]> Pileus Git - ~andy/linux/blob - drivers/misc/vmw_vmci/vmci_queue_pair.c
a0515a6d6ebdbcf1438e4e8c544d879fc478e08a
[~andy/linux] / drivers / misc / vmw_vmci / vmci_queue_pair.c
1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30
31 #include "vmci_handle_array.h"
32 #include "vmci_queue_pair.h"
33 #include "vmci_datagram.h"
34 #include "vmci_resource.h"
35 #include "vmci_context.h"
36 #include "vmci_driver.h"
37 #include "vmci_event.h"
38 #include "vmci_route.h"
39
40 /*
41  * In the following, we will distinguish between two kinds of VMX processes -
42  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
43  * VMCI page files in the VMX and supporting VM to VM communication and the
44  * newer ones that use the guest memory directly. We will in the following
45  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
46  * new-style VMX'en.
47  *
48  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
49  * removed for readability) - see below for more details on the transtions:
50  *
51  *            --------------  NEW  -------------
52  *            |                                |
53  *           \_/                              \_/
54  *     CREATED_NO_MEM <-----------------> CREATED_MEM
55  *            |    |                           |
56  *            |    o-----------------------o   |
57  *            |                            |   |
58  *           \_/                          \_/ \_/
59  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
60  *            |                            |   |
61  *            |     o----------------------o   |
62  *            |     |                          |
63  *           \_/   \_/                        \_/
64  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
65  *            |                                |
66  *            |                                |
67  *            -------------> gone <-------------
68  *
69  * In more detail. When a VMCI queue pair is first created, it will be in the
70  * VMCIQPB_NEW state. It will then move into one of the following states:
71  *
72  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
73  *
74  *     - the created was performed by a host endpoint, in which case there is
75  *       no backing memory yet.
76  *
77  *     - the create was initiated by an old-style VMX, that uses
78  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
79  *       a later point in time. This state can be distinguished from the one
80  *       above by the context ID of the creator. A host side is not allowed to
81  *       attach until the page store has been set.
82  *
83  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
84  *     is created by a VMX using the queue pair device backend that
85  *     sets the UVAs of the queue pair immediately and stores the
86  *     information for later attachers. At this point, it is ready for
87  *     the host side to attach to it.
88  *
89  * Once the queue pair is in one of the created states (with the exception of
90  * the case mentioned for older VMX'en above), it is possible to attach to the
91  * queue pair. Again we have two new states possible:
92  *
93  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
94  *   paths:
95  *
96  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
97  *       pair, and attaches to a queue pair previously created by the host side.
98  *
99  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
100  *       already created by a guest.
101  *
102  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
103  *       vmci_qp_broker_set_page_store (see below).
104  *
105  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
106  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
107  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
108  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
109  *     will be entered.
110  *
111  * From the attached queue pair, the queue pair can enter the shutdown states
112  * when either side of the queue pair detaches. If the guest side detaches
113  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
114  * the content of the queue pair will no longer be available. If the host
115  * side detaches first, the queue pair will either enter the
116  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
117  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
118  * (e.g., the host detaches while a guest is stunned).
119  *
120  * New-style VMX'en will also unmap guest memory, if the guest is
121  * quiesced, e.g., during a snapshot operation. In that case, the guest
122  * memory will no longer be available, and the queue pair will transition from
123  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
124  * in which case the queue pair will transition from the *_NO_MEM state at that
125  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
126  * since the peer may have either attached or detached in the meantime. The
127  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
128  * *_MEM state, and vice versa.
129  */
130
131 /*
132  * VMCIMemcpy{To,From}QueueFunc() prototypes.  Functions of these
133  * types are passed around to enqueue and dequeue routines.  Note that
134  * often the functions passed are simply wrappers around memcpy
135  * itself.
136  *
137  * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
138  * there's an unused last parameter for the hosted side.  In
139  * ESX, that parameter holds a buffer type.
140  */
141 typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
142                                       u64 queue_offset, const void *src,
143                                       size_t src_offset, size_t size);
144 typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
145                                         const struct vmci_queue *queue,
146                                         u64 queue_offset, size_t size);
147
148 /* The Kernel specific component of the struct vmci_queue structure. */
149 struct vmci_queue_kern_if {
150         struct mutex __mutex;   /* Protects the queue. */
151         struct mutex *mutex;    /* Shared by producer and consumer queues. */
152         size_t num_pages;       /* Number of pages incl. header. */
153         bool host;              /* Host or guest? */
154         union {
155                 struct {
156                         dma_addr_t *pas;
157                         void **vas;
158                 } g;            /* Used by the guest. */
159                 struct {
160                         struct page **page;
161                         struct page **header_page;
162                 } h;            /* Used by the host. */
163         } u;
164 };
165
166 /*
167  * This structure is opaque to the clients.
168  */
169 struct vmci_qp {
170         struct vmci_handle handle;
171         struct vmci_queue *produce_q;
172         struct vmci_queue *consume_q;
173         u64 produce_q_size;
174         u64 consume_q_size;
175         u32 peer;
176         u32 flags;
177         u32 priv_flags;
178         bool guest_endpoint;
179         unsigned int blocked;
180         unsigned int generation;
181         wait_queue_head_t event;
182 };
183
184 enum qp_broker_state {
185         VMCIQPB_NEW,
186         VMCIQPB_CREATED_NO_MEM,
187         VMCIQPB_CREATED_MEM,
188         VMCIQPB_ATTACHED_NO_MEM,
189         VMCIQPB_ATTACHED_MEM,
190         VMCIQPB_SHUTDOWN_NO_MEM,
191         VMCIQPB_SHUTDOWN_MEM,
192         VMCIQPB_GONE
193 };
194
195 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
196                                      _qpb->state == VMCIQPB_ATTACHED_MEM || \
197                                      _qpb->state == VMCIQPB_SHUTDOWN_MEM)
198
199 /*
200  * In the queue pair broker, we always use the guest point of view for
201  * the produce and consume queue values and references, e.g., the
202  * produce queue size stored is the guests produce queue size. The
203  * host endpoint will need to swap these around. The only exception is
204  * the local queue pairs on the host, in which case the host endpoint
205  * that creates the queue pair will have the right orientation, and
206  * the attaching host endpoint will need to swap.
207  */
208 struct qp_entry {
209         struct list_head list_item;
210         struct vmci_handle handle;
211         u32 peer;
212         u32 flags;
213         u64 produce_size;
214         u64 consume_size;
215         u32 ref_count;
216 };
217
218 struct qp_broker_entry {
219         struct vmci_resource resource;
220         struct qp_entry qp;
221         u32 create_id;
222         u32 attach_id;
223         enum qp_broker_state state;
224         bool require_trusted_attach;
225         bool created_by_trusted;
226         bool vmci_page_files;   /* Created by VMX using VMCI page files */
227         struct vmci_queue *produce_q;
228         struct vmci_queue *consume_q;
229         struct vmci_queue_header saved_produce_q;
230         struct vmci_queue_header saved_consume_q;
231         vmci_event_release_cb wakeup_cb;
232         void *client_data;
233         void *local_mem;        /* Kernel memory for local queue pair */
234 };
235
236 struct qp_guest_endpoint {
237         struct vmci_resource resource;
238         struct qp_entry qp;
239         u64 num_ppns;
240         void *produce_q;
241         void *consume_q;
242         struct ppn_set ppn_set;
243 };
244
245 struct qp_list {
246         struct list_head head;
247         struct mutex mutex;     /* Protect queue list. */
248 };
249
250 static struct qp_list qp_broker_list = {
251         .head = LIST_HEAD_INIT(qp_broker_list.head),
252         .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
253 };
254
255 static struct qp_list qp_guest_endpoints = {
256         .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
257         .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
258 };
259
260 #define INVALID_VMCI_GUEST_MEM_ID  0
261 #define QPE_NUM_PAGES(_QPE) ((u32) \
262                              (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
263                               DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
264
265
266 /*
267  * Frees kernel VA space for a given queue and its queue header, and
268  * frees physical data pages.
269  */
270 static void qp_free_queue(void *q, u64 size)
271 {
272         struct vmci_queue *queue = q;
273
274         if (queue) {
275                 u64 i;
276
277                 /* Given size does not include header, so add in a page here. */
278                 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
279                         dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
280                                           queue->kernel_if->u.g.vas[i],
281                                           queue->kernel_if->u.g.pas[i]);
282                 }
283
284                 vfree(queue);
285         }
286 }
287
288 /*
289  * Allocates kernel queue pages of specified size with IOMMU mappings,
290  * plus space for the queue structure/kernel interface and the queue
291  * header.
292  */
293 static void *qp_alloc_queue(u64 size, u32 flags)
294 {
295         u64 i;
296         struct vmci_queue *queue;
297         const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
298         const size_t pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
299         const size_t vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
300         const size_t queue_size =
301                 sizeof(*queue) + sizeof(*queue->kernel_if) +
302                 pas_size + vas_size;
303
304         queue = vmalloc(queue_size);
305         if (!queue)
306                 return NULL;
307
308         queue->q_header = NULL;
309         queue->saved_header = NULL;
310         queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
311         queue->kernel_if->mutex = NULL;
312         queue->kernel_if->num_pages = num_pages;
313         queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
314         queue->kernel_if->u.g.vas =
315                 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
316         queue->kernel_if->host = false;
317
318         for (i = 0; i < num_pages; i++) {
319                 queue->kernel_if->u.g.vas[i] =
320                         dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
321                                            &queue->kernel_if->u.g.pas[i],
322                                            GFP_KERNEL);
323                 if (!queue->kernel_if->u.g.vas[i]) {
324                         /* Size excl. the header. */
325                         qp_free_queue(queue, i * PAGE_SIZE);
326                         return NULL;
327                 }
328         }
329
330         /* Queue header is the first page. */
331         queue->q_header = queue->kernel_if->u.g.vas[0];
332
333         return queue;
334 }
335
336 /*
337  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
338  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
339  * by traversing the offset -> page translation structure for the queue.
340  * Assumes that offset + size does not wrap around in the queue.
341  */
342 static int __qp_memcpy_to_queue(struct vmci_queue *queue,
343                                 u64 queue_offset,
344                                 const void *src,
345                                 size_t size,
346                                 bool is_iovec)
347 {
348         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
349         size_t bytes_copied = 0;
350
351         while (bytes_copied < size) {
352                 const u64 page_index =
353                         (queue_offset + bytes_copied) / PAGE_SIZE;
354                 const size_t page_offset =
355                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
356                 void *va;
357                 size_t to_copy;
358
359                 if (kernel_if->host)
360                         va = kmap(kernel_if->u.h.page[page_index]);
361                 else
362                         va = kernel_if->u.g.vas[page_index + 1];
363                         /* Skip header. */
364
365                 if (size - bytes_copied > PAGE_SIZE - page_offset)
366                         /* Enough payload to fill up from this page. */
367                         to_copy = PAGE_SIZE - page_offset;
368                 else
369                         to_copy = size - bytes_copied;
370
371                 if (is_iovec) {
372                         struct iovec *iov = (struct iovec *)src;
373                         int err;
374
375                         /* The iovec will track bytes_copied internally. */
376                         err = memcpy_fromiovec((u8 *)va + page_offset,
377                                                iov, to_copy);
378                         if (err != 0) {
379                                 if (kernel_if->host)
380                                         kunmap(kernel_if->u.h.page[page_index]);
381                                 return VMCI_ERROR_INVALID_ARGS;
382                         }
383                 } else {
384                         memcpy((u8 *)va + page_offset,
385                                (u8 *)src + bytes_copied, to_copy);
386                 }
387
388                 bytes_copied += to_copy;
389                 if (kernel_if->host)
390                         kunmap(kernel_if->u.h.page[page_index]);
391         }
392
393         return VMCI_SUCCESS;
394 }
395
396 /*
397  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
398  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
399  * by traversing the offset -> page translation structure for the queue.
400  * Assumes that offset + size does not wrap around in the queue.
401  */
402 static int __qp_memcpy_from_queue(void *dest,
403                                   const struct vmci_queue *queue,
404                                   u64 queue_offset,
405                                   size_t size,
406                                   bool is_iovec)
407 {
408         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
409         size_t bytes_copied = 0;
410
411         while (bytes_copied < size) {
412                 const u64 page_index =
413                         (queue_offset + bytes_copied) / PAGE_SIZE;
414                 const size_t page_offset =
415                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
416                 void *va;
417                 size_t to_copy;
418
419                 if (kernel_if->host)
420                         va = kmap(kernel_if->u.h.page[page_index]);
421                 else
422                         va = kernel_if->u.g.vas[page_index + 1];
423                         /* Skip header. */
424
425                 if (size - bytes_copied > PAGE_SIZE - page_offset)
426                         /* Enough payload to fill up this page. */
427                         to_copy = PAGE_SIZE - page_offset;
428                 else
429                         to_copy = size - bytes_copied;
430
431                 if (is_iovec) {
432                         struct iovec *iov = (struct iovec *)dest;
433                         int err;
434
435                         /* The iovec will track bytes_copied internally. */
436                         err = memcpy_toiovec(iov, (u8 *)va + page_offset,
437                                              to_copy);
438                         if (err != 0) {
439                                 if (kernel_if->host)
440                                         kunmap(kernel_if->u.h.page[page_index]);
441                                 return VMCI_ERROR_INVALID_ARGS;
442                         }
443                 } else {
444                         memcpy((u8 *)dest + bytes_copied,
445                                (u8 *)va + page_offset, to_copy);
446                 }
447
448                 bytes_copied += to_copy;
449                 if (kernel_if->host)
450                         kunmap(kernel_if->u.h.page[page_index]);
451         }
452
453         return VMCI_SUCCESS;
454 }
455
456 /*
457  * Allocates two list of PPNs --- one for the pages in the produce queue,
458  * and the other for the pages in the consume queue. Intializes the list
459  * of PPNs with the page frame numbers of the KVA for the two queues (and
460  * the queue headers).
461  */
462 static int qp_alloc_ppn_set(void *prod_q,
463                             u64 num_produce_pages,
464                             void *cons_q,
465                             u64 num_consume_pages, struct ppn_set *ppn_set)
466 {
467         u32 *produce_ppns;
468         u32 *consume_ppns;
469         struct vmci_queue *produce_q = prod_q;
470         struct vmci_queue *consume_q = cons_q;
471         u64 i;
472
473         if (!produce_q || !num_produce_pages || !consume_q ||
474             !num_consume_pages || !ppn_set)
475                 return VMCI_ERROR_INVALID_ARGS;
476
477         if (ppn_set->initialized)
478                 return VMCI_ERROR_ALREADY_EXISTS;
479
480         produce_ppns =
481             kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
482         if (!produce_ppns)
483                 return VMCI_ERROR_NO_MEM;
484
485         consume_ppns =
486             kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
487         if (!consume_ppns) {
488                 kfree(produce_ppns);
489                 return VMCI_ERROR_NO_MEM;
490         }
491
492         for (i = 0; i < num_produce_pages; i++) {
493                 unsigned long pfn;
494
495                 produce_ppns[i] =
496                         produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
497                 pfn = produce_ppns[i];
498
499                 /* Fail allocation if PFN isn't supported by hypervisor. */
500                 if (sizeof(pfn) > sizeof(*produce_ppns)
501                     && pfn != produce_ppns[i])
502                         goto ppn_error;
503         }
504
505         for (i = 0; i < num_consume_pages; i++) {
506                 unsigned long pfn;
507
508                 consume_ppns[i] =
509                         consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
510                 pfn = consume_ppns[i];
511
512                 /* Fail allocation if PFN isn't supported by hypervisor. */
513                 if (sizeof(pfn) > sizeof(*consume_ppns)
514                     && pfn != consume_ppns[i])
515                         goto ppn_error;
516         }
517
518         ppn_set->num_produce_pages = num_produce_pages;
519         ppn_set->num_consume_pages = num_consume_pages;
520         ppn_set->produce_ppns = produce_ppns;
521         ppn_set->consume_ppns = consume_ppns;
522         ppn_set->initialized = true;
523         return VMCI_SUCCESS;
524
525  ppn_error:
526         kfree(produce_ppns);
527         kfree(consume_ppns);
528         return VMCI_ERROR_INVALID_ARGS;
529 }
530
531 /*
532  * Frees the two list of PPNs for a queue pair.
533  */
534 static void qp_free_ppn_set(struct ppn_set *ppn_set)
535 {
536         if (ppn_set->initialized) {
537                 /* Do not call these functions on NULL inputs. */
538                 kfree(ppn_set->produce_ppns);
539                 kfree(ppn_set->consume_ppns);
540         }
541         memset(ppn_set, 0, sizeof(*ppn_set));
542 }
543
544 /*
545  * Populates the list of PPNs in the hypercall structure with the PPNS
546  * of the produce queue and the consume queue.
547  */
548 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
549 {
550         memcpy(call_buf, ppn_set->produce_ppns,
551                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
552         memcpy(call_buf +
553                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
554                ppn_set->consume_ppns,
555                ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
556
557         return VMCI_SUCCESS;
558 }
559
560 static int qp_memcpy_to_queue(struct vmci_queue *queue,
561                               u64 queue_offset,
562                               const void *src, size_t src_offset, size_t size)
563 {
564         return __qp_memcpy_to_queue(queue, queue_offset,
565                                     (u8 *)src + src_offset, size, false);
566 }
567
568 static int qp_memcpy_from_queue(void *dest,
569                                 size_t dest_offset,
570                                 const struct vmci_queue *queue,
571                                 u64 queue_offset, size_t size)
572 {
573         return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
574                                       queue, queue_offset, size, false);
575 }
576
577 /*
578  * Copies from a given iovec from a VMCI Queue.
579  */
580 static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
581                                   u64 queue_offset,
582                                   const void *src,
583                                   size_t src_offset, size_t size)
584 {
585
586         /*
587          * We ignore src_offset because src is really a struct iovec * and will
588          * maintain offset internally.
589          */
590         return __qp_memcpy_to_queue(queue, queue_offset, src, size, true);
591 }
592
593 /*
594  * Copies to a given iovec from a VMCI Queue.
595  */
596 static int qp_memcpy_from_queue_iov(void *dest,
597                                     size_t dest_offset,
598                                     const struct vmci_queue *queue,
599                                     u64 queue_offset, size_t size)
600 {
601         /*
602          * We ignore dest_offset because dest is really a struct iovec * and
603          * will maintain offset internally.
604          */
605         return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
606 }
607
608 /*
609  * Allocates kernel VA space of specified size plus space for the queue
610  * and kernel interface.  This is different from the guest queue allocator,
611  * because we do not allocate our own queue header/data pages here but
612  * share those of the guest.
613  */
614 static struct vmci_queue *qp_host_alloc_queue(u64 size)
615 {
616         struct vmci_queue *queue;
617         const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
618         const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
619         const size_t queue_page_size =
620             num_pages * sizeof(*queue->kernel_if->u.h.page);
621
622         queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
623         if (queue) {
624                 queue->q_header = NULL;
625                 queue->saved_header = NULL;
626                 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
627                 queue->kernel_if->host = true;
628                 queue->kernel_if->mutex = NULL;
629                 queue->kernel_if->num_pages = num_pages;
630                 queue->kernel_if->u.h.header_page =
631                     (struct page **)((u8 *)queue + queue_size);
632                 queue->kernel_if->u.h.page =
633                         &queue->kernel_if->u.h.header_page[1];
634         }
635
636         return queue;
637 }
638
639 /*
640  * Frees kernel memory for a given queue (header plus translation
641  * structure).
642  */
643 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
644 {
645         kfree(queue);
646 }
647
648 /*
649  * Initialize the mutex for the pair of queues.  This mutex is used to
650  * protect the q_header and the buffer from changing out from under any
651  * users of either queue.  Of course, it's only any good if the mutexes
652  * are actually acquired.  Queue structure must lie on non-paged memory
653  * or we cannot guarantee access to the mutex.
654  */
655 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
656                                 struct vmci_queue *consume_q)
657 {
658         /*
659          * Only the host queue has shared state - the guest queues do not
660          * need to synchronize access using a queue mutex.
661          */
662
663         if (produce_q->kernel_if->host) {
664                 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
665                 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
666                 mutex_init(produce_q->kernel_if->mutex);
667         }
668 }
669
670 /*
671  * Cleans up the mutex for the pair of queues.
672  */
673 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
674                                    struct vmci_queue *consume_q)
675 {
676         if (produce_q->kernel_if->host) {
677                 produce_q->kernel_if->mutex = NULL;
678                 consume_q->kernel_if->mutex = NULL;
679         }
680 }
681
682 /*
683  * Acquire the mutex for the queue.  Note that the produce_q and
684  * the consume_q share a mutex.  So, only one of the two need to
685  * be passed in to this routine.  Either will work just fine.
686  */
687 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
688 {
689         if (queue->kernel_if->host)
690                 mutex_lock(queue->kernel_if->mutex);
691 }
692
693 /*
694  * Release the mutex for the queue.  Note that the produce_q and
695  * the consume_q share a mutex.  So, only one of the two need to
696  * be passed in to this routine.  Either will work just fine.
697  */
698 static void qp_release_queue_mutex(struct vmci_queue *queue)
699 {
700         if (queue->kernel_if->host)
701                 mutex_unlock(queue->kernel_if->mutex);
702 }
703
704 /*
705  * Helper function to release pages in the PageStoreAttachInfo
706  * previously obtained using get_user_pages.
707  */
708 static void qp_release_pages(struct page **pages,
709                              u64 num_pages, bool dirty)
710 {
711         int i;
712
713         for (i = 0; i < num_pages; i++) {
714                 if (dirty)
715                         set_page_dirty(pages[i]);
716
717                 page_cache_release(pages[i]);
718                 pages[i] = NULL;
719         }
720 }
721
722 /*
723  * Lock the user pages referenced by the {produce,consume}Buffer
724  * struct into memory and populate the {produce,consume}Pages
725  * arrays in the attach structure with them.
726  */
727 static int qp_host_get_user_memory(u64 produce_uva,
728                                    u64 consume_uva,
729                                    struct vmci_queue *produce_q,
730                                    struct vmci_queue *consume_q)
731 {
732         int retval;
733         int err = VMCI_SUCCESS;
734
735         down_write(&current->mm->mmap_sem);
736         retval = get_user_pages(current,
737                                 current->mm,
738                                 (uintptr_t) produce_uva,
739                                 produce_q->kernel_if->num_pages,
740                                 1, 0,
741                                 produce_q->kernel_if->u.h.header_page, NULL);
742         if (retval < produce_q->kernel_if->num_pages) {
743                 pr_warn("get_user_pages(produce) failed (retval=%d)", retval);
744                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
745                                  retval, false);
746                 err = VMCI_ERROR_NO_MEM;
747                 goto out;
748         }
749
750         retval = get_user_pages(current,
751                                 current->mm,
752                                 (uintptr_t) consume_uva,
753                                 consume_q->kernel_if->num_pages,
754                                 1, 0,
755                                 consume_q->kernel_if->u.h.header_page, NULL);
756         if (retval < consume_q->kernel_if->num_pages) {
757                 pr_warn("get_user_pages(consume) failed (retval=%d)", retval);
758                 qp_release_pages(consume_q->kernel_if->u.h.header_page,
759                                  retval, false);
760                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
761                                  produce_q->kernel_if->num_pages, false);
762                 err = VMCI_ERROR_NO_MEM;
763         }
764
765  out:
766         up_write(&current->mm->mmap_sem);
767
768         return err;
769 }
770
771 /*
772  * Registers the specification of the user pages used for backing a queue
773  * pair. Enough information to map in pages is stored in the OS specific
774  * part of the struct vmci_queue structure.
775  */
776 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
777                                         struct vmci_queue *produce_q,
778                                         struct vmci_queue *consume_q)
779 {
780         u64 produce_uva;
781         u64 consume_uva;
782
783         /*
784          * The new style and the old style mapping only differs in
785          * that we either get a single or two UVAs, so we split the
786          * single UVA range at the appropriate spot.
787          */
788         produce_uva = page_store->pages;
789         consume_uva = page_store->pages +
790             produce_q->kernel_if->num_pages * PAGE_SIZE;
791         return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
792                                        consume_q);
793 }
794
795 /*
796  * Releases and removes the references to user pages stored in the attach
797  * struct.  Pages are released from the page cache and may become
798  * swappable again.
799  */
800 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
801                                            struct vmci_queue *consume_q)
802 {
803         qp_release_pages(produce_q->kernel_if->u.h.header_page,
804                          produce_q->kernel_if->num_pages, true);
805         memset(produce_q->kernel_if->u.h.header_page, 0,
806                sizeof(*produce_q->kernel_if->u.h.header_page) *
807                produce_q->kernel_if->num_pages);
808         qp_release_pages(consume_q->kernel_if->u.h.header_page,
809                          consume_q->kernel_if->num_pages, true);
810         memset(consume_q->kernel_if->u.h.header_page, 0,
811                sizeof(*consume_q->kernel_if->u.h.header_page) *
812                consume_q->kernel_if->num_pages);
813 }
814
815 /*
816  * Once qp_host_register_user_memory has been performed on a
817  * queue, the queue pair headers can be mapped into the
818  * kernel. Once mapped, they must be unmapped with
819  * qp_host_unmap_queues prior to calling
820  * qp_host_unregister_user_memory.
821  * Pages are pinned.
822  */
823 static int qp_host_map_queues(struct vmci_queue *produce_q,
824                               struct vmci_queue *consume_q)
825 {
826         int result;
827
828         if (!produce_q->q_header || !consume_q->q_header) {
829                 struct page *headers[2];
830
831                 if (produce_q->q_header != consume_q->q_header)
832                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
833
834                 if (produce_q->kernel_if->u.h.header_page == NULL ||
835                     *produce_q->kernel_if->u.h.header_page == NULL)
836                         return VMCI_ERROR_UNAVAILABLE;
837
838                 headers[0] = *produce_q->kernel_if->u.h.header_page;
839                 headers[1] = *consume_q->kernel_if->u.h.header_page;
840
841                 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
842                 if (produce_q->q_header != NULL) {
843                         consume_q->q_header =
844                             (struct vmci_queue_header *)((u8 *)
845                                                          produce_q->q_header +
846                                                          PAGE_SIZE);
847                         result = VMCI_SUCCESS;
848                 } else {
849                         pr_warn("vmap failed\n");
850                         result = VMCI_ERROR_NO_MEM;
851                 }
852         } else {
853                 result = VMCI_SUCCESS;
854         }
855
856         return result;
857 }
858
859 /*
860  * Unmaps previously mapped queue pair headers from the kernel.
861  * Pages are unpinned.
862  */
863 static int qp_host_unmap_queues(u32 gid,
864                                 struct vmci_queue *produce_q,
865                                 struct vmci_queue *consume_q)
866 {
867         if (produce_q->q_header) {
868                 if (produce_q->q_header < consume_q->q_header)
869                         vunmap(produce_q->q_header);
870                 else
871                         vunmap(consume_q->q_header);
872
873                 produce_q->q_header = NULL;
874                 consume_q->q_header = NULL;
875         }
876
877         return VMCI_SUCCESS;
878 }
879
880 /*
881  * Finds the entry in the list corresponding to a given handle. Assumes
882  * that the list is locked.
883  */
884 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
885                                      struct vmci_handle handle)
886 {
887         struct qp_entry *entry;
888
889         if (vmci_handle_is_invalid(handle))
890                 return NULL;
891
892         list_for_each_entry(entry, &qp_list->head, list_item) {
893                 if (vmci_handle_is_equal(entry->handle, handle))
894                         return entry;
895         }
896
897         return NULL;
898 }
899
900 /*
901  * Finds the entry in the list corresponding to a given handle.
902  */
903 static struct qp_guest_endpoint *
904 qp_guest_handle_to_entry(struct vmci_handle handle)
905 {
906         struct qp_guest_endpoint *entry;
907         struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
908
909         entry = qp ? container_of(
910                 qp, struct qp_guest_endpoint, qp) : NULL;
911         return entry;
912 }
913
914 /*
915  * Finds the entry in the list corresponding to a given handle.
916  */
917 static struct qp_broker_entry *
918 qp_broker_handle_to_entry(struct vmci_handle handle)
919 {
920         struct qp_broker_entry *entry;
921         struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
922
923         entry = qp ? container_of(
924                 qp, struct qp_broker_entry, qp) : NULL;
925         return entry;
926 }
927
928 /*
929  * Dispatches a queue pair event message directly into the local event
930  * queue.
931  */
932 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
933 {
934         u32 context_id = vmci_get_context_id();
935         struct vmci_event_qp ev;
936
937         ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
938         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
939                                           VMCI_CONTEXT_RESOURCE_ID);
940         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
941         ev.msg.event_data.event =
942             attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
943         ev.payload.peer_id = context_id;
944         ev.payload.handle = handle;
945
946         return vmci_event_dispatch(&ev.msg.hdr);
947 }
948
949 /*
950  * Allocates and initializes a qp_guest_endpoint structure.
951  * Allocates a queue_pair rid (and handle) iff the given entry has
952  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
953  * are reserved handles.  Assumes that the QP list mutex is held
954  * by the caller.
955  */
956 static struct qp_guest_endpoint *
957 qp_guest_endpoint_create(struct vmci_handle handle,
958                          u32 peer,
959                          u32 flags,
960                          u64 produce_size,
961                          u64 consume_size,
962                          void *produce_q,
963                          void *consume_q)
964 {
965         int result;
966         struct qp_guest_endpoint *entry;
967         /* One page each for the queue headers. */
968         const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
969             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
970
971         if (vmci_handle_is_invalid(handle)) {
972                 u32 context_id = vmci_get_context_id();
973
974                 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
975         }
976
977         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
978         if (entry) {
979                 entry->qp.peer = peer;
980                 entry->qp.flags = flags;
981                 entry->qp.produce_size = produce_size;
982                 entry->qp.consume_size = consume_size;
983                 entry->qp.ref_count = 0;
984                 entry->num_ppns = num_ppns;
985                 entry->produce_q = produce_q;
986                 entry->consume_q = consume_q;
987                 INIT_LIST_HEAD(&entry->qp.list_item);
988
989                 /* Add resource obj */
990                 result = vmci_resource_add(&entry->resource,
991                                            VMCI_RESOURCE_TYPE_QPAIR_GUEST,
992                                            handle);
993                 entry->qp.handle = vmci_resource_handle(&entry->resource);
994                 if ((result != VMCI_SUCCESS) ||
995                     qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
996                         pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
997                                 handle.context, handle.resource, result);
998                         kfree(entry);
999                         entry = NULL;
1000                 }
1001         }
1002         return entry;
1003 }
1004
1005 /*
1006  * Frees a qp_guest_endpoint structure.
1007  */
1008 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1009 {
1010         qp_free_ppn_set(&entry->ppn_set);
1011         qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1012         qp_free_queue(entry->produce_q, entry->qp.produce_size);
1013         qp_free_queue(entry->consume_q, entry->qp.consume_size);
1014         /* Unlink from resource hash table and free callback */
1015         vmci_resource_remove(&entry->resource);
1016
1017         kfree(entry);
1018 }
1019
1020 /*
1021  * Helper to make a queue_pairAlloc hypercall when the driver is
1022  * supporting a guest device.
1023  */
1024 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1025 {
1026         struct vmci_qp_alloc_msg *alloc_msg;
1027         size_t msg_size;
1028         int result;
1029
1030         if (!entry || entry->num_ppns <= 2)
1031                 return VMCI_ERROR_INVALID_ARGS;
1032
1033         msg_size = sizeof(*alloc_msg) +
1034             (size_t) entry->num_ppns * sizeof(u32);
1035         alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1036         if (!alloc_msg)
1037                 return VMCI_ERROR_NO_MEM;
1038
1039         alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1040                                               VMCI_QUEUEPAIR_ALLOC);
1041         alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1042         alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1043         alloc_msg->handle = entry->qp.handle;
1044         alloc_msg->peer = entry->qp.peer;
1045         alloc_msg->flags = entry->qp.flags;
1046         alloc_msg->produce_size = entry->qp.produce_size;
1047         alloc_msg->consume_size = entry->qp.consume_size;
1048         alloc_msg->num_ppns = entry->num_ppns;
1049
1050         result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1051                                      &entry->ppn_set);
1052         if (result == VMCI_SUCCESS)
1053                 result = vmci_send_datagram(&alloc_msg->hdr);
1054
1055         kfree(alloc_msg);
1056
1057         return result;
1058 }
1059
1060 /*
1061  * Helper to make a queue_pairDetach hypercall when the driver is
1062  * supporting a guest device.
1063  */
1064 static int qp_detatch_hypercall(struct vmci_handle handle)
1065 {
1066         struct vmci_qp_detach_msg detach_msg;
1067
1068         detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1069                                               VMCI_QUEUEPAIR_DETACH);
1070         detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1071         detach_msg.hdr.payload_size = sizeof(handle);
1072         detach_msg.handle = handle;
1073
1074         return vmci_send_datagram(&detach_msg.hdr);
1075 }
1076
1077 /*
1078  * Adds the given entry to the list. Assumes that the list is locked.
1079  */
1080 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1081 {
1082         if (entry)
1083                 list_add(&entry->list_item, &qp_list->head);
1084 }
1085
1086 /*
1087  * Removes the given entry from the list. Assumes that the list is locked.
1088  */
1089 static void qp_list_remove_entry(struct qp_list *qp_list,
1090                                  struct qp_entry *entry)
1091 {
1092         if (entry)
1093                 list_del(&entry->list_item);
1094 }
1095
1096 /*
1097  * Helper for VMCI queue_pair detach interface. Frees the physical
1098  * pages for the queue pair.
1099  */
1100 static int qp_detatch_guest_work(struct vmci_handle handle)
1101 {
1102         int result;
1103         struct qp_guest_endpoint *entry;
1104         u32 ref_count = ~0;     /* To avoid compiler warning below */
1105
1106         mutex_lock(&qp_guest_endpoints.mutex);
1107
1108         entry = qp_guest_handle_to_entry(handle);
1109         if (!entry) {
1110                 mutex_unlock(&qp_guest_endpoints.mutex);
1111                 return VMCI_ERROR_NOT_FOUND;
1112         }
1113
1114         if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1115                 result = VMCI_SUCCESS;
1116
1117                 if (entry->qp.ref_count > 1) {
1118                         result = qp_notify_peer_local(false, handle);
1119                         /*
1120                          * We can fail to notify a local queuepair
1121                          * because we can't allocate.  We still want
1122                          * to release the entry if that happens, so
1123                          * don't bail out yet.
1124                          */
1125                 }
1126         } else {
1127                 result = qp_detatch_hypercall(handle);
1128                 if (result < VMCI_SUCCESS) {
1129                         /*
1130                          * We failed to notify a non-local queuepair.
1131                          * That other queuepair might still be
1132                          * accessing the shared memory, so don't
1133                          * release the entry yet.  It will get cleaned
1134                          * up by VMCIqueue_pair_Exit() if necessary
1135                          * (assuming we are going away, otherwise why
1136                          * did this fail?).
1137                          */
1138
1139                         mutex_unlock(&qp_guest_endpoints.mutex);
1140                         return result;
1141                 }
1142         }
1143
1144         /*
1145          * If we get here then we either failed to notify a local queuepair, or
1146          * we succeeded in all cases.  Release the entry if required.
1147          */
1148
1149         entry->qp.ref_count--;
1150         if (entry->qp.ref_count == 0)
1151                 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1152
1153         /* If we didn't remove the entry, this could change once we unlock. */
1154         if (entry)
1155                 ref_count = entry->qp.ref_count;
1156
1157         mutex_unlock(&qp_guest_endpoints.mutex);
1158
1159         if (ref_count == 0)
1160                 qp_guest_endpoint_destroy(entry);
1161
1162         return result;
1163 }
1164
1165 /*
1166  * This functions handles the actual allocation of a VMCI queue
1167  * pair guest endpoint. Allocates physical pages for the queue
1168  * pair. It makes OS dependent calls through generic wrappers.
1169  */
1170 static int qp_alloc_guest_work(struct vmci_handle *handle,
1171                                struct vmci_queue **produce_q,
1172                                u64 produce_size,
1173                                struct vmci_queue **consume_q,
1174                                u64 consume_size,
1175                                u32 peer,
1176                                u32 flags,
1177                                u32 priv_flags)
1178 {
1179         const u64 num_produce_pages =
1180             DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1181         const u64 num_consume_pages =
1182             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1183         void *my_produce_q = NULL;
1184         void *my_consume_q = NULL;
1185         int result;
1186         struct qp_guest_endpoint *queue_pair_entry = NULL;
1187
1188         if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1189                 return VMCI_ERROR_NO_ACCESS;
1190
1191         mutex_lock(&qp_guest_endpoints.mutex);
1192
1193         queue_pair_entry = qp_guest_handle_to_entry(*handle);
1194         if (queue_pair_entry) {
1195                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1196                         /* Local attach case. */
1197                         if (queue_pair_entry->qp.ref_count > 1) {
1198                                 pr_devel("Error attempting to attach more than once\n");
1199                                 result = VMCI_ERROR_UNAVAILABLE;
1200                                 goto error_keep_entry;
1201                         }
1202
1203                         if (queue_pair_entry->qp.produce_size != consume_size ||
1204                             queue_pair_entry->qp.consume_size !=
1205                             produce_size ||
1206                             queue_pair_entry->qp.flags !=
1207                             (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1208                                 pr_devel("Error mismatched queue pair in local attach\n");
1209                                 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1210                                 goto error_keep_entry;
1211                         }
1212
1213                         /*
1214                          * Do a local attach.  We swap the consume and
1215                          * produce queues for the attacher and deliver
1216                          * an attach event.
1217                          */
1218                         result = qp_notify_peer_local(true, *handle);
1219                         if (result < VMCI_SUCCESS)
1220                                 goto error_keep_entry;
1221
1222                         my_produce_q = queue_pair_entry->consume_q;
1223                         my_consume_q = queue_pair_entry->produce_q;
1224                         goto out;
1225                 }
1226
1227                 result = VMCI_ERROR_ALREADY_EXISTS;
1228                 goto error_keep_entry;
1229         }
1230
1231         my_produce_q = qp_alloc_queue(produce_size, flags);
1232         if (!my_produce_q) {
1233                 pr_warn("Error allocating pages for produce queue\n");
1234                 result = VMCI_ERROR_NO_MEM;
1235                 goto error;
1236         }
1237
1238         my_consume_q = qp_alloc_queue(consume_size, flags);
1239         if (!my_consume_q) {
1240                 pr_warn("Error allocating pages for consume queue\n");
1241                 result = VMCI_ERROR_NO_MEM;
1242                 goto error;
1243         }
1244
1245         queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1246                                                     produce_size, consume_size,
1247                                                     my_produce_q, my_consume_q);
1248         if (!queue_pair_entry) {
1249                 pr_warn("Error allocating memory in %s\n", __func__);
1250                 result = VMCI_ERROR_NO_MEM;
1251                 goto error;
1252         }
1253
1254         result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1255                                   num_consume_pages,
1256                                   &queue_pair_entry->ppn_set);
1257         if (result < VMCI_SUCCESS) {
1258                 pr_warn("qp_alloc_ppn_set failed\n");
1259                 goto error;
1260         }
1261
1262         /*
1263          * It's only necessary to notify the host if this queue pair will be
1264          * attached to from another context.
1265          */
1266         if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1267                 /* Local create case. */
1268                 u32 context_id = vmci_get_context_id();
1269
1270                 /*
1271                  * Enforce similar checks on local queue pairs as we
1272                  * do for regular ones.  The handle's context must
1273                  * match the creator or attacher context id (here they
1274                  * are both the current context id) and the
1275                  * attach-only flag cannot exist during create.  We
1276                  * also ensure specified peer is this context or an
1277                  * invalid one.
1278                  */
1279                 if (queue_pair_entry->qp.handle.context != context_id ||
1280                     (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1281                      queue_pair_entry->qp.peer != context_id)) {
1282                         result = VMCI_ERROR_NO_ACCESS;
1283                         goto error;
1284                 }
1285
1286                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1287                         result = VMCI_ERROR_NOT_FOUND;
1288                         goto error;
1289                 }
1290         } else {
1291                 result = qp_alloc_hypercall(queue_pair_entry);
1292                 if (result < VMCI_SUCCESS) {
1293                         pr_warn("qp_alloc_hypercall result = %d\n", result);
1294                         goto error;
1295                 }
1296         }
1297
1298         qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1299                             (struct vmci_queue *)my_consume_q);
1300
1301         qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1302
1303  out:
1304         queue_pair_entry->qp.ref_count++;
1305         *handle = queue_pair_entry->qp.handle;
1306         *produce_q = (struct vmci_queue *)my_produce_q;
1307         *consume_q = (struct vmci_queue *)my_consume_q;
1308
1309         /*
1310          * We should initialize the queue pair header pages on a local
1311          * queue pair create.  For non-local queue pairs, the
1312          * hypervisor initializes the header pages in the create step.
1313          */
1314         if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1315             queue_pair_entry->qp.ref_count == 1) {
1316                 vmci_q_header_init((*produce_q)->q_header, *handle);
1317                 vmci_q_header_init((*consume_q)->q_header, *handle);
1318         }
1319
1320         mutex_unlock(&qp_guest_endpoints.mutex);
1321
1322         return VMCI_SUCCESS;
1323
1324  error:
1325         mutex_unlock(&qp_guest_endpoints.mutex);
1326         if (queue_pair_entry) {
1327                 /* The queues will be freed inside the destroy routine. */
1328                 qp_guest_endpoint_destroy(queue_pair_entry);
1329         } else {
1330                 qp_free_queue(my_produce_q, produce_size);
1331                 qp_free_queue(my_consume_q, consume_size);
1332         }
1333         return result;
1334
1335  error_keep_entry:
1336         /* This path should only be used when an existing entry was found. */
1337         mutex_unlock(&qp_guest_endpoints.mutex);
1338         return result;
1339 }
1340
1341 /*
1342  * The first endpoint issuing a queue pair allocation will create the state
1343  * of the queue pair in the queue pair broker.
1344  *
1345  * If the creator is a guest, it will associate a VMX virtual address range
1346  * with the queue pair as specified by the page_store. For compatibility with
1347  * older VMX'en, that would use a separate step to set the VMX virtual
1348  * address range, the virtual address range can be registered later using
1349  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1350  * used.
1351  *
1352  * If the creator is the host, a page_store of NULL should be used as well,
1353  * since the host is not able to supply a page store for the queue pair.
1354  *
1355  * For older VMX and host callers, the queue pair will be created in the
1356  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1357  * created in VMCOQPB_CREATED_MEM state.
1358  */
1359 static int qp_broker_create(struct vmci_handle handle,
1360                             u32 peer,
1361                             u32 flags,
1362                             u32 priv_flags,
1363                             u64 produce_size,
1364                             u64 consume_size,
1365                             struct vmci_qp_page_store *page_store,
1366                             struct vmci_ctx *context,
1367                             vmci_event_release_cb wakeup_cb,
1368                             void *client_data, struct qp_broker_entry **ent)
1369 {
1370         struct qp_broker_entry *entry = NULL;
1371         const u32 context_id = vmci_ctx_get_id(context);
1372         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1373         int result;
1374         u64 guest_produce_size;
1375         u64 guest_consume_size;
1376
1377         /* Do not create if the caller asked not to. */
1378         if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1379                 return VMCI_ERROR_NOT_FOUND;
1380
1381         /*
1382          * Creator's context ID should match handle's context ID or the creator
1383          * must allow the context in handle's context ID as the "peer".
1384          */
1385         if (handle.context != context_id && handle.context != peer)
1386                 return VMCI_ERROR_NO_ACCESS;
1387
1388         if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1389                 return VMCI_ERROR_DST_UNREACHABLE;
1390
1391         /*
1392          * Creator's context ID for local queue pairs should match the
1393          * peer, if a peer is specified.
1394          */
1395         if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1396                 return VMCI_ERROR_NO_ACCESS;
1397
1398         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1399         if (!entry)
1400                 return VMCI_ERROR_NO_MEM;
1401
1402         if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1403                 /*
1404                  * The queue pair broker entry stores values from the guest
1405                  * point of view, so a creating host side endpoint should swap
1406                  * produce and consume values -- unless it is a local queue
1407                  * pair, in which case no swapping is necessary, since the local
1408                  * attacher will swap queues.
1409                  */
1410
1411                 guest_produce_size = consume_size;
1412                 guest_consume_size = produce_size;
1413         } else {
1414                 guest_produce_size = produce_size;
1415                 guest_consume_size = consume_size;
1416         }
1417
1418         entry->qp.handle = handle;
1419         entry->qp.peer = peer;
1420         entry->qp.flags = flags;
1421         entry->qp.produce_size = guest_produce_size;
1422         entry->qp.consume_size = guest_consume_size;
1423         entry->qp.ref_count = 1;
1424         entry->create_id = context_id;
1425         entry->attach_id = VMCI_INVALID_ID;
1426         entry->state = VMCIQPB_NEW;
1427         entry->require_trusted_attach =
1428             !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1429         entry->created_by_trusted =
1430             !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1431         entry->vmci_page_files = false;
1432         entry->wakeup_cb = wakeup_cb;
1433         entry->client_data = client_data;
1434         entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1435         if (entry->produce_q == NULL) {
1436                 result = VMCI_ERROR_NO_MEM;
1437                 goto error;
1438         }
1439         entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1440         if (entry->consume_q == NULL) {
1441                 result = VMCI_ERROR_NO_MEM;
1442                 goto error;
1443         }
1444
1445         qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1446
1447         INIT_LIST_HEAD(&entry->qp.list_item);
1448
1449         if (is_local) {
1450                 u8 *tmp;
1451
1452                 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1453                                            PAGE_SIZE, GFP_KERNEL);
1454                 if (entry->local_mem == NULL) {
1455                         result = VMCI_ERROR_NO_MEM;
1456                         goto error;
1457                 }
1458                 entry->state = VMCIQPB_CREATED_MEM;
1459                 entry->produce_q->q_header = entry->local_mem;
1460                 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1461                     (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1462                 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1463         } else if (page_store) {
1464                 /*
1465                  * The VMX already initialized the queue pair headers, so no
1466                  * need for the kernel side to do that.
1467                  */
1468                 result = qp_host_register_user_memory(page_store,
1469                                                       entry->produce_q,
1470                                                       entry->consume_q);
1471                 if (result < VMCI_SUCCESS)
1472                         goto error;
1473
1474                 entry->state = VMCIQPB_CREATED_MEM;
1475         } else {
1476                 /*
1477                  * A create without a page_store may be either a host
1478                  * side create (in which case we are waiting for the
1479                  * guest side to supply the memory) or an old style
1480                  * queue pair create (in which case we will expect a
1481                  * set page store call as the next step).
1482                  */
1483                 entry->state = VMCIQPB_CREATED_NO_MEM;
1484         }
1485
1486         qp_list_add_entry(&qp_broker_list, &entry->qp);
1487         if (ent != NULL)
1488                 *ent = entry;
1489
1490         /* Add to resource obj */
1491         result = vmci_resource_add(&entry->resource,
1492                                    VMCI_RESOURCE_TYPE_QPAIR_HOST,
1493                                    handle);
1494         if (result != VMCI_SUCCESS) {
1495                 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1496                         handle.context, handle.resource, result);
1497                 goto error;
1498         }
1499
1500         entry->qp.handle = vmci_resource_handle(&entry->resource);
1501         if (is_local) {
1502                 vmci_q_header_init(entry->produce_q->q_header,
1503                                    entry->qp.handle);
1504                 vmci_q_header_init(entry->consume_q->q_header,
1505                                    entry->qp.handle);
1506         }
1507
1508         vmci_ctx_qp_create(context, entry->qp.handle);
1509
1510         return VMCI_SUCCESS;
1511
1512  error:
1513         if (entry != NULL) {
1514                 qp_host_free_queue(entry->produce_q, guest_produce_size);
1515                 qp_host_free_queue(entry->consume_q, guest_consume_size);
1516                 kfree(entry);
1517         }
1518
1519         return result;
1520 }
1521
1522 /*
1523  * Enqueues an event datagram to notify the peer VM attached to
1524  * the given queue pair handle about attach/detach event by the
1525  * given VM.  Returns Payload size of datagram enqueued on
1526  * success, error code otherwise.
1527  */
1528 static int qp_notify_peer(bool attach,
1529                           struct vmci_handle handle,
1530                           u32 my_id,
1531                           u32 peer_id)
1532 {
1533         int rv;
1534         struct vmci_event_qp ev;
1535
1536         if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1537             peer_id == VMCI_INVALID_ID)
1538                 return VMCI_ERROR_INVALID_ARGS;
1539
1540         /*
1541          * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1542          * number of pending events from the hypervisor to a given VM
1543          * otherwise a rogue VM could do an arbitrary number of attach
1544          * and detach operations causing memory pressure in the host
1545          * kernel.
1546          */
1547
1548         ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1549         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1550                                           VMCI_CONTEXT_RESOURCE_ID);
1551         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1552         ev.msg.event_data.event = attach ?
1553             VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1554         ev.payload.handle = handle;
1555         ev.payload.peer_id = my_id;
1556
1557         rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1558                                     &ev.msg.hdr, false);
1559         if (rv < VMCI_SUCCESS)
1560                 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1561                         attach ? "ATTACH" : "DETACH", peer_id);
1562
1563         return rv;
1564 }
1565
1566 /*
1567  * The second endpoint issuing a queue pair allocation will attach to
1568  * the queue pair registered with the queue pair broker.
1569  *
1570  * If the attacher is a guest, it will associate a VMX virtual address
1571  * range with the queue pair as specified by the page_store. At this
1572  * point, the already attach host endpoint may start using the queue
1573  * pair, and an attach event is sent to it. For compatibility with
1574  * older VMX'en, that used a separate step to set the VMX virtual
1575  * address range, the virtual address range can be registered later
1576  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1577  * NULL should be used, and the attach event will be generated once
1578  * the actual page store has been set.
1579  *
1580  * If the attacher is the host, a page_store of NULL should be used as
1581  * well, since the page store information is already set by the guest.
1582  *
1583  * For new VMX and host callers, the queue pair will be moved to the
1584  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1585  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1586  */
1587 static int qp_broker_attach(struct qp_broker_entry *entry,
1588                             u32 peer,
1589                             u32 flags,
1590                             u32 priv_flags,
1591                             u64 produce_size,
1592                             u64 consume_size,
1593                             struct vmci_qp_page_store *page_store,
1594                             struct vmci_ctx *context,
1595                             vmci_event_release_cb wakeup_cb,
1596                             void *client_data,
1597                             struct qp_broker_entry **ent)
1598 {
1599         const u32 context_id = vmci_ctx_get_id(context);
1600         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1601         int result;
1602
1603         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1604             entry->state != VMCIQPB_CREATED_MEM)
1605                 return VMCI_ERROR_UNAVAILABLE;
1606
1607         if (is_local) {
1608                 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1609                     context_id != entry->create_id) {
1610                         return VMCI_ERROR_INVALID_ARGS;
1611                 }
1612         } else if (context_id == entry->create_id ||
1613                    context_id == entry->attach_id) {
1614                 return VMCI_ERROR_ALREADY_EXISTS;
1615         }
1616
1617         if (VMCI_CONTEXT_IS_VM(context_id) &&
1618             VMCI_CONTEXT_IS_VM(entry->create_id))
1619                 return VMCI_ERROR_DST_UNREACHABLE;
1620
1621         /*
1622          * If we are attaching from a restricted context then the queuepair
1623          * must have been created by a trusted endpoint.
1624          */
1625         if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1626             !entry->created_by_trusted)
1627                 return VMCI_ERROR_NO_ACCESS;
1628
1629         /*
1630          * If we are attaching to a queuepair that was created by a restricted
1631          * context then we must be trusted.
1632          */
1633         if (entry->require_trusted_attach &&
1634             (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1635                 return VMCI_ERROR_NO_ACCESS;
1636
1637         /*
1638          * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1639          * control check is not performed.
1640          */
1641         if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1642                 return VMCI_ERROR_NO_ACCESS;
1643
1644         if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1645                 /*
1646                  * Do not attach if the caller doesn't support Host Queue Pairs
1647                  * and a host created this queue pair.
1648                  */
1649
1650                 if (!vmci_ctx_supports_host_qp(context))
1651                         return VMCI_ERROR_INVALID_RESOURCE;
1652
1653         } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1654                 struct vmci_ctx *create_context;
1655                 bool supports_host_qp;
1656
1657                 /*
1658                  * Do not attach a host to a user created queue pair if that
1659                  * user doesn't support host queue pair end points.
1660                  */
1661
1662                 create_context = vmci_ctx_get(entry->create_id);
1663                 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1664                 vmci_ctx_put(create_context);
1665
1666                 if (!supports_host_qp)
1667                         return VMCI_ERROR_INVALID_RESOURCE;
1668         }
1669
1670         if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1671                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1672
1673         if (context_id != VMCI_HOST_CONTEXT_ID) {
1674                 /*
1675                  * The queue pair broker entry stores values from the guest
1676                  * point of view, so an attaching guest should match the values
1677                  * stored in the entry.
1678                  */
1679
1680                 if (entry->qp.produce_size != produce_size ||
1681                     entry->qp.consume_size != consume_size) {
1682                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1683                 }
1684         } else if (entry->qp.produce_size != consume_size ||
1685                    entry->qp.consume_size != produce_size) {
1686                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1687         }
1688
1689         if (context_id != VMCI_HOST_CONTEXT_ID) {
1690                 /*
1691                  * If a guest attached to a queue pair, it will supply
1692                  * the backing memory.  If this is a pre NOVMVM vmx,
1693                  * the backing memory will be supplied by calling
1694                  * vmci_qp_broker_set_page_store() following the
1695                  * return of the vmci_qp_broker_alloc() call. If it is
1696                  * a vmx of version NOVMVM or later, the page store
1697                  * must be supplied as part of the
1698                  * vmci_qp_broker_alloc call.  Under all circumstances
1699                  * must the initially created queue pair not have any
1700                  * memory associated with it already.
1701                  */
1702
1703                 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1704                         return VMCI_ERROR_INVALID_ARGS;
1705
1706                 if (page_store != NULL) {
1707                         /*
1708                          * Patch up host state to point to guest
1709                          * supplied memory. The VMX already
1710                          * initialized the queue pair headers, so no
1711                          * need for the kernel side to do that.
1712                          */
1713
1714                         result = qp_host_register_user_memory(page_store,
1715                                                               entry->produce_q,
1716                                                               entry->consume_q);
1717                         if (result < VMCI_SUCCESS)
1718                                 return result;
1719
1720                         entry->state = VMCIQPB_ATTACHED_MEM;
1721                 } else {
1722                         entry->state = VMCIQPB_ATTACHED_NO_MEM;
1723                 }
1724         } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1725                 /*
1726                  * The host side is attempting to attach to a queue
1727                  * pair that doesn't have any memory associated with
1728                  * it. This must be a pre NOVMVM vmx that hasn't set
1729                  * the page store information yet, or a quiesced VM.
1730                  */
1731
1732                 return VMCI_ERROR_UNAVAILABLE;
1733         } else {
1734                 /* The host side has successfully attached to a queue pair. */
1735                 entry->state = VMCIQPB_ATTACHED_MEM;
1736         }
1737
1738         if (entry->state == VMCIQPB_ATTACHED_MEM) {
1739                 result =
1740                     qp_notify_peer(true, entry->qp.handle, context_id,
1741                                    entry->create_id);
1742                 if (result < VMCI_SUCCESS)
1743                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1744                                 entry->create_id, entry->qp.handle.context,
1745                                 entry->qp.handle.resource);
1746         }
1747
1748         entry->attach_id = context_id;
1749         entry->qp.ref_count++;
1750         if (wakeup_cb) {
1751                 entry->wakeup_cb = wakeup_cb;
1752                 entry->client_data = client_data;
1753         }
1754
1755         /*
1756          * When attaching to local queue pairs, the context already has
1757          * an entry tracking the queue pair, so don't add another one.
1758          */
1759         if (!is_local)
1760                 vmci_ctx_qp_create(context, entry->qp.handle);
1761
1762         if (ent != NULL)
1763                 *ent = entry;
1764
1765         return VMCI_SUCCESS;
1766 }
1767
1768 /*
1769  * queue_pair_Alloc for use when setting up queue pair endpoints
1770  * on the host.
1771  */
1772 static int qp_broker_alloc(struct vmci_handle handle,
1773                            u32 peer,
1774                            u32 flags,
1775                            u32 priv_flags,
1776                            u64 produce_size,
1777                            u64 consume_size,
1778                            struct vmci_qp_page_store *page_store,
1779                            struct vmci_ctx *context,
1780                            vmci_event_release_cb wakeup_cb,
1781                            void *client_data,
1782                            struct qp_broker_entry **ent,
1783                            bool *swap)
1784 {
1785         const u32 context_id = vmci_ctx_get_id(context);
1786         bool create;
1787         struct qp_broker_entry *entry = NULL;
1788         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1789         int result;
1790
1791         if (vmci_handle_is_invalid(handle) ||
1792             (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1793             !(produce_size || consume_size) ||
1794             !context || context_id == VMCI_INVALID_ID ||
1795             handle.context == VMCI_INVALID_ID) {
1796                 return VMCI_ERROR_INVALID_ARGS;
1797         }
1798
1799         if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1800                 return VMCI_ERROR_INVALID_ARGS;
1801
1802         /*
1803          * In the initial argument check, we ensure that non-vmkernel hosts
1804          * are not allowed to create local queue pairs.
1805          */
1806
1807         mutex_lock(&qp_broker_list.mutex);
1808
1809         if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1810                 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1811                          context_id, handle.context, handle.resource);
1812                 mutex_unlock(&qp_broker_list.mutex);
1813                 return VMCI_ERROR_ALREADY_EXISTS;
1814         }
1815
1816         if (handle.resource != VMCI_INVALID_ID)
1817                 entry = qp_broker_handle_to_entry(handle);
1818
1819         if (!entry) {
1820                 create = true;
1821                 result =
1822                     qp_broker_create(handle, peer, flags, priv_flags,
1823                                      produce_size, consume_size, page_store,
1824                                      context, wakeup_cb, client_data, ent);
1825         } else {
1826                 create = false;
1827                 result =
1828                     qp_broker_attach(entry, peer, flags, priv_flags,
1829                                      produce_size, consume_size, page_store,
1830                                      context, wakeup_cb, client_data, ent);
1831         }
1832
1833         mutex_unlock(&qp_broker_list.mutex);
1834
1835         if (swap)
1836                 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1837                     !(create && is_local);
1838
1839         return result;
1840 }
1841
1842 /*
1843  * This function implements the kernel API for allocating a queue
1844  * pair.
1845  */
1846 static int qp_alloc_host_work(struct vmci_handle *handle,
1847                               struct vmci_queue **produce_q,
1848                               u64 produce_size,
1849                               struct vmci_queue **consume_q,
1850                               u64 consume_size,
1851                               u32 peer,
1852                               u32 flags,
1853                               u32 priv_flags,
1854                               vmci_event_release_cb wakeup_cb,
1855                               void *client_data)
1856 {
1857         struct vmci_handle new_handle;
1858         struct vmci_ctx *context;
1859         struct qp_broker_entry *entry;
1860         int result;
1861         bool swap;
1862
1863         if (vmci_handle_is_invalid(*handle)) {
1864                 new_handle = vmci_make_handle(
1865                         VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1866         } else
1867                 new_handle = *handle;
1868
1869         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1870         entry = NULL;
1871         result =
1872             qp_broker_alloc(new_handle, peer, flags, priv_flags,
1873                             produce_size, consume_size, NULL, context,
1874                             wakeup_cb, client_data, &entry, &swap);
1875         if (result == VMCI_SUCCESS) {
1876                 if (swap) {
1877                         /*
1878                          * If this is a local queue pair, the attacher
1879                          * will swap around produce and consume
1880                          * queues.
1881                          */
1882
1883                         *produce_q = entry->consume_q;
1884                         *consume_q = entry->produce_q;
1885                 } else {
1886                         *produce_q = entry->produce_q;
1887                         *consume_q = entry->consume_q;
1888                 }
1889
1890                 *handle = vmci_resource_handle(&entry->resource);
1891         } else {
1892                 *handle = VMCI_INVALID_HANDLE;
1893                 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1894                          result);
1895         }
1896         vmci_ctx_put(context);
1897         return result;
1898 }
1899
1900 /*
1901  * Allocates a VMCI queue_pair. Only checks validity of input
1902  * arguments. The real work is done in the host or guest
1903  * specific function.
1904  */
1905 int vmci_qp_alloc(struct vmci_handle *handle,
1906                   struct vmci_queue **produce_q,
1907                   u64 produce_size,
1908                   struct vmci_queue **consume_q,
1909                   u64 consume_size,
1910                   u32 peer,
1911                   u32 flags,
1912                   u32 priv_flags,
1913                   bool guest_endpoint,
1914                   vmci_event_release_cb wakeup_cb,
1915                   void *client_data)
1916 {
1917         if (!handle || !produce_q || !consume_q ||
1918             (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1919                 return VMCI_ERROR_INVALID_ARGS;
1920
1921         if (guest_endpoint) {
1922                 return qp_alloc_guest_work(handle, produce_q,
1923                                            produce_size, consume_q,
1924                                            consume_size, peer,
1925                                            flags, priv_flags);
1926         } else {
1927                 return qp_alloc_host_work(handle, produce_q,
1928                                           produce_size, consume_q,
1929                                           consume_size, peer, flags,
1930                                           priv_flags, wakeup_cb, client_data);
1931         }
1932 }
1933
1934 /*
1935  * This function implements the host kernel API for detaching from
1936  * a queue pair.
1937  */
1938 static int qp_detatch_host_work(struct vmci_handle handle)
1939 {
1940         int result;
1941         struct vmci_ctx *context;
1942
1943         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1944
1945         result = vmci_qp_broker_detach(handle, context);
1946
1947         vmci_ctx_put(context);
1948         return result;
1949 }
1950
1951 /*
1952  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1953  * Real work is done in the host or guest specific function.
1954  */
1955 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1956 {
1957         if (vmci_handle_is_invalid(handle))
1958                 return VMCI_ERROR_INVALID_ARGS;
1959
1960         if (guest_endpoint)
1961                 return qp_detatch_guest_work(handle);
1962         else
1963                 return qp_detatch_host_work(handle);
1964 }
1965
1966 /*
1967  * Returns the entry from the head of the list. Assumes that the list is
1968  * locked.
1969  */
1970 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1971 {
1972         if (!list_empty(&qp_list->head)) {
1973                 struct qp_entry *entry =
1974                     list_first_entry(&qp_list->head, struct qp_entry,
1975                                      list_item);
1976                 return entry;
1977         }
1978
1979         return NULL;
1980 }
1981
1982 void vmci_qp_broker_exit(void)
1983 {
1984         struct qp_entry *entry;
1985         struct qp_broker_entry *be;
1986
1987         mutex_lock(&qp_broker_list.mutex);
1988
1989         while ((entry = qp_list_get_head(&qp_broker_list))) {
1990                 be = (struct qp_broker_entry *)entry;
1991
1992                 qp_list_remove_entry(&qp_broker_list, entry);
1993                 kfree(be);
1994         }
1995
1996         mutex_unlock(&qp_broker_list.mutex);
1997 }
1998
1999 /*
2000  * Requests that a queue pair be allocated with the VMCI queue
2001  * pair broker. Allocates a queue pair entry if one does not
2002  * exist. Attaches to one if it exists, and retrieves the page
2003  * files backing that queue_pair.  Assumes that the queue pair
2004  * broker lock is held.
2005  */
2006 int vmci_qp_broker_alloc(struct vmci_handle handle,
2007                          u32 peer,
2008                          u32 flags,
2009                          u32 priv_flags,
2010                          u64 produce_size,
2011                          u64 consume_size,
2012                          struct vmci_qp_page_store *page_store,
2013                          struct vmci_ctx *context)
2014 {
2015         return qp_broker_alloc(handle, peer, flags, priv_flags,
2016                                produce_size, consume_size,
2017                                page_store, context, NULL, NULL, NULL, NULL);
2018 }
2019
2020 /*
2021  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2022  * step to add the UVAs of the VMX mapping of the queue pair. This function
2023  * provides backwards compatibility with such VMX'en, and takes care of
2024  * registering the page store for a queue pair previously allocated by the
2025  * VMX during create or attach. This function will move the queue pair state
2026  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2027  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2028  * attached state with memory, the queue pair is ready to be used by the
2029  * host peer, and an attached event will be generated.
2030  *
2031  * Assumes that the queue pair broker lock is held.
2032  *
2033  * This function is only used by the hosted platform, since there is no
2034  * issue with backwards compatibility for vmkernel.
2035  */
2036 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2037                                   u64 produce_uva,
2038                                   u64 consume_uva,
2039                                   struct vmci_ctx *context)
2040 {
2041         struct qp_broker_entry *entry;
2042         int result;
2043         const u32 context_id = vmci_ctx_get_id(context);
2044
2045         if (vmci_handle_is_invalid(handle) || !context ||
2046             context_id == VMCI_INVALID_ID)
2047                 return VMCI_ERROR_INVALID_ARGS;
2048
2049         /*
2050          * We only support guest to host queue pairs, so the VMX must
2051          * supply UVAs for the mapped page files.
2052          */
2053
2054         if (produce_uva == 0 || consume_uva == 0)
2055                 return VMCI_ERROR_INVALID_ARGS;
2056
2057         mutex_lock(&qp_broker_list.mutex);
2058
2059         if (!vmci_ctx_qp_exists(context, handle)) {
2060                 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2061                         context_id, handle.context, handle.resource);
2062                 result = VMCI_ERROR_NOT_FOUND;
2063                 goto out;
2064         }
2065
2066         entry = qp_broker_handle_to_entry(handle);
2067         if (!entry) {
2068                 result = VMCI_ERROR_NOT_FOUND;
2069                 goto out;
2070         }
2071
2072         /*
2073          * If I'm the owner then I can set the page store.
2074          *
2075          * Or, if a host created the queue_pair and I'm the attached peer
2076          * then I can set the page store.
2077          */
2078         if (entry->create_id != context_id &&
2079             (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2080              entry->attach_id != context_id)) {
2081                 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2082                 goto out;
2083         }
2084
2085         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2086             entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2087                 result = VMCI_ERROR_UNAVAILABLE;
2088                 goto out;
2089         }
2090
2091         result = qp_host_get_user_memory(produce_uva, consume_uva,
2092                                          entry->produce_q, entry->consume_q);
2093         if (result < VMCI_SUCCESS)
2094                 goto out;
2095
2096         result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2097         if (result < VMCI_SUCCESS) {
2098                 qp_host_unregister_user_memory(entry->produce_q,
2099                                                entry->consume_q);
2100                 goto out;
2101         }
2102
2103         if (entry->state == VMCIQPB_CREATED_NO_MEM)
2104                 entry->state = VMCIQPB_CREATED_MEM;
2105         else
2106                 entry->state = VMCIQPB_ATTACHED_MEM;
2107
2108         entry->vmci_page_files = true;
2109
2110         if (entry->state == VMCIQPB_ATTACHED_MEM) {
2111                 result =
2112                     qp_notify_peer(true, handle, context_id, entry->create_id);
2113                 if (result < VMCI_SUCCESS) {
2114                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2115                                 entry->create_id, entry->qp.handle.context,
2116                                 entry->qp.handle.resource);
2117                 }
2118         }
2119
2120         result = VMCI_SUCCESS;
2121  out:
2122         mutex_unlock(&qp_broker_list.mutex);
2123         return result;
2124 }
2125
2126 /*
2127  * Resets saved queue headers for the given QP broker
2128  * entry. Should be used when guest memory becomes available
2129  * again, or the guest detaches.
2130  */
2131 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2132 {
2133         entry->produce_q->saved_header = NULL;
2134         entry->consume_q->saved_header = NULL;
2135 }
2136
2137 /*
2138  * The main entry point for detaching from a queue pair registered with the
2139  * queue pair broker. If more than one endpoint is attached to the queue
2140  * pair, the first endpoint will mainly decrement a reference count and
2141  * generate a notification to its peer. The last endpoint will clean up
2142  * the queue pair state registered with the broker.
2143  *
2144  * When a guest endpoint detaches, it will unmap and unregister the guest
2145  * memory backing the queue pair. If the host is still attached, it will
2146  * no longer be able to access the queue pair content.
2147  *
2148  * If the queue pair is already in a state where there is no memory
2149  * registered for the queue pair (any *_NO_MEM state), it will transition to
2150  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2151  * endpoint is the first of two endpoints to detach. If the host endpoint is
2152  * the first out of two to detach, the queue pair will move to the
2153  * VMCIQPB_SHUTDOWN_MEM state.
2154  */
2155 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2156 {
2157         struct qp_broker_entry *entry;
2158         const u32 context_id = vmci_ctx_get_id(context);
2159         u32 peer_id;
2160         bool is_local = false;
2161         int result;
2162
2163         if (vmci_handle_is_invalid(handle) || !context ||
2164             context_id == VMCI_INVALID_ID) {
2165                 return VMCI_ERROR_INVALID_ARGS;
2166         }
2167
2168         mutex_lock(&qp_broker_list.mutex);
2169
2170         if (!vmci_ctx_qp_exists(context, handle)) {
2171                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2172                          context_id, handle.context, handle.resource);
2173                 result = VMCI_ERROR_NOT_FOUND;
2174                 goto out;
2175         }
2176
2177         entry = qp_broker_handle_to_entry(handle);
2178         if (!entry) {
2179                 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2180                          context_id, handle.context, handle.resource);
2181                 result = VMCI_ERROR_NOT_FOUND;
2182                 goto out;
2183         }
2184
2185         if (context_id != entry->create_id && context_id != entry->attach_id) {
2186                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2187                 goto out;
2188         }
2189
2190         if (context_id == entry->create_id) {
2191                 peer_id = entry->attach_id;
2192                 entry->create_id = VMCI_INVALID_ID;
2193         } else {
2194                 peer_id = entry->create_id;
2195                 entry->attach_id = VMCI_INVALID_ID;
2196         }
2197         entry->qp.ref_count--;
2198
2199         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2200
2201         if (context_id != VMCI_HOST_CONTEXT_ID) {
2202                 bool headers_mapped;
2203
2204                 /*
2205                  * Pre NOVMVM vmx'en may detach from a queue pair
2206                  * before setting the page store, and in that case
2207                  * there is no user memory to detach from. Also, more
2208                  * recent VMX'en may detach from a queue pair in the
2209                  * quiesced state.
2210                  */
2211
2212                 qp_acquire_queue_mutex(entry->produce_q);
2213                 headers_mapped = entry->produce_q->q_header ||
2214                     entry->consume_q->q_header;
2215                 if (QPBROKERSTATE_HAS_MEM(entry)) {
2216                         result =
2217                             qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2218                                                  entry->produce_q,
2219                                                  entry->consume_q);
2220                         if (result < VMCI_SUCCESS)
2221                                 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2222                                         handle.context, handle.resource,
2223                                         result);
2224
2225                         if (entry->vmci_page_files)
2226                                 qp_host_unregister_user_memory(entry->produce_q,
2227                                                                entry->
2228                                                                consume_q);
2229                         else
2230                                 qp_host_unregister_user_memory(entry->produce_q,
2231                                                                entry->
2232                                                                consume_q);
2233
2234                 }
2235
2236                 if (!headers_mapped)
2237                         qp_reset_saved_headers(entry);
2238
2239                 qp_release_queue_mutex(entry->produce_q);
2240
2241                 if (!headers_mapped && entry->wakeup_cb)
2242                         entry->wakeup_cb(entry->client_data);
2243
2244         } else {
2245                 if (entry->wakeup_cb) {
2246                         entry->wakeup_cb = NULL;
2247                         entry->client_data = NULL;
2248                 }
2249         }
2250
2251         if (entry->qp.ref_count == 0) {
2252                 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2253
2254                 if (is_local)
2255                         kfree(entry->local_mem);
2256
2257                 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2258                 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2259                 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2260                 /* Unlink from resource hash table and free callback */
2261                 vmci_resource_remove(&entry->resource);
2262
2263                 kfree(entry);
2264
2265                 vmci_ctx_qp_destroy(context, handle);
2266         } else {
2267                 qp_notify_peer(false, handle, context_id, peer_id);
2268                 if (context_id == VMCI_HOST_CONTEXT_ID &&
2269                     QPBROKERSTATE_HAS_MEM(entry)) {
2270                         entry->state = VMCIQPB_SHUTDOWN_MEM;
2271                 } else {
2272                         entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2273                 }
2274
2275                 if (!is_local)
2276                         vmci_ctx_qp_destroy(context, handle);
2277
2278         }
2279         result = VMCI_SUCCESS;
2280  out:
2281         mutex_unlock(&qp_broker_list.mutex);
2282         return result;
2283 }
2284
2285 /*
2286  * Establishes the necessary mappings for a queue pair given a
2287  * reference to the queue pair guest memory. This is usually
2288  * called when a guest is unquiesced and the VMX is allowed to
2289  * map guest memory once again.
2290  */
2291 int vmci_qp_broker_map(struct vmci_handle handle,
2292                        struct vmci_ctx *context,
2293                        u64 guest_mem)
2294 {
2295         struct qp_broker_entry *entry;
2296         const u32 context_id = vmci_ctx_get_id(context);
2297         bool is_local = false;
2298         int result;
2299
2300         if (vmci_handle_is_invalid(handle) || !context ||
2301             context_id == VMCI_INVALID_ID)
2302                 return VMCI_ERROR_INVALID_ARGS;
2303
2304         mutex_lock(&qp_broker_list.mutex);
2305
2306         if (!vmci_ctx_qp_exists(context, handle)) {
2307                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2308                          context_id, handle.context, handle.resource);
2309                 result = VMCI_ERROR_NOT_FOUND;
2310                 goto out;
2311         }
2312
2313         entry = qp_broker_handle_to_entry(handle);
2314         if (!entry) {
2315                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2316                          context_id, handle.context, handle.resource);
2317                 result = VMCI_ERROR_NOT_FOUND;
2318                 goto out;
2319         }
2320
2321         if (context_id != entry->create_id && context_id != entry->attach_id) {
2322                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2323                 goto out;
2324         }
2325
2326         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2327         result = VMCI_SUCCESS;
2328
2329         if (context_id != VMCI_HOST_CONTEXT_ID) {
2330                 struct vmci_qp_page_store page_store;
2331
2332                 page_store.pages = guest_mem;
2333                 page_store.len = QPE_NUM_PAGES(entry->qp);
2334
2335                 qp_acquire_queue_mutex(entry->produce_q);
2336                 qp_reset_saved_headers(entry);
2337                 result =
2338                     qp_host_register_user_memory(&page_store,
2339                                                  entry->produce_q,
2340                                                  entry->consume_q);
2341                 qp_release_queue_mutex(entry->produce_q);
2342                 if (result == VMCI_SUCCESS) {
2343                         /* Move state from *_NO_MEM to *_MEM */
2344
2345                         entry->state++;
2346
2347                         if (entry->wakeup_cb)
2348                                 entry->wakeup_cb(entry->client_data);
2349                 }
2350         }
2351
2352  out:
2353         mutex_unlock(&qp_broker_list.mutex);
2354         return result;
2355 }
2356
2357 /*
2358  * Saves a snapshot of the queue headers for the given QP broker
2359  * entry. Should be used when guest memory is unmapped.
2360  * Results:
2361  * VMCI_SUCCESS on success, appropriate error code if guest memory
2362  * can't be accessed..
2363  */
2364 static int qp_save_headers(struct qp_broker_entry *entry)
2365 {
2366         int result;
2367
2368         if (entry->produce_q->saved_header != NULL &&
2369             entry->consume_q->saved_header != NULL) {
2370                 /*
2371                  *  If the headers have already been saved, we don't need to do
2372                  *  it again, and we don't want to map in the headers
2373                  *  unnecessarily.
2374                  */
2375
2376                 return VMCI_SUCCESS;
2377         }
2378
2379         if (NULL == entry->produce_q->q_header ||
2380             NULL == entry->consume_q->q_header) {
2381                 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2382                 if (result < VMCI_SUCCESS)
2383                         return result;
2384         }
2385
2386         memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2387                sizeof(entry->saved_produce_q));
2388         entry->produce_q->saved_header = &entry->saved_produce_q;
2389         memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2390                sizeof(entry->saved_consume_q));
2391         entry->consume_q->saved_header = &entry->saved_consume_q;
2392
2393         return VMCI_SUCCESS;
2394 }
2395
2396 /*
2397  * Removes all references to the guest memory of a given queue pair, and
2398  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2399  * called when a VM is being quiesced where access to guest memory should
2400  * avoided.
2401  */
2402 int vmci_qp_broker_unmap(struct vmci_handle handle,
2403                          struct vmci_ctx *context,
2404                          u32 gid)
2405 {
2406         struct qp_broker_entry *entry;
2407         const u32 context_id = vmci_ctx_get_id(context);
2408         bool is_local = false;
2409         int result;
2410
2411         if (vmci_handle_is_invalid(handle) || !context ||
2412             context_id == VMCI_INVALID_ID)
2413                 return VMCI_ERROR_INVALID_ARGS;
2414
2415         mutex_lock(&qp_broker_list.mutex);
2416
2417         if (!vmci_ctx_qp_exists(context, handle)) {
2418                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2419                          context_id, handle.context, handle.resource);
2420                 result = VMCI_ERROR_NOT_FOUND;
2421                 goto out;
2422         }
2423
2424         entry = qp_broker_handle_to_entry(handle);
2425         if (!entry) {
2426                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2427                          context_id, handle.context, handle.resource);
2428                 result = VMCI_ERROR_NOT_FOUND;
2429                 goto out;
2430         }
2431
2432         if (context_id != entry->create_id && context_id != entry->attach_id) {
2433                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2434                 goto out;
2435         }
2436
2437         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2438
2439         if (context_id != VMCI_HOST_CONTEXT_ID) {
2440                 qp_acquire_queue_mutex(entry->produce_q);
2441                 result = qp_save_headers(entry);
2442                 if (result < VMCI_SUCCESS)
2443                         pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2444                                 handle.context, handle.resource, result);
2445
2446                 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2447
2448                 /*
2449                  * On hosted, when we unmap queue pairs, the VMX will also
2450                  * unmap the guest memory, so we invalidate the previously
2451                  * registered memory. If the queue pair is mapped again at a
2452                  * later point in time, we will need to reregister the user
2453                  * memory with a possibly new user VA.
2454                  */
2455                 qp_host_unregister_user_memory(entry->produce_q,
2456                                                entry->consume_q);
2457
2458                 /*
2459                  * Move state from *_MEM to *_NO_MEM.
2460                  */
2461                 entry->state--;
2462
2463                 qp_release_queue_mutex(entry->produce_q);
2464         }
2465
2466         result = VMCI_SUCCESS;
2467
2468  out:
2469         mutex_unlock(&qp_broker_list.mutex);
2470         return result;
2471 }
2472
2473 /*
2474  * Destroys all guest queue pair endpoints. If active guest queue
2475  * pairs still exist, hypercalls to attempt detach from these
2476  * queue pairs will be made. Any failure to detach is silently
2477  * ignored.
2478  */
2479 void vmci_qp_guest_endpoints_exit(void)
2480 {
2481         struct qp_entry *entry;
2482         struct qp_guest_endpoint *ep;
2483
2484         mutex_lock(&qp_guest_endpoints.mutex);
2485
2486         while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2487                 ep = (struct qp_guest_endpoint *)entry;
2488
2489                 /* Don't make a hypercall for local queue_pairs. */
2490                 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2491                         qp_detatch_hypercall(entry->handle);
2492
2493                 /* We cannot fail the exit, so let's reset ref_count. */
2494                 entry->ref_count = 0;
2495                 qp_list_remove_entry(&qp_guest_endpoints, entry);
2496
2497                 qp_guest_endpoint_destroy(ep);
2498         }
2499
2500         mutex_unlock(&qp_guest_endpoints.mutex);
2501 }
2502
2503 /*
2504  * Helper routine that will lock the queue pair before subsequent
2505  * operations.
2506  * Note: Non-blocking on the host side is currently only implemented in ESX.
2507  * Since non-blocking isn't yet implemented on the host personality we
2508  * have no reason to acquire a spin lock.  So to avoid the use of an
2509  * unnecessary lock only acquire the mutex if we can block.
2510  */
2511 static void qp_lock(const struct vmci_qp *qpair)
2512 {
2513         qp_acquire_queue_mutex(qpair->produce_q);
2514 }
2515
2516 /*
2517  * Helper routine that unlocks the queue pair after calling
2518  * qp_lock.
2519  */
2520 static void qp_unlock(const struct vmci_qp *qpair)
2521 {
2522         qp_release_queue_mutex(qpair->produce_q);
2523 }
2524
2525 /*
2526  * The queue headers may not be mapped at all times. If a queue is
2527  * currently not mapped, it will be attempted to do so.
2528  */
2529 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2530                                 struct vmci_queue *consume_q)
2531 {
2532         int result;
2533
2534         if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2535                 result = qp_host_map_queues(produce_q, consume_q);
2536                 if (result < VMCI_SUCCESS)
2537                         return (produce_q->saved_header &&
2538                                 consume_q->saved_header) ?
2539                             VMCI_ERROR_QUEUEPAIR_NOT_READY :
2540                             VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2541         }
2542
2543         return VMCI_SUCCESS;
2544 }
2545
2546 /*
2547  * Helper routine that will retrieve the produce and consume
2548  * headers of a given queue pair. If the guest memory of the
2549  * queue pair is currently not available, the saved queue headers
2550  * will be returned, if these are available.
2551  */
2552 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2553                                 struct vmci_queue_header **produce_q_header,
2554                                 struct vmci_queue_header **consume_q_header)
2555 {
2556         int result;
2557
2558         result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2559         if (result == VMCI_SUCCESS) {
2560                 *produce_q_header = qpair->produce_q->q_header;
2561                 *consume_q_header = qpair->consume_q->q_header;
2562         } else if (qpair->produce_q->saved_header &&
2563                    qpair->consume_q->saved_header) {
2564                 *produce_q_header = qpair->produce_q->saved_header;
2565                 *consume_q_header = qpair->consume_q->saved_header;
2566                 result = VMCI_SUCCESS;
2567         }
2568
2569         return result;
2570 }
2571
2572 /*
2573  * Callback from VMCI queue pair broker indicating that a queue
2574  * pair that was previously not ready, now either is ready or
2575  * gone forever.
2576  */
2577 static int qp_wakeup_cb(void *client_data)
2578 {
2579         struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2580
2581         qp_lock(qpair);
2582         while (qpair->blocked > 0) {
2583                 qpair->blocked--;
2584                 qpair->generation++;
2585                 wake_up(&qpair->event);
2586         }
2587         qp_unlock(qpair);
2588
2589         return VMCI_SUCCESS;
2590 }
2591
2592 /*
2593  * Makes the calling thread wait for the queue pair to become
2594  * ready for host side access.  Returns true when thread is
2595  * woken up after queue pair state change, false otherwise.
2596  */
2597 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2598 {
2599         unsigned int generation;
2600
2601         qpair->blocked++;
2602         generation = qpair->generation;
2603         qp_unlock(qpair);
2604         wait_event(qpair->event, generation != qpair->generation);
2605         qp_lock(qpair);
2606
2607         return true;
2608 }
2609
2610 /*
2611  * Enqueues a given buffer to the produce queue using the provided
2612  * function. As many bytes as possible (space available in the queue)
2613  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2614  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2615  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2616  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2617  * an error occured when accessing the buffer,
2618  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2619  * available.  Otherwise, the number of bytes written to the queue is
2620  * returned.  Updates the tail pointer of the produce queue.
2621  */
2622 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2623                                  struct vmci_queue *consume_q,
2624                                  const u64 produce_q_size,
2625                                  const void *buf,
2626                                  size_t buf_size,
2627                                  vmci_memcpy_to_queue_func memcpy_to_queue)
2628 {
2629         s64 free_space;
2630         u64 tail;
2631         size_t written;
2632         ssize_t result;
2633
2634         result = qp_map_queue_headers(produce_q, consume_q);
2635         if (unlikely(result != VMCI_SUCCESS))
2636                 return result;
2637
2638         free_space = vmci_q_header_free_space(produce_q->q_header,
2639                                               consume_q->q_header,
2640                                               produce_q_size);
2641         if (free_space == 0)
2642                 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2643
2644         if (free_space < VMCI_SUCCESS)
2645                 return (ssize_t) free_space;
2646
2647         written = (size_t) (free_space > buf_size ? buf_size : free_space);
2648         tail = vmci_q_header_producer_tail(produce_q->q_header);
2649         if (likely(tail + written < produce_q_size)) {
2650                 result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2651         } else {
2652                 /* Tail pointer wraps around. */
2653
2654                 const size_t tmp = (size_t) (produce_q_size - tail);
2655
2656                 result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2657                 if (result >= VMCI_SUCCESS)
2658                         result = memcpy_to_queue(produce_q, 0, buf, tmp,
2659                                                  written - tmp);
2660         }
2661
2662         if (result < VMCI_SUCCESS)
2663                 return result;
2664
2665         vmci_q_header_add_producer_tail(produce_q->q_header, written,
2666                                         produce_q_size);
2667         return written;
2668 }
2669
2670 /*
2671  * Dequeues data (if available) from the given consume queue. Writes data
2672  * to the user provided buffer using the provided function.
2673  * Assumes the queue->mutex has been acquired.
2674  * Results:
2675  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2676  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2677  * (as defined by the queue size).
2678  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2679  * Otherwise the number of bytes dequeued is returned.
2680  * Side effects:
2681  * Updates the head pointer of the consume queue.
2682  */
2683 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2684                                  struct vmci_queue *consume_q,
2685                                  const u64 consume_q_size,
2686                                  void *buf,
2687                                  size_t buf_size,
2688                                  vmci_memcpy_from_queue_func memcpy_from_queue,
2689                                  bool update_consumer)
2690 {
2691         s64 buf_ready;
2692         u64 head;
2693         size_t read;
2694         ssize_t result;
2695
2696         result = qp_map_queue_headers(produce_q, consume_q);
2697         if (unlikely(result != VMCI_SUCCESS))
2698                 return result;
2699
2700         buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2701                                             produce_q->q_header,
2702                                             consume_q_size);
2703         if (buf_ready == 0)
2704                 return VMCI_ERROR_QUEUEPAIR_NODATA;
2705
2706         if (buf_ready < VMCI_SUCCESS)
2707                 return (ssize_t) buf_ready;
2708
2709         read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2710         head = vmci_q_header_consumer_head(produce_q->q_header);
2711         if (likely(head + read < consume_q_size)) {
2712                 result = memcpy_from_queue(buf, 0, consume_q, head, read);
2713         } else {
2714                 /* Head pointer wraps around. */
2715
2716                 const size_t tmp = (size_t) (consume_q_size - head);
2717
2718                 result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2719                 if (result >= VMCI_SUCCESS)
2720                         result = memcpy_from_queue(buf, tmp, consume_q, 0,
2721                                                    read - tmp);
2722
2723         }
2724
2725         if (result < VMCI_SUCCESS)
2726                 return result;
2727
2728         if (update_consumer)
2729                 vmci_q_header_add_consumer_head(produce_q->q_header,
2730                                                 read, consume_q_size);
2731
2732         return read;
2733 }
2734
2735 /*
2736  * vmci_qpair_alloc() - Allocates a queue pair.
2737  * @qpair:      Pointer for the new vmci_qp struct.
2738  * @handle:     Handle to track the resource.
2739  * @produce_qsize:      Desired size of the producer queue.
2740  * @consume_qsize:      Desired size of the consumer queue.
2741  * @peer:       ContextID of the peer.
2742  * @flags:      VMCI flags.
2743  * @priv_flags: VMCI priviledge flags.
2744  *
2745  * This is the client interface for allocating the memory for a
2746  * vmci_qp structure and then attaching to the underlying
2747  * queue.  If an error occurs allocating the memory for the
2748  * vmci_qp structure no attempt is made to attach.  If an
2749  * error occurs attaching, then the structure is freed.
2750  */
2751 int vmci_qpair_alloc(struct vmci_qp **qpair,
2752                      struct vmci_handle *handle,
2753                      u64 produce_qsize,
2754                      u64 consume_qsize,
2755                      u32 peer,
2756                      u32 flags,
2757                      u32 priv_flags)
2758 {
2759         struct vmci_qp *my_qpair;
2760         int retval;
2761         struct vmci_handle src = VMCI_INVALID_HANDLE;
2762         struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2763         enum vmci_route route;
2764         vmci_event_release_cb wakeup_cb;
2765         void *client_data;
2766
2767         /*
2768          * Restrict the size of a queuepair.  The device already
2769          * enforces a limit on the total amount of memory that can be
2770          * allocated to queuepairs for a guest.  However, we try to
2771          * allocate this memory before we make the queuepair
2772          * allocation hypercall.  On Linux, we allocate each page
2773          * separately, which means rather than fail, the guest will
2774          * thrash while it tries to allocate, and will become
2775          * increasingly unresponsive to the point where it appears to
2776          * be hung.  So we place a limit on the size of an individual
2777          * queuepair here, and leave the device to enforce the
2778          * restriction on total queuepair memory.  (Note that this
2779          * doesn't prevent all cases; a user with only this much
2780          * physical memory could still get into trouble.)  The error
2781          * used by the device is NO_RESOURCES, so use that here too.
2782          */
2783
2784         if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2785             produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2786                 return VMCI_ERROR_NO_RESOURCES;
2787
2788         retval = vmci_route(&src, &dst, false, &route);
2789         if (retval < VMCI_SUCCESS)
2790                 route = vmci_guest_code_active() ?
2791                     VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2792
2793         if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2794                 pr_devel("NONBLOCK OR PINNED set");
2795                 return VMCI_ERROR_INVALID_ARGS;
2796         }
2797
2798         my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2799         if (!my_qpair)
2800                 return VMCI_ERROR_NO_MEM;
2801
2802         my_qpair->produce_q_size = produce_qsize;
2803         my_qpair->consume_q_size = consume_qsize;
2804         my_qpair->peer = peer;
2805         my_qpair->flags = flags;
2806         my_qpair->priv_flags = priv_flags;
2807
2808         wakeup_cb = NULL;
2809         client_data = NULL;
2810
2811         if (VMCI_ROUTE_AS_HOST == route) {
2812                 my_qpair->guest_endpoint = false;
2813                 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2814                         my_qpair->blocked = 0;
2815                         my_qpair->generation = 0;
2816                         init_waitqueue_head(&my_qpair->event);
2817                         wakeup_cb = qp_wakeup_cb;
2818                         client_data = (void *)my_qpair;
2819                 }
2820         } else {
2821                 my_qpair->guest_endpoint = true;
2822         }
2823
2824         retval = vmci_qp_alloc(handle,
2825                                &my_qpair->produce_q,
2826                                my_qpair->produce_q_size,
2827                                &my_qpair->consume_q,
2828                                my_qpair->consume_q_size,
2829                                my_qpair->peer,
2830                                my_qpair->flags,
2831                                my_qpair->priv_flags,
2832                                my_qpair->guest_endpoint,
2833                                wakeup_cb, client_data);
2834
2835         if (retval < VMCI_SUCCESS) {
2836                 kfree(my_qpair);
2837                 return retval;
2838         }
2839
2840         *qpair = my_qpair;
2841         my_qpair->handle = *handle;
2842
2843         return retval;
2844 }
2845 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2846
2847 /*
2848  * vmci_qpair_detach() - Detatches the client from a queue pair.
2849  * @qpair:      Reference of a pointer to the qpair struct.
2850  *
2851  * This is the client interface for detaching from a VMCIQPair.
2852  * Note that this routine will free the memory allocated for the
2853  * vmci_qp structure too.
2854  */
2855 int vmci_qpair_detach(struct vmci_qp **qpair)
2856 {
2857         int result;
2858         struct vmci_qp *old_qpair;
2859
2860         if (!qpair || !(*qpair))
2861                 return VMCI_ERROR_INVALID_ARGS;
2862
2863         old_qpair = *qpair;
2864         result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2865
2866         /*
2867          * The guest can fail to detach for a number of reasons, and
2868          * if it does so, it will cleanup the entry (if there is one).
2869          * The host can fail too, but it won't cleanup the entry
2870          * immediately, it will do that later when the context is
2871          * freed.  Either way, we need to release the qpair struct
2872          * here; there isn't much the caller can do, and we don't want
2873          * to leak.
2874          */
2875
2876         memset(old_qpair, 0, sizeof(*old_qpair));
2877         old_qpair->handle = VMCI_INVALID_HANDLE;
2878         old_qpair->peer = VMCI_INVALID_ID;
2879         kfree(old_qpair);
2880         *qpair = NULL;
2881
2882         return result;
2883 }
2884 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2885
2886 /*
2887  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2888  * @qpair:      Pointer to the queue pair struct.
2889  * @producer_tail:      Reference used for storing producer tail index.
2890  * @consumer_head:      Reference used for storing the consumer head index.
2891  *
2892  * This is the client interface for getting the current indexes of the
2893  * QPair from the point of the view of the caller as the producer.
2894  */
2895 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2896                                    u64 *producer_tail,
2897                                    u64 *consumer_head)
2898 {
2899         struct vmci_queue_header *produce_q_header;
2900         struct vmci_queue_header *consume_q_header;
2901         int result;
2902
2903         if (!qpair)
2904                 return VMCI_ERROR_INVALID_ARGS;
2905
2906         qp_lock(qpair);
2907         result =
2908             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2909         if (result == VMCI_SUCCESS)
2910                 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2911                                            producer_tail, consumer_head);
2912         qp_unlock(qpair);
2913
2914         if (result == VMCI_SUCCESS &&
2915             ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2916              (consumer_head && *consumer_head >= qpair->produce_q_size)))
2917                 return VMCI_ERROR_INVALID_SIZE;
2918
2919         return result;
2920 }
2921 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2922
2923 /*
2924  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2925  * @qpair:      Pointer to the queue pair struct.
2926  * @consumer_tail:      Reference used for storing consumer tail index.
2927  * @producer_head:      Reference used for storing the producer head index.
2928  *
2929  * This is the client interface for getting the current indexes of the
2930  * QPair from the point of the view of the caller as the consumer.
2931  */
2932 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2933                                    u64 *consumer_tail,
2934                                    u64 *producer_head)
2935 {
2936         struct vmci_queue_header *produce_q_header;
2937         struct vmci_queue_header *consume_q_header;
2938         int result;
2939
2940         if (!qpair)
2941                 return VMCI_ERROR_INVALID_ARGS;
2942
2943         qp_lock(qpair);
2944         result =
2945             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2946         if (result == VMCI_SUCCESS)
2947                 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2948                                            consumer_tail, producer_head);
2949         qp_unlock(qpair);
2950
2951         if (result == VMCI_SUCCESS &&
2952             ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2953              (producer_head && *producer_head >= qpair->consume_q_size)))
2954                 return VMCI_ERROR_INVALID_SIZE;
2955
2956         return result;
2957 }
2958 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2959
2960 /*
2961  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2962  * @qpair:      Pointer to the queue pair struct.
2963  *
2964  * This is the client interface for getting the amount of free
2965  * space in the QPair from the point of the view of the caller as
2966  * the producer which is the common case.  Returns < 0 if err, else
2967  * available bytes into which data can be enqueued if > 0.
2968  */
2969 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2970 {
2971         struct vmci_queue_header *produce_q_header;
2972         struct vmci_queue_header *consume_q_header;
2973         s64 result;
2974
2975         if (!qpair)
2976                 return VMCI_ERROR_INVALID_ARGS;
2977
2978         qp_lock(qpair);
2979         result =
2980             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2981         if (result == VMCI_SUCCESS)
2982                 result = vmci_q_header_free_space(produce_q_header,
2983                                                   consume_q_header,
2984                                                   qpair->produce_q_size);
2985         else
2986                 result = 0;
2987
2988         qp_unlock(qpair);
2989
2990         return result;
2991 }
2992 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2993
2994 /*
2995  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2996  * @qpair:      Pointer to the queue pair struct.
2997  *
2998  * This is the client interface for getting the amount of free
2999  * space in the QPair from the point of the view of the caller as
3000  * the consumer which is not the common case.  Returns < 0 if err, else
3001  * available bytes into which data can be enqueued if > 0.
3002  */
3003 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
3004 {
3005         struct vmci_queue_header *produce_q_header;
3006         struct vmci_queue_header *consume_q_header;
3007         s64 result;
3008
3009         if (!qpair)
3010                 return VMCI_ERROR_INVALID_ARGS;
3011
3012         qp_lock(qpair);
3013         result =
3014             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3015         if (result == VMCI_SUCCESS)
3016                 result = vmci_q_header_free_space(consume_q_header,
3017                                                   produce_q_header,
3018                                                   qpair->consume_q_size);
3019         else
3020                 result = 0;
3021
3022         qp_unlock(qpair);
3023
3024         return result;
3025 }
3026 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3027
3028 /*
3029  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3030  * producer queue.
3031  * @qpair:      Pointer to the queue pair struct.
3032  *
3033  * This is the client interface for getting the amount of
3034  * enqueued data in the QPair from the point of the view of the
3035  * caller as the producer which is not the common case.  Returns < 0 if err,
3036  * else available bytes that may be read.
3037  */
3038 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3039 {
3040         struct vmci_queue_header *produce_q_header;
3041         struct vmci_queue_header *consume_q_header;
3042         s64 result;
3043
3044         if (!qpair)
3045                 return VMCI_ERROR_INVALID_ARGS;
3046
3047         qp_lock(qpair);
3048         result =
3049             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3050         if (result == VMCI_SUCCESS)
3051                 result = vmci_q_header_buf_ready(produce_q_header,
3052                                                  consume_q_header,
3053                                                  qpair->produce_q_size);
3054         else
3055                 result = 0;
3056
3057         qp_unlock(qpair);
3058
3059         return result;
3060 }
3061 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3062
3063 /*
3064  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3065  * consumer queue.
3066  * @qpair:      Pointer to the queue pair struct.
3067  *
3068  * This is the client interface for getting the amount of
3069  * enqueued data in the QPair from the point of the view of the
3070  * caller as the consumer which is the normal case.  Returns < 0 if err,
3071  * else available bytes that may be read.
3072  */
3073 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3074 {
3075         struct vmci_queue_header *produce_q_header;
3076         struct vmci_queue_header *consume_q_header;
3077         s64 result;
3078
3079         if (!qpair)
3080                 return VMCI_ERROR_INVALID_ARGS;
3081
3082         qp_lock(qpair);
3083         result =
3084             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3085         if (result == VMCI_SUCCESS)
3086                 result = vmci_q_header_buf_ready(consume_q_header,
3087                                                  produce_q_header,
3088                                                  qpair->consume_q_size);
3089         else
3090                 result = 0;
3091
3092         qp_unlock(qpair);
3093
3094         return result;
3095 }
3096 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3097
3098 /*
3099  * vmci_qpair_enqueue() - Throw data on the queue.
3100  * @qpair:      Pointer to the queue pair struct.
3101  * @buf:        Pointer to buffer containing data
3102  * @buf_size:   Length of buffer.
3103  * @buf_type:   Buffer type (Unused).
3104  *
3105  * This is the client interface for enqueueing data into the queue.
3106  * Returns number of bytes enqueued or < 0 on error.
3107  */
3108 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3109                            const void *buf,
3110                            size_t buf_size,
3111                            int buf_type)
3112 {
3113         ssize_t result;
3114
3115         if (!qpair || !buf)
3116                 return VMCI_ERROR_INVALID_ARGS;
3117
3118         qp_lock(qpair);
3119
3120         do {
3121                 result = qp_enqueue_locked(qpair->produce_q,
3122                                            qpair->consume_q,
3123                                            qpair->produce_q_size,
3124                                            buf, buf_size,
3125                                            qp_memcpy_to_queue);
3126
3127                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3128                     !qp_wait_for_ready_queue(qpair))
3129                         result = VMCI_ERROR_WOULD_BLOCK;
3130
3131         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3132
3133         qp_unlock(qpair);
3134
3135         return result;
3136 }
3137 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3138
3139 /*
3140  * vmci_qpair_dequeue() - Get data from the queue.
3141  * @qpair:      Pointer to the queue pair struct.
3142  * @buf:        Pointer to buffer for the data
3143  * @buf_size:   Length of buffer.
3144  * @buf_type:   Buffer type (Unused).
3145  *
3146  * This is the client interface for dequeueing data from the queue.
3147  * Returns number of bytes dequeued or < 0 on error.
3148  */
3149 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3150                            void *buf,
3151                            size_t buf_size,
3152                            int buf_type)
3153 {
3154         ssize_t result;
3155
3156         if (!qpair || !buf)
3157                 return VMCI_ERROR_INVALID_ARGS;
3158
3159         qp_lock(qpair);
3160
3161         do {
3162                 result = qp_dequeue_locked(qpair->produce_q,
3163                                            qpair->consume_q,
3164                                            qpair->consume_q_size,
3165                                            buf, buf_size,
3166                                            qp_memcpy_from_queue, true);
3167
3168                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3169                     !qp_wait_for_ready_queue(qpair))
3170                         result = VMCI_ERROR_WOULD_BLOCK;
3171
3172         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3173
3174         qp_unlock(qpair);
3175
3176         return result;
3177 }
3178 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3179
3180 /*
3181  * vmci_qpair_peek() - Peek at the data in the queue.
3182  * @qpair:      Pointer to the queue pair struct.
3183  * @buf:        Pointer to buffer for the data
3184  * @buf_size:   Length of buffer.
3185  * @buf_type:   Buffer type (Unused on Linux).
3186  *
3187  * This is the client interface for peeking into a queue.  (I.e.,
3188  * copy data from the queue without updating the head pointer.)
3189  * Returns number of bytes dequeued or < 0 on error.
3190  */
3191 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3192                         void *buf,
3193                         size_t buf_size,
3194                         int buf_type)
3195 {
3196         ssize_t result;
3197
3198         if (!qpair || !buf)
3199                 return VMCI_ERROR_INVALID_ARGS;
3200
3201         qp_lock(qpair);
3202
3203         do {
3204                 result = qp_dequeue_locked(qpair->produce_q,
3205                                            qpair->consume_q,
3206                                            qpair->consume_q_size,
3207                                            buf, buf_size,
3208                                            qp_memcpy_from_queue, false);
3209
3210                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3211                     !qp_wait_for_ready_queue(qpair))
3212                         result = VMCI_ERROR_WOULD_BLOCK;
3213
3214         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3215
3216         qp_unlock(qpair);
3217
3218         return result;
3219 }
3220 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3221
3222 /*
3223  * vmci_qpair_enquev() - Throw data on the queue using iov.
3224  * @qpair:      Pointer to the queue pair struct.
3225  * @iov:        Pointer to buffer containing data
3226  * @iov_size:   Length of buffer.
3227  * @buf_type:   Buffer type (Unused).
3228  *
3229  * This is the client interface for enqueueing data into the queue.
3230  * This function uses IO vectors to handle the work. Returns number
3231  * of bytes enqueued or < 0 on error.
3232  */
3233 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3234                           void *iov,
3235                           size_t iov_size,
3236                           int buf_type)
3237 {
3238         ssize_t result;
3239
3240         if (!qpair || !iov)
3241                 return VMCI_ERROR_INVALID_ARGS;
3242
3243         qp_lock(qpair);
3244
3245         do {
3246                 result = qp_enqueue_locked(qpair->produce_q,
3247                                            qpair->consume_q,
3248                                            qpair->produce_q_size,
3249                                            iov, iov_size,
3250                                            qp_memcpy_to_queue_iov);
3251
3252                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3253                     !qp_wait_for_ready_queue(qpair))
3254                         result = VMCI_ERROR_WOULD_BLOCK;
3255
3256         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3257
3258         qp_unlock(qpair);
3259
3260         return result;
3261 }
3262 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3263
3264 /*
3265  * vmci_qpair_dequev() - Get data from the queue using iov.
3266  * @qpair:      Pointer to the queue pair struct.
3267  * @iov:        Pointer to buffer for the data
3268  * @iov_size:   Length of buffer.
3269  * @buf_type:   Buffer type (Unused).
3270  *
3271  * This is the client interface for dequeueing data from the queue.
3272  * This function uses IO vectors to handle the work. Returns number
3273  * of bytes dequeued or < 0 on error.
3274  */
3275 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3276                           void *iov,
3277                           size_t iov_size,
3278                           int buf_type)
3279 {
3280         ssize_t result;
3281
3282         if (!qpair || !iov)
3283                 return VMCI_ERROR_INVALID_ARGS;
3284
3285         qp_lock(qpair);
3286
3287         do {
3288                 result = qp_dequeue_locked(qpair->produce_q,
3289                                            qpair->consume_q,
3290                                            qpair->consume_q_size,
3291                                            iov, iov_size,
3292                                            qp_memcpy_from_queue_iov,
3293                                            true);
3294
3295                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3296                     !qp_wait_for_ready_queue(qpair))
3297                         result = VMCI_ERROR_WOULD_BLOCK;
3298
3299         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3300
3301         qp_unlock(qpair);
3302
3303         return result;
3304 }
3305 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3306
3307 /*
3308  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3309  * @qpair:      Pointer to the queue pair struct.
3310  * @iov:        Pointer to buffer for the data
3311  * @iov_size:   Length of buffer.
3312  * @buf_type:   Buffer type (Unused on Linux).
3313  *
3314  * This is the client interface for peeking into a queue.  (I.e.,
3315  * copy data from the queue without updating the head pointer.)
3316  * This function uses IO vectors to handle the work. Returns number
3317  * of bytes peeked or < 0 on error.
3318  */
3319 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3320                          void *iov,
3321                          size_t iov_size,
3322                          int buf_type)
3323 {
3324         ssize_t result;
3325
3326         if (!qpair || !iov)
3327                 return VMCI_ERROR_INVALID_ARGS;
3328
3329         qp_lock(qpair);
3330
3331         do {
3332                 result = qp_dequeue_locked(qpair->produce_q,
3333                                            qpair->consume_q,
3334                                            qpair->consume_q_size,
3335                                            iov, iov_size,
3336                                            qp_memcpy_from_queue_iov,
3337                                            false);
3338
3339                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3340                     !qp_wait_for_ready_queue(qpair))
3341                         result = VMCI_ERROR_WOULD_BLOCK;
3342
3343         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3344
3345         qp_unlock(qpair);
3346         return result;
3347 }
3348 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);