]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/sfc/tx.c
nfsd: fix lost nfserrno() call in nfsd_setattr()
[~andy/linux] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "workarounds.h"
26 #include "ef10_regs.h"
27
28 #ifdef EFX_USE_PIO
29
30 #define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33
34 #endif /* EFX_USE_PIO */
35
36 static inline unsigned int
37 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38 {
39         return tx_queue->insert_count & tx_queue->ptr_mask;
40 }
41
42 static inline struct efx_tx_buffer *
43 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44 {
45         return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46 }
47
48 static inline struct efx_tx_buffer *
49 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50 {
51         struct efx_tx_buffer *buffer =
52                 __efx_tx_queue_get_insert_buffer(tx_queue);
53
54         EFX_BUG_ON_PARANOID(buffer->len);
55         EFX_BUG_ON_PARANOID(buffer->flags);
56         EFX_BUG_ON_PARANOID(buffer->unmap_len);
57
58         return buffer;
59 }
60
61 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
62                                struct efx_tx_buffer *buffer,
63                                unsigned int *pkts_compl,
64                                unsigned int *bytes_compl)
65 {
66         if (buffer->unmap_len) {
67                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
68                 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
69                 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
70                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71                                          DMA_TO_DEVICE);
72                 else
73                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74                                        DMA_TO_DEVICE);
75                 buffer->unmap_len = 0;
76         }
77
78         if (buffer->flags & EFX_TX_BUF_SKB) {
79                 (*pkts_compl)++;
80                 (*bytes_compl) += buffer->skb->len;
81                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
82                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83                            "TX queue %d transmission id %x complete\n",
84                            tx_queue->queue, tx_queue->read_count);
85         } else if (buffer->flags & EFX_TX_BUF_HEAP) {
86                 kfree(buffer->heap_buf);
87         }
88
89         buffer->len = 0;
90         buffer->flags = 0;
91 }
92
93 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
94                                struct sk_buff *skb);
95
96 static inline unsigned
97 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98 {
99         /* Depending on the NIC revision, we can use descriptor
100          * lengths up to 8K or 8K-1.  However, since PCI Express
101          * devices must split read requests at 4K boundaries, there is
102          * little benefit from using descriptors that cross those
103          * boundaries and we keep things simple by not doing so.
104          */
105         unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
106
107         /* Work around hardware bug for unaligned buffers. */
108         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110
111         return len;
112 }
113
114 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115 {
116         /* Header and payload descriptor for each output segment, plus
117          * one for every input fragment boundary within a segment
118          */
119         unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120
121         /* Possibly one more per segment for the alignment workaround,
122          * or for option descriptors
123          */
124         if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
125                 max_descs += EFX_TSO_MAX_SEGS;
126
127         /* Possibly more for PCIe page boundaries within input fragments */
128         if (PAGE_SIZE > EFX_PAGE_SIZE)
129                 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130                                    DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131
132         return max_descs;
133 }
134
135 /* Get partner of a TX queue, seen as part of the same net core queue */
136 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
137 {
138         if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
139                 return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
140         else
141                 return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
142 }
143
144 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
145 {
146         /* We need to consider both queues that the net core sees as one */
147         struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
148         struct efx_nic *efx = txq1->efx;
149         unsigned int fill_level;
150
151         fill_level = max(txq1->insert_count - txq1->old_read_count,
152                          txq2->insert_count - txq2->old_read_count);
153         if (likely(fill_level < efx->txq_stop_thresh))
154                 return;
155
156         /* We used the stale old_read_count above, which gives us a
157          * pessimistic estimate of the fill level (which may even
158          * validly be >= efx->txq_entries).  Now try again using
159          * read_count (more likely to be a cache miss).
160          *
161          * If we read read_count and then conditionally stop the
162          * queue, it is possible for the completion path to race with
163          * us and complete all outstanding descriptors in the middle,
164          * after which there will be no more completions to wake it.
165          * Therefore we stop the queue first, then read read_count
166          * (with a memory barrier to ensure the ordering), then
167          * restart the queue if the fill level turns out to be low
168          * enough.
169          */
170         netif_tx_stop_queue(txq1->core_txq);
171         smp_mb();
172         txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
173         txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
174
175         fill_level = max(txq1->insert_count - txq1->old_read_count,
176                          txq2->insert_count - txq2->old_read_count);
177         EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
178         if (likely(fill_level < efx->txq_stop_thresh)) {
179                 smp_mb();
180                 if (likely(!efx->loopback_selftest))
181                         netif_tx_start_queue(txq1->core_txq);
182         }
183 }
184
185 #ifdef EFX_USE_PIO
186
187 struct efx_short_copy_buffer {
188         int used;
189         u8 buf[L1_CACHE_BYTES];
190 };
191
192 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
193  * Advances piobuf pointer. Leaves additional data in the copy buffer.
194  */
195 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
196                                     u8 *data, int len,
197                                     struct efx_short_copy_buffer *copy_buf)
198 {
199         int block_len = len & ~(sizeof(copy_buf->buf) - 1);
200
201         memcpy_toio(*piobuf, data, block_len);
202         *piobuf += block_len;
203         len -= block_len;
204
205         if (len) {
206                 data += block_len;
207                 BUG_ON(copy_buf->used);
208                 BUG_ON(len > sizeof(copy_buf->buf));
209                 memcpy(copy_buf->buf, data, len);
210                 copy_buf->used = len;
211         }
212 }
213
214 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
215  * Advances piobuf pointer. Leaves additional data in the copy buffer.
216  */
217 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
218                                        u8 *data, int len,
219                                        struct efx_short_copy_buffer *copy_buf)
220 {
221         if (copy_buf->used) {
222                 /* if the copy buffer is partially full, fill it up and write */
223                 int copy_to_buf =
224                         min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
225
226                 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
227                 copy_buf->used += copy_to_buf;
228
229                 /* if we didn't fill it up then we're done for now */
230                 if (copy_buf->used < sizeof(copy_buf->buf))
231                         return;
232
233                 memcpy_toio(*piobuf, copy_buf->buf, sizeof(copy_buf->buf));
234                 *piobuf += sizeof(copy_buf->buf);
235                 data += copy_to_buf;
236                 len -= copy_to_buf;
237                 copy_buf->used = 0;
238         }
239
240         efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
241 }
242
243 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
244                                   struct efx_short_copy_buffer *copy_buf)
245 {
246         /* if there's anything in it, write the whole buffer, including junk */
247         if (copy_buf->used)
248                 memcpy_toio(piobuf, copy_buf->buf, sizeof(copy_buf->buf));
249 }
250
251 /* Traverse skb structure and copy fragments in to PIO buffer.
252  * Advances piobuf pointer.
253  */
254 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
255                                      u8 __iomem **piobuf,
256                                      struct efx_short_copy_buffer *copy_buf)
257 {
258         int i;
259
260         efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
261                                 copy_buf);
262
263         for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
264                 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
265                 u8 *vaddr;
266
267                 vaddr = kmap_atomic(skb_frag_page(f));
268
269                 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
270                                            skb_frag_size(f), copy_buf);
271                 kunmap_atomic(vaddr);
272         }
273
274         EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
275 }
276
277 static struct efx_tx_buffer *
278 efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
279 {
280         struct efx_tx_buffer *buffer =
281                 efx_tx_queue_get_insert_buffer(tx_queue);
282         u8 __iomem *piobuf = tx_queue->piobuf;
283
284         /* Copy to PIO buffer. Ensure the writes are padded to the end
285          * of a cache line, as this is required for write-combining to be
286          * effective on at least x86.
287          */
288
289         if (skb_shinfo(skb)->nr_frags) {
290                 /* The size of the copy buffer will ensure all writes
291                  * are the size of a cache line.
292                  */
293                 struct efx_short_copy_buffer copy_buf;
294
295                 copy_buf.used = 0;
296
297                 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
298                                          &piobuf, &copy_buf);
299                 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
300         } else {
301                 /* Pad the write to the size of a cache line.
302                  * We can do this because we know the skb_shared_info sruct is
303                  * after the source, and the destination buffer is big enough.
304                  */
305                 BUILD_BUG_ON(L1_CACHE_BYTES >
306                              SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
307                 memcpy_toio(tx_queue->piobuf, skb->data,
308                             ALIGN(skb->len, L1_CACHE_BYTES));
309         }
310
311         EFX_POPULATE_QWORD_5(buffer->option,
312                              ESF_DZ_TX_DESC_IS_OPT, 1,
313                              ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
314                              ESF_DZ_TX_PIO_CONT, 0,
315                              ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
316                              ESF_DZ_TX_PIO_BUF_ADDR,
317                              tx_queue->piobuf_offset);
318         ++tx_queue->pio_packets;
319         ++tx_queue->insert_count;
320         return buffer;
321 }
322 #endif /* EFX_USE_PIO */
323
324 /*
325  * Add a socket buffer to a TX queue
326  *
327  * This maps all fragments of a socket buffer for DMA and adds them to
328  * the TX queue.  The queue's insert pointer will be incremented by
329  * the number of fragments in the socket buffer.
330  *
331  * If any DMA mapping fails, any mapped fragments will be unmapped,
332  * the queue's insert pointer will be restored to its original value.
333  *
334  * This function is split out from efx_hard_start_xmit to allow the
335  * loopback test to direct packets via specific TX queues.
336  *
337  * Returns NETDEV_TX_OK.
338  * You must hold netif_tx_lock() to call this function.
339  */
340 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
341 {
342         struct efx_nic *efx = tx_queue->efx;
343         struct device *dma_dev = &efx->pci_dev->dev;
344         struct efx_tx_buffer *buffer;
345         skb_frag_t *fragment;
346         unsigned int len, unmap_len = 0;
347         dma_addr_t dma_addr, unmap_addr = 0;
348         unsigned int dma_len;
349         unsigned short dma_flags;
350         int i = 0;
351
352         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
353
354         if (skb_shinfo(skb)->gso_size)
355                 return efx_enqueue_skb_tso(tx_queue, skb);
356
357         /* Get size of the initial fragment */
358         len = skb_headlen(skb);
359
360         /* Pad if necessary */
361         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
362                 EFX_BUG_ON_PARANOID(skb->data_len);
363                 len = 32 + 1;
364                 if (skb_pad(skb, len - skb->len))
365                         return NETDEV_TX_OK;
366         }
367
368         /* Consider using PIO for short packets */
369 #ifdef EFX_USE_PIO
370         if (skb->len <= efx_piobuf_size && tx_queue->piobuf &&
371             efx_nic_tx_is_empty(tx_queue) &&
372             efx_nic_tx_is_empty(efx_tx_queue_partner(tx_queue))) {
373                 buffer = efx_enqueue_skb_pio(tx_queue, skb);
374                 dma_flags = EFX_TX_BUF_OPTION;
375                 goto finish_packet;
376         }
377 #endif
378
379         /* Map for DMA.  Use dma_map_single rather than dma_map_page
380          * since this is more efficient on machines with sparse
381          * memory.
382          */
383         dma_flags = EFX_TX_BUF_MAP_SINGLE;
384         dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
385
386         /* Process all fragments */
387         while (1) {
388                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
389                         goto dma_err;
390
391                 /* Store fields for marking in the per-fragment final
392                  * descriptor */
393                 unmap_len = len;
394                 unmap_addr = dma_addr;
395
396                 /* Add to TX queue, splitting across DMA boundaries */
397                 do {
398                         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
399
400                         dma_len = efx_max_tx_len(efx, dma_addr);
401                         if (likely(dma_len >= len))
402                                 dma_len = len;
403
404                         /* Fill out per descriptor fields */
405                         buffer->len = dma_len;
406                         buffer->dma_addr = dma_addr;
407                         buffer->flags = EFX_TX_BUF_CONT;
408                         len -= dma_len;
409                         dma_addr += dma_len;
410                         ++tx_queue->insert_count;
411                 } while (len);
412
413                 /* Transfer ownership of the unmapping to the final buffer */
414                 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
415                 buffer->unmap_len = unmap_len;
416                 buffer->dma_offset = buffer->dma_addr - unmap_addr;
417                 unmap_len = 0;
418
419                 /* Get address and size of next fragment */
420                 if (i >= skb_shinfo(skb)->nr_frags)
421                         break;
422                 fragment = &skb_shinfo(skb)->frags[i];
423                 len = skb_frag_size(fragment);
424                 i++;
425                 /* Map for DMA */
426                 dma_flags = 0;
427                 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
428                                             DMA_TO_DEVICE);
429         }
430
431         /* Transfer ownership of the skb to the final buffer */
432 finish_packet:
433         buffer->skb = skb;
434         buffer->flags = EFX_TX_BUF_SKB | dma_flags;
435
436         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
437
438         /* Pass off to hardware */
439         efx_nic_push_buffers(tx_queue);
440
441         efx_tx_maybe_stop_queue(tx_queue);
442
443         return NETDEV_TX_OK;
444
445  dma_err:
446         netif_err(efx, tx_err, efx->net_dev,
447                   " TX queue %d could not map skb with %d bytes %d "
448                   "fragments for DMA\n", tx_queue->queue, skb->len,
449                   skb_shinfo(skb)->nr_frags + 1);
450
451         /* Mark the packet as transmitted, and free the SKB ourselves */
452         dev_kfree_skb_any(skb);
453
454         /* Work backwards until we hit the original insert pointer value */
455         while (tx_queue->insert_count != tx_queue->write_count) {
456                 unsigned int pkts_compl = 0, bytes_compl = 0;
457                 --tx_queue->insert_count;
458                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
459                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
460         }
461
462         /* Free the fragment we were mid-way through pushing */
463         if (unmap_len) {
464                 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
465                         dma_unmap_single(dma_dev, unmap_addr, unmap_len,
466                                          DMA_TO_DEVICE);
467                 else
468                         dma_unmap_page(dma_dev, unmap_addr, unmap_len,
469                                        DMA_TO_DEVICE);
470         }
471
472         return NETDEV_TX_OK;
473 }
474
475 /* Remove packets from the TX queue
476  *
477  * This removes packets from the TX queue, up to and including the
478  * specified index.
479  */
480 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
481                                 unsigned int index,
482                                 unsigned int *pkts_compl,
483                                 unsigned int *bytes_compl)
484 {
485         struct efx_nic *efx = tx_queue->efx;
486         unsigned int stop_index, read_ptr;
487
488         stop_index = (index + 1) & tx_queue->ptr_mask;
489         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
490
491         while (read_ptr != stop_index) {
492                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
493
494                 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
495                     unlikely(buffer->len == 0)) {
496                         netif_err(efx, tx_err, efx->net_dev,
497                                   "TX queue %d spurious TX completion id %x\n",
498                                   tx_queue->queue, read_ptr);
499                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
500                         return;
501                 }
502
503                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
504
505                 ++tx_queue->read_count;
506                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
507         }
508 }
509
510 /* Initiate a packet transmission.  We use one channel per CPU
511  * (sharing when we have more CPUs than channels).  On Falcon, the TX
512  * completion events will be directed back to the CPU that transmitted
513  * the packet, which should be cache-efficient.
514  *
515  * Context: non-blocking.
516  * Note that returning anything other than NETDEV_TX_OK will cause the
517  * OS to free the skb.
518  */
519 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
520                                 struct net_device *net_dev)
521 {
522         struct efx_nic *efx = netdev_priv(net_dev);
523         struct efx_tx_queue *tx_queue;
524         unsigned index, type;
525
526         EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
527
528         /* PTP "event" packet */
529         if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
530             unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
531                 return efx_ptp_tx(efx, skb);
532         }
533
534         index = skb_get_queue_mapping(skb);
535         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
536         if (index >= efx->n_tx_channels) {
537                 index -= efx->n_tx_channels;
538                 type |= EFX_TXQ_TYPE_HIGHPRI;
539         }
540         tx_queue = efx_get_tx_queue(efx, index, type);
541
542         return efx_enqueue_skb(tx_queue, skb);
543 }
544
545 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
546 {
547         struct efx_nic *efx = tx_queue->efx;
548
549         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
550         tx_queue->core_txq =
551                 netdev_get_tx_queue(efx->net_dev,
552                                     tx_queue->queue / EFX_TXQ_TYPES +
553                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
554                                      efx->n_tx_channels : 0));
555 }
556
557 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
558 {
559         struct efx_nic *efx = netdev_priv(net_dev);
560         struct efx_channel *channel;
561         struct efx_tx_queue *tx_queue;
562         unsigned tc;
563         int rc;
564
565         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
566                 return -EINVAL;
567
568         if (num_tc == net_dev->num_tc)
569                 return 0;
570
571         for (tc = 0; tc < num_tc; tc++) {
572                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
573                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
574         }
575
576         if (num_tc > net_dev->num_tc) {
577                 /* Initialise high-priority queues as necessary */
578                 efx_for_each_channel(channel, efx) {
579                         efx_for_each_possible_channel_tx_queue(tx_queue,
580                                                                channel) {
581                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
582                                         continue;
583                                 if (!tx_queue->buffer) {
584                                         rc = efx_probe_tx_queue(tx_queue);
585                                         if (rc)
586                                                 return rc;
587                                 }
588                                 if (!tx_queue->initialised)
589                                         efx_init_tx_queue(tx_queue);
590                                 efx_init_tx_queue_core_txq(tx_queue);
591                         }
592                 }
593         } else {
594                 /* Reduce number of classes before number of queues */
595                 net_dev->num_tc = num_tc;
596         }
597
598         rc = netif_set_real_num_tx_queues(net_dev,
599                                           max_t(int, num_tc, 1) *
600                                           efx->n_tx_channels);
601         if (rc)
602                 return rc;
603
604         /* Do not destroy high-priority queues when they become
605          * unused.  We would have to flush them first, and it is
606          * fairly difficult to flush a subset of TX queues.  Leave
607          * it to efx_fini_channels().
608          */
609
610         net_dev->num_tc = num_tc;
611         return 0;
612 }
613
614 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
615 {
616         unsigned fill_level;
617         struct efx_nic *efx = tx_queue->efx;
618         struct efx_tx_queue *txq2;
619         unsigned int pkts_compl = 0, bytes_compl = 0;
620
621         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
622
623         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
624         netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
625
626         if (pkts_compl > 1)
627                 ++tx_queue->merge_events;
628
629         /* See if we need to restart the netif queue.  This memory
630          * barrier ensures that we write read_count (inside
631          * efx_dequeue_buffers()) before reading the queue status.
632          */
633         smp_mb();
634         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
635             likely(efx->port_enabled) &&
636             likely(netif_device_present(efx->net_dev))) {
637                 txq2 = efx_tx_queue_partner(tx_queue);
638                 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
639                                  txq2->insert_count - txq2->read_count);
640                 if (fill_level <= efx->txq_wake_thresh)
641                         netif_tx_wake_queue(tx_queue->core_txq);
642         }
643
644         /* Check whether the hardware queue is now empty */
645         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
646                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
647                 if (tx_queue->read_count == tx_queue->old_write_count) {
648                         smp_mb();
649                         tx_queue->empty_read_count =
650                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
651                 }
652         }
653 }
654
655 /* Size of page-based TSO header buffers.  Larger blocks must be
656  * allocated from the heap.
657  */
658 #define TSOH_STD_SIZE   128
659 #define TSOH_PER_PAGE   (PAGE_SIZE / TSOH_STD_SIZE)
660
661 /* At most half the descriptors in the queue at any time will refer to
662  * a TSO header buffer, since they must always be followed by a
663  * payload descriptor referring to an skb.
664  */
665 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
666 {
667         return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
668 }
669
670 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
671 {
672         struct efx_nic *efx = tx_queue->efx;
673         unsigned int entries;
674         int rc;
675
676         /* Create the smallest power-of-two aligned ring */
677         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
678         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
679         tx_queue->ptr_mask = entries - 1;
680
681         netif_dbg(efx, probe, efx->net_dev,
682                   "creating TX queue %d size %#x mask %#x\n",
683                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
684
685         /* Allocate software ring */
686         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
687                                    GFP_KERNEL);
688         if (!tx_queue->buffer)
689                 return -ENOMEM;
690
691         if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
692                 tx_queue->tsoh_page =
693                         kcalloc(efx_tsoh_page_count(tx_queue),
694                                 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
695                 if (!tx_queue->tsoh_page) {
696                         rc = -ENOMEM;
697                         goto fail1;
698                 }
699         }
700
701         /* Allocate hardware ring */
702         rc = efx_nic_probe_tx(tx_queue);
703         if (rc)
704                 goto fail2;
705
706         return 0;
707
708 fail2:
709         kfree(tx_queue->tsoh_page);
710         tx_queue->tsoh_page = NULL;
711 fail1:
712         kfree(tx_queue->buffer);
713         tx_queue->buffer = NULL;
714         return rc;
715 }
716
717 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
718 {
719         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
720                   "initialising TX queue %d\n", tx_queue->queue);
721
722         tx_queue->insert_count = 0;
723         tx_queue->write_count = 0;
724         tx_queue->old_write_count = 0;
725         tx_queue->read_count = 0;
726         tx_queue->old_read_count = 0;
727         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
728
729         /* Set up TX descriptor ring */
730         efx_nic_init_tx(tx_queue);
731
732         tx_queue->initialised = true;
733 }
734
735 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
736 {
737         struct efx_tx_buffer *buffer;
738
739         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
740                   "shutting down TX queue %d\n", tx_queue->queue);
741
742         if (!tx_queue->buffer)
743                 return;
744
745         /* Free any buffers left in the ring */
746         while (tx_queue->read_count != tx_queue->write_count) {
747                 unsigned int pkts_compl = 0, bytes_compl = 0;
748                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
749                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
750
751                 ++tx_queue->read_count;
752         }
753         netdev_tx_reset_queue(tx_queue->core_txq);
754 }
755
756 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
757 {
758         int i;
759
760         if (!tx_queue->buffer)
761                 return;
762
763         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
764                   "destroying TX queue %d\n", tx_queue->queue);
765         efx_nic_remove_tx(tx_queue);
766
767         if (tx_queue->tsoh_page) {
768                 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
769                         efx_nic_free_buffer(tx_queue->efx,
770                                             &tx_queue->tsoh_page[i]);
771                 kfree(tx_queue->tsoh_page);
772                 tx_queue->tsoh_page = NULL;
773         }
774
775         kfree(tx_queue->buffer);
776         tx_queue->buffer = NULL;
777 }
778
779
780 /* Efx TCP segmentation acceleration.
781  *
782  * Why?  Because by doing it here in the driver we can go significantly
783  * faster than the GSO.
784  *
785  * Requires TX checksum offload support.
786  */
787
788 /* Number of bytes inserted at the start of a TSO header buffer,
789  * similar to NET_IP_ALIGN.
790  */
791 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
792 #define TSOH_OFFSET     0
793 #else
794 #define TSOH_OFFSET     NET_IP_ALIGN
795 #endif
796
797 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
798
799 /**
800  * struct tso_state - TSO state for an SKB
801  * @out_len: Remaining length in current segment
802  * @seqnum: Current sequence number
803  * @ipv4_id: Current IPv4 ID, host endian
804  * @packet_space: Remaining space in current packet
805  * @dma_addr: DMA address of current position
806  * @in_len: Remaining length in current SKB fragment
807  * @unmap_len: Length of SKB fragment
808  * @unmap_addr: DMA address of SKB fragment
809  * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
810  * @protocol: Network protocol (after any VLAN header)
811  * @ip_off: Offset of IP header
812  * @tcp_off: Offset of TCP header
813  * @header_len: Number of bytes of header
814  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
815  * @header_dma_addr: Header DMA address, when using option descriptors
816  * @header_unmap_len: Header DMA mapped length, or 0 if not using option
817  *      descriptors
818  *
819  * The state used during segmentation.  It is put into this data structure
820  * just to make it easy to pass into inline functions.
821  */
822 struct tso_state {
823         /* Output position */
824         unsigned out_len;
825         unsigned seqnum;
826         u16 ipv4_id;
827         unsigned packet_space;
828
829         /* Input position */
830         dma_addr_t dma_addr;
831         unsigned in_len;
832         unsigned unmap_len;
833         dma_addr_t unmap_addr;
834         unsigned short dma_flags;
835
836         __be16 protocol;
837         unsigned int ip_off;
838         unsigned int tcp_off;
839         unsigned header_len;
840         unsigned int ip_base_len;
841         dma_addr_t header_dma_addr;
842         unsigned int header_unmap_len;
843 };
844
845
846 /*
847  * Verify that our various assumptions about sk_buffs and the conditions
848  * under which TSO will be attempted hold true.  Return the protocol number.
849  */
850 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
851 {
852         __be16 protocol = skb->protocol;
853
854         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
855                             protocol);
856         if (protocol == htons(ETH_P_8021Q)) {
857                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
858                 protocol = veh->h_vlan_encapsulated_proto;
859         }
860
861         if (protocol == htons(ETH_P_IP)) {
862                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
863         } else {
864                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
865                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
866         }
867         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
868                              + (tcp_hdr(skb)->doff << 2u)) >
869                             skb_headlen(skb));
870
871         return protocol;
872 }
873
874 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
875                                struct efx_tx_buffer *buffer, unsigned int len)
876 {
877         u8 *result;
878
879         EFX_BUG_ON_PARANOID(buffer->len);
880         EFX_BUG_ON_PARANOID(buffer->flags);
881         EFX_BUG_ON_PARANOID(buffer->unmap_len);
882
883         if (likely(len <= TSOH_STD_SIZE - TSOH_OFFSET)) {
884                 unsigned index =
885                         (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
886                 struct efx_buffer *page_buf =
887                         &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
888                 unsigned offset =
889                         TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + TSOH_OFFSET;
890
891                 if (unlikely(!page_buf->addr) &&
892                     efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
893                                          GFP_ATOMIC))
894                         return NULL;
895
896                 result = (u8 *)page_buf->addr + offset;
897                 buffer->dma_addr = page_buf->dma_addr + offset;
898                 buffer->flags = EFX_TX_BUF_CONT;
899         } else {
900                 tx_queue->tso_long_headers++;
901
902                 buffer->heap_buf = kmalloc(TSOH_OFFSET + len, GFP_ATOMIC);
903                 if (unlikely(!buffer->heap_buf))
904                         return NULL;
905                 result = (u8 *)buffer->heap_buf + TSOH_OFFSET;
906                 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
907         }
908
909         buffer->len = len;
910
911         return result;
912 }
913
914 /**
915  * efx_tx_queue_insert - push descriptors onto the TX queue
916  * @tx_queue:           Efx TX queue
917  * @dma_addr:           DMA address of fragment
918  * @len:                Length of fragment
919  * @final_buffer:       The final buffer inserted into the queue
920  *
921  * Push descriptors onto the TX queue.
922  */
923 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
924                                 dma_addr_t dma_addr, unsigned len,
925                                 struct efx_tx_buffer **final_buffer)
926 {
927         struct efx_tx_buffer *buffer;
928         struct efx_nic *efx = tx_queue->efx;
929         unsigned dma_len;
930
931         EFX_BUG_ON_PARANOID(len <= 0);
932
933         while (1) {
934                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
935                 ++tx_queue->insert_count;
936
937                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
938                                     tx_queue->read_count >=
939                                     efx->txq_entries);
940
941                 buffer->dma_addr = dma_addr;
942
943                 dma_len = efx_max_tx_len(efx, dma_addr);
944
945                 /* If there is enough space to send then do so */
946                 if (dma_len >= len)
947                         break;
948
949                 buffer->len = dma_len;
950                 buffer->flags = EFX_TX_BUF_CONT;
951                 dma_addr += dma_len;
952                 len -= dma_len;
953         }
954
955         EFX_BUG_ON_PARANOID(!len);
956         buffer->len = len;
957         *final_buffer = buffer;
958 }
959
960
961 /*
962  * Put a TSO header into the TX queue.
963  *
964  * This is special-cased because we know that it is small enough to fit in
965  * a single fragment, and we know it doesn't cross a page boundary.  It
966  * also allows us to not worry about end-of-packet etc.
967  */
968 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
969                               struct efx_tx_buffer *buffer, u8 *header)
970 {
971         if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
972                 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
973                                                   header, buffer->len,
974                                                   DMA_TO_DEVICE);
975                 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
976                                                buffer->dma_addr))) {
977                         kfree(buffer->heap_buf);
978                         buffer->len = 0;
979                         buffer->flags = 0;
980                         return -ENOMEM;
981                 }
982                 buffer->unmap_len = buffer->len;
983                 buffer->dma_offset = 0;
984                 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
985         }
986
987         ++tx_queue->insert_count;
988         return 0;
989 }
990
991
992 /* Remove buffers put into a tx_queue.  None of the buffers must have
993  * an skb attached.
994  */
995 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
996 {
997         struct efx_tx_buffer *buffer;
998
999         /* Work backwards until we hit the original insert pointer value */
1000         while (tx_queue->insert_count != tx_queue->write_count) {
1001                 --tx_queue->insert_count;
1002                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
1003                 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
1004         }
1005 }
1006
1007
1008 /* Parse the SKB header and initialise state. */
1009 static int tso_start(struct tso_state *st, struct efx_nic *efx,
1010                      const struct sk_buff *skb)
1011 {
1012         bool use_options = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1013         struct device *dma_dev = &efx->pci_dev->dev;
1014         unsigned int header_len, in_len;
1015         dma_addr_t dma_addr;
1016
1017         st->ip_off = skb_network_header(skb) - skb->data;
1018         st->tcp_off = skb_transport_header(skb) - skb->data;
1019         header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1020         in_len = skb_headlen(skb) - header_len;
1021         st->header_len = header_len;
1022         st->in_len = in_len;
1023         if (st->protocol == htons(ETH_P_IP)) {
1024                 st->ip_base_len = st->header_len - st->ip_off;
1025                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
1026         } else {
1027                 st->ip_base_len = st->header_len - st->tcp_off;
1028                 st->ipv4_id = 0;
1029         }
1030         st->seqnum = ntohl(tcp_hdr(skb)->seq);
1031
1032         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1033         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1034         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1035
1036         st->out_len = skb->len - header_len;
1037
1038         if (!use_options) {
1039                 st->header_unmap_len = 0;
1040
1041                 if (likely(in_len == 0)) {
1042                         st->dma_flags = 0;
1043                         st->unmap_len = 0;
1044                         return 0;
1045                 }
1046
1047                 dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1048                                           in_len, DMA_TO_DEVICE);
1049                 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1050                 st->dma_addr = dma_addr;
1051                 st->unmap_addr = dma_addr;
1052                 st->unmap_len = in_len;
1053         } else {
1054                 dma_addr = dma_map_single(dma_dev, skb->data,
1055                                           skb_headlen(skb), DMA_TO_DEVICE);
1056                 st->header_dma_addr = dma_addr;
1057                 st->header_unmap_len = skb_headlen(skb);
1058                 st->dma_flags = 0;
1059                 st->dma_addr = dma_addr + header_len;
1060                 st->unmap_len = 0;
1061         }
1062
1063         return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1064 }
1065
1066 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1067                             skb_frag_t *frag)
1068 {
1069         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1070                                           skb_frag_size(frag), DMA_TO_DEVICE);
1071         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1072                 st->dma_flags = 0;
1073                 st->unmap_len = skb_frag_size(frag);
1074                 st->in_len = skb_frag_size(frag);
1075                 st->dma_addr = st->unmap_addr;
1076                 return 0;
1077         }
1078         return -ENOMEM;
1079 }
1080
1081
1082 /**
1083  * tso_fill_packet_with_fragment - form descriptors for the current fragment
1084  * @tx_queue:           Efx TX queue
1085  * @skb:                Socket buffer
1086  * @st:                 TSO state
1087  *
1088  * Form descriptors for the current fragment, until we reach the end
1089  * of fragment or end-of-packet.
1090  */
1091 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1092                                           const struct sk_buff *skb,
1093                                           struct tso_state *st)
1094 {
1095         struct efx_tx_buffer *buffer;
1096         int n;
1097
1098         if (st->in_len == 0)
1099                 return;
1100         if (st->packet_space == 0)
1101                 return;
1102
1103         EFX_BUG_ON_PARANOID(st->in_len <= 0);
1104         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1105
1106         n = min(st->in_len, st->packet_space);
1107
1108         st->packet_space -= n;
1109         st->out_len -= n;
1110         st->in_len -= n;
1111
1112         efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1113
1114         if (st->out_len == 0) {
1115                 /* Transfer ownership of the skb */
1116                 buffer->skb = skb;
1117                 buffer->flags = EFX_TX_BUF_SKB;
1118         } else if (st->packet_space != 0) {
1119                 buffer->flags = EFX_TX_BUF_CONT;
1120         }
1121
1122         if (st->in_len == 0) {
1123                 /* Transfer ownership of the DMA mapping */
1124                 buffer->unmap_len = st->unmap_len;
1125                 buffer->dma_offset = buffer->unmap_len - buffer->len;
1126                 buffer->flags |= st->dma_flags;
1127                 st->unmap_len = 0;
1128         }
1129
1130         st->dma_addr += n;
1131 }
1132
1133
1134 /**
1135  * tso_start_new_packet - generate a new header and prepare for the new packet
1136  * @tx_queue:           Efx TX queue
1137  * @skb:                Socket buffer
1138  * @st:                 TSO state
1139  *
1140  * Generate a new header and prepare for the new packet.  Return 0 on
1141  * success, or -%ENOMEM if failed to alloc header.
1142  */
1143 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1144                                 const struct sk_buff *skb,
1145                                 struct tso_state *st)
1146 {
1147         struct efx_tx_buffer *buffer =
1148                 efx_tx_queue_get_insert_buffer(tx_queue);
1149         bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1150         u8 tcp_flags_clear;
1151
1152         if (!is_last) {
1153                 st->packet_space = skb_shinfo(skb)->gso_size;
1154                 tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1155         } else {
1156                 st->packet_space = st->out_len;
1157                 tcp_flags_clear = 0x00;
1158         }
1159
1160         if (!st->header_unmap_len) {
1161                 /* Allocate and insert a DMA-mapped header buffer. */
1162                 struct tcphdr *tsoh_th;
1163                 unsigned ip_length;
1164                 u8 *header;
1165                 int rc;
1166
1167                 header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1168                 if (!header)
1169                         return -ENOMEM;
1170
1171                 tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1172
1173                 /* Copy and update the headers. */
1174                 memcpy(header, skb->data, st->header_len);
1175
1176                 tsoh_th->seq = htonl(st->seqnum);
1177                 ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1178
1179                 ip_length = st->ip_base_len + st->packet_space;
1180
1181                 if (st->protocol == htons(ETH_P_IP)) {
1182                         struct iphdr *tsoh_iph =
1183                                 (struct iphdr *)(header + st->ip_off);
1184
1185                         tsoh_iph->tot_len = htons(ip_length);
1186                         tsoh_iph->id = htons(st->ipv4_id);
1187                 } else {
1188                         struct ipv6hdr *tsoh_iph =
1189                                 (struct ipv6hdr *)(header + st->ip_off);
1190
1191                         tsoh_iph->payload_len = htons(ip_length);
1192                 }
1193
1194                 rc = efx_tso_put_header(tx_queue, buffer, header);
1195                 if (unlikely(rc))
1196                         return rc;
1197         } else {
1198                 /* Send the original headers with a TSO option descriptor
1199                  * in front
1200                  */
1201                 u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1202
1203                 buffer->flags = EFX_TX_BUF_OPTION;
1204                 buffer->len = 0;
1205                 buffer->unmap_len = 0;
1206                 EFX_POPULATE_QWORD_5(buffer->option,
1207                                      ESF_DZ_TX_DESC_IS_OPT, 1,
1208                                      ESF_DZ_TX_OPTION_TYPE,
1209                                      ESE_DZ_TX_OPTION_DESC_TSO,
1210                                      ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1211                                      ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1212                                      ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1213                 ++tx_queue->insert_count;
1214
1215                 /* We mapped the headers in tso_start().  Unmap them
1216                  * when the last segment is completed.
1217                  */
1218                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1219                 buffer->dma_addr = st->header_dma_addr;
1220                 buffer->len = st->header_len;
1221                 if (is_last) {
1222                         buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1223                         buffer->unmap_len = st->header_unmap_len;
1224                         buffer->dma_offset = 0;
1225                         /* Ensure we only unmap them once in case of a
1226                          * later DMA mapping error and rollback
1227                          */
1228                         st->header_unmap_len = 0;
1229                 } else {
1230                         buffer->flags = EFX_TX_BUF_CONT;
1231                         buffer->unmap_len = 0;
1232                 }
1233                 ++tx_queue->insert_count;
1234         }
1235
1236         st->seqnum += skb_shinfo(skb)->gso_size;
1237
1238         /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1239         ++st->ipv4_id;
1240
1241         ++tx_queue->tso_packets;
1242
1243         return 0;
1244 }
1245
1246
1247 /**
1248  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1249  * @tx_queue:           Efx TX queue
1250  * @skb:                Socket buffer
1251  *
1252  * Context: You must hold netif_tx_lock() to call this function.
1253  *
1254  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1255  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1256  * %NETDEV_TX_OK.
1257  */
1258 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1259                                struct sk_buff *skb)
1260 {
1261         struct efx_nic *efx = tx_queue->efx;
1262         int frag_i, rc;
1263         struct tso_state state;
1264
1265         /* Find the packet protocol and sanity-check it */
1266         state.protocol = efx_tso_check_protocol(skb);
1267
1268         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1269
1270         rc = tso_start(&state, efx, skb);
1271         if (rc)
1272                 goto mem_err;
1273
1274         if (likely(state.in_len == 0)) {
1275                 /* Grab the first payload fragment. */
1276                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1277                 frag_i = 0;
1278                 rc = tso_get_fragment(&state, efx,
1279                                       skb_shinfo(skb)->frags + frag_i);
1280                 if (rc)
1281                         goto mem_err;
1282         } else {
1283                 /* Payload starts in the header area. */
1284                 frag_i = -1;
1285         }
1286
1287         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1288                 goto mem_err;
1289
1290         while (1) {
1291                 tso_fill_packet_with_fragment(tx_queue, skb, &state);
1292
1293                 /* Move onto the next fragment? */
1294                 if (state.in_len == 0) {
1295                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1296                                 /* End of payload reached. */
1297                                 break;
1298                         rc = tso_get_fragment(&state, efx,
1299                                               skb_shinfo(skb)->frags + frag_i);
1300                         if (rc)
1301                                 goto mem_err;
1302                 }
1303
1304                 /* Start at new packet? */
1305                 if (state.packet_space == 0 &&
1306                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1307                         goto mem_err;
1308         }
1309
1310         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1311
1312         /* Pass off to hardware */
1313         efx_nic_push_buffers(tx_queue);
1314
1315         efx_tx_maybe_stop_queue(tx_queue);
1316
1317         tx_queue->tso_bursts++;
1318         return NETDEV_TX_OK;
1319
1320  mem_err:
1321         netif_err(efx, tx_err, efx->net_dev,
1322                   "Out of memory for TSO headers, or DMA mapping error\n");
1323         dev_kfree_skb_any(skb);
1324
1325         /* Free the DMA mapping we were in the process of writing out */
1326         if (state.unmap_len) {
1327                 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1328                         dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1329                                          state.unmap_len, DMA_TO_DEVICE);
1330                 else
1331                         dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1332                                        state.unmap_len, DMA_TO_DEVICE);
1333         }
1334
1335         /* Free the header DMA mapping, if using option descriptors */
1336         if (state.header_unmap_len)
1337                 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1338                                  state.header_unmap_len, DMA_TO_DEVICE);
1339
1340         efx_enqueue_unwind(tx_queue);
1341         return NETDEV_TX_OK;
1342 }