]> Pileus Git - ~andy/linux/blob - drivers/regulator/core.c
00feec321e3c68b212d23702edbbe328b3820c3c
[~andy/linux] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39 #include "internal.h"
40
41 #define rdev_crit(rdev, fmt, ...)                                       \
42         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)                                        \
44         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)                                       \
46         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)                                       \
48         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)                                        \
50         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79         struct list_head list;
80         int gpio;
81         u32 enable_count;       /* a number of enabled shared GPIO */
82         u32 request_count;      /* a number of requested shared GPIO */
83         unsigned int ena_gpio_invert:1;
84 };
85
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92         struct list_head list;
93         struct device *src_dev;
94         const char *src_supply;
95         struct device *alias_dev;
96         const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105                                   unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107                                      int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109                                           struct device *dev,
110                                           const char *supply_name);
111
112 static const char *rdev_get_name(struct regulator_dev *rdev)
113 {
114         if (rdev->constraints && rdev->constraints->name)
115                 return rdev->constraints->name;
116         else if (rdev->desc->name)
117                 return rdev->desc->name;
118         else
119                 return "";
120 }
121
122 static bool have_full_constraints(void)
123 {
124         return has_full_constraints || of_have_populated_dt();
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327                          char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337         switch (mode) {
338         case REGULATOR_MODE_FAST:
339                 return sprintf(buf, "fast\n");
340         case REGULATOR_MODE_NORMAL:
341                 return sprintf(buf, "normal\n");
342         case REGULATOR_MODE_IDLE:
343                 return sprintf(buf, "idle\n");
344         case REGULATOR_MODE_STANDBY:
345                 return sprintf(buf, "standby\n");
346         }
347         return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_opmode_show(struct device *dev,
351                                     struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361         if (state > 0)
362                 return sprintf(buf, "enabled\n");
363         else if (state == 0)
364                 return sprintf(buf, "disabled\n");
365         else
366                 return sprintf(buf, "unknown\n");
367 }
368
369 static ssize_t regulator_state_show(struct device *dev,
370                                    struct device_attribute *attr, char *buf)
371 {
372         struct regulator_dev *rdev = dev_get_drvdata(dev);
373         ssize_t ret;
374
375         mutex_lock(&rdev->mutex);
376         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377         mutex_unlock(&rdev->mutex);
378
379         return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383 static ssize_t regulator_status_show(struct device *dev,
384                                    struct device_attribute *attr, char *buf)
385 {
386         struct regulator_dev *rdev = dev_get_drvdata(dev);
387         int status;
388         char *label;
389
390         status = rdev->desc->ops->get_status(rdev);
391         if (status < 0)
392                 return status;
393
394         switch (status) {
395         case REGULATOR_STATUS_OFF:
396                 label = "off";
397                 break;
398         case REGULATOR_STATUS_ON:
399                 label = "on";
400                 break;
401         case REGULATOR_STATUS_ERROR:
402                 label = "error";
403                 break;
404         case REGULATOR_STATUS_FAST:
405                 label = "fast";
406                 break;
407         case REGULATOR_STATUS_NORMAL:
408                 label = "normal";
409                 break;
410         case REGULATOR_STATUS_IDLE:
411                 label = "idle";
412                 break;
413         case REGULATOR_STATUS_STANDBY:
414                 label = "standby";
415                 break;
416         case REGULATOR_STATUS_BYPASS:
417                 label = "bypass";
418                 break;
419         case REGULATOR_STATUS_UNDEFINED:
420                 label = "undefined";
421                 break;
422         default:
423                 return -ERANGE;
424         }
425
426         return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430 static ssize_t regulator_min_uA_show(struct device *dev,
431                                     struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435         if (!rdev->constraints)
436                 return sprintf(buf, "constraint not defined\n");
437
438         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442 static ssize_t regulator_max_uA_show(struct device *dev,
443                                     struct device_attribute *attr, char *buf)
444 {
445         struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447         if (!rdev->constraints)
448                 return sprintf(buf, "constraint not defined\n");
449
450         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454 static ssize_t regulator_min_uV_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466 static ssize_t regulator_max_uV_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478 static ssize_t regulator_total_uA_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         struct regulator *regulator;
483         int uA = 0;
484
485         mutex_lock(&rdev->mutex);
486         list_for_each_entry(regulator, &rdev->consumer_list, list)
487                 uA += regulator->uA_load;
488         mutex_unlock(&rdev->mutex);
489         return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494                               char *buf)
495 {
496         struct regulator_dev *rdev = dev_get_drvdata(dev);
497         return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502                          char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517                                 struct device_attribute *attr, char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524                 regulator_suspend_mem_uV_show, NULL);
525
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534                 regulator_suspend_disk_uV_show, NULL);
535
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537                                 struct device_attribute *attr, char *buf)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544                 regulator_suspend_standby_uV_show, NULL);
545
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547                                 struct device_attribute *attr, char *buf)
548 {
549         struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551         return regulator_print_opmode(buf,
552                 rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555                 regulator_suspend_mem_mode_show, NULL);
556
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558                                 struct device_attribute *attr, char *buf)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562         return regulator_print_opmode(buf,
563                 rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566                 regulator_suspend_disk_mode_show, NULL);
567
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569                                 struct device_attribute *attr, char *buf)
570 {
571         struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573         return regulator_print_opmode(buf,
574                 rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577                 regulator_suspend_standby_mode_show, NULL);
578
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580                                    struct device_attribute *attr, char *buf)
581 {
582         struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584         return regulator_print_state(buf,
585                         rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588                 regulator_suspend_mem_state_show, NULL);
589
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591                                    struct device_attribute *attr, char *buf)
592 {
593         struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595         return regulator_print_state(buf,
596                         rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599                 regulator_suspend_disk_state_show, NULL);
600
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602                                    struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return regulator_print_state(buf,
607                         rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610                 regulator_suspend_standby_state_show, NULL);
611
612 static ssize_t regulator_bypass_show(struct device *dev,
613                                      struct device_attribute *attr, char *buf)
614 {
615         struct regulator_dev *rdev = dev_get_drvdata(dev);
616         const char *report;
617         bool bypass;
618         int ret;
619
620         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622         if (ret != 0)
623                 report = "unknown";
624         else if (bypass)
625                 report = "enabled";
626         else
627                 report = "disabled";
628
629         return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632                    regulator_bypass_show, NULL);
633
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639         &dev_attr_name.attr,
640         &dev_attr_num_users.attr,
641         &dev_attr_type.attr,
642         NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645
646 static void regulator_dev_release(struct device *dev)
647 {
648         struct regulator_dev *rdev = dev_get_drvdata(dev);
649         kfree(rdev);
650 }
651
652 static struct class regulator_class = {
653         .name = "regulator",
654         .dev_release = regulator_dev_release,
655         .dev_groups = regulator_dev_groups,
656 };
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         err = regulator_check_drms(rdev);
667         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668             (!rdev->desc->ops->get_voltage &&
669              !rdev->desc->ops->get_voltage_sel) ||
670             !rdev->desc->ops->set_mode)
671                 return;
672
673         /* get output voltage */
674         output_uV = _regulator_get_voltage(rdev);
675         if (output_uV <= 0)
676                 return;
677
678         /* get input voltage */
679         input_uV = 0;
680         if (rdev->supply)
681                 input_uV = regulator_get_voltage(rdev->supply);
682         if (input_uV <= 0)
683                 input_uV = rdev->constraints->input_uV;
684         if (input_uV <= 0)
685                 return;
686
687         /* calc total requested load */
688         list_for_each_entry(sibling, &rdev->consumer_list, list)
689                 current_uA += sibling->uA_load;
690
691         /* now get the optimum mode for our new total regulator load */
692         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693                                                   output_uV, current_uA);
694
695         /* check the new mode is allowed */
696         err = regulator_mode_constrain(rdev, &mode);
697         if (err == 0)
698                 rdev->desc->ops->set_mode(rdev, mode);
699 }
700
701 static int suspend_set_state(struct regulator_dev *rdev,
702         struct regulator_state *rstate)
703 {
704         int ret = 0;
705
706         /* If we have no suspend mode configration don't set anything;
707          * only warn if the driver implements set_suspend_voltage or
708          * set_suspend_mode callback.
709          */
710         if (!rstate->enabled && !rstate->disabled) {
711                 if (rdev->desc->ops->set_suspend_voltage ||
712                     rdev->desc->ops->set_suspend_mode)
713                         rdev_warn(rdev, "No configuration\n");
714                 return 0;
715         }
716
717         if (rstate->enabled && rstate->disabled) {
718                 rdev_err(rdev, "invalid configuration\n");
719                 return -EINVAL;
720         }
721
722         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723                 ret = rdev->desc->ops->set_suspend_enable(rdev);
724         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725                 ret = rdev->desc->ops->set_suspend_disable(rdev);
726         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727                 ret = 0;
728
729         if (ret < 0) {
730                 rdev_err(rdev, "failed to enabled/disable\n");
731                 return ret;
732         }
733
734         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736                 if (ret < 0) {
737                         rdev_err(rdev, "failed to set voltage\n");
738                         return ret;
739                 }
740         }
741
742         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744                 if (ret < 0) {
745                         rdev_err(rdev, "failed to set mode\n");
746                         return ret;
747                 }
748         }
749         return ret;
750 }
751
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755         if (!rdev->constraints)
756                 return -EINVAL;
757
758         switch (state) {
759         case PM_SUSPEND_STANDBY:
760                 return suspend_set_state(rdev,
761                         &rdev->constraints->state_standby);
762         case PM_SUSPEND_MEM:
763                 return suspend_set_state(rdev,
764                         &rdev->constraints->state_mem);
765         case PM_SUSPEND_MAX:
766                 return suspend_set_state(rdev,
767                         &rdev->constraints->state_disk);
768         default:
769                 return -EINVAL;
770         }
771 }
772
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775         struct regulation_constraints *constraints = rdev->constraints;
776         char buf[80] = "";
777         int count = 0;
778         int ret;
779
780         if (constraints->min_uV && constraints->max_uV) {
781                 if (constraints->min_uV == constraints->max_uV)
782                         count += sprintf(buf + count, "%d mV ",
783                                          constraints->min_uV / 1000);
784                 else
785                         count += sprintf(buf + count, "%d <--> %d mV ",
786                                          constraints->min_uV / 1000,
787                                          constraints->max_uV / 1000);
788         }
789
790         if (!constraints->min_uV ||
791             constraints->min_uV != constraints->max_uV) {
792                 ret = _regulator_get_voltage(rdev);
793                 if (ret > 0)
794                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
795         }
796
797         if (constraints->uV_offset)
798                 count += sprintf(buf, "%dmV offset ",
799                                  constraints->uV_offset / 1000);
800
801         if (constraints->min_uA && constraints->max_uA) {
802                 if (constraints->min_uA == constraints->max_uA)
803                         count += sprintf(buf + count, "%d mA ",
804                                          constraints->min_uA / 1000);
805                 else
806                         count += sprintf(buf + count, "%d <--> %d mA ",
807                                          constraints->min_uA / 1000,
808                                          constraints->max_uA / 1000);
809         }
810
811         if (!constraints->min_uA ||
812             constraints->min_uA != constraints->max_uA) {
813                 ret = _regulator_get_current_limit(rdev);
814                 if (ret > 0)
815                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
816         }
817
818         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819                 count += sprintf(buf + count, "fast ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821                 count += sprintf(buf + count, "normal ");
822         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823                 count += sprintf(buf + count, "idle ");
824         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825                 count += sprintf(buf + count, "standby");
826
827         if (!count)
828                 sprintf(buf, "no parameters");
829
830         rdev_info(rdev, "%s\n", buf);
831
832         if ((constraints->min_uV != constraints->max_uV) &&
833             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834                 rdev_warn(rdev,
835                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839         struct regulation_constraints *constraints)
840 {
841         struct regulator_ops *ops = rdev->desc->ops;
842         int ret;
843
844         /* do we need to apply the constraint voltage */
845         if (rdev->constraints->apply_uV &&
846             rdev->constraints->min_uV == rdev->constraints->max_uV) {
847                 ret = _regulator_do_set_voltage(rdev,
848                                                 rdev->constraints->min_uV,
849                                                 rdev->constraints->max_uV);
850                 if (ret < 0) {
851                         rdev_err(rdev, "failed to apply %duV constraint\n",
852                                  rdev->constraints->min_uV);
853                         return ret;
854                 }
855         }
856
857         /* constrain machine-level voltage specs to fit
858          * the actual range supported by this regulator.
859          */
860         if (ops->list_voltage && rdev->desc->n_voltages) {
861                 int     count = rdev->desc->n_voltages;
862                 int     i;
863                 int     min_uV = INT_MAX;
864                 int     max_uV = INT_MIN;
865                 int     cmin = constraints->min_uV;
866                 int     cmax = constraints->max_uV;
867
868                 /* it's safe to autoconfigure fixed-voltage supplies
869                    and the constraints are used by list_voltage. */
870                 if (count == 1 && !cmin) {
871                         cmin = 1;
872                         cmax = INT_MAX;
873                         constraints->min_uV = cmin;
874                         constraints->max_uV = cmax;
875                 }
876
877                 /* voltage constraints are optional */
878                 if ((cmin == 0) && (cmax == 0))
879                         return 0;
880
881                 /* else require explicit machine-level constraints */
882                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883                         rdev_err(rdev, "invalid voltage constraints\n");
884                         return -EINVAL;
885                 }
886
887                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888                 for (i = 0; i < count; i++) {
889                         int     value;
890
891                         value = ops->list_voltage(rdev, i);
892                         if (value <= 0)
893                                 continue;
894
895                         /* maybe adjust [min_uV..max_uV] */
896                         if (value >= cmin && value < min_uV)
897                                 min_uV = value;
898                         if (value <= cmax && value > max_uV)
899                                 max_uV = value;
900                 }
901
902                 /* final: [min_uV..max_uV] valid iff constraints valid */
903                 if (max_uV < min_uV) {
904                         rdev_err(rdev,
905                                  "unsupportable voltage constraints %u-%uuV\n",
906                                  min_uV, max_uV);
907                         return -EINVAL;
908                 }
909
910                 /* use regulator's subset of machine constraints */
911                 if (constraints->min_uV < min_uV) {
912                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913                                  constraints->min_uV, min_uV);
914                         constraints->min_uV = min_uV;
915                 }
916                 if (constraints->max_uV > max_uV) {
917                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918                                  constraints->max_uV, max_uV);
919                         constraints->max_uV = max_uV;
920                 }
921         }
922
923         return 0;
924 }
925
926 static int machine_constraints_current(struct regulator_dev *rdev,
927         struct regulation_constraints *constraints)
928 {
929         struct regulator_ops *ops = rdev->desc->ops;
930         int ret;
931
932         if (!constraints->min_uA && !constraints->max_uA)
933                 return 0;
934
935         if (constraints->min_uA > constraints->max_uA) {
936                 rdev_err(rdev, "Invalid current constraints\n");
937                 return -EINVAL;
938         }
939
940         if (!ops->set_current_limit || !ops->get_current_limit) {
941                 rdev_warn(rdev, "Operation of current configuration missing\n");
942                 return 0;
943         }
944
945         /* Set regulator current in constraints range */
946         ret = ops->set_current_limit(rdev, constraints->min_uA,
947                         constraints->max_uA);
948         if (ret < 0) {
949                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950                 return ret;
951         }
952
953         return 0;
954 }
955
956 static int _regulator_do_enable(struct regulator_dev *rdev);
957
958 /**
959  * set_machine_constraints - sets regulator constraints
960  * @rdev: regulator source
961  * @constraints: constraints to apply
962  *
963  * Allows platform initialisation code to define and constrain
964  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
965  * Constraints *must* be set by platform code in order for some
966  * regulator operations to proceed i.e. set_voltage, set_current_limit,
967  * set_mode.
968  */
969 static int set_machine_constraints(struct regulator_dev *rdev,
970         const struct regulation_constraints *constraints)
971 {
972         int ret = 0;
973         struct regulator_ops *ops = rdev->desc->ops;
974
975         if (constraints)
976                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
977                                             GFP_KERNEL);
978         else
979                 rdev->constraints = kzalloc(sizeof(*constraints),
980                                             GFP_KERNEL);
981         if (!rdev->constraints)
982                 return -ENOMEM;
983
984         ret = machine_constraints_voltage(rdev, rdev->constraints);
985         if (ret != 0)
986                 goto out;
987
988         ret = machine_constraints_current(rdev, rdev->constraints);
989         if (ret != 0)
990                 goto out;
991
992         /* do we need to setup our suspend state */
993         if (rdev->constraints->initial_state) {
994                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
995                 if (ret < 0) {
996                         rdev_err(rdev, "failed to set suspend state\n");
997                         goto out;
998                 }
999         }
1000
1001         if (rdev->constraints->initial_mode) {
1002                 if (!ops->set_mode) {
1003                         rdev_err(rdev, "no set_mode operation\n");
1004                         ret = -EINVAL;
1005                         goto out;
1006                 }
1007
1008                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1009                 if (ret < 0) {
1010                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1011                         goto out;
1012                 }
1013         }
1014
1015         /* If the constraints say the regulator should be on at this point
1016          * and we have control then make sure it is enabled.
1017          */
1018         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1019                 ret = _regulator_do_enable(rdev);
1020                 if (ret < 0 && ret != -EINVAL) {
1021                         rdev_err(rdev, "failed to enable\n");
1022                         goto out;
1023                 }
1024         }
1025
1026         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1027                 && ops->set_ramp_delay) {
1028                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1029                 if (ret < 0) {
1030                         rdev_err(rdev, "failed to set ramp_delay\n");
1031                         goto out;
1032                 }
1033         }
1034
1035         print_constraints(rdev);
1036         return 0;
1037 out:
1038         kfree(rdev->constraints);
1039         rdev->constraints = NULL;
1040         return ret;
1041 }
1042
1043 /**
1044  * set_supply - set regulator supply regulator
1045  * @rdev: regulator name
1046  * @supply_rdev: supply regulator name
1047  *
1048  * Called by platform initialisation code to set the supply regulator for this
1049  * regulator. This ensures that a regulators supply will also be enabled by the
1050  * core if it's child is enabled.
1051  */
1052 static int set_supply(struct regulator_dev *rdev,
1053                       struct regulator_dev *supply_rdev)
1054 {
1055         int err;
1056
1057         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1058
1059         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1060         if (rdev->supply == NULL) {
1061                 err = -ENOMEM;
1062                 return err;
1063         }
1064         supply_rdev->open_count++;
1065
1066         return 0;
1067 }
1068
1069 /**
1070  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1071  * @rdev:         regulator source
1072  * @consumer_dev_name: dev_name() string for device supply applies to
1073  * @supply:       symbolic name for supply
1074  *
1075  * Allows platform initialisation code to map physical regulator
1076  * sources to symbolic names for supplies for use by devices.  Devices
1077  * should use these symbolic names to request regulators, avoiding the
1078  * need to provide board-specific regulator names as platform data.
1079  */
1080 static int set_consumer_device_supply(struct regulator_dev *rdev,
1081                                       const char *consumer_dev_name,
1082                                       const char *supply)
1083 {
1084         struct regulator_map *node;
1085         int has_dev;
1086
1087         if (supply == NULL)
1088                 return -EINVAL;
1089
1090         if (consumer_dev_name != NULL)
1091                 has_dev = 1;
1092         else
1093                 has_dev = 0;
1094
1095         list_for_each_entry(node, &regulator_map_list, list) {
1096                 if (node->dev_name && consumer_dev_name) {
1097                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1098                                 continue;
1099                 } else if (node->dev_name || consumer_dev_name) {
1100                         continue;
1101                 }
1102
1103                 if (strcmp(node->supply, supply) != 0)
1104                         continue;
1105
1106                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1107                          consumer_dev_name,
1108                          dev_name(&node->regulator->dev),
1109                          node->regulator->desc->name,
1110                          supply,
1111                          dev_name(&rdev->dev), rdev_get_name(rdev));
1112                 return -EBUSY;
1113         }
1114
1115         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1116         if (node == NULL)
1117                 return -ENOMEM;
1118
1119         node->regulator = rdev;
1120         node->supply = supply;
1121
1122         if (has_dev) {
1123                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1124                 if (node->dev_name == NULL) {
1125                         kfree(node);
1126                         return -ENOMEM;
1127                 }
1128         }
1129
1130         list_add(&node->list, &regulator_map_list);
1131         return 0;
1132 }
1133
1134 static void unset_regulator_supplies(struct regulator_dev *rdev)
1135 {
1136         struct regulator_map *node, *n;
1137
1138         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1139                 if (rdev == node->regulator) {
1140                         list_del(&node->list);
1141                         kfree(node->dev_name);
1142                         kfree(node);
1143                 }
1144         }
1145 }
1146
1147 #define REG_STR_SIZE    64
1148
1149 static struct regulator *create_regulator(struct regulator_dev *rdev,
1150                                           struct device *dev,
1151                                           const char *supply_name)
1152 {
1153         struct regulator *regulator;
1154         char buf[REG_STR_SIZE];
1155         int err, size;
1156
1157         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1158         if (regulator == NULL)
1159                 return NULL;
1160
1161         mutex_lock(&rdev->mutex);
1162         regulator->rdev = rdev;
1163         list_add(&regulator->list, &rdev->consumer_list);
1164
1165         if (dev) {
1166                 regulator->dev = dev;
1167
1168                 /* Add a link to the device sysfs entry */
1169                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1170                                  dev->kobj.name, supply_name);
1171                 if (size >= REG_STR_SIZE)
1172                         goto overflow_err;
1173
1174                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1175                 if (regulator->supply_name == NULL)
1176                         goto overflow_err;
1177
1178                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1179                                         buf);
1180                 if (err) {
1181                         rdev_warn(rdev, "could not add device link %s err %d\n",
1182                                   dev->kobj.name, err);
1183                         /* non-fatal */
1184                 }
1185         } else {
1186                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1187                 if (regulator->supply_name == NULL)
1188                         goto overflow_err;
1189         }
1190
1191         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1192                                                 rdev->debugfs);
1193         if (!regulator->debugfs) {
1194                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1195         } else {
1196                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1197                                    &regulator->uA_load);
1198                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1199                                    &regulator->min_uV);
1200                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1201                                    &regulator->max_uV);
1202         }
1203
1204         /*
1205          * Check now if the regulator is an always on regulator - if
1206          * it is then we don't need to do nearly so much work for
1207          * enable/disable calls.
1208          */
1209         if (!_regulator_can_change_status(rdev) &&
1210             _regulator_is_enabled(rdev))
1211                 regulator->always_on = true;
1212
1213         mutex_unlock(&rdev->mutex);
1214         return regulator;
1215 overflow_err:
1216         list_del(&regulator->list);
1217         kfree(regulator);
1218         mutex_unlock(&rdev->mutex);
1219         return NULL;
1220 }
1221
1222 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1223 {
1224         if (rdev->constraints && rdev->constraints->enable_time)
1225                 return rdev->constraints->enable_time;
1226         if (!rdev->desc->ops->enable_time)
1227                 return rdev->desc->enable_time;
1228         return rdev->desc->ops->enable_time(rdev);
1229 }
1230
1231 static struct regulator_supply_alias *regulator_find_supply_alias(
1232                 struct device *dev, const char *supply)
1233 {
1234         struct regulator_supply_alias *map;
1235
1236         list_for_each_entry(map, &regulator_supply_alias_list, list)
1237                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1238                         return map;
1239
1240         return NULL;
1241 }
1242
1243 static void regulator_supply_alias(struct device **dev, const char **supply)
1244 {
1245         struct regulator_supply_alias *map;
1246
1247         map = regulator_find_supply_alias(*dev, *supply);
1248         if (map) {
1249                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1250                                 *supply, map->alias_supply,
1251                                 dev_name(map->alias_dev));
1252                 *dev = map->alias_dev;
1253                 *supply = map->alias_supply;
1254         }
1255 }
1256
1257 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1258                                                   const char *supply,
1259                                                   int *ret)
1260 {
1261         struct regulator_dev *r;
1262         struct device_node *node;
1263         struct regulator_map *map;
1264         const char *devname = NULL;
1265
1266         regulator_supply_alias(&dev, &supply);
1267
1268         /* first do a dt based lookup */
1269         if (dev && dev->of_node) {
1270                 node = of_get_regulator(dev, supply);
1271                 if (node) {
1272                         list_for_each_entry(r, &regulator_list, list)
1273                                 if (r->dev.parent &&
1274                                         node == r->dev.of_node)
1275                                         return r;
1276                 } else {
1277                         /*
1278                          * If we couldn't even get the node then it's
1279                          * not just that the device didn't register
1280                          * yet, there's no node and we'll never
1281                          * succeed.
1282                          */
1283                         *ret = -ENODEV;
1284                 }
1285         }
1286
1287         /* if not found, try doing it non-dt way */
1288         if (dev)
1289                 devname = dev_name(dev);
1290
1291         list_for_each_entry(r, &regulator_list, list)
1292                 if (strcmp(rdev_get_name(r), supply) == 0)
1293                         return r;
1294
1295         list_for_each_entry(map, &regulator_map_list, list) {
1296                 /* If the mapping has a device set up it must match */
1297                 if (map->dev_name &&
1298                     (!devname || strcmp(map->dev_name, devname)))
1299                         continue;
1300
1301                 if (strcmp(map->supply, supply) == 0)
1302                         return map->regulator;
1303         }
1304
1305
1306         return NULL;
1307 }
1308
1309 /* Internal regulator request function */
1310 static struct regulator *_regulator_get(struct device *dev, const char *id,
1311                                         bool exclusive, bool allow_dummy)
1312 {
1313         struct regulator_dev *rdev;
1314         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1315         const char *devname = NULL;
1316         int ret = -EPROBE_DEFER;
1317
1318         if (id == NULL) {
1319                 pr_err("get() with no identifier\n");
1320                 return ERR_PTR(-EINVAL);
1321         }
1322
1323         if (dev)
1324                 devname = dev_name(dev);
1325
1326         mutex_lock(&regulator_list_mutex);
1327
1328         rdev = regulator_dev_lookup(dev, id, &ret);
1329         if (rdev)
1330                 goto found;
1331
1332         regulator = ERR_PTR(ret);
1333
1334         /*
1335          * If we have return value from dev_lookup fail, we do not expect to
1336          * succeed, so, quit with appropriate error value
1337          */
1338         if (ret && ret != -ENODEV)
1339                 goto out;
1340
1341         if (!devname)
1342                 devname = "deviceless";
1343
1344         /*
1345          * Assume that a regulator is physically present and enabled
1346          * even if it isn't hooked up and just provide a dummy.
1347          */
1348         if (have_full_constraints() && allow_dummy) {
1349                 pr_warn("%s supply %s not found, using dummy regulator\n",
1350                         devname, id);
1351
1352                 rdev = dummy_regulator_rdev;
1353                 goto found;
1354         /* Don't log an error when called from regulator_get_optional() */
1355         } else if (!have_full_constraints() || exclusive) {
1356                 dev_warn(dev, "dummy supplies not allowed\n");
1357         }
1358
1359         mutex_unlock(&regulator_list_mutex);
1360         return regulator;
1361
1362 found:
1363         if (rdev->exclusive) {
1364                 regulator = ERR_PTR(-EPERM);
1365                 goto out;
1366         }
1367
1368         if (exclusive && rdev->open_count) {
1369                 regulator = ERR_PTR(-EBUSY);
1370                 goto out;
1371         }
1372
1373         if (!try_module_get(rdev->owner))
1374                 goto out;
1375
1376         regulator = create_regulator(rdev, dev, id);
1377         if (regulator == NULL) {
1378                 regulator = ERR_PTR(-ENOMEM);
1379                 module_put(rdev->owner);
1380                 goto out;
1381         }
1382
1383         rdev->open_count++;
1384         if (exclusive) {
1385                 rdev->exclusive = 1;
1386
1387                 ret = _regulator_is_enabled(rdev);
1388                 if (ret > 0)
1389                         rdev->use_count = 1;
1390                 else
1391                         rdev->use_count = 0;
1392         }
1393
1394 out:
1395         mutex_unlock(&regulator_list_mutex);
1396
1397         return regulator;
1398 }
1399
1400 /**
1401  * regulator_get - lookup and obtain a reference to a regulator.
1402  * @dev: device for regulator "consumer"
1403  * @id: Supply name or regulator ID.
1404  *
1405  * Returns a struct regulator corresponding to the regulator producer,
1406  * or IS_ERR() condition containing errno.
1407  *
1408  * Use of supply names configured via regulator_set_device_supply() is
1409  * strongly encouraged.  It is recommended that the supply name used
1410  * should match the name used for the supply and/or the relevant
1411  * device pins in the datasheet.
1412  */
1413 struct regulator *regulator_get(struct device *dev, const char *id)
1414 {
1415         return _regulator_get(dev, id, false, true);
1416 }
1417 EXPORT_SYMBOL_GPL(regulator_get);
1418
1419 /**
1420  * regulator_get_exclusive - obtain exclusive access to a regulator.
1421  * @dev: device for regulator "consumer"
1422  * @id: Supply name or regulator ID.
1423  *
1424  * Returns a struct regulator corresponding to the regulator producer,
1425  * or IS_ERR() condition containing errno.  Other consumers will be
1426  * unable to obtain this reference is held and the use count for the
1427  * regulator will be initialised to reflect the current state of the
1428  * regulator.
1429  *
1430  * This is intended for use by consumers which cannot tolerate shared
1431  * use of the regulator such as those which need to force the
1432  * regulator off for correct operation of the hardware they are
1433  * controlling.
1434  *
1435  * Use of supply names configured via regulator_set_device_supply() is
1436  * strongly encouraged.  It is recommended that the supply name used
1437  * should match the name used for the supply and/or the relevant
1438  * device pins in the datasheet.
1439  */
1440 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1441 {
1442         return _regulator_get(dev, id, true, false);
1443 }
1444 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1445
1446 /**
1447  * regulator_get_optional - obtain optional access to a regulator.
1448  * @dev: device for regulator "consumer"
1449  * @id: Supply name or regulator ID.
1450  *
1451  * Returns a struct regulator corresponding to the regulator producer,
1452  * or IS_ERR() condition containing errno.  Other consumers will be
1453  * unable to obtain this reference is held and the use count for the
1454  * regulator will be initialised to reflect the current state of the
1455  * regulator.
1456  *
1457  * This is intended for use by consumers for devices which can have
1458  * some supplies unconnected in normal use, such as some MMC devices.
1459  * It can allow the regulator core to provide stub supplies for other
1460  * supplies requested using normal regulator_get() calls without
1461  * disrupting the operation of drivers that can handle absent
1462  * supplies.
1463  *
1464  * Use of supply names configured via regulator_set_device_supply() is
1465  * strongly encouraged.  It is recommended that the supply name used
1466  * should match the name used for the supply and/or the relevant
1467  * device pins in the datasheet.
1468  */
1469 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1470 {
1471         return _regulator_get(dev, id, false, false);
1472 }
1473 EXPORT_SYMBOL_GPL(regulator_get_optional);
1474
1475 /* Locks held by regulator_put() */
1476 static void _regulator_put(struct regulator *regulator)
1477 {
1478         struct regulator_dev *rdev;
1479
1480         if (regulator == NULL || IS_ERR(regulator))
1481                 return;
1482
1483         rdev = regulator->rdev;
1484
1485         debugfs_remove_recursive(regulator->debugfs);
1486
1487         /* remove any sysfs entries */
1488         if (regulator->dev)
1489                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1490         kfree(regulator->supply_name);
1491         list_del(&regulator->list);
1492         kfree(regulator);
1493
1494         rdev->open_count--;
1495         rdev->exclusive = 0;
1496
1497         module_put(rdev->owner);
1498 }
1499
1500 /**
1501  * regulator_put - "free" the regulator source
1502  * @regulator: regulator source
1503  *
1504  * Note: drivers must ensure that all regulator_enable calls made on this
1505  * regulator source are balanced by regulator_disable calls prior to calling
1506  * this function.
1507  */
1508 void regulator_put(struct regulator *regulator)
1509 {
1510         mutex_lock(&regulator_list_mutex);
1511         _regulator_put(regulator);
1512         mutex_unlock(&regulator_list_mutex);
1513 }
1514 EXPORT_SYMBOL_GPL(regulator_put);
1515
1516 /**
1517  * regulator_register_supply_alias - Provide device alias for supply lookup
1518  *
1519  * @dev: device that will be given as the regulator "consumer"
1520  * @id: Supply name or regulator ID
1521  * @alias_dev: device that should be used to lookup the supply
1522  * @alias_id: Supply name or regulator ID that should be used to lookup the
1523  * supply
1524  *
1525  * All lookups for id on dev will instead be conducted for alias_id on
1526  * alias_dev.
1527  */
1528 int regulator_register_supply_alias(struct device *dev, const char *id,
1529                                     struct device *alias_dev,
1530                                     const char *alias_id)
1531 {
1532         struct regulator_supply_alias *map;
1533
1534         map = regulator_find_supply_alias(dev, id);
1535         if (map)
1536                 return -EEXIST;
1537
1538         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1539         if (!map)
1540                 return -ENOMEM;
1541
1542         map->src_dev = dev;
1543         map->src_supply = id;
1544         map->alias_dev = alias_dev;
1545         map->alias_supply = alias_id;
1546
1547         list_add(&map->list, &regulator_supply_alias_list);
1548
1549         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1550                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1551
1552         return 0;
1553 }
1554 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1555
1556 /**
1557  * regulator_unregister_supply_alias - Remove device alias
1558  *
1559  * @dev: device that will be given as the regulator "consumer"
1560  * @id: Supply name or regulator ID
1561  *
1562  * Remove a lookup alias if one exists for id on dev.
1563  */
1564 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1565 {
1566         struct regulator_supply_alias *map;
1567
1568         map = regulator_find_supply_alias(dev, id);
1569         if (map) {
1570                 list_del(&map->list);
1571                 kfree(map);
1572         }
1573 }
1574 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1575
1576 /**
1577  * regulator_bulk_register_supply_alias - register multiple aliases
1578  *
1579  * @dev: device that will be given as the regulator "consumer"
1580  * @id: List of supply names or regulator IDs
1581  * @alias_dev: device that should be used to lookup the supply
1582  * @alias_id: List of supply names or regulator IDs that should be used to
1583  * lookup the supply
1584  * @num_id: Number of aliases to register
1585  *
1586  * @return 0 on success, an errno on failure.
1587  *
1588  * This helper function allows drivers to register several supply
1589  * aliases in one operation.  If any of the aliases cannot be
1590  * registered any aliases that were registered will be removed
1591  * before returning to the caller.
1592  */
1593 int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1594                                          struct device *alias_dev,
1595                                          const char **alias_id,
1596                                          int num_id)
1597 {
1598         int i;
1599         int ret;
1600
1601         for (i = 0; i < num_id; ++i) {
1602                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1603                                                       alias_id[i]);
1604                 if (ret < 0)
1605                         goto err;
1606         }
1607
1608         return 0;
1609
1610 err:
1611         dev_err(dev,
1612                 "Failed to create supply alias %s,%s -> %s,%s\n",
1613                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1614
1615         while (--i >= 0)
1616                 regulator_unregister_supply_alias(dev, id[i]);
1617
1618         return ret;
1619 }
1620 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1621
1622 /**
1623  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1624  *
1625  * @dev: device that will be given as the regulator "consumer"
1626  * @id: List of supply names or regulator IDs
1627  * @num_id: Number of aliases to unregister
1628  *
1629  * This helper function allows drivers to unregister several supply
1630  * aliases in one operation.
1631  */
1632 void regulator_bulk_unregister_supply_alias(struct device *dev,
1633                                             const char **id,
1634                                             int num_id)
1635 {
1636         int i;
1637
1638         for (i = 0; i < num_id; ++i)
1639                 regulator_unregister_supply_alias(dev, id[i]);
1640 }
1641 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1642
1643
1644 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1645 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1646                                 const struct regulator_config *config)
1647 {
1648         struct regulator_enable_gpio *pin;
1649         int ret;
1650
1651         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1652                 if (pin->gpio == config->ena_gpio) {
1653                         rdev_dbg(rdev, "GPIO %d is already used\n",
1654                                 config->ena_gpio);
1655                         goto update_ena_gpio_to_rdev;
1656                 }
1657         }
1658
1659         ret = gpio_request_one(config->ena_gpio,
1660                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1661                                 rdev_get_name(rdev));
1662         if (ret)
1663                 return ret;
1664
1665         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1666         if (pin == NULL) {
1667                 gpio_free(config->ena_gpio);
1668                 return -ENOMEM;
1669         }
1670
1671         pin->gpio = config->ena_gpio;
1672         pin->ena_gpio_invert = config->ena_gpio_invert;
1673         list_add(&pin->list, &regulator_ena_gpio_list);
1674
1675 update_ena_gpio_to_rdev:
1676         pin->request_count++;
1677         rdev->ena_pin = pin;
1678         return 0;
1679 }
1680
1681 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1682 {
1683         struct regulator_enable_gpio *pin, *n;
1684
1685         if (!rdev->ena_pin)
1686                 return;
1687
1688         /* Free the GPIO only in case of no use */
1689         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1690                 if (pin->gpio == rdev->ena_pin->gpio) {
1691                         if (pin->request_count <= 1) {
1692                                 pin->request_count = 0;
1693                                 gpio_free(pin->gpio);
1694                                 list_del(&pin->list);
1695                                 kfree(pin);
1696                         } else {
1697                                 pin->request_count--;
1698                         }
1699                 }
1700         }
1701 }
1702
1703 /**
1704  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1705  * @rdev: regulator_dev structure
1706  * @enable: enable GPIO at initial use?
1707  *
1708  * GPIO is enabled in case of initial use. (enable_count is 0)
1709  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1710  */
1711 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1712 {
1713         struct regulator_enable_gpio *pin = rdev->ena_pin;
1714
1715         if (!pin)
1716                 return -EINVAL;
1717
1718         if (enable) {
1719                 /* Enable GPIO at initial use */
1720                 if (pin->enable_count == 0)
1721                         gpio_set_value_cansleep(pin->gpio,
1722                                                 !pin->ena_gpio_invert);
1723
1724                 pin->enable_count++;
1725         } else {
1726                 if (pin->enable_count > 1) {
1727                         pin->enable_count--;
1728                         return 0;
1729                 }
1730
1731                 /* Disable GPIO if not used */
1732                 if (pin->enable_count <= 1) {
1733                         gpio_set_value_cansleep(pin->gpio,
1734                                                 pin->ena_gpio_invert);
1735                         pin->enable_count = 0;
1736                 }
1737         }
1738
1739         return 0;
1740 }
1741
1742 static int _regulator_do_enable(struct regulator_dev *rdev)
1743 {
1744         int ret, delay;
1745
1746         /* Query before enabling in case configuration dependent.  */
1747         ret = _regulator_get_enable_time(rdev);
1748         if (ret >= 0) {
1749                 delay = ret;
1750         } else {
1751                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1752                 delay = 0;
1753         }
1754
1755         trace_regulator_enable(rdev_get_name(rdev));
1756
1757         if (rdev->ena_pin) {
1758                 ret = regulator_ena_gpio_ctrl(rdev, true);
1759                 if (ret < 0)
1760                         return ret;
1761                 rdev->ena_gpio_state = 1;
1762         } else if (rdev->desc->ops->enable) {
1763                 ret = rdev->desc->ops->enable(rdev);
1764                 if (ret < 0)
1765                         return ret;
1766         } else {
1767                 return -EINVAL;
1768         }
1769
1770         /* Allow the regulator to ramp; it would be useful to extend
1771          * this for bulk operations so that the regulators can ramp
1772          * together.  */
1773         trace_regulator_enable_delay(rdev_get_name(rdev));
1774
1775         /*
1776          * Delay for the requested amount of time as per the guidelines in:
1777          *
1778          *     Documentation/timers/timers-howto.txt
1779          *
1780          * The assumption here is that regulators will never be enabled in
1781          * atomic context and therefore sleeping functions can be used.
1782          */
1783         if (delay) {
1784                 unsigned int ms = delay / 1000;
1785                 unsigned int us = delay % 1000;
1786
1787                 if (ms > 0) {
1788                         /*
1789                          * For small enough values, handle super-millisecond
1790                          * delays in the usleep_range() call below.
1791                          */
1792                         if (ms < 20)
1793                                 us += ms * 1000;
1794                         else
1795                                 msleep(ms);
1796                 }
1797
1798                 /*
1799                  * Give the scheduler some room to coalesce with any other
1800                  * wakeup sources. For delays shorter than 10 us, don't even
1801                  * bother setting up high-resolution timers and just busy-
1802                  * loop.
1803                  */
1804                 if (us >= 10)
1805                         usleep_range(us, us + 100);
1806                 else
1807                         udelay(us);
1808         }
1809
1810         trace_regulator_enable_complete(rdev_get_name(rdev));
1811
1812         return 0;
1813 }
1814
1815 /* locks held by regulator_enable() */
1816 static int _regulator_enable(struct regulator_dev *rdev)
1817 {
1818         int ret;
1819
1820         /* check voltage and requested load before enabling */
1821         if (rdev->constraints &&
1822             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1823                 drms_uA_update(rdev);
1824
1825         if (rdev->use_count == 0) {
1826                 /* The regulator may on if it's not switchable or left on */
1827                 ret = _regulator_is_enabled(rdev);
1828                 if (ret == -EINVAL || ret == 0) {
1829                         if (!_regulator_can_change_status(rdev))
1830                                 return -EPERM;
1831
1832                         ret = _regulator_do_enable(rdev);
1833                         if (ret < 0)
1834                                 return ret;
1835
1836                 } else if (ret < 0) {
1837                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1838                         return ret;
1839                 }
1840                 /* Fallthrough on positive return values - already enabled */
1841         }
1842
1843         rdev->use_count++;
1844
1845         return 0;
1846 }
1847
1848 /**
1849  * regulator_enable - enable regulator output
1850  * @regulator: regulator source
1851  *
1852  * Request that the regulator be enabled with the regulator output at
1853  * the predefined voltage or current value.  Calls to regulator_enable()
1854  * must be balanced with calls to regulator_disable().
1855  *
1856  * NOTE: the output value can be set by other drivers, boot loader or may be
1857  * hardwired in the regulator.
1858  */
1859 int regulator_enable(struct regulator *regulator)
1860 {
1861         struct regulator_dev *rdev = regulator->rdev;
1862         int ret = 0;
1863
1864         if (regulator->always_on)
1865                 return 0;
1866
1867         if (rdev->supply) {
1868                 ret = regulator_enable(rdev->supply);
1869                 if (ret != 0)
1870                         return ret;
1871         }
1872
1873         mutex_lock(&rdev->mutex);
1874         ret = _regulator_enable(rdev);
1875         mutex_unlock(&rdev->mutex);
1876
1877         if (ret != 0 && rdev->supply)
1878                 regulator_disable(rdev->supply);
1879
1880         return ret;
1881 }
1882 EXPORT_SYMBOL_GPL(regulator_enable);
1883
1884 static int _regulator_do_disable(struct regulator_dev *rdev)
1885 {
1886         int ret;
1887
1888         trace_regulator_disable(rdev_get_name(rdev));
1889
1890         if (rdev->ena_pin) {
1891                 ret = regulator_ena_gpio_ctrl(rdev, false);
1892                 if (ret < 0)
1893                         return ret;
1894                 rdev->ena_gpio_state = 0;
1895
1896         } else if (rdev->desc->ops->disable) {
1897                 ret = rdev->desc->ops->disable(rdev);
1898                 if (ret != 0)
1899                         return ret;
1900         }
1901
1902         trace_regulator_disable_complete(rdev_get_name(rdev));
1903
1904         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1905                              NULL);
1906         return 0;
1907 }
1908
1909 /* locks held by regulator_disable() */
1910 static int _regulator_disable(struct regulator_dev *rdev)
1911 {
1912         int ret = 0;
1913
1914         if (WARN(rdev->use_count <= 0,
1915                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1916                 return -EIO;
1917
1918         /* are we the last user and permitted to disable ? */
1919         if (rdev->use_count == 1 &&
1920             (rdev->constraints && !rdev->constraints->always_on)) {
1921
1922                 /* we are last user */
1923                 if (_regulator_can_change_status(rdev)) {
1924                         ret = _regulator_do_disable(rdev);
1925                         if (ret < 0) {
1926                                 rdev_err(rdev, "failed to disable\n");
1927                                 return ret;
1928                         }
1929                 }
1930
1931                 rdev->use_count = 0;
1932         } else if (rdev->use_count > 1) {
1933
1934                 if (rdev->constraints &&
1935                         (rdev->constraints->valid_ops_mask &
1936                         REGULATOR_CHANGE_DRMS))
1937                         drms_uA_update(rdev);
1938
1939                 rdev->use_count--;
1940         }
1941
1942         return ret;
1943 }
1944
1945 /**
1946  * regulator_disable - disable regulator output
1947  * @regulator: regulator source
1948  *
1949  * Disable the regulator output voltage or current.  Calls to
1950  * regulator_enable() must be balanced with calls to
1951  * regulator_disable().
1952  *
1953  * NOTE: this will only disable the regulator output if no other consumer
1954  * devices have it enabled, the regulator device supports disabling and
1955  * machine constraints permit this operation.
1956  */
1957 int regulator_disable(struct regulator *regulator)
1958 {
1959         struct regulator_dev *rdev = regulator->rdev;
1960         int ret = 0;
1961
1962         if (regulator->always_on)
1963                 return 0;
1964
1965         mutex_lock(&rdev->mutex);
1966         ret = _regulator_disable(rdev);
1967         mutex_unlock(&rdev->mutex);
1968
1969         if (ret == 0 && rdev->supply)
1970                 regulator_disable(rdev->supply);
1971
1972         return ret;
1973 }
1974 EXPORT_SYMBOL_GPL(regulator_disable);
1975
1976 /* locks held by regulator_force_disable() */
1977 static int _regulator_force_disable(struct regulator_dev *rdev)
1978 {
1979         int ret = 0;
1980
1981         /* force disable */
1982         if (rdev->desc->ops->disable) {
1983                 /* ah well, who wants to live forever... */
1984                 ret = rdev->desc->ops->disable(rdev);
1985                 if (ret < 0) {
1986                         rdev_err(rdev, "failed to force disable\n");
1987                         return ret;
1988                 }
1989                 /* notify other consumers that power has been forced off */
1990                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1991                         REGULATOR_EVENT_DISABLE, NULL);
1992         }
1993
1994         return ret;
1995 }
1996
1997 /**
1998  * regulator_force_disable - force disable regulator output
1999  * @regulator: regulator source
2000  *
2001  * Forcibly disable the regulator output voltage or current.
2002  * NOTE: this *will* disable the regulator output even if other consumer
2003  * devices have it enabled. This should be used for situations when device
2004  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2005  */
2006 int regulator_force_disable(struct regulator *regulator)
2007 {
2008         struct regulator_dev *rdev = regulator->rdev;
2009         int ret;
2010
2011         mutex_lock(&rdev->mutex);
2012         regulator->uA_load = 0;
2013         ret = _regulator_force_disable(regulator->rdev);
2014         mutex_unlock(&rdev->mutex);
2015
2016         if (rdev->supply)
2017                 while (rdev->open_count--)
2018                         regulator_disable(rdev->supply);
2019
2020         return ret;
2021 }
2022 EXPORT_SYMBOL_GPL(regulator_force_disable);
2023
2024 static void regulator_disable_work(struct work_struct *work)
2025 {
2026         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2027                                                   disable_work.work);
2028         int count, i, ret;
2029
2030         mutex_lock(&rdev->mutex);
2031
2032         BUG_ON(!rdev->deferred_disables);
2033
2034         count = rdev->deferred_disables;
2035         rdev->deferred_disables = 0;
2036
2037         for (i = 0; i < count; i++) {
2038                 ret = _regulator_disable(rdev);
2039                 if (ret != 0)
2040                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2041         }
2042
2043         mutex_unlock(&rdev->mutex);
2044
2045         if (rdev->supply) {
2046                 for (i = 0; i < count; i++) {
2047                         ret = regulator_disable(rdev->supply);
2048                         if (ret != 0) {
2049                                 rdev_err(rdev,
2050                                          "Supply disable failed: %d\n", ret);
2051                         }
2052                 }
2053         }
2054 }
2055
2056 /**
2057  * regulator_disable_deferred - disable regulator output with delay
2058  * @regulator: regulator source
2059  * @ms: miliseconds until the regulator is disabled
2060  *
2061  * Execute regulator_disable() on the regulator after a delay.  This
2062  * is intended for use with devices that require some time to quiesce.
2063  *
2064  * NOTE: this will only disable the regulator output if no other consumer
2065  * devices have it enabled, the regulator device supports disabling and
2066  * machine constraints permit this operation.
2067  */
2068 int regulator_disable_deferred(struct regulator *regulator, int ms)
2069 {
2070         struct regulator_dev *rdev = regulator->rdev;
2071         int ret;
2072
2073         if (regulator->always_on)
2074                 return 0;
2075
2076         if (!ms)
2077                 return regulator_disable(regulator);
2078
2079         mutex_lock(&rdev->mutex);
2080         rdev->deferred_disables++;
2081         mutex_unlock(&rdev->mutex);
2082
2083         ret = queue_delayed_work(system_power_efficient_wq,
2084                                  &rdev->disable_work,
2085                                  msecs_to_jiffies(ms));
2086         if (ret < 0)
2087                 return ret;
2088         else
2089                 return 0;
2090 }
2091 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2092
2093 static int _regulator_is_enabled(struct regulator_dev *rdev)
2094 {
2095         /* A GPIO control always takes precedence */
2096         if (rdev->ena_pin)
2097                 return rdev->ena_gpio_state;
2098
2099         /* If we don't know then assume that the regulator is always on */
2100         if (!rdev->desc->ops->is_enabled)
2101                 return 1;
2102
2103         return rdev->desc->ops->is_enabled(rdev);
2104 }
2105
2106 /**
2107  * regulator_is_enabled - is the regulator output enabled
2108  * @regulator: regulator source
2109  *
2110  * Returns positive if the regulator driver backing the source/client
2111  * has requested that the device be enabled, zero if it hasn't, else a
2112  * negative errno code.
2113  *
2114  * Note that the device backing this regulator handle can have multiple
2115  * users, so it might be enabled even if regulator_enable() was never
2116  * called for this particular source.
2117  */
2118 int regulator_is_enabled(struct regulator *regulator)
2119 {
2120         int ret;
2121
2122         if (regulator->always_on)
2123                 return 1;
2124
2125         mutex_lock(&regulator->rdev->mutex);
2126         ret = _regulator_is_enabled(regulator->rdev);
2127         mutex_unlock(&regulator->rdev->mutex);
2128
2129         return ret;
2130 }
2131 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2132
2133 /**
2134  * regulator_can_change_voltage - check if regulator can change voltage
2135  * @regulator: regulator source
2136  *
2137  * Returns positive if the regulator driver backing the source/client
2138  * can change its voltage, false otherwise. Usefull for detecting fixed
2139  * or dummy regulators and disabling voltage change logic in the client
2140  * driver.
2141  */
2142 int regulator_can_change_voltage(struct regulator *regulator)
2143 {
2144         struct regulator_dev    *rdev = regulator->rdev;
2145
2146         if (rdev->constraints &&
2147             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2148                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2149                         return 1;
2150
2151                 if (rdev->desc->continuous_voltage_range &&
2152                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2153                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2154                         return 1;
2155         }
2156
2157         return 0;
2158 }
2159 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2160
2161 /**
2162  * regulator_count_voltages - count regulator_list_voltage() selectors
2163  * @regulator: regulator source
2164  *
2165  * Returns number of selectors, or negative errno.  Selectors are
2166  * numbered starting at zero, and typically correspond to bitfields
2167  * in hardware registers.
2168  */
2169 int regulator_count_voltages(struct regulator *regulator)
2170 {
2171         struct regulator_dev    *rdev = regulator->rdev;
2172
2173         return rdev->desc->n_voltages ? : -EINVAL;
2174 }
2175 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2176
2177 /**
2178  * regulator_list_voltage - enumerate supported voltages
2179  * @regulator: regulator source
2180  * @selector: identify voltage to list
2181  * Context: can sleep
2182  *
2183  * Returns a voltage that can be passed to @regulator_set_voltage(),
2184  * zero if this selector code can't be used on this system, or a
2185  * negative errno.
2186  */
2187 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2188 {
2189         struct regulator_dev    *rdev = regulator->rdev;
2190         struct regulator_ops    *ops = rdev->desc->ops;
2191         int                     ret;
2192
2193         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2194                 return rdev->desc->fixed_uV;
2195
2196         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2197                 return -EINVAL;
2198
2199         mutex_lock(&rdev->mutex);
2200         ret = ops->list_voltage(rdev, selector);
2201         mutex_unlock(&rdev->mutex);
2202
2203         if (ret > 0) {
2204                 if (ret < rdev->constraints->min_uV)
2205                         ret = 0;
2206                 else if (ret > rdev->constraints->max_uV)
2207                         ret = 0;
2208         }
2209
2210         return ret;
2211 }
2212 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2213
2214 /**
2215  * regulator_get_linear_step - return the voltage step size between VSEL values
2216  * @regulator: regulator source
2217  *
2218  * Returns the voltage step size between VSEL values for linear
2219  * regulators, or return 0 if the regulator isn't a linear regulator.
2220  */
2221 unsigned int regulator_get_linear_step(struct regulator *regulator)
2222 {
2223         struct regulator_dev *rdev = regulator->rdev;
2224
2225         return rdev->desc->uV_step;
2226 }
2227 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2228
2229 /**
2230  * regulator_is_supported_voltage - check if a voltage range can be supported
2231  *
2232  * @regulator: Regulator to check.
2233  * @min_uV: Minimum required voltage in uV.
2234  * @max_uV: Maximum required voltage in uV.
2235  *
2236  * Returns a boolean or a negative error code.
2237  */
2238 int regulator_is_supported_voltage(struct regulator *regulator,
2239                                    int min_uV, int max_uV)
2240 {
2241         struct regulator_dev *rdev = regulator->rdev;
2242         int i, voltages, ret;
2243
2244         /* If we can't change voltage check the current voltage */
2245         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2246                 ret = regulator_get_voltage(regulator);
2247                 if (ret >= 0)
2248                         return min_uV <= ret && ret <= max_uV;
2249                 else
2250                         return ret;
2251         }
2252
2253         /* Any voltage within constrains range is fine? */
2254         if (rdev->desc->continuous_voltage_range)
2255                 return min_uV >= rdev->constraints->min_uV &&
2256                                 max_uV <= rdev->constraints->max_uV;
2257
2258         ret = regulator_count_voltages(regulator);
2259         if (ret < 0)
2260                 return ret;
2261         voltages = ret;
2262
2263         for (i = 0; i < voltages; i++) {
2264                 ret = regulator_list_voltage(regulator, i);
2265
2266                 if (ret >= min_uV && ret <= max_uV)
2267                         return 1;
2268         }
2269
2270         return 0;
2271 }
2272 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2273
2274 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2275                                      int min_uV, int max_uV)
2276 {
2277         int ret;
2278         int delay = 0;
2279         int best_val = 0;
2280         unsigned int selector;
2281         int old_selector = -1;
2282
2283         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2284
2285         min_uV += rdev->constraints->uV_offset;
2286         max_uV += rdev->constraints->uV_offset;
2287
2288         /*
2289          * If we can't obtain the old selector there is not enough
2290          * info to call set_voltage_time_sel().
2291          */
2292         if (_regulator_is_enabled(rdev) &&
2293             rdev->desc->ops->set_voltage_time_sel &&
2294             rdev->desc->ops->get_voltage_sel) {
2295                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2296                 if (old_selector < 0)
2297                         return old_selector;
2298         }
2299
2300         if (rdev->desc->ops->set_voltage) {
2301                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2302                                                    &selector);
2303
2304                 if (ret >= 0) {
2305                         if (rdev->desc->ops->list_voltage)
2306                                 best_val = rdev->desc->ops->list_voltage(rdev,
2307                                                                          selector);
2308                         else
2309                                 best_val = _regulator_get_voltage(rdev);
2310                 }
2311
2312         } else if (rdev->desc->ops->set_voltage_sel) {
2313                 if (rdev->desc->ops->map_voltage) {
2314                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2315                                                            max_uV);
2316                 } else {
2317                         if (rdev->desc->ops->list_voltage ==
2318                             regulator_list_voltage_linear)
2319                                 ret = regulator_map_voltage_linear(rdev,
2320                                                                 min_uV, max_uV);
2321                         else
2322                                 ret = regulator_map_voltage_iterate(rdev,
2323                                                                 min_uV, max_uV);
2324                 }
2325
2326                 if (ret >= 0) {
2327                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2328                         if (min_uV <= best_val && max_uV >= best_val) {
2329                                 selector = ret;
2330                                 if (old_selector == selector)
2331                                         ret = 0;
2332                                 else
2333                                         ret = rdev->desc->ops->set_voltage_sel(
2334                                                                 rdev, ret);
2335                         } else {
2336                                 ret = -EINVAL;
2337                         }
2338                 }
2339         } else {
2340                 ret = -EINVAL;
2341         }
2342
2343         /* Call set_voltage_time_sel if successfully obtained old_selector */
2344         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2345                 && old_selector != selector) {
2346
2347                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2348                                                 old_selector, selector);
2349                 if (delay < 0) {
2350                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2351                                   delay);
2352                         delay = 0;
2353                 }
2354
2355                 /* Insert any necessary delays */
2356                 if (delay >= 1000) {
2357                         mdelay(delay / 1000);
2358                         udelay(delay % 1000);
2359                 } else if (delay) {
2360                         udelay(delay);
2361                 }
2362         }
2363
2364         if (ret == 0 && best_val >= 0) {
2365                 unsigned long data = best_val;
2366
2367                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2368                                      (void *)data);
2369         }
2370
2371         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2372
2373         return ret;
2374 }
2375
2376 /**
2377  * regulator_set_voltage - set regulator output voltage
2378  * @regulator: regulator source
2379  * @min_uV: Minimum required voltage in uV
2380  * @max_uV: Maximum acceptable voltage in uV
2381  *
2382  * Sets a voltage regulator to the desired output voltage. This can be set
2383  * during any regulator state. IOW, regulator can be disabled or enabled.
2384  *
2385  * If the regulator is enabled then the voltage will change to the new value
2386  * immediately otherwise if the regulator is disabled the regulator will
2387  * output at the new voltage when enabled.
2388  *
2389  * NOTE: If the regulator is shared between several devices then the lowest
2390  * request voltage that meets the system constraints will be used.
2391  * Regulator system constraints must be set for this regulator before
2392  * calling this function otherwise this call will fail.
2393  */
2394 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2395 {
2396         struct regulator_dev *rdev = regulator->rdev;
2397         int ret = 0;
2398         int old_min_uV, old_max_uV;
2399
2400         mutex_lock(&rdev->mutex);
2401
2402         /* If we're setting the same range as last time the change
2403          * should be a noop (some cpufreq implementations use the same
2404          * voltage for multiple frequencies, for example).
2405          */
2406         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2407                 goto out;
2408
2409         /* sanity check */
2410         if (!rdev->desc->ops->set_voltage &&
2411             !rdev->desc->ops->set_voltage_sel) {
2412                 ret = -EINVAL;
2413                 goto out;
2414         }
2415
2416         /* constraints check */
2417         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2418         if (ret < 0)
2419                 goto out;
2420
2421         /* restore original values in case of error */
2422         old_min_uV = regulator->min_uV;
2423         old_max_uV = regulator->max_uV;
2424         regulator->min_uV = min_uV;
2425         regulator->max_uV = max_uV;
2426
2427         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2428         if (ret < 0)
2429                 goto out2;
2430
2431         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2432         if (ret < 0)
2433                 goto out2;
2434
2435 out:
2436         mutex_unlock(&rdev->mutex);
2437         return ret;
2438 out2:
2439         regulator->min_uV = old_min_uV;
2440         regulator->max_uV = old_max_uV;
2441         mutex_unlock(&rdev->mutex);
2442         return ret;
2443 }
2444 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2445
2446 /**
2447  * regulator_set_voltage_time - get raise/fall time
2448  * @regulator: regulator source
2449  * @old_uV: starting voltage in microvolts
2450  * @new_uV: target voltage in microvolts
2451  *
2452  * Provided with the starting and ending voltage, this function attempts to
2453  * calculate the time in microseconds required to rise or fall to this new
2454  * voltage.
2455  */
2456 int regulator_set_voltage_time(struct regulator *regulator,
2457                                int old_uV, int new_uV)
2458 {
2459         struct regulator_dev    *rdev = regulator->rdev;
2460         struct regulator_ops    *ops = rdev->desc->ops;
2461         int old_sel = -1;
2462         int new_sel = -1;
2463         int voltage;
2464         int i;
2465
2466         /* Currently requires operations to do this */
2467         if (!ops->list_voltage || !ops->set_voltage_time_sel
2468             || !rdev->desc->n_voltages)
2469                 return -EINVAL;
2470
2471         for (i = 0; i < rdev->desc->n_voltages; i++) {
2472                 /* We only look for exact voltage matches here */
2473                 voltage = regulator_list_voltage(regulator, i);
2474                 if (voltage < 0)
2475                         return -EINVAL;
2476                 if (voltage == 0)
2477                         continue;
2478                 if (voltage == old_uV)
2479                         old_sel = i;
2480                 if (voltage == new_uV)
2481                         new_sel = i;
2482         }
2483
2484         if (old_sel < 0 || new_sel < 0)
2485                 return -EINVAL;
2486
2487         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2488 }
2489 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2490
2491 /**
2492  * regulator_set_voltage_time_sel - get raise/fall time
2493  * @rdev: regulator source device
2494  * @old_selector: selector for starting voltage
2495  * @new_selector: selector for target voltage
2496  *
2497  * Provided with the starting and target voltage selectors, this function
2498  * returns time in microseconds required to rise or fall to this new voltage
2499  *
2500  * Drivers providing ramp_delay in regulation_constraints can use this as their
2501  * set_voltage_time_sel() operation.
2502  */
2503 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2504                                    unsigned int old_selector,
2505                                    unsigned int new_selector)
2506 {
2507         unsigned int ramp_delay = 0;
2508         int old_volt, new_volt;
2509
2510         if (rdev->constraints->ramp_delay)
2511                 ramp_delay = rdev->constraints->ramp_delay;
2512         else if (rdev->desc->ramp_delay)
2513                 ramp_delay = rdev->desc->ramp_delay;
2514
2515         if (ramp_delay == 0) {
2516                 rdev_warn(rdev, "ramp_delay not set\n");
2517                 return 0;
2518         }
2519
2520         /* sanity check */
2521         if (!rdev->desc->ops->list_voltage)
2522                 return -EINVAL;
2523
2524         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2525         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2526
2527         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2528 }
2529 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2530
2531 /**
2532  * regulator_sync_voltage - re-apply last regulator output voltage
2533  * @regulator: regulator source
2534  *
2535  * Re-apply the last configured voltage.  This is intended to be used
2536  * where some external control source the consumer is cooperating with
2537  * has caused the configured voltage to change.
2538  */
2539 int regulator_sync_voltage(struct regulator *regulator)
2540 {
2541         struct regulator_dev *rdev = regulator->rdev;
2542         int ret, min_uV, max_uV;
2543
2544         mutex_lock(&rdev->mutex);
2545
2546         if (!rdev->desc->ops->set_voltage &&
2547             !rdev->desc->ops->set_voltage_sel) {
2548                 ret = -EINVAL;
2549                 goto out;
2550         }
2551
2552         /* This is only going to work if we've had a voltage configured. */
2553         if (!regulator->min_uV && !regulator->max_uV) {
2554                 ret = -EINVAL;
2555                 goto out;
2556         }
2557
2558         min_uV = regulator->min_uV;
2559         max_uV = regulator->max_uV;
2560
2561         /* This should be a paranoia check... */
2562         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2563         if (ret < 0)
2564                 goto out;
2565
2566         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2567         if (ret < 0)
2568                 goto out;
2569
2570         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2571
2572 out:
2573         mutex_unlock(&rdev->mutex);
2574         return ret;
2575 }
2576 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2577
2578 static int _regulator_get_voltage(struct regulator_dev *rdev)
2579 {
2580         int sel, ret;
2581
2582         if (rdev->desc->ops->get_voltage_sel) {
2583                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2584                 if (sel < 0)
2585                         return sel;
2586                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2587         } else if (rdev->desc->ops->get_voltage) {
2588                 ret = rdev->desc->ops->get_voltage(rdev);
2589         } else if (rdev->desc->ops->list_voltage) {
2590                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2591         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2592                 ret = rdev->desc->fixed_uV;
2593         } else {
2594                 return -EINVAL;
2595         }
2596
2597         if (ret < 0)
2598                 return ret;
2599         return ret - rdev->constraints->uV_offset;
2600 }
2601
2602 /**
2603  * regulator_get_voltage - get regulator output voltage
2604  * @regulator: regulator source
2605  *
2606  * This returns the current regulator voltage in uV.
2607  *
2608  * NOTE: If the regulator is disabled it will return the voltage value. This
2609  * function should not be used to determine regulator state.
2610  */
2611 int regulator_get_voltage(struct regulator *regulator)
2612 {
2613         int ret;
2614
2615         mutex_lock(&regulator->rdev->mutex);
2616
2617         ret = _regulator_get_voltage(regulator->rdev);
2618
2619         mutex_unlock(&regulator->rdev->mutex);
2620
2621         return ret;
2622 }
2623 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2624
2625 /**
2626  * regulator_set_current_limit - set regulator output current limit
2627  * @regulator: regulator source
2628  * @min_uA: Minimum supported current in uA
2629  * @max_uA: Maximum supported current in uA
2630  *
2631  * Sets current sink to the desired output current. This can be set during
2632  * any regulator state. IOW, regulator can be disabled or enabled.
2633  *
2634  * If the regulator is enabled then the current will change to the new value
2635  * immediately otherwise if the regulator is disabled the regulator will
2636  * output at the new current when enabled.
2637  *
2638  * NOTE: Regulator system constraints must be set for this regulator before
2639  * calling this function otherwise this call will fail.
2640  */
2641 int regulator_set_current_limit(struct regulator *regulator,
2642                                int min_uA, int max_uA)
2643 {
2644         struct regulator_dev *rdev = regulator->rdev;
2645         int ret;
2646
2647         mutex_lock(&rdev->mutex);
2648
2649         /* sanity check */
2650         if (!rdev->desc->ops->set_current_limit) {
2651                 ret = -EINVAL;
2652                 goto out;
2653         }
2654
2655         /* constraints check */
2656         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2657         if (ret < 0)
2658                 goto out;
2659
2660         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2661 out:
2662         mutex_unlock(&rdev->mutex);
2663         return ret;
2664 }
2665 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2666
2667 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2668 {
2669         int ret;
2670
2671         mutex_lock(&rdev->mutex);
2672
2673         /* sanity check */
2674         if (!rdev->desc->ops->get_current_limit) {
2675                 ret = -EINVAL;
2676                 goto out;
2677         }
2678
2679         ret = rdev->desc->ops->get_current_limit(rdev);
2680 out:
2681         mutex_unlock(&rdev->mutex);
2682         return ret;
2683 }
2684
2685 /**
2686  * regulator_get_current_limit - get regulator output current
2687  * @regulator: regulator source
2688  *
2689  * This returns the current supplied by the specified current sink in uA.
2690  *
2691  * NOTE: If the regulator is disabled it will return the current value. This
2692  * function should not be used to determine regulator state.
2693  */
2694 int regulator_get_current_limit(struct regulator *regulator)
2695 {
2696         return _regulator_get_current_limit(regulator->rdev);
2697 }
2698 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2699
2700 /**
2701  * regulator_set_mode - set regulator operating mode
2702  * @regulator: regulator source
2703  * @mode: operating mode - one of the REGULATOR_MODE constants
2704  *
2705  * Set regulator operating mode to increase regulator efficiency or improve
2706  * regulation performance.
2707  *
2708  * NOTE: Regulator system constraints must be set for this regulator before
2709  * calling this function otherwise this call will fail.
2710  */
2711 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2712 {
2713         struct regulator_dev *rdev = regulator->rdev;
2714         int ret;
2715         int regulator_curr_mode;
2716
2717         mutex_lock(&rdev->mutex);
2718
2719         /* sanity check */
2720         if (!rdev->desc->ops->set_mode) {
2721                 ret = -EINVAL;
2722                 goto out;
2723         }
2724
2725         /* return if the same mode is requested */
2726         if (rdev->desc->ops->get_mode) {
2727                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2728                 if (regulator_curr_mode == mode) {
2729                         ret = 0;
2730                         goto out;
2731                 }
2732         }
2733
2734         /* constraints check */
2735         ret = regulator_mode_constrain(rdev, &mode);
2736         if (ret < 0)
2737                 goto out;
2738
2739         ret = rdev->desc->ops->set_mode(rdev, mode);
2740 out:
2741         mutex_unlock(&rdev->mutex);
2742         return ret;
2743 }
2744 EXPORT_SYMBOL_GPL(regulator_set_mode);
2745
2746 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2747 {
2748         int ret;
2749
2750         mutex_lock(&rdev->mutex);
2751
2752         /* sanity check */
2753         if (!rdev->desc->ops->get_mode) {
2754                 ret = -EINVAL;
2755                 goto out;
2756         }
2757
2758         ret = rdev->desc->ops->get_mode(rdev);
2759 out:
2760         mutex_unlock(&rdev->mutex);
2761         return ret;
2762 }
2763
2764 /**
2765  * regulator_get_mode - get regulator operating mode
2766  * @regulator: regulator source
2767  *
2768  * Get the current regulator operating mode.
2769  */
2770 unsigned int regulator_get_mode(struct regulator *regulator)
2771 {
2772         return _regulator_get_mode(regulator->rdev);
2773 }
2774 EXPORT_SYMBOL_GPL(regulator_get_mode);
2775
2776 /**
2777  * regulator_set_optimum_mode - set regulator optimum operating mode
2778  * @regulator: regulator source
2779  * @uA_load: load current
2780  *
2781  * Notifies the regulator core of a new device load. This is then used by
2782  * DRMS (if enabled by constraints) to set the most efficient regulator
2783  * operating mode for the new regulator loading.
2784  *
2785  * Consumer devices notify their supply regulator of the maximum power
2786  * they will require (can be taken from device datasheet in the power
2787  * consumption tables) when they change operational status and hence power
2788  * state. Examples of operational state changes that can affect power
2789  * consumption are :-
2790  *
2791  *    o Device is opened / closed.
2792  *    o Device I/O is about to begin or has just finished.
2793  *    o Device is idling in between work.
2794  *
2795  * This information is also exported via sysfs to userspace.
2796  *
2797  * DRMS will sum the total requested load on the regulator and change
2798  * to the most efficient operating mode if platform constraints allow.
2799  *
2800  * Returns the new regulator mode or error.
2801  */
2802 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2803 {
2804         struct regulator_dev *rdev = regulator->rdev;
2805         struct regulator *consumer;
2806         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2807         unsigned int mode;
2808
2809         if (rdev->supply)
2810                 input_uV = regulator_get_voltage(rdev->supply);
2811
2812         mutex_lock(&rdev->mutex);
2813
2814         /*
2815          * first check to see if we can set modes at all, otherwise just
2816          * tell the consumer everything is OK.
2817          */
2818         regulator->uA_load = uA_load;
2819         ret = regulator_check_drms(rdev);
2820         if (ret < 0) {
2821                 ret = 0;
2822                 goto out;
2823         }
2824
2825         if (!rdev->desc->ops->get_optimum_mode)
2826                 goto out;
2827
2828         /*
2829          * we can actually do this so any errors are indicators of
2830          * potential real failure.
2831          */
2832         ret = -EINVAL;
2833
2834         if (!rdev->desc->ops->set_mode)
2835                 goto out;
2836
2837         /* get output voltage */
2838         output_uV = _regulator_get_voltage(rdev);
2839         if (output_uV <= 0) {
2840                 rdev_err(rdev, "invalid output voltage found\n");
2841                 goto out;
2842         }
2843
2844         /* No supply? Use constraint voltage */
2845         if (input_uV <= 0)
2846                 input_uV = rdev->constraints->input_uV;
2847         if (input_uV <= 0) {
2848                 rdev_err(rdev, "invalid input voltage found\n");
2849                 goto out;
2850         }
2851
2852         /* calc total requested load for this regulator */
2853         list_for_each_entry(consumer, &rdev->consumer_list, list)
2854                 total_uA_load += consumer->uA_load;
2855
2856         mode = rdev->desc->ops->get_optimum_mode(rdev,
2857                                                  input_uV, output_uV,
2858                                                  total_uA_load);
2859         ret = regulator_mode_constrain(rdev, &mode);
2860         if (ret < 0) {
2861                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2862                          total_uA_load, input_uV, output_uV);
2863                 goto out;
2864         }
2865
2866         ret = rdev->desc->ops->set_mode(rdev, mode);
2867         if (ret < 0) {
2868                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2869                 goto out;
2870         }
2871         ret = mode;
2872 out:
2873         mutex_unlock(&rdev->mutex);
2874         return ret;
2875 }
2876 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2877
2878 /**
2879  * regulator_allow_bypass - allow the regulator to go into bypass mode
2880  *
2881  * @regulator: Regulator to configure
2882  * @enable: enable or disable bypass mode
2883  *
2884  * Allow the regulator to go into bypass mode if all other consumers
2885  * for the regulator also enable bypass mode and the machine
2886  * constraints allow this.  Bypass mode means that the regulator is
2887  * simply passing the input directly to the output with no regulation.
2888  */
2889 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2890 {
2891         struct regulator_dev *rdev = regulator->rdev;
2892         int ret = 0;
2893
2894         if (!rdev->desc->ops->set_bypass)
2895                 return 0;
2896
2897         if (rdev->constraints &&
2898             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2899                 return 0;
2900
2901         mutex_lock(&rdev->mutex);
2902
2903         if (enable && !regulator->bypass) {
2904                 rdev->bypass_count++;
2905
2906                 if (rdev->bypass_count == rdev->open_count) {
2907                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2908                         if (ret != 0)
2909                                 rdev->bypass_count--;
2910                 }
2911
2912         } else if (!enable && regulator->bypass) {
2913                 rdev->bypass_count--;
2914
2915                 if (rdev->bypass_count != rdev->open_count) {
2916                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2917                         if (ret != 0)
2918                                 rdev->bypass_count++;
2919                 }
2920         }
2921
2922         if (ret == 0)
2923                 regulator->bypass = enable;
2924
2925         mutex_unlock(&rdev->mutex);
2926
2927         return ret;
2928 }
2929 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2930
2931 /**
2932  * regulator_register_notifier - register regulator event notifier
2933  * @regulator: regulator source
2934  * @nb: notifier block
2935  *
2936  * Register notifier block to receive regulator events.
2937  */
2938 int regulator_register_notifier(struct regulator *regulator,
2939                               struct notifier_block *nb)
2940 {
2941         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2942                                                 nb);
2943 }
2944 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2945
2946 /**
2947  * regulator_unregister_notifier - unregister regulator event notifier
2948  * @regulator: regulator source
2949  * @nb: notifier block
2950  *
2951  * Unregister regulator event notifier block.
2952  */
2953 int regulator_unregister_notifier(struct regulator *regulator,
2954                                 struct notifier_block *nb)
2955 {
2956         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2957                                                   nb);
2958 }
2959 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2960
2961 /* notify regulator consumers and downstream regulator consumers.
2962  * Note mutex must be held by caller.
2963  */
2964 static void _notifier_call_chain(struct regulator_dev *rdev,
2965                                   unsigned long event, void *data)
2966 {
2967         /* call rdev chain first */
2968         blocking_notifier_call_chain(&rdev->notifier, event, data);
2969 }
2970
2971 /**
2972  * regulator_bulk_get - get multiple regulator consumers
2973  *
2974  * @dev:           Device to supply
2975  * @num_consumers: Number of consumers to register
2976  * @consumers:     Configuration of consumers; clients are stored here.
2977  *
2978  * @return 0 on success, an errno on failure.
2979  *
2980  * This helper function allows drivers to get several regulator
2981  * consumers in one operation.  If any of the regulators cannot be
2982  * acquired then any regulators that were allocated will be freed
2983  * before returning to the caller.
2984  */
2985 int regulator_bulk_get(struct device *dev, int num_consumers,
2986                        struct regulator_bulk_data *consumers)
2987 {
2988         int i;
2989         int ret;
2990
2991         for (i = 0; i < num_consumers; i++)
2992                 consumers[i].consumer = NULL;
2993
2994         for (i = 0; i < num_consumers; i++) {
2995                 consumers[i].consumer = regulator_get(dev,
2996                                                       consumers[i].supply);
2997                 if (IS_ERR(consumers[i].consumer)) {
2998                         ret = PTR_ERR(consumers[i].consumer);
2999                         dev_err(dev, "Failed to get supply '%s': %d\n",
3000                                 consumers[i].supply, ret);
3001                         consumers[i].consumer = NULL;
3002                         goto err;
3003                 }
3004         }
3005
3006         return 0;
3007
3008 err:
3009         while (--i >= 0)
3010                 regulator_put(consumers[i].consumer);
3011
3012         return ret;
3013 }
3014 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3015
3016 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3017 {
3018         struct regulator_bulk_data *bulk = data;
3019
3020         bulk->ret = regulator_enable(bulk->consumer);
3021 }
3022
3023 /**
3024  * regulator_bulk_enable - enable multiple regulator consumers
3025  *
3026  * @num_consumers: Number of consumers
3027  * @consumers:     Consumer data; clients are stored here.
3028  * @return         0 on success, an errno on failure
3029  *
3030  * This convenience API allows consumers to enable multiple regulator
3031  * clients in a single API call.  If any consumers cannot be enabled
3032  * then any others that were enabled will be disabled again prior to
3033  * return.
3034  */
3035 int regulator_bulk_enable(int num_consumers,
3036                           struct regulator_bulk_data *consumers)
3037 {
3038         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3039         int i;
3040         int ret = 0;
3041
3042         for (i = 0; i < num_consumers; i++) {
3043                 if (consumers[i].consumer->always_on)
3044                         consumers[i].ret = 0;
3045                 else
3046                         async_schedule_domain(regulator_bulk_enable_async,
3047                                               &consumers[i], &async_domain);
3048         }
3049
3050         async_synchronize_full_domain(&async_domain);
3051
3052         /* If any consumer failed we need to unwind any that succeeded */
3053         for (i = 0; i < num_consumers; i++) {
3054                 if (consumers[i].ret != 0) {
3055                         ret = consumers[i].ret;
3056                         goto err;
3057                 }
3058         }
3059
3060         return 0;
3061
3062 err:
3063         for (i = 0; i < num_consumers; i++) {
3064                 if (consumers[i].ret < 0)
3065                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3066                                consumers[i].ret);
3067                 else
3068                         regulator_disable(consumers[i].consumer);
3069         }
3070
3071         return ret;
3072 }
3073 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3074
3075 /**
3076  * regulator_bulk_disable - disable multiple regulator consumers
3077  *
3078  * @num_consumers: Number of consumers
3079  * @consumers:     Consumer data; clients are stored here.
3080  * @return         0 on success, an errno on failure
3081  *
3082  * This convenience API allows consumers to disable multiple regulator
3083  * clients in a single API call.  If any consumers cannot be disabled
3084  * then any others that were disabled will be enabled again prior to
3085  * return.
3086  */
3087 int regulator_bulk_disable(int num_consumers,
3088                            struct regulator_bulk_data *consumers)
3089 {
3090         int i;
3091         int ret, r;
3092
3093         for (i = num_consumers - 1; i >= 0; --i) {
3094                 ret = regulator_disable(consumers[i].consumer);
3095                 if (ret != 0)
3096                         goto err;
3097         }
3098
3099         return 0;
3100
3101 err:
3102         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3103         for (++i; i < num_consumers; ++i) {
3104                 r = regulator_enable(consumers[i].consumer);
3105                 if (r != 0)
3106                         pr_err("Failed to reename %s: %d\n",
3107                                consumers[i].supply, r);
3108         }
3109
3110         return ret;
3111 }
3112 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3113
3114 /**
3115  * regulator_bulk_force_disable - force disable multiple regulator consumers
3116  *
3117  * @num_consumers: Number of consumers
3118  * @consumers:     Consumer data; clients are stored here.
3119  * @return         0 on success, an errno on failure
3120  *
3121  * This convenience API allows consumers to forcibly disable multiple regulator
3122  * clients in a single API call.
3123  * NOTE: This should be used for situations when device damage will
3124  * likely occur if the regulators are not disabled (e.g. over temp).
3125  * Although regulator_force_disable function call for some consumers can
3126  * return error numbers, the function is called for all consumers.
3127  */
3128 int regulator_bulk_force_disable(int num_consumers,
3129                            struct regulator_bulk_data *consumers)
3130 {
3131         int i;
3132         int ret;
3133
3134         for (i = 0; i < num_consumers; i++)
3135                 consumers[i].ret =
3136                             regulator_force_disable(consumers[i].consumer);
3137
3138         for (i = 0; i < num_consumers; i++) {
3139                 if (consumers[i].ret != 0) {
3140                         ret = consumers[i].ret;
3141                         goto out;
3142                 }
3143         }
3144
3145         return 0;
3146 out:
3147         return ret;
3148 }
3149 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3150
3151 /**
3152  * regulator_bulk_free - free multiple regulator consumers
3153  *
3154  * @num_consumers: Number of consumers
3155  * @consumers:     Consumer data; clients are stored here.
3156  *
3157  * This convenience API allows consumers to free multiple regulator
3158  * clients in a single API call.
3159  */
3160 void regulator_bulk_free(int num_consumers,
3161                          struct regulator_bulk_data *consumers)
3162 {
3163         int i;
3164
3165         for (i = 0; i < num_consumers; i++) {
3166                 regulator_put(consumers[i].consumer);
3167                 consumers[i].consumer = NULL;
3168         }
3169 }
3170 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3171
3172 /**
3173  * regulator_notifier_call_chain - call regulator event notifier
3174  * @rdev: regulator source
3175  * @event: notifier block
3176  * @data: callback-specific data.
3177  *
3178  * Called by regulator drivers to notify clients a regulator event has
3179  * occurred. We also notify regulator clients downstream.
3180  * Note lock must be held by caller.
3181  */
3182 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3183                                   unsigned long event, void *data)
3184 {
3185         _notifier_call_chain(rdev, event, data);
3186         return NOTIFY_DONE;
3187
3188 }
3189 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3190
3191 /**
3192  * regulator_mode_to_status - convert a regulator mode into a status
3193  *
3194  * @mode: Mode to convert
3195  *
3196  * Convert a regulator mode into a status.
3197  */
3198 int regulator_mode_to_status(unsigned int mode)
3199 {
3200         switch (mode) {
3201         case REGULATOR_MODE_FAST:
3202                 return REGULATOR_STATUS_FAST;
3203         case REGULATOR_MODE_NORMAL:
3204                 return REGULATOR_STATUS_NORMAL;
3205         case REGULATOR_MODE_IDLE:
3206                 return REGULATOR_STATUS_IDLE;
3207         case REGULATOR_MODE_STANDBY:
3208                 return REGULATOR_STATUS_STANDBY;
3209         default:
3210                 return REGULATOR_STATUS_UNDEFINED;
3211         }
3212 }
3213 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3214
3215 /*
3216  * To avoid cluttering sysfs (and memory) with useless state, only
3217  * create attributes that can be meaningfully displayed.
3218  */
3219 static int add_regulator_attributes(struct regulator_dev *rdev)
3220 {
3221         struct device           *dev = &rdev->dev;
3222         struct regulator_ops    *ops = rdev->desc->ops;
3223         int                     status = 0;
3224
3225         /* some attributes need specific methods to be displayed */
3226         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3227             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3228             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3229                 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3230                 status = device_create_file(dev, &dev_attr_microvolts);
3231                 if (status < 0)
3232                         return status;
3233         }
3234         if (ops->get_current_limit) {
3235                 status = device_create_file(dev, &dev_attr_microamps);
3236                 if (status < 0)
3237                         return status;
3238         }
3239         if (ops->get_mode) {
3240                 status = device_create_file(dev, &dev_attr_opmode);
3241                 if (status < 0)
3242                         return status;
3243         }
3244         if (rdev->ena_pin || ops->is_enabled) {
3245                 status = device_create_file(dev, &dev_attr_state);
3246                 if (status < 0)
3247                         return status;
3248         }
3249         if (ops->get_status) {
3250                 status = device_create_file(dev, &dev_attr_status);
3251                 if (status < 0)
3252                         return status;
3253         }
3254         if (ops->get_bypass) {
3255                 status = device_create_file(dev, &dev_attr_bypass);
3256                 if (status < 0)
3257                         return status;
3258         }
3259
3260         /* some attributes are type-specific */
3261         if (rdev->desc->type == REGULATOR_CURRENT) {
3262                 status = device_create_file(dev, &dev_attr_requested_microamps);
3263                 if (status < 0)
3264                         return status;
3265         }
3266
3267         /* all the other attributes exist to support constraints;
3268          * don't show them if there are no constraints, or if the
3269          * relevant supporting methods are missing.
3270          */
3271         if (!rdev->constraints)
3272                 return status;
3273
3274         /* constraints need specific supporting methods */
3275         if (ops->set_voltage || ops->set_voltage_sel) {
3276                 status = device_create_file(dev, &dev_attr_min_microvolts);
3277                 if (status < 0)
3278                         return status;
3279                 status = device_create_file(dev, &dev_attr_max_microvolts);
3280                 if (status < 0)
3281                         return status;
3282         }
3283         if (ops->set_current_limit) {
3284                 status = device_create_file(dev, &dev_attr_min_microamps);
3285                 if (status < 0)
3286                         return status;
3287                 status = device_create_file(dev, &dev_attr_max_microamps);
3288                 if (status < 0)
3289                         return status;
3290         }
3291
3292         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3293         if (status < 0)
3294                 return status;
3295         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3296         if (status < 0)
3297                 return status;
3298         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3299         if (status < 0)
3300                 return status;
3301
3302         if (ops->set_suspend_voltage) {
3303                 status = device_create_file(dev,
3304                                 &dev_attr_suspend_standby_microvolts);
3305                 if (status < 0)
3306                         return status;
3307                 status = device_create_file(dev,
3308                                 &dev_attr_suspend_mem_microvolts);
3309                 if (status < 0)
3310                         return status;
3311                 status = device_create_file(dev,
3312                                 &dev_attr_suspend_disk_microvolts);
3313                 if (status < 0)
3314                         return status;
3315         }
3316
3317         if (ops->set_suspend_mode) {
3318                 status = device_create_file(dev,
3319                                 &dev_attr_suspend_standby_mode);
3320                 if (status < 0)
3321                         return status;
3322                 status = device_create_file(dev,
3323                                 &dev_attr_suspend_mem_mode);
3324                 if (status < 0)
3325                         return status;
3326                 status = device_create_file(dev,
3327                                 &dev_attr_suspend_disk_mode);
3328                 if (status < 0)
3329                         return status;
3330         }
3331
3332         return status;
3333 }
3334
3335 static void rdev_init_debugfs(struct regulator_dev *rdev)
3336 {
3337         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3338         if (!rdev->debugfs) {
3339                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3340                 return;
3341         }
3342
3343         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3344                            &rdev->use_count);
3345         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3346                            &rdev->open_count);
3347         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3348                            &rdev->bypass_count);
3349 }
3350
3351 /**
3352  * regulator_register - register regulator
3353  * @regulator_desc: regulator to register
3354  * @config: runtime configuration for regulator
3355  *
3356  * Called by regulator drivers to register a regulator.
3357  * Returns a valid pointer to struct regulator_dev on success
3358  * or an ERR_PTR() on error.
3359  */
3360 struct regulator_dev *
3361 regulator_register(const struct regulator_desc *regulator_desc,
3362                    const struct regulator_config *config)
3363 {
3364         const struct regulation_constraints *constraints = NULL;
3365         const struct regulator_init_data *init_data;
3366         static atomic_t regulator_no = ATOMIC_INIT(0);
3367         struct regulator_dev *rdev;
3368         struct device *dev;
3369         int ret, i;
3370         const char *supply = NULL;
3371
3372         if (regulator_desc == NULL || config == NULL)
3373                 return ERR_PTR(-EINVAL);
3374
3375         dev = config->dev;
3376         WARN_ON(!dev);
3377
3378         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3379                 return ERR_PTR(-EINVAL);
3380
3381         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3382             regulator_desc->type != REGULATOR_CURRENT)
3383                 return ERR_PTR(-EINVAL);
3384
3385         /* Only one of each should be implemented */
3386         WARN_ON(regulator_desc->ops->get_voltage &&
3387                 regulator_desc->ops->get_voltage_sel);
3388         WARN_ON(regulator_desc->ops->set_voltage &&
3389                 regulator_desc->ops->set_voltage_sel);
3390
3391         /* If we're using selectors we must implement list_voltage. */
3392         if (regulator_desc->ops->get_voltage_sel &&
3393             !regulator_desc->ops->list_voltage) {
3394                 return ERR_PTR(-EINVAL);
3395         }
3396         if (regulator_desc->ops->set_voltage_sel &&
3397             !regulator_desc->ops->list_voltage) {
3398                 return ERR_PTR(-EINVAL);
3399         }
3400
3401         init_data = config->init_data;
3402
3403         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3404         if (rdev == NULL)
3405                 return ERR_PTR(-ENOMEM);
3406
3407         mutex_lock(&regulator_list_mutex);
3408
3409         mutex_init(&rdev->mutex);
3410         rdev->reg_data = config->driver_data;
3411         rdev->owner = regulator_desc->owner;
3412         rdev->desc = regulator_desc;
3413         if (config->regmap)
3414                 rdev->regmap = config->regmap;
3415         else if (dev_get_regmap(dev, NULL))
3416                 rdev->regmap = dev_get_regmap(dev, NULL);
3417         else if (dev->parent)
3418                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3419         INIT_LIST_HEAD(&rdev->consumer_list);
3420         INIT_LIST_HEAD(&rdev->list);
3421         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3422         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3423
3424         /* preform any regulator specific init */
3425         if (init_data && init_data->regulator_init) {
3426                 ret = init_data->regulator_init(rdev->reg_data);
3427                 if (ret < 0)
3428                         goto clean;
3429         }
3430
3431         /* register with sysfs */
3432         rdev->dev.class = &regulator_class;
3433         rdev->dev.of_node = config->of_node;
3434         rdev->dev.parent = dev;
3435         dev_set_name(&rdev->dev, "regulator.%d",
3436                      atomic_inc_return(&regulator_no) - 1);
3437         ret = device_register(&rdev->dev);
3438         if (ret != 0) {
3439                 put_device(&rdev->dev);
3440                 goto clean;
3441         }
3442
3443         dev_set_drvdata(&rdev->dev, rdev);
3444
3445         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3446                 ret = regulator_ena_gpio_request(rdev, config);
3447                 if (ret != 0) {
3448                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3449                                  config->ena_gpio, ret);
3450                         goto wash;
3451                 }
3452
3453                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3454                         rdev->ena_gpio_state = 1;
3455
3456                 if (config->ena_gpio_invert)
3457                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3458         }
3459
3460         /* set regulator constraints */
3461         if (init_data)
3462                 constraints = &init_data->constraints;
3463
3464         ret = set_machine_constraints(rdev, constraints);
3465         if (ret < 0)
3466                 goto scrub;
3467
3468         /* add attributes supported by this regulator */
3469         ret = add_regulator_attributes(rdev);
3470         if (ret < 0)
3471                 goto scrub;
3472
3473         if (init_data && init_data->supply_regulator)
3474                 supply = init_data->supply_regulator;
3475         else if (regulator_desc->supply_name)
3476                 supply = regulator_desc->supply_name;
3477
3478         if (supply) {
3479                 struct regulator_dev *r;
3480
3481                 r = regulator_dev_lookup(dev, supply, &ret);
3482
3483                 if (ret == -ENODEV) {
3484                         /*
3485                          * No supply was specified for this regulator and
3486                          * there will never be one.
3487                          */
3488                         ret = 0;
3489                         goto add_dev;
3490                 } else if (!r) {
3491                         dev_err(dev, "Failed to find supply %s\n", supply);
3492                         ret = -EPROBE_DEFER;
3493                         goto scrub;
3494                 }
3495
3496                 ret = set_supply(rdev, r);
3497                 if (ret < 0)
3498                         goto scrub;
3499
3500                 /* Enable supply if rail is enabled */
3501                 if (_regulator_is_enabled(rdev)) {
3502                         ret = regulator_enable(rdev->supply);
3503                         if (ret < 0)
3504                                 goto scrub;
3505                 }
3506         }
3507
3508 add_dev:
3509         /* add consumers devices */
3510         if (init_data) {
3511                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3512                         ret = set_consumer_device_supply(rdev,
3513                                 init_data->consumer_supplies[i].dev_name,
3514                                 init_data->consumer_supplies[i].supply);
3515                         if (ret < 0) {
3516                                 dev_err(dev, "Failed to set supply %s\n",
3517                                         init_data->consumer_supplies[i].supply);
3518                                 goto unset_supplies;
3519                         }
3520                 }
3521         }
3522
3523         list_add(&rdev->list, &regulator_list);
3524
3525         rdev_init_debugfs(rdev);
3526 out:
3527         mutex_unlock(&regulator_list_mutex);
3528         return rdev;
3529
3530 unset_supplies:
3531         unset_regulator_supplies(rdev);
3532
3533 scrub:
3534         if (rdev->supply)
3535                 _regulator_put(rdev->supply);
3536         regulator_ena_gpio_free(rdev);
3537         kfree(rdev->constraints);
3538 wash:
3539         device_unregister(&rdev->dev);
3540         /* device core frees rdev */
3541         rdev = ERR_PTR(ret);
3542         goto out;
3543
3544 clean:
3545         kfree(rdev);
3546         rdev = ERR_PTR(ret);
3547         goto out;
3548 }
3549 EXPORT_SYMBOL_GPL(regulator_register);
3550
3551 /**
3552  * regulator_unregister - unregister regulator
3553  * @rdev: regulator to unregister
3554  *
3555  * Called by regulator drivers to unregister a regulator.
3556  */
3557 void regulator_unregister(struct regulator_dev *rdev)
3558 {
3559         if (rdev == NULL)
3560                 return;
3561
3562         if (rdev->supply) {
3563                 while (rdev->use_count--)
3564                         regulator_disable(rdev->supply);
3565                 regulator_put(rdev->supply);
3566         }
3567         mutex_lock(&regulator_list_mutex);
3568         debugfs_remove_recursive(rdev->debugfs);
3569         flush_work(&rdev->disable_work.work);
3570         WARN_ON(rdev->open_count);
3571         unset_regulator_supplies(rdev);
3572         list_del(&rdev->list);
3573         kfree(rdev->constraints);
3574         regulator_ena_gpio_free(rdev);
3575         device_unregister(&rdev->dev);
3576         mutex_unlock(&regulator_list_mutex);
3577 }
3578 EXPORT_SYMBOL_GPL(regulator_unregister);
3579
3580 /**
3581  * regulator_suspend_prepare - prepare regulators for system wide suspend
3582  * @state: system suspend state
3583  *
3584  * Configure each regulator with it's suspend operating parameters for state.
3585  * This will usually be called by machine suspend code prior to supending.
3586  */
3587 int regulator_suspend_prepare(suspend_state_t state)
3588 {
3589         struct regulator_dev *rdev;
3590         int ret = 0;
3591
3592         /* ON is handled by regulator active state */
3593         if (state == PM_SUSPEND_ON)
3594                 return -EINVAL;
3595
3596         mutex_lock(&regulator_list_mutex);
3597         list_for_each_entry(rdev, &regulator_list, list) {
3598
3599                 mutex_lock(&rdev->mutex);
3600                 ret = suspend_prepare(rdev, state);
3601                 mutex_unlock(&rdev->mutex);
3602
3603                 if (ret < 0) {
3604                         rdev_err(rdev, "failed to prepare\n");
3605                         goto out;
3606                 }
3607         }
3608 out:
3609         mutex_unlock(&regulator_list_mutex);
3610         return ret;
3611 }
3612 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3613
3614 /**
3615  * regulator_suspend_finish - resume regulators from system wide suspend
3616  *
3617  * Turn on regulators that might be turned off by regulator_suspend_prepare
3618  * and that should be turned on according to the regulators properties.
3619  */
3620 int regulator_suspend_finish(void)
3621 {
3622         struct regulator_dev *rdev;
3623         int ret = 0, error;
3624
3625         mutex_lock(&regulator_list_mutex);
3626         list_for_each_entry(rdev, &regulator_list, list) {
3627                 struct regulator_ops *ops = rdev->desc->ops;
3628
3629                 mutex_lock(&rdev->mutex);
3630                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3631                         error = _regulator_do_enable(rdev);
3632                         if (error)
3633                                 ret = error;
3634                 } else {
3635                         if (!have_full_constraints())
3636                                 goto unlock;
3637                         if (!ops->disable)
3638                                 goto unlock;
3639                         if (!_regulator_is_enabled(rdev))
3640                                 goto unlock;
3641
3642                         error = ops->disable(rdev);
3643                         if (error)
3644                                 ret = error;
3645                 }
3646 unlock:
3647                 mutex_unlock(&rdev->mutex);
3648         }
3649         mutex_unlock(&regulator_list_mutex);
3650         return ret;
3651 }
3652 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3653
3654 /**
3655  * regulator_has_full_constraints - the system has fully specified constraints
3656  *
3657  * Calling this function will cause the regulator API to disable all
3658  * regulators which have a zero use count and don't have an always_on
3659  * constraint in a late_initcall.
3660  *
3661  * The intention is that this will become the default behaviour in a
3662  * future kernel release so users are encouraged to use this facility
3663  * now.
3664  */
3665 void regulator_has_full_constraints(void)
3666 {
3667         has_full_constraints = 1;
3668 }
3669 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3670
3671 /**
3672  * rdev_get_drvdata - get rdev regulator driver data
3673  * @rdev: regulator
3674  *
3675  * Get rdev regulator driver private data. This call can be used in the
3676  * regulator driver context.
3677  */
3678 void *rdev_get_drvdata(struct regulator_dev *rdev)
3679 {
3680         return rdev->reg_data;
3681 }
3682 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3683
3684 /**
3685  * regulator_get_drvdata - get regulator driver data
3686  * @regulator: regulator
3687  *
3688  * Get regulator driver private data. This call can be used in the consumer
3689  * driver context when non API regulator specific functions need to be called.
3690  */
3691 void *regulator_get_drvdata(struct regulator *regulator)
3692 {
3693         return regulator->rdev->reg_data;
3694 }
3695 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3696
3697 /**
3698  * regulator_set_drvdata - set regulator driver data
3699  * @regulator: regulator
3700  * @data: data
3701  */
3702 void regulator_set_drvdata(struct regulator *regulator, void *data)
3703 {
3704         regulator->rdev->reg_data = data;
3705 }
3706 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3707
3708 /**
3709  * regulator_get_id - get regulator ID
3710  * @rdev: regulator
3711  */
3712 int rdev_get_id(struct regulator_dev *rdev)
3713 {
3714         return rdev->desc->id;
3715 }
3716 EXPORT_SYMBOL_GPL(rdev_get_id);
3717
3718 struct device *rdev_get_dev(struct regulator_dev *rdev)
3719 {
3720         return &rdev->dev;
3721 }
3722 EXPORT_SYMBOL_GPL(rdev_get_dev);
3723
3724 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3725 {
3726         return reg_init_data->driver_data;
3727 }
3728 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3729
3730 #ifdef CONFIG_DEBUG_FS
3731 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3732                                     size_t count, loff_t *ppos)
3733 {
3734         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3735         ssize_t len, ret = 0;
3736         struct regulator_map *map;
3737
3738         if (!buf)
3739                 return -ENOMEM;
3740
3741         list_for_each_entry(map, &regulator_map_list, list) {
3742                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3743                                "%s -> %s.%s\n",
3744                                rdev_get_name(map->regulator), map->dev_name,
3745                                map->supply);
3746                 if (len >= 0)
3747                         ret += len;
3748                 if (ret > PAGE_SIZE) {
3749                         ret = PAGE_SIZE;
3750                         break;
3751                 }
3752         }
3753
3754         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3755
3756         kfree(buf);
3757
3758         return ret;
3759 }
3760 #endif
3761
3762 static const struct file_operations supply_map_fops = {
3763 #ifdef CONFIG_DEBUG_FS
3764         .read = supply_map_read_file,
3765         .llseek = default_llseek,
3766 #endif
3767 };
3768
3769 static int __init regulator_init(void)
3770 {
3771         int ret;
3772
3773         ret = class_register(&regulator_class);
3774
3775         debugfs_root = debugfs_create_dir("regulator", NULL);
3776         if (!debugfs_root)
3777                 pr_warn("regulator: Failed to create debugfs directory\n");
3778
3779         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3780                             &supply_map_fops);
3781
3782         regulator_dummy_init();
3783
3784         return ret;
3785 }
3786
3787 /* init early to allow our consumers to complete system booting */
3788 core_initcall(regulator_init);
3789
3790 static int __init regulator_init_complete(void)
3791 {
3792         struct regulator_dev *rdev;
3793         struct regulator_ops *ops;
3794         struct regulation_constraints *c;
3795         int enabled, ret;
3796
3797         /*
3798          * Since DT doesn't provide an idiomatic mechanism for
3799          * enabling full constraints and since it's much more natural
3800          * with DT to provide them just assume that a DT enabled
3801          * system has full constraints.
3802          */
3803         if (of_have_populated_dt())
3804                 has_full_constraints = true;
3805
3806         mutex_lock(&regulator_list_mutex);
3807
3808         /* If we have a full configuration then disable any regulators
3809          * which are not in use or always_on.  This will become the
3810          * default behaviour in the future.
3811          */
3812         list_for_each_entry(rdev, &regulator_list, list) {
3813                 ops = rdev->desc->ops;
3814                 c = rdev->constraints;
3815
3816                 if (!ops->disable || (c && c->always_on))
3817                         continue;
3818
3819                 mutex_lock(&rdev->mutex);
3820
3821                 if (rdev->use_count)
3822                         goto unlock;
3823
3824                 /* If we can't read the status assume it's on. */
3825                 if (ops->is_enabled)
3826                         enabled = ops->is_enabled(rdev);
3827                 else
3828                         enabled = 1;
3829
3830                 if (!enabled)
3831                         goto unlock;
3832
3833                 if (have_full_constraints()) {
3834                         /* We log since this may kill the system if it
3835                          * goes wrong. */
3836                         rdev_info(rdev, "disabling\n");
3837                         ret = ops->disable(rdev);
3838                         if (ret != 0)
3839                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3840                 } else {
3841                         /* The intention is that in future we will
3842                          * assume that full constraints are provided
3843                          * so warn even if we aren't going to do
3844                          * anything here.
3845                          */
3846                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3847                 }
3848
3849 unlock:
3850                 mutex_unlock(&rdev->mutex);
3851         }
3852
3853         mutex_unlock(&regulator_list_mutex);
3854
3855         return 0;
3856 }
3857 late_initcall(regulator_init_complete);