]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/sfc/tx.c
Merge branch 'nfsd-next' of git://linux-nfs.org/~bfields/linux
[~andy/linux] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "workarounds.h"
26 #include "ef10_regs.h"
27
28 #ifdef EFX_USE_PIO
29
30 #define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33
34 #endif /* EFX_USE_PIO */
35
36 static inline unsigned int
37 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38 {
39         return tx_queue->insert_count & tx_queue->ptr_mask;
40 }
41
42 static inline struct efx_tx_buffer *
43 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44 {
45         return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46 }
47
48 static inline struct efx_tx_buffer *
49 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50 {
51         struct efx_tx_buffer *buffer =
52                 __efx_tx_queue_get_insert_buffer(tx_queue);
53
54         EFX_BUG_ON_PARANOID(buffer->len);
55         EFX_BUG_ON_PARANOID(buffer->flags);
56         EFX_BUG_ON_PARANOID(buffer->unmap_len);
57
58         return buffer;
59 }
60
61 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
62                                struct efx_tx_buffer *buffer,
63                                unsigned int *pkts_compl,
64                                unsigned int *bytes_compl)
65 {
66         if (buffer->unmap_len) {
67                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
68                 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
69                 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
70                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71                                          DMA_TO_DEVICE);
72                 else
73                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74                                        DMA_TO_DEVICE);
75                 buffer->unmap_len = 0;
76         }
77
78         if (buffer->flags & EFX_TX_BUF_SKB) {
79                 (*pkts_compl)++;
80                 (*bytes_compl) += buffer->skb->len;
81                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
82                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83                            "TX queue %d transmission id %x complete\n",
84                            tx_queue->queue, tx_queue->read_count);
85         } else if (buffer->flags & EFX_TX_BUF_HEAP) {
86                 kfree(buffer->heap_buf);
87         }
88
89         buffer->len = 0;
90         buffer->flags = 0;
91 }
92
93 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
94                                struct sk_buff *skb);
95
96 static inline unsigned
97 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98 {
99         /* Depending on the NIC revision, we can use descriptor
100          * lengths up to 8K or 8K-1.  However, since PCI Express
101          * devices must split read requests at 4K boundaries, there is
102          * little benefit from using descriptors that cross those
103          * boundaries and we keep things simple by not doing so.
104          */
105         unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
106
107         /* Work around hardware bug for unaligned buffers. */
108         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110
111         return len;
112 }
113
114 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115 {
116         /* Header and payload descriptor for each output segment, plus
117          * one for every input fragment boundary within a segment
118          */
119         unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120
121         /* Possibly one more per segment for the alignment workaround,
122          * or for option descriptors
123          */
124         if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
125                 max_descs += EFX_TSO_MAX_SEGS;
126
127         /* Possibly more for PCIe page boundaries within input fragments */
128         if (PAGE_SIZE > EFX_PAGE_SIZE)
129                 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130                                    DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131
132         return max_descs;
133 }
134
135 /* Get partner of a TX queue, seen as part of the same net core queue */
136 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
137 {
138         if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
139                 return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
140         else
141                 return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
142 }
143
144 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
145 {
146         /* We need to consider both queues that the net core sees as one */
147         struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
148         struct efx_nic *efx = txq1->efx;
149         unsigned int fill_level;
150
151         fill_level = max(txq1->insert_count - txq1->old_read_count,
152                          txq2->insert_count - txq2->old_read_count);
153         if (likely(fill_level < efx->txq_stop_thresh))
154                 return;
155
156         /* We used the stale old_read_count above, which gives us a
157          * pessimistic estimate of the fill level (which may even
158          * validly be >= efx->txq_entries).  Now try again using
159          * read_count (more likely to be a cache miss).
160          *
161          * If we read read_count and then conditionally stop the
162          * queue, it is possible for the completion path to race with
163          * us and complete all outstanding descriptors in the middle,
164          * after which there will be no more completions to wake it.
165          * Therefore we stop the queue first, then read read_count
166          * (with a memory barrier to ensure the ordering), then
167          * restart the queue if the fill level turns out to be low
168          * enough.
169          */
170         netif_tx_stop_queue(txq1->core_txq);
171         smp_mb();
172         txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
173         txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
174
175         fill_level = max(txq1->insert_count - txq1->old_read_count,
176                          txq2->insert_count - txq2->old_read_count);
177         EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
178         if (likely(fill_level < efx->txq_stop_thresh)) {
179                 smp_mb();
180                 if (likely(!efx->loopback_selftest))
181                         netif_tx_start_queue(txq1->core_txq);
182         }
183 }
184
185 #ifdef EFX_USE_PIO
186
187 struct efx_short_copy_buffer {
188         int used;
189         u8 buf[L1_CACHE_BYTES];
190 };
191
192 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
193  * Advances piobuf pointer. Leaves additional data in the copy buffer.
194  */
195 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
196                                     u8 *data, int len,
197                                     struct efx_short_copy_buffer *copy_buf)
198 {
199         int block_len = len & ~(sizeof(copy_buf->buf) - 1);
200
201         memcpy_toio(*piobuf, data, block_len);
202         *piobuf += block_len;
203         len -= block_len;
204
205         if (len) {
206                 data += block_len;
207                 BUG_ON(copy_buf->used);
208                 BUG_ON(len > sizeof(copy_buf->buf));
209                 memcpy(copy_buf->buf, data, len);
210                 copy_buf->used = len;
211         }
212 }
213
214 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
215  * Advances piobuf pointer. Leaves additional data in the copy buffer.
216  */
217 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
218                                        u8 *data, int len,
219                                        struct efx_short_copy_buffer *copy_buf)
220 {
221         if (copy_buf->used) {
222                 /* if the copy buffer is partially full, fill it up and write */
223                 int copy_to_buf =
224                         min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
225
226                 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
227                 copy_buf->used += copy_to_buf;
228
229                 /* if we didn't fill it up then we're done for now */
230                 if (copy_buf->used < sizeof(copy_buf->buf))
231                         return;
232
233                 memcpy_toio(*piobuf, copy_buf->buf, sizeof(copy_buf->buf));
234                 *piobuf += sizeof(copy_buf->buf);
235                 data += copy_to_buf;
236                 len -= copy_to_buf;
237                 copy_buf->used = 0;
238         }
239
240         efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
241 }
242
243 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
244                                   struct efx_short_copy_buffer *copy_buf)
245 {
246         /* if there's anything in it, write the whole buffer, including junk */
247         if (copy_buf->used)
248                 memcpy_toio(piobuf, copy_buf->buf, sizeof(copy_buf->buf));
249 }
250
251 /* Traverse skb structure and copy fragments in to PIO buffer.
252  * Advances piobuf pointer.
253  */
254 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
255                                      u8 __iomem **piobuf,
256                                      struct efx_short_copy_buffer *copy_buf)
257 {
258         int i;
259
260         efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
261                                 copy_buf);
262
263         for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
264                 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
265                 u8 *vaddr;
266
267                 vaddr = kmap_atomic(skb_frag_page(f));
268
269                 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
270                                            skb_frag_size(f), copy_buf);
271                 kunmap_atomic(vaddr);
272         }
273
274         EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
275 }
276
277 static struct efx_tx_buffer *
278 efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
279 {
280         struct efx_tx_buffer *buffer =
281                 efx_tx_queue_get_insert_buffer(tx_queue);
282         u8 __iomem *piobuf = tx_queue->piobuf;
283
284         /* Copy to PIO buffer. Ensure the writes are padded to the end
285          * of a cache line, as this is required for write-combining to be
286          * effective on at least x86.
287          */
288
289         if (skb_shinfo(skb)->nr_frags) {
290                 /* The size of the copy buffer will ensure all writes
291                  * are the size of a cache line.
292                  */
293                 struct efx_short_copy_buffer copy_buf;
294
295                 copy_buf.used = 0;
296
297                 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
298                                          &piobuf, &copy_buf);
299                 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
300         } else {
301                 /* Pad the write to the size of a cache line.
302                  * We can do this because we know the skb_shared_info sruct is
303                  * after the source, and the destination buffer is big enough.
304                  */
305                 BUILD_BUG_ON(L1_CACHE_BYTES >
306                              SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
307                 memcpy_toio(tx_queue->piobuf, skb->data,
308                             ALIGN(skb->len, L1_CACHE_BYTES));
309         }
310
311         EFX_POPULATE_QWORD_5(buffer->option,
312                              ESF_DZ_TX_DESC_IS_OPT, 1,
313                              ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
314                              ESF_DZ_TX_PIO_CONT, 0,
315                              ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
316                              ESF_DZ_TX_PIO_BUF_ADDR,
317                              tx_queue->piobuf_offset);
318         ++tx_queue->pio_packets;
319         ++tx_queue->insert_count;
320         return buffer;
321 }
322 #endif /* EFX_USE_PIO */
323
324 /*
325  * Add a socket buffer to a TX queue
326  *
327  * This maps all fragments of a socket buffer for DMA and adds them to
328  * the TX queue.  The queue's insert pointer will be incremented by
329  * the number of fragments in the socket buffer.
330  *
331  * If any DMA mapping fails, any mapped fragments will be unmapped,
332  * the queue's insert pointer will be restored to its original value.
333  *
334  * This function is split out from efx_hard_start_xmit to allow the
335  * loopback test to direct packets via specific TX queues.
336  *
337  * Returns NETDEV_TX_OK.
338  * You must hold netif_tx_lock() to call this function.
339  */
340 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
341 {
342         struct efx_nic *efx = tx_queue->efx;
343         struct device *dma_dev = &efx->pci_dev->dev;
344         struct efx_tx_buffer *buffer;
345         skb_frag_t *fragment;
346         unsigned int len, unmap_len = 0;
347         dma_addr_t dma_addr, unmap_addr = 0;
348         unsigned int dma_len;
349         unsigned short dma_flags;
350         int i = 0;
351
352         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
353
354         if (skb_shinfo(skb)->gso_size)
355                 return efx_enqueue_skb_tso(tx_queue, skb);
356
357         /* Get size of the initial fragment */
358         len = skb_headlen(skb);
359
360         /* Pad if necessary */
361         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
362                 EFX_BUG_ON_PARANOID(skb->data_len);
363                 len = 32 + 1;
364                 if (skb_pad(skb, len - skb->len))
365                         return NETDEV_TX_OK;
366         }
367
368         /* Consider using PIO for short packets */
369 #ifdef EFX_USE_PIO
370         if (skb->len <= efx_piobuf_size && tx_queue->piobuf &&
371             efx_nic_tx_is_empty(tx_queue) &&
372             efx_nic_tx_is_empty(efx_tx_queue_partner(tx_queue))) {
373                 buffer = efx_enqueue_skb_pio(tx_queue, skb);
374                 dma_flags = EFX_TX_BUF_OPTION;
375                 goto finish_packet;
376         }
377 #endif
378
379         /* Map for DMA.  Use dma_map_single rather than dma_map_page
380          * since this is more efficient on machines with sparse
381          * memory.
382          */
383         dma_flags = EFX_TX_BUF_MAP_SINGLE;
384         dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
385
386         /* Process all fragments */
387         while (1) {
388                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
389                         goto dma_err;
390
391                 /* Store fields for marking in the per-fragment final
392                  * descriptor */
393                 unmap_len = len;
394                 unmap_addr = dma_addr;
395
396                 /* Add to TX queue, splitting across DMA boundaries */
397                 do {
398                         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
399
400                         dma_len = efx_max_tx_len(efx, dma_addr);
401                         if (likely(dma_len >= len))
402                                 dma_len = len;
403
404                         /* Fill out per descriptor fields */
405                         buffer->len = dma_len;
406                         buffer->dma_addr = dma_addr;
407                         buffer->flags = EFX_TX_BUF_CONT;
408                         len -= dma_len;
409                         dma_addr += dma_len;
410                         ++tx_queue->insert_count;
411                 } while (len);
412
413                 /* Transfer ownership of the unmapping to the final buffer */
414                 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
415                 buffer->unmap_len = unmap_len;
416                 buffer->dma_offset = buffer->dma_addr - unmap_addr;
417                 unmap_len = 0;
418
419                 /* Get address and size of next fragment */
420                 if (i >= skb_shinfo(skb)->nr_frags)
421                         break;
422                 fragment = &skb_shinfo(skb)->frags[i];
423                 len = skb_frag_size(fragment);
424                 i++;
425                 /* Map for DMA */
426                 dma_flags = 0;
427                 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
428                                             DMA_TO_DEVICE);
429         }
430
431         /* Transfer ownership of the skb to the final buffer */
432 #ifdef EFX_USE_PIO
433 finish_packet:
434 #endif
435         buffer->skb = skb;
436         buffer->flags = EFX_TX_BUF_SKB | dma_flags;
437
438         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
439
440         /* Pass off to hardware */
441         efx_nic_push_buffers(tx_queue);
442
443         efx_tx_maybe_stop_queue(tx_queue);
444
445         return NETDEV_TX_OK;
446
447  dma_err:
448         netif_err(efx, tx_err, efx->net_dev,
449                   " TX queue %d could not map skb with %d bytes %d "
450                   "fragments for DMA\n", tx_queue->queue, skb->len,
451                   skb_shinfo(skb)->nr_frags + 1);
452
453         /* Mark the packet as transmitted, and free the SKB ourselves */
454         dev_kfree_skb_any(skb);
455
456         /* Work backwards until we hit the original insert pointer value */
457         while (tx_queue->insert_count != tx_queue->write_count) {
458                 unsigned int pkts_compl = 0, bytes_compl = 0;
459                 --tx_queue->insert_count;
460                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
461                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
462         }
463
464         /* Free the fragment we were mid-way through pushing */
465         if (unmap_len) {
466                 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
467                         dma_unmap_single(dma_dev, unmap_addr, unmap_len,
468                                          DMA_TO_DEVICE);
469                 else
470                         dma_unmap_page(dma_dev, unmap_addr, unmap_len,
471                                        DMA_TO_DEVICE);
472         }
473
474         return NETDEV_TX_OK;
475 }
476
477 /* Remove packets from the TX queue
478  *
479  * This removes packets from the TX queue, up to and including the
480  * specified index.
481  */
482 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
483                                 unsigned int index,
484                                 unsigned int *pkts_compl,
485                                 unsigned int *bytes_compl)
486 {
487         struct efx_nic *efx = tx_queue->efx;
488         unsigned int stop_index, read_ptr;
489
490         stop_index = (index + 1) & tx_queue->ptr_mask;
491         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
492
493         while (read_ptr != stop_index) {
494                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
495
496                 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
497                     unlikely(buffer->len == 0)) {
498                         netif_err(efx, tx_err, efx->net_dev,
499                                   "TX queue %d spurious TX completion id %x\n",
500                                   tx_queue->queue, read_ptr);
501                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
502                         return;
503                 }
504
505                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
506
507                 ++tx_queue->read_count;
508                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
509         }
510 }
511
512 /* Initiate a packet transmission.  We use one channel per CPU
513  * (sharing when we have more CPUs than channels).  On Falcon, the TX
514  * completion events will be directed back to the CPU that transmitted
515  * the packet, which should be cache-efficient.
516  *
517  * Context: non-blocking.
518  * Note that returning anything other than NETDEV_TX_OK will cause the
519  * OS to free the skb.
520  */
521 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
522                                 struct net_device *net_dev)
523 {
524         struct efx_nic *efx = netdev_priv(net_dev);
525         struct efx_tx_queue *tx_queue;
526         unsigned index, type;
527
528         EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
529
530         /* PTP "event" packet */
531         if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
532             unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
533                 return efx_ptp_tx(efx, skb);
534         }
535
536         index = skb_get_queue_mapping(skb);
537         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
538         if (index >= efx->n_tx_channels) {
539                 index -= efx->n_tx_channels;
540                 type |= EFX_TXQ_TYPE_HIGHPRI;
541         }
542         tx_queue = efx_get_tx_queue(efx, index, type);
543
544         return efx_enqueue_skb(tx_queue, skb);
545 }
546
547 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
548 {
549         struct efx_nic *efx = tx_queue->efx;
550
551         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
552         tx_queue->core_txq =
553                 netdev_get_tx_queue(efx->net_dev,
554                                     tx_queue->queue / EFX_TXQ_TYPES +
555                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
556                                      efx->n_tx_channels : 0));
557 }
558
559 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
560 {
561         struct efx_nic *efx = netdev_priv(net_dev);
562         struct efx_channel *channel;
563         struct efx_tx_queue *tx_queue;
564         unsigned tc;
565         int rc;
566
567         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
568                 return -EINVAL;
569
570         if (num_tc == net_dev->num_tc)
571                 return 0;
572
573         for (tc = 0; tc < num_tc; tc++) {
574                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
575                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
576         }
577
578         if (num_tc > net_dev->num_tc) {
579                 /* Initialise high-priority queues as necessary */
580                 efx_for_each_channel(channel, efx) {
581                         efx_for_each_possible_channel_tx_queue(tx_queue,
582                                                                channel) {
583                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
584                                         continue;
585                                 if (!tx_queue->buffer) {
586                                         rc = efx_probe_tx_queue(tx_queue);
587                                         if (rc)
588                                                 return rc;
589                                 }
590                                 if (!tx_queue->initialised)
591                                         efx_init_tx_queue(tx_queue);
592                                 efx_init_tx_queue_core_txq(tx_queue);
593                         }
594                 }
595         } else {
596                 /* Reduce number of classes before number of queues */
597                 net_dev->num_tc = num_tc;
598         }
599
600         rc = netif_set_real_num_tx_queues(net_dev,
601                                           max_t(int, num_tc, 1) *
602                                           efx->n_tx_channels);
603         if (rc)
604                 return rc;
605
606         /* Do not destroy high-priority queues when they become
607          * unused.  We would have to flush them first, and it is
608          * fairly difficult to flush a subset of TX queues.  Leave
609          * it to efx_fini_channels().
610          */
611
612         net_dev->num_tc = num_tc;
613         return 0;
614 }
615
616 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
617 {
618         unsigned fill_level;
619         struct efx_nic *efx = tx_queue->efx;
620         struct efx_tx_queue *txq2;
621         unsigned int pkts_compl = 0, bytes_compl = 0;
622
623         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
624
625         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
626         netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
627
628         if (pkts_compl > 1)
629                 ++tx_queue->merge_events;
630
631         /* See if we need to restart the netif queue.  This memory
632          * barrier ensures that we write read_count (inside
633          * efx_dequeue_buffers()) before reading the queue status.
634          */
635         smp_mb();
636         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
637             likely(efx->port_enabled) &&
638             likely(netif_device_present(efx->net_dev))) {
639                 txq2 = efx_tx_queue_partner(tx_queue);
640                 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
641                                  txq2->insert_count - txq2->read_count);
642                 if (fill_level <= efx->txq_wake_thresh)
643                         netif_tx_wake_queue(tx_queue->core_txq);
644         }
645
646         /* Check whether the hardware queue is now empty */
647         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
648                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
649                 if (tx_queue->read_count == tx_queue->old_write_count) {
650                         smp_mb();
651                         tx_queue->empty_read_count =
652                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
653                 }
654         }
655 }
656
657 /* Size of page-based TSO header buffers.  Larger blocks must be
658  * allocated from the heap.
659  */
660 #define TSOH_STD_SIZE   128
661 #define TSOH_PER_PAGE   (PAGE_SIZE / TSOH_STD_SIZE)
662
663 /* At most half the descriptors in the queue at any time will refer to
664  * a TSO header buffer, since they must always be followed by a
665  * payload descriptor referring to an skb.
666  */
667 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
668 {
669         return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
670 }
671
672 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
673 {
674         struct efx_nic *efx = tx_queue->efx;
675         unsigned int entries;
676         int rc;
677
678         /* Create the smallest power-of-two aligned ring */
679         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
680         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
681         tx_queue->ptr_mask = entries - 1;
682
683         netif_dbg(efx, probe, efx->net_dev,
684                   "creating TX queue %d size %#x mask %#x\n",
685                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
686
687         /* Allocate software ring */
688         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
689                                    GFP_KERNEL);
690         if (!tx_queue->buffer)
691                 return -ENOMEM;
692
693         if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
694                 tx_queue->tsoh_page =
695                         kcalloc(efx_tsoh_page_count(tx_queue),
696                                 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
697                 if (!tx_queue->tsoh_page) {
698                         rc = -ENOMEM;
699                         goto fail1;
700                 }
701         }
702
703         /* Allocate hardware ring */
704         rc = efx_nic_probe_tx(tx_queue);
705         if (rc)
706                 goto fail2;
707
708         return 0;
709
710 fail2:
711         kfree(tx_queue->tsoh_page);
712         tx_queue->tsoh_page = NULL;
713 fail1:
714         kfree(tx_queue->buffer);
715         tx_queue->buffer = NULL;
716         return rc;
717 }
718
719 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
720 {
721         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
722                   "initialising TX queue %d\n", tx_queue->queue);
723
724         tx_queue->insert_count = 0;
725         tx_queue->write_count = 0;
726         tx_queue->old_write_count = 0;
727         tx_queue->read_count = 0;
728         tx_queue->old_read_count = 0;
729         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
730
731         /* Set up TX descriptor ring */
732         efx_nic_init_tx(tx_queue);
733
734         tx_queue->initialised = true;
735 }
736
737 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
738 {
739         struct efx_tx_buffer *buffer;
740
741         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
742                   "shutting down TX queue %d\n", tx_queue->queue);
743
744         if (!tx_queue->buffer)
745                 return;
746
747         /* Free any buffers left in the ring */
748         while (tx_queue->read_count != tx_queue->write_count) {
749                 unsigned int pkts_compl = 0, bytes_compl = 0;
750                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
751                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
752
753                 ++tx_queue->read_count;
754         }
755         netdev_tx_reset_queue(tx_queue->core_txq);
756 }
757
758 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
759 {
760         int i;
761
762         if (!tx_queue->buffer)
763                 return;
764
765         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
766                   "destroying TX queue %d\n", tx_queue->queue);
767         efx_nic_remove_tx(tx_queue);
768
769         if (tx_queue->tsoh_page) {
770                 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
771                         efx_nic_free_buffer(tx_queue->efx,
772                                             &tx_queue->tsoh_page[i]);
773                 kfree(tx_queue->tsoh_page);
774                 tx_queue->tsoh_page = NULL;
775         }
776
777         kfree(tx_queue->buffer);
778         tx_queue->buffer = NULL;
779 }
780
781
782 /* Efx TCP segmentation acceleration.
783  *
784  * Why?  Because by doing it here in the driver we can go significantly
785  * faster than the GSO.
786  *
787  * Requires TX checksum offload support.
788  */
789
790 /* Number of bytes inserted at the start of a TSO header buffer,
791  * similar to NET_IP_ALIGN.
792  */
793 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
794 #define TSOH_OFFSET     0
795 #else
796 #define TSOH_OFFSET     NET_IP_ALIGN
797 #endif
798
799 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
800
801 /**
802  * struct tso_state - TSO state for an SKB
803  * @out_len: Remaining length in current segment
804  * @seqnum: Current sequence number
805  * @ipv4_id: Current IPv4 ID, host endian
806  * @packet_space: Remaining space in current packet
807  * @dma_addr: DMA address of current position
808  * @in_len: Remaining length in current SKB fragment
809  * @unmap_len: Length of SKB fragment
810  * @unmap_addr: DMA address of SKB fragment
811  * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
812  * @protocol: Network protocol (after any VLAN header)
813  * @ip_off: Offset of IP header
814  * @tcp_off: Offset of TCP header
815  * @header_len: Number of bytes of header
816  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
817  * @header_dma_addr: Header DMA address, when using option descriptors
818  * @header_unmap_len: Header DMA mapped length, or 0 if not using option
819  *      descriptors
820  *
821  * The state used during segmentation.  It is put into this data structure
822  * just to make it easy to pass into inline functions.
823  */
824 struct tso_state {
825         /* Output position */
826         unsigned out_len;
827         unsigned seqnum;
828         u16 ipv4_id;
829         unsigned packet_space;
830
831         /* Input position */
832         dma_addr_t dma_addr;
833         unsigned in_len;
834         unsigned unmap_len;
835         dma_addr_t unmap_addr;
836         unsigned short dma_flags;
837
838         __be16 protocol;
839         unsigned int ip_off;
840         unsigned int tcp_off;
841         unsigned header_len;
842         unsigned int ip_base_len;
843         dma_addr_t header_dma_addr;
844         unsigned int header_unmap_len;
845 };
846
847
848 /*
849  * Verify that our various assumptions about sk_buffs and the conditions
850  * under which TSO will be attempted hold true.  Return the protocol number.
851  */
852 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
853 {
854         __be16 protocol = skb->protocol;
855
856         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
857                             protocol);
858         if (protocol == htons(ETH_P_8021Q)) {
859                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
860                 protocol = veh->h_vlan_encapsulated_proto;
861         }
862
863         if (protocol == htons(ETH_P_IP)) {
864                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
865         } else {
866                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
867                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
868         }
869         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
870                              + (tcp_hdr(skb)->doff << 2u)) >
871                             skb_headlen(skb));
872
873         return protocol;
874 }
875
876 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
877                                struct efx_tx_buffer *buffer, unsigned int len)
878 {
879         u8 *result;
880
881         EFX_BUG_ON_PARANOID(buffer->len);
882         EFX_BUG_ON_PARANOID(buffer->flags);
883         EFX_BUG_ON_PARANOID(buffer->unmap_len);
884
885         if (likely(len <= TSOH_STD_SIZE - TSOH_OFFSET)) {
886                 unsigned index =
887                         (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
888                 struct efx_buffer *page_buf =
889                         &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
890                 unsigned offset =
891                         TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + TSOH_OFFSET;
892
893                 if (unlikely(!page_buf->addr) &&
894                     efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
895                                          GFP_ATOMIC))
896                         return NULL;
897
898                 result = (u8 *)page_buf->addr + offset;
899                 buffer->dma_addr = page_buf->dma_addr + offset;
900                 buffer->flags = EFX_TX_BUF_CONT;
901         } else {
902                 tx_queue->tso_long_headers++;
903
904                 buffer->heap_buf = kmalloc(TSOH_OFFSET + len, GFP_ATOMIC);
905                 if (unlikely(!buffer->heap_buf))
906                         return NULL;
907                 result = (u8 *)buffer->heap_buf + TSOH_OFFSET;
908                 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
909         }
910
911         buffer->len = len;
912
913         return result;
914 }
915
916 /**
917  * efx_tx_queue_insert - push descriptors onto the TX queue
918  * @tx_queue:           Efx TX queue
919  * @dma_addr:           DMA address of fragment
920  * @len:                Length of fragment
921  * @final_buffer:       The final buffer inserted into the queue
922  *
923  * Push descriptors onto the TX queue.
924  */
925 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
926                                 dma_addr_t dma_addr, unsigned len,
927                                 struct efx_tx_buffer **final_buffer)
928 {
929         struct efx_tx_buffer *buffer;
930         struct efx_nic *efx = tx_queue->efx;
931         unsigned dma_len;
932
933         EFX_BUG_ON_PARANOID(len <= 0);
934
935         while (1) {
936                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
937                 ++tx_queue->insert_count;
938
939                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
940                                     tx_queue->read_count >=
941                                     efx->txq_entries);
942
943                 buffer->dma_addr = dma_addr;
944
945                 dma_len = efx_max_tx_len(efx, dma_addr);
946
947                 /* If there is enough space to send then do so */
948                 if (dma_len >= len)
949                         break;
950
951                 buffer->len = dma_len;
952                 buffer->flags = EFX_TX_BUF_CONT;
953                 dma_addr += dma_len;
954                 len -= dma_len;
955         }
956
957         EFX_BUG_ON_PARANOID(!len);
958         buffer->len = len;
959         *final_buffer = buffer;
960 }
961
962
963 /*
964  * Put a TSO header into the TX queue.
965  *
966  * This is special-cased because we know that it is small enough to fit in
967  * a single fragment, and we know it doesn't cross a page boundary.  It
968  * also allows us to not worry about end-of-packet etc.
969  */
970 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
971                               struct efx_tx_buffer *buffer, u8 *header)
972 {
973         if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
974                 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
975                                                   header, buffer->len,
976                                                   DMA_TO_DEVICE);
977                 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
978                                                buffer->dma_addr))) {
979                         kfree(buffer->heap_buf);
980                         buffer->len = 0;
981                         buffer->flags = 0;
982                         return -ENOMEM;
983                 }
984                 buffer->unmap_len = buffer->len;
985                 buffer->dma_offset = 0;
986                 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
987         }
988
989         ++tx_queue->insert_count;
990         return 0;
991 }
992
993
994 /* Remove buffers put into a tx_queue.  None of the buffers must have
995  * an skb attached.
996  */
997 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
998 {
999         struct efx_tx_buffer *buffer;
1000
1001         /* Work backwards until we hit the original insert pointer value */
1002         while (tx_queue->insert_count != tx_queue->write_count) {
1003                 --tx_queue->insert_count;
1004                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
1005                 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
1006         }
1007 }
1008
1009
1010 /* Parse the SKB header and initialise state. */
1011 static int tso_start(struct tso_state *st, struct efx_nic *efx,
1012                      const struct sk_buff *skb)
1013 {
1014         bool use_options = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1015         struct device *dma_dev = &efx->pci_dev->dev;
1016         unsigned int header_len, in_len;
1017         dma_addr_t dma_addr;
1018
1019         st->ip_off = skb_network_header(skb) - skb->data;
1020         st->tcp_off = skb_transport_header(skb) - skb->data;
1021         header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1022         in_len = skb_headlen(skb) - header_len;
1023         st->header_len = header_len;
1024         st->in_len = in_len;
1025         if (st->protocol == htons(ETH_P_IP)) {
1026                 st->ip_base_len = st->header_len - st->ip_off;
1027                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
1028         } else {
1029                 st->ip_base_len = st->header_len - st->tcp_off;
1030                 st->ipv4_id = 0;
1031         }
1032         st->seqnum = ntohl(tcp_hdr(skb)->seq);
1033
1034         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1035         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1036         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1037
1038         st->out_len = skb->len - header_len;
1039
1040         if (!use_options) {
1041                 st->header_unmap_len = 0;
1042
1043                 if (likely(in_len == 0)) {
1044                         st->dma_flags = 0;
1045                         st->unmap_len = 0;
1046                         return 0;
1047                 }
1048
1049                 dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1050                                           in_len, DMA_TO_DEVICE);
1051                 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1052                 st->dma_addr = dma_addr;
1053                 st->unmap_addr = dma_addr;
1054                 st->unmap_len = in_len;
1055         } else {
1056                 dma_addr = dma_map_single(dma_dev, skb->data,
1057                                           skb_headlen(skb), DMA_TO_DEVICE);
1058                 st->header_dma_addr = dma_addr;
1059                 st->header_unmap_len = skb_headlen(skb);
1060                 st->dma_flags = 0;
1061                 st->dma_addr = dma_addr + header_len;
1062                 st->unmap_len = 0;
1063         }
1064
1065         return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1066 }
1067
1068 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1069                             skb_frag_t *frag)
1070 {
1071         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1072                                           skb_frag_size(frag), DMA_TO_DEVICE);
1073         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1074                 st->dma_flags = 0;
1075                 st->unmap_len = skb_frag_size(frag);
1076                 st->in_len = skb_frag_size(frag);
1077                 st->dma_addr = st->unmap_addr;
1078                 return 0;
1079         }
1080         return -ENOMEM;
1081 }
1082
1083
1084 /**
1085  * tso_fill_packet_with_fragment - form descriptors for the current fragment
1086  * @tx_queue:           Efx TX queue
1087  * @skb:                Socket buffer
1088  * @st:                 TSO state
1089  *
1090  * Form descriptors for the current fragment, until we reach the end
1091  * of fragment or end-of-packet.
1092  */
1093 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1094                                           const struct sk_buff *skb,
1095                                           struct tso_state *st)
1096 {
1097         struct efx_tx_buffer *buffer;
1098         int n;
1099
1100         if (st->in_len == 0)
1101                 return;
1102         if (st->packet_space == 0)
1103                 return;
1104
1105         EFX_BUG_ON_PARANOID(st->in_len <= 0);
1106         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1107
1108         n = min(st->in_len, st->packet_space);
1109
1110         st->packet_space -= n;
1111         st->out_len -= n;
1112         st->in_len -= n;
1113
1114         efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1115
1116         if (st->out_len == 0) {
1117                 /* Transfer ownership of the skb */
1118                 buffer->skb = skb;
1119                 buffer->flags = EFX_TX_BUF_SKB;
1120         } else if (st->packet_space != 0) {
1121                 buffer->flags = EFX_TX_BUF_CONT;
1122         }
1123
1124         if (st->in_len == 0) {
1125                 /* Transfer ownership of the DMA mapping */
1126                 buffer->unmap_len = st->unmap_len;
1127                 buffer->dma_offset = buffer->unmap_len - buffer->len;
1128                 buffer->flags |= st->dma_flags;
1129                 st->unmap_len = 0;
1130         }
1131
1132         st->dma_addr += n;
1133 }
1134
1135
1136 /**
1137  * tso_start_new_packet - generate a new header and prepare for the new packet
1138  * @tx_queue:           Efx TX queue
1139  * @skb:                Socket buffer
1140  * @st:                 TSO state
1141  *
1142  * Generate a new header and prepare for the new packet.  Return 0 on
1143  * success, or -%ENOMEM if failed to alloc header.
1144  */
1145 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1146                                 const struct sk_buff *skb,
1147                                 struct tso_state *st)
1148 {
1149         struct efx_tx_buffer *buffer =
1150                 efx_tx_queue_get_insert_buffer(tx_queue);
1151         bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1152         u8 tcp_flags_clear;
1153
1154         if (!is_last) {
1155                 st->packet_space = skb_shinfo(skb)->gso_size;
1156                 tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1157         } else {
1158                 st->packet_space = st->out_len;
1159                 tcp_flags_clear = 0x00;
1160         }
1161
1162         if (!st->header_unmap_len) {
1163                 /* Allocate and insert a DMA-mapped header buffer. */
1164                 struct tcphdr *tsoh_th;
1165                 unsigned ip_length;
1166                 u8 *header;
1167                 int rc;
1168
1169                 header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1170                 if (!header)
1171                         return -ENOMEM;
1172
1173                 tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1174
1175                 /* Copy and update the headers. */
1176                 memcpy(header, skb->data, st->header_len);
1177
1178                 tsoh_th->seq = htonl(st->seqnum);
1179                 ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1180
1181                 ip_length = st->ip_base_len + st->packet_space;
1182
1183                 if (st->protocol == htons(ETH_P_IP)) {
1184                         struct iphdr *tsoh_iph =
1185                                 (struct iphdr *)(header + st->ip_off);
1186
1187                         tsoh_iph->tot_len = htons(ip_length);
1188                         tsoh_iph->id = htons(st->ipv4_id);
1189                 } else {
1190                         struct ipv6hdr *tsoh_iph =
1191                                 (struct ipv6hdr *)(header + st->ip_off);
1192
1193                         tsoh_iph->payload_len = htons(ip_length);
1194                 }
1195
1196                 rc = efx_tso_put_header(tx_queue, buffer, header);
1197                 if (unlikely(rc))
1198                         return rc;
1199         } else {
1200                 /* Send the original headers with a TSO option descriptor
1201                  * in front
1202                  */
1203                 u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1204
1205                 buffer->flags = EFX_TX_BUF_OPTION;
1206                 buffer->len = 0;
1207                 buffer->unmap_len = 0;
1208                 EFX_POPULATE_QWORD_5(buffer->option,
1209                                      ESF_DZ_TX_DESC_IS_OPT, 1,
1210                                      ESF_DZ_TX_OPTION_TYPE,
1211                                      ESE_DZ_TX_OPTION_DESC_TSO,
1212                                      ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1213                                      ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1214                                      ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1215                 ++tx_queue->insert_count;
1216
1217                 /* We mapped the headers in tso_start().  Unmap them
1218                  * when the last segment is completed.
1219                  */
1220                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1221                 buffer->dma_addr = st->header_dma_addr;
1222                 buffer->len = st->header_len;
1223                 if (is_last) {
1224                         buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1225                         buffer->unmap_len = st->header_unmap_len;
1226                         buffer->dma_offset = 0;
1227                         /* Ensure we only unmap them once in case of a
1228                          * later DMA mapping error and rollback
1229                          */
1230                         st->header_unmap_len = 0;
1231                 } else {
1232                         buffer->flags = EFX_TX_BUF_CONT;
1233                         buffer->unmap_len = 0;
1234                 }
1235                 ++tx_queue->insert_count;
1236         }
1237
1238         st->seqnum += skb_shinfo(skb)->gso_size;
1239
1240         /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1241         ++st->ipv4_id;
1242
1243         ++tx_queue->tso_packets;
1244
1245         return 0;
1246 }
1247
1248
1249 /**
1250  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1251  * @tx_queue:           Efx TX queue
1252  * @skb:                Socket buffer
1253  *
1254  * Context: You must hold netif_tx_lock() to call this function.
1255  *
1256  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1257  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1258  * %NETDEV_TX_OK.
1259  */
1260 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1261                                struct sk_buff *skb)
1262 {
1263         struct efx_nic *efx = tx_queue->efx;
1264         int frag_i, rc;
1265         struct tso_state state;
1266
1267         /* Find the packet protocol and sanity-check it */
1268         state.protocol = efx_tso_check_protocol(skb);
1269
1270         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1271
1272         rc = tso_start(&state, efx, skb);
1273         if (rc)
1274                 goto mem_err;
1275
1276         if (likely(state.in_len == 0)) {
1277                 /* Grab the first payload fragment. */
1278                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1279                 frag_i = 0;
1280                 rc = tso_get_fragment(&state, efx,
1281                                       skb_shinfo(skb)->frags + frag_i);
1282                 if (rc)
1283                         goto mem_err;
1284         } else {
1285                 /* Payload starts in the header area. */
1286                 frag_i = -1;
1287         }
1288
1289         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1290                 goto mem_err;
1291
1292         while (1) {
1293                 tso_fill_packet_with_fragment(tx_queue, skb, &state);
1294
1295                 /* Move onto the next fragment? */
1296                 if (state.in_len == 0) {
1297                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1298                                 /* End of payload reached. */
1299                                 break;
1300                         rc = tso_get_fragment(&state, efx,
1301                                               skb_shinfo(skb)->frags + frag_i);
1302                         if (rc)
1303                                 goto mem_err;
1304                 }
1305
1306                 /* Start at new packet? */
1307                 if (state.packet_space == 0 &&
1308                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1309                         goto mem_err;
1310         }
1311
1312         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1313
1314         /* Pass off to hardware */
1315         efx_nic_push_buffers(tx_queue);
1316
1317         efx_tx_maybe_stop_queue(tx_queue);
1318
1319         tx_queue->tso_bursts++;
1320         return NETDEV_TX_OK;
1321
1322  mem_err:
1323         netif_err(efx, tx_err, efx->net_dev,
1324                   "Out of memory for TSO headers, or DMA mapping error\n");
1325         dev_kfree_skb_any(skb);
1326
1327         /* Free the DMA mapping we were in the process of writing out */
1328         if (state.unmap_len) {
1329                 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1330                         dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1331                                          state.unmap_len, DMA_TO_DEVICE);
1332                 else
1333                         dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1334                                        state.unmap_len, DMA_TO_DEVICE);
1335         }
1336
1337         /* Free the header DMA mapping, if using option descriptors */
1338         if (state.header_unmap_len)
1339                 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1340                                  state.header_unmap_len, DMA_TO_DEVICE);
1341
1342         efx_enqueue_unwind(tx_queue);
1343         return NETDEV_TX_OK;
1344 }