]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/qlogic/qlge/qlge_main.c
qlge: Do not propaged vlan tag offloads to vlans
[~andy/linux] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61 /*  NETIF_MSG_TX_QUEUED | */
62 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = -1;  /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80                 "Option to enable MPI firmware dump. "
81                 "Default is OFF - Do Not allocate memory. ");
82
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86                 "Option to allow force of firmware core dump. "
87                 "Default is OFF - Do not allow.");
88
89 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
90         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92         /* required last entry */
93         {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102
103 /* This hardware semaphore causes exclusive access to
104  * resources shared between the NIC driver, MPI firmware,
105  * FCOE firmware and the FC driver.
106  */
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109         u32 sem_bits = 0;
110
111         switch (sem_mask) {
112         case SEM_XGMAC0_MASK:
113                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114                 break;
115         case SEM_XGMAC1_MASK:
116                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117                 break;
118         case SEM_ICB_MASK:
119                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120                 break;
121         case SEM_MAC_ADDR_MASK:
122                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123                 break;
124         case SEM_FLASH_MASK:
125                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126                 break;
127         case SEM_PROBE_MASK:
128                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129                 break;
130         case SEM_RT_IDX_MASK:
131                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132                 break;
133         case SEM_PROC_REG_MASK:
134                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135                 break;
136         default:
137                 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138                 return -EINVAL;
139         }
140
141         ql_write32(qdev, SEM, sem_bits | sem_mask);
142         return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147         unsigned int wait_count = 30;
148         do {
149                 if (!ql_sem_trylock(qdev, sem_mask))
150                         return 0;
151                 udelay(100);
152         } while (--wait_count);
153         return -ETIMEDOUT;
154 }
155
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158         ql_write32(qdev, SEM, sem_mask);
159         ql_read32(qdev, SEM);   /* flush */
160 }
161
162 /* This function waits for a specific bit to come ready
163  * in a given register.  It is used mostly by the initialize
164  * process, but is also used in kernel thread API such as
165  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166  */
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169         u32 temp;
170         int count = UDELAY_COUNT;
171
172         while (count) {
173                 temp = ql_read32(qdev, reg);
174
175                 /* check for errors */
176                 if (temp & err_bit) {
177                         netif_alert(qdev, probe, qdev->ndev,
178                                     "register 0x%.08x access error, value = 0x%.08x!.\n",
179                                     reg, temp);
180                         return -EIO;
181                 } else if (temp & bit)
182                         return 0;
183                 udelay(UDELAY_DELAY);
184                 count--;
185         }
186         netif_alert(qdev, probe, qdev->ndev,
187                     "Timed out waiting for reg %x to come ready.\n", reg);
188         return -ETIMEDOUT;
189 }
190
191 /* The CFG register is used to download TX and RX control blocks
192  * to the chip. This function waits for an operation to complete.
193  */
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196         int count = UDELAY_COUNT;
197         u32 temp;
198
199         while (count) {
200                 temp = ql_read32(qdev, CFG);
201                 if (temp & CFG_LE)
202                         return -EIO;
203                 if (!(temp & bit))
204                         return 0;
205                 udelay(UDELAY_DELAY);
206                 count--;
207         }
208         return -ETIMEDOUT;
209 }
210
211
212 /* Used to issue init control blocks to hw. Maps control block,
213  * sets address, triggers download, waits for completion.
214  */
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216                  u16 q_id)
217 {
218         u64 map;
219         int status = 0;
220         int direction;
221         u32 mask;
222         u32 value;
223
224         direction =
225             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226             PCI_DMA_FROMDEVICE;
227
228         map = pci_map_single(qdev->pdev, ptr, size, direction);
229         if (pci_dma_mapping_error(qdev->pdev, map)) {
230                 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231                 return -ENOMEM;
232         }
233
234         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235         if (status)
236                 return status;
237
238         status = ql_wait_cfg(qdev, bit);
239         if (status) {
240                 netif_err(qdev, ifup, qdev->ndev,
241                           "Timed out waiting for CFG to come ready.\n");
242                 goto exit;
243         }
244
245         ql_write32(qdev, ICB_L, (u32) map);
246         ql_write32(qdev, ICB_H, (u32) (map >> 32));
247
248         mask = CFG_Q_MASK | (bit << 16);
249         value = bit | (q_id << CFG_Q_SHIFT);
250         ql_write32(qdev, CFG, (mask | value));
251
252         /*
253          * Wait for the bit to clear after signaling hw.
254          */
255         status = ql_wait_cfg(qdev, bit);
256 exit:
257         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
258         pci_unmap_single(qdev->pdev, map, size, direction);
259         return status;
260 }
261
262 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264                         u32 *value)
265 {
266         u32 offset = 0;
267         int status;
268
269         switch (type) {
270         case MAC_ADDR_TYPE_MULTI_MAC:
271         case MAC_ADDR_TYPE_CAM_MAC:
272                 {
273                         status =
274                             ql_wait_reg_rdy(qdev,
275                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276                         if (status)
277                                 goto exit;
278                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
280                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281                         status =
282                             ql_wait_reg_rdy(qdev,
283                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284                         if (status)
285                                 goto exit;
286                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287                         status =
288                             ql_wait_reg_rdy(qdev,
289                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290                         if (status)
291                                 goto exit;
292                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
294                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295                         status =
296                             ql_wait_reg_rdy(qdev,
297                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298                         if (status)
299                                 goto exit;
300                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
302                                 status =
303                                     ql_wait_reg_rdy(qdev,
304                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305                                 if (status)
306                                         goto exit;
307                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
309                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310                                 status =
311                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312                                                     MAC_ADDR_MR, 0);
313                                 if (status)
314                                         goto exit;
315                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316                         }
317                         break;
318                 }
319         case MAC_ADDR_TYPE_VLAN:
320         case MAC_ADDR_TYPE_MULTI_FLTR:
321         default:
322                 netif_crit(qdev, ifup, qdev->ndev,
323                            "Address type %d not yet supported.\n", type);
324                 status = -EPERM;
325         }
326 exit:
327         return status;
328 }
329
330 /* Set up a MAC, multicast or VLAN address for the
331  * inbound frame matching.
332  */
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334                                u16 index)
335 {
336         u32 offset = 0;
337         int status = 0;
338
339         switch (type) {
340         case MAC_ADDR_TYPE_MULTI_MAC:
341                 {
342                         u32 upper = (addr[0] << 8) | addr[1];
343                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344                                         (addr[4] << 8) | (addr[5]);
345
346                         status =
347                                 ql_wait_reg_rdy(qdev,
348                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349                         if (status)
350                                 goto exit;
351                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352                                 (index << MAC_ADDR_IDX_SHIFT) |
353                                 type | MAC_ADDR_E);
354                         ql_write32(qdev, MAC_ADDR_DATA, lower);
355                         status =
356                                 ql_wait_reg_rdy(qdev,
357                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358                         if (status)
359                                 goto exit;
360                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361                                 (index << MAC_ADDR_IDX_SHIFT) |
362                                 type | MAC_ADDR_E);
363
364                         ql_write32(qdev, MAC_ADDR_DATA, upper);
365                         status =
366                                 ql_wait_reg_rdy(qdev,
367                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368                         if (status)
369                                 goto exit;
370                         break;
371                 }
372         case MAC_ADDR_TYPE_CAM_MAC:
373                 {
374                         u32 cam_output;
375                         u32 upper = (addr[0] << 8) | addr[1];
376                         u32 lower =
377                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378                             (addr[5]);
379                         status =
380                             ql_wait_reg_rdy(qdev,
381                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382                         if (status)
383                                 goto exit;
384                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
386                                    type);       /* type */
387                         ql_write32(qdev, MAC_ADDR_DATA, lower);
388                         status =
389                             ql_wait_reg_rdy(qdev,
390                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391                         if (status)
392                                 goto exit;
393                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
395                                    type);       /* type */
396                         ql_write32(qdev, MAC_ADDR_DATA, upper);
397                         status =
398                             ql_wait_reg_rdy(qdev,
399                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400                         if (status)
401                                 goto exit;
402                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
403                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
404                                    type);       /* type */
405                         /* This field should also include the queue id
406                            and possibly the function id.  Right now we hardcode
407                            the route field to NIC core.
408                          */
409                         cam_output = (CAM_OUT_ROUTE_NIC |
410                                       (qdev->
411                                        func << CAM_OUT_FUNC_SHIFT) |
412                                         (0 << CAM_OUT_CQ_ID_SHIFT));
413                         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414                                 cam_output |= CAM_OUT_RV;
415                         /* route to NIC core */
416                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417                         break;
418                 }
419         case MAC_ADDR_TYPE_VLAN:
420                 {
421                         u32 enable_bit = *((u32 *) &addr[0]);
422                         /* For VLAN, the addr actually holds a bit that
423                          * either enables or disables the vlan id we are
424                          * addressing. It's either MAC_ADDR_E on or off.
425                          * That's bit-27 we're talking about.
426                          */
427                         status =
428                             ql_wait_reg_rdy(qdev,
429                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430                         if (status)
431                                 goto exit;
432                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
434                                    type |       /* type */
435                                    enable_bit); /* enable/disable */
436                         break;
437                 }
438         case MAC_ADDR_TYPE_MULTI_FLTR:
439         default:
440                 netif_crit(qdev, ifup, qdev->ndev,
441                            "Address type %d not yet supported.\n", type);
442                 status = -EPERM;
443         }
444 exit:
445         return status;
446 }
447
448 /* Set or clear MAC address in hardware. We sometimes
449  * have to clear it to prevent wrong frame routing
450  * especially in a bonding environment.
451  */
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454         int status;
455         char zero_mac_addr[ETH_ALEN];
456         char *addr;
457
458         if (set) {
459                 addr = &qdev->current_mac_addr[0];
460                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461                              "Set Mac addr %pM\n", addr);
462         } else {
463                 memset(zero_mac_addr, 0, ETH_ALEN);
464                 addr = &zero_mac_addr[0];
465                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466                              "Clearing MAC address\n");
467         }
468         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469         if (status)
470                 return status;
471         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474         if (status)
475                 netif_err(qdev, ifup, qdev->ndev,
476                           "Failed to init mac address.\n");
477         return status;
478 }
479
480 void ql_link_on(struct ql_adapter *qdev)
481 {
482         netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483         netif_carrier_on(qdev->ndev);
484         ql_set_mac_addr(qdev, 1);
485 }
486
487 void ql_link_off(struct ql_adapter *qdev)
488 {
489         netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490         netif_carrier_off(qdev->ndev);
491         ql_set_mac_addr(qdev, 0);
492 }
493
494 /* Get a specific frame routing value from the CAM.
495  * Used for debug and reg dump.
496  */
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499         int status = 0;
500
501         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502         if (status)
503                 goto exit;
504
505         ql_write32(qdev, RT_IDX,
506                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508         if (status)
509                 goto exit;
510         *value = ql_read32(qdev, RT_DATA);
511 exit:
512         return status;
513 }
514
515 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
516  * to route different frame types to various inbound queues.  We send broadcast/
517  * multicast/error frames to the default queue for slow handling,
518  * and CAM hit/RSS frames to the fast handling queues.
519  */
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521                               int enable)
522 {
523         int status = -EINVAL; /* Return error if no mask match. */
524         u32 value = 0;
525
526         switch (mask) {
527         case RT_IDX_CAM_HIT:
528                 {
529                         value = RT_IDX_DST_CAM_Q |      /* dest */
530                             RT_IDX_TYPE_NICQ |  /* type */
531                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532                         break;
533                 }
534         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
535                 {
536                         value = RT_IDX_DST_DFLT_Q |     /* dest */
537                             RT_IDX_TYPE_NICQ |  /* type */
538                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539                         break;
540                 }
541         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
542                 {
543                         value = RT_IDX_DST_DFLT_Q |     /* dest */
544                             RT_IDX_TYPE_NICQ |  /* type */
545                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546                         break;
547                 }
548         case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549                 {
550                         value = RT_IDX_DST_DFLT_Q | /* dest */
551                                 RT_IDX_TYPE_NICQ | /* type */
552                                 (RT_IDX_IP_CSUM_ERR_SLOT <<
553                                 RT_IDX_IDX_SHIFT); /* index */
554                         break;
555                 }
556         case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557                 {
558                         value = RT_IDX_DST_DFLT_Q | /* dest */
559                                 RT_IDX_TYPE_NICQ | /* type */
560                                 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561                                 RT_IDX_IDX_SHIFT); /* index */
562                         break;
563                 }
564         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
565                 {
566                         value = RT_IDX_DST_DFLT_Q |     /* dest */
567                             RT_IDX_TYPE_NICQ |  /* type */
568                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569                         break;
570                 }
571         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
572                 {
573                         value = RT_IDX_DST_DFLT_Q |     /* dest */
574                             RT_IDX_TYPE_NICQ |  /* type */
575                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576                         break;
577                 }
578         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
579                 {
580                         value = RT_IDX_DST_DFLT_Q |     /* dest */
581                             RT_IDX_TYPE_NICQ |  /* type */
582                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583                         break;
584                 }
585         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
586                 {
587                         value = RT_IDX_DST_RSS |        /* dest */
588                             RT_IDX_TYPE_NICQ |  /* type */
589                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590                         break;
591                 }
592         case 0:         /* Clear the E-bit on an entry. */
593                 {
594                         value = RT_IDX_DST_DFLT_Q |     /* dest */
595                             RT_IDX_TYPE_NICQ |  /* type */
596                             (index << RT_IDX_IDX_SHIFT);/* index */
597                         break;
598                 }
599         default:
600                 netif_err(qdev, ifup, qdev->ndev,
601                           "Mask type %d not yet supported.\n", mask);
602                 status = -EPERM;
603                 goto exit;
604         }
605
606         if (value) {
607                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608                 if (status)
609                         goto exit;
610                 value |= (enable ? RT_IDX_E : 0);
611                 ql_write32(qdev, RT_IDX, value);
612                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613         }
614 exit:
615         return status;
616 }
617
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629  * Otherwise, we may have multiple outstanding workers and don't want to
630  * enable until the last one finishes. In this case, the irq_cnt gets
631  * incremented every time we queue a worker and decremented every time
632  * a worker finishes.  Once it hits zero we enable the interrupt.
633  */
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636         u32 var = 0;
637         unsigned long hw_flags = 0;
638         struct intr_context *ctx = qdev->intr_context + intr;
639
640         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641                 /* Always enable if we're MSIX multi interrupts and
642                  * it's not the default (zeroeth) interrupt.
643                  */
644                 ql_write32(qdev, INTR_EN,
645                            ctx->intr_en_mask);
646                 var = ql_read32(qdev, STS);
647                 return var;
648         }
649
650         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651         if (atomic_dec_and_test(&ctx->irq_cnt)) {
652                 ql_write32(qdev, INTR_EN,
653                            ctx->intr_en_mask);
654                 var = ql_read32(qdev, STS);
655         }
656         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657         return var;
658 }
659
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662         u32 var = 0;
663         struct intr_context *ctx;
664
665         /* HW disables for us if we're MSIX multi interrupts and
666          * it's not the default (zeroeth) interrupt.
667          */
668         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669                 return 0;
670
671         ctx = qdev->intr_context + intr;
672         spin_lock(&qdev->hw_lock);
673         if (!atomic_read(&ctx->irq_cnt)) {
674                 ql_write32(qdev, INTR_EN,
675                 ctx->intr_dis_mask);
676                 var = ql_read32(qdev, STS);
677         }
678         atomic_inc(&ctx->irq_cnt);
679         spin_unlock(&qdev->hw_lock);
680         return var;
681 }
682
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685         int i;
686         for (i = 0; i < qdev->intr_count; i++) {
687                 /* The enable call does a atomic_dec_and_test
688                  * and enables only if the result is zero.
689                  * So we precharge it here.
690                  */
691                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692                         i == 0))
693                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694                 ql_enable_completion_interrupt(qdev, i);
695         }
696
697 }
698
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701         int status, i;
702         u16 csum = 0;
703         __le16 *flash = (__le16 *)&qdev->flash;
704
705         status = strncmp((char *)&qdev->flash, str, 4);
706         if (status) {
707                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708                 return  status;
709         }
710
711         for (i = 0; i < size; i++)
712                 csum += le16_to_cpu(*flash++);
713
714         if (csum)
715                 netif_err(qdev, ifup, qdev->ndev,
716                           "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717
718         return csum;
719 }
720
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723         int status = 0;
724         /* wait for reg to come ready */
725         status = ql_wait_reg_rdy(qdev,
726                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727         if (status)
728                 goto exit;
729         /* set up for reg read */
730         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731         /* wait for reg to come ready */
732         status = ql_wait_reg_rdy(qdev,
733                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734         if (status)
735                 goto exit;
736          /* This data is stored on flash as an array of
737          * __le32.  Since ql_read32() returns cpu endian
738          * we need to swap it back.
739          */
740         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742         return status;
743 }
744
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747         u32 i, size;
748         int status;
749         __le32 *p = (__le32 *)&qdev->flash;
750         u32 offset;
751         u8 mac_addr[6];
752
753         /* Get flash offset for function and adjust
754          * for dword access.
755          */
756         if (!qdev->port)
757                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758         else
759                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762                 return -ETIMEDOUT;
763
764         size = sizeof(struct flash_params_8000) / sizeof(u32);
765         for (i = 0; i < size; i++, p++) {
766                 status = ql_read_flash_word(qdev, i+offset, p);
767                 if (status) {
768                         netif_err(qdev, ifup, qdev->ndev,
769                                   "Error reading flash.\n");
770                         goto exit;
771                 }
772         }
773
774         status = ql_validate_flash(qdev,
775                         sizeof(struct flash_params_8000) / sizeof(u16),
776                         "8000");
777         if (status) {
778                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779                 status = -EINVAL;
780                 goto exit;
781         }
782
783         /* Extract either manufacturer or BOFM modified
784          * MAC address.
785          */
786         if (qdev->flash.flash_params_8000.data_type1 == 2)
787                 memcpy(mac_addr,
788                         qdev->flash.flash_params_8000.mac_addr1,
789                         qdev->ndev->addr_len);
790         else
791                 memcpy(mac_addr,
792                         qdev->flash.flash_params_8000.mac_addr,
793                         qdev->ndev->addr_len);
794
795         if (!is_valid_ether_addr(mac_addr)) {
796                 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797                 status = -EINVAL;
798                 goto exit;
799         }
800
801         memcpy(qdev->ndev->dev_addr,
802                 mac_addr,
803                 qdev->ndev->addr_len);
804
805 exit:
806         ql_sem_unlock(qdev, SEM_FLASH_MASK);
807         return status;
808 }
809
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812         int i;
813         int status;
814         __le32 *p = (__le32 *)&qdev->flash;
815         u32 offset = 0;
816         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817
818         /* Second function's parameters follow the first
819          * function's.
820          */
821         if (qdev->port)
822                 offset = size;
823
824         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825                 return -ETIMEDOUT;
826
827         for (i = 0; i < size; i++, p++) {
828                 status = ql_read_flash_word(qdev, i+offset, p);
829                 if (status) {
830                         netif_err(qdev, ifup, qdev->ndev,
831                                   "Error reading flash.\n");
832                         goto exit;
833                 }
834
835         }
836
837         status = ql_validate_flash(qdev,
838                         sizeof(struct flash_params_8012) / sizeof(u16),
839                         "8012");
840         if (status) {
841                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842                 status = -EINVAL;
843                 goto exit;
844         }
845
846         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847                 status = -EINVAL;
848                 goto exit;
849         }
850
851         memcpy(qdev->ndev->dev_addr,
852                 qdev->flash.flash_params_8012.mac_addr,
853                 qdev->ndev->addr_len);
854
855 exit:
856         ql_sem_unlock(qdev, SEM_FLASH_MASK);
857         return status;
858 }
859
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861  * register pair.  Each read/write requires us to wait for the ready
862  * bit before reading/writing the data.
863  */
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866         int status;
867         /* wait for reg to come ready */
868         status = ql_wait_reg_rdy(qdev,
869                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870         if (status)
871                 return status;
872         /* write the data to the data reg */
873         ql_write32(qdev, XGMAC_DATA, data);
874         /* trigger the write */
875         ql_write32(qdev, XGMAC_ADDR, reg);
876         return status;
877 }
878
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880  * register pair.  Each read/write requires us to wait for the ready
881  * bit before reading/writing the data.
882  */
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885         int status = 0;
886         /* wait for reg to come ready */
887         status = ql_wait_reg_rdy(qdev,
888                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889         if (status)
890                 goto exit;
891         /* set up for reg read */
892         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893         /* wait for reg to come ready */
894         status = ql_wait_reg_rdy(qdev,
895                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896         if (status)
897                 goto exit;
898         /* get the data */
899         *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901         return status;
902 }
903
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907         int status = 0;
908         u32 hi = 0;
909         u32 lo = 0;
910
911         status = ql_read_xgmac_reg(qdev, reg, &lo);
912         if (status)
913                 goto exit;
914
915         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916         if (status)
917                 goto exit;
918
919         *data = (u64) lo | ((u64) hi << 32);
920
921 exit:
922         return status;
923 }
924
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927         int status;
928         /*
929          * Get MPI firmware version for driver banner
930          * and ethool info.
931          */
932         status = ql_mb_about_fw(qdev);
933         if (status)
934                 goto exit;
935         status = ql_mb_get_fw_state(qdev);
936         if (status)
937                 goto exit;
938         /* Wake up a worker to get/set the TX/RX frame sizes. */
939         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941         return status;
942 }
943
944 /* Take the MAC Core out of reset.
945  * Enable statistics counting.
946  * Take the transmitter/receiver out of reset.
947  * This functionality may be done in the MPI firmware at a
948  * later date.
949  */
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952         int status = 0;
953         u32 data;
954
955         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956                 /* Another function has the semaphore, so
957                  * wait for the port init bit to come ready.
958                  */
959                 netif_info(qdev, link, qdev->ndev,
960                            "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962                 if (status) {
963                         netif_crit(qdev, link, qdev->ndev,
964                                    "Port initialize timed out.\n");
965                 }
966                 return status;
967         }
968
969         netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970         /* Set the core reset. */
971         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972         if (status)
973                 goto end;
974         data |= GLOBAL_CFG_RESET;
975         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976         if (status)
977                 goto end;
978
979         /* Clear the core reset and turn on jumbo for receiver. */
980         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
981         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
982         data |= GLOBAL_CFG_TX_STAT_EN;
983         data |= GLOBAL_CFG_RX_STAT_EN;
984         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985         if (status)
986                 goto end;
987
988         /* Enable transmitter, and clear it's reset. */
989         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990         if (status)
991                 goto end;
992         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
993         data |= TX_CFG_EN;      /* Enable the transmitter. */
994         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995         if (status)
996                 goto end;
997
998         /* Enable receiver and clear it's reset. */
999         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000         if (status)
1001                 goto end;
1002         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1003         data |= RX_CFG_EN;      /* Enable the receiver. */
1004         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005         if (status)
1006                 goto end;
1007
1008         /* Turn on jumbo. */
1009         status =
1010             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011         if (status)
1012                 goto end;
1013         status =
1014             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015         if (status)
1016                 goto end;
1017
1018         /* Signal to the world that the port is enabled.        */
1019         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022         return status;
1023 }
1024
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027         return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034         rx_ring->lbq_curr_idx++;
1035         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036                 rx_ring->lbq_curr_idx = 0;
1037         rx_ring->lbq_free_cnt++;
1038         return lbq_desc;
1039 }
1040
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042                 struct rx_ring *rx_ring)
1043 {
1044         struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046         pci_dma_sync_single_for_cpu(qdev->pdev,
1047                                         dma_unmap_addr(lbq_desc, mapaddr),
1048                                     rx_ring->lbq_buf_size,
1049                                         PCI_DMA_FROMDEVICE);
1050
1051         /* If it's the last chunk of our master page then
1052          * we unmap it.
1053          */
1054         if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055                                         == ql_lbq_block_size(qdev))
1056                 pci_unmap_page(qdev->pdev,
1057                                 lbq_desc->p.pg_chunk.map,
1058                                 ql_lbq_block_size(qdev),
1059                                 PCI_DMA_FROMDEVICE);
1060         return lbq_desc;
1061 }
1062
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067         rx_ring->sbq_curr_idx++;
1068         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069                 rx_ring->sbq_curr_idx = 0;
1070         rx_ring->sbq_free_cnt++;
1071         return sbq_desc;
1072 }
1073
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077         rx_ring->cnsmr_idx++;
1078         rx_ring->curr_entry++;
1079         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080                 rx_ring->cnsmr_idx = 0;
1081                 rx_ring->curr_entry = rx_ring->cq_base;
1082         }
1083 }
1084
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091                                                 struct bq_desc *lbq_desc)
1092 {
1093         if (!rx_ring->pg_chunk.page) {
1094                 u64 map;
1095                 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096                                                 GFP_ATOMIC,
1097                                                 qdev->lbq_buf_order);
1098                 if (unlikely(!rx_ring->pg_chunk.page)) {
1099                         netif_err(qdev, drv, qdev->ndev,
1100                                   "page allocation failed.\n");
1101                         return -ENOMEM;
1102                 }
1103                 rx_ring->pg_chunk.offset = 0;
1104                 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105                                         0, ql_lbq_block_size(qdev),
1106                                         PCI_DMA_FROMDEVICE);
1107                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108                         __free_pages(rx_ring->pg_chunk.page,
1109                                         qdev->lbq_buf_order);
1110                         rx_ring->pg_chunk.page = NULL;
1111                         netif_err(qdev, drv, qdev->ndev,
1112                                   "PCI mapping failed.\n");
1113                         return -ENOMEM;
1114                 }
1115                 rx_ring->pg_chunk.map = map;
1116                 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117         }
1118
1119         /* Copy the current master pg_chunk info
1120          * to the current descriptor.
1121          */
1122         lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123
1124         /* Adjust the master page chunk for next
1125          * buffer get.
1126          */
1127         rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128         if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129                 rx_ring->pg_chunk.page = NULL;
1130                 lbq_desc->p.pg_chunk.last_flag = 1;
1131         } else {
1132                 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133                 get_page(rx_ring->pg_chunk.page);
1134                 lbq_desc->p.pg_chunk.last_flag = 0;
1135         }
1136         return 0;
1137 }
1138 /* Process (refill) a large buffer queue. */
1139 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140 {
1141         u32 clean_idx = rx_ring->lbq_clean_idx;
1142         u32 start_idx = clean_idx;
1143         struct bq_desc *lbq_desc;
1144         u64 map;
1145         int i;
1146
1147         while (rx_ring->lbq_free_cnt > 32) {
1148                 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1149                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150                                      "lbq: try cleaning clean_idx = %d.\n",
1151                                      clean_idx);
1152                         lbq_desc = &rx_ring->lbq[clean_idx];
1153                         if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1154                                 rx_ring->lbq_clean_idx = clean_idx;
1155                                 netif_err(qdev, ifup, qdev->ndev,
1156                                                 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157                                                 i, clean_idx);
1158                                 return;
1159                         }
1160
1161                         map = lbq_desc->p.pg_chunk.map +
1162                                 lbq_desc->p.pg_chunk.offset;
1163                                 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164                         dma_unmap_len_set(lbq_desc, maplen,
1165                                         rx_ring->lbq_buf_size);
1166                                 *lbq_desc->addr = cpu_to_le64(map);
1167
1168                         pci_dma_sync_single_for_device(qdev->pdev, map,
1169                                                 rx_ring->lbq_buf_size,
1170                                                 PCI_DMA_FROMDEVICE);
1171                         clean_idx++;
1172                         if (clean_idx == rx_ring->lbq_len)
1173                                 clean_idx = 0;
1174                 }
1175
1176                 rx_ring->lbq_clean_idx = clean_idx;
1177                 rx_ring->lbq_prod_idx += 16;
1178                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179                         rx_ring->lbq_prod_idx = 0;
1180                 rx_ring->lbq_free_cnt -= 16;
1181         }
1182
1183         if (start_idx != clean_idx) {
1184                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185                              "lbq: updating prod idx = %d.\n",
1186                              rx_ring->lbq_prod_idx);
1187                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188                                 rx_ring->lbq_prod_idx_db_reg);
1189         }
1190 }
1191
1192 /* Process (refill) a small buffer queue. */
1193 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194 {
1195         u32 clean_idx = rx_ring->sbq_clean_idx;
1196         u32 start_idx = clean_idx;
1197         struct bq_desc *sbq_desc;
1198         u64 map;
1199         int i;
1200
1201         while (rx_ring->sbq_free_cnt > 16) {
1202                 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1203                         sbq_desc = &rx_ring->sbq[clean_idx];
1204                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205                                      "sbq: try cleaning clean_idx = %d.\n",
1206                                      clean_idx);
1207                         if (sbq_desc->p.skb == NULL) {
1208                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1209                                              qdev->ndev,
1210                                              "sbq: getting new skb for index %d.\n",
1211                                              sbq_desc->index);
1212                                 sbq_desc->p.skb =
1213                                     netdev_alloc_skb(qdev->ndev,
1214                                                      SMALL_BUFFER_SIZE);
1215                                 if (sbq_desc->p.skb == NULL) {
1216                                         rx_ring->sbq_clean_idx = clean_idx;
1217                                         return;
1218                                 }
1219                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220                                 map = pci_map_single(qdev->pdev,
1221                                                      sbq_desc->p.skb->data,
1222                                                      rx_ring->sbq_buf_size,
1223                                                      PCI_DMA_FROMDEVICE);
1224                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225                                         netif_err(qdev, ifup, qdev->ndev,
1226                                                   "PCI mapping failed.\n");
1227                                         rx_ring->sbq_clean_idx = clean_idx;
1228                                         dev_kfree_skb_any(sbq_desc->p.skb);
1229                                         sbq_desc->p.skb = NULL;
1230                                         return;
1231                                 }
1232                                 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233                                 dma_unmap_len_set(sbq_desc, maplen,
1234                                                   rx_ring->sbq_buf_size);
1235                                 *sbq_desc->addr = cpu_to_le64(map);
1236                         }
1237
1238                         clean_idx++;
1239                         if (clean_idx == rx_ring->sbq_len)
1240                                 clean_idx = 0;
1241                 }
1242                 rx_ring->sbq_clean_idx = clean_idx;
1243                 rx_ring->sbq_prod_idx += 16;
1244                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245                         rx_ring->sbq_prod_idx = 0;
1246                 rx_ring->sbq_free_cnt -= 16;
1247         }
1248
1249         if (start_idx != clean_idx) {
1250                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251                              "sbq: updating prod idx = %d.\n",
1252                              rx_ring->sbq_prod_idx);
1253                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254                                 rx_ring->sbq_prod_idx_db_reg);
1255         }
1256 }
1257
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259                                     struct rx_ring *rx_ring)
1260 {
1261         ql_update_sbq(qdev, rx_ring);
1262         ql_update_lbq(qdev, rx_ring);
1263 }
1264
1265 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1266  * fails at some stage, or from the interrupt when a tx completes.
1267  */
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269                           struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271         int i;
1272         for (i = 0; i < mapped; i++) {
1273                 if (i == 0 || (i == 7 && mapped > 7)) {
1274                         /*
1275                          * Unmap the skb->data area, or the
1276                          * external sglist (AKA the Outbound
1277                          * Address List (OAL)).
1278                          * If its the zeroeth element, then it's
1279                          * the skb->data area.  If it's the 7th
1280                          * element and there is more than 6 frags,
1281                          * then its an OAL.
1282                          */
1283                         if (i == 7) {
1284                                 netif_printk(qdev, tx_done, KERN_DEBUG,
1285                                              qdev->ndev,
1286                                              "unmapping OAL area.\n");
1287                         }
1288                         pci_unmap_single(qdev->pdev,
1289                                          dma_unmap_addr(&tx_ring_desc->map[i],
1290                                                         mapaddr),
1291                                          dma_unmap_len(&tx_ring_desc->map[i],
1292                                                        maplen),
1293                                          PCI_DMA_TODEVICE);
1294                 } else {
1295                         netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296                                      "unmapping frag %d.\n", i);
1297                         pci_unmap_page(qdev->pdev,
1298                                        dma_unmap_addr(&tx_ring_desc->map[i],
1299                                                       mapaddr),
1300                                        dma_unmap_len(&tx_ring_desc->map[i],
1301                                                      maplen), PCI_DMA_TODEVICE);
1302                 }
1303         }
1304
1305 }
1306
1307 /* Map the buffers for this transmit.  This will return
1308  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309  */
1310 static int ql_map_send(struct ql_adapter *qdev,
1311                        struct ob_mac_iocb_req *mac_iocb_ptr,
1312                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314         int len = skb_headlen(skb);
1315         dma_addr_t map;
1316         int frag_idx, err, map_idx = 0;
1317         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318         int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320         if (frag_cnt) {
1321                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322                              "frag_cnt = %d.\n", frag_cnt);
1323         }
1324         /*
1325          * Map the skb buffer first.
1326          */
1327         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329         err = pci_dma_mapping_error(qdev->pdev, map);
1330         if (err) {
1331                 netif_err(qdev, tx_queued, qdev->ndev,
1332                           "PCI mapping failed with error: %d\n", err);
1333
1334                 return NETDEV_TX_BUSY;
1335         }
1336
1337         tbd->len = cpu_to_le32(len);
1338         tbd->addr = cpu_to_le64(map);
1339         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341         map_idx++;
1342
1343         /*
1344          * This loop fills the remainder of the 8 address descriptors
1345          * in the IOCB.  If there are more than 7 fragments, then the
1346          * eighth address desc will point to an external list (OAL).
1347          * When this happens, the remainder of the frags will be stored
1348          * in this list.
1349          */
1350         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352                 tbd++;
1353                 if (frag_idx == 6 && frag_cnt > 7) {
1354                         /* Let's tack on an sglist.
1355                          * Our control block will now
1356                          * look like this:
1357                          * iocb->seg[0] = skb->data
1358                          * iocb->seg[1] = frag[0]
1359                          * iocb->seg[2] = frag[1]
1360                          * iocb->seg[3] = frag[2]
1361                          * iocb->seg[4] = frag[3]
1362                          * iocb->seg[5] = frag[4]
1363                          * iocb->seg[6] = frag[5]
1364                          * iocb->seg[7] = ptr to OAL (external sglist)
1365                          * oal->seg[0] = frag[6]
1366                          * oal->seg[1] = frag[7]
1367                          * oal->seg[2] = frag[8]
1368                          * oal->seg[3] = frag[9]
1369                          * oal->seg[4] = frag[10]
1370                          *      etc...
1371                          */
1372                         /* Tack on the OAL in the eighth segment of IOCB. */
1373                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374                                              sizeof(struct oal),
1375                                              PCI_DMA_TODEVICE);
1376                         err = pci_dma_mapping_error(qdev->pdev, map);
1377                         if (err) {
1378                                 netif_err(qdev, tx_queued, qdev->ndev,
1379                                           "PCI mapping outbound address list with error: %d\n",
1380                                           err);
1381                                 goto map_error;
1382                         }
1383
1384                         tbd->addr = cpu_to_le64(map);
1385                         /*
1386                          * The length is the number of fragments
1387                          * that remain to be mapped times the length
1388                          * of our sglist (OAL).
1389                          */
1390                         tbd->len =
1391                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1392                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1393                         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394                                            map);
1395                         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396                                           sizeof(struct oal));
1397                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398                         map_idx++;
1399                 }
1400
1401                 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402                                        DMA_TO_DEVICE);
1403
1404                 err = dma_mapping_error(&qdev->pdev->dev, map);
1405                 if (err) {
1406                         netif_err(qdev, tx_queued, qdev->ndev,
1407                                   "PCI mapping frags failed with error: %d.\n",
1408                                   err);
1409                         goto map_error;
1410                 }
1411
1412                 tbd->addr = cpu_to_le64(map);
1413                 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414                 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415                 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416                                   skb_frag_size(frag));
1417
1418         }
1419         /* Save the number of segments we've mapped. */
1420         tx_ring_desc->map_cnt = map_idx;
1421         /* Terminate the last segment. */
1422         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423         return NETDEV_TX_OK;
1424
1425 map_error:
1426         /*
1427          * If the first frag mapping failed, then i will be zero.
1428          * This causes the unmap of the skb->data area.  Otherwise
1429          * we pass in the number of frags that mapped successfully
1430          * so they can be umapped.
1431          */
1432         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433         return NETDEV_TX_BUSY;
1434 }
1435
1436 /* Categorizing receive firmware frame errors */
1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438                                  struct rx_ring *rx_ring)
1439 {
1440         struct nic_stats *stats = &qdev->nic_stats;
1441
1442         stats->rx_err_count++;
1443         rx_ring->rx_errors++;
1444
1445         switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446         case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447                 stats->rx_code_err++;
1448                 break;
1449         case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450                 stats->rx_oversize_err++;
1451                 break;
1452         case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453                 stats->rx_undersize_err++;
1454                 break;
1455         case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456                 stats->rx_preamble_err++;
1457                 break;
1458         case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459                 stats->rx_frame_len_err++;
1460                 break;
1461         case IB_MAC_IOCB_RSP_ERR_CRC:
1462                 stats->rx_crc_err++;
1463         default:
1464                 break;
1465         }
1466 }
1467
1468 /**
1469  * ql_update_mac_hdr_len - helper routine to update the mac header length
1470  * based on vlan tags if present
1471  */
1472 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473                                   struct ib_mac_iocb_rsp *ib_mac_rsp,
1474                                   void *page, size_t *len)
1475 {
1476         u16 *tags;
1477
1478         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479                 return;
1480         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481                 tags = (u16 *)page;
1482                 /* Look for stacked vlan tags in ethertype field */
1483                 if (tags[6] == ETH_P_8021Q &&
1484                     tags[8] == ETH_P_8021Q)
1485                         *len += 2 * VLAN_HLEN;
1486                 else
1487                         *len += VLAN_HLEN;
1488         }
1489 }
1490
1491 /* Process an inbound completion from an rx ring. */
1492 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493                                         struct rx_ring *rx_ring,
1494                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1495                                         u32 length,
1496                                         u16 vlan_id)
1497 {
1498         struct sk_buff *skb;
1499         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1500         struct napi_struct *napi = &rx_ring->napi;
1501
1502         /* Frame error, so drop the packet. */
1503         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505                 put_page(lbq_desc->p.pg_chunk.page);
1506                 return;
1507         }
1508         napi->dev = qdev->ndev;
1509
1510         skb = napi_get_frags(napi);
1511         if (!skb) {
1512                 netif_err(qdev, drv, qdev->ndev,
1513                           "Couldn't get an skb, exiting.\n");
1514                 rx_ring->rx_dropped++;
1515                 put_page(lbq_desc->p.pg_chunk.page);
1516                 return;
1517         }
1518         prefetch(lbq_desc->p.pg_chunk.va);
1519         __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520                              lbq_desc->p.pg_chunk.page,
1521                              lbq_desc->p.pg_chunk.offset,
1522                              length);
1523
1524         skb->len += length;
1525         skb->data_len += length;
1526         skb->truesize += length;
1527         skb_shinfo(skb)->nr_frags++;
1528
1529         rx_ring->rx_packets++;
1530         rx_ring->rx_bytes += length;
1531         skb->ip_summed = CHECKSUM_UNNECESSARY;
1532         skb_record_rx_queue(skb, rx_ring->cq_id);
1533         if (vlan_id != 0xffff)
1534                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1535         napi_gro_frags(napi);
1536 }
1537
1538 /* Process an inbound completion from an rx ring. */
1539 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540                                         struct rx_ring *rx_ring,
1541                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1542                                         u32 length,
1543                                         u16 vlan_id)
1544 {
1545         struct net_device *ndev = qdev->ndev;
1546         struct sk_buff *skb = NULL;
1547         void *addr;
1548         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549         struct napi_struct *napi = &rx_ring->napi;
1550         size_t hlen = ETH_HLEN;
1551
1552         skb = netdev_alloc_skb(ndev, length);
1553         if (!skb) {
1554                 rx_ring->rx_dropped++;
1555                 put_page(lbq_desc->p.pg_chunk.page);
1556                 return;
1557         }
1558
1559         addr = lbq_desc->p.pg_chunk.va;
1560         prefetch(addr);
1561
1562         /* Frame error, so drop the packet. */
1563         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565                 goto err_out;
1566         }
1567
1568         /* Update the MAC header length*/
1569         ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570
1571         /* The max framesize filter on this chip is set higher than
1572          * MTU since FCoE uses 2k frames.
1573          */
1574         if (skb->len > ndev->mtu + hlen) {
1575                 netif_err(qdev, drv, qdev->ndev,
1576                           "Segment too small, dropping.\n");
1577                 rx_ring->rx_dropped++;
1578                 goto err_out;
1579         }
1580         memcpy(skb_put(skb, hlen), addr, hlen);
1581         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583                      length);
1584         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1585                                 lbq_desc->p.pg_chunk.offset + hlen,
1586                                 length - hlen);
1587         skb->len += length - hlen;
1588         skb->data_len += length - hlen;
1589         skb->truesize += length - hlen;
1590
1591         rx_ring->rx_packets++;
1592         rx_ring->rx_bytes += skb->len;
1593         skb->protocol = eth_type_trans(skb, ndev);
1594         skb_checksum_none_assert(skb);
1595
1596         if ((ndev->features & NETIF_F_RXCSUM) &&
1597                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598                 /* TCP frame. */
1599                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1600                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601                                      "TCP checksum done!\n");
1602                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1603                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605                         /* Unfragmented ipv4 UDP frame. */
1606                         struct iphdr *iph =
1607                                 (struct iphdr *)((u8 *)addr + hlen);
1608                         if (!(iph->frag_off &
1609                                 htons(IP_MF|IP_OFFSET))) {
1610                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1611                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1612                                              qdev->ndev,
1613                                              "UDP checksum done!\n");
1614                         }
1615                 }
1616         }
1617
1618         skb_record_rx_queue(skb, rx_ring->cq_id);
1619         if (vlan_id != 0xffff)
1620                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1621         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622                 napi_gro_receive(napi, skb);
1623         else
1624                 netif_receive_skb(skb);
1625         return;
1626 err_out:
1627         dev_kfree_skb_any(skb);
1628         put_page(lbq_desc->p.pg_chunk.page);
1629 }
1630
1631 /* Process an inbound completion from an rx ring. */
1632 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633                                         struct rx_ring *rx_ring,
1634                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1635                                         u32 length,
1636                                         u16 vlan_id)
1637 {
1638         struct net_device *ndev = qdev->ndev;
1639         struct sk_buff *skb = NULL;
1640         struct sk_buff *new_skb = NULL;
1641         struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642
1643         skb = sbq_desc->p.skb;
1644         /* Allocate new_skb and copy */
1645         new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646         if (new_skb == NULL) {
1647                 rx_ring->rx_dropped++;
1648                 return;
1649         }
1650         skb_reserve(new_skb, NET_IP_ALIGN);
1651         memcpy(skb_put(new_skb, length), skb->data, length);
1652         skb = new_skb;
1653
1654         /* Frame error, so drop the packet. */
1655         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1656                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1657                 dev_kfree_skb_any(skb);
1658                 return;
1659         }
1660
1661         /* loopback self test for ethtool */
1662         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1663                 ql_check_lb_frame(qdev, skb);
1664                 dev_kfree_skb_any(skb);
1665                 return;
1666         }
1667
1668         /* The max framesize filter on this chip is set higher than
1669          * MTU since FCoE uses 2k frames.
1670          */
1671         if (skb->len > ndev->mtu + ETH_HLEN) {
1672                 dev_kfree_skb_any(skb);
1673                 rx_ring->rx_dropped++;
1674                 return;
1675         }
1676
1677         prefetch(skb->data);
1678         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1679                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1680                              "%s Multicast.\n",
1681                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1682                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1683                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1684                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1685                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1686                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1687         }
1688         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1689                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1690                              "Promiscuous Packet.\n");
1691
1692         rx_ring->rx_packets++;
1693         rx_ring->rx_bytes += skb->len;
1694         skb->protocol = eth_type_trans(skb, ndev);
1695         skb_checksum_none_assert(skb);
1696
1697         /* If rx checksum is on, and there are no
1698          * csum or frame errors.
1699          */
1700         if ((ndev->features & NETIF_F_RXCSUM) &&
1701                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1702                 /* TCP frame. */
1703                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1704                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1705                                      "TCP checksum done!\n");
1706                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1707                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1708                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1709                         /* Unfragmented ipv4 UDP frame. */
1710                         struct iphdr *iph = (struct iphdr *) skb->data;
1711                         if (!(iph->frag_off &
1712                                 htons(IP_MF|IP_OFFSET))) {
1713                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1714                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1715                                              qdev->ndev,
1716                                              "UDP checksum done!\n");
1717                         }
1718                 }
1719         }
1720
1721         skb_record_rx_queue(skb, rx_ring->cq_id);
1722         if (vlan_id != 0xffff)
1723                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1724         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1725                 napi_gro_receive(&rx_ring->napi, skb);
1726         else
1727                 netif_receive_skb(skb);
1728 }
1729
1730 static void ql_realign_skb(struct sk_buff *skb, int len)
1731 {
1732         void *temp_addr = skb->data;
1733
1734         /* Undo the skb_reserve(skb,32) we did before
1735          * giving to hardware, and realign data on
1736          * a 2-byte boundary.
1737          */
1738         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1739         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1740         skb_copy_to_linear_data(skb, temp_addr,
1741                 (unsigned int)len);
1742 }
1743
1744 /*
1745  * This function builds an skb for the given inbound
1746  * completion.  It will be rewritten for readability in the near
1747  * future, but for not it works well.
1748  */
1749 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1750                                        struct rx_ring *rx_ring,
1751                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1752 {
1753         struct bq_desc *lbq_desc;
1754         struct bq_desc *sbq_desc;
1755         struct sk_buff *skb = NULL;
1756         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1757         u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1758         size_t hlen = ETH_HLEN;
1759
1760         /*
1761          * Handle the header buffer if present.
1762          */
1763         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1764             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1765                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1766                              "Header of %d bytes in small buffer.\n", hdr_len);
1767                 /*
1768                  * Headers fit nicely into a small buffer.
1769                  */
1770                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1771                 pci_unmap_single(qdev->pdev,
1772                                 dma_unmap_addr(sbq_desc, mapaddr),
1773                                 dma_unmap_len(sbq_desc, maplen),
1774                                 PCI_DMA_FROMDEVICE);
1775                 skb = sbq_desc->p.skb;
1776                 ql_realign_skb(skb, hdr_len);
1777                 skb_put(skb, hdr_len);
1778                 sbq_desc->p.skb = NULL;
1779         }
1780
1781         /*
1782          * Handle the data buffer(s).
1783          */
1784         if (unlikely(!length)) {        /* Is there data too? */
1785                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1786                              "No Data buffer in this packet.\n");
1787                 return skb;
1788         }
1789
1790         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1791                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1792                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1793                                      "Headers in small, data of %d bytes in small, combine them.\n",
1794                                      length);
1795                         /*
1796                          * Data is less than small buffer size so it's
1797                          * stuffed in a small buffer.
1798                          * For this case we append the data
1799                          * from the "data" small buffer to the "header" small
1800                          * buffer.
1801                          */
1802                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1803                         pci_dma_sync_single_for_cpu(qdev->pdev,
1804                                                     dma_unmap_addr
1805                                                     (sbq_desc, mapaddr),
1806                                                     dma_unmap_len
1807                                                     (sbq_desc, maplen),
1808                                                     PCI_DMA_FROMDEVICE);
1809                         memcpy(skb_put(skb, length),
1810                                sbq_desc->p.skb->data, length);
1811                         pci_dma_sync_single_for_device(qdev->pdev,
1812                                                        dma_unmap_addr
1813                                                        (sbq_desc,
1814                                                         mapaddr),
1815                                                        dma_unmap_len
1816                                                        (sbq_desc,
1817                                                         maplen),
1818                                                        PCI_DMA_FROMDEVICE);
1819                 } else {
1820                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1821                                      "%d bytes in a single small buffer.\n",
1822                                      length);
1823                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1824                         skb = sbq_desc->p.skb;
1825                         ql_realign_skb(skb, length);
1826                         skb_put(skb, length);
1827                         pci_unmap_single(qdev->pdev,
1828                                          dma_unmap_addr(sbq_desc,
1829                                                         mapaddr),
1830                                          dma_unmap_len(sbq_desc,
1831                                                        maplen),
1832                                          PCI_DMA_FROMDEVICE);
1833                         sbq_desc->p.skb = NULL;
1834                 }
1835         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1836                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1837                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1838                                      "Header in small, %d bytes in large. Chain large to small!\n",
1839                                      length);
1840                         /*
1841                          * The data is in a single large buffer.  We
1842                          * chain it to the header buffer's skb and let
1843                          * it rip.
1844                          */
1845                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1846                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1847                                      "Chaining page at offset = %d, for %d bytes  to skb.\n",
1848                                      lbq_desc->p.pg_chunk.offset, length);
1849                         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1850                                                 lbq_desc->p.pg_chunk.offset,
1851                                                 length);
1852                         skb->len += length;
1853                         skb->data_len += length;
1854                         skb->truesize += length;
1855                 } else {
1856                         /*
1857                          * The headers and data are in a single large buffer. We
1858                          * copy it to a new skb and let it go. This can happen with
1859                          * jumbo mtu on a non-TCP/UDP frame.
1860                          */
1861                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1862                         skb = netdev_alloc_skb(qdev->ndev, length);
1863                         if (skb == NULL) {
1864                                 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1865                                              "No skb available, drop the packet.\n");
1866                                 return NULL;
1867                         }
1868                         pci_unmap_page(qdev->pdev,
1869                                        dma_unmap_addr(lbq_desc,
1870                                                       mapaddr),
1871                                        dma_unmap_len(lbq_desc, maplen),
1872                                        PCI_DMA_FROMDEVICE);
1873                         skb_reserve(skb, NET_IP_ALIGN);
1874                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1875                                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1876                                      length);
1877                         skb_fill_page_desc(skb, 0,
1878                                                 lbq_desc->p.pg_chunk.page,
1879                                                 lbq_desc->p.pg_chunk.offset,
1880                                                 length);
1881                         skb->len += length;
1882                         skb->data_len += length;
1883                         skb->truesize += length;
1884                         length -= length;
1885                         ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1886                                               lbq_desc->p.pg_chunk.va,
1887                                               &hlen);
1888                         __pskb_pull_tail(skb, hlen);
1889                 }
1890         } else {
1891                 /*
1892                  * The data is in a chain of large buffers
1893                  * pointed to by a small buffer.  We loop
1894                  * thru and chain them to the our small header
1895                  * buffer's skb.
1896                  * frags:  There are 18 max frags and our small
1897                  *         buffer will hold 32 of them. The thing is,
1898                  *         we'll use 3 max for our 9000 byte jumbo
1899                  *         frames.  If the MTU goes up we could
1900                  *          eventually be in trouble.
1901                  */
1902                 int size, i = 0;
1903                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1904                 pci_unmap_single(qdev->pdev,
1905                                  dma_unmap_addr(sbq_desc, mapaddr),
1906                                  dma_unmap_len(sbq_desc, maplen),
1907                                  PCI_DMA_FROMDEVICE);
1908                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1909                         /*
1910                          * This is an non TCP/UDP IP frame, so
1911                          * the headers aren't split into a small
1912                          * buffer.  We have to use the small buffer
1913                          * that contains our sg list as our skb to
1914                          * send upstairs. Copy the sg list here to
1915                          * a local buffer and use it to find the
1916                          * pages to chain.
1917                          */
1918                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1919                                      "%d bytes of headers & data in chain of large.\n",
1920                                      length);
1921                         skb = sbq_desc->p.skb;
1922                         sbq_desc->p.skb = NULL;
1923                         skb_reserve(skb, NET_IP_ALIGN);
1924                 }
1925                 while (length > 0) {
1926                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1927                         size = (length < rx_ring->lbq_buf_size) ? length :
1928                                 rx_ring->lbq_buf_size;
1929
1930                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1931                                      "Adding page %d to skb for %d bytes.\n",
1932                                      i, size);
1933                         skb_fill_page_desc(skb, i,
1934                                                 lbq_desc->p.pg_chunk.page,
1935                                                 lbq_desc->p.pg_chunk.offset,
1936                                                 size);
1937                         skb->len += size;
1938                         skb->data_len += size;
1939                         skb->truesize += size;
1940                         length -= size;
1941                         i++;
1942                 }
1943                 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1944                                       &hlen);
1945                 __pskb_pull_tail(skb, hlen);
1946         }
1947         return skb;
1948 }
1949
1950 /* Process an inbound completion from an rx ring. */
1951 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1952                                    struct rx_ring *rx_ring,
1953                                    struct ib_mac_iocb_rsp *ib_mac_rsp,
1954                                    u16 vlan_id)
1955 {
1956         struct net_device *ndev = qdev->ndev;
1957         struct sk_buff *skb = NULL;
1958
1959         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1960
1961         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1962         if (unlikely(!skb)) {
1963                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1964                              "No skb available, drop packet.\n");
1965                 rx_ring->rx_dropped++;
1966                 return;
1967         }
1968
1969         /* Frame error, so drop the packet. */
1970         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1971                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1972                 dev_kfree_skb_any(skb);
1973                 return;
1974         }
1975
1976         /* The max framesize filter on this chip is set higher than
1977          * MTU since FCoE uses 2k frames.
1978          */
1979         if (skb->len > ndev->mtu + ETH_HLEN) {
1980                 dev_kfree_skb_any(skb);
1981                 rx_ring->rx_dropped++;
1982                 return;
1983         }
1984
1985         /* loopback self test for ethtool */
1986         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1987                 ql_check_lb_frame(qdev, skb);
1988                 dev_kfree_skb_any(skb);
1989                 return;
1990         }
1991
1992         prefetch(skb->data);
1993         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1994                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1995                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1996                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1997                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1998                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1999                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2000                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2001                 rx_ring->rx_multicast++;
2002         }
2003         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2004                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2005                              "Promiscuous Packet.\n");
2006         }
2007
2008         skb->protocol = eth_type_trans(skb, ndev);
2009         skb_checksum_none_assert(skb);
2010
2011         /* If rx checksum is on, and there are no
2012          * csum or frame errors.
2013          */
2014         if ((ndev->features & NETIF_F_RXCSUM) &&
2015                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2016                 /* TCP frame. */
2017                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2018                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2019                                      "TCP checksum done!\n");
2020                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2021                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2022                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2023                 /* Unfragmented ipv4 UDP frame. */
2024                         struct iphdr *iph = (struct iphdr *) skb->data;
2025                         if (!(iph->frag_off &
2026                                 htons(IP_MF|IP_OFFSET))) {
2027                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2028                                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2029                                              "TCP checksum done!\n");
2030                         }
2031                 }
2032         }
2033
2034         rx_ring->rx_packets++;
2035         rx_ring->rx_bytes += skb->len;
2036         skb_record_rx_queue(skb, rx_ring->cq_id);
2037         if (vlan_id != 0xffff)
2038                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2039         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2040                 napi_gro_receive(&rx_ring->napi, skb);
2041         else
2042                 netif_receive_skb(skb);
2043 }
2044
2045 /* Process an inbound completion from an rx ring. */
2046 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2047                                         struct rx_ring *rx_ring,
2048                                         struct ib_mac_iocb_rsp *ib_mac_rsp)
2049 {
2050         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2051         u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2052                         (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2053                         ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2054                         IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2055
2056         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2057
2058         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2059                 /* The data and headers are split into
2060                  * separate buffers.
2061                  */
2062                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2063                                                 vlan_id);
2064         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2065                 /* The data fit in a single small buffer.
2066                  * Allocate a new skb, copy the data and
2067                  * return the buffer to the free pool.
2068                  */
2069                 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2070                                                 length, vlan_id);
2071         } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2072                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2073                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2074                 /* TCP packet in a page chunk that's been checksummed.
2075                  * Tack it on to our GRO skb and let it go.
2076                  */
2077                 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2078                                                 length, vlan_id);
2079         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2080                 /* Non-TCP packet in a page chunk. Allocate an
2081                  * skb, tack it on frags, and send it up.
2082                  */
2083                 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2084                                                 length, vlan_id);
2085         } else {
2086                 /* Non-TCP/UDP large frames that span multiple buffers
2087                  * can be processed corrrectly by the split frame logic.
2088                  */
2089                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2090                                                 vlan_id);
2091         }
2092
2093         return (unsigned long)length;
2094 }
2095
2096 /* Process an outbound completion from an rx ring. */
2097 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2098                                    struct ob_mac_iocb_rsp *mac_rsp)
2099 {
2100         struct tx_ring *tx_ring;
2101         struct tx_ring_desc *tx_ring_desc;
2102
2103         QL_DUMP_OB_MAC_RSP(mac_rsp);
2104         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2105         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2106         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2107         tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2108         tx_ring->tx_packets++;
2109         dev_kfree_skb(tx_ring_desc->skb);
2110         tx_ring_desc->skb = NULL;
2111
2112         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2113                                         OB_MAC_IOCB_RSP_S |
2114                                         OB_MAC_IOCB_RSP_L |
2115                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2116                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2117                         netif_warn(qdev, tx_done, qdev->ndev,
2118                                    "Total descriptor length did not match transfer length.\n");
2119                 }
2120                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2121                         netif_warn(qdev, tx_done, qdev->ndev,
2122                                    "Frame too short to be valid, not sent.\n");
2123                 }
2124                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2125                         netif_warn(qdev, tx_done, qdev->ndev,
2126                                    "Frame too long, but sent anyway.\n");
2127                 }
2128                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2129                         netif_warn(qdev, tx_done, qdev->ndev,
2130                                    "PCI backplane error. Frame not sent.\n");
2131                 }
2132         }
2133         atomic_inc(&tx_ring->tx_count);
2134 }
2135
2136 /* Fire up a handler to reset the MPI processor. */
2137 void ql_queue_fw_error(struct ql_adapter *qdev)
2138 {
2139         ql_link_off(qdev);
2140         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2141 }
2142
2143 void ql_queue_asic_error(struct ql_adapter *qdev)
2144 {
2145         ql_link_off(qdev);
2146         ql_disable_interrupts(qdev);
2147         /* Clear adapter up bit to signal the recovery
2148          * process that it shouldn't kill the reset worker
2149          * thread
2150          */
2151         clear_bit(QL_ADAPTER_UP, &qdev->flags);
2152         /* Set asic recovery bit to indicate reset process that we are
2153          * in fatal error recovery process rather than normal close
2154          */
2155         set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2156         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2157 }
2158
2159 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2160                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
2161 {
2162         switch (ib_ae_rsp->event) {
2163         case MGMT_ERR_EVENT:
2164                 netif_err(qdev, rx_err, qdev->ndev,
2165                           "Management Processor Fatal Error.\n");
2166                 ql_queue_fw_error(qdev);
2167                 return;
2168
2169         case CAM_LOOKUP_ERR_EVENT:
2170                 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2171                 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2172                 ql_queue_asic_error(qdev);
2173                 return;
2174
2175         case SOFT_ECC_ERROR_EVENT:
2176                 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2177                 ql_queue_asic_error(qdev);
2178                 break;
2179
2180         case PCI_ERR_ANON_BUF_RD:
2181                 netdev_err(qdev->ndev, "PCI error occurred when reading "
2182                                         "anonymous buffers from rx_ring %d.\n",
2183                                         ib_ae_rsp->q_id);
2184                 ql_queue_asic_error(qdev);
2185                 break;
2186
2187         default:
2188                 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2189                           ib_ae_rsp->event);
2190                 ql_queue_asic_error(qdev);
2191                 break;
2192         }
2193 }
2194
2195 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2196 {
2197         struct ql_adapter *qdev = rx_ring->qdev;
2198         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2199         struct ob_mac_iocb_rsp *net_rsp = NULL;
2200         int count = 0;
2201
2202         struct tx_ring *tx_ring;
2203         /* While there are entries in the completion queue. */
2204         while (prod != rx_ring->cnsmr_idx) {
2205
2206                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2207                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2208                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2209
2210                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2211                 rmb();
2212                 switch (net_rsp->opcode) {
2213
2214                 case OPCODE_OB_MAC_TSO_IOCB:
2215                 case OPCODE_OB_MAC_IOCB:
2216                         ql_process_mac_tx_intr(qdev, net_rsp);
2217                         break;
2218                 default:
2219                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2220                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2221                                      net_rsp->opcode);
2222                 }
2223                 count++;
2224                 ql_update_cq(rx_ring);
2225                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2226         }
2227         if (!net_rsp)
2228                 return 0;
2229         ql_write_cq_idx(rx_ring);
2230         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2231         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2232                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2233                         /*
2234                          * The queue got stopped because the tx_ring was full.
2235                          * Wake it up, because it's now at least 25% empty.
2236                          */
2237                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2238         }
2239
2240         return count;
2241 }
2242
2243 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2244 {
2245         struct ql_adapter *qdev = rx_ring->qdev;
2246         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2247         struct ql_net_rsp_iocb *net_rsp;
2248         int count = 0;
2249
2250         /* While there are entries in the completion queue. */
2251         while (prod != rx_ring->cnsmr_idx) {
2252
2253                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2254                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2255                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2256
2257                 net_rsp = rx_ring->curr_entry;
2258                 rmb();
2259                 switch (net_rsp->opcode) {
2260                 case OPCODE_IB_MAC_IOCB:
2261                         ql_process_mac_rx_intr(qdev, rx_ring,
2262                                                (struct ib_mac_iocb_rsp *)
2263                                                net_rsp);
2264                         break;
2265
2266                 case OPCODE_IB_AE_IOCB:
2267                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2268                                                 net_rsp);
2269                         break;
2270                 default:
2271                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2272                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2273                                      net_rsp->opcode);
2274                         break;
2275                 }
2276                 count++;
2277                 ql_update_cq(rx_ring);
2278                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2279                 if (count == budget)
2280                         break;
2281         }
2282         ql_update_buffer_queues(qdev, rx_ring);
2283         ql_write_cq_idx(rx_ring);
2284         return count;
2285 }
2286
2287 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2288 {
2289         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2290         struct ql_adapter *qdev = rx_ring->qdev;
2291         struct rx_ring *trx_ring;
2292         int i, work_done = 0;
2293         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2294
2295         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2296                      "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2297
2298         /* Service the TX rings first.  They start
2299          * right after the RSS rings. */
2300         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2301                 trx_ring = &qdev->rx_ring[i];
2302                 /* If this TX completion ring belongs to this vector and
2303                  * it's not empty then service it.
2304                  */
2305                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2306                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2307                                         trx_ring->cnsmr_idx)) {
2308                         netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2309                                      "%s: Servicing TX completion ring %d.\n",
2310                                      __func__, trx_ring->cq_id);
2311                         ql_clean_outbound_rx_ring(trx_ring);
2312                 }
2313         }
2314
2315         /*
2316          * Now service the RSS ring if it's active.
2317          */
2318         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2319                                         rx_ring->cnsmr_idx) {
2320                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2321                              "%s: Servicing RX completion ring %d.\n",
2322                              __func__, rx_ring->cq_id);
2323                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2324         }
2325
2326         if (work_done < budget) {
2327                 napi_complete(napi);
2328                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2329         }
2330         return work_done;
2331 }
2332
2333 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2334 {
2335         struct ql_adapter *qdev = netdev_priv(ndev);
2336
2337         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2338                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2339                                  NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2340         } else {
2341                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2342         }
2343 }
2344
2345 /**
2346  * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2347  * based on the features to enable/disable hardware vlan accel
2348  */
2349 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2350                                         netdev_features_t features)
2351 {
2352         struct ql_adapter *qdev = netdev_priv(ndev);
2353         int status = 0;
2354
2355         status = ql_adapter_down(qdev);
2356         if (status) {
2357                 netif_err(qdev, link, qdev->ndev,
2358                           "Failed to bring down the adapter\n");
2359                 return status;
2360         }
2361
2362         /* update the features with resent change */
2363         ndev->features = features;
2364
2365         status = ql_adapter_up(qdev);
2366         if (status) {
2367                 netif_err(qdev, link, qdev->ndev,
2368                           "Failed to bring up the adapter\n");
2369                 return status;
2370         }
2371         return status;
2372 }
2373
2374 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2375         netdev_features_t features)
2376 {
2377         int err;
2378
2379         /* Update the behavior of vlan accel in the adapter */
2380         err = qlge_update_hw_vlan_features(ndev, features);
2381         if (err)
2382                 return err;
2383
2384         return features;
2385 }
2386
2387 static int qlge_set_features(struct net_device *ndev,
2388         netdev_features_t features)
2389 {
2390         netdev_features_t changed = ndev->features ^ features;
2391
2392         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2393                 qlge_vlan_mode(ndev, features);
2394
2395         return 0;
2396 }
2397
2398 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2399 {
2400         u32 enable_bit = MAC_ADDR_E;
2401         int err;
2402
2403         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2404                                   MAC_ADDR_TYPE_VLAN, vid);
2405         if (err)
2406                 netif_err(qdev, ifup, qdev->ndev,
2407                           "Failed to init vlan address.\n");
2408         return err;
2409 }
2410
2411 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2412 {
2413         struct ql_adapter *qdev = netdev_priv(ndev);
2414         int status;
2415         int err;
2416
2417         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2418         if (status)
2419                 return status;
2420
2421         err = __qlge_vlan_rx_add_vid(qdev, vid);
2422         set_bit(vid, qdev->active_vlans);
2423
2424         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2425
2426         return err;
2427 }
2428
2429 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2430 {
2431         u32 enable_bit = 0;
2432         int err;
2433
2434         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2435                                   MAC_ADDR_TYPE_VLAN, vid);
2436         if (err)
2437                 netif_err(qdev, ifup, qdev->ndev,
2438                           "Failed to clear vlan address.\n");
2439         return err;
2440 }
2441
2442 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2443 {
2444         struct ql_adapter *qdev = netdev_priv(ndev);
2445         int status;
2446         int err;
2447
2448         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2449         if (status)
2450                 return status;
2451
2452         err = __qlge_vlan_rx_kill_vid(qdev, vid);
2453         clear_bit(vid, qdev->active_vlans);
2454
2455         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2456
2457         return err;
2458 }
2459
2460 static void qlge_restore_vlan(struct ql_adapter *qdev)
2461 {
2462         int status;
2463         u16 vid;
2464
2465         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2466         if (status)
2467                 return;
2468
2469         for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2470                 __qlge_vlan_rx_add_vid(qdev, vid);
2471
2472         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2473 }
2474
2475 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2476 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2477 {
2478         struct rx_ring *rx_ring = dev_id;
2479         napi_schedule(&rx_ring->napi);
2480         return IRQ_HANDLED;
2481 }
2482
2483 /* This handles a fatal error, MPI activity, and the default
2484  * rx_ring in an MSI-X multiple vector environment.
2485  * In MSI/Legacy environment it also process the rest of
2486  * the rx_rings.
2487  */
2488 static irqreturn_t qlge_isr(int irq, void *dev_id)
2489 {
2490         struct rx_ring *rx_ring = dev_id;
2491         struct ql_adapter *qdev = rx_ring->qdev;
2492         struct intr_context *intr_context = &qdev->intr_context[0];
2493         u32 var;
2494         int work_done = 0;
2495
2496         spin_lock(&qdev->hw_lock);
2497         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2498                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2499                              "Shared Interrupt, Not ours!\n");
2500                 spin_unlock(&qdev->hw_lock);
2501                 return IRQ_NONE;
2502         }
2503         spin_unlock(&qdev->hw_lock);
2504
2505         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2506
2507         /*
2508          * Check for fatal error.
2509          */
2510         if (var & STS_FE) {
2511                 ql_queue_asic_error(qdev);
2512                 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2513                 var = ql_read32(qdev, ERR_STS);
2514                 netdev_err(qdev->ndev, "Resetting chip. "
2515                                         "Error Status Register = 0x%x\n", var);
2516                 return IRQ_HANDLED;
2517         }
2518
2519         /*
2520          * Check MPI processor activity.
2521          */
2522         if ((var & STS_PI) &&
2523                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2524                 /*
2525                  * We've got an async event or mailbox completion.
2526                  * Handle it and clear the source of the interrupt.
2527                  */
2528                 netif_err(qdev, intr, qdev->ndev,
2529                           "Got MPI processor interrupt.\n");
2530                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2531                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2532                 queue_delayed_work_on(smp_processor_id(),
2533                                 qdev->workqueue, &qdev->mpi_work, 0);
2534                 work_done++;
2535         }
2536
2537         /*
2538          * Get the bit-mask that shows the active queues for this
2539          * pass.  Compare it to the queues that this irq services
2540          * and call napi if there's a match.
2541          */
2542         var = ql_read32(qdev, ISR1);
2543         if (var & intr_context->irq_mask) {
2544                 netif_info(qdev, intr, qdev->ndev,
2545                            "Waking handler for rx_ring[0].\n");
2546                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2547                 napi_schedule(&rx_ring->napi);
2548                 work_done++;
2549         }
2550         ql_enable_completion_interrupt(qdev, intr_context->intr);
2551         return work_done ? IRQ_HANDLED : IRQ_NONE;
2552 }
2553
2554 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2555 {
2556
2557         if (skb_is_gso(skb)) {
2558                 int err;
2559                 if (skb_header_cloned(skb)) {
2560                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2561                         if (err)
2562                                 return err;
2563                 }
2564
2565                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2566                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2567                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2568                 mac_iocb_ptr->total_hdrs_len =
2569                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2570                 mac_iocb_ptr->net_trans_offset =
2571                     cpu_to_le16(skb_network_offset(skb) |
2572                                 skb_transport_offset(skb)
2573                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2574                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2575                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2576                 if (likely(skb->protocol == htons(ETH_P_IP))) {
2577                         struct iphdr *iph = ip_hdr(skb);
2578                         iph->check = 0;
2579                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2580                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2581                                                                  iph->daddr, 0,
2582                                                                  IPPROTO_TCP,
2583                                                                  0);
2584                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2585                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2586                         tcp_hdr(skb)->check =
2587                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2588                                              &ipv6_hdr(skb)->daddr,
2589                                              0, IPPROTO_TCP, 0);
2590                 }
2591                 return 1;
2592         }
2593         return 0;
2594 }
2595
2596 static void ql_hw_csum_setup(struct sk_buff *skb,
2597                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2598 {
2599         int len;
2600         struct iphdr *iph = ip_hdr(skb);
2601         __sum16 *check;
2602         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2603         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2604         mac_iocb_ptr->net_trans_offset =
2605                 cpu_to_le16(skb_network_offset(skb) |
2606                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2607
2608         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2609         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2610         if (likely(iph->protocol == IPPROTO_TCP)) {
2611                 check = &(tcp_hdr(skb)->check);
2612                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2613                 mac_iocb_ptr->total_hdrs_len =
2614                     cpu_to_le16(skb_transport_offset(skb) +
2615                                 (tcp_hdr(skb)->doff << 2));
2616         } else {
2617                 check = &(udp_hdr(skb)->check);
2618                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2619                 mac_iocb_ptr->total_hdrs_len =
2620                     cpu_to_le16(skb_transport_offset(skb) +
2621                                 sizeof(struct udphdr));
2622         }
2623         *check = ~csum_tcpudp_magic(iph->saddr,
2624                                     iph->daddr, len, iph->protocol, 0);
2625 }
2626
2627 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2628 {
2629         struct tx_ring_desc *tx_ring_desc;
2630         struct ob_mac_iocb_req *mac_iocb_ptr;
2631         struct ql_adapter *qdev = netdev_priv(ndev);
2632         int tso;
2633         struct tx_ring *tx_ring;
2634         u32 tx_ring_idx = (u32) skb->queue_mapping;
2635
2636         tx_ring = &qdev->tx_ring[tx_ring_idx];
2637
2638         if (skb_padto(skb, ETH_ZLEN))
2639                 return NETDEV_TX_OK;
2640
2641         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2642                 netif_info(qdev, tx_queued, qdev->ndev,
2643                            "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2644                            __func__, tx_ring_idx);
2645                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2646                 tx_ring->tx_errors++;
2647                 return NETDEV_TX_BUSY;
2648         }
2649         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2650         mac_iocb_ptr = tx_ring_desc->queue_entry;
2651         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2652
2653         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2654         mac_iocb_ptr->tid = tx_ring_desc->index;
2655         /* We use the upper 32-bits to store the tx queue for this IO.
2656          * When we get the completion we can use it to establish the context.
2657          */
2658         mac_iocb_ptr->txq_idx = tx_ring_idx;
2659         tx_ring_desc->skb = skb;
2660
2661         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2662
2663         if (vlan_tx_tag_present(skb)) {
2664                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2665                              "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2666                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2667                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2668         }
2669         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2670         if (tso < 0) {
2671                 dev_kfree_skb_any(skb);
2672                 return NETDEV_TX_OK;
2673         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2674                 ql_hw_csum_setup(skb,
2675                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2676         }
2677         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2678                         NETDEV_TX_OK) {
2679                 netif_err(qdev, tx_queued, qdev->ndev,
2680                           "Could not map the segments.\n");
2681                 tx_ring->tx_errors++;
2682                 return NETDEV_TX_BUSY;
2683         }
2684         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2685         tx_ring->prod_idx++;
2686         if (tx_ring->prod_idx == tx_ring->wq_len)
2687                 tx_ring->prod_idx = 0;
2688         wmb();
2689
2690         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2691         netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2692                      "tx queued, slot %d, len %d\n",
2693                      tx_ring->prod_idx, skb->len);
2694
2695         atomic_dec(&tx_ring->tx_count);
2696
2697         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2698                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2699                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2700                         /*
2701                          * The queue got stopped because the tx_ring was full.
2702                          * Wake it up, because it's now at least 25% empty.
2703                          */
2704                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2705         }
2706         return NETDEV_TX_OK;
2707 }
2708
2709
2710 static void ql_free_shadow_space(struct ql_adapter *qdev)
2711 {
2712         if (qdev->rx_ring_shadow_reg_area) {
2713                 pci_free_consistent(qdev->pdev,
2714                                     PAGE_SIZE,
2715                                     qdev->rx_ring_shadow_reg_area,
2716                                     qdev->rx_ring_shadow_reg_dma);
2717                 qdev->rx_ring_shadow_reg_area = NULL;
2718         }
2719         if (qdev->tx_ring_shadow_reg_area) {
2720                 pci_free_consistent(qdev->pdev,
2721                                     PAGE_SIZE,
2722                                     qdev->tx_ring_shadow_reg_area,
2723                                     qdev->tx_ring_shadow_reg_dma);
2724                 qdev->tx_ring_shadow_reg_area = NULL;
2725         }
2726 }
2727
2728 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2729 {
2730         qdev->rx_ring_shadow_reg_area =
2731             pci_alloc_consistent(qdev->pdev,
2732                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2733         if (qdev->rx_ring_shadow_reg_area == NULL) {
2734                 netif_err(qdev, ifup, qdev->ndev,
2735                           "Allocation of RX shadow space failed.\n");
2736                 return -ENOMEM;
2737         }
2738         memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2739         qdev->tx_ring_shadow_reg_area =
2740             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2741                                  &qdev->tx_ring_shadow_reg_dma);
2742         if (qdev->tx_ring_shadow_reg_area == NULL) {
2743                 netif_err(qdev, ifup, qdev->ndev,
2744                           "Allocation of TX shadow space failed.\n");
2745                 goto err_wqp_sh_area;
2746         }
2747         memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2748         return 0;
2749
2750 err_wqp_sh_area:
2751         pci_free_consistent(qdev->pdev,
2752                             PAGE_SIZE,
2753                             qdev->rx_ring_shadow_reg_area,
2754                             qdev->rx_ring_shadow_reg_dma);
2755         return -ENOMEM;
2756 }
2757
2758 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2759 {
2760         struct tx_ring_desc *tx_ring_desc;
2761         int i;
2762         struct ob_mac_iocb_req *mac_iocb_ptr;
2763
2764         mac_iocb_ptr = tx_ring->wq_base;
2765         tx_ring_desc = tx_ring->q;
2766         for (i = 0; i < tx_ring->wq_len; i++) {
2767                 tx_ring_desc->index = i;
2768                 tx_ring_desc->skb = NULL;
2769                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2770                 mac_iocb_ptr++;
2771                 tx_ring_desc++;
2772         }
2773         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2774 }
2775
2776 static void ql_free_tx_resources(struct ql_adapter *qdev,
2777                                  struct tx_ring *tx_ring)
2778 {
2779         if (tx_ring->wq_base) {
2780                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2781                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2782                 tx_ring->wq_base = NULL;
2783         }
2784         kfree(tx_ring->q);
2785         tx_ring->q = NULL;
2786 }
2787
2788 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2789                                  struct tx_ring *tx_ring)
2790 {
2791         tx_ring->wq_base =
2792             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2793                                  &tx_ring->wq_base_dma);
2794
2795         if ((tx_ring->wq_base == NULL) ||
2796             tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2797                 goto pci_alloc_err;
2798
2799         tx_ring->q =
2800             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2801         if (tx_ring->q == NULL)
2802                 goto err;
2803
2804         return 0;
2805 err:
2806         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2807                             tx_ring->wq_base, tx_ring->wq_base_dma);
2808         tx_ring->wq_base = NULL;
2809 pci_alloc_err:
2810         netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2811         return -ENOMEM;
2812 }
2813
2814 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2815 {
2816         struct bq_desc *lbq_desc;
2817
2818         uint32_t  curr_idx, clean_idx;
2819
2820         curr_idx = rx_ring->lbq_curr_idx;
2821         clean_idx = rx_ring->lbq_clean_idx;
2822         while (curr_idx != clean_idx) {
2823                 lbq_desc = &rx_ring->lbq[curr_idx];
2824
2825                 if (lbq_desc->p.pg_chunk.last_flag) {
2826                         pci_unmap_page(qdev->pdev,
2827                                 lbq_desc->p.pg_chunk.map,
2828                                 ql_lbq_block_size(qdev),
2829                                        PCI_DMA_FROMDEVICE);
2830                         lbq_desc->p.pg_chunk.last_flag = 0;
2831                 }
2832
2833                 put_page(lbq_desc->p.pg_chunk.page);
2834                 lbq_desc->p.pg_chunk.page = NULL;
2835
2836                 if (++curr_idx == rx_ring->lbq_len)
2837                         curr_idx = 0;
2838
2839         }
2840         if (rx_ring->pg_chunk.page) {
2841                 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2842                         ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2843                 put_page(rx_ring->pg_chunk.page);
2844                 rx_ring->pg_chunk.page = NULL;
2845         }
2846 }
2847
2848 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2849 {
2850         int i;
2851         struct bq_desc *sbq_desc;
2852
2853         for (i = 0; i < rx_ring->sbq_len; i++) {
2854                 sbq_desc = &rx_ring->sbq[i];
2855                 if (sbq_desc == NULL) {
2856                         netif_err(qdev, ifup, qdev->ndev,
2857                                   "sbq_desc %d is NULL.\n", i);
2858                         return;
2859                 }
2860                 if (sbq_desc->p.skb) {
2861                         pci_unmap_single(qdev->pdev,
2862                                          dma_unmap_addr(sbq_desc, mapaddr),
2863                                          dma_unmap_len(sbq_desc, maplen),
2864                                          PCI_DMA_FROMDEVICE);
2865                         dev_kfree_skb(sbq_desc->p.skb);
2866                         sbq_desc->p.skb = NULL;
2867                 }
2868         }
2869 }
2870
2871 /* Free all large and small rx buffers associated
2872  * with the completion queues for this device.
2873  */
2874 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2875 {
2876         int i;
2877         struct rx_ring *rx_ring;
2878
2879         for (i = 0; i < qdev->rx_ring_count; i++) {
2880                 rx_ring = &qdev->rx_ring[i];
2881                 if (rx_ring->lbq)
2882                         ql_free_lbq_buffers(qdev, rx_ring);
2883                 if (rx_ring->sbq)
2884                         ql_free_sbq_buffers(qdev, rx_ring);
2885         }
2886 }
2887
2888 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2889 {
2890         struct rx_ring *rx_ring;
2891         int i;
2892
2893         for (i = 0; i < qdev->rx_ring_count; i++) {
2894                 rx_ring = &qdev->rx_ring[i];
2895                 if (rx_ring->type != TX_Q)
2896                         ql_update_buffer_queues(qdev, rx_ring);
2897         }
2898 }
2899
2900 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2901                                 struct rx_ring *rx_ring)
2902 {
2903         int i;
2904         struct bq_desc *lbq_desc;
2905         __le64 *bq = rx_ring->lbq_base;
2906
2907         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2908         for (i = 0; i < rx_ring->lbq_len; i++) {
2909                 lbq_desc = &rx_ring->lbq[i];
2910                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2911                 lbq_desc->index = i;
2912                 lbq_desc->addr = bq;
2913                 bq++;
2914         }
2915 }
2916
2917 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2918                                 struct rx_ring *rx_ring)
2919 {
2920         int i;
2921         struct bq_desc *sbq_desc;
2922         __le64 *bq = rx_ring->sbq_base;
2923
2924         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2925         for (i = 0; i < rx_ring->sbq_len; i++) {
2926                 sbq_desc = &rx_ring->sbq[i];
2927                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2928                 sbq_desc->index = i;
2929                 sbq_desc->addr = bq;
2930                 bq++;
2931         }
2932 }
2933
2934 static void ql_free_rx_resources(struct ql_adapter *qdev,
2935                                  struct rx_ring *rx_ring)
2936 {
2937         /* Free the small buffer queue. */
2938         if (rx_ring->sbq_base) {
2939                 pci_free_consistent(qdev->pdev,
2940                                     rx_ring->sbq_size,
2941                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2942                 rx_ring->sbq_base = NULL;
2943         }
2944
2945         /* Free the small buffer queue control blocks. */
2946         kfree(rx_ring->sbq);
2947         rx_ring->sbq = NULL;
2948
2949         /* Free the large buffer queue. */
2950         if (rx_ring->lbq_base) {
2951                 pci_free_consistent(qdev->pdev,
2952                                     rx_ring->lbq_size,
2953                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2954                 rx_ring->lbq_base = NULL;
2955         }
2956
2957         /* Free the large buffer queue control blocks. */
2958         kfree(rx_ring->lbq);
2959         rx_ring->lbq = NULL;
2960
2961         /* Free the rx queue. */
2962         if (rx_ring->cq_base) {
2963                 pci_free_consistent(qdev->pdev,
2964                                     rx_ring->cq_size,
2965                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2966                 rx_ring->cq_base = NULL;
2967         }
2968 }
2969
2970 /* Allocate queues and buffers for this completions queue based
2971  * on the values in the parameter structure. */
2972 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2973                                  struct rx_ring *rx_ring)
2974 {
2975
2976         /*
2977          * Allocate the completion queue for this rx_ring.
2978          */
2979         rx_ring->cq_base =
2980             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2981                                  &rx_ring->cq_base_dma);
2982
2983         if (rx_ring->cq_base == NULL) {
2984                 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2985                 return -ENOMEM;
2986         }
2987
2988         if (rx_ring->sbq_len) {
2989                 /*
2990                  * Allocate small buffer queue.
2991                  */
2992                 rx_ring->sbq_base =
2993                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2994                                          &rx_ring->sbq_base_dma);
2995
2996                 if (rx_ring->sbq_base == NULL) {
2997                         netif_err(qdev, ifup, qdev->ndev,
2998                                   "Small buffer queue allocation failed.\n");
2999                         goto err_mem;
3000                 }
3001
3002                 /*
3003                  * Allocate small buffer queue control blocks.
3004                  */
3005                 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3006                                              sizeof(struct bq_desc),
3007                                              GFP_KERNEL);
3008                 if (rx_ring->sbq == NULL)
3009                         goto err_mem;
3010
3011                 ql_init_sbq_ring(qdev, rx_ring);
3012         }
3013
3014         if (rx_ring->lbq_len) {
3015                 /*
3016                  * Allocate large buffer queue.
3017                  */
3018                 rx_ring->lbq_base =
3019                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3020                                          &rx_ring->lbq_base_dma);
3021
3022                 if (rx_ring->lbq_base == NULL) {
3023                         netif_err(qdev, ifup, qdev->ndev,
3024                                   "Large buffer queue allocation failed.\n");
3025                         goto err_mem;
3026                 }
3027                 /*
3028                  * Allocate large buffer queue control blocks.
3029                  */
3030                 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3031                                              sizeof(struct bq_desc),
3032                                              GFP_KERNEL);
3033                 if (rx_ring->lbq == NULL)
3034                         goto err_mem;
3035
3036                 ql_init_lbq_ring(qdev, rx_ring);
3037         }
3038
3039         return 0;
3040
3041 err_mem:
3042         ql_free_rx_resources(qdev, rx_ring);
3043         return -ENOMEM;
3044 }
3045
3046 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3047 {
3048         struct tx_ring *tx_ring;
3049         struct tx_ring_desc *tx_ring_desc;
3050         int i, j;
3051
3052         /*
3053          * Loop through all queues and free
3054          * any resources.
3055          */
3056         for (j = 0; j < qdev->tx_ring_count; j++) {
3057                 tx_ring = &qdev->tx_ring[j];
3058                 for (i = 0; i < tx_ring->wq_len; i++) {
3059                         tx_ring_desc = &tx_ring->q[i];
3060                         if (tx_ring_desc && tx_ring_desc->skb) {
3061                                 netif_err(qdev, ifdown, qdev->ndev,
3062                                           "Freeing lost SKB %p, from queue %d, index %d.\n",
3063                                           tx_ring_desc->skb, j,
3064                                           tx_ring_desc->index);
3065                                 ql_unmap_send(qdev, tx_ring_desc,
3066                                               tx_ring_desc->map_cnt);
3067                                 dev_kfree_skb(tx_ring_desc->skb);
3068                                 tx_ring_desc->skb = NULL;
3069                         }
3070                 }
3071         }
3072 }
3073
3074 static void ql_free_mem_resources(struct ql_adapter *qdev)
3075 {
3076         int i;
3077
3078         for (i = 0; i < qdev->tx_ring_count; i++)
3079                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3080         for (i = 0; i < qdev->rx_ring_count; i++)
3081                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3082         ql_free_shadow_space(qdev);
3083 }
3084
3085 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3086 {
3087         int i;
3088
3089         /* Allocate space for our shadow registers and such. */
3090         if (ql_alloc_shadow_space(qdev))
3091                 return -ENOMEM;
3092
3093         for (i = 0; i < qdev->rx_ring_count; i++) {
3094                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3095                         netif_err(qdev, ifup, qdev->ndev,
3096                                   "RX resource allocation failed.\n");
3097                         goto err_mem;
3098                 }
3099         }
3100         /* Allocate tx queue resources */
3101         for (i = 0; i < qdev->tx_ring_count; i++) {
3102                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3103                         netif_err(qdev, ifup, qdev->ndev,
3104                                   "TX resource allocation failed.\n");
3105                         goto err_mem;
3106                 }
3107         }
3108         return 0;
3109
3110 err_mem:
3111         ql_free_mem_resources(qdev);
3112         return -ENOMEM;
3113 }
3114
3115 /* Set up the rx ring control block and pass it to the chip.
3116  * The control block is defined as
3117  * "Completion Queue Initialization Control Block", or cqicb.
3118  */
3119 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3120 {
3121         struct cqicb *cqicb = &rx_ring->cqicb;
3122         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3123                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3124         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3125                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3126         void __iomem *doorbell_area =
3127             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3128         int err = 0;
3129         u16 bq_len;
3130         u64 tmp;
3131         __le64 *base_indirect_ptr;
3132         int page_entries;
3133
3134         /* Set up the shadow registers for this ring. */
3135         rx_ring->prod_idx_sh_reg = shadow_reg;
3136         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3137         *rx_ring->prod_idx_sh_reg = 0;
3138         shadow_reg += sizeof(u64);
3139         shadow_reg_dma += sizeof(u64);
3140         rx_ring->lbq_base_indirect = shadow_reg;
3141         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3142         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3143         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3144         rx_ring->sbq_base_indirect = shadow_reg;
3145         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3146
3147         /* PCI doorbell mem area + 0x00 for consumer index register */
3148         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3149         rx_ring->cnsmr_idx = 0;
3150         rx_ring->curr_entry = rx_ring->cq_base;
3151
3152         /* PCI doorbell mem area + 0x04 for valid register */
3153         rx_ring->valid_db_reg = doorbell_area + 0x04;
3154
3155         /* PCI doorbell mem area + 0x18 for large buffer consumer */
3156         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3157
3158         /* PCI doorbell mem area + 0x1c */
3159         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3160
3161         memset((void *)cqicb, 0, sizeof(struct cqicb));
3162         cqicb->msix_vect = rx_ring->irq;
3163
3164         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3165         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3166
3167         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3168
3169         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3170
3171         /*
3172          * Set up the control block load flags.
3173          */
3174         cqicb->flags = FLAGS_LC |       /* Load queue base address */
3175             FLAGS_LV |          /* Load MSI-X vector */
3176             FLAGS_LI;           /* Load irq delay values */
3177         if (rx_ring->lbq_len) {
3178                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
3179                 tmp = (u64)rx_ring->lbq_base_dma;
3180                 base_indirect_ptr = rx_ring->lbq_base_indirect;
3181                 page_entries = 0;
3182                 do {
3183                         *base_indirect_ptr = cpu_to_le64(tmp);
3184                         tmp += DB_PAGE_SIZE;
3185                         base_indirect_ptr++;
3186                         page_entries++;
3187                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3188                 cqicb->lbq_addr =
3189                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3190                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3191                         (u16) rx_ring->lbq_buf_size;
3192                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3193                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3194                         (u16) rx_ring->lbq_len;
3195                 cqicb->lbq_len = cpu_to_le16(bq_len);
3196                 rx_ring->lbq_prod_idx = 0;
3197                 rx_ring->lbq_curr_idx = 0;
3198                 rx_ring->lbq_clean_idx = 0;
3199                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3200         }
3201         if (rx_ring->sbq_len) {
3202                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
3203                 tmp = (u64)rx_ring->sbq_base_dma;
3204                 base_indirect_ptr = rx_ring->sbq_base_indirect;
3205                 page_entries = 0;
3206                 do {
3207                         *base_indirect_ptr = cpu_to_le64(tmp);
3208                         tmp += DB_PAGE_SIZE;
3209                         base_indirect_ptr++;
3210                         page_entries++;
3211                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3212                 cqicb->sbq_addr =
3213                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3214                 cqicb->sbq_buf_size =
3215                     cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3216                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3217                         (u16) rx_ring->sbq_len;
3218                 cqicb->sbq_len = cpu_to_le16(bq_len);
3219                 rx_ring->sbq_prod_idx = 0;
3220                 rx_ring->sbq_curr_idx = 0;
3221                 rx_ring->sbq_clean_idx = 0;
3222                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3223         }
3224         switch (rx_ring->type) {
3225         case TX_Q:
3226                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3227                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3228                 break;
3229         case RX_Q:
3230                 /* Inbound completion handling rx_rings run in
3231                  * separate NAPI contexts.
3232                  */
3233                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3234                                64);
3235                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3236                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3237                 break;
3238         default:
3239                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3240                              "Invalid rx_ring->type = %d.\n", rx_ring->type);
3241         }
3242         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3243                            CFG_LCQ, rx_ring->cq_id);
3244         if (err) {
3245                 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3246                 return err;
3247         }
3248         return err;
3249 }
3250
3251 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3252 {
3253         struct wqicb *wqicb = (struct wqicb *)tx_ring;
3254         void __iomem *doorbell_area =
3255             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3256         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3257             (tx_ring->wq_id * sizeof(u64));
3258         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3259             (tx_ring->wq_id * sizeof(u64));
3260         int err = 0;
3261
3262         /*
3263          * Assign doorbell registers for this tx_ring.
3264          */
3265         /* TX PCI doorbell mem area for tx producer index */
3266         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3267         tx_ring->prod_idx = 0;
3268         /* TX PCI doorbell mem area + 0x04 */
3269         tx_ring->valid_db_reg = doorbell_area + 0x04;
3270
3271         /*
3272          * Assign shadow registers for this tx_ring.
3273          */
3274         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3275         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3276
3277         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3278         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3279                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3280         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3281         wqicb->rid = 0;
3282         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3283
3284         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3285
3286         ql_init_tx_ring(qdev, tx_ring);
3287
3288         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3289                            (u16) tx_ring->wq_id);
3290         if (err) {
3291                 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3292                 return err;
3293         }
3294         return err;
3295 }
3296
3297 static void ql_disable_msix(struct ql_adapter *qdev)
3298 {
3299         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3300                 pci_disable_msix(qdev->pdev);
3301                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3302                 kfree(qdev->msi_x_entry);
3303                 qdev->msi_x_entry = NULL;
3304         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3305                 pci_disable_msi(qdev->pdev);
3306                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3307         }
3308 }
3309
3310 /* We start by trying to get the number of vectors
3311  * stored in qdev->intr_count. If we don't get that
3312  * many then we reduce the count and try again.
3313  */
3314 static void ql_enable_msix(struct ql_adapter *qdev)
3315 {
3316         int i, err;
3317
3318         /* Get the MSIX vectors. */
3319         if (qlge_irq_type == MSIX_IRQ) {
3320                 /* Try to alloc space for the msix struct,
3321                  * if it fails then go to MSI/legacy.
3322                  */
3323                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3324                                             sizeof(struct msix_entry),
3325                                             GFP_KERNEL);
3326                 if (!qdev->msi_x_entry) {
3327                         qlge_irq_type = MSI_IRQ;
3328                         goto msi;
3329                 }
3330
3331                 for (i = 0; i < qdev->intr_count; i++)
3332                         qdev->msi_x_entry[i].entry = i;
3333
3334                 /* Loop to get our vectors.  We start with
3335                  * what we want and settle for what we get.
3336                  */
3337                 do {
3338                         err = pci_enable_msix(qdev->pdev,
3339                                 qdev->msi_x_entry, qdev->intr_count);
3340                         if (err > 0)
3341                                 qdev->intr_count = err;
3342                 } while (err > 0);
3343
3344                 if (err < 0) {
3345                         kfree(qdev->msi_x_entry);
3346                         qdev->msi_x_entry = NULL;
3347                         netif_warn(qdev, ifup, qdev->ndev,
3348                                    "MSI-X Enable failed, trying MSI.\n");
3349                         qdev->intr_count = 1;
3350                         qlge_irq_type = MSI_IRQ;
3351                 } else if (err == 0) {
3352                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
3353                         netif_info(qdev, ifup, qdev->ndev,
3354                                    "MSI-X Enabled, got %d vectors.\n",
3355                                    qdev->intr_count);
3356                         return;
3357                 }
3358         }
3359 msi:
3360         qdev->intr_count = 1;
3361         if (qlge_irq_type == MSI_IRQ) {
3362                 if (!pci_enable_msi(qdev->pdev)) {
3363                         set_bit(QL_MSI_ENABLED, &qdev->flags);
3364                         netif_info(qdev, ifup, qdev->ndev,
3365                                    "Running with MSI interrupts.\n");
3366                         return;
3367                 }
3368         }
3369         qlge_irq_type = LEG_IRQ;
3370         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3371                      "Running with legacy interrupts.\n");
3372 }
3373
3374 /* Each vector services 1 RSS ring and and 1 or more
3375  * TX completion rings.  This function loops through
3376  * the TX completion rings and assigns the vector that
3377  * will service it.  An example would be if there are
3378  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3379  * This would mean that vector 0 would service RSS ring 0
3380  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3381  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3382  */
3383 static void ql_set_tx_vect(struct ql_adapter *qdev)
3384 {
3385         int i, j, vect;
3386         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3387
3388         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3389                 /* Assign irq vectors to TX rx_rings.*/
3390                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3391                                          i < qdev->rx_ring_count; i++) {
3392                         if (j == tx_rings_per_vector) {
3393                                 vect++;
3394                                 j = 0;
3395                         }
3396                         qdev->rx_ring[i].irq = vect;
3397                         j++;
3398                 }
3399         } else {
3400                 /* For single vector all rings have an irq
3401                  * of zero.
3402                  */
3403                 for (i = 0; i < qdev->rx_ring_count; i++)
3404                         qdev->rx_ring[i].irq = 0;
3405         }
3406 }
3407
3408 /* Set the interrupt mask for this vector.  Each vector
3409  * will service 1 RSS ring and 1 or more TX completion
3410  * rings.  This function sets up a bit mask per vector
3411  * that indicates which rings it services.
3412  */
3413 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3414 {
3415         int j, vect = ctx->intr;
3416         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3417
3418         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3419                 /* Add the RSS ring serviced by this vector
3420                  * to the mask.
3421                  */
3422                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3423                 /* Add the TX ring(s) serviced by this vector
3424                  * to the mask. */
3425                 for (j = 0; j < tx_rings_per_vector; j++) {
3426                         ctx->irq_mask |=
3427                         (1 << qdev->rx_ring[qdev->rss_ring_count +
3428                         (vect * tx_rings_per_vector) + j].cq_id);
3429                 }
3430         } else {
3431                 /* For single vector we just shift each queue's
3432                  * ID into the mask.
3433                  */
3434                 for (j = 0; j < qdev->rx_ring_count; j++)
3435                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3436         }
3437 }
3438
3439 /*
3440  * Here we build the intr_context structures based on
3441  * our rx_ring count and intr vector count.
3442  * The intr_context structure is used to hook each vector
3443  * to possibly different handlers.
3444  */
3445 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3446 {
3447         int i = 0;
3448         struct intr_context *intr_context = &qdev->intr_context[0];
3449
3450         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3451                 /* Each rx_ring has it's
3452                  * own intr_context since we have separate
3453                  * vectors for each queue.
3454                  */
3455                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3456                         qdev->rx_ring[i].irq = i;
3457                         intr_context->intr = i;
3458                         intr_context->qdev = qdev;
3459                         /* Set up this vector's bit-mask that indicates
3460                          * which queues it services.
3461                          */
3462                         ql_set_irq_mask(qdev, intr_context);
3463                         /*
3464                          * We set up each vectors enable/disable/read bits so
3465                          * there's no bit/mask calculations in the critical path.
3466                          */
3467                         intr_context->intr_en_mask =
3468                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3469                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3470                             | i;
3471                         intr_context->intr_dis_mask =
3472                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3473                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3474                             INTR_EN_IHD | i;
3475                         intr_context->intr_read_mask =
3476                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3477                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3478                             i;
3479                         if (i == 0) {
3480                                 /* The first vector/queue handles
3481                                  * broadcast/multicast, fatal errors,
3482                                  * and firmware events.  This in addition
3483                                  * to normal inbound NAPI processing.
3484                                  */
3485                                 intr_context->handler = qlge_isr;
3486                                 sprintf(intr_context->name, "%s-rx-%d",
3487                                         qdev->ndev->name, i);
3488                         } else {
3489                                 /*
3490                                  * Inbound queues handle unicast frames only.
3491                                  */
3492                                 intr_context->handler = qlge_msix_rx_isr;
3493                                 sprintf(intr_context->name, "%s-rx-%d",
3494                                         qdev->ndev->name, i);
3495                         }
3496                 }
3497         } else {
3498                 /*
3499                  * All rx_rings use the same intr_context since
3500                  * there is only one vector.
3501                  */
3502                 intr_context->intr = 0;
3503                 intr_context->qdev = qdev;
3504                 /*
3505                  * We set up each vectors enable/disable/read bits so
3506                  * there's no bit/mask calculations in the critical path.
3507                  */
3508                 intr_context->intr_en_mask =
3509                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3510                 intr_context->intr_dis_mask =
3511                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3512                     INTR_EN_TYPE_DISABLE;
3513                 intr_context->intr_read_mask =
3514                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3515                 /*
3516                  * Single interrupt means one handler for all rings.
3517                  */
3518                 intr_context->handler = qlge_isr;
3519                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3520                 /* Set up this vector's bit-mask that indicates
3521                  * which queues it services. In this case there is
3522                  * a single vector so it will service all RSS and
3523                  * TX completion rings.
3524                  */
3525                 ql_set_irq_mask(qdev, intr_context);
3526         }
3527         /* Tell the TX completion rings which MSIx vector
3528          * they will be using.
3529          */
3530         ql_set_tx_vect(qdev);
3531 }
3532
3533 static void ql_free_irq(struct ql_adapter *qdev)
3534 {
3535         int i;
3536         struct intr_context *intr_context = &qdev->intr_context[0];
3537
3538         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3539                 if (intr_context->hooked) {
3540                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3541                                 free_irq(qdev->msi_x_entry[i].vector,
3542                                          &qdev->rx_ring[i]);
3543                         } else {
3544                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3545                         }
3546                 }
3547         }
3548         ql_disable_msix(qdev);
3549 }
3550
3551 static int ql_request_irq(struct ql_adapter *qdev)
3552 {
3553         int i;
3554         int status = 0;
3555         struct pci_dev *pdev = qdev->pdev;
3556         struct intr_context *intr_context = &qdev->intr_context[0];
3557
3558         ql_resolve_queues_to_irqs(qdev);
3559
3560         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3561                 atomic_set(&intr_context->irq_cnt, 0);
3562                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3563                         status = request_irq(qdev->msi_x_entry[i].vector,
3564                                              intr_context->handler,
3565                                              0,
3566                                              intr_context->name,
3567                                              &qdev->rx_ring[i]);
3568                         if (status) {
3569                                 netif_err(qdev, ifup, qdev->ndev,
3570                                           "Failed request for MSIX interrupt %d.\n",
3571                                           i);
3572                                 goto err_irq;
3573                         }
3574                 } else {
3575                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3576                                      "trying msi or legacy interrupts.\n");
3577                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3578                                      "%s: irq = %d.\n", __func__, pdev->irq);
3579                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3580                                      "%s: context->name = %s.\n", __func__,
3581                                      intr_context->name);
3582                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3583                                      "%s: dev_id = 0x%p.\n", __func__,
3584                                      &qdev->rx_ring[0]);
3585                         status =
3586                             request_irq(pdev->irq, qlge_isr,
3587                                         test_bit(QL_MSI_ENABLED,
3588                                                  &qdev->
3589                                                  flags) ? 0 : IRQF_SHARED,
3590                                         intr_context->name, &qdev->rx_ring[0]);
3591                         if (status)
3592                                 goto err_irq;
3593
3594                         netif_err(qdev, ifup, qdev->ndev,
3595                                   "Hooked intr %d, queue type %s, with name %s.\n",
3596                                   i,
3597                                   qdev->rx_ring[0].type == DEFAULT_Q ?
3598                                   "DEFAULT_Q" :
3599                                   qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3600                                   qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3601                                   intr_context->name);
3602                 }
3603                 intr_context->hooked = 1;
3604         }
3605         return status;
3606 err_irq:
3607         netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3608         ql_free_irq(qdev);
3609         return status;
3610 }
3611
3612 static int ql_start_rss(struct ql_adapter *qdev)
3613 {
3614         static const u8 init_hash_seed[] = {
3615                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3616                 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3617                 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3618                 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3619                 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3620         };
3621         struct ricb *ricb = &qdev->ricb;
3622         int status = 0;
3623         int i;
3624         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3625
3626         memset((void *)ricb, 0, sizeof(*ricb));
3627
3628         ricb->base_cq = RSS_L4K;
3629         ricb->flags =
3630                 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3631         ricb->mask = cpu_to_le16((u16)(0x3ff));
3632
3633         /*
3634          * Fill out the Indirection Table.
3635          */
3636         for (i = 0; i < 1024; i++)
3637                 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3638
3639         memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3640         memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3641
3642         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3643         if (status) {
3644                 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3645                 return status;
3646         }
3647         return status;
3648 }
3649
3650 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3651 {
3652         int i, status = 0;
3653
3654         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3655         if (status)
3656                 return status;
3657         /* Clear all the entries in the routing table. */
3658         for (i = 0; i < 16; i++) {
3659                 status = ql_set_routing_reg(qdev, i, 0, 0);
3660                 if (status) {
3661                         netif_err(qdev, ifup, qdev->ndev,
3662                                   "Failed to init routing register for CAM packets.\n");
3663                         break;
3664                 }
3665         }
3666         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3667         return status;
3668 }
3669
3670 /* Initialize the frame-to-queue routing. */
3671 static int ql_route_initialize(struct ql_adapter *qdev)
3672 {
3673         int status = 0;
3674
3675         /* Clear all the entries in the routing table. */
3676         status = ql_clear_routing_entries(qdev);
3677         if (status)
3678                 return status;
3679
3680         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3681         if (status)
3682                 return status;
3683
3684         status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3685                                                 RT_IDX_IP_CSUM_ERR, 1);
3686         if (status) {
3687                 netif_err(qdev, ifup, qdev->ndev,
3688                         "Failed to init routing register "
3689                         "for IP CSUM error packets.\n");
3690                 goto exit;
3691         }
3692         status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3693                                                 RT_IDX_TU_CSUM_ERR, 1);
3694         if (status) {
3695                 netif_err(qdev, ifup, qdev->ndev,
3696                         "Failed to init routing register "
3697                         "for TCP/UDP CSUM error packets.\n");
3698                 goto exit;
3699         }
3700         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3701         if (status) {
3702                 netif_err(qdev, ifup, qdev->ndev,
3703                           "Failed to init routing register for broadcast packets.\n");
3704                 goto exit;
3705         }
3706         /* If we have more than one inbound queue, then turn on RSS in the
3707          * routing block.
3708          */
3709         if (qdev->rss_ring_count > 1) {
3710                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3711                                         RT_IDX_RSS_MATCH, 1);
3712                 if (status) {
3713                         netif_err(qdev, ifup, qdev->ndev,
3714                                   "Failed to init routing register for MATCH RSS packets.\n");
3715                         goto exit;
3716                 }
3717         }
3718
3719         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3720                                     RT_IDX_CAM_HIT, 1);
3721         if (status)
3722                 netif_err(qdev, ifup, qdev->ndev,
3723                           "Failed to init routing register for CAM packets.\n");
3724 exit:
3725         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3726         return status;
3727 }
3728
3729 int ql_cam_route_initialize(struct ql_adapter *qdev)
3730 {
3731         int status, set;
3732
3733         /* If check if the link is up and use to
3734          * determine if we are setting or clearing
3735          * the MAC address in the CAM.
3736          */
3737         set = ql_read32(qdev, STS);
3738         set &= qdev->port_link_up;
3739         status = ql_set_mac_addr(qdev, set);
3740         if (status) {
3741                 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3742                 return status;
3743         }
3744
3745         status = ql_route_initialize(qdev);
3746         if (status)
3747                 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3748
3749         return status;
3750 }
3751
3752 static int ql_adapter_initialize(struct ql_adapter *qdev)
3753 {
3754         u32 value, mask;
3755         int i;
3756         int status = 0;
3757
3758         /*
3759          * Set up the System register to halt on errors.
3760          */
3761         value = SYS_EFE | SYS_FAE;
3762         mask = value << 16;
3763         ql_write32(qdev, SYS, mask | value);
3764
3765         /* Set the default queue, and VLAN behavior. */
3766         value = NIC_RCV_CFG_DFQ;
3767         mask = NIC_RCV_CFG_DFQ_MASK;
3768         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3769                 value |= NIC_RCV_CFG_RV;
3770                 mask |= (NIC_RCV_CFG_RV << 16);
3771         }
3772         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3773
3774         /* Set the MPI interrupt to enabled. */
3775         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3776
3777         /* Enable the function, set pagesize, enable error checking. */
3778         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3779             FSC_EC | FSC_VM_PAGE_4K;
3780         value |= SPLT_SETTING;
3781
3782         /* Set/clear header splitting. */
3783         mask = FSC_VM_PAGESIZE_MASK |
3784             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3785         ql_write32(qdev, FSC, mask | value);
3786
3787         ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3788
3789         /* Set RX packet routing to use port/pci function on which the
3790          * packet arrived on in addition to usual frame routing.
3791          * This is helpful on bonding where both interfaces can have
3792          * the same MAC address.
3793          */
3794         ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3795         /* Reroute all packets to our Interface.
3796          * They may have been routed to MPI firmware
3797          * due to WOL.
3798          */
3799         value = ql_read32(qdev, MGMT_RCV_CFG);
3800         value &= ~MGMT_RCV_CFG_RM;
3801         mask = 0xffff0000;
3802
3803         /* Sticky reg needs clearing due to WOL. */
3804         ql_write32(qdev, MGMT_RCV_CFG, mask);
3805         ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3806
3807         /* Default WOL is enable on Mezz cards */
3808         if (qdev->pdev->subsystem_device == 0x0068 ||
3809                         qdev->pdev->subsystem_device == 0x0180)
3810                 qdev->wol = WAKE_MAGIC;
3811
3812         /* Start up the rx queues. */
3813         for (i = 0; i < qdev->rx_ring_count; i++) {
3814                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3815                 if (status) {
3816                         netif_err(qdev, ifup, qdev->ndev,
3817                                   "Failed to start rx ring[%d].\n", i);
3818                         return status;
3819                 }
3820         }
3821
3822         /* If there is more than one inbound completion queue
3823          * then download a RICB to configure RSS.
3824          */
3825         if (qdev->rss_ring_count > 1) {
3826                 status = ql_start_rss(qdev);
3827                 if (status) {
3828                         netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3829                         return status;
3830                 }
3831         }
3832
3833         /* Start up the tx queues. */
3834         for (i = 0; i < qdev->tx_ring_count; i++) {
3835                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3836                 if (status) {
3837                         netif_err(qdev, ifup, qdev->ndev,
3838                                   "Failed to start tx ring[%d].\n", i);
3839                         return status;
3840                 }
3841         }
3842
3843         /* Initialize the port and set the max framesize. */
3844         status = qdev->nic_ops->port_initialize(qdev);
3845         if (status)
3846                 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3847
3848         /* Set up the MAC address and frame routing filter. */
3849         status = ql_cam_route_initialize(qdev);
3850         if (status) {
3851                 netif_err(qdev, ifup, qdev->ndev,
3852                           "Failed to init CAM/Routing tables.\n");
3853                 return status;
3854         }
3855
3856         /* Start NAPI for the RSS queues. */
3857         for (i = 0; i < qdev->rss_ring_count; i++)
3858                 napi_enable(&qdev->rx_ring[i].napi);
3859
3860         return status;
3861 }
3862
3863 /* Issue soft reset to chip. */
3864 static int ql_adapter_reset(struct ql_adapter *qdev)
3865 {
3866         u32 value;
3867         int status = 0;
3868         unsigned long end_jiffies;
3869
3870         /* Clear all the entries in the routing table. */
3871         status = ql_clear_routing_entries(qdev);
3872         if (status) {
3873                 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3874                 return status;
3875         }
3876
3877         end_jiffies = jiffies +
3878                 max((unsigned long)1, usecs_to_jiffies(30));
3879
3880         /* Check if bit is set then skip the mailbox command and
3881          * clear the bit, else we are in normal reset process.
3882          */
3883         if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3884                 /* Stop management traffic. */
3885                 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3886
3887                 /* Wait for the NIC and MGMNT FIFOs to empty. */
3888                 ql_wait_fifo_empty(qdev);
3889         } else
3890                 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3891
3892         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3893
3894         do {
3895                 value = ql_read32(qdev, RST_FO);
3896                 if ((value & RST_FO_FR) == 0)
3897                         break;
3898                 cpu_relax();
3899         } while (time_before(jiffies, end_jiffies));
3900
3901         if (value & RST_FO_FR) {
3902                 netif_err(qdev, ifdown, qdev->ndev,
3903                           "ETIMEDOUT!!! errored out of resetting the chip!\n");
3904                 status = -ETIMEDOUT;
3905         }
3906
3907         /* Resume management traffic. */
3908         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3909         return status;
3910 }
3911
3912 static void ql_display_dev_info(struct net_device *ndev)
3913 {
3914         struct ql_adapter *qdev = netdev_priv(ndev);
3915
3916         netif_info(qdev, probe, qdev->ndev,
3917                    "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3918                    "XG Roll = %d, XG Rev = %d.\n",
3919                    qdev->func,
3920                    qdev->port,
3921                    qdev->chip_rev_id & 0x0000000f,
3922                    qdev->chip_rev_id >> 4 & 0x0000000f,
3923                    qdev->chip_rev_id >> 8 & 0x0000000f,
3924                    qdev->chip_rev_id >> 12 & 0x0000000f);
3925         netif_info(qdev, probe, qdev->ndev,
3926                    "MAC address %pM\n", ndev->dev_addr);
3927 }
3928
3929 static int ql_wol(struct ql_adapter *qdev)
3930 {
3931         int status = 0;
3932         u32 wol = MB_WOL_DISABLE;
3933
3934         /* The CAM is still intact after a reset, but if we
3935          * are doing WOL, then we may need to program the
3936          * routing regs. We would also need to issue the mailbox
3937          * commands to instruct the MPI what to do per the ethtool
3938          * settings.
3939          */
3940
3941         if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3942                         WAKE_MCAST | WAKE_BCAST)) {
3943                 netif_err(qdev, ifdown, qdev->ndev,
3944                           "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3945                           qdev->wol);
3946                 return -EINVAL;
3947         }
3948
3949         if (qdev->wol & WAKE_MAGIC) {
3950                 status = ql_mb_wol_set_magic(qdev, 1);
3951                 if (status) {
3952                         netif_err(qdev, ifdown, qdev->ndev,
3953                                   "Failed to set magic packet on %s.\n",
3954                                   qdev->ndev->name);
3955                         return status;
3956                 } else
3957                         netif_info(qdev, drv, qdev->ndev,
3958                                    "Enabled magic packet successfully on %s.\n",
3959                                    qdev->ndev->name);
3960
3961                 wol |= MB_WOL_MAGIC_PKT;
3962         }
3963
3964         if (qdev->wol) {
3965                 wol |= MB_WOL_MODE_ON;
3966                 status = ql_mb_wol_mode(qdev, wol);
3967                 netif_err(qdev, drv, qdev->ndev,
3968                           "WOL %s (wol code 0x%x) on %s\n",
3969                           (status == 0) ? "Successfully set" : "Failed",
3970                           wol, qdev->ndev->name);
3971         }
3972
3973         return status;
3974 }
3975
3976 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3977 {
3978
3979         /* Don't kill the reset worker thread if we
3980          * are in the process of recovery.
3981          */
3982         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3983                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3984         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3985         cancel_delayed_work_sync(&qdev->mpi_work);
3986         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3987         cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3988         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3989 }
3990
3991 static int ql_adapter_down(struct ql_adapter *qdev)
3992 {
3993         int i, status = 0;
3994
3995         ql_link_off(qdev);
3996
3997         ql_cancel_all_work_sync(qdev);
3998
3999         for (i = 0; i < qdev->rss_ring_count; i++)
4000                 napi_disable(&qdev->rx_ring[i].napi);
4001
4002         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4003
4004         ql_disable_interrupts(qdev);
4005
4006         ql_tx_ring_clean(qdev);
4007
4008         /* Call netif_napi_del() from common point.
4009          */
4010         for (i = 0; i < qdev->rss_ring_count; i++)
4011                 netif_napi_del(&qdev->rx_ring[i].napi);
4012
4013         status = ql_adapter_reset(qdev);
4014         if (status)
4015                 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4016                           qdev->func);
4017         ql_free_rx_buffers(qdev);
4018
4019         return status;
4020 }
4021
4022 static int ql_adapter_up(struct ql_adapter *qdev)
4023 {
4024         int err = 0;
4025
4026         err = ql_adapter_initialize(qdev);
4027         if (err) {
4028                 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4029                 goto err_init;
4030         }
4031         set_bit(QL_ADAPTER_UP, &qdev->flags);
4032         ql_alloc_rx_buffers(qdev);
4033         /* If the port is initialized and the
4034          * link is up the turn on the carrier.
4035          */
4036         if ((ql_read32(qdev, STS) & qdev->port_init) &&
4037                         (ql_read32(qdev, STS) & qdev->port_link_up))
4038                 ql_link_on(qdev);
4039         /* Restore rx mode. */
4040         clear_bit(QL_ALLMULTI, &qdev->flags);
4041         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4042         qlge_set_multicast_list(qdev->ndev);
4043
4044         /* Restore vlan setting. */
4045         qlge_restore_vlan(qdev);
4046
4047         ql_enable_interrupts(qdev);
4048         ql_enable_all_completion_interrupts(qdev);
4049         netif_tx_start_all_queues(qdev->ndev);
4050
4051         return 0;
4052 err_init:
4053         ql_adapter_reset(qdev);
4054         return err;
4055 }
4056
4057 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4058 {
4059         ql_free_mem_resources(qdev);
4060         ql_free_irq(qdev);
4061 }
4062
4063 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4064 {
4065         int status = 0;
4066
4067         if (ql_alloc_mem_resources(qdev)) {
4068                 netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
4069                 return -ENOMEM;
4070         }
4071         status = ql_request_irq(qdev);
4072         return status;
4073 }
4074
4075 static int qlge_close(struct net_device *ndev)
4076 {
4077         struct ql_adapter *qdev = netdev_priv(ndev);
4078
4079         /* If we hit pci_channel_io_perm_failure
4080          * failure condition, then we already
4081          * brought the adapter down.
4082          */
4083         if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4084                 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4085                 clear_bit(QL_EEH_FATAL, &qdev->flags);
4086                 return 0;
4087         }
4088
4089         /*
4090          * Wait for device to recover from a reset.
4091          * (Rarely happens, but possible.)
4092          */
4093         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4094                 msleep(1);
4095         ql_adapter_down(qdev);
4096         ql_release_adapter_resources(qdev);
4097         return 0;
4098 }
4099
4100 static int ql_configure_rings(struct ql_adapter *qdev)
4101 {
4102         int i;
4103         struct rx_ring *rx_ring;
4104         struct tx_ring *tx_ring;
4105         int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4106         unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4107                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4108
4109         qdev->lbq_buf_order = get_order(lbq_buf_len);
4110
4111         /* In a perfect world we have one RSS ring for each CPU
4112          * and each has it's own vector.  To do that we ask for
4113          * cpu_cnt vectors.  ql_enable_msix() will adjust the
4114          * vector count to what we actually get.  We then
4115          * allocate an RSS ring for each.
4116          * Essentially, we are doing min(cpu_count, msix_vector_count).
4117          */
4118         qdev->intr_count = cpu_cnt;
4119         ql_enable_msix(qdev);
4120         /* Adjust the RSS ring count to the actual vector count. */
4121         qdev->rss_ring_count = qdev->intr_count;
4122         qdev->tx_ring_count = cpu_cnt;
4123         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4124
4125         for (i = 0; i < qdev->tx_ring_count; i++) {
4126                 tx_ring = &qdev->tx_ring[i];
4127                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4128                 tx_ring->qdev = qdev;
4129                 tx_ring->wq_id = i;
4130                 tx_ring->wq_len = qdev->tx_ring_size;
4131                 tx_ring->wq_size =
4132                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4133
4134                 /*
4135                  * The completion queue ID for the tx rings start
4136                  * immediately after the rss rings.
4137                  */
4138                 tx_ring->cq_id = qdev->rss_ring_count + i;
4139         }
4140
4141         for (i = 0; i < qdev->rx_ring_count; i++) {
4142                 rx_ring = &qdev->rx_ring[i];
4143                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4144                 rx_ring->qdev = qdev;
4145                 rx_ring->cq_id = i;
4146                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
4147                 if (i < qdev->rss_ring_count) {
4148                         /*
4149                          * Inbound (RSS) queues.
4150                          */
4151                         rx_ring->cq_len = qdev->rx_ring_size;
4152                         rx_ring->cq_size =
4153                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4154                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4155                         rx_ring->lbq_size =
4156                             rx_ring->lbq_len * sizeof(__le64);
4157                         rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4158                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4159                         rx_ring->sbq_size =
4160                             rx_ring->sbq_len * sizeof(__le64);
4161                         rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4162                         rx_ring->type = RX_Q;
4163                 } else {
4164                         /*
4165                          * Outbound queue handles outbound completions only.
4166                          */
4167                         /* outbound cq is same size as tx_ring it services. */
4168                         rx_ring->cq_len = qdev->tx_ring_size;
4169                         rx_ring->cq_size =
4170                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4171                         rx_ring->lbq_len = 0;
4172                         rx_ring->lbq_size = 0;
4173                         rx_ring->lbq_buf_size = 0;
4174                         rx_ring->sbq_len = 0;
4175                         rx_ring->sbq_size = 0;
4176                         rx_ring->sbq_buf_size = 0;
4177                         rx_ring->type = TX_Q;
4178                 }
4179         }
4180         return 0;
4181 }
4182
4183 static int qlge_open(struct net_device *ndev)
4184 {
4185         int err = 0;
4186         struct ql_adapter *qdev = netdev_priv(ndev);
4187
4188         err = ql_adapter_reset(qdev);
4189         if (err)
4190                 return err;
4191
4192         err = ql_configure_rings(qdev);
4193         if (err)
4194                 return err;
4195
4196         err = ql_get_adapter_resources(qdev);
4197         if (err)
4198                 goto error_up;
4199
4200         err = ql_adapter_up(qdev);
4201         if (err)
4202                 goto error_up;
4203
4204         return err;
4205
4206 error_up:
4207         ql_release_adapter_resources(qdev);
4208         return err;
4209 }
4210
4211 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4212 {
4213         struct rx_ring *rx_ring;
4214         int i, status;
4215         u32 lbq_buf_len;
4216
4217         /* Wait for an outstanding reset to complete. */
4218         if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4219                 int i = 3;
4220                 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4221                         netif_err(qdev, ifup, qdev->ndev,
4222                                   "Waiting for adapter UP...\n");
4223                         ssleep(1);
4224                 }
4225
4226                 if (!i) {
4227                         netif_err(qdev, ifup, qdev->ndev,
4228                                   "Timed out waiting for adapter UP\n");
4229                         return -ETIMEDOUT;
4230                 }
4231         }
4232
4233         status = ql_adapter_down(qdev);
4234         if (status)
4235                 goto error;
4236
4237         /* Get the new rx buffer size. */
4238         lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4239                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4240         qdev->lbq_buf_order = get_order(lbq_buf_len);
4241
4242         for (i = 0; i < qdev->rss_ring_count; i++) {
4243                 rx_ring = &qdev->rx_ring[i];
4244                 /* Set the new size. */
4245                 rx_ring->lbq_buf_size = lbq_buf_len;
4246         }
4247
4248         status = ql_adapter_up(qdev);
4249         if (status)
4250                 goto error;
4251
4252         return status;
4253 error:
4254         netif_alert(qdev, ifup, qdev->ndev,
4255                     "Driver up/down cycle failed, closing device.\n");
4256         set_bit(QL_ADAPTER_UP, &qdev->flags);
4257         dev_close(qdev->ndev);
4258         return status;
4259 }
4260
4261 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4262 {
4263         struct ql_adapter *qdev = netdev_priv(ndev);
4264         int status;
4265
4266         if (ndev->mtu == 1500 && new_mtu == 9000) {
4267                 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4268         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4269                 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4270         } else
4271                 return -EINVAL;
4272
4273         queue_delayed_work(qdev->workqueue,
4274                         &qdev->mpi_port_cfg_work, 3*HZ);
4275
4276         ndev->mtu = new_mtu;
4277
4278         if (!netif_running(qdev->ndev)) {
4279                 return 0;
4280         }
4281
4282         status = ql_change_rx_buffers(qdev);
4283         if (status) {
4284                 netif_err(qdev, ifup, qdev->ndev,
4285                           "Changing MTU failed.\n");
4286         }
4287
4288         return status;
4289 }
4290
4291 static struct net_device_stats *qlge_get_stats(struct net_device
4292                                                *ndev)
4293 {
4294         struct ql_adapter *qdev = netdev_priv(ndev);
4295         struct rx_ring *rx_ring = &qdev->rx_ring[0];
4296         struct tx_ring *tx_ring = &qdev->tx_ring[0];
4297         unsigned long pkts, mcast, dropped, errors, bytes;
4298         int i;
4299
4300         /* Get RX stats. */
4301         pkts = mcast = dropped = errors = bytes = 0;
4302         for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4303                         pkts += rx_ring->rx_packets;
4304                         bytes += rx_ring->rx_bytes;
4305                         dropped += rx_ring->rx_dropped;
4306                         errors += rx_ring->rx_errors;
4307                         mcast += rx_ring->rx_multicast;
4308         }
4309         ndev->stats.rx_packets = pkts;
4310         ndev->stats.rx_bytes = bytes;
4311         ndev->stats.rx_dropped = dropped;
4312         ndev->stats.rx_errors = errors;
4313         ndev->stats.multicast = mcast;
4314
4315         /* Get TX stats. */
4316         pkts = errors = bytes = 0;
4317         for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4318                         pkts += tx_ring->tx_packets;
4319                         bytes += tx_ring->tx_bytes;
4320                         errors += tx_ring->tx_errors;
4321         }
4322         ndev->stats.tx_packets = pkts;
4323         ndev->stats.tx_bytes = bytes;
4324         ndev->stats.tx_errors = errors;
4325         return &ndev->stats;
4326 }
4327
4328 static void qlge_set_multicast_list(struct net_device *ndev)
4329 {
4330         struct ql_adapter *qdev = netdev_priv(ndev);
4331         struct netdev_hw_addr *ha;
4332         int i, status;
4333
4334         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4335         if (status)
4336                 return;
4337         /*
4338          * Set or clear promiscuous mode if a
4339          * transition is taking place.
4340          */
4341         if (ndev->flags & IFF_PROMISC) {
4342                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4343                         if (ql_set_routing_reg
4344                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4345                                 netif_err(qdev, hw, qdev->ndev,
4346                                           "Failed to set promiscuous mode.\n");
4347                         } else {
4348                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
4349                         }
4350                 }
4351         } else {
4352                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4353                         if (ql_set_routing_reg
4354                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4355                                 netif_err(qdev, hw, qdev->ndev,
4356                                           "Failed to clear promiscuous mode.\n");
4357                         } else {
4358                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4359                         }
4360                 }
4361         }
4362
4363         /*
4364          * Set or clear all multicast mode if a
4365          * transition is taking place.
4366          */
4367         if ((ndev->flags & IFF_ALLMULTI) ||
4368             (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4369                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4370                         if (ql_set_routing_reg
4371                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4372                                 netif_err(qdev, hw, qdev->ndev,
4373                                           "Failed to set all-multi mode.\n");
4374                         } else {
4375                                 set_bit(QL_ALLMULTI, &qdev->flags);
4376                         }
4377                 }
4378         } else {
4379                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4380                         if (ql_set_routing_reg
4381                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4382                                 netif_err(qdev, hw, qdev->ndev,
4383                                           "Failed to clear all-multi mode.\n");
4384                         } else {
4385                                 clear_bit(QL_ALLMULTI, &qdev->flags);
4386                         }
4387                 }
4388         }
4389
4390         if (!netdev_mc_empty(ndev)) {
4391                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4392                 if (status)
4393                         goto exit;
4394                 i = 0;
4395                 netdev_for_each_mc_addr(ha, ndev) {
4396                         if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4397                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4398                                 netif_err(qdev, hw, qdev->ndev,
4399                                           "Failed to loadmulticast address.\n");
4400                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4401                                 goto exit;
4402                         }
4403                         i++;
4404                 }
4405                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4406                 if (ql_set_routing_reg
4407                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4408                         netif_err(qdev, hw, qdev->ndev,
4409                                   "Failed to set multicast match mode.\n");
4410                 } else {
4411                         set_bit(QL_ALLMULTI, &qdev->flags);
4412                 }
4413         }
4414 exit:
4415         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4416 }
4417
4418 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4419 {
4420         struct ql_adapter *qdev = netdev_priv(ndev);
4421         struct sockaddr *addr = p;
4422         int status;
4423
4424         if (!is_valid_ether_addr(addr->sa_data))
4425                 return -EADDRNOTAVAIL;
4426         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4427         /* Update local copy of current mac address. */
4428         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4429
4430         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4431         if (status)
4432                 return status;
4433         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4434                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4435         if (status)
4436                 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4437         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4438         return status;
4439 }
4440
4441 static void qlge_tx_timeout(struct net_device *ndev)
4442 {
4443         struct ql_adapter *qdev = netdev_priv(ndev);
4444         ql_queue_asic_error(qdev);
4445 }
4446
4447 static void ql_asic_reset_work(struct work_struct *work)
4448 {
4449         struct ql_adapter *qdev =
4450             container_of(work, struct ql_adapter, asic_reset_work.work);
4451         int status;
4452         rtnl_lock();
4453         status = ql_adapter_down(qdev);
4454         if (status)
4455                 goto error;
4456
4457         status = ql_adapter_up(qdev);
4458         if (status)
4459                 goto error;
4460
4461         /* Restore rx mode. */
4462         clear_bit(QL_ALLMULTI, &qdev->flags);
4463         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4464         qlge_set_multicast_list(qdev->ndev);
4465
4466         rtnl_unlock();
4467         return;
4468 error:
4469         netif_alert(qdev, ifup, qdev->ndev,
4470                     "Driver up/down cycle failed, closing device\n");
4471
4472         set_bit(QL_ADAPTER_UP, &qdev->flags);
4473         dev_close(qdev->ndev);
4474         rtnl_unlock();
4475 }
4476
4477 static const struct nic_operations qla8012_nic_ops = {
4478         .get_flash              = ql_get_8012_flash_params,
4479         .port_initialize        = ql_8012_port_initialize,
4480 };
4481
4482 static const struct nic_operations qla8000_nic_ops = {
4483         .get_flash              = ql_get_8000_flash_params,
4484         .port_initialize        = ql_8000_port_initialize,
4485 };
4486
4487 /* Find the pcie function number for the other NIC
4488  * on this chip.  Since both NIC functions share a
4489  * common firmware we have the lowest enabled function
4490  * do any common work.  Examples would be resetting
4491  * after a fatal firmware error, or doing a firmware
4492  * coredump.
4493  */
4494 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4495 {
4496         int status = 0;
4497         u32 temp;
4498         u32 nic_func1, nic_func2;
4499
4500         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4501                         &temp);
4502         if (status)
4503                 return status;
4504
4505         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4506                         MPI_TEST_NIC_FUNC_MASK);
4507         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4508                         MPI_TEST_NIC_FUNC_MASK);
4509
4510         if (qdev->func == nic_func1)
4511                 qdev->alt_func = nic_func2;
4512         else if (qdev->func == nic_func2)
4513                 qdev->alt_func = nic_func1;
4514         else
4515                 status = -EIO;
4516
4517         return status;
4518 }
4519
4520 static int ql_get_board_info(struct ql_adapter *qdev)
4521 {
4522         int status;
4523         qdev->func =
4524             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4525         if (qdev->func > 3)
4526                 return -EIO;
4527
4528         status = ql_get_alt_pcie_func(qdev);
4529         if (status)
4530                 return status;
4531
4532         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4533         if (qdev->port) {
4534                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4535                 qdev->port_link_up = STS_PL1;
4536                 qdev->port_init = STS_PI1;
4537                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4538                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4539         } else {
4540                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4541                 qdev->port_link_up = STS_PL0;
4542                 qdev->port_init = STS_PI0;
4543                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4544                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4545         }
4546         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4547         qdev->device_id = qdev->pdev->device;
4548         if (qdev->device_id == QLGE_DEVICE_ID_8012)
4549                 qdev->nic_ops = &qla8012_nic_ops;
4550         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4551                 qdev->nic_ops = &qla8000_nic_ops;
4552         return status;
4553 }
4554
4555 static void ql_release_all(struct pci_dev *pdev)
4556 {
4557         struct net_device *ndev = pci_get_drvdata(pdev);
4558         struct ql_adapter *qdev = netdev_priv(ndev);
4559
4560         if (qdev->workqueue) {
4561                 destroy_workqueue(qdev->workqueue);
4562                 qdev->workqueue = NULL;
4563         }
4564
4565         if (qdev->reg_base)
4566                 iounmap(qdev->reg_base);
4567         if (qdev->doorbell_area)
4568                 iounmap(qdev->doorbell_area);
4569         vfree(qdev->mpi_coredump);
4570         pci_release_regions(pdev);
4571 }
4572
4573 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4574                           int cards_found)
4575 {
4576         struct ql_adapter *qdev = netdev_priv(ndev);
4577         int err = 0;
4578
4579         memset((void *)qdev, 0, sizeof(*qdev));
4580         err = pci_enable_device(pdev);
4581         if (err) {
4582                 dev_err(&pdev->dev, "PCI device enable failed.\n");
4583                 return err;
4584         }
4585
4586         qdev->ndev = ndev;
4587         qdev->pdev = pdev;
4588         pci_set_drvdata(pdev, ndev);
4589
4590         /* Set PCIe read request size */
4591         err = pcie_set_readrq(pdev, 4096);
4592         if (err) {
4593                 dev_err(&pdev->dev, "Set readrq failed.\n");
4594                 goto err_out1;
4595         }
4596
4597         err = pci_request_regions(pdev, DRV_NAME);
4598         if (err) {
4599                 dev_err(&pdev->dev, "PCI region request failed.\n");
4600                 return err;
4601         }
4602
4603         pci_set_master(pdev);
4604         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4605                 set_bit(QL_DMA64, &qdev->flags);
4606                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4607         } else {
4608                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4609                 if (!err)
4610                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4611         }
4612
4613         if (err) {
4614                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4615                 goto err_out2;
4616         }
4617
4618         /* Set PCIe reset type for EEH to fundamental. */
4619         pdev->needs_freset = 1;
4620         pci_save_state(pdev);
4621         qdev->reg_base =
4622             ioremap_nocache(pci_resource_start(pdev, 1),
4623                             pci_resource_len(pdev, 1));
4624         if (!qdev->reg_base) {
4625                 dev_err(&pdev->dev, "Register mapping failed.\n");
4626                 err = -ENOMEM;
4627                 goto err_out2;
4628         }
4629
4630         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4631         qdev->doorbell_area =
4632             ioremap_nocache(pci_resource_start(pdev, 3),
4633                             pci_resource_len(pdev, 3));
4634         if (!qdev->doorbell_area) {
4635                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4636                 err = -ENOMEM;
4637                 goto err_out2;
4638         }
4639
4640         err = ql_get_board_info(qdev);
4641         if (err) {
4642                 dev_err(&pdev->dev, "Register access failed.\n");
4643                 err = -EIO;
4644                 goto err_out2;
4645         }
4646         qdev->msg_enable = netif_msg_init(debug, default_msg);
4647         spin_lock_init(&qdev->hw_lock);
4648         spin_lock_init(&qdev->stats_lock);
4649
4650         if (qlge_mpi_coredump) {
4651                 qdev->mpi_coredump =
4652                         vmalloc(sizeof(struct ql_mpi_coredump));
4653                 if (qdev->mpi_coredump == NULL) {
4654                         err = -ENOMEM;
4655                         goto err_out2;
4656                 }
4657                 if (qlge_force_coredump)
4658                         set_bit(QL_FRC_COREDUMP, &qdev->flags);
4659         }
4660         /* make sure the EEPROM is good */
4661         err = qdev->nic_ops->get_flash(qdev);
4662         if (err) {
4663                 dev_err(&pdev->dev, "Invalid FLASH.\n");
4664                 goto err_out2;
4665         }
4666
4667         /* Keep local copy of current mac address. */
4668         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4669
4670         /* Set up the default ring sizes. */
4671         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4672         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4673
4674         /* Set up the coalescing parameters. */
4675         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4676         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4677         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4678         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4679
4680         /*
4681          * Set up the operating parameters.
4682          */
4683         qdev->workqueue = create_singlethread_workqueue(ndev->name);
4684         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4685         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4686         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4687         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4688         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4689         INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4690         init_completion(&qdev->ide_completion);
4691         mutex_init(&qdev->mpi_mutex);
4692
4693         if (!cards_found) {
4694                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4695                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4696                          DRV_NAME, DRV_VERSION);
4697         }
4698         return 0;
4699 err_out2:
4700         ql_release_all(pdev);
4701 err_out1:
4702         pci_disable_device(pdev);
4703         return err;
4704 }
4705
4706 static const struct net_device_ops qlge_netdev_ops = {
4707         .ndo_open               = qlge_open,
4708         .ndo_stop               = qlge_close,
4709         .ndo_start_xmit         = qlge_send,
4710         .ndo_change_mtu         = qlge_change_mtu,
4711         .ndo_get_stats          = qlge_get_stats,
4712         .ndo_set_rx_mode        = qlge_set_multicast_list,
4713         .ndo_set_mac_address    = qlge_set_mac_address,
4714         .ndo_validate_addr      = eth_validate_addr,
4715         .ndo_tx_timeout         = qlge_tx_timeout,
4716         .ndo_fix_features       = qlge_fix_features,
4717         .ndo_set_features       = qlge_set_features,
4718         .ndo_vlan_rx_add_vid    = qlge_vlan_rx_add_vid,
4719         .ndo_vlan_rx_kill_vid   = qlge_vlan_rx_kill_vid,
4720 };
4721
4722 static void ql_timer(unsigned long data)
4723 {
4724         struct ql_adapter *qdev = (struct ql_adapter *)data;
4725         u32 var = 0;
4726
4727         var = ql_read32(qdev, STS);
4728         if (pci_channel_offline(qdev->pdev)) {
4729                 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4730                 return;
4731         }
4732
4733         mod_timer(&qdev->timer, jiffies + (5*HZ));
4734 }
4735
4736 static int qlge_probe(struct pci_dev *pdev,
4737                       const struct pci_device_id *pci_entry)
4738 {
4739         struct net_device *ndev = NULL;
4740         struct ql_adapter *qdev = NULL;
4741         static int cards_found = 0;
4742         int err = 0;
4743
4744         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4745                         min(MAX_CPUS, netif_get_num_default_rss_queues()));
4746         if (!ndev)
4747                 return -ENOMEM;
4748
4749         err = ql_init_device(pdev, ndev, cards_found);
4750         if (err < 0) {
4751                 free_netdev(ndev);
4752                 return err;
4753         }
4754
4755         qdev = netdev_priv(ndev);
4756         SET_NETDEV_DEV(ndev, &pdev->dev);
4757         ndev->hw_features = NETIF_F_SG |
4758                             NETIF_F_IP_CSUM |
4759                             NETIF_F_TSO |
4760                             NETIF_F_TSO_ECN |
4761                             NETIF_F_HW_VLAN_CTAG_TX |
4762                             NETIF_F_HW_VLAN_CTAG_RX |
4763                             NETIF_F_HW_VLAN_CTAG_FILTER |
4764                             NETIF_F_RXCSUM;
4765         ndev->features = ndev->hw_features;
4766         ndev->vlan_features = ndev->hw_features;
4767         /* vlan gets same features (except vlan filter) */
4768         ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4769                                  NETIF_F_HW_VLAN_CTAG_TX |
4770                                  NETIF_F_HW_VLAN_CTAG_RX);
4771
4772         if (test_bit(QL_DMA64, &qdev->flags))
4773                 ndev->features |= NETIF_F_HIGHDMA;
4774
4775         /*
4776          * Set up net_device structure.
4777          */
4778         ndev->tx_queue_len = qdev->tx_ring_size;
4779         ndev->irq = pdev->irq;
4780
4781         ndev->netdev_ops = &qlge_netdev_ops;
4782         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4783         ndev->watchdog_timeo = 10 * HZ;
4784
4785         err = register_netdev(ndev);
4786         if (err) {
4787                 dev_err(&pdev->dev, "net device registration failed.\n");
4788                 ql_release_all(pdev);
4789                 pci_disable_device(pdev);
4790                 free_netdev(ndev);
4791                 return err;
4792         }
4793         /* Start up the timer to trigger EEH if
4794          * the bus goes dead
4795          */
4796         init_timer_deferrable(&qdev->timer);
4797         qdev->timer.data = (unsigned long)qdev;
4798         qdev->timer.function = ql_timer;
4799         qdev->timer.expires = jiffies + (5*HZ);
4800         add_timer(&qdev->timer);
4801         ql_link_off(qdev);
4802         ql_display_dev_info(ndev);
4803         atomic_set(&qdev->lb_count, 0);
4804         cards_found++;
4805         return 0;
4806 }
4807
4808 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4809 {
4810         return qlge_send(skb, ndev);
4811 }
4812
4813 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4814 {
4815         return ql_clean_inbound_rx_ring(rx_ring, budget);
4816 }
4817
4818 static void qlge_remove(struct pci_dev *pdev)
4819 {
4820         struct net_device *ndev = pci_get_drvdata(pdev);
4821         struct ql_adapter *qdev = netdev_priv(ndev);
4822         del_timer_sync(&qdev->timer);
4823         ql_cancel_all_work_sync(qdev);
4824         unregister_netdev(ndev);
4825         ql_release_all(pdev);
4826         pci_disable_device(pdev);
4827         free_netdev(ndev);
4828 }
4829
4830 /* Clean up resources without touching hardware. */
4831 static void ql_eeh_close(struct net_device *ndev)
4832 {
4833         int i;
4834         struct ql_adapter *qdev = netdev_priv(ndev);
4835
4836         if (netif_carrier_ok(ndev)) {
4837                 netif_carrier_off(ndev);
4838                 netif_stop_queue(ndev);
4839         }
4840
4841         /* Disabling the timer */
4842         del_timer_sync(&qdev->timer);
4843         ql_cancel_all_work_sync(qdev);
4844
4845         for (i = 0; i < qdev->rss_ring_count; i++)
4846                 netif_napi_del(&qdev->rx_ring[i].napi);
4847
4848         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4849         ql_tx_ring_clean(qdev);
4850         ql_free_rx_buffers(qdev);
4851         ql_release_adapter_resources(qdev);
4852 }
4853
4854 /*
4855  * This callback is called by the PCI subsystem whenever
4856  * a PCI bus error is detected.
4857  */
4858 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4859                                                enum pci_channel_state state)
4860 {
4861         struct net_device *ndev = pci_get_drvdata(pdev);
4862         struct ql_adapter *qdev = netdev_priv(ndev);
4863
4864         switch (state) {
4865         case pci_channel_io_normal:
4866                 return PCI_ERS_RESULT_CAN_RECOVER;
4867         case pci_channel_io_frozen:
4868                 netif_device_detach(ndev);
4869                 if (netif_running(ndev))
4870                         ql_eeh_close(ndev);
4871                 pci_disable_device(pdev);
4872                 return PCI_ERS_RESULT_NEED_RESET;
4873         case pci_channel_io_perm_failure:
4874                 dev_err(&pdev->dev,
4875                         "%s: pci_channel_io_perm_failure.\n", __func__);
4876                 ql_eeh_close(ndev);
4877                 set_bit(QL_EEH_FATAL, &qdev->flags);
4878                 return PCI_ERS_RESULT_DISCONNECT;
4879         }
4880
4881         /* Request a slot reset. */
4882         return PCI_ERS_RESULT_NEED_RESET;
4883 }
4884
4885 /*
4886  * This callback is called after the PCI buss has been reset.
4887  * Basically, this tries to restart the card from scratch.
4888  * This is a shortened version of the device probe/discovery code,
4889  * it resembles the first-half of the () routine.
4890  */
4891 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4892 {
4893         struct net_device *ndev = pci_get_drvdata(pdev);
4894         struct ql_adapter *qdev = netdev_priv(ndev);
4895
4896         pdev->error_state = pci_channel_io_normal;
4897
4898         pci_restore_state(pdev);
4899         if (pci_enable_device(pdev)) {
4900                 netif_err(qdev, ifup, qdev->ndev,
4901                           "Cannot re-enable PCI device after reset.\n");
4902                 return PCI_ERS_RESULT_DISCONNECT;
4903         }
4904         pci_set_master(pdev);
4905
4906         if (ql_adapter_reset(qdev)) {
4907                 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4908                 set_bit(QL_EEH_FATAL, &qdev->flags);
4909                 return PCI_ERS_RESULT_DISCONNECT;
4910         }
4911
4912         return PCI_ERS_RESULT_RECOVERED;
4913 }
4914
4915 static void qlge_io_resume(struct pci_dev *pdev)
4916 {
4917         struct net_device *ndev = pci_get_drvdata(pdev);
4918         struct ql_adapter *qdev = netdev_priv(ndev);
4919         int err = 0;
4920
4921         if (netif_running(ndev)) {
4922                 err = qlge_open(ndev);
4923                 if (err) {
4924                         netif_err(qdev, ifup, qdev->ndev,
4925                                   "Device initialization failed after reset.\n");
4926                         return;
4927                 }
4928         } else {
4929                 netif_err(qdev, ifup, qdev->ndev,
4930                           "Device was not running prior to EEH.\n");
4931         }
4932         mod_timer(&qdev->timer, jiffies + (5*HZ));
4933         netif_device_attach(ndev);
4934 }
4935
4936 static const struct pci_error_handlers qlge_err_handler = {
4937         .error_detected = qlge_io_error_detected,
4938         .slot_reset = qlge_io_slot_reset,
4939         .resume = qlge_io_resume,
4940 };
4941
4942 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4943 {
4944         struct net_device *ndev = pci_get_drvdata(pdev);
4945         struct ql_adapter *qdev = netdev_priv(ndev);
4946         int err;
4947
4948         netif_device_detach(ndev);
4949         del_timer_sync(&qdev->timer);
4950
4951         if (netif_running(ndev)) {
4952                 err = ql_adapter_down(qdev);
4953                 if (!err)
4954                         return err;
4955         }
4956
4957         ql_wol(qdev);
4958         err = pci_save_state(pdev);
4959         if (err)
4960                 return err;
4961
4962         pci_disable_device(pdev);
4963
4964         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4965
4966         return 0;
4967 }
4968
4969 #ifdef CONFIG_PM
4970 static int qlge_resume(struct pci_dev *pdev)
4971 {
4972         struct net_device *ndev = pci_get_drvdata(pdev);
4973         struct ql_adapter *qdev = netdev_priv(ndev);
4974         int err;
4975
4976         pci_set_power_state(pdev, PCI_D0);
4977         pci_restore_state(pdev);
4978         err = pci_enable_device(pdev);
4979         if (err) {
4980                 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4981                 return err;
4982         }
4983         pci_set_master(pdev);
4984
4985         pci_enable_wake(pdev, PCI_D3hot, 0);
4986         pci_enable_wake(pdev, PCI_D3cold, 0);
4987
4988         if (netif_running(ndev)) {
4989                 err = ql_adapter_up(qdev);
4990                 if (err)
4991                         return err;
4992         }
4993
4994         mod_timer(&qdev->timer, jiffies + (5*HZ));
4995         netif_device_attach(ndev);
4996
4997         return 0;
4998 }
4999 #endif /* CONFIG_PM */
5000
5001 static void qlge_shutdown(struct pci_dev *pdev)
5002 {
5003         qlge_suspend(pdev, PMSG_SUSPEND);
5004 }
5005
5006 static struct pci_driver qlge_driver = {
5007         .name = DRV_NAME,
5008         .id_table = qlge_pci_tbl,
5009         .probe = qlge_probe,
5010         .remove = qlge_remove,
5011 #ifdef CONFIG_PM
5012         .suspend = qlge_suspend,
5013         .resume = qlge_resume,
5014 #endif
5015         .shutdown = qlge_shutdown,
5016         .err_handler = &qlge_err_handler
5017 };
5018
5019 module_pci_driver(qlge_driver);