
575 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
576 {
577         list_del(&l->collision_resolving_node);
578 }
579
580 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
581                 struct block_device *bdev_ref_to,
582                 u64 dev_bytenr_ref_to,
583                 struct block_device *bdev_ref_from,
584                 u64 dev_bytenr_ref_from,
585                 struct btrfsic_block_link_hashtable *h)
586 {
587         const unsigned int hashval =
588             (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
589              ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
590              ((unsigned int)((uintptr_t)bdev_ref_to)) ^
591              ((unsigned int)((uintptr_t)bdev_ref_from))) &
592              (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
593         struct list_head *elem;
594
595         list_for_each(elem, h->table + hashval) {
596                 struct btrfsic_block_link *const l =
597                     list_entry(elem, struct btrfsic_block_link,
598                                collision_resolving_node);
599
600                 BUG_ON(NULL == l->block_ref_to);
601                 BUG_ON(NULL == l->block_ref_from);
602                 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
603                     l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
604                     l->block_ref_from->dev_state->bdev == bdev_ref_from &&
605                     l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
606                         return l;
607         }
608
609         return NULL;
610 }
611
612 static void btrfsic_dev_state_hashtable_init(
613                 struct btrfsic_dev_state_hashtable *h)
614 {
615         int i;
616
617         for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
618                 INIT_LIST_HEAD(h->table + i);
619 }
620
621 static void btrfsic_dev_state_hashtable_add(
622                 struct btrfsic_dev_state *ds,
623                 struct btrfsic_dev_state_hashtable *h)
624 {
625         const unsigned int hashval =
626             (((unsigned int)((uintptr_t)ds->bdev)) &
627              (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
628
629         list_add(&ds->collision_resolving_node, h->table + hashval);
630 }
631
632 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
633 {
634         list_del(&ds->collision_resolving_node);
635 }
636
637 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
638                 struct block_device *bdev,
639                 struct btrfsic_dev_state_hashtable *h)
640 {
641         const unsigned int hashval =
642             (((unsigned int)((uintptr_t)bdev)) &
643              (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
644         struct list_head *elem;
645
646         list_for_each(elem, h->table + hashval) {
647                 struct btrfsic_dev_state *const ds =
648                     list_entry(elem, struct btrfsic_dev_state,
649                                collision_resolving_node);
650
651                 if (ds->bdev == bdev)
652                         return ds;
653         }
654
655         return NULL;
656 }
657
658 static int btrfsic_process_superblock(struct btrfsic_state *state,
659                                       struct btrfs_fs_devices *fs_devices)
660 {
661         int ret = 0;
662         struct btrfs_super_block *selected_super;
663         struct list_head *dev_head = &fs_devices->devices;
664         struct btrfs_device *device;
665         struct btrfsic_dev_state *selected_dev_state = NULL;
666         int pass;
667
668         BUG_ON(NULL == state);
669         selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
670         if (NULL == selected_super) {
671                 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
672                 return -1;
673         }
674
675         list_for_each_entry(device, dev_head, dev_list) {
676                 int i;
677                 struct btrfsic_dev_state *dev_state;
678
679                 if (!device->bdev || !device->name)
680                         continue;
681
682                 dev_state = btrfsic_dev_state_lookup(device->bdev);
683                 BUG_ON(NULL == dev_state);
684                 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
685                         ret = btrfsic_process_superblock_dev_mirror(
686                                         state, dev_state, device, i,
687                                         &selected_dev_state, selected_super);
688                         if (0 != ret && 0 == i) {
689                                 kfree(selected_super);
690                                 return ret;
691                         }
692                 }
693         }
694
695         if (NULL == state->latest_superblock) {
696                 printk(KERN_INFO "btrfsic: no superblock found!\n");
697                 kfree(selected_super);
698                 return -1;
699         }
700
701         state->csum_size = btrfs_super_csum_size(selected_super);
702
703         for (pass = 0; pass < 3; pass++) {
704                 int num_copies;
705                 int mirror_num;
706                 u64 next_bytenr;
707
708                 switch (pass) {
709                 case 0:
710                         next_bytenr = btrfs_super_root(selected_super);
711                         if (state->print_mask &
712                             BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
713                                 printk(KERN_INFO "root@%llu\n", next_bytenr);
714                         break;
715                 case 1:
716                         next_bytenr = btrfs_super_chunk_root(selected_super);
717                         if (state->print_mask &
718                             BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
719                                 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
720                         break;
721                 case 2:
722                         next_bytenr = btrfs_super_log_root(selected_super);
723                         if (0 == next_bytenr)
724                                 continue;
725                         if (state->print_mask &
726                             BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
727                                 printk(KERN_INFO "log@%llu\n", next_bytenr);
728                         break;
729                 }
730
731                 num_copies =
732                     btrfs_num_copies(state->root->fs_info,
733                                      next_bytenr, state->metablock_size);
734                 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
735                         printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
736                                next_bytenr, num_copies);
737
738                 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
739                         struct btrfsic_block *next_block;
740                         struct btrfsic_block_data_ctx tmp_next_block_ctx;
741                         struct btrfsic_block_link *l;
742
743                         ret = btrfsic_map_block(state, next_bytenr,
744                                                 state->metablock_size,
745                                                 &tmp_next_block_ctx,
746                                                 mirror_num);
747                         if (ret) {
748                                 printk(KERN_INFO "btrfsic:"
749                                        " btrfsic_map_block(root @%llu,"
750                                        " mirror %d) failed!\n",
751                                        next_bytenr, mirror_num);
752                                 kfree(selected_super);
753                                 return -1;
754                         }
755
756                         next_block = btrfsic_block_hashtable_lookup(
757                                         tmp_next_block_ctx.dev->bdev,
758                                         tmp_next_block_ctx.dev_bytenr,
759                                         &state->block_hashtable);
760                         BUG_ON(NULL == next_block);
761
762                         l = btrfsic_block_link_hashtable_lookup(
763                                         tmp_next_block_ctx.dev->bdev,
764                                         tmp_next_block_ctx.dev_bytenr,
765                                         state->latest_superblock->dev_state->
766                                         bdev,
767                                         state->latest_superblock->dev_bytenr,
768                                         &state->block_link_hashtable);
769                         BUG_ON(NULL == l);
770
771                         ret = btrfsic_read_block(state, &tmp_next_block_ctx);
772                         if (ret < (int)PAGE_CACHE_SIZE) {
773                                 printk(KERN_INFO
774                                        "btrfsic: read @logical %llu failed!\n",
775                                        tmp_next_block_ctx.start);
776                                 btrfsic_release_block_ctx(&tmp_next_block_ctx);
777                                 kfree(selected_super);
778                                 return -1;
779                         }
780
781                         ret = btrfsic_process_metablock(state,
782                                                         next_block,
783                                                         &tmp_next_block_ctx,
784                                                         BTRFS_MAX_LEVEL + 3, 1);
785                         btrfsic_release_block_ctx(&tmp_next_block_ctx);
786                 }
787         }
788
789         kfree(selected_super);
790         return ret;
791 }
792
793 static int btrfsic_process_superblock_dev_mirror(
794                 struct btrfsic_state *state,
795                 struct btrfsic_dev_state *dev_state,
796                 struct btrfs_device *device,
797                 int superblock_mirror_num,
798                 struct btrfsic_dev_state **selected_dev_state,
799                 struct btrfs_super_block *selected_super)
800 {
801         struct btrfs_super_block *super_tmp;
802         u64 dev_bytenr;
803         struct buffer_head *bh;
804         struct btrfsic_block *superblock_tmp;
805         int pass;
806         struct block_device *const superblock_bdev = device->bdev;
807
808         /* super block bytenr is always the unmapped device bytenr */
809         dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
810         if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
811                 return -1;
812         bh = __bread(superblock_bdev, dev_bytenr / 4096,
813                      BTRFS_SUPER_INFO_SIZE);
814         if (NULL == bh)
815                 return -1;
816         super_tmp = (struct btrfs_super_block *)
817             (bh->b_data + (dev_bytenr & 4095));
818
819         if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
820             btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
821             memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
822             btrfs_super_nodesize(super_tmp) != state->metablock_size ||
823             btrfs_super_leafsize(super_tmp) != state->metablock_size ||
824             btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
825                 brelse(bh);
826                 return 0;
827         }
828
829         superblock_tmp =
830             btrfsic_block_hashtable_lookup(superblock_bdev,
831                                            dev_bytenr,
832                                            &state->block_hashtable);
833         if (NULL == superblock_tmp) {
834                 superblock_tmp = btrfsic_block_alloc();
835                 if (NULL == superblock_tmp) {
836                         printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
837                         brelse(bh);
838                         return -1;
839                 }
840                 /* for superblock, only the dev_bytenr makes sense */
841                 superblock_tmp->dev_bytenr = dev_bytenr;
842                 superblock_tmp->dev_state = dev_state;
843                 superblock_tmp->logical_bytenr = dev_bytenr;
844                 superblock_tmp->generation = btrfs_super_generation(super_tmp);
845                 superblock_tmp->is_metadata = 1;
846                 superblock_tmp->is_superblock = 1;
847                 superblock_tmp->is_iodone = 1;
848                 superblock_tmp->never_written = 0;
849                 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
850                 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
851                         printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
852                                      " @%llu (%s/%llu/%d)\n",
853                                      superblock_bdev,
854                                      rcu_str_deref(device->name), dev_bytenr,
855                                      dev_state->name, dev_bytenr,
856                                      superblock_mirror_num);
857                 list_add(&superblock_tmp->all_blocks_node,
858                          &state->all_blocks_list);
859                 btrfsic_block_hashtable_add(superblock_tmp,
860                                             &state->block_hashtable);
861         }
862
863         /* select the one with the highest generation field */
864         if (btrfs_super_generation(super_tmp) >
865             state->max_superblock_generation ||
866             0 == state->max_superblock_generation) {
867                 memcpy(selected_super, super_tmp, sizeof(*selected_super));
868                 *selected_dev_state = dev_state;
869                 state->max_superblock_generation =
870                     btrfs_super_generation(super_tmp);
871                 state->latest_superblock = superblock_tmp;
872         }
873
874         for (pass = 0; pass < 3; pass++) {
875                 u64 next_bytenr;
876                 int num_copies;
877                 int mirror_num;
878                 const char *additional_string = NULL;
879                 struct btrfs_disk_key tmp_disk_key;
880
881                 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
882                 tmp_disk_key.offset = 0;
883                 switch (pass) {
884                 case 0:
885                         btrfs_set_disk_key_objectid(&tmp_disk_key,
886                                                     BTRFS_ROOT_TREE_OBJECTID);
887                         additional_string = "initial root ";
888                         next_bytenr = btrfs_super_root(super_tmp);
889                         break;
890                 case 1:
891                         btrfs_set_disk_key_objectid(&tmp_disk_key,
892                                                     BTRFS_CHUNK_TREE_OBJECTID);
893                         additional_string = "initial chunk ";
894                         next_bytenr = btrfs_super_chunk_root(super_tmp);
895                         break;
896                 case 2:
897                         btrfs_set_disk_key_objectid(&tmp_disk_key,
898                                                     BTRFS_TREE_LOG_OBJECTID);
899                         additional_string = "initial log ";
900                         next_bytenr = btrfs_super_log_root(super_tmp);
901                         if (0 == next_bytenr)
902                                 continue;
903                         break;
904                 }
905
906                 num_copies =
907                     btrfs_num_copies(state->root->fs_info,
908                                      next_bytenr, state->metablock_size);
909                 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
910                         printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
911                                next_bytenr, num_copies);
912                 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
913                         struct btrfsic_block *next_block;
914                         struct btrfsic_block_data_ctx tmp_next_block_ctx;
915                         struct btrfsic_block_link *l;
916
917                         if (btrfsic_map_block(state, next_bytenr,
918                                               state->metablock_size,
919                                               &tmp_next_block_ctx,
920                                               mirror_num)) {
921                                 printk(KERN_INFO "btrfsic: btrfsic_map_block("
922                                        "bytenr @%llu, mirror %d) failed!\n",
923                                        next_bytenr, mirror_num);
924                                 brelse(bh);
925                                 return -1;
926                         }
927
928                         next_block = btrfsic_block_lookup_or_add(
929                                         state, &tmp_next_block_ctx,
930                                         additional_string, 1, 1, 0,
931                                         mirror_num, NULL);
932                         if (NULL == next_block) {
933                                 btrfsic_release_block_ctx(&tmp_next_block_ctx);
934                                 brelse(bh);
935                                 return -1;
936                         }
937
938                         next_block->disk_key = tmp_disk_key;
939                         next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
940                         l = btrfsic_block_link_lookup_or_add(
941                                         state, &tmp_next_block_ctx,
942                                         next_block, superblock_tmp,
943                                         BTRFSIC_GENERATION_UNKNOWN);
944                         btrfsic_release_block_ctx(&tmp_next_block_ctx);
945                         if (NULL == l) {
946                                 brelse(bh);
947                                 return -1;
948                         }
949                 }
950         }
951         if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
952                 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
953
954         brelse(bh);
955         return 0;
956 }
957
958 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
959 {
960         struct btrfsic_stack_frame *sf;
961
962         sf = kzalloc(sizeof(*sf), GFP_NOFS);
963         if (NULL == sf)
964                 printk(KERN_INFO "btrfsic: alloc memory failed!\n");
965         else
966                 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
967         return sf;
968 }
969
970 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
971 {
972         BUG_ON(!(NULL == sf ||
973                  BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
974         kfree(sf);
975 }
976
977 static int btrfsic_process_metablock(
978                 struct btrfsic_state *state,
979                 struct btrfsic_block *const first_block,
980                 struct btrfsic_block_data_ctx *const first_block_ctx,
981                 int first_limit_nesting, int force_iodone_flag)
982 {
983         struct btrfsic_stack_frame initial_stack_frame = { 0 };
984         struct btrfsic_stack_frame *sf;
985         struct btrfsic_stack_frame *next_stack;
986         struct btrfs_header *const first_hdr =
987                 (struct btrfs_header *)first_block_ctx->datav[0];
988
989         BUG_ON(!first_hdr);
990         sf = &initial_stack_frame;
991         sf->error = 0;
992         sf->i = -1;
993         sf->limit_nesting = first_limit_nesting;
994         sf->block = first_block;
995         sf->block_ctx = first_block_ctx;
996         sf->next_block = NULL;
997         sf->hdr = first_hdr;
998         sf->prev = NULL;
999
1000 continue_with_new_stack_frame:
1001         sf->block->generation = le64_to_cpu(sf->hdr->generation);
1002         if (0 == sf->hdr->level) {
1003                 struct btrfs_leaf *const leafhdr =
1004                     (struct btrfs_leaf *)sf->hdr;
1005
1006                 if (-1 == sf->i) {
1007                         sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
1008
1009                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1010                                 printk(KERN_INFO
1011                                        "leaf %llu items %d generation %llu"
1012                                        " owner %llu\n",
1013                                        sf->block_ctx->start, sf->nr,
1014                                        btrfs_stack_header_generation(
1015                                                &leafhdr->header),
1016                                        btrfs_stack_header_owner(
1017                                                &leafhdr->header));
1018                 }
1019
1020 continue_with_current_leaf_stack_frame:
1021                 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1022                         sf->i++;
1023                         sf->num_copies = 0;
1024                 }
1025
1026                 if (sf->i < sf->nr) {
1027                         struct btrfs_item disk_item;
1028                         u32 disk_item_offset =
1029                                 (uintptr_t)(leafhdr->items + sf->i) -
1030                                 (uintptr_t)leafhdr;
1031                         struct btrfs_disk_key *disk_key;
1032                         u8 type;
1033                         u32 item_offset;
1034                         u32 item_size;
1035
1036                         if (disk_item_offset + sizeof(struct btrfs_item) >
1037                             sf->block_ctx->len) {
1038 leaf_item_out_of_bounce_error:
1039                                 printk(KERN_INFO
1040                                        "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1041                                        sf->block_ctx->start,
1042                                        sf->block_ctx->dev->name);
1043                                 goto one_stack_frame_backwards;
1044                         }
1045                         btrfsic_read_from_block_data(sf->block_ctx,
1046                                                      &disk_item,
1047                                                      disk_item_offset,
1048                                                      sizeof(struct btrfs_item));
1049                         item_offset = btrfs_stack_item_offset(&disk_item);
1050                         item_size = btrfs_stack_item_size(&disk_item);
1051                         disk_key = &disk_item.key;
1052                         type = btrfs_disk_key_type(disk_key);
1053
1054                         if (BTRFS_ROOT_ITEM_KEY == type) {
1055                                 struct btrfs_root_item root_item;
1056                                 u32 root_item_offset;
1057                                 u64 next_bytenr;
1058
1059                                 root_item_offset = item_offset +
1060                                         offsetof(struct btrfs_leaf, items);
1061                                 if (root_item_offset + item_size >
1062                                     sf->block_ctx->len)
1063                                         goto leaf_item_out_of_bounce_error;
1064                                 btrfsic_read_from_block_data(
1065                                         sf->block_ctx, &root_item,
1066                                         root_item_offset,
1067                                         item_size);
1068                                 next_bytenr = btrfs_root_bytenr(&root_item);
1069
1070                                 sf->error =
1071                                     btrfsic_create_link_to_next_block(
1072                                                 state,
1073                                                 sf->block,
1074                                                 sf->block_ctx,
1075                                                 next_bytenr,
1076                                                 sf->limit_nesting,
1077                                                 &sf->next_block_ctx,
1078                                                 &sf->next_block,
1079                                                 force_iodone_flag,
1080                                                 &sf->num_copies,
1081                                                 &sf->mirror_num,
1082                                                 disk_key,
1083                                                 btrfs_root_generation(
1084                                                 &root_item));
1085                                 if (sf->error)
1086                                         goto one_stack_frame_backwards;
1087
1088                                 if (NULL != sf->next_block) {
1089                                         struct btrfs_header *const next_hdr =
1090                                             (struct btrfs_header *)
1091                                             sf->next_block_ctx.datav[0];
1092
1093                                         next_stack =
1094                                             btrfsic_stack_frame_alloc();
1095                                         if (NULL == next_stack) {
1096                                                 btrfsic_release_block_ctx(
1097                                                                 &sf->
1098                                                                 next_block_ctx);
1099                                                 goto one_stack_frame_backwards;
1100                                         }
1101
1102                                         next_stack->i = -1;
1103                                         next_stack->block = sf->next_block;
1104                                         next_stack->block_ctx =
1105                                             &sf->next_block_ctx;
1106                                         next_stack->next_block = NULL;
1107                                         next_stack->hdr = next_hdr;
1108                                         next_stack->limit_nesting =
1109                                             sf->limit_nesting - 1;
1110                                         next_stack->prev = sf;
1111                                         sf = next_stack;
1112                                         goto continue_with_new_stack_frame;
1113                                 }
1114                         } else if (BTRFS_EXTENT_DATA_KEY == type &&
1115                                    state->include_extent_data) {
1116                                 sf->error = btrfsic_handle_extent_data(
1117                                                 state,
1118                                                 sf->block,
1119                                                 sf->block_ctx,
1120                                                 item_offset,
1121                                                 force_iodone_flag);
1122                                 if (sf->error)
1123                                         goto one_stack_frame_backwards;
1124                         }
1125
1126                         goto continue_with_current_leaf_stack_frame;
1127                 }
1128         } else {
1129                 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1130
1131                 if (-1 == sf->i) {
1132                         sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1133
1134                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1135                                 printk(KERN_INFO "node %llu level %d items %d"
1136                                        " generation %llu owner %llu\n",
1137                                        sf->block_ctx->start,
1138                                        nodehdr->header.level, sf->nr,
1139                                        btrfs_stack_header_generation(
1140                                        &nodehdr->header),
1141                                        btrfs_stack_header_owner(
1142                                        &nodehdr->header));
1143                 }
1144
1145 continue_with_current_node_stack_frame:
1146                 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1147                         sf->i++;
1148                         sf->num_copies = 0;
1149                 }
1150
1151                 if (sf->i < sf->nr) {
1152                         struct btrfs_key_ptr key_ptr;
1153                         u32 key_ptr_offset;
1154                         u64 next_bytenr;
1155
1156                         key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1157                                           (uintptr_t)nodehdr;
1158                         if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1159                             sf->block_ctx->len) {
1160                                 printk(KERN_INFO
1161                                        "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1162                                        sf->block_ctx->start,
1163                                        sf->block_ctx->dev->name);
1164                                 goto one_stack_frame_backwards;
1165                         }
1166                         btrfsic_read_from_block_data(
1167                                 sf->block_ctx, &key_ptr, key_ptr_offset,
1168                                 sizeof(struct btrfs_key_ptr));
1169                         next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1170
1171                         sf->error = btrfsic_create_link_to_next_block(
1172                                         state,
1173                                         sf->block,
1174                                         sf->block_ctx,
1175                                         next_bytenr,
1176                                         sf->limit_nesting,
1177                                         &sf->next_block_ctx,
1178                                         &sf->next_block,
1179                                         force_iodone_flag,
1180                                         &sf->num_copies,
1181                                         &sf->mirror_num,
1182                                         &key_ptr.key,
1183                                         btrfs_stack_key_generation(&key_ptr));
1184                         if (sf->error)
1185                                 goto one_stack_frame_backwards;
1186
1187                         if (NULL != sf->next_block) {
1188                                 struct btrfs_header *const next_hdr =
1189                                     (struct btrfs_header *)
1190                                     sf->next_block_ctx.datav[0];
1191
1192                                 next_stack = btrfsic_stack_frame_alloc();
1193                                 if (NULL == next_stack)
1194                                         goto one_stack_frame_backwards;
1195
1196                                 next_stack->i = -1;
1197                                 next_stack->block = sf->next_block;
1198                                 next_stack->block_ctx = &sf->next_block_ctx;
1199                                 next_stack->next_block = NULL;
1200                                 next_stack->hdr = next_hdr;
1201                                 next_stack->limit_nesting =
1202                                     sf->limit_nesting - 1;
1203                                 next_stack->prev = sf;
1204                                 sf = next_stack;
1205                                 goto continue_with_new_stack_frame;
1206                         }
1207
1208                         goto continue_with_current_node_stack_frame;
1209                 }
1210         }
1211
1212 one_stack_frame_backwards:
1213         if (NULL != sf->prev) {
1214                 struct btrfsic_stack_frame *const prev = sf->prev;
1215
1216                 /* the one for the initial block is freed in the caller */
1217                 btrfsic_release_block_ctx(sf->block_ctx);
1218
1219                 if (sf->error) {
1220                         prev->error = sf->error;
1221                         btrfsic_stack_frame_free(sf);
1222                         sf = prev;
1223                         goto one_stack_frame_backwards;
1224                 }
1225
1226                 btrfsic_stack_frame_free(sf);
1227                 sf = prev;
1228                 goto continue_with_new_stack_frame;
1229         } else {
1230                 BUG_ON(&initial_stack_frame != sf);
1231         }
1232
1233         return sf->error;
1234 }
1235
1236 static void btrfsic_read_from_block_data(
1237         struct btrfsic_block_data_ctx *block_ctx,
1238         void *dstv, u32 offset, size_t len)
1239 {
1240         size_t cur;
1241         size_t offset_in_page;
1242         char *kaddr;
1243         char *dst = (char *)dstv;
1244         size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1245         unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1246
1247         WARN_ON(offset + len > block_ctx->len);
1248         offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
1249
1250         while (len > 0) {
1251                 cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1252                 BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1253                             PAGE_CACHE_SHIFT);
1254                 kaddr = block_ctx->datav[i];
1255                 memcpy(dst, kaddr + offset_in_page, cur);
1256
1257                 dst += cur;
1258                 len -= cur;
1259                 offset_in_page = 0;
1260                 i++;
1261         }
1262 }
1263
1264 static int btrfsic_create_link_to_next_block(
1265                 struct btrfsic_state *state,
1266                 struct btrfsic_block *block,
1267                 struct btrfsic_block_data_ctx *block_ctx,
1268                 u64 next_bytenr,
1269                 int limit_nesting,
1270                 struct btrfsic_block_data_ctx *next_block_ctx,
1271                 struct btrfsic_block **next_blockp,
1272                 int force_iodone_flag,
1273                 int *num_copiesp, int *mirror_nump,
1274                 struct btrfs_disk_key *disk_key,
1275                 u64 parent_generation)
1276 {
1277         struct btrfsic_block *next_block = NULL;
1278         int ret;
1279         struct btrfsic_block_link *l;
1280         int did_alloc_block_link;
1281         int block_was_created;
1282
1283         *next_blockp = NULL;
1284         if (0 == *num_copiesp) {
1285                 *num_copiesp =
1286                     btrfs_num_copies(state->root->fs_info,
1287                                      next_bytenr, state->metablock_size);
1288                 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1289                         printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1290                                next_bytenr, *num_copiesp);
1291                 *mirror_nump = 1;
1292         }
1293
1294         if (*mirror_nump > *num_copiesp)
1295                 return 0;
1296
1297         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1298                 printk(KERN_INFO
1299                        "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1300                        *mirror_nump);
1301         ret = btrfsic_map_block(state, next_bytenr,
1302                                 state->metablock_size,
1303                                 next_block_ctx, *mirror_nump);
1304         if (ret) {
1305                 printk(KERN_INFO
1306                        "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1307                        next_bytenr, *mirror_nump);
1308                 btrfsic_release_block_ctx(next_block_ctx);
1309                 *next_blockp = NULL;
1310                 return -1;
1311         }
1312
1313         next_block = btrfsic_block_lookup_or_add(state,
1314                                                  next_block_ctx, "referenced ",
1315                                                  1, force_iodone_flag,
1316                                                  !force_iodone_flag,
1317                                                  *mirror_nump,
1318                                                  &block_was_created);
1319         if (NULL == next_block) {
1320                 btrfsic_release_block_ctx(next_block_ctx);
1321                 *next_blockp = NULL;
1322                 return -1;
1323         }
1324         if (block_was_created) {
1325                 l = NULL;
1326                 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1327         } else {
1328                 if (next_block->logical_bytenr != next_bytenr &&
1329                     !(!next_block->is_metadata &&
1330                       0 == next_block->logical_bytenr)) {
1331                         printk(KERN_INFO
1332                                "Referenced block @%llu (%s/%llu/%d)"
1333                                " found in hash table, %c,"
1334                                " bytenr mismatch (!= stored %llu).\n",
1335                                next_bytenr, next_block_ctx->dev->name,
1336                                next_block_ctx->dev_bytenr, *mirror_nump,
1337                                btrfsic_get_block_type(state, next_block),
1338                                next_block->logical_bytenr);
1339                 } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1340                         printk(KERN_INFO
1341                                "Referenced block @%llu (%s/%llu/%d)"
1342                                " found in hash table, %c.\n",
1343                                next_bytenr, next_block_ctx->dev->name,
1344                                next_block_ctx->dev_bytenr, *mirror_nump,
1345                                btrfsic_get_block_type(state, next_block));
1346                 next_block->logical_bytenr = next_bytenr;
1347
1348                 next_block->mirror_num = *mirror_nump;
1349                 l = btrfsic_block_link_hashtable_lookup(
1350                                 next_block_ctx->dev->bdev,
1351                                 next_block_ctx->dev_bytenr,
1352                                 block_ctx->dev->bdev,
1353                                 block_ctx->dev_bytenr,
1354                                 &state->block_link_hashtable);
1355         }
1356
1357         next_block->disk_key = *disk_key;
1358         if (NULL == l) {
1359                 l = btrfsic_block_link_alloc();
1360                 if (NULL == l) {
1361                         printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1362                         btrfsic_release_block_ctx(next_block_ctx);
1363                         *next_blockp = NULL;
1364                         return -1;
1365                 }
1366
1367                 did_alloc_block_link = 1;
1368                 l->block_ref_to = next_block;
1369                 l->block_ref_from = block;
1370                 l->ref_cnt = 1;
1371                 l->parent_generation = parent_generation;
1372
1373                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1374                         btrfsic_print_add_link(state, l);
1375
1376                 list_add(&l->node_ref_to, &block->ref_to_list);
1377                 list_add(&l->node_ref_from, &next_block->ref_from_list);
1378
1379                 btrfsic_block_link_hashtable_add(l,
1380                                                  &state->block_link_hashtable);
1381         } else {
1382                 did_alloc_block_link = 0;
1383                 if (0 == limit_nesting) {
1384                         l->ref_cnt++;
1385                         l->parent_generation = parent_generation;
1386                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1387                                 btrfsic_print_add_link(state, l);
1388                 }
1389         }
1390
1391         if (limit_nesting > 0 && did_alloc_block_link) {
1392                 ret = btrfsic_read_block(state, next_block_ctx);
1393                 if (ret < (int)next_block_ctx->len) {
1394                         printk(KERN_INFO
1395                                "btrfsic: read block @logical %llu failed!\n",
1396                                next_bytenr);
1397                         btrfsic_release_block_ctx(next_block_ctx);
1398                         *next_blockp = NULL;
1399                         return -1;
1400                 }
1401
1402                 *next_blockp = next_block;
1403         } else {
1404                 *next_blockp = NULL;
1405         }
1406         (*mirror_nump)++;
1407
1408         return 0;
1409 }
1410
1411 static int btrfsic_handle_extent_data(
1412                 struct btrfsic_state *state,
1413                 struct btrfsic_block *block,
1414                 struct btrfsic_block_data_ctx *block_ctx,
1415                 u32 item_offset, int force_iodone_flag)
1416 {
1417         int ret;
1418         struct btrfs_file_extent_item file_extent_item;
1419         u64 file_extent_item_offset;
1420         u64 next_bytenr;
1421         u64 num_bytes;
1422         u64 generation;
1423         struct btrfsic_block_link *l;
1424
1425         file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1426                                   item_offset;
1427         if (file_extent_item_offset +
1428             offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1429             block_ctx->len) {
1430                 printk(KERN_INFO
1431                        "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1432                        block_ctx->start, block_ctx->dev->name);
1433                 return -1;
1434         }
1435
1436         btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1437                 file_extent_item_offset,
1438                 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1439         if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1440             btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1441                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1442                         printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1443                                file_extent_item.type,
1444                                btrfs_stack_file_extent_disk_bytenr(
1445                                &file_extent_item));
1446                 return 0;
1447         }
1448
1449         if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1450             block_ctx->len) {
1451                 printk(KERN_INFO
1452                        "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1453                        block_ctx->start, block_ctx->dev->name);
1454                 return -1;
1455         }
1456         btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1457                                      file_extent_item_offset,
1458                                      sizeof(struct btrfs_file_extent_item));
1459         next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1460         if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1461             BTRFS_COMPRESS_NONE) {
1462                 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1463                 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1464         } else {
1465                 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1466         }
1467         generation = btrfs_stack_file_extent_generation(&file_extent_item);
1468
1469         if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1470                 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1471                        " offset = %llu, num_bytes = %llu\n",
1472                        file_extent_item.type,
1473                        btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1474                        btrfs_stack_file_extent_offset(&file_extent_item),
1475                        num_bytes);
1476         while (num_bytes > 0) {
1477                 u32 chunk_len;
1478                 int num_copies;
1479                 int mirror_num;
1480
1481                 if (num_bytes > state->datablock_size)
1482                         chunk_len = state->datablock_size;
1483                 else
1484                         chunk_len = num_bytes;
1485
1486                 num_copies =
1487                     btrfs_num_copies(state->root->fs_info,
1488                                      next_bytenr, state->datablock_size);
1489                 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1490                         printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1491                                next_bytenr, num_copies);
1492                 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1493                         struct btrfsic_block_data_ctx next_block_ctx;
1494                         struct btrfsic_block *next_block;
1495                         int block_was_created;
1496
1497                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1498                                 printk(KERN_INFO "btrfsic_handle_extent_data("
1499                                        "mirror_num=%d)\n", mirror_num);
1500                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1501                                 printk(KERN_INFO
1502                                        "\tdisk_bytenr = %llu, num_bytes %u\n",
1503                                        next_bytenr, chunk_len);
1504                         ret = btrfsic_map_block(state, next_bytenr,
1505                                                 chunk_len, &next_block_ctx,
1506                                                 mirror_num);
1507                         if (ret) {
1508                                 printk(KERN_INFO
1509                                        "btrfsic: btrfsic_map_block(@%llu,"
1510                                        " mirror=%d) failed!\n",
1511                                        next_bytenr, mirror_num);
1512                                 return -1;
1513                         }
1514
1515                         next_block = btrfsic_block_lookup_or_add(
1516                                         state,
1517                                         &next_block_ctx,
1518                                         "referenced ",
1519                                         0,
1520                                         force_iodone_flag,
1521                                         !force_iodone_flag,
1522                                         mirror_num,
1523                                         &block_was_created);
1524                         if (NULL == next_block) {
1525                                 printk(KERN_INFO
1526                                        "btrfsic: error, kmalloc failed!\n");
1527                                 btrfsic_release_block_ctx(&next_block_ctx);
1528                                 return -1;
1529                         }
1530                         if (!block_was_created) {
1531                                 if (next_block->logical_bytenr != next_bytenr &&
1532                                     !(!next_block->is_metadata &&
1533                                       0 == next_block->logical_bytenr)) {
1534                                         printk(KERN_INFO
1535                                                "Referenced block"
1536                                                " @%llu (%s/%llu/%d)"
1537                                                " found in hash table, D,"
1538                                                " bytenr mismatch"
1539                                                " (!= stored %llu).\n",
1540                                                next_bytenr,
1541                                                next_block_ctx.dev->name,
1542                                                next_block_ctx.dev_bytenr,
1543                                                mirror_num,
1544                                                next_block->logical_bytenr);
1545                                 }
1546                                 next_block->logical_bytenr = next_bytenr;
1547                                 next_block->mirror_num = mirror_num;
1548                         }
1549
1550                         l = btrfsic_block_link_lookup_or_add(state,
1551                                                              &next_block_ctx,
1552                                                              next_block, block,
1553                                                              generation);
1554                         btrfsic_release_block_ctx(&next_block_ctx);
1555                         if (NULL == l)
1556                                 return -1;
1557                 }
1558
1559                 next_bytenr += chunk_len;
1560                 num_bytes -= chunk_len;
1561         }
1562
1563         return 0;
1564 }
1565
1566 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1567                              struct btrfsic_block_data_ctx *block_ctx_out,
1568                              int mirror_num)
1569 {
1570         int ret;
1571         u64 length;
1572         struct btrfs_bio *multi = NULL;
1573         struct btrfs_device *device;
1574
1575         length = len;
1576         ret = btrfs_map_block(state->root->fs_info, READ,
1577                               bytenr, &length, &multi, mirror_num);
1578
1579         if (ret) {
1580                 block_ctx_out->start = 0;
1581                 block_ctx_out->dev_bytenr = 0;
1582                 block_ctx_out->len = 0;
1583                 block_ctx_out->dev = NULL;
1584                 block_ctx_out->datav = NULL;
1585                 block_ctx_out->pagev = NULL;
1586                 block_ctx_out->mem_to_free = NULL;
1587
1588                 return ret;
1589         }
1590
1591         device = multi->stripes[0].dev;
1592         block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1593         block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1594         block_ctx_out->start = bytenr;
1595         block_ctx_out->len = len;
1596         block_ctx_out->datav = NULL;
1597         block_ctx_out->pagev = NULL;
1598         block_ctx_out->mem_to_free = NULL;
1599
1600         kfree(multi);
1601         if (NULL == block_ctx_out->dev) {
1602                 ret = -ENXIO;
1603                 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1604         }
1605
1606         return ret;
1607 }
1608
1609 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1610                                   u32 len, struct block_device *bdev,
1611                                   struct btrfsic_block_data_ctx *block_ctx_out)
1612 {
1613         block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1614         block_ctx_out->dev_bytenr = bytenr;
1615         block_ctx_out->start = bytenr;
1616         block_ctx_out->len = len;
1617         block_ctx_out->datav = NULL;
1618         block_ctx_out->pagev = NULL;
1619         block_ctx_out->mem_to_free = NULL;
1620         if (NULL != block_ctx_out->dev) {
1621                 return 0;
1622         } else {
1623                 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1624                 return -ENXIO;
1625         }
1626 }
1627
1628 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1629 {
1630         if (block_ctx->mem_to_free) {
1631                 unsigned int num_pages;
1632
1633                 BUG_ON(!block_ctx->datav);
1634                 BUG_ON(!block_ctx->pagev);
1635                 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1636                             PAGE_CACHE_SHIFT;
1637                 while (num_pages > 0) {
1638                         num_pages--;
1639                         if (block_ctx->datav[num_pages]) {
1640                                 kunmap(block_ctx->pagev[num_pages]);
1641                                 block_ctx->datav[num_pages] = NULL;
1642                         }
1643                         if (block_ctx->pagev[num_pages]) {
1644                                 __free_page(block_ctx->pagev[num_pages]);
1645                                 block_ctx->pagev[num_pages] = NULL;
1646                         }
1647                 }
1648
1649                 kfree(block_ctx->mem_to_free);
1650                 block_ctx->mem_to_free = NULL;
1651                 block_ctx->pagev = NULL;
1652                 block_ctx->datav = NULL;
1653         }
1654 }
1655
1656 static int btrfsic_read_block(struct btrfsic_state *state,
1657                               struct btrfsic_block_data_ctx *block_ctx)
1658 {
1659         unsigned int num_pages;
1660         unsigned int i;
1661         u64 dev_bytenr;
1662         int ret;
1663
1664         BUG_ON(block_ctx->datav);
1665         BUG_ON(block_ctx->pagev);
1666         BUG_ON(block_ctx->mem_to_free);
1667         if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1668                 printk(KERN_INFO
1669                        "btrfsic: read_block() with unaligned bytenr %llu\n",
1670                        block_ctx->dev_bytenr);
1671                 return -1;
1672         }
1673
1674         num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1675                     PAGE_CACHE_SHIFT;
1676         block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1677                                           sizeof(*block_ctx->pagev)) *
1678                                          num_pages, GFP_NOFS);
1679         if (!block_ctx->mem_to_free)
1680                 return -1;
1681         block_ctx->datav = block_ctx->mem_to_free;
1682         block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1683         for (i = 0; i < num_pages; i++) {
1684                 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1685                 if (!block_ctx->pagev[i])
1686                         return -1;
1687         }
1688
1689         dev_bytenr = block_ctx->dev_bytenr;
1690         for (i = 0; i < num_pages;) {
1691                 struct bio *bio;
1692                 unsigned int j;
1693
1694                 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1695                 if (!bio) {
1696                         printk(KERN_INFO
1697                                "btrfsic: bio_alloc() for %u pages failed!\n",
1698                                num_pages - i);
1699                         return -1;
1700                 }
1701                 bio->bi_bdev = block_ctx->dev->bdev;
1702                 bio->bi_iter.bi_sector = dev_bytenr >> 9;
1703
1704                 for (j = i; j < num_pages; j++) {
1705                         ret = bio_add_page(bio, block_ctx->pagev[j],
1706                                            PAGE_CACHE_SIZE, 0);
1707                         if (PAGE_CACHE_SIZE != ret)
1708                                 break;
1709                 }
1710                 if (j == i) {
1711                         printk(KERN_INFO
1712                                "btrfsic: error, failed to add a single page!\n");
1713                         return -1;
1714                 }
1715                 if (submit_bio_wait(READ, bio)) {
1716                         printk(KERN_INFO
1717                                "btrfsic: read error at logical %llu dev %s!\n",
1718                                block_ctx->start, block_ctx->dev->name);
1719                         bio_put(bio);
1720                         return -1;
1721                 }
1722                 bio_put(bio);
1723                 dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1724                 i = j;
1725         }
1726         for (i = 0; i < num_pages; i++) {
1727                 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1728                 if (!block_ctx->datav[i]) {
1729                         printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1730                                block_ctx->dev->name);
1731                         return -1;
1732                 }
1733         }
1734
1735         return block_ctx->len;
1736 }
1737
1738 static void btrfsic_dump_database(struct btrfsic_state *state)
1739 {
1740         struct list_head *elem_all;
1741
1742         BUG_ON(NULL == state);
1743
1744         printk(KERN_INFO "all_blocks_list:\n");
1745         list_for_each(elem_all, &state->all_blocks_list) {
1746                 const struct btrfsic_block *const b_all =
1747                     list_entry(elem_all, struct btrfsic_block,
1748                                all_blocks_node);
1749                 struct list_head *elem_ref_to;
1750                 struct list_head *elem_ref_from;
1751
1752                 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1753                        btrfsic_get_block_type(state, b_all),
1754                        b_all->logical_bytenr, b_all->dev_state->name,
1755                        b_all->dev_bytenr, b_all->mirror_num);
1756
1757                 list_for_each(elem_ref_to, &b_all->ref_to_list) {
1758                         const struct btrfsic_block_link *const l =
1759                             list_entry(elem_ref_to,
1760                                        struct btrfsic_block_link,
1761                                        node_ref_to);
1762
1763                         printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1764                                " refers %u* to"
1765                                " %c @%llu (%s/%llu/%d)\n",
1766                                btrfsic_get_block_type(state, b_all),
1767                                b_all->logical_bytenr, b_all->dev_state->name,
1768                                b_all->dev_bytenr, b_all->mirror_num,
1769                                l->ref_cnt,
1770                                btrfsic_get_block_type(state, l->block_ref_to),
1771                                l->block_ref_to->logical_bytenr,
1772                                l->block_ref_to->dev_state->name,
1773                                l->block_ref_to->dev_bytenr,
1774                                l->block_ref_to->mirror_num);
1775                 }
1776
1777                 list_for_each(elem_ref_from, &b_all->ref_from_list) {
1778                         const struct btrfsic_block_link *const l =
1779                             list_entry(elem_ref_from,
1780                                        struct btrfsic_block_link,
1781                                        node_ref_from);
1782
1783                         printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1784                                " is ref %u* from"
1785                                " %c @%llu (%s/%llu/%d)\n",
1786                                btrfsic_get_block_type(state, b_all),
1787                                b_all->logical_bytenr, b_all->dev_state->name,
1788                                b_all->dev_bytenr, b_all->mirror_num,
1789                                l->ref_cnt,
1790                                btrfsic_get_block_type(state, l->block_ref_from),
1791                                l->block_ref_from->logical_bytenr,
1792                                l->block_ref_from->dev_state->name,
1793                                l->block_ref_from->dev_bytenr,
1794                                l->block_ref_from->mirror_num);
1795                 }
1796
1797                 printk(KERN_INFO "\n");
1798         }
1799 }
1800
1801 /*
1802  * Test whether the disk block contains a tree block (leaf or node)
1803  * (note that this test fails for the super block)
1804  */
1805 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1806                                      char **datav, unsigned int num_pages)
1807 {
1808         struct btrfs_header *h;
1809         u8 csum[BTRFS_CSUM_SIZE];
1810         u32 crc = ~(u32)0;
1811         unsigned int i;
1812
1813         if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1814                 return 1; /* not metadata */
1815         num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1816         h = (struct btrfs_header *)datav[0];
1817
1818         if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1819                 return 1;
1820
1821         for (i = 0; i < num_pages; i++) {
1822                 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1823                 size_t sublen = i ? PAGE_CACHE_SIZE :
1824                                     (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1825
1826                 crc = crc32c(crc, data, sublen);
1827         }
1828         btrfs_csum_final(crc, csum);
1829         if (memcmp(csum, h->csum, state->csum_size))
1830                 return 1;
1831
1832         return 0; /* is metadata */
1833 }
1834
1835 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1836                                           u64 dev_bytenr, char **mapped_datav,
1837                                           unsigned int num_pages,
1838                                           struct bio *bio, int *bio_is_patched,
1839                                           struct buffer_head *bh,
1840                                           int submit_bio_bh_rw)
1841 {
1842         int is_metadata;
1843         struct btrfsic_block *block;
1844         struct btrfsic_block_data_ctx block_ctx;
1845         int ret;
1846         struct btrfsic_state *state = dev_state->state;
1847         struct block_device *bdev = dev_state->bdev;
1848         unsigned int processed_len;
1849
1850         if (NULL != bio_is_patched)
1851                 *bio_is_patched = 0;
1852
1853 again:
1854         if (num_pages == 0)
1855                 return;
1856
1857         processed_len = 0;
1858         is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1859                                                       num_pages));
1860
1861         block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1862                                                &state->block_hashtable);
1863         if (NULL != block) {
1864                 u64 bytenr = 0;
1865                 struct list_head *elem_ref_to;
1866                 struct list_head *tmp_ref_to;
1867
1868                 if (block->is_superblock) {
1869                         bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1870                                                     mapped_datav[0]);
1871                         if (num_pages * PAGE_CACHE_SIZE <
1872                             BTRFS_SUPER_INFO_SIZE) {
1873                                 printk(KERN_INFO
1874                                        "btrfsic: cannot work with too short bios!\n");
1875                                 return;
1876                         }
1877                         is_metadata = 1;
1878                         BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1879                         processed_len = BTRFS_SUPER_INFO_SIZE;
1880                         if (state->print_mask &
1881                             BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1882                                 printk(KERN_INFO
1883                                        "[before new superblock is written]:\n");
1884                                 btrfsic_dump_tree_sub(state, block, 0);
1885                         }
1886                 }
1887                 if (is_metadata) {
1888                         if (!block->is_superblock) {
1889                                 if (num_pages * PAGE_CACHE_SIZE <
1890                                     state->metablock_size) {
1891                                         printk(KERN_INFO
1892                                                "btrfsic: cannot work with too short bios!\n");
1893                                         return;
1894                                 }
1895                                 processed_len = state->metablock_size;
1896                                 bytenr = btrfs_stack_header_bytenr(
1897                                                 (struct btrfs_header *)
1898                                                 mapped_datav[0]);
1899                                 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1900                                                                dev_state,
1901                                                                dev_bytenr);
1902                         }
1903                         if (block->logical_bytenr != bytenr &&
1904                             !(!block->is_metadata &&
1905                               block->logical_bytenr == 0))
1906                                 printk(KERN_INFO
1907                                        "Written block @%llu (%s/%llu/%d)"
1908                                        " found in hash table, %c,"
1909                                        " bytenr mismatch"
1910                                        " (!= stored %llu).\n",
1911                                        bytenr, dev_state->name, dev_bytenr,
1912                                        block->mirror_num,
1913                                        btrfsic_get_block_type(state, block),
1914                                        block->logical_bytenr);
1915                         else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1916                                 printk(KERN_INFO
1917                                        "Written block @%llu (%s/%llu/%d)"
1918                                        " found in hash table, %c.\n",
1919                                        bytenr, dev_state->name, dev_bytenr,
1920                                        block->mirror_num,
1921                                        btrfsic_get_block_type(state, block));
1922                         block->logical_bytenr = bytenr;
1923                 } else {
1924                         if (num_pages * PAGE_CACHE_SIZE <
1925                             state->datablock_size) {
1926                                 printk(KERN_INFO
1927                                        "btrfsic: cannot work with too short bios!\n");
1928                                 return;
1929                         }
1930                         processed_len = state->datablock_size;
1931                         bytenr = block->logical_bytenr;
1932                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1933                                 printk(KERN_INFO
1934                                        "Written block @%llu (%s/%llu/%d)"
1935                                        " found in hash table, %c.\n",
1936                                        bytenr, dev_state->name, dev_bytenr,
1937                                        block->mirror_num,
1938                                        btrfsic_get_block_type(state, block));
1939                 }
1940
1941                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1942                         printk(KERN_INFO
1943                                "ref_to_list: %cE, ref_from_list: %cE\n",
1944                                list_empty(&block->ref_to_list) ? ' ' : '!',
1945                                list_empty(&block->ref_from_list) ? ' ' : '!');
1946                 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1947                         printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1948                                " @%llu (%s/%llu/%d), old(gen=%llu,"
1949                                " objectid=%llu, type=%d, offset=%llu),"
1950                                " new(gen=%llu),"
1951                                " which is referenced by most recent superblock"
1952                                " (superblockgen=%llu)!\n",
1953                                btrfsic_get_block_type(state, block), bytenr,
1954                                dev_state->name, dev_bytenr, block->mirror_num,
1955                                block->generation,
1956                                btrfs_disk_key_objectid(&block->disk_key),
1957                                block->disk_key.type,
1958                                btrfs_disk_key_offset(&block->disk_key),
1959                                btrfs_stack_header_generation(
1960                                        (struct btrfs_header *) mapped_datav[0]),
1961                                state->max_superblock_generation);
1962                         btrfsic_dump_tree(state);
1963                 }
1964
1965                 if (!block->is_iodone && !block->never_written) {
1966                         printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1967                                " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1968                                " which is not yet iodone!\n",
1969                                btrfsic_get_block_type(state, block), bytenr,
1970                                dev_state->name, dev_bytenr, block->mirror_num,
1971                                block->generation,
1972                                btrfs_stack_header_generation(
1973                                        (struct btrfs_header *)
1974                                        mapped_datav[0]));
1975                         /* it would not be safe to go on */
1976                         btrfsic_dump_tree(state);
1977                         goto continue_loop;
1978                 }
1979
1980                 /*
1981                  * Clear all references of this block. Do not free
1982                  * the block itself even if is not referenced anymore
1983                  * because it still carries valueable information
1984                  * like whether it was ever written and IO completed.
1985                  */
1986                 list_for_each_safe(elem_ref_to, tmp_ref_to,
1987                                    &block->ref_to_list) {
1988                         struct btrfsic_block_link *const l =
1989                             list_entry(elem_ref_to,
1990                                        struct btrfsic_block_link,
1991                                        node_ref_to);
1992
1993                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1994                                 btrfsic_print_rem_link(state, l);
1995                         l->ref_cnt--;
1996                         if (0 == l->ref_cnt) {
1997                                 list_del(&l->node_ref_to);
1998                                 list_del(&l->node_ref_from);
1999                                 btrfsic_block_link_hashtable_remove(l);
2000                                 btrfsic_block_link_free(l);
2001                         }
2002                 }
2003
2004                 if (block->is_superblock)
2005                         ret = btrfsic_map_superblock(state, bytenr,
2006                                                      processed_len,
2007                                                      bdev, &block_ctx);
2008                 else
2009                         ret = btrfsic_map_block(state, bytenr, processed_len,
2010                                                 &block_ctx, 0);
2011                 if (ret) {
2012                         printk(KERN_INFO
2013                                "btrfsic: btrfsic_map_block(root @%llu)"
2014                                " failed!\n", bytenr);
2015                         goto continue_loop;
2016                 }
2017                 block_ctx.datav = mapped_datav;
2018                 /* the following is required in case of writes to mirrors,
2019                  * use the same that was used for the lookup */
2020                 block_ctx.dev = dev_state;
2021                 block_ctx.dev_bytenr = dev_bytenr;
2022
2023                 if (is_metadata || state->include_extent_data) {
2024                         block->never_written = 0;
2025                         block->iodone_w_error = 0;
2026                         if (NULL != bio) {
2027                                 block->is_iodone = 0;
2028                                 BUG_ON(NULL == bio_is_patched);
2029                                 if (!*bio_is_patched) {
2030                                         block->orig_bio_bh_private =
2031                                             bio->bi_private;
2032                                         block->orig_bio_bh_end_io.bio =
2033                                             bio->bi_end_io;
2034                                         block->next_in_same_bio = NULL;
2035                                         bio->bi_private = block;
2036                                         bio->bi_end_io = btrfsic_bio_end_io;
2037                                         *bio_is_patched = 1;
2038                                 } else {
2039                                         struct btrfsic_block *chained_block =
2040                                             (struct btrfsic_block *)
2041                                             bio->bi_private;
2042
2043                                         BUG_ON(NULL == chained_block);
2044                                         block->orig_bio_bh_private =
2045                                             chained_block->orig_bio_bh_private;
2046                                         block->orig_bio_bh_end_io.bio =
2047                                             chained_block->orig_bio_bh_end_io.
2048                                             bio;
2049                                         block->next_in_same_bio = chained_block;
2050                                         bio->bi_private = block;
2051                                 }
2052                         } else if (NULL != bh) {
2053                                 block->is_iodone = 0;
2054                                 block->orig_bio_bh_private = bh->b_private;
2055                                 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2056                                 block->next_in_same_bio = NULL;
2057                                 bh->b_private = block;
2058                                 bh->b_end_io = btrfsic_bh_end_io;
2059                         } else {
2060                                 block->is_iodone = 1;
2061                                 block->orig_bio_bh_private = NULL;
2062                                 block->orig_bio_bh_end_io.bio = NULL;
2063                                 block->next_in_same_bio = NULL;
2064                         }
2065                 }
2066
2067                 block->flush_gen = dev_state->last_flush_gen + 1;
2068                 block->submit_bio_bh_rw = submit_bio_bh_rw;
2069                 if (is_metadata) {
2070                         block->logical_bytenr = bytenr;
2071                         block->is_metadata = 1;
2072                         if (block->is_superblock) {
2073                                 BUG_ON(PAGE_CACHE_SIZE !=
2074                                        BTRFS_SUPER_INFO_SIZE);
2075                                 ret = btrfsic_process_written_superblock(
2076                                                 state,
2077                                                 block,
2078                                                 (struct btrfs_super_block *)
2079                                                 mapped_datav[0]);
2080                                 if (state->print_mask &
2081                                     BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2082                                         printk(KERN_INFO
2083                                         "[after new superblock is written]:\n");
2084                                         btrfsic_dump_tree_sub(state, block, 0);
2085                                 }
2086                         } else {
2087                                 block->mirror_num = 0;  /* unknown */
2088                                 ret = btrfsic_process_metablock(
2089                                                 state,
2090                                                 block,
2091                                                 &block_ctx,
2092                                                 0, 0);
2093                         }
2094                         if (ret)
2095                                 printk(KERN_INFO
2096                                        "btrfsic: btrfsic_process_metablock"
2097                                        "(root @%llu) failed!\n",
2098                                        dev_bytenr);
2099                 } else {
2100                         block->is_metadata = 0;
2101                         block->mirror_num = 0;  /* unknown */
2102                         block->generation = BTRFSIC_GENERATION_UNKNOWN;
2103                         if (!state->include_extent_data
2104                             && list_empty(&block->ref_from_list)) {
2105                                 /*
2106                                  * disk block is overwritten with extent
2107                                  * data (not meta data) and we are configured
2108                                  * to not include extent data: take the
2109                                  * chance and free the block's memory
2110                                  */
2111                                 btrfsic_block_hashtable_remove(block);
2112                                 list_del(&block->all_blocks_node);
2113                                 btrfsic_block_free(block);
2114                         }
2115                 }
2116                 btrfsic_release_block_ctx(&block_ctx);
2117         } else {
2118                 /* block has not been found in hash table */
2119                 u64 bytenr;
2120
2121                 if (!is_metadata) {
2122                         processed_len = state->datablock_size;
2123                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2124                                 printk(KERN_INFO "Written block (%s/%llu/?)"
2125                                        " !found in hash table, D.\n",
2126                                        dev_state->name, dev_bytenr);
2127                         if (!state->include_extent_data) {
2128                                 /* ignore that written D block */
2129                                 goto continue_loop;
2130                         }
2131
2132                         /* this is getting ugly for the
2133                          * include_extent_data case... */
2134                         bytenr = 0;     /* unknown */
2135                         block_ctx.start = bytenr;
2136                         block_ctx.len = processed_len;
2137                         block_ctx.mem_to_free = NULL;
2138                         block_ctx.pagev = NULL;
2139                 } else {
2140                         processed_len = state->metablock_size;
2141                         bytenr = btrfs_stack_header_bytenr(
2142                                         (struct btrfs_header *)
2143                                         mapped_datav[0]);
2144                         btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2145                                                        dev_bytenr);
2146                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2147                                 printk(KERN_INFO
2148                                        "Written block @%llu (%s/%llu/?)"
2149                                        " !found in hash table, M.\n",
2150                                        bytenr, dev_state->name, dev_bytenr);
2151
2152                         ret = btrfsic_map_block(state, bytenr, processed_len,
2153                                                 &block_ctx, 0);
2154                         if (ret) {
2155                                 printk(KERN_INFO
2156                                        "btrfsic: btrfsic_map_block(root @%llu)"
2157                                        " failed!\n",
2158                                        dev_bytenr);
2159                                 goto continue_loop;
2160                         }
2161                 }
2162                 block_ctx.datav = mapped_datav;
2163                 /* the following is required in case of writes to mirrors,
2164                  * use the same that was used for the lookup */
2165                 block_ctx.dev = dev_state;
2166                 block_ctx.dev_bytenr = dev_bytenr;
2167
2168                 block = btrfsic_block_alloc();
2169                 if (NULL == block) {
2170                         printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2171                         btrfsic_release_block_ctx(&block_ctx);
2172                         goto continue_loop;
2173                 }
2174                 block->dev_state = dev_state;
2175                 block->dev_bytenr = dev_bytenr;
2176                 block->logical_bytenr = bytenr;
2177                 block->is_metadata = is_metadata;
2178                 block->never_written = 0;
2179                 block->iodone_w_error = 0;
2180                 block->mirror_num = 0;  /* unknown */
2181                 block->flush_gen = dev_state->last_flush_gen + 1;
2182                 block->submit_bio_bh_rw = submit_bio_bh_rw;
2183                 if (NULL != bio) {
2184                         block->is_iodone = 0;
2185                         BUG_ON(NULL == bio_is_patched);
2186                         if (!*bio_is_patched) {
2187                                 block->orig_bio_bh_private = bio->bi_private;
2188                                 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2189                                 block->next_in_same_bio = NULL;
2190                                 bio->bi_private = block;
2191                                 bio->bi_end_io = btrfsic_bio_end_io;
2192                                 *bio_is_patched = 1;
2193                         } else {
2194                                 struct btrfsic_block *chained_block =
2195                                     (struct btrfsic_block *)
2196                                     bio->bi_private;
2197
2198                                 BUG_ON(NULL == chained_block);
2199                                 block->orig_bio_bh_private =
2200                                     chained_block->orig_bio_bh_private;
2201                                 block->orig_bio_bh_end_io.bio =
2202                                     chained_block->orig_bio_bh_end_io.bio;
2203                                 block->next_in_same_bio = chained_block;
2204                                 bio->bi_private = block;
2205                         }
2206                 } else if (NULL != bh) {
2207                         block->is_iodone = 0;
2208                         block->orig_bio_bh_private = bh->b_private;
2209                         block->orig_bio_bh_end_io.bh = bh->b_end_io;
2210                         block->next_in_same_bio = NULL;
2211                         bh->b_private = block;
2212                         bh->b_end_io = btrfsic_bh_end_io;
2213                 } else {
2214                         block->is_iodone = 1;
2215                         block->orig_bio_bh_private = NULL;
2216                         block->orig_bio_bh_end_io.bio = NULL;
2217                         block->next_in_same_bio = NULL;
2218                 }
2219                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2220                         printk(KERN_INFO
2221                                "New written %c-block @%llu (%s/%llu/%d)\n",
2222                                is_metadata ? 'M' : 'D',
2223                                block->logical_bytenr, block->dev_state->name,
2224                                block->dev_bytenr, block->mirror_num);
2225                 list_add(&block->all_blocks_node, &state->all_blocks_list);
2226                 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2227
2228                 if (is_metadata) {
2229                         ret = btrfsic_process_metablock(state, block,
2230                                                         &block_ctx, 0, 0);
2231                         if (ret)
2232                                 printk(KERN_INFO
2233                                        "btrfsic: process_metablock(root @%llu)"
2234                                        " failed!\n",
2235                                        dev_bytenr);
2236                 }
2237                 btrfsic_release_block_ctx(&block_ctx);
2238         }
2239
2240 continue_loop:
2241         BUG_ON(!processed_len);
2242         dev_bytenr += processed_len;
2243         mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2244         num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2245         goto again;
2246 }
2247
2248 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2249 {
2250         struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2251         int iodone_w_error;
2252
2253         /* mutex is not held! This is not save if IO is not yet completed
2254          * on umount */
2255         iodone_w_error = 0;
2256         if (bio_error_status)
2257                 iodone_w_error = 1;
2258
2259         BUG_ON(NULL == block);
2260         bp->bi_private = block->orig_bio_bh_private;
2261         bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2262
2263         do {
2264                 struct btrfsic_block *next_block;
2265                 struct btrfsic_dev_state *const dev_state = block->dev_state;
2266
2267                 if ((dev_state->state->print_mask &
2268                      BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2269                         printk(KERN_INFO
2270                                "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2271                                bio_error_status,
2272                                btrfsic_get_block_type(dev_state->state, block),
2273                                block->logical_bytenr, dev_state->name,
2274                                block->dev_bytenr, block->mirror_num);
2275                 next_block = block->next_in_same_bio;
2276                 block->iodone_w_error = iodone_w_error;
2277                 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2278                         dev_state->last_flush_gen++;
2279                         if ((dev_state->state->print_mask &
2280                              BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2281                                 printk(KERN_INFO
2282                                        "bio_end_io() new %s flush_gen=%llu\n",
2283                                        dev_state->name,
2284                                        dev_state->last_flush_gen);
2285                 }
2286                 if (block->submit_bio_bh_rw & REQ_FUA)
2287                         block->flush_gen = 0; /* FUA completed means block is
2288                                                * on disk */
2289                 block->is_iodone = 1; /* for FLUSH, this releases the block */
2290                 block = next_block;
2291         } while (NULL != block);
2292
2293         bp->bi_end_io(bp, bio_error_status);
2294 }
2295
2296 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2297 {
2298         struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2299         int iodone_w_error = !uptodate;
2300         struct btrfsic_dev_state *dev_state;
2301
2302         BUG_ON(NULL == block);
2303         dev_state = block->dev_state;
2304         if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2305                 printk(KERN_INFO
2306                        "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2307                        iodone_w_error,
2308                        btrfsic_get_block_type(dev_state->state, block),
2309                        block->logical_bytenr, block->dev_state->name,
2310                        block->dev_bytenr, block->mirror_num);
2311
2312         block->iodone_w_error = iodone_w_error;
2313         if (block->submit_bio_bh_rw & REQ_FLUSH) {
2314                 dev_state->last_flush_gen++;
2315                 if ((dev_state->state->print_mask &
2316                      BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2317                         printk(KERN_INFO
2318                                "bh_end_io() new %s flush_gen=%llu\n",
2319                                dev_state->name, dev_state->last_flush_gen);
2320         }
2321         if (block->submit_bio_bh_rw & REQ_FUA)
2322                 block->flush_gen = 0; /* FUA completed means block is on disk */
2323
2324         bh->b_private = block->orig_bio_bh_private;
2325         bh->b_end_io = block->orig_bio_bh_end_io.bh;
2326         block->is_iodone = 1; /* for FLUSH, this releases the block */
2327         bh->b_end_io(bh, uptodate);
2328 }
2329
2330 static int btrfsic_process_written_superblock(
2331                 struct btrfsic_state *state,
2332                 struct btrfsic_block *const superblock,
2333                 struct btrfs_super_block *const super_hdr)
2334 {
2335         int pass;
2336
2337         superblock->generation = btrfs_super_generation(super_hdr);
2338         if (!(superblock->generation > state->max_superblock_generation ||
2339               0 == state->max_superblock_generation)) {
2340                 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2341                         printk(KERN_INFO
2342                                "btrfsic: superblock @%llu (%s/%llu/%d)"
2343                                " with old gen %llu <= %llu\n",
2344                                superblock->logical_bytenr,
2345                                superblock->dev_state->name,
2346                                superblock->dev_bytenr, superblock->mirror_num,
2347                                btrfs_super_generation(super_hdr),
2348                                state->max_superblock_generation);
2349         } else {
2350                 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2351                         printk(KERN_INFO
2352                                "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2353                                " with new gen %llu > %llu\n",
2354                                superblock->logical_bytenr,
2355                                superblock->dev_state->name,
2356                                superblock->dev_bytenr, superblock->mirror_num,
2357                                btrfs_super_generation(super_hdr),
2358                                state->max_superblock_generation);
2359
2360                 state->max_superblock_generation =
2361                     btrfs_super_generation(super_hdr);
2362                 state->latest_superblock = superblock;
2363         }
2364
2365         for (pass = 0; pass < 3; pass++) {
2366                 int ret;
2367                 u64 next_bytenr;
2368                 struct btrfsic_block *next_block;
2369                 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2370                 struct btrfsic_block_link *l;
2371                 int num_copies;
2372                 int mirror_num;
2373                 const char *additional_string = NULL;
2374                 struct btrfs_disk_key tmp_disk_key = {0};
2375
2376                 btrfs_set_disk_key_objectid(&tmp_disk_key,
2377                                             BTRFS_ROOT_ITEM_KEY);
2378                 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2379
2380                 switch (pass) {
2381                 case 0:
2382                         btrfs_set_disk_key_objectid(&tmp_disk_key,
2383                                                     BTRFS_ROOT_TREE_OBJECTID);
2384                         additional_string = "root ";
2385                         next_bytenr = btrfs_super_root(super_hdr);
2386                         if (state->print_mask &
2387                             BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2388                                 printk(KERN_INFO "root@%llu\n", next_bytenr);
2389                         break;
2390                 case 1:
2391                         btrfs_set_disk_key_objectid(&tmp_disk_key,
2392                                                     BTRFS_CHUNK_TREE_OBJECTID);
2393                         additional_string = "chunk ";
2394                         next_bytenr = btrfs_super_chunk_root(super_hdr);
2395                         if (state->print_mask &
2396                             BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2397                                 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2398                         break;
2399                 case 2:
2400                         btrfs_set_disk_key_objectid(&tmp_disk_key,
2401                                                     BTRFS_TREE_LOG_OBJECTID);
2402                         additional_string = "log ";
2403                         next_bytenr = btrfs_super_log_root(super_hdr);
2404                         if (0 == next_bytenr)
2405                                 continue;
2406                         if (state->print_mask &
2407                             BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2408                                 printk(KERN_INFO "log@%llu\n", next_bytenr);
2409                         break;
2410                 }
2411
2412                 num_copies =
2413                     btrfs_num_copies(state->root->fs_info,
2414                                      next_bytenr, BTRFS_SUPER_INFO_SIZE);
2415                 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2416                         printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2417                                next_bytenr, num_copies);
2418                 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2419                         int was_created;
2420
2421                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2422                                 printk(KERN_INFO
2423                                        "btrfsic_process_written_superblock("
2424                                        "mirror_num=%d)\n", mirror_num);
2425                         ret = btrfsic_map_block(state, next_bytenr,
2426                                                 BTRFS_SUPER_INFO_SIZE,
2427                                                 &tmp_next_block_ctx,
2428                                                 mirror_num);
2429                         if (ret) {
2430                                 printk(KERN_INFO
2431                                        "btrfsic: btrfsic_map_block(@%llu,"
2432                                        " mirror=%d) failed!\n",
2433                                        next_bytenr, mirror_num);
2434                                 return -1;
2435                         }
2436
2437                         next_block = btrfsic_block_lookup_or_add(
2438                                         state,
2439                                         &tmp_next_block_ctx,
2440                                         additional_string,
2441                                         1, 0, 1,
2442                                         mirror_num,
2443                                         &was_created);
2444                         if (NULL == next_block) {
2445                                 printk(KERN_INFO
2446                                        "btrfsic: error, kmalloc failed!\n");
2447                                 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2448                                 return -1;
2449                         }
2450
2451                         next_block->disk_key = tmp_disk_key;
2452                         if (was_created)
2453                                 next_block->generation =
2454                                     BTRFSIC_GENERATION_UNKNOWN;
2455                         l = btrfsic_block_link_lookup_or_add(
2456                                         state,
2457                                         &tmp_next_block_ctx,
2458                                         next_block,
2459                                         superblock,
2460                                         BTRFSIC_GENERATION_UNKNOWN);
2461                         btrfsic_release_block_ctx(&tmp_next_block_ctx);
2462                         if (NULL == l)
2463                                 return -1;
2464                 }
2465         }
2466
2467         if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2468                 btrfsic_dump_tree(state);
2469
2470         return 0;
2471 }
2472
2473 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2474                                         struct btrfsic_block *const block,
2475                                         int recursion_level)
2476 {
2477         struct list_head *elem_ref_to;
2478         int ret = 0;
2479
2480         if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2481                 /*
2482                  * Note that this situation can happen and does not
2483                  * indicate an error in regular cases. It happens
2484                  * when disk blocks are freed and later reused.
2485                  * The check-integrity module is not aware of any
2486                  * block free operations, it just recognizes block
2487                  * write operations. Therefore it keeps the linkage
2488                  * information for a block until a block is
2489                  * rewritten. This can temporarily cause incorrect
2490                  * and even circular linkage informations. This
2491                  * causes no harm unless such blocks are referenced
2492                  * by the most recent super block.
2493                  */
2494                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2495                         printk(KERN_INFO
2496                                "btrfsic: abort cyclic linkage (case 1).\n");
2497
2498                 return ret;
2499         }
2500
2501         /*
2502          * This algorithm is recursive because the amount of used stack
2503          * space is very small and the max recursion depth is limited.
2504          */
2505         list_for_each(elem_ref_to, &block->ref_to_list) {
2506                 const struct btrfsic_block_link *const l =
2507                     list_entry(elem_ref_to, struct btrfsic_block_link,
2508                                node_ref_to);
2509
2510                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2511                         printk(KERN_INFO
2512                                "rl=%d, %c @%llu (%s/%llu/%d)"
2513                                " %u* refers to %c @%llu (%s/%llu/%d)\n",
2514                                recursion_level,
2515                                btrfsic_get_block_type(state, block),
2516                                block->logical_bytenr, block->dev_state->name,
2517                                block->dev_bytenr, block->mirror_num,
2518                                l->ref_cnt,
2519                                btrfsic_get_block_type(state, l->block_ref_to),
2520                                l->block_ref_to->logical_bytenr,
2521                                l->block_ref_to->dev_state->name,
2522                                l->block_ref_to->dev_bytenr,
2523                                l->block_ref_to->mirror_num);
2524                 if (l->block_ref_to->never_written) {
2525                         printk(KERN_INFO "btrfs: attempt to write superblock"
2526                                " which references block %c @%llu (%s/%llu/%d)"
2527                                " which is never written!\n",
2528                                btrfsic_get_block_type(state, l->block_ref_to),
2529                                l->block_ref_to->logical_bytenr,
2530                                l->block_ref_to->dev_state->name,
2531                                l->block_ref_to->dev_bytenr,
2532                                l->block_ref_to->mirror_num);
2533                         ret = -1;
2534                 } else if (!l->block_ref_to->is_iodone) {
2535                         printk(KERN_INFO "btrfs: attempt to write superblock"
2536                                " which references block %c @%llu (%s/%llu/%d)"
2537                                " which is not yet iodone!\n",
2538                                btrfsic_get_block_type(state, l->block_ref_to),
2539                                l->block_ref_to->logical_bytenr,
2540                                l->block_ref_to->dev_state->name,
2541                                l->block_ref_to->dev_bytenr,
2542                                l->block_ref_to->mirror_num);
2543                         ret = -1;
2544                 } else if (l->block_ref_to->iodone_w_error) {
2545                         printk(KERN_INFO "btrfs: attempt to write superblock"
2546                                " which references block %c @%llu (%s/%llu/%d)"
2547                                " which has write error!\n",
2548                                btrfsic_get_block_type(state, l->block_ref_to),
2549                                l->block_ref_to->logical_bytenr,
2550                                l->block_ref_to->dev_state->name,
2551                                l->block_ref_to->dev_bytenr,
2552                                l->block_ref_to->mirror_num);
2553                         ret = -1;
2554                 } else if (l->parent_generation !=
2555                            l->block_ref_to->generation &&
2556                            BTRFSIC_GENERATION_UNKNOWN !=
2557                            l->parent_generation &&
2558                            BTRFSIC_GENERATION_UNKNOWN !=
2559                            l->block_ref_to->generation) {
2560                         printk(KERN_INFO "btrfs: attempt to write superblock"
2561                                " which references block %c @%llu (%s/%llu/%d)"
2562                                " with generation %llu !="
2563                                " parent generation %llu!\n",
2564                                btrfsic_get_block_type(state, l->block_ref_to),
2565                                l->block_ref_to->logical_bytenr,
2566                                l->block_ref_to->dev_state->name,
2567                                l->block_ref_to->dev_bytenr,
2568                                l->block_ref_to->mirror_num,
2569                                l->block_ref_to->generation,
2570                                l->parent_generation);
2571                         ret = -1;
2572                 } else if (l->block_ref_to->flush_gen >
2573                            l->block_ref_to->dev_state->last_flush_gen) {
2574                         printk(KERN_INFO "btrfs: attempt to write superblock"
2575                                " which references block %c @%llu (%s/%llu/%d)"
2576                                " which is not flushed out of disk's write cache"
2577                                " (block flush_gen=%llu,"
2578                                " dev->flush_gen=%llu)!\n",
2579                                btrfsic_get_block_type(state, l->block_ref_to),
2580                                l->block_ref_to->logical_bytenr,
2581                                l->block_ref_to->dev_state->name,
2582                                l->block_ref_to->dev_bytenr,
2583                                l->block_ref_to->mirror_num, block->flush_gen,
2584                                l->block_ref_to->dev_state->last_flush_gen);
2585                         ret = -1;
2586                 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2587                                                               l->block_ref_to,
2588                                                               recursion_level +
2589                                                               1)) {
2590                         ret = -1;
2591                 }
2592         }
2593
2594         return ret;
2595 }
2596
2597 static int btrfsic_is_block_ref_by_superblock(
2598                 const struct btrfsic_state *state,
2599                 const struct btrfsic_block *block,
2600                 int recursion_level)
2601 {
2602         struct list_head *elem_ref_from;
2603
2604         if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2605                 /* refer to comment at "abort cyclic linkage (case 1)" */
2606                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2607                         printk(KERN_INFO
2608                                "btrfsic: abort cyclic linkage (case 2).\n");
2609
2610                 return 0;
2611         }
2612
2613         /*
2614          * This algorithm is recursive because the amount of used stack space
2615          * is very small and the max recursion depth is limited.
2616          */
2617         list_for_each(elem_ref_from, &block->ref_from_list) {
2618                 const struct btrfsic_block_link *const l =
2619                     list_entry(elem_ref_from, struct btrfsic_block_link,
2620                                node_ref_from);
2621
2622                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2623                         printk(KERN_INFO
2624                                "rl=%d, %c @%llu (%s/%llu/%d)"
2625                                " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2626                                recursion_level,
2627                                btrfsic_get_block_type(state, block),
2628                                block->logical_bytenr, block->dev_state->name,
2629                                block->dev_bytenr, block->mirror_num,
2630                                l->ref_cnt,
2631                                btrfsic_get_block_type(state, l->block_ref_from),
2632                                l->block_ref_from->logical_bytenr,
2633                                l->block_ref_from->dev_state->name,
2634                                l->block_ref_from->dev_bytenr,
2635                                l->block_ref_from->mirror_num);
2636                 if (l->block_ref_from->is_superblock &&
2637                     state->latest_superblock->dev_bytenr ==
2638                     l->block_ref_from->dev_bytenr &&
2639                     state->latest_superblock->dev_state->bdev ==
2640                     l->block_ref_from->dev_state->bdev)
2641                         return 1;
2642                 else if (btrfsic_is_block_ref_by_superblock(state,
2643                                                             l->block_ref_from,
2644                                                             recursion_level +
2645                                                             1))
2646                         return 1;
2647         }
2648
2649         return 0;
2650 }
2651
2652 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2653                                    const struct btrfsic_block_link *l)
2654 {
2655         printk(KERN_INFO
2656                "Add %u* link from %c @%llu (%s/%llu/%d)"
2657                " to %c @%llu (%s/%llu/%d).\n",
2658                l->ref_cnt,
2659                btrfsic_get_block_type(state, l->block_ref_from),
2660                l->block_ref_from->logical_bytenr,
2661                l->block_ref_from->dev_state->name,
2662                l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2663                btrfsic_get_block_type(state, l->block_ref_to),
2664                l->block_ref_to->logical_bytenr,
2665                l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2666                l->block_ref_to->mirror_num);
2667 }
2668
2669 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2670                                    const struct btrfsic_block_link *l)
2671 {
2672         printk(KERN_INFO
2673                "Rem %u* link from %c @%llu (%s/%llu/%d)"
2674                " to %c @%llu (%s/%llu/%d).\n",
2675                l->ref_cnt,
2676                btrfsic_get_block_type(state, l->block_ref_from),
2677                l->block_ref_from->logical_bytenr,
2678                l->block_ref_from->dev_state->name,
2679                l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2680                btrfsic_get_block_type(state, l->block_ref_to),
2681                l->block_ref_to->logical_bytenr,
2682                l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2683                l->block_ref_to->mirror_num);
2684 }
2685
2686 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2687                                    const struct btrfsic_block *block)
2688 {
2689         if (block->is_superblock &&
2690             state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2691             state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2692                 return 'S';
2693         else if (block->is_superblock)
2694                 return 's';
2695         else if (block->is_metadata)
2696                 return 'M';
2697         else
2698                 return 'D';
2699 }
2700
2701 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2702 {
2703         btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2704 }
2705
2706 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2707                                   const struct btrfsic_block *block,
2708                                   int indent_level)
2709 {
2710         struct list_head *elem_ref_to;
2711         int indent_add;
2712         static char buf[80];
2713         int cursor_position;
2714
2715         /*
2716          * Should better fill an on-stack buffer with a complete line and
2717          * dump it at once when it is time to print a newline character.
2718          */
2719
2720         /*
2721          * This algorithm is recursive because the amount of used stack space
2722          * is very small and the max recursion depth is limited.
2723          */
2724         indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2725                              btrfsic_get_block_type(state, block),
2726                              block->logical_bytenr, block->dev_state->name,
2727                              block->dev_bytenr, block->mirror_num);
2728         if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2729                 printk("[...]\n");
2730                 return;
2731         }
2732         printk(buf);
2733         indent_level += indent_add;
2734         if (list_empty(&block->ref_to_list)) {
2735                 printk("\n");
2736                 return;
2737         }
2738         if (block->mirror_num > 1 &&
2739             !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2740                 printk(" [...]\n");
2741                 return;
2742         }
2743
2744         cursor_position = indent_level;
2745         list_for_each(elem_ref_to, &block->ref_to_list) {
2746                 const struct btrfsic_block_link *const l =
2747                     list_entry(elem_ref_to, struct btrfsic_block_link,
2748                                node_ref_to);
2749
2750                 while (cursor_position < indent_level) {
2751                         printk(" ");
2752                         cursor_position++;
2753                 }
2754                 if (l->ref_cnt > 1)
2755                         indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2756                 else
2757                         indent_add = sprintf(buf, " --> ");
2758                 if (indent_level + indent_add >
2759                     BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2760                         printk("[...]\n");
2761                         cursor_position = 0;
2762                         continue;
2763                 }
2764
2765                 printk(buf);
2766
2767                 btrfsic_dump_tree_sub(state, l->block_ref_to,
2768                                       indent_level + indent_add);
2769                 cursor_position = 0;
2770         }
2771 }
2772
2773 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2774                 struct btrfsic_state *state,
2775                 struct btrfsic_block_data_ctx *next_block_ctx,
2776                 struct btrfsic_block *next_block,
2777                 struct btrfsic_block *from_block,
2778                 u64 parent_generation)
2779 {
2780         struct btrfsic_block_link *l;
2781
2782         l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2783                                                 next_block_ctx->dev_bytenr,
2784                                                 from_block->dev_state->bdev,
2785                                                 from_block->dev_bytenr,
2786                                                 &state->block_link_hashtable);
2787         if (NULL == l) {
2788                 l = btrfsic_block_link_alloc();
2789                 if (NULL == l) {
2790                         printk(KERN_INFO
2791                                "btrfsic: error, kmalloc" " failed!\n");
2792                         return NULL;
2793                 }
2794
2795                 l->block_ref_to = next_block;
2796                 l->block_ref_from = from_block;
2797                 l->ref_cnt = 1;
2798                 l->parent_generation = parent_generation;
2799
2800                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2801                         btrfsic_print_add_link(state, l);
2802
2803                 list_add(&l->node_ref_to, &from_block->ref_to_list);
2804                 list_add(&l->node_ref_from, &next_block->ref_from_list);
2805
2806                 btrfsic_block_link_hashtable_add(l,
2807                                                  &state->block_link_hashtable);
2808         } else {
2809                 l->ref_cnt++;
2810                 l->parent_generation = parent_generation;
2811                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2812                         btrfsic_print_add_link(state, l);
2813         }
2814
2815         return l;
2816 }
2817
2818 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2819                 struct btrfsic_state *state,
2820                 struct btrfsic_block_data_ctx *block_ctx,
2821                 const char *additional_string,
2822                 int is_metadata,
2823                 int is_iodone,
2824                 int never_written,
2825                 int mirror_num,
2826                 int *was_created)
2827 {
2828         struct btrfsic_block *block;
2829
2830         block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2831                                                block_ctx->dev_bytenr,
2832                                                &state->block_hashtable);
2833         if (NULL == block) {
2834                 struct btrfsic_dev_state *dev_state;
2835
2836                 block = btrfsic_block_alloc();
2837                 if (NULL == block) {
2838                         printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2839                         return NULL;
2840                 }
2841                 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2842                 if (NULL == dev_state) {
2843                         printk(KERN_INFO
2844                                "btrfsic: error, lookup dev_state failed!\n");
2845                         btrfsic_block_free(block);
2846                         return NULL;
2847                 }
2848                 block->dev_state = dev_state;
2849                 block->dev_bytenr = block_ctx->dev_bytenr;
2850                 block->logical_bytenr = block_ctx->start;
2851                 block->is_metadata = is_metadata;
2852                 block->is_iodone = is_iodone;
2853                 block->never_written = never_written;
2854                 block->mirror_num = mirror_num;
2855                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2856                         printk(KERN_INFO
2857                                "New %s%c-block @%llu (%s/%llu/%d)\n",
2858                                additional_string,
2859                                btrfsic_get_block_type(state, block),
2860                                block->logical_bytenr, dev_state->name,
2861                                block->dev_bytenr, mirror_num);
2862                 list_add(&block->all_blocks_node, &state->all_blocks_list);
2863                 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2864                 if (NULL != was_created)
2865                         *was_created = 1;
2866         } else {
2867                 if (NULL != was_created)
2868                         *was_created = 0;
2869         }
2870
2871         return block;
2872 }
2873
2874 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2875                                            u64 bytenr,
2876                                            struct btrfsic_dev_state *dev_state,
2877                                            u64 dev_bytenr)
2878 {
2879         int num_copies;
2880         int mirror_num;
2881         int ret;
2882         struct btrfsic_block_data_ctx block_ctx;
2883         int match = 0;
2884
2885         num_copies = btrfs_num_copies(state->root->fs_info,
2886                                       bytenr, state->metablock_size);
2887
2888         for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2889                 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2890                                         &block_ctx, mirror_num);
2891                 if (ret) {
2892                         printk(KERN_INFO "btrfsic:"
2893                                " btrfsic_map_block(logical @%llu,"
2894                                " mirror %d) failed!\n",
2895                                bytenr, mirror_num);
2896                         continue;
2897                 }
2898
2899                 if (dev_state->bdev == block_ctx.dev->bdev &&
2900                     dev_bytenr == block_ctx.dev_bytenr) {
2901                         match++;
2902                         btrfsic_release_block_ctx(&block_ctx);
2903                         break;
2904                 }
2905                 btrfsic_release_block_ctx(&block_ctx);
2906         }
2907
2908         if (WARN_ON(!match)) {
2909                 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2910                        " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2911                        " phys_bytenr=%llu)!\n",
2912                        bytenr, dev_state->name, dev_bytenr);
2913                 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2914                         ret = btrfsic_map_block(state, bytenr,
2915                                                 state->metablock_size,
2916                                                 &block_ctx, mirror_num);
2917                         if (ret)
2918                                 continue;
2919
2920                         printk(KERN_INFO "Read logical bytenr @%llu maps to"
2921                                " (%s/%llu/%d)\n",
2922                                bytenr, block_ctx.dev->name,
2923                                block_ctx.dev_bytenr, mirror_num);
2924                 }
2925         }
2926 }
2927
2928 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2929                 struct block_device *bdev)
2930 {
2931         struct btrfsic_dev_state *ds;
2932
2933         ds = btrfsic_dev_state_hashtable_lookup(bdev,
2934                                                 &btrfsic_dev_state_hashtable);
2935         return ds;
2936 }
2937
2938 int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2939 {
2940         struct btrfsic_dev_state *dev_state;
2941
2942         if (!btrfsic_is_initialized)
2943                 return submit_bh(rw, bh);
2944
2945         mutex_lock(&btrfsic_mutex);
2946         /* since btrfsic_submit_bh() might also be called before
2947          * btrfsic_mount(), this might return NULL */
2948         dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2949
2950         /* Only called to write the superblock (incl. FLUSH/FUA) */
2951         if (NULL != dev_state &&
2952             (rw & WRITE) && bh->b_size > 0) {
2953                 u64 dev_bytenr;
2954
2955                 dev_bytenr = 4096 * bh->b_blocknr;
2956                 if (dev_state->state->print_mask &
2957                     BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2958                         printk(KERN_INFO
2959                                "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
2960                                " size=%zu, data=%p, bdev=%p)\n",
2961                                rw, (unsigned long long)bh->b_blocknr,
2962                                dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2963                 btrfsic_process_written_block(dev_state, dev_bytenr,
2964                                               &bh->b_data, 1, NULL,
2965                                               NULL, bh, rw);
2966         } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2967                 if (dev_state->state->print_mask &
2968                     BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2969                         printk(KERN_INFO
2970                                "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
2971                                rw, bh->b_bdev);
2972                 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2973                         if ((dev_state->state->print_mask &
2974                              (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2975                               BTRFSIC_PRINT_MASK_VERBOSE)))
2976                                 printk(KERN_INFO
2977                                        "btrfsic_submit_bh(%s) with FLUSH"
2978                                        " but dummy block already in use"
2979                                        " (ignored)!\n",
2980                                        dev_state->name);
2981                 } else {
2982                         struct btrfsic_block *const block =
2983                                 &dev_state->dummy_block_for_bio_bh_flush;
2984
2985                         block->is_iodone = 0;
2986                         block->never_written = 0;
2987                         block->iodone_w_error = 0;
2988                         block->flush_gen = dev_state->last_flush_gen + 1;
2989                         block->submit_bio_bh_rw = rw;
2990                         block->orig_bio_bh_private = bh->b_private;
2991                         block->orig_bio_bh_end_io.bh = bh->b_end_io;
2992                         block->next_in_same_bio = NULL;
2993                         bh->b_private = block;
2994                         bh->b_end_io = btrfsic_bh_end_io;
2995                 }
2996         }
2997         mutex_unlock(&btrfsic_mutex);
2998         return submit_bh(rw, bh);
2999 }
3000
3001 static void __btrfsic_submit_bio(int rw, struct bio *bio)
3002 {
3003         struct btrfsic_dev_state *dev_state;
3004
3005         if (!btrfsic_is_initialized)
3006                 return;
3007
3008         mutex_lock(&btrfsic_mutex);
3009         /* since btrfsic_submit_bio() is also called before
3010          * btrfsic_mount(), this might return NULL */
3011         dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3012         if (NULL != dev_state &&
3013             (rw & WRITE) && NULL != bio->bi_io_vec) {
3014                 unsigned int i;
3015                 u64 dev_bytenr;
3016                 u64 cur_bytenr;
3017                 int bio_is_patched;
3018                 char **mapped_datav;
3019
3020                 dev_bytenr = 512 * bio->bi_iter.bi_sector;
3021                 bio_is_patched = 0;
3022                 if (dev_state->state->print_mask &
3023                     BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3024                         printk(KERN_INFO
3025                                "submit_bio(rw=0x%x, bi_vcnt=%u,"
3026                                " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
3027                                rw, bio->bi_vcnt,
3028                                (unsigned long long)bio->bi_iter.bi_sector,
3029                                dev_bytenr, bio->bi_bdev);
3030
3031                 mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3032                                        GFP_NOFS);
3033                 if (!mapped_datav)
3034                         goto leave;
3035                 cur_bytenr = dev_bytenr;
3036                 for (i = 0; i < bio->bi_vcnt; i++) {
3037                         BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3038                         mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3039                         if (!mapped_datav[i]) {
3040                                 while (i > 0) {
3041                                         i--;
3042                                         kunmap(bio->bi_io_vec[i].bv_page);
3043                                 }
3044                                 kfree(mapped_datav);
3045                                 goto leave;
3046                         }
3047                         if (dev_state->state->print_mask &
3048                             BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
3049                                 printk(KERN_INFO
3050                                        "#%u: bytenr=%llu, len=%u, offset=%u\n",
3051                                        i, cur_bytenr, bio->bi_io_vec[i].bv_len,
3052                                        bio->bi_io_vec[i].bv_offset);
3053                         cur_bytenr += bio->bi_io_vec[i].bv_len;
3054                 }
3055                 btrfsic_process_written_block(dev_state, dev_bytenr,
3056                                               mapped_datav, bio->bi_vcnt,
3057                                               bio, &bio_is_patched,
3058                                               NULL, rw);
3059                 while (i > 0) {
3060                         i--;
3061                         kunmap(bio->bi_io_vec[i].bv_page);
3062                 }
3063                 kfree(mapped_datav);
3064         } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3065                 if (dev_state->state->print_mask &
3066                     BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3067                         printk(KERN_INFO
3068                                "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3069                                rw, bio->bi_bdev);
3070                 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3071                         if ((dev_state->state->print_mask &
3072                              (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3073                               BTRFSIC_PRINT_MASK_VERBOSE)))
3074                                 printk(KERN_INFO
3075                                        "btrfsic_submit_bio(%s) with FLUSH"
3076                                        " but dummy block already in use"
3077                                        " (ignored)!\n",
3078                                        dev_state->name);
3079                 } else {
3080                         struct btrfsic_block *const block =
3081                                 &dev_state->dummy_block_for_bio_bh_flush;
3082
3083                         block->is_iodone = 0;
3084                         block->never_written = 0;
3085                         block->iodone_w_error = 0;
3086                         block->flush_gen = dev_state->last_flush_gen + 1;
3087                         block->submit_bio_bh_rw = rw;
3088                         block->orig_bio_bh_private = bio->bi_private;
3089                         block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3090                         block->next_in_same_bio = NULL;
3091                         bio->bi_private = block;
3092                         bio->bi_end_io = btrfsic_bio_end_io;
3093                 }
3094         }
3095 leave:
3096         mutex_unlock(&btrfsic_mutex);
3097 }
3098
3099 void btrfsic_submit_bio(int rw, struct bio *bio)
3100 {
3101         __btrfsic_submit_bio(rw, bio);
3102         submit_bio(rw, bio);
3103 }
3104
3105 int btrfsic_submit_bio_wait(int rw, struct bio *bio)
3106 {
3107         __btrfsic_submit_bio(rw, bio);
3108         return submit_bio_wait(rw, bio);
3109 }
3110
3111 int btrfsic_mount(struct btrfs_root *root,
3112                   struct btrfs_fs_devices *fs_devices,
3113                   int including_extent_data, u32 print_mask)
3114 {
3115         int ret;
3116         struct btrfsic_state *state;
3117         struct list_head *dev_head = &fs_devices->devices;
3118         struct btrfs_device *device;
3119
3120         if (root->nodesize != root->leafsize) {
3121                 printk(KERN_INFO
3122                        "btrfsic: cannot handle nodesize %d != leafsize %d!\n",
3123                        root->nodesize, root->leafsize);
3124                 return -1;
3125         }
3126         if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3127                 printk(KERN_INFO
3128                        "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3129                        root->nodesize, PAGE_CACHE_SIZE);
3130                 return -1;
3131         }
3132         if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3133                 printk(KERN_INFO
3134                        "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3135                        root->leafsize, PAGE_CACHE_SIZE);
3136                 return -1;
3137         }
3138         if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3139                 printk(KERN_INFO
3140                        "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3141                        root->sectorsize, PAGE_CACHE_SIZE);
3142                 return -1;
3143         }
3144         state = kzalloc(sizeof(*state), GFP_NOFS);
3145         if (NULL == state) {
3146                 printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3147                 return -1;
3148         }
3149
3150         if (!btrfsic_is_initialized) {
3151                 mutex_init(&btrfsic_mutex);
3152                 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3153                 btrfsic_is_initialized = 1;
3154         }
3155         mutex_lock(&btrfsic_mutex);
3156         state->root = root;
3157         state->print_mask = print_mask;
3158         state->include_extent_data = including_extent_data;
3159         state->csum_size = 0;
3160         state->metablock_size = root->nodesize;
3161         state->datablock_size = root->sectorsize;
3162         INIT_LIST_HEAD(&state->all_blocks_list);
3163         btrfsic_block_hashtable_init(&state->block_hashtable);
3164         btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3165         state->max_superblock_generation = 0;
3166         state->latest_superblock = NULL;
3167
3168         list_for_each_entry(device, dev_head, dev_list) {
3169                 struct btrfsic_dev_state *ds;
3170                 char *p;
3171
3172                 if (!device->bdev || !device->name)
3173                         continue;
3174
3175                 ds = btrfsic_dev_state_alloc();
3176                 if (NULL == ds) {
3177                         printk(KERN_INFO
3178                                "btrfs check-integrity: kmalloc() failed!\n");
3179                         mutex_unlock(&btrfsic_mutex);
3180                         return -1;
3181                 }
3182                 ds->bdev = device->bdev;
3183                 ds->state = state;
3184                 bdevname(ds->bdev, ds->name);
3185                 ds->name[BDEVNAME_SIZE - 1] = '\0';
3186                 for (p = ds->name; *p != '\0'; p++);
3187                 while (p > ds->name && *p != '/')
3188                         p--;
3189                 if (*p == '/')
3190                         p++;
3191                 strlcpy(ds->name, p, sizeof(ds->name));
3192                 btrfsic_dev_state_hashtable_add(ds,
3193                                                 &btrfsic_dev_state_hashtable);
3194         }
3195
3196         ret = btrfsic_process_superblock(state, fs_devices);
3197         if (0 != ret) {
3198                 mutex_unlock(&btrfsic_mutex);
3199                 btrfsic_unmount(root, fs_devices);
3200                 return ret;
3201         }
3202
3203         if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3204                 btrfsic_dump_database(state);
3205         if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3206                 btrfsic_dump_tree(state);
3207
3208         mutex_unlock(&btrfsic_mutex);
3209         return 0;
3210 }
3211
3212 void btrfsic_unmount(struct btrfs_root *root,
3213                      struct btrfs_fs_devices *fs_devices)
3214 {
3215         struct list_head *elem_all;
3216         struct list_head *tmp_all;
3217         struct btrfsic_state *state;
3218         struct list_head *dev_head = &fs_devices->devices;
3219         struct btrfs_device *device;
3220
3221         if (!btrfsic_is_initialized)
3222                 return;
3223
3224         mutex_lock(&btrfsic_mutex);
3225
3226         state = NULL;
3227         list_for_each_entry(device, dev_head, dev_list) {
3228                 struct btrfsic_dev_state *ds;
3229
3230                 if (!device->bdev || !device->name)
3231                         continue;
3232
3233                 ds = btrfsic_dev_state_hashtable_lookup(
3234                                 device->bdev,
3235                                 &btrfsic_dev_state_hashtable);
3236                 if (NULL != ds) {
3237                         state = ds->state;
3238                         btrfsic_dev_state_hashtable_remove(ds);
3239                         btrfsic_dev_state_free(ds);
3240                 }
3241         }
3242
3243         if (NULL == state) {
3244                 printk(KERN_INFO
3245                        "btrfsic: error, cannot find state information"
3246                        " on umount!\n");
3247                 mutex_unlock(&btrfsic_mutex);
3248                 return;
3249         }
3250
3251         /*
3252          * Don't care about keeping the lists' state up to date,
3253          * just free all memory that was allocated dynamically.
3254          * Free the blocks and the block_links.
3255          */
3256         list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3257                 struct btrfsic_block *const b_all =
3258                     list_entry(elem_all, struct btrfsic_block,
3259                                all_blocks_node);
3260                 struct list_head *elem_ref_to;
3261                 struct list_head *tmp_ref_to;
3262
3263                 list_for_each_safe(elem_ref_to, tmp_ref_to,
3264                                    &b_all->ref_to_list) {
3265                         struct btrfsic_block_link *const l =
3266                             list_entry(elem_ref_to,
3267                                        struct btrfsic_block_link,
3268                                        node_ref_to);
3269
3270                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3271                                 btrfsic_print_rem_link(state, l);
3272
3273                         l->ref_cnt--;
3274                         if (0 == l->ref_cnt)
3275                                 btrfsic_block_link_free(l);
3276                 }
3277
3278                 if (b_all->is_iodone || b_all->never_written)
3279                         btrfsic_block_free(b_all);
3280                 else
3281                         printk(KERN_INFO "btrfs: attempt to free %c-block"
3282                                " @%llu (%s/%llu/%d) on umount which is"
3283                                " not yet iodone!\n",
3284                                btrfsic_get_block_type(state, b_all),
3285                                b_all->logical_bytenr, b_all->dev_state->name,
3286                                b_all->dev_bytenr, b_all->mirror_num);
3287         }
3288
3289         mutex_unlock(&btrfsic_mutex);
3290
3291         kfree(state);
3292 }