]> Pileus Git - ~andy/linux/blob - drivers/misc/vmw_vmci/vmci_queue_pair.c
vmw_vmci: Convert driver to use get_user_pages_fast()
[~andy/linux] / drivers / misc / vmw_vmci / vmci_queue_pair.c
1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30
31 #include "vmci_handle_array.h"
32 #include "vmci_queue_pair.h"
33 #include "vmci_datagram.h"
34 #include "vmci_resource.h"
35 #include "vmci_context.h"
36 #include "vmci_driver.h"
37 #include "vmci_event.h"
38 #include "vmci_route.h"
39
40 /*
41  * In the following, we will distinguish between two kinds of VMX processes -
42  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
43  * VMCI page files in the VMX and supporting VM to VM communication and the
44  * newer ones that use the guest memory directly. We will in the following
45  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
46  * new-style VMX'en.
47  *
48  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
49  * removed for readability) - see below for more details on the transtions:
50  *
51  *            --------------  NEW  -------------
52  *            |                                |
53  *           \_/                              \_/
54  *     CREATED_NO_MEM <-----------------> CREATED_MEM
55  *            |    |                           |
56  *            |    o-----------------------o   |
57  *            |                            |   |
58  *           \_/                          \_/ \_/
59  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
60  *            |                            |   |
61  *            |     o----------------------o   |
62  *            |     |                          |
63  *           \_/   \_/                        \_/
64  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
65  *            |                                |
66  *            |                                |
67  *            -------------> gone <-------------
68  *
69  * In more detail. When a VMCI queue pair is first created, it will be in the
70  * VMCIQPB_NEW state. It will then move into one of the following states:
71  *
72  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
73  *
74  *     - the created was performed by a host endpoint, in which case there is
75  *       no backing memory yet.
76  *
77  *     - the create was initiated by an old-style VMX, that uses
78  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
79  *       a later point in time. This state can be distinguished from the one
80  *       above by the context ID of the creator. A host side is not allowed to
81  *       attach until the page store has been set.
82  *
83  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
84  *     is created by a VMX using the queue pair device backend that
85  *     sets the UVAs of the queue pair immediately and stores the
86  *     information for later attachers. At this point, it is ready for
87  *     the host side to attach to it.
88  *
89  * Once the queue pair is in one of the created states (with the exception of
90  * the case mentioned for older VMX'en above), it is possible to attach to the
91  * queue pair. Again we have two new states possible:
92  *
93  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
94  *   paths:
95  *
96  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
97  *       pair, and attaches to a queue pair previously created by the host side.
98  *
99  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
100  *       already created by a guest.
101  *
102  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
103  *       vmci_qp_broker_set_page_store (see below).
104  *
105  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
106  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
107  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
108  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
109  *     will be entered.
110  *
111  * From the attached queue pair, the queue pair can enter the shutdown states
112  * when either side of the queue pair detaches. If the guest side detaches
113  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
114  * the content of the queue pair will no longer be available. If the host
115  * side detaches first, the queue pair will either enter the
116  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
117  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
118  * (e.g., the host detaches while a guest is stunned).
119  *
120  * New-style VMX'en will also unmap guest memory, if the guest is
121  * quiesced, e.g., during a snapshot operation. In that case, the guest
122  * memory will no longer be available, and the queue pair will transition from
123  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
124  * in which case the queue pair will transition from the *_NO_MEM state at that
125  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
126  * since the peer may have either attached or detached in the meantime. The
127  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
128  * *_MEM state, and vice versa.
129  */
130
131 /*
132  * VMCIMemcpy{To,From}QueueFunc() prototypes.  Functions of these
133  * types are passed around to enqueue and dequeue routines.  Note that
134  * often the functions passed are simply wrappers around memcpy
135  * itself.
136  *
137  * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
138  * there's an unused last parameter for the hosted side.  In
139  * ESX, that parameter holds a buffer type.
140  */
141 typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
142                                       u64 queue_offset, const void *src,
143                                       size_t src_offset, size_t size);
144 typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
145                                         const struct vmci_queue *queue,
146                                         u64 queue_offset, size_t size);
147
148 /* The Kernel specific component of the struct vmci_queue structure. */
149 struct vmci_queue_kern_if {
150         struct mutex __mutex;   /* Protects the queue. */
151         struct mutex *mutex;    /* Shared by producer and consumer queues. */
152         size_t num_pages;       /* Number of pages incl. header. */
153         bool host;              /* Host or guest? */
154         union {
155                 struct {
156                         dma_addr_t *pas;
157                         void **vas;
158                 } g;            /* Used by the guest. */
159                 struct {
160                         struct page **page;
161                         struct page **header_page;
162                 } h;            /* Used by the host. */
163         } u;
164 };
165
166 /*
167  * This structure is opaque to the clients.
168  */
169 struct vmci_qp {
170         struct vmci_handle handle;
171         struct vmci_queue *produce_q;
172         struct vmci_queue *consume_q;
173         u64 produce_q_size;
174         u64 consume_q_size;
175         u32 peer;
176         u32 flags;
177         u32 priv_flags;
178         bool guest_endpoint;
179         unsigned int blocked;
180         unsigned int generation;
181         wait_queue_head_t event;
182 };
183
184 enum qp_broker_state {
185         VMCIQPB_NEW,
186         VMCIQPB_CREATED_NO_MEM,
187         VMCIQPB_CREATED_MEM,
188         VMCIQPB_ATTACHED_NO_MEM,
189         VMCIQPB_ATTACHED_MEM,
190         VMCIQPB_SHUTDOWN_NO_MEM,
191         VMCIQPB_SHUTDOWN_MEM,
192         VMCIQPB_GONE
193 };
194
195 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
196                                      _qpb->state == VMCIQPB_ATTACHED_MEM || \
197                                      _qpb->state == VMCIQPB_SHUTDOWN_MEM)
198
199 /*
200  * In the queue pair broker, we always use the guest point of view for
201  * the produce and consume queue values and references, e.g., the
202  * produce queue size stored is the guests produce queue size. The
203  * host endpoint will need to swap these around. The only exception is
204  * the local queue pairs on the host, in which case the host endpoint
205  * that creates the queue pair will have the right orientation, and
206  * the attaching host endpoint will need to swap.
207  */
208 struct qp_entry {
209         struct list_head list_item;
210         struct vmci_handle handle;
211         u32 peer;
212         u32 flags;
213         u64 produce_size;
214         u64 consume_size;
215         u32 ref_count;
216 };
217
218 struct qp_broker_entry {
219         struct vmci_resource resource;
220         struct qp_entry qp;
221         u32 create_id;
222         u32 attach_id;
223         enum qp_broker_state state;
224         bool require_trusted_attach;
225         bool created_by_trusted;
226         bool vmci_page_files;   /* Created by VMX using VMCI page files */
227         struct vmci_queue *produce_q;
228         struct vmci_queue *consume_q;
229         struct vmci_queue_header saved_produce_q;
230         struct vmci_queue_header saved_consume_q;
231         vmci_event_release_cb wakeup_cb;
232         void *client_data;
233         void *local_mem;        /* Kernel memory for local queue pair */
234 };
235
236 struct qp_guest_endpoint {
237         struct vmci_resource resource;
238         struct qp_entry qp;
239         u64 num_ppns;
240         void *produce_q;
241         void *consume_q;
242         struct ppn_set ppn_set;
243 };
244
245 struct qp_list {
246         struct list_head head;
247         struct mutex mutex;     /* Protect queue list. */
248 };
249
250 static struct qp_list qp_broker_list = {
251         .head = LIST_HEAD_INIT(qp_broker_list.head),
252         .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
253 };
254
255 static struct qp_list qp_guest_endpoints = {
256         .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
257         .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
258 };
259
260 #define INVALID_VMCI_GUEST_MEM_ID  0
261 #define QPE_NUM_PAGES(_QPE) ((u32) \
262                              (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
263                               DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
264
265
266 /*
267  * Frees kernel VA space for a given queue and its queue header, and
268  * frees physical data pages.
269  */
270 static void qp_free_queue(void *q, u64 size)
271 {
272         struct vmci_queue *queue = q;
273
274         if (queue) {
275                 u64 i;
276
277                 /* Given size does not include header, so add in a page here. */
278                 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
279                         dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
280                                           queue->kernel_if->u.g.vas[i],
281                                           queue->kernel_if->u.g.pas[i]);
282                 }
283
284                 vfree(queue);
285         }
286 }
287
288 /*
289  * Allocates kernel queue pages of specified size with IOMMU mappings,
290  * plus space for the queue structure/kernel interface and the queue
291  * header.
292  */
293 static void *qp_alloc_queue(u64 size, u32 flags)
294 {
295         u64 i;
296         struct vmci_queue *queue;
297         const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
298         const size_t pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
299         const size_t vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
300         const size_t queue_size =
301                 sizeof(*queue) + sizeof(*queue->kernel_if) +
302                 pas_size + vas_size;
303
304         queue = vmalloc(queue_size);
305         if (!queue)
306                 return NULL;
307
308         queue->q_header = NULL;
309         queue->saved_header = NULL;
310         queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
311         queue->kernel_if->mutex = NULL;
312         queue->kernel_if->num_pages = num_pages;
313         queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
314         queue->kernel_if->u.g.vas =
315                 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
316         queue->kernel_if->host = false;
317
318         for (i = 0; i < num_pages; i++) {
319                 queue->kernel_if->u.g.vas[i] =
320                         dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
321                                            &queue->kernel_if->u.g.pas[i],
322                                            GFP_KERNEL);
323                 if (!queue->kernel_if->u.g.vas[i]) {
324                         /* Size excl. the header. */
325                         qp_free_queue(queue, i * PAGE_SIZE);
326                         return NULL;
327                 }
328         }
329
330         /* Queue header is the first page. */
331         queue->q_header = queue->kernel_if->u.g.vas[0];
332
333         return queue;
334 }
335
336 /*
337  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
338  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
339  * by traversing the offset -> page translation structure for the queue.
340  * Assumes that offset + size does not wrap around in the queue.
341  */
342 static int __qp_memcpy_to_queue(struct vmci_queue *queue,
343                                 u64 queue_offset,
344                                 const void *src,
345                                 size_t size,
346                                 bool is_iovec)
347 {
348         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
349         size_t bytes_copied = 0;
350
351         while (bytes_copied < size) {
352                 const u64 page_index =
353                         (queue_offset + bytes_copied) / PAGE_SIZE;
354                 const size_t page_offset =
355                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
356                 void *va;
357                 size_t to_copy;
358
359                 if (kernel_if->host)
360                         va = kmap(kernel_if->u.h.page[page_index]);
361                 else
362                         va = kernel_if->u.g.vas[page_index + 1];
363                         /* Skip header. */
364
365                 if (size - bytes_copied > PAGE_SIZE - page_offset)
366                         /* Enough payload to fill up from this page. */
367                         to_copy = PAGE_SIZE - page_offset;
368                 else
369                         to_copy = size - bytes_copied;
370
371                 if (is_iovec) {
372                         struct iovec *iov = (struct iovec *)src;
373                         int err;
374
375                         /* The iovec will track bytes_copied internally. */
376                         err = memcpy_fromiovec((u8 *)va + page_offset,
377                                                iov, to_copy);
378                         if (err != 0) {
379                                 if (kernel_if->host)
380                                         kunmap(kernel_if->u.h.page[page_index]);
381                                 return VMCI_ERROR_INVALID_ARGS;
382                         }
383                 } else {
384                         memcpy((u8 *)va + page_offset,
385                                (u8 *)src + bytes_copied, to_copy);
386                 }
387
388                 bytes_copied += to_copy;
389                 if (kernel_if->host)
390                         kunmap(kernel_if->u.h.page[page_index]);
391         }
392
393         return VMCI_SUCCESS;
394 }
395
396 /*
397  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
398  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
399  * by traversing the offset -> page translation structure for the queue.
400  * Assumes that offset + size does not wrap around in the queue.
401  */
402 static int __qp_memcpy_from_queue(void *dest,
403                                   const struct vmci_queue *queue,
404                                   u64 queue_offset,
405                                   size_t size,
406                                   bool is_iovec)
407 {
408         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
409         size_t bytes_copied = 0;
410
411         while (bytes_copied < size) {
412                 const u64 page_index =
413                         (queue_offset + bytes_copied) / PAGE_SIZE;
414                 const size_t page_offset =
415                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
416                 void *va;
417                 size_t to_copy;
418
419                 if (kernel_if->host)
420                         va = kmap(kernel_if->u.h.page[page_index]);
421                 else
422                         va = kernel_if->u.g.vas[page_index + 1];
423                         /* Skip header. */
424
425                 if (size - bytes_copied > PAGE_SIZE - page_offset)
426                         /* Enough payload to fill up this page. */
427                         to_copy = PAGE_SIZE - page_offset;
428                 else
429                         to_copy = size - bytes_copied;
430
431                 if (is_iovec) {
432                         struct iovec *iov = (struct iovec *)dest;
433                         int err;
434
435                         /* The iovec will track bytes_copied internally. */
436                         err = memcpy_toiovec(iov, (u8 *)va + page_offset,
437                                              to_copy);
438                         if (err != 0) {
439                                 if (kernel_if->host)
440                                         kunmap(kernel_if->u.h.page[page_index]);
441                                 return VMCI_ERROR_INVALID_ARGS;
442                         }
443                 } else {
444                         memcpy((u8 *)dest + bytes_copied,
445                                (u8 *)va + page_offset, to_copy);
446                 }
447
448                 bytes_copied += to_copy;
449                 if (kernel_if->host)
450                         kunmap(kernel_if->u.h.page[page_index]);
451         }
452
453         return VMCI_SUCCESS;
454 }
455
456 /*
457  * Allocates two list of PPNs --- one for the pages in the produce queue,
458  * and the other for the pages in the consume queue. Intializes the list
459  * of PPNs with the page frame numbers of the KVA for the two queues (and
460  * the queue headers).
461  */
462 static int qp_alloc_ppn_set(void *prod_q,
463                             u64 num_produce_pages,
464                             void *cons_q,
465                             u64 num_consume_pages, struct ppn_set *ppn_set)
466 {
467         u32 *produce_ppns;
468         u32 *consume_ppns;
469         struct vmci_queue *produce_q = prod_q;
470         struct vmci_queue *consume_q = cons_q;
471         u64 i;
472
473         if (!produce_q || !num_produce_pages || !consume_q ||
474             !num_consume_pages || !ppn_set)
475                 return VMCI_ERROR_INVALID_ARGS;
476
477         if (ppn_set->initialized)
478                 return VMCI_ERROR_ALREADY_EXISTS;
479
480         produce_ppns =
481             kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
482         if (!produce_ppns)
483                 return VMCI_ERROR_NO_MEM;
484
485         consume_ppns =
486             kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
487         if (!consume_ppns) {
488                 kfree(produce_ppns);
489                 return VMCI_ERROR_NO_MEM;
490         }
491
492         for (i = 0; i < num_produce_pages; i++) {
493                 unsigned long pfn;
494
495                 produce_ppns[i] =
496                         produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
497                 pfn = produce_ppns[i];
498
499                 /* Fail allocation if PFN isn't supported by hypervisor. */
500                 if (sizeof(pfn) > sizeof(*produce_ppns)
501                     && pfn != produce_ppns[i])
502                         goto ppn_error;
503         }
504
505         for (i = 0; i < num_consume_pages; i++) {
506                 unsigned long pfn;
507
508                 consume_ppns[i] =
509                         consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
510                 pfn = consume_ppns[i];
511
512                 /* Fail allocation if PFN isn't supported by hypervisor. */
513                 if (sizeof(pfn) > sizeof(*consume_ppns)
514                     && pfn != consume_ppns[i])
515                         goto ppn_error;
516         }
517
518         ppn_set->num_produce_pages = num_produce_pages;
519         ppn_set->num_consume_pages = num_consume_pages;
520         ppn_set->produce_ppns = produce_ppns;
521         ppn_set->consume_ppns = consume_ppns;
522         ppn_set->initialized = true;
523         return VMCI_SUCCESS;
524
525  ppn_error:
526         kfree(produce_ppns);
527         kfree(consume_ppns);
528         return VMCI_ERROR_INVALID_ARGS;
529 }
530
531 /*
532  * Frees the two list of PPNs for a queue pair.
533  */
534 static void qp_free_ppn_set(struct ppn_set *ppn_set)
535 {
536         if (ppn_set->initialized) {
537                 /* Do not call these functions on NULL inputs. */
538                 kfree(ppn_set->produce_ppns);
539                 kfree(ppn_set->consume_ppns);
540         }
541         memset(ppn_set, 0, sizeof(*ppn_set));
542 }
543
544 /*
545  * Populates the list of PPNs in the hypercall structure with the PPNS
546  * of the produce queue and the consume queue.
547  */
548 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
549 {
550         memcpy(call_buf, ppn_set->produce_ppns,
551                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
552         memcpy(call_buf +
553                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
554                ppn_set->consume_ppns,
555                ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
556
557         return VMCI_SUCCESS;
558 }
559
560 static int qp_memcpy_to_queue(struct vmci_queue *queue,
561                               u64 queue_offset,
562                               const void *src, size_t src_offset, size_t size)
563 {
564         return __qp_memcpy_to_queue(queue, queue_offset,
565                                     (u8 *)src + src_offset, size, false);
566 }
567
568 static int qp_memcpy_from_queue(void *dest,
569                                 size_t dest_offset,
570                                 const struct vmci_queue *queue,
571                                 u64 queue_offset, size_t size)
572 {
573         return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
574                                       queue, queue_offset, size, false);
575 }
576
577 /*
578  * Copies from a given iovec from a VMCI Queue.
579  */
580 static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
581                                   u64 queue_offset,
582                                   const void *src,
583                                   size_t src_offset, size_t size)
584 {
585
586         /*
587          * We ignore src_offset because src is really a struct iovec * and will
588          * maintain offset internally.
589          */
590         return __qp_memcpy_to_queue(queue, queue_offset, src, size, true);
591 }
592
593 /*
594  * Copies to a given iovec from a VMCI Queue.
595  */
596 static int qp_memcpy_from_queue_iov(void *dest,
597                                     size_t dest_offset,
598                                     const struct vmci_queue *queue,
599                                     u64 queue_offset, size_t size)
600 {
601         /*
602          * We ignore dest_offset because dest is really a struct iovec * and
603          * will maintain offset internally.
604          */
605         return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
606 }
607
608 /*
609  * Allocates kernel VA space of specified size plus space for the queue
610  * and kernel interface.  This is different from the guest queue allocator,
611  * because we do not allocate our own queue header/data pages here but
612  * share those of the guest.
613  */
614 static struct vmci_queue *qp_host_alloc_queue(u64 size)
615 {
616         struct vmci_queue *queue;
617         const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
618         const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
619         const size_t queue_page_size =
620             num_pages * sizeof(*queue->kernel_if->u.h.page);
621
622         queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
623         if (queue) {
624                 queue->q_header = NULL;
625                 queue->saved_header = NULL;
626                 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
627                 queue->kernel_if->host = true;
628                 queue->kernel_if->mutex = NULL;
629                 queue->kernel_if->num_pages = num_pages;
630                 queue->kernel_if->u.h.header_page =
631                     (struct page **)((u8 *)queue + queue_size);
632                 queue->kernel_if->u.h.page =
633                         &queue->kernel_if->u.h.header_page[1];
634         }
635
636         return queue;
637 }
638
639 /*
640  * Frees kernel memory for a given queue (header plus translation
641  * structure).
642  */
643 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
644 {
645         kfree(queue);
646 }
647
648 /*
649  * Initialize the mutex for the pair of queues.  This mutex is used to
650  * protect the q_header and the buffer from changing out from under any
651  * users of either queue.  Of course, it's only any good if the mutexes
652  * are actually acquired.  Queue structure must lie on non-paged memory
653  * or we cannot guarantee access to the mutex.
654  */
655 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
656                                 struct vmci_queue *consume_q)
657 {
658         /*
659          * Only the host queue has shared state - the guest queues do not
660          * need to synchronize access using a queue mutex.
661          */
662
663         if (produce_q->kernel_if->host) {
664                 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
665                 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
666                 mutex_init(produce_q->kernel_if->mutex);
667         }
668 }
669
670 /*
671  * Cleans up the mutex for the pair of queues.
672  */
673 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
674                                    struct vmci_queue *consume_q)
675 {
676         if (produce_q->kernel_if->host) {
677                 produce_q->kernel_if->mutex = NULL;
678                 consume_q->kernel_if->mutex = NULL;
679         }
680 }
681
682 /*
683  * Acquire the mutex for the queue.  Note that the produce_q and
684  * the consume_q share a mutex.  So, only one of the two need to
685  * be passed in to this routine.  Either will work just fine.
686  */
687 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
688 {
689         if (queue->kernel_if->host)
690                 mutex_lock(queue->kernel_if->mutex);
691 }
692
693 /*
694  * Release the mutex for the queue.  Note that the produce_q and
695  * the consume_q share a mutex.  So, only one of the two need to
696  * be passed in to this routine.  Either will work just fine.
697  */
698 static void qp_release_queue_mutex(struct vmci_queue *queue)
699 {
700         if (queue->kernel_if->host)
701                 mutex_unlock(queue->kernel_if->mutex);
702 }
703
704 /*
705  * Helper function to release pages in the PageStoreAttachInfo
706  * previously obtained using get_user_pages.
707  */
708 static void qp_release_pages(struct page **pages,
709                              u64 num_pages, bool dirty)
710 {
711         int i;
712
713         for (i = 0; i < num_pages; i++) {
714                 if (dirty)
715                         set_page_dirty(pages[i]);
716
717                 page_cache_release(pages[i]);
718                 pages[i] = NULL;
719         }
720 }
721
722 /*
723  * Lock the user pages referenced by the {produce,consume}Buffer
724  * struct into memory and populate the {produce,consume}Pages
725  * arrays in the attach structure with them.
726  */
727 static int qp_host_get_user_memory(u64 produce_uva,
728                                    u64 consume_uva,
729                                    struct vmci_queue *produce_q,
730                                    struct vmci_queue *consume_q)
731 {
732         int retval;
733         int err = VMCI_SUCCESS;
734
735         retval = get_user_pages_fast((uintptr_t) produce_uva,
736                                      produce_q->kernel_if->num_pages, 1,
737                                      produce_q->kernel_if->u.h.header_page);
738         if (retval < produce_q->kernel_if->num_pages) {
739                 pr_warn("get_user_pages(produce) failed (retval=%d)", retval);
740                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
741                                  retval, false);
742                 err = VMCI_ERROR_NO_MEM;
743                 goto out;
744         }
745
746         retval = get_user_pages_fast((uintptr_t) consume_uva,
747                                      consume_q->kernel_if->num_pages, 1,
748                                      consume_q->kernel_if->u.h.header_page);
749         if (retval < consume_q->kernel_if->num_pages) {
750                 pr_warn("get_user_pages(consume) failed (retval=%d)", retval);
751                 qp_release_pages(consume_q->kernel_if->u.h.header_page,
752                                  retval, false);
753                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
754                                  produce_q->kernel_if->num_pages, false);
755                 err = VMCI_ERROR_NO_MEM;
756         }
757
758  out:
759         return err;
760 }
761
762 /*
763  * Registers the specification of the user pages used for backing a queue
764  * pair. Enough information to map in pages is stored in the OS specific
765  * part of the struct vmci_queue structure.
766  */
767 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
768                                         struct vmci_queue *produce_q,
769                                         struct vmci_queue *consume_q)
770 {
771         u64 produce_uva;
772         u64 consume_uva;
773
774         /*
775          * The new style and the old style mapping only differs in
776          * that we either get a single or two UVAs, so we split the
777          * single UVA range at the appropriate spot.
778          */
779         produce_uva = page_store->pages;
780         consume_uva = page_store->pages +
781             produce_q->kernel_if->num_pages * PAGE_SIZE;
782         return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
783                                        consume_q);
784 }
785
786 /*
787  * Releases and removes the references to user pages stored in the attach
788  * struct.  Pages are released from the page cache and may become
789  * swappable again.
790  */
791 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
792                                            struct vmci_queue *consume_q)
793 {
794         qp_release_pages(produce_q->kernel_if->u.h.header_page,
795                          produce_q->kernel_if->num_pages, true);
796         memset(produce_q->kernel_if->u.h.header_page, 0,
797                sizeof(*produce_q->kernel_if->u.h.header_page) *
798                produce_q->kernel_if->num_pages);
799         qp_release_pages(consume_q->kernel_if->u.h.header_page,
800                          consume_q->kernel_if->num_pages, true);
801         memset(consume_q->kernel_if->u.h.header_page, 0,
802                sizeof(*consume_q->kernel_if->u.h.header_page) *
803                consume_q->kernel_if->num_pages);
804 }
805
806 /*
807  * Once qp_host_register_user_memory has been performed on a
808  * queue, the queue pair headers can be mapped into the
809  * kernel. Once mapped, they must be unmapped with
810  * qp_host_unmap_queues prior to calling
811  * qp_host_unregister_user_memory.
812  * Pages are pinned.
813  */
814 static int qp_host_map_queues(struct vmci_queue *produce_q,
815                               struct vmci_queue *consume_q)
816 {
817         int result;
818
819         if (!produce_q->q_header || !consume_q->q_header) {
820                 struct page *headers[2];
821
822                 if (produce_q->q_header != consume_q->q_header)
823                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
824
825                 if (produce_q->kernel_if->u.h.header_page == NULL ||
826                     *produce_q->kernel_if->u.h.header_page == NULL)
827                         return VMCI_ERROR_UNAVAILABLE;
828
829                 headers[0] = *produce_q->kernel_if->u.h.header_page;
830                 headers[1] = *consume_q->kernel_if->u.h.header_page;
831
832                 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
833                 if (produce_q->q_header != NULL) {
834                         consume_q->q_header =
835                             (struct vmci_queue_header *)((u8 *)
836                                                          produce_q->q_header +
837                                                          PAGE_SIZE);
838                         result = VMCI_SUCCESS;
839                 } else {
840                         pr_warn("vmap failed\n");
841                         result = VMCI_ERROR_NO_MEM;
842                 }
843         } else {
844                 result = VMCI_SUCCESS;
845         }
846
847         return result;
848 }
849
850 /*
851  * Unmaps previously mapped queue pair headers from the kernel.
852  * Pages are unpinned.
853  */
854 static int qp_host_unmap_queues(u32 gid,
855                                 struct vmci_queue *produce_q,
856                                 struct vmci_queue *consume_q)
857 {
858         if (produce_q->q_header) {
859                 if (produce_q->q_header < consume_q->q_header)
860                         vunmap(produce_q->q_header);
861                 else
862                         vunmap(consume_q->q_header);
863
864                 produce_q->q_header = NULL;
865                 consume_q->q_header = NULL;
866         }
867
868         return VMCI_SUCCESS;
869 }
870
871 /*
872  * Finds the entry in the list corresponding to a given handle. Assumes
873  * that the list is locked.
874  */
875 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
876                                      struct vmci_handle handle)
877 {
878         struct qp_entry *entry;
879
880         if (vmci_handle_is_invalid(handle))
881                 return NULL;
882
883         list_for_each_entry(entry, &qp_list->head, list_item) {
884                 if (vmci_handle_is_equal(entry->handle, handle))
885                         return entry;
886         }
887
888         return NULL;
889 }
890
891 /*
892  * Finds the entry in the list corresponding to a given handle.
893  */
894 static struct qp_guest_endpoint *
895 qp_guest_handle_to_entry(struct vmci_handle handle)
896 {
897         struct qp_guest_endpoint *entry;
898         struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
899
900         entry = qp ? container_of(
901                 qp, struct qp_guest_endpoint, qp) : NULL;
902         return entry;
903 }
904
905 /*
906  * Finds the entry in the list corresponding to a given handle.
907  */
908 static struct qp_broker_entry *
909 qp_broker_handle_to_entry(struct vmci_handle handle)
910 {
911         struct qp_broker_entry *entry;
912         struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
913
914         entry = qp ? container_of(
915                 qp, struct qp_broker_entry, qp) : NULL;
916         return entry;
917 }
918
919 /*
920  * Dispatches a queue pair event message directly into the local event
921  * queue.
922  */
923 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
924 {
925         u32 context_id = vmci_get_context_id();
926         struct vmci_event_qp ev;
927
928         ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
929         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
930                                           VMCI_CONTEXT_RESOURCE_ID);
931         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
932         ev.msg.event_data.event =
933             attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
934         ev.payload.peer_id = context_id;
935         ev.payload.handle = handle;
936
937         return vmci_event_dispatch(&ev.msg.hdr);
938 }
939
940 /*
941  * Allocates and initializes a qp_guest_endpoint structure.
942  * Allocates a queue_pair rid (and handle) iff the given entry has
943  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
944  * are reserved handles.  Assumes that the QP list mutex is held
945  * by the caller.
946  */
947 static struct qp_guest_endpoint *
948 qp_guest_endpoint_create(struct vmci_handle handle,
949                          u32 peer,
950                          u32 flags,
951                          u64 produce_size,
952                          u64 consume_size,
953                          void *produce_q,
954                          void *consume_q)
955 {
956         int result;
957         struct qp_guest_endpoint *entry;
958         /* One page each for the queue headers. */
959         const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
960             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
961
962         if (vmci_handle_is_invalid(handle)) {
963                 u32 context_id = vmci_get_context_id();
964
965                 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
966         }
967
968         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
969         if (entry) {
970                 entry->qp.peer = peer;
971                 entry->qp.flags = flags;
972                 entry->qp.produce_size = produce_size;
973                 entry->qp.consume_size = consume_size;
974                 entry->qp.ref_count = 0;
975                 entry->num_ppns = num_ppns;
976                 entry->produce_q = produce_q;
977                 entry->consume_q = consume_q;
978                 INIT_LIST_HEAD(&entry->qp.list_item);
979
980                 /* Add resource obj */
981                 result = vmci_resource_add(&entry->resource,
982                                            VMCI_RESOURCE_TYPE_QPAIR_GUEST,
983                                            handle);
984                 entry->qp.handle = vmci_resource_handle(&entry->resource);
985                 if ((result != VMCI_SUCCESS) ||
986                     qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
987                         pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
988                                 handle.context, handle.resource, result);
989                         kfree(entry);
990                         entry = NULL;
991                 }
992         }
993         return entry;
994 }
995
996 /*
997  * Frees a qp_guest_endpoint structure.
998  */
999 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1000 {
1001         qp_free_ppn_set(&entry->ppn_set);
1002         qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1003         qp_free_queue(entry->produce_q, entry->qp.produce_size);
1004         qp_free_queue(entry->consume_q, entry->qp.consume_size);
1005         /* Unlink from resource hash table and free callback */
1006         vmci_resource_remove(&entry->resource);
1007
1008         kfree(entry);
1009 }
1010
1011 /*
1012  * Helper to make a queue_pairAlloc hypercall when the driver is
1013  * supporting a guest device.
1014  */
1015 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1016 {
1017         struct vmci_qp_alloc_msg *alloc_msg;
1018         size_t msg_size;
1019         int result;
1020
1021         if (!entry || entry->num_ppns <= 2)
1022                 return VMCI_ERROR_INVALID_ARGS;
1023
1024         msg_size = sizeof(*alloc_msg) +
1025             (size_t) entry->num_ppns * sizeof(u32);
1026         alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1027         if (!alloc_msg)
1028                 return VMCI_ERROR_NO_MEM;
1029
1030         alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1031                                               VMCI_QUEUEPAIR_ALLOC);
1032         alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1033         alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1034         alloc_msg->handle = entry->qp.handle;
1035         alloc_msg->peer = entry->qp.peer;
1036         alloc_msg->flags = entry->qp.flags;
1037         alloc_msg->produce_size = entry->qp.produce_size;
1038         alloc_msg->consume_size = entry->qp.consume_size;
1039         alloc_msg->num_ppns = entry->num_ppns;
1040
1041         result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1042                                      &entry->ppn_set);
1043         if (result == VMCI_SUCCESS)
1044                 result = vmci_send_datagram(&alloc_msg->hdr);
1045
1046         kfree(alloc_msg);
1047
1048         return result;
1049 }
1050
1051 /*
1052  * Helper to make a queue_pairDetach hypercall when the driver is
1053  * supporting a guest device.
1054  */
1055 static int qp_detatch_hypercall(struct vmci_handle handle)
1056 {
1057         struct vmci_qp_detach_msg detach_msg;
1058
1059         detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1060                                               VMCI_QUEUEPAIR_DETACH);
1061         detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1062         detach_msg.hdr.payload_size = sizeof(handle);
1063         detach_msg.handle = handle;
1064
1065         return vmci_send_datagram(&detach_msg.hdr);
1066 }
1067
1068 /*
1069  * Adds the given entry to the list. Assumes that the list is locked.
1070  */
1071 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1072 {
1073         if (entry)
1074                 list_add(&entry->list_item, &qp_list->head);
1075 }
1076
1077 /*
1078  * Removes the given entry from the list. Assumes that the list is locked.
1079  */
1080 static void qp_list_remove_entry(struct qp_list *qp_list,
1081                                  struct qp_entry *entry)
1082 {
1083         if (entry)
1084                 list_del(&entry->list_item);
1085 }
1086
1087 /*
1088  * Helper for VMCI queue_pair detach interface. Frees the physical
1089  * pages for the queue pair.
1090  */
1091 static int qp_detatch_guest_work(struct vmci_handle handle)
1092 {
1093         int result;
1094         struct qp_guest_endpoint *entry;
1095         u32 ref_count = ~0;     /* To avoid compiler warning below */
1096
1097         mutex_lock(&qp_guest_endpoints.mutex);
1098
1099         entry = qp_guest_handle_to_entry(handle);
1100         if (!entry) {
1101                 mutex_unlock(&qp_guest_endpoints.mutex);
1102                 return VMCI_ERROR_NOT_FOUND;
1103         }
1104
1105         if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1106                 result = VMCI_SUCCESS;
1107
1108                 if (entry->qp.ref_count > 1) {
1109                         result = qp_notify_peer_local(false, handle);
1110                         /*
1111                          * We can fail to notify a local queuepair
1112                          * because we can't allocate.  We still want
1113                          * to release the entry if that happens, so
1114                          * don't bail out yet.
1115                          */
1116                 }
1117         } else {
1118                 result = qp_detatch_hypercall(handle);
1119                 if (result < VMCI_SUCCESS) {
1120                         /*
1121                          * We failed to notify a non-local queuepair.
1122                          * That other queuepair might still be
1123                          * accessing the shared memory, so don't
1124                          * release the entry yet.  It will get cleaned
1125                          * up by VMCIqueue_pair_Exit() if necessary
1126                          * (assuming we are going away, otherwise why
1127                          * did this fail?).
1128                          */
1129
1130                         mutex_unlock(&qp_guest_endpoints.mutex);
1131                         return result;
1132                 }
1133         }
1134
1135         /*
1136          * If we get here then we either failed to notify a local queuepair, or
1137          * we succeeded in all cases.  Release the entry if required.
1138          */
1139
1140         entry->qp.ref_count--;
1141         if (entry->qp.ref_count == 0)
1142                 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1143
1144         /* If we didn't remove the entry, this could change once we unlock. */
1145         if (entry)
1146                 ref_count = entry->qp.ref_count;
1147
1148         mutex_unlock(&qp_guest_endpoints.mutex);
1149
1150         if (ref_count == 0)
1151                 qp_guest_endpoint_destroy(entry);
1152
1153         return result;
1154 }
1155
1156 /*
1157  * This functions handles the actual allocation of a VMCI queue
1158  * pair guest endpoint. Allocates physical pages for the queue
1159  * pair. It makes OS dependent calls through generic wrappers.
1160  */
1161 static int qp_alloc_guest_work(struct vmci_handle *handle,
1162                                struct vmci_queue **produce_q,
1163                                u64 produce_size,
1164                                struct vmci_queue **consume_q,
1165                                u64 consume_size,
1166                                u32 peer,
1167                                u32 flags,
1168                                u32 priv_flags)
1169 {
1170         const u64 num_produce_pages =
1171             DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1172         const u64 num_consume_pages =
1173             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1174         void *my_produce_q = NULL;
1175         void *my_consume_q = NULL;
1176         int result;
1177         struct qp_guest_endpoint *queue_pair_entry = NULL;
1178
1179         if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1180                 return VMCI_ERROR_NO_ACCESS;
1181
1182         mutex_lock(&qp_guest_endpoints.mutex);
1183
1184         queue_pair_entry = qp_guest_handle_to_entry(*handle);
1185         if (queue_pair_entry) {
1186                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1187                         /* Local attach case. */
1188                         if (queue_pair_entry->qp.ref_count > 1) {
1189                                 pr_devel("Error attempting to attach more than once\n");
1190                                 result = VMCI_ERROR_UNAVAILABLE;
1191                                 goto error_keep_entry;
1192                         }
1193
1194                         if (queue_pair_entry->qp.produce_size != consume_size ||
1195                             queue_pair_entry->qp.consume_size !=
1196                             produce_size ||
1197                             queue_pair_entry->qp.flags !=
1198                             (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1199                                 pr_devel("Error mismatched queue pair in local attach\n");
1200                                 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1201                                 goto error_keep_entry;
1202                         }
1203
1204                         /*
1205                          * Do a local attach.  We swap the consume and
1206                          * produce queues for the attacher and deliver
1207                          * an attach event.
1208                          */
1209                         result = qp_notify_peer_local(true, *handle);
1210                         if (result < VMCI_SUCCESS)
1211                                 goto error_keep_entry;
1212
1213                         my_produce_q = queue_pair_entry->consume_q;
1214                         my_consume_q = queue_pair_entry->produce_q;
1215                         goto out;
1216                 }
1217
1218                 result = VMCI_ERROR_ALREADY_EXISTS;
1219                 goto error_keep_entry;
1220         }
1221
1222         my_produce_q = qp_alloc_queue(produce_size, flags);
1223         if (!my_produce_q) {
1224                 pr_warn("Error allocating pages for produce queue\n");
1225                 result = VMCI_ERROR_NO_MEM;
1226                 goto error;
1227         }
1228
1229         my_consume_q = qp_alloc_queue(consume_size, flags);
1230         if (!my_consume_q) {
1231                 pr_warn("Error allocating pages for consume queue\n");
1232                 result = VMCI_ERROR_NO_MEM;
1233                 goto error;
1234         }
1235
1236         queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1237                                                     produce_size, consume_size,
1238                                                     my_produce_q, my_consume_q);
1239         if (!queue_pair_entry) {
1240                 pr_warn("Error allocating memory in %s\n", __func__);
1241                 result = VMCI_ERROR_NO_MEM;
1242                 goto error;
1243         }
1244
1245         result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1246                                   num_consume_pages,
1247                                   &queue_pair_entry->ppn_set);
1248         if (result < VMCI_SUCCESS) {
1249                 pr_warn("qp_alloc_ppn_set failed\n");
1250                 goto error;
1251         }
1252
1253         /*
1254          * It's only necessary to notify the host if this queue pair will be
1255          * attached to from another context.
1256          */
1257         if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1258                 /* Local create case. */
1259                 u32 context_id = vmci_get_context_id();
1260
1261                 /*
1262                  * Enforce similar checks on local queue pairs as we
1263                  * do for regular ones.  The handle's context must
1264                  * match the creator or attacher context id (here they
1265                  * are both the current context id) and the
1266                  * attach-only flag cannot exist during create.  We
1267                  * also ensure specified peer is this context or an
1268                  * invalid one.
1269                  */
1270                 if (queue_pair_entry->qp.handle.context != context_id ||
1271                     (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1272                      queue_pair_entry->qp.peer != context_id)) {
1273                         result = VMCI_ERROR_NO_ACCESS;
1274                         goto error;
1275                 }
1276
1277                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1278                         result = VMCI_ERROR_NOT_FOUND;
1279                         goto error;
1280                 }
1281         } else {
1282                 result = qp_alloc_hypercall(queue_pair_entry);
1283                 if (result < VMCI_SUCCESS) {
1284                         pr_warn("qp_alloc_hypercall result = %d\n", result);
1285                         goto error;
1286                 }
1287         }
1288
1289         qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1290                             (struct vmci_queue *)my_consume_q);
1291
1292         qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1293
1294  out:
1295         queue_pair_entry->qp.ref_count++;
1296         *handle = queue_pair_entry->qp.handle;
1297         *produce_q = (struct vmci_queue *)my_produce_q;
1298         *consume_q = (struct vmci_queue *)my_consume_q;
1299
1300         /*
1301          * We should initialize the queue pair header pages on a local
1302          * queue pair create.  For non-local queue pairs, the
1303          * hypervisor initializes the header pages in the create step.
1304          */
1305         if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1306             queue_pair_entry->qp.ref_count == 1) {
1307                 vmci_q_header_init((*produce_q)->q_header, *handle);
1308                 vmci_q_header_init((*consume_q)->q_header, *handle);
1309         }
1310
1311         mutex_unlock(&qp_guest_endpoints.mutex);
1312
1313         return VMCI_SUCCESS;
1314
1315  error:
1316         mutex_unlock(&qp_guest_endpoints.mutex);
1317         if (queue_pair_entry) {
1318                 /* The queues will be freed inside the destroy routine. */
1319                 qp_guest_endpoint_destroy(queue_pair_entry);
1320         } else {
1321                 qp_free_queue(my_produce_q, produce_size);
1322                 qp_free_queue(my_consume_q, consume_size);
1323         }
1324         return result;
1325
1326  error_keep_entry:
1327         /* This path should only be used when an existing entry was found. */
1328         mutex_unlock(&qp_guest_endpoints.mutex);
1329         return result;
1330 }
1331
1332 /*
1333  * The first endpoint issuing a queue pair allocation will create the state
1334  * of the queue pair in the queue pair broker.
1335  *
1336  * If the creator is a guest, it will associate a VMX virtual address range
1337  * with the queue pair as specified by the page_store. For compatibility with
1338  * older VMX'en, that would use a separate step to set the VMX virtual
1339  * address range, the virtual address range can be registered later using
1340  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1341  * used.
1342  *
1343  * If the creator is the host, a page_store of NULL should be used as well,
1344  * since the host is not able to supply a page store for the queue pair.
1345  *
1346  * For older VMX and host callers, the queue pair will be created in the
1347  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1348  * created in VMCOQPB_CREATED_MEM state.
1349  */
1350 static int qp_broker_create(struct vmci_handle handle,
1351                             u32 peer,
1352                             u32 flags,
1353                             u32 priv_flags,
1354                             u64 produce_size,
1355                             u64 consume_size,
1356                             struct vmci_qp_page_store *page_store,
1357                             struct vmci_ctx *context,
1358                             vmci_event_release_cb wakeup_cb,
1359                             void *client_data, struct qp_broker_entry **ent)
1360 {
1361         struct qp_broker_entry *entry = NULL;
1362         const u32 context_id = vmci_ctx_get_id(context);
1363         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1364         int result;
1365         u64 guest_produce_size;
1366         u64 guest_consume_size;
1367
1368         /* Do not create if the caller asked not to. */
1369         if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1370                 return VMCI_ERROR_NOT_FOUND;
1371
1372         /*
1373          * Creator's context ID should match handle's context ID or the creator
1374          * must allow the context in handle's context ID as the "peer".
1375          */
1376         if (handle.context != context_id && handle.context != peer)
1377                 return VMCI_ERROR_NO_ACCESS;
1378
1379         if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1380                 return VMCI_ERROR_DST_UNREACHABLE;
1381
1382         /*
1383          * Creator's context ID for local queue pairs should match the
1384          * peer, if a peer is specified.
1385          */
1386         if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1387                 return VMCI_ERROR_NO_ACCESS;
1388
1389         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1390         if (!entry)
1391                 return VMCI_ERROR_NO_MEM;
1392
1393         if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1394                 /*
1395                  * The queue pair broker entry stores values from the guest
1396                  * point of view, so a creating host side endpoint should swap
1397                  * produce and consume values -- unless it is a local queue
1398                  * pair, in which case no swapping is necessary, since the local
1399                  * attacher will swap queues.
1400                  */
1401
1402                 guest_produce_size = consume_size;
1403                 guest_consume_size = produce_size;
1404         } else {
1405                 guest_produce_size = produce_size;
1406                 guest_consume_size = consume_size;
1407         }
1408
1409         entry->qp.handle = handle;
1410         entry->qp.peer = peer;
1411         entry->qp.flags = flags;
1412         entry->qp.produce_size = guest_produce_size;
1413         entry->qp.consume_size = guest_consume_size;
1414         entry->qp.ref_count = 1;
1415         entry->create_id = context_id;
1416         entry->attach_id = VMCI_INVALID_ID;
1417         entry->state = VMCIQPB_NEW;
1418         entry->require_trusted_attach =
1419             !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1420         entry->created_by_trusted =
1421             !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1422         entry->vmci_page_files = false;
1423         entry->wakeup_cb = wakeup_cb;
1424         entry->client_data = client_data;
1425         entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1426         if (entry->produce_q == NULL) {
1427                 result = VMCI_ERROR_NO_MEM;
1428                 goto error;
1429         }
1430         entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1431         if (entry->consume_q == NULL) {
1432                 result = VMCI_ERROR_NO_MEM;
1433                 goto error;
1434         }
1435
1436         qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1437
1438         INIT_LIST_HEAD(&entry->qp.list_item);
1439
1440         if (is_local) {
1441                 u8 *tmp;
1442
1443                 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1444                                            PAGE_SIZE, GFP_KERNEL);
1445                 if (entry->local_mem == NULL) {
1446                         result = VMCI_ERROR_NO_MEM;
1447                         goto error;
1448                 }
1449                 entry->state = VMCIQPB_CREATED_MEM;
1450                 entry->produce_q->q_header = entry->local_mem;
1451                 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1452                     (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1453                 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1454         } else if (page_store) {
1455                 /*
1456                  * The VMX already initialized the queue pair headers, so no
1457                  * need for the kernel side to do that.
1458                  */
1459                 result = qp_host_register_user_memory(page_store,
1460                                                       entry->produce_q,
1461                                                       entry->consume_q);
1462                 if (result < VMCI_SUCCESS)
1463                         goto error;
1464
1465                 entry->state = VMCIQPB_CREATED_MEM;
1466         } else {
1467                 /*
1468                  * A create without a page_store may be either a host
1469                  * side create (in which case we are waiting for the
1470                  * guest side to supply the memory) or an old style
1471                  * queue pair create (in which case we will expect a
1472                  * set page store call as the next step).
1473                  */
1474                 entry->state = VMCIQPB_CREATED_NO_MEM;
1475         }
1476
1477         qp_list_add_entry(&qp_broker_list, &entry->qp);
1478         if (ent != NULL)
1479                 *ent = entry;
1480
1481         /* Add to resource obj */
1482         result = vmci_resource_add(&entry->resource,
1483                                    VMCI_RESOURCE_TYPE_QPAIR_HOST,
1484                                    handle);
1485         if (result != VMCI_SUCCESS) {
1486                 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1487                         handle.context, handle.resource, result);
1488                 goto error;
1489         }
1490
1491         entry->qp.handle = vmci_resource_handle(&entry->resource);
1492         if (is_local) {
1493                 vmci_q_header_init(entry->produce_q->q_header,
1494                                    entry->qp.handle);
1495                 vmci_q_header_init(entry->consume_q->q_header,
1496                                    entry->qp.handle);
1497         }
1498
1499         vmci_ctx_qp_create(context, entry->qp.handle);
1500
1501         return VMCI_SUCCESS;
1502
1503  error:
1504         if (entry != NULL) {
1505                 qp_host_free_queue(entry->produce_q, guest_produce_size);
1506                 qp_host_free_queue(entry->consume_q, guest_consume_size);
1507                 kfree(entry);
1508         }
1509
1510         return result;
1511 }
1512
1513 /*
1514  * Enqueues an event datagram to notify the peer VM attached to
1515  * the given queue pair handle about attach/detach event by the
1516  * given VM.  Returns Payload size of datagram enqueued on
1517  * success, error code otherwise.
1518  */
1519 static int qp_notify_peer(bool attach,
1520                           struct vmci_handle handle,
1521                           u32 my_id,
1522                           u32 peer_id)
1523 {
1524         int rv;
1525         struct vmci_event_qp ev;
1526
1527         if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1528             peer_id == VMCI_INVALID_ID)
1529                 return VMCI_ERROR_INVALID_ARGS;
1530
1531         /*
1532          * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1533          * number of pending events from the hypervisor to a given VM
1534          * otherwise a rogue VM could do an arbitrary number of attach
1535          * and detach operations causing memory pressure in the host
1536          * kernel.
1537          */
1538
1539         ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1540         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1541                                           VMCI_CONTEXT_RESOURCE_ID);
1542         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1543         ev.msg.event_data.event = attach ?
1544             VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1545         ev.payload.handle = handle;
1546         ev.payload.peer_id = my_id;
1547
1548         rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1549                                     &ev.msg.hdr, false);
1550         if (rv < VMCI_SUCCESS)
1551                 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1552                         attach ? "ATTACH" : "DETACH", peer_id);
1553
1554         return rv;
1555 }
1556
1557 /*
1558  * The second endpoint issuing a queue pair allocation will attach to
1559  * the queue pair registered with the queue pair broker.
1560  *
1561  * If the attacher is a guest, it will associate a VMX virtual address
1562  * range with the queue pair as specified by the page_store. At this
1563  * point, the already attach host endpoint may start using the queue
1564  * pair, and an attach event is sent to it. For compatibility with
1565  * older VMX'en, that used a separate step to set the VMX virtual
1566  * address range, the virtual address range can be registered later
1567  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1568  * NULL should be used, and the attach event will be generated once
1569  * the actual page store has been set.
1570  *
1571  * If the attacher is the host, a page_store of NULL should be used as
1572  * well, since the page store information is already set by the guest.
1573  *
1574  * For new VMX and host callers, the queue pair will be moved to the
1575  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1576  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1577  */
1578 static int qp_broker_attach(struct qp_broker_entry *entry,
1579                             u32 peer,
1580                             u32 flags,
1581                             u32 priv_flags,
1582                             u64 produce_size,
1583                             u64 consume_size,
1584                             struct vmci_qp_page_store *page_store,
1585                             struct vmci_ctx *context,
1586                             vmci_event_release_cb wakeup_cb,
1587                             void *client_data,
1588                             struct qp_broker_entry **ent)
1589 {
1590         const u32 context_id = vmci_ctx_get_id(context);
1591         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1592         int result;
1593
1594         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1595             entry->state != VMCIQPB_CREATED_MEM)
1596                 return VMCI_ERROR_UNAVAILABLE;
1597
1598         if (is_local) {
1599                 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1600                     context_id != entry->create_id) {
1601                         return VMCI_ERROR_INVALID_ARGS;
1602                 }
1603         } else if (context_id == entry->create_id ||
1604                    context_id == entry->attach_id) {
1605                 return VMCI_ERROR_ALREADY_EXISTS;
1606         }
1607
1608         if (VMCI_CONTEXT_IS_VM(context_id) &&
1609             VMCI_CONTEXT_IS_VM(entry->create_id))
1610                 return VMCI_ERROR_DST_UNREACHABLE;
1611
1612         /*
1613          * If we are attaching from a restricted context then the queuepair
1614          * must have been created by a trusted endpoint.
1615          */
1616         if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1617             !entry->created_by_trusted)
1618                 return VMCI_ERROR_NO_ACCESS;
1619
1620         /*
1621          * If we are attaching to a queuepair that was created by a restricted
1622          * context then we must be trusted.
1623          */
1624         if (entry->require_trusted_attach &&
1625             (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1626                 return VMCI_ERROR_NO_ACCESS;
1627
1628         /*
1629          * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1630          * control check is not performed.
1631          */
1632         if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1633                 return VMCI_ERROR_NO_ACCESS;
1634
1635         if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1636                 /*
1637                  * Do not attach if the caller doesn't support Host Queue Pairs
1638                  * and a host created this queue pair.
1639                  */
1640
1641                 if (!vmci_ctx_supports_host_qp(context))
1642                         return VMCI_ERROR_INVALID_RESOURCE;
1643
1644         } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1645                 struct vmci_ctx *create_context;
1646                 bool supports_host_qp;
1647
1648                 /*
1649                  * Do not attach a host to a user created queue pair if that
1650                  * user doesn't support host queue pair end points.
1651                  */
1652
1653                 create_context = vmci_ctx_get(entry->create_id);
1654                 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1655                 vmci_ctx_put(create_context);
1656
1657                 if (!supports_host_qp)
1658                         return VMCI_ERROR_INVALID_RESOURCE;
1659         }
1660
1661         if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1662                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1663
1664         if (context_id != VMCI_HOST_CONTEXT_ID) {
1665                 /*
1666                  * The queue pair broker entry stores values from the guest
1667                  * point of view, so an attaching guest should match the values
1668                  * stored in the entry.
1669                  */
1670
1671                 if (entry->qp.produce_size != produce_size ||
1672                     entry->qp.consume_size != consume_size) {
1673                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1674                 }
1675         } else if (entry->qp.produce_size != consume_size ||
1676                    entry->qp.consume_size != produce_size) {
1677                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1678         }
1679
1680         if (context_id != VMCI_HOST_CONTEXT_ID) {
1681                 /*
1682                  * If a guest attached to a queue pair, it will supply
1683                  * the backing memory.  If this is a pre NOVMVM vmx,
1684                  * the backing memory will be supplied by calling
1685                  * vmci_qp_broker_set_page_store() following the
1686                  * return of the vmci_qp_broker_alloc() call. If it is
1687                  * a vmx of version NOVMVM or later, the page store
1688                  * must be supplied as part of the
1689                  * vmci_qp_broker_alloc call.  Under all circumstances
1690                  * must the initially created queue pair not have any
1691                  * memory associated with it already.
1692                  */
1693
1694                 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1695                         return VMCI_ERROR_INVALID_ARGS;
1696
1697                 if (page_store != NULL) {
1698                         /*
1699                          * Patch up host state to point to guest
1700                          * supplied memory. The VMX already
1701                          * initialized the queue pair headers, so no
1702                          * need for the kernel side to do that.
1703                          */
1704
1705                         result = qp_host_register_user_memory(page_store,
1706                                                               entry->produce_q,
1707                                                               entry->consume_q);
1708                         if (result < VMCI_SUCCESS)
1709                                 return result;
1710
1711                         entry->state = VMCIQPB_ATTACHED_MEM;
1712                 } else {
1713                         entry->state = VMCIQPB_ATTACHED_NO_MEM;
1714                 }
1715         } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1716                 /*
1717                  * The host side is attempting to attach to a queue
1718                  * pair that doesn't have any memory associated with
1719                  * it. This must be a pre NOVMVM vmx that hasn't set
1720                  * the page store information yet, or a quiesced VM.
1721                  */
1722
1723                 return VMCI_ERROR_UNAVAILABLE;
1724         } else {
1725                 /* The host side has successfully attached to a queue pair. */
1726                 entry->state = VMCIQPB_ATTACHED_MEM;
1727         }
1728
1729         if (entry->state == VMCIQPB_ATTACHED_MEM) {
1730                 result =
1731                     qp_notify_peer(true, entry->qp.handle, context_id,
1732                                    entry->create_id);
1733                 if (result < VMCI_SUCCESS)
1734                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1735                                 entry->create_id, entry->qp.handle.context,
1736                                 entry->qp.handle.resource);
1737         }
1738
1739         entry->attach_id = context_id;
1740         entry->qp.ref_count++;
1741         if (wakeup_cb) {
1742                 entry->wakeup_cb = wakeup_cb;
1743                 entry->client_data = client_data;
1744         }
1745
1746         /*
1747          * When attaching to local queue pairs, the context already has
1748          * an entry tracking the queue pair, so don't add another one.
1749          */
1750         if (!is_local)
1751                 vmci_ctx_qp_create(context, entry->qp.handle);
1752
1753         if (ent != NULL)
1754                 *ent = entry;
1755
1756         return VMCI_SUCCESS;
1757 }
1758
1759 /*
1760  * queue_pair_Alloc for use when setting up queue pair endpoints
1761  * on the host.
1762  */
1763 static int qp_broker_alloc(struct vmci_handle handle,
1764                            u32 peer,
1765                            u32 flags,
1766                            u32 priv_flags,
1767                            u64 produce_size,
1768                            u64 consume_size,
1769                            struct vmci_qp_page_store *page_store,
1770                            struct vmci_ctx *context,
1771                            vmci_event_release_cb wakeup_cb,
1772                            void *client_data,
1773                            struct qp_broker_entry **ent,
1774                            bool *swap)
1775 {
1776         const u32 context_id = vmci_ctx_get_id(context);
1777         bool create;
1778         struct qp_broker_entry *entry = NULL;
1779         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1780         int result;
1781
1782         if (vmci_handle_is_invalid(handle) ||
1783             (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1784             !(produce_size || consume_size) ||
1785             !context || context_id == VMCI_INVALID_ID ||
1786             handle.context == VMCI_INVALID_ID) {
1787                 return VMCI_ERROR_INVALID_ARGS;
1788         }
1789
1790         if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1791                 return VMCI_ERROR_INVALID_ARGS;
1792
1793         /*
1794          * In the initial argument check, we ensure that non-vmkernel hosts
1795          * are not allowed to create local queue pairs.
1796          */
1797
1798         mutex_lock(&qp_broker_list.mutex);
1799
1800         if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1801                 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1802                          context_id, handle.context, handle.resource);
1803                 mutex_unlock(&qp_broker_list.mutex);
1804                 return VMCI_ERROR_ALREADY_EXISTS;
1805         }
1806
1807         if (handle.resource != VMCI_INVALID_ID)
1808                 entry = qp_broker_handle_to_entry(handle);
1809
1810         if (!entry) {
1811                 create = true;
1812                 result =
1813                     qp_broker_create(handle, peer, flags, priv_flags,
1814                                      produce_size, consume_size, page_store,
1815                                      context, wakeup_cb, client_data, ent);
1816         } else {
1817                 create = false;
1818                 result =
1819                     qp_broker_attach(entry, peer, flags, priv_flags,
1820                                      produce_size, consume_size, page_store,
1821                                      context, wakeup_cb, client_data, ent);
1822         }
1823
1824         mutex_unlock(&qp_broker_list.mutex);
1825
1826         if (swap)
1827                 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1828                     !(create && is_local);
1829
1830         return result;
1831 }
1832
1833 /*
1834  * This function implements the kernel API for allocating a queue
1835  * pair.
1836  */
1837 static int qp_alloc_host_work(struct vmci_handle *handle,
1838                               struct vmci_queue **produce_q,
1839                               u64 produce_size,
1840                               struct vmci_queue **consume_q,
1841                               u64 consume_size,
1842                               u32 peer,
1843                               u32 flags,
1844                               u32 priv_flags,
1845                               vmci_event_release_cb wakeup_cb,
1846                               void *client_data)
1847 {
1848         struct vmci_handle new_handle;
1849         struct vmci_ctx *context;
1850         struct qp_broker_entry *entry;
1851         int result;
1852         bool swap;
1853
1854         if (vmci_handle_is_invalid(*handle)) {
1855                 new_handle = vmci_make_handle(
1856                         VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1857         } else
1858                 new_handle = *handle;
1859
1860         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1861         entry = NULL;
1862         result =
1863             qp_broker_alloc(new_handle, peer, flags, priv_flags,
1864                             produce_size, consume_size, NULL, context,
1865                             wakeup_cb, client_data, &entry, &swap);
1866         if (result == VMCI_SUCCESS) {
1867                 if (swap) {
1868                         /*
1869                          * If this is a local queue pair, the attacher
1870                          * will swap around produce and consume
1871                          * queues.
1872                          */
1873
1874                         *produce_q = entry->consume_q;
1875                         *consume_q = entry->produce_q;
1876                 } else {
1877                         *produce_q = entry->produce_q;
1878                         *consume_q = entry->consume_q;
1879                 }
1880
1881                 *handle = vmci_resource_handle(&entry->resource);
1882         } else {
1883                 *handle = VMCI_INVALID_HANDLE;
1884                 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1885                          result);
1886         }
1887         vmci_ctx_put(context);
1888         return result;
1889 }
1890
1891 /*
1892  * Allocates a VMCI queue_pair. Only checks validity of input
1893  * arguments. The real work is done in the host or guest
1894  * specific function.
1895  */
1896 int vmci_qp_alloc(struct vmci_handle *handle,
1897                   struct vmci_queue **produce_q,
1898                   u64 produce_size,
1899                   struct vmci_queue **consume_q,
1900                   u64 consume_size,
1901                   u32 peer,
1902                   u32 flags,
1903                   u32 priv_flags,
1904                   bool guest_endpoint,
1905                   vmci_event_release_cb wakeup_cb,
1906                   void *client_data)
1907 {
1908         if (!handle || !produce_q || !consume_q ||
1909             (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1910                 return VMCI_ERROR_INVALID_ARGS;
1911
1912         if (guest_endpoint) {
1913                 return qp_alloc_guest_work(handle, produce_q,
1914                                            produce_size, consume_q,
1915                                            consume_size, peer,
1916                                            flags, priv_flags);
1917         } else {
1918                 return qp_alloc_host_work(handle, produce_q,
1919                                           produce_size, consume_q,
1920                                           consume_size, peer, flags,
1921                                           priv_flags, wakeup_cb, client_data);
1922         }
1923 }
1924
1925 /*
1926  * This function implements the host kernel API for detaching from
1927  * a queue pair.
1928  */
1929 static int qp_detatch_host_work(struct vmci_handle handle)
1930 {
1931         int result;
1932         struct vmci_ctx *context;
1933
1934         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1935
1936         result = vmci_qp_broker_detach(handle, context);
1937
1938         vmci_ctx_put(context);
1939         return result;
1940 }
1941
1942 /*
1943  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1944  * Real work is done in the host or guest specific function.
1945  */
1946 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1947 {
1948         if (vmci_handle_is_invalid(handle))
1949                 return VMCI_ERROR_INVALID_ARGS;
1950
1951         if (guest_endpoint)
1952                 return qp_detatch_guest_work(handle);
1953         else
1954                 return qp_detatch_host_work(handle);
1955 }
1956
1957 /*
1958  * Returns the entry from the head of the list. Assumes that the list is
1959  * locked.
1960  */
1961 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1962 {
1963         if (!list_empty(&qp_list->head)) {
1964                 struct qp_entry *entry =
1965                     list_first_entry(&qp_list->head, struct qp_entry,
1966                                      list_item);
1967                 return entry;
1968         }
1969
1970         return NULL;
1971 }
1972
1973 void vmci_qp_broker_exit(void)
1974 {
1975         struct qp_entry *entry;
1976         struct qp_broker_entry *be;
1977
1978         mutex_lock(&qp_broker_list.mutex);
1979
1980         while ((entry = qp_list_get_head(&qp_broker_list))) {
1981                 be = (struct qp_broker_entry *)entry;
1982
1983                 qp_list_remove_entry(&qp_broker_list, entry);
1984                 kfree(be);
1985         }
1986
1987         mutex_unlock(&qp_broker_list.mutex);
1988 }
1989
1990 /*
1991  * Requests that a queue pair be allocated with the VMCI queue
1992  * pair broker. Allocates a queue pair entry if one does not
1993  * exist. Attaches to one if it exists, and retrieves the page
1994  * files backing that queue_pair.  Assumes that the queue pair
1995  * broker lock is held.
1996  */
1997 int vmci_qp_broker_alloc(struct vmci_handle handle,
1998                          u32 peer,
1999                          u32 flags,
2000                          u32 priv_flags,
2001                          u64 produce_size,
2002                          u64 consume_size,
2003                          struct vmci_qp_page_store *page_store,
2004                          struct vmci_ctx *context)
2005 {
2006         return qp_broker_alloc(handle, peer, flags, priv_flags,
2007                                produce_size, consume_size,
2008                                page_store, context, NULL, NULL, NULL, NULL);
2009 }
2010
2011 /*
2012  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2013  * step to add the UVAs of the VMX mapping of the queue pair. This function
2014  * provides backwards compatibility with such VMX'en, and takes care of
2015  * registering the page store for a queue pair previously allocated by the
2016  * VMX during create or attach. This function will move the queue pair state
2017  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2018  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2019  * attached state with memory, the queue pair is ready to be used by the
2020  * host peer, and an attached event will be generated.
2021  *
2022  * Assumes that the queue pair broker lock is held.
2023  *
2024  * This function is only used by the hosted platform, since there is no
2025  * issue with backwards compatibility for vmkernel.
2026  */
2027 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2028                                   u64 produce_uva,
2029                                   u64 consume_uva,
2030                                   struct vmci_ctx *context)
2031 {
2032         struct qp_broker_entry *entry;
2033         int result;
2034         const u32 context_id = vmci_ctx_get_id(context);
2035
2036         if (vmci_handle_is_invalid(handle) || !context ||
2037             context_id == VMCI_INVALID_ID)
2038                 return VMCI_ERROR_INVALID_ARGS;
2039
2040         /*
2041          * We only support guest to host queue pairs, so the VMX must
2042          * supply UVAs for the mapped page files.
2043          */
2044
2045         if (produce_uva == 0 || consume_uva == 0)
2046                 return VMCI_ERROR_INVALID_ARGS;
2047
2048         mutex_lock(&qp_broker_list.mutex);
2049
2050         if (!vmci_ctx_qp_exists(context, handle)) {
2051                 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2052                         context_id, handle.context, handle.resource);
2053                 result = VMCI_ERROR_NOT_FOUND;
2054                 goto out;
2055         }
2056
2057         entry = qp_broker_handle_to_entry(handle);
2058         if (!entry) {
2059                 result = VMCI_ERROR_NOT_FOUND;
2060                 goto out;
2061         }
2062
2063         /*
2064          * If I'm the owner then I can set the page store.
2065          *
2066          * Or, if a host created the queue_pair and I'm the attached peer
2067          * then I can set the page store.
2068          */
2069         if (entry->create_id != context_id &&
2070             (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2071              entry->attach_id != context_id)) {
2072                 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2073                 goto out;
2074         }
2075
2076         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2077             entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2078                 result = VMCI_ERROR_UNAVAILABLE;
2079                 goto out;
2080         }
2081
2082         result = qp_host_get_user_memory(produce_uva, consume_uva,
2083                                          entry->produce_q, entry->consume_q);
2084         if (result < VMCI_SUCCESS)
2085                 goto out;
2086
2087         result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2088         if (result < VMCI_SUCCESS) {
2089                 qp_host_unregister_user_memory(entry->produce_q,
2090                                                entry->consume_q);
2091                 goto out;
2092         }
2093
2094         if (entry->state == VMCIQPB_CREATED_NO_MEM)
2095                 entry->state = VMCIQPB_CREATED_MEM;
2096         else
2097                 entry->state = VMCIQPB_ATTACHED_MEM;
2098
2099         entry->vmci_page_files = true;
2100
2101         if (entry->state == VMCIQPB_ATTACHED_MEM) {
2102                 result =
2103                     qp_notify_peer(true, handle, context_id, entry->create_id);
2104                 if (result < VMCI_SUCCESS) {
2105                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2106                                 entry->create_id, entry->qp.handle.context,
2107                                 entry->qp.handle.resource);
2108                 }
2109         }
2110
2111         result = VMCI_SUCCESS;
2112  out:
2113         mutex_unlock(&qp_broker_list.mutex);
2114         return result;
2115 }
2116
2117 /*
2118  * Resets saved queue headers for the given QP broker
2119  * entry. Should be used when guest memory becomes available
2120  * again, or the guest detaches.
2121  */
2122 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2123 {
2124         entry->produce_q->saved_header = NULL;
2125         entry->consume_q->saved_header = NULL;
2126 }
2127
2128 /*
2129  * The main entry point for detaching from a queue pair registered with the
2130  * queue pair broker. If more than one endpoint is attached to the queue
2131  * pair, the first endpoint will mainly decrement a reference count and
2132  * generate a notification to its peer. The last endpoint will clean up
2133  * the queue pair state registered with the broker.
2134  *
2135  * When a guest endpoint detaches, it will unmap and unregister the guest
2136  * memory backing the queue pair. If the host is still attached, it will
2137  * no longer be able to access the queue pair content.
2138  *
2139  * If the queue pair is already in a state where there is no memory
2140  * registered for the queue pair (any *_NO_MEM state), it will transition to
2141  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2142  * endpoint is the first of two endpoints to detach. If the host endpoint is
2143  * the first out of two to detach, the queue pair will move to the
2144  * VMCIQPB_SHUTDOWN_MEM state.
2145  */
2146 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2147 {
2148         struct qp_broker_entry *entry;
2149         const u32 context_id = vmci_ctx_get_id(context);
2150         u32 peer_id;
2151         bool is_local = false;
2152         int result;
2153
2154         if (vmci_handle_is_invalid(handle) || !context ||
2155             context_id == VMCI_INVALID_ID) {
2156                 return VMCI_ERROR_INVALID_ARGS;
2157         }
2158
2159         mutex_lock(&qp_broker_list.mutex);
2160
2161         if (!vmci_ctx_qp_exists(context, handle)) {
2162                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2163                          context_id, handle.context, handle.resource);
2164                 result = VMCI_ERROR_NOT_FOUND;
2165                 goto out;
2166         }
2167
2168         entry = qp_broker_handle_to_entry(handle);
2169         if (!entry) {
2170                 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2171                          context_id, handle.context, handle.resource);
2172                 result = VMCI_ERROR_NOT_FOUND;
2173                 goto out;
2174         }
2175
2176         if (context_id != entry->create_id && context_id != entry->attach_id) {
2177                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2178                 goto out;
2179         }
2180
2181         if (context_id == entry->create_id) {
2182                 peer_id = entry->attach_id;
2183                 entry->create_id = VMCI_INVALID_ID;
2184         } else {
2185                 peer_id = entry->create_id;
2186                 entry->attach_id = VMCI_INVALID_ID;
2187         }
2188         entry->qp.ref_count--;
2189
2190         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2191
2192         if (context_id != VMCI_HOST_CONTEXT_ID) {
2193                 bool headers_mapped;
2194
2195                 /*
2196                  * Pre NOVMVM vmx'en may detach from a queue pair
2197                  * before setting the page store, and in that case
2198                  * there is no user memory to detach from. Also, more
2199                  * recent VMX'en may detach from a queue pair in the
2200                  * quiesced state.
2201                  */
2202
2203                 qp_acquire_queue_mutex(entry->produce_q);
2204                 headers_mapped = entry->produce_q->q_header ||
2205                     entry->consume_q->q_header;
2206                 if (QPBROKERSTATE_HAS_MEM(entry)) {
2207                         result =
2208                             qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2209                                                  entry->produce_q,
2210                                                  entry->consume_q);
2211                         if (result < VMCI_SUCCESS)
2212                                 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2213                                         handle.context, handle.resource,
2214                                         result);
2215
2216                         if (entry->vmci_page_files)
2217                                 qp_host_unregister_user_memory(entry->produce_q,
2218                                                                entry->
2219                                                                consume_q);
2220                         else
2221                                 qp_host_unregister_user_memory(entry->produce_q,
2222                                                                entry->
2223                                                                consume_q);
2224
2225                 }
2226
2227                 if (!headers_mapped)
2228                         qp_reset_saved_headers(entry);
2229
2230                 qp_release_queue_mutex(entry->produce_q);
2231
2232                 if (!headers_mapped && entry->wakeup_cb)
2233                         entry->wakeup_cb(entry->client_data);
2234
2235         } else {
2236                 if (entry->wakeup_cb) {
2237                         entry->wakeup_cb = NULL;
2238                         entry->client_data = NULL;
2239                 }
2240         }
2241
2242         if (entry->qp.ref_count == 0) {
2243                 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2244
2245                 if (is_local)
2246                         kfree(entry->local_mem);
2247
2248                 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2249                 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2250                 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2251                 /* Unlink from resource hash table and free callback */
2252                 vmci_resource_remove(&entry->resource);
2253
2254                 kfree(entry);
2255
2256                 vmci_ctx_qp_destroy(context, handle);
2257         } else {
2258                 qp_notify_peer(false, handle, context_id, peer_id);
2259                 if (context_id == VMCI_HOST_CONTEXT_ID &&
2260                     QPBROKERSTATE_HAS_MEM(entry)) {
2261                         entry->state = VMCIQPB_SHUTDOWN_MEM;
2262                 } else {
2263                         entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2264                 }
2265
2266                 if (!is_local)
2267                         vmci_ctx_qp_destroy(context, handle);
2268
2269         }
2270         result = VMCI_SUCCESS;
2271  out:
2272         mutex_unlock(&qp_broker_list.mutex);
2273         return result;
2274 }
2275
2276 /*
2277  * Establishes the necessary mappings for a queue pair given a
2278  * reference to the queue pair guest memory. This is usually
2279  * called when a guest is unquiesced and the VMX is allowed to
2280  * map guest memory once again.
2281  */
2282 int vmci_qp_broker_map(struct vmci_handle handle,
2283                        struct vmci_ctx *context,
2284                        u64 guest_mem)
2285 {
2286         struct qp_broker_entry *entry;
2287         const u32 context_id = vmci_ctx_get_id(context);
2288         bool is_local = false;
2289         int result;
2290
2291         if (vmci_handle_is_invalid(handle) || !context ||
2292             context_id == VMCI_INVALID_ID)
2293                 return VMCI_ERROR_INVALID_ARGS;
2294
2295         mutex_lock(&qp_broker_list.mutex);
2296
2297         if (!vmci_ctx_qp_exists(context, handle)) {
2298                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2299                          context_id, handle.context, handle.resource);
2300                 result = VMCI_ERROR_NOT_FOUND;
2301                 goto out;
2302         }
2303
2304         entry = qp_broker_handle_to_entry(handle);
2305         if (!entry) {
2306                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2307                          context_id, handle.context, handle.resource);
2308                 result = VMCI_ERROR_NOT_FOUND;
2309                 goto out;
2310         }
2311
2312         if (context_id != entry->create_id && context_id != entry->attach_id) {
2313                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2314                 goto out;
2315         }
2316
2317         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2318         result = VMCI_SUCCESS;
2319
2320         if (context_id != VMCI_HOST_CONTEXT_ID) {
2321                 struct vmci_qp_page_store page_store;
2322
2323                 page_store.pages = guest_mem;
2324                 page_store.len = QPE_NUM_PAGES(entry->qp);
2325
2326                 qp_acquire_queue_mutex(entry->produce_q);
2327                 qp_reset_saved_headers(entry);
2328                 result =
2329                     qp_host_register_user_memory(&page_store,
2330                                                  entry->produce_q,
2331                                                  entry->consume_q);
2332                 qp_release_queue_mutex(entry->produce_q);
2333                 if (result == VMCI_SUCCESS) {
2334                         /* Move state from *_NO_MEM to *_MEM */
2335
2336                         entry->state++;
2337
2338                         if (entry->wakeup_cb)
2339                                 entry->wakeup_cb(entry->client_data);
2340                 }
2341         }
2342
2343  out:
2344         mutex_unlock(&qp_broker_list.mutex);
2345         return result;
2346 }
2347
2348 /*
2349  * Saves a snapshot of the queue headers for the given QP broker
2350  * entry. Should be used when guest memory is unmapped.
2351  * Results:
2352  * VMCI_SUCCESS on success, appropriate error code if guest memory
2353  * can't be accessed..
2354  */
2355 static int qp_save_headers(struct qp_broker_entry *entry)
2356 {
2357         int result;
2358
2359         if (entry->produce_q->saved_header != NULL &&
2360             entry->consume_q->saved_header != NULL) {
2361                 /*
2362                  *  If the headers have already been saved, we don't need to do
2363                  *  it again, and we don't want to map in the headers
2364                  *  unnecessarily.
2365                  */
2366
2367                 return VMCI_SUCCESS;
2368         }
2369
2370         if (NULL == entry->produce_q->q_header ||
2371             NULL == entry->consume_q->q_header) {
2372                 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2373                 if (result < VMCI_SUCCESS)
2374                         return result;
2375         }
2376
2377         memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2378                sizeof(entry->saved_produce_q));
2379         entry->produce_q->saved_header = &entry->saved_produce_q;
2380         memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2381                sizeof(entry->saved_consume_q));
2382         entry->consume_q->saved_header = &entry->saved_consume_q;
2383
2384         return VMCI_SUCCESS;
2385 }
2386
2387 /*
2388  * Removes all references to the guest memory of a given queue pair, and
2389  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2390  * called when a VM is being quiesced where access to guest memory should
2391  * avoided.
2392  */
2393 int vmci_qp_broker_unmap(struct vmci_handle handle,
2394                          struct vmci_ctx *context,
2395                          u32 gid)
2396 {
2397         struct qp_broker_entry *entry;
2398         const u32 context_id = vmci_ctx_get_id(context);
2399         bool is_local = false;
2400         int result;
2401
2402         if (vmci_handle_is_invalid(handle) || !context ||
2403             context_id == VMCI_INVALID_ID)
2404                 return VMCI_ERROR_INVALID_ARGS;
2405
2406         mutex_lock(&qp_broker_list.mutex);
2407
2408         if (!vmci_ctx_qp_exists(context, handle)) {
2409                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2410                          context_id, handle.context, handle.resource);
2411                 result = VMCI_ERROR_NOT_FOUND;
2412                 goto out;
2413         }
2414
2415         entry = qp_broker_handle_to_entry(handle);
2416         if (!entry) {
2417                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2418                          context_id, handle.context, handle.resource);
2419                 result = VMCI_ERROR_NOT_FOUND;
2420                 goto out;
2421         }
2422
2423         if (context_id != entry->create_id && context_id != entry->attach_id) {
2424                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2425                 goto out;
2426         }
2427
2428         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2429
2430         if (context_id != VMCI_HOST_CONTEXT_ID) {
2431                 qp_acquire_queue_mutex(entry->produce_q);
2432                 result = qp_save_headers(entry);
2433                 if (result < VMCI_SUCCESS)
2434                         pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2435                                 handle.context, handle.resource, result);
2436
2437                 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2438
2439                 /*
2440                  * On hosted, when we unmap queue pairs, the VMX will also
2441                  * unmap the guest memory, so we invalidate the previously
2442                  * registered memory. If the queue pair is mapped again at a
2443                  * later point in time, we will need to reregister the user
2444                  * memory with a possibly new user VA.
2445                  */
2446                 qp_host_unregister_user_memory(entry->produce_q,
2447                                                entry->consume_q);
2448
2449                 /*
2450                  * Move state from *_MEM to *_NO_MEM.
2451                  */
2452                 entry->state--;
2453
2454                 qp_release_queue_mutex(entry->produce_q);
2455         }
2456
2457         result = VMCI_SUCCESS;
2458
2459  out:
2460         mutex_unlock(&qp_broker_list.mutex);
2461         return result;
2462 }
2463
2464 /*
2465  * Destroys all guest queue pair endpoints. If active guest queue
2466  * pairs still exist, hypercalls to attempt detach from these
2467  * queue pairs will be made. Any failure to detach is silently
2468  * ignored.
2469  */
2470 void vmci_qp_guest_endpoints_exit(void)
2471 {
2472         struct qp_entry *entry;
2473         struct qp_guest_endpoint *ep;
2474
2475         mutex_lock(&qp_guest_endpoints.mutex);
2476
2477         while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2478                 ep = (struct qp_guest_endpoint *)entry;
2479
2480                 /* Don't make a hypercall for local queue_pairs. */
2481                 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2482                         qp_detatch_hypercall(entry->handle);
2483
2484                 /* We cannot fail the exit, so let's reset ref_count. */
2485                 entry->ref_count = 0;
2486                 qp_list_remove_entry(&qp_guest_endpoints, entry);
2487
2488                 qp_guest_endpoint_destroy(ep);
2489         }
2490
2491         mutex_unlock(&qp_guest_endpoints.mutex);
2492 }
2493
2494 /*
2495  * Helper routine that will lock the queue pair before subsequent
2496  * operations.
2497  * Note: Non-blocking on the host side is currently only implemented in ESX.
2498  * Since non-blocking isn't yet implemented on the host personality we
2499  * have no reason to acquire a spin lock.  So to avoid the use of an
2500  * unnecessary lock only acquire the mutex if we can block.
2501  */
2502 static void qp_lock(const struct vmci_qp *qpair)
2503 {
2504         qp_acquire_queue_mutex(qpair->produce_q);
2505 }
2506
2507 /*
2508  * Helper routine that unlocks the queue pair after calling
2509  * qp_lock.
2510  */
2511 static void qp_unlock(const struct vmci_qp *qpair)
2512 {
2513         qp_release_queue_mutex(qpair->produce_q);
2514 }
2515
2516 /*
2517  * The queue headers may not be mapped at all times. If a queue is
2518  * currently not mapped, it will be attempted to do so.
2519  */
2520 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2521                                 struct vmci_queue *consume_q)
2522 {
2523         int result;
2524
2525         if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2526                 result = qp_host_map_queues(produce_q, consume_q);
2527                 if (result < VMCI_SUCCESS)
2528                         return (produce_q->saved_header &&
2529                                 consume_q->saved_header) ?
2530                             VMCI_ERROR_QUEUEPAIR_NOT_READY :
2531                             VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2532         }
2533
2534         return VMCI_SUCCESS;
2535 }
2536
2537 /*
2538  * Helper routine that will retrieve the produce and consume
2539  * headers of a given queue pair. If the guest memory of the
2540  * queue pair is currently not available, the saved queue headers
2541  * will be returned, if these are available.
2542  */
2543 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2544                                 struct vmci_queue_header **produce_q_header,
2545                                 struct vmci_queue_header **consume_q_header)
2546 {
2547         int result;
2548
2549         result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2550         if (result == VMCI_SUCCESS) {
2551                 *produce_q_header = qpair->produce_q->q_header;
2552                 *consume_q_header = qpair->consume_q->q_header;
2553         } else if (qpair->produce_q->saved_header &&
2554                    qpair->consume_q->saved_header) {
2555                 *produce_q_header = qpair->produce_q->saved_header;
2556                 *consume_q_header = qpair->consume_q->saved_header;
2557                 result = VMCI_SUCCESS;
2558         }
2559
2560         return result;
2561 }
2562
2563 /*
2564  * Callback from VMCI queue pair broker indicating that a queue
2565  * pair that was previously not ready, now either is ready or
2566  * gone forever.
2567  */
2568 static int qp_wakeup_cb(void *client_data)
2569 {
2570         struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2571
2572         qp_lock(qpair);
2573         while (qpair->blocked > 0) {
2574                 qpair->blocked--;
2575                 qpair->generation++;
2576                 wake_up(&qpair->event);
2577         }
2578         qp_unlock(qpair);
2579
2580         return VMCI_SUCCESS;
2581 }
2582
2583 /*
2584  * Makes the calling thread wait for the queue pair to become
2585  * ready for host side access.  Returns true when thread is
2586  * woken up after queue pair state change, false otherwise.
2587  */
2588 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2589 {
2590         unsigned int generation;
2591
2592         qpair->blocked++;
2593         generation = qpair->generation;
2594         qp_unlock(qpair);
2595         wait_event(qpair->event, generation != qpair->generation);
2596         qp_lock(qpair);
2597
2598         return true;
2599 }
2600
2601 /*
2602  * Enqueues a given buffer to the produce queue using the provided
2603  * function. As many bytes as possible (space available in the queue)
2604  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2605  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2606  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2607  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2608  * an error occured when accessing the buffer,
2609  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2610  * available.  Otherwise, the number of bytes written to the queue is
2611  * returned.  Updates the tail pointer of the produce queue.
2612  */
2613 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2614                                  struct vmci_queue *consume_q,
2615                                  const u64 produce_q_size,
2616                                  const void *buf,
2617                                  size_t buf_size,
2618                                  vmci_memcpy_to_queue_func memcpy_to_queue)
2619 {
2620         s64 free_space;
2621         u64 tail;
2622         size_t written;
2623         ssize_t result;
2624
2625         result = qp_map_queue_headers(produce_q, consume_q);
2626         if (unlikely(result != VMCI_SUCCESS))
2627                 return result;
2628
2629         free_space = vmci_q_header_free_space(produce_q->q_header,
2630                                               consume_q->q_header,
2631                                               produce_q_size);
2632         if (free_space == 0)
2633                 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2634
2635         if (free_space < VMCI_SUCCESS)
2636                 return (ssize_t) free_space;
2637
2638         written = (size_t) (free_space > buf_size ? buf_size : free_space);
2639         tail = vmci_q_header_producer_tail(produce_q->q_header);
2640         if (likely(tail + written < produce_q_size)) {
2641                 result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2642         } else {
2643                 /* Tail pointer wraps around. */
2644
2645                 const size_t tmp = (size_t) (produce_q_size - tail);
2646
2647                 result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2648                 if (result >= VMCI_SUCCESS)
2649                         result = memcpy_to_queue(produce_q, 0, buf, tmp,
2650                                                  written - tmp);
2651         }
2652
2653         if (result < VMCI_SUCCESS)
2654                 return result;
2655
2656         vmci_q_header_add_producer_tail(produce_q->q_header, written,
2657                                         produce_q_size);
2658         return written;
2659 }
2660
2661 /*
2662  * Dequeues data (if available) from the given consume queue. Writes data
2663  * to the user provided buffer using the provided function.
2664  * Assumes the queue->mutex has been acquired.
2665  * Results:
2666  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2667  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2668  * (as defined by the queue size).
2669  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2670  * Otherwise the number of bytes dequeued is returned.
2671  * Side effects:
2672  * Updates the head pointer of the consume queue.
2673  */
2674 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2675                                  struct vmci_queue *consume_q,
2676                                  const u64 consume_q_size,
2677                                  void *buf,
2678                                  size_t buf_size,
2679                                  vmci_memcpy_from_queue_func memcpy_from_queue,
2680                                  bool update_consumer)
2681 {
2682         s64 buf_ready;
2683         u64 head;
2684         size_t read;
2685         ssize_t result;
2686
2687         result = qp_map_queue_headers(produce_q, consume_q);
2688         if (unlikely(result != VMCI_SUCCESS))
2689                 return result;
2690
2691         buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2692                                             produce_q->q_header,
2693                                             consume_q_size);
2694         if (buf_ready == 0)
2695                 return VMCI_ERROR_QUEUEPAIR_NODATA;
2696
2697         if (buf_ready < VMCI_SUCCESS)
2698                 return (ssize_t) buf_ready;
2699
2700         read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2701         head = vmci_q_header_consumer_head(produce_q->q_header);
2702         if (likely(head + read < consume_q_size)) {
2703                 result = memcpy_from_queue(buf, 0, consume_q, head, read);
2704         } else {
2705                 /* Head pointer wraps around. */
2706
2707                 const size_t tmp = (size_t) (consume_q_size - head);
2708
2709                 result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2710                 if (result >= VMCI_SUCCESS)
2711                         result = memcpy_from_queue(buf, tmp, consume_q, 0,
2712                                                    read - tmp);
2713
2714         }
2715
2716         if (result < VMCI_SUCCESS)
2717                 return result;
2718
2719         if (update_consumer)
2720                 vmci_q_header_add_consumer_head(produce_q->q_header,
2721                                                 read, consume_q_size);
2722
2723         return read;
2724 }
2725
2726 /*
2727  * vmci_qpair_alloc() - Allocates a queue pair.
2728  * @qpair:      Pointer for the new vmci_qp struct.
2729  * @handle:     Handle to track the resource.
2730  * @produce_qsize:      Desired size of the producer queue.
2731  * @consume_qsize:      Desired size of the consumer queue.
2732  * @peer:       ContextID of the peer.
2733  * @flags:      VMCI flags.
2734  * @priv_flags: VMCI priviledge flags.
2735  *
2736  * This is the client interface for allocating the memory for a
2737  * vmci_qp structure and then attaching to the underlying
2738  * queue.  If an error occurs allocating the memory for the
2739  * vmci_qp structure no attempt is made to attach.  If an
2740  * error occurs attaching, then the structure is freed.
2741  */
2742 int vmci_qpair_alloc(struct vmci_qp **qpair,
2743                      struct vmci_handle *handle,
2744                      u64 produce_qsize,
2745                      u64 consume_qsize,
2746                      u32 peer,
2747                      u32 flags,
2748                      u32 priv_flags)
2749 {
2750         struct vmci_qp *my_qpair;
2751         int retval;
2752         struct vmci_handle src = VMCI_INVALID_HANDLE;
2753         struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2754         enum vmci_route route;
2755         vmci_event_release_cb wakeup_cb;
2756         void *client_data;
2757
2758         /*
2759          * Restrict the size of a queuepair.  The device already
2760          * enforces a limit on the total amount of memory that can be
2761          * allocated to queuepairs for a guest.  However, we try to
2762          * allocate this memory before we make the queuepair
2763          * allocation hypercall.  On Linux, we allocate each page
2764          * separately, which means rather than fail, the guest will
2765          * thrash while it tries to allocate, and will become
2766          * increasingly unresponsive to the point where it appears to
2767          * be hung.  So we place a limit on the size of an individual
2768          * queuepair here, and leave the device to enforce the
2769          * restriction on total queuepair memory.  (Note that this
2770          * doesn't prevent all cases; a user with only this much
2771          * physical memory could still get into trouble.)  The error
2772          * used by the device is NO_RESOURCES, so use that here too.
2773          */
2774
2775         if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2776             produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2777                 return VMCI_ERROR_NO_RESOURCES;
2778
2779         retval = vmci_route(&src, &dst, false, &route);
2780         if (retval < VMCI_SUCCESS)
2781                 route = vmci_guest_code_active() ?
2782                     VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2783
2784         if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2785                 pr_devel("NONBLOCK OR PINNED set");
2786                 return VMCI_ERROR_INVALID_ARGS;
2787         }
2788
2789         my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2790         if (!my_qpair)
2791                 return VMCI_ERROR_NO_MEM;
2792
2793         my_qpair->produce_q_size = produce_qsize;
2794         my_qpair->consume_q_size = consume_qsize;
2795         my_qpair->peer = peer;
2796         my_qpair->flags = flags;
2797         my_qpair->priv_flags = priv_flags;
2798
2799         wakeup_cb = NULL;
2800         client_data = NULL;
2801
2802         if (VMCI_ROUTE_AS_HOST == route) {
2803                 my_qpair->guest_endpoint = false;
2804                 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2805                         my_qpair->blocked = 0;
2806                         my_qpair->generation = 0;
2807                         init_waitqueue_head(&my_qpair->event);
2808                         wakeup_cb = qp_wakeup_cb;
2809                         client_data = (void *)my_qpair;
2810                 }
2811         } else {
2812                 my_qpair->guest_endpoint = true;
2813         }
2814
2815         retval = vmci_qp_alloc(handle,
2816                                &my_qpair->produce_q,
2817                                my_qpair->produce_q_size,
2818                                &my_qpair->consume_q,
2819                                my_qpair->consume_q_size,
2820                                my_qpair->peer,
2821                                my_qpair->flags,
2822                                my_qpair->priv_flags,
2823                                my_qpair->guest_endpoint,
2824                                wakeup_cb, client_data);
2825
2826         if (retval < VMCI_SUCCESS) {
2827                 kfree(my_qpair);
2828                 return retval;
2829         }
2830
2831         *qpair = my_qpair;
2832         my_qpair->handle = *handle;
2833
2834         return retval;
2835 }
2836 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2837
2838 /*
2839  * vmci_qpair_detach() - Detatches the client from a queue pair.
2840  * @qpair:      Reference of a pointer to the qpair struct.
2841  *
2842  * This is the client interface for detaching from a VMCIQPair.
2843  * Note that this routine will free the memory allocated for the
2844  * vmci_qp structure too.
2845  */
2846 int vmci_qpair_detach(struct vmci_qp **qpair)
2847 {
2848         int result;
2849         struct vmci_qp *old_qpair;
2850
2851         if (!qpair || !(*qpair))
2852                 return VMCI_ERROR_INVALID_ARGS;
2853
2854         old_qpair = *qpair;
2855         result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2856
2857         /*
2858          * The guest can fail to detach for a number of reasons, and
2859          * if it does so, it will cleanup the entry (if there is one).
2860          * The host can fail too, but it won't cleanup the entry
2861          * immediately, it will do that later when the context is
2862          * freed.  Either way, we need to release the qpair struct
2863          * here; there isn't much the caller can do, and we don't want
2864          * to leak.
2865          */
2866
2867         memset(old_qpair, 0, sizeof(*old_qpair));
2868         old_qpair->handle = VMCI_INVALID_HANDLE;
2869         old_qpair->peer = VMCI_INVALID_ID;
2870         kfree(old_qpair);
2871         *qpair = NULL;
2872
2873         return result;
2874 }
2875 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2876
2877 /*
2878  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2879  * @qpair:      Pointer to the queue pair struct.
2880  * @producer_tail:      Reference used for storing producer tail index.
2881  * @consumer_head:      Reference used for storing the consumer head index.
2882  *
2883  * This is the client interface for getting the current indexes of the
2884  * QPair from the point of the view of the caller as the producer.
2885  */
2886 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2887                                    u64 *producer_tail,
2888                                    u64 *consumer_head)
2889 {
2890         struct vmci_queue_header *produce_q_header;
2891         struct vmci_queue_header *consume_q_header;
2892         int result;
2893
2894         if (!qpair)
2895                 return VMCI_ERROR_INVALID_ARGS;
2896
2897         qp_lock(qpair);
2898         result =
2899             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2900         if (result == VMCI_SUCCESS)
2901                 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2902                                            producer_tail, consumer_head);
2903         qp_unlock(qpair);
2904
2905         if (result == VMCI_SUCCESS &&
2906             ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2907              (consumer_head && *consumer_head >= qpair->produce_q_size)))
2908                 return VMCI_ERROR_INVALID_SIZE;
2909
2910         return result;
2911 }
2912 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2913
2914 /*
2915  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2916  * @qpair:      Pointer to the queue pair struct.
2917  * @consumer_tail:      Reference used for storing consumer tail index.
2918  * @producer_head:      Reference used for storing the producer head index.
2919  *
2920  * This is the client interface for getting the current indexes of the
2921  * QPair from the point of the view of the caller as the consumer.
2922  */
2923 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2924                                    u64 *consumer_tail,
2925                                    u64 *producer_head)
2926 {
2927         struct vmci_queue_header *produce_q_header;
2928         struct vmci_queue_header *consume_q_header;
2929         int result;
2930
2931         if (!qpair)
2932                 return VMCI_ERROR_INVALID_ARGS;
2933
2934         qp_lock(qpair);
2935         result =
2936             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2937         if (result == VMCI_SUCCESS)
2938                 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2939                                            consumer_tail, producer_head);
2940         qp_unlock(qpair);
2941
2942         if (result == VMCI_SUCCESS &&
2943             ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2944              (producer_head && *producer_head >= qpair->consume_q_size)))
2945                 return VMCI_ERROR_INVALID_SIZE;
2946
2947         return result;
2948 }
2949 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2950
2951 /*
2952  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2953  * @qpair:      Pointer to the queue pair struct.
2954  *
2955  * This is the client interface for getting the amount of free
2956  * space in the QPair from the point of the view of the caller as
2957  * the producer which is the common case.  Returns < 0 if err, else
2958  * available bytes into which data can be enqueued if > 0.
2959  */
2960 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2961 {
2962         struct vmci_queue_header *produce_q_header;
2963         struct vmci_queue_header *consume_q_header;
2964         s64 result;
2965
2966         if (!qpair)
2967                 return VMCI_ERROR_INVALID_ARGS;
2968
2969         qp_lock(qpair);
2970         result =
2971             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2972         if (result == VMCI_SUCCESS)
2973                 result = vmci_q_header_free_space(produce_q_header,
2974                                                   consume_q_header,
2975                                                   qpair->produce_q_size);
2976         else
2977                 result = 0;
2978
2979         qp_unlock(qpair);
2980
2981         return result;
2982 }
2983 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2984
2985 /*
2986  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2987  * @qpair:      Pointer to the queue pair struct.
2988  *
2989  * This is the client interface for getting the amount of free
2990  * space in the QPair from the point of the view of the caller as
2991  * the consumer which is not the common case.  Returns < 0 if err, else
2992  * available bytes into which data can be enqueued if > 0.
2993  */
2994 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2995 {
2996         struct vmci_queue_header *produce_q_header;
2997         struct vmci_queue_header *consume_q_header;
2998         s64 result;
2999
3000         if (!qpair)
3001                 return VMCI_ERROR_INVALID_ARGS;
3002
3003         qp_lock(qpair);
3004         result =
3005             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3006         if (result == VMCI_SUCCESS)
3007                 result = vmci_q_header_free_space(consume_q_header,
3008                                                   produce_q_header,
3009                                                   qpair->consume_q_size);
3010         else
3011                 result = 0;
3012
3013         qp_unlock(qpair);
3014
3015         return result;
3016 }
3017 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3018
3019 /*
3020  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3021  * producer queue.
3022  * @qpair:      Pointer to the queue pair struct.
3023  *
3024  * This is the client interface for getting the amount of
3025  * enqueued data in the QPair from the point of the view of the
3026  * caller as the producer which is not the common case.  Returns < 0 if err,
3027  * else available bytes that may be read.
3028  */
3029 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3030 {
3031         struct vmci_queue_header *produce_q_header;
3032         struct vmci_queue_header *consume_q_header;
3033         s64 result;
3034
3035         if (!qpair)
3036                 return VMCI_ERROR_INVALID_ARGS;
3037
3038         qp_lock(qpair);
3039         result =
3040             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3041         if (result == VMCI_SUCCESS)
3042                 result = vmci_q_header_buf_ready(produce_q_header,
3043                                                  consume_q_header,
3044                                                  qpair->produce_q_size);
3045         else
3046                 result = 0;
3047
3048         qp_unlock(qpair);
3049
3050         return result;
3051 }
3052 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3053
3054 /*
3055  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3056  * consumer queue.
3057  * @qpair:      Pointer to the queue pair struct.
3058  *
3059  * This is the client interface for getting the amount of
3060  * enqueued data in the QPair from the point of the view of the
3061  * caller as the consumer which is the normal case.  Returns < 0 if err,
3062  * else available bytes that may be read.
3063  */
3064 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3065 {
3066         struct vmci_queue_header *produce_q_header;
3067         struct vmci_queue_header *consume_q_header;
3068         s64 result;
3069
3070         if (!qpair)
3071                 return VMCI_ERROR_INVALID_ARGS;
3072
3073         qp_lock(qpair);
3074         result =
3075             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3076         if (result == VMCI_SUCCESS)
3077                 result = vmci_q_header_buf_ready(consume_q_header,
3078                                                  produce_q_header,
3079                                                  qpair->consume_q_size);
3080         else
3081                 result = 0;
3082
3083         qp_unlock(qpair);
3084
3085         return result;
3086 }
3087 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3088
3089 /*
3090  * vmci_qpair_enqueue() - Throw data on the queue.
3091  * @qpair:      Pointer to the queue pair struct.
3092  * @buf:        Pointer to buffer containing data
3093  * @buf_size:   Length of buffer.
3094  * @buf_type:   Buffer type (Unused).
3095  *
3096  * This is the client interface for enqueueing data into the queue.
3097  * Returns number of bytes enqueued or < 0 on error.
3098  */
3099 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3100                            const void *buf,
3101                            size_t buf_size,
3102                            int buf_type)
3103 {
3104         ssize_t result;
3105
3106         if (!qpair || !buf)
3107                 return VMCI_ERROR_INVALID_ARGS;
3108
3109         qp_lock(qpair);
3110
3111         do {
3112                 result = qp_enqueue_locked(qpair->produce_q,
3113                                            qpair->consume_q,
3114                                            qpair->produce_q_size,
3115                                            buf, buf_size,
3116                                            qp_memcpy_to_queue);
3117
3118                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3119                     !qp_wait_for_ready_queue(qpair))
3120                         result = VMCI_ERROR_WOULD_BLOCK;
3121
3122         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3123
3124         qp_unlock(qpair);
3125
3126         return result;
3127 }
3128 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3129
3130 /*
3131  * vmci_qpair_dequeue() - Get data from the queue.
3132  * @qpair:      Pointer to the queue pair struct.
3133  * @buf:        Pointer to buffer for the data
3134  * @buf_size:   Length of buffer.
3135  * @buf_type:   Buffer type (Unused).
3136  *
3137  * This is the client interface for dequeueing data from the queue.
3138  * Returns number of bytes dequeued or < 0 on error.
3139  */
3140 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3141                            void *buf,
3142                            size_t buf_size,
3143                            int buf_type)
3144 {
3145         ssize_t result;
3146
3147         if (!qpair || !buf)
3148                 return VMCI_ERROR_INVALID_ARGS;
3149
3150         qp_lock(qpair);
3151
3152         do {
3153                 result = qp_dequeue_locked(qpair->produce_q,
3154                                            qpair->consume_q,
3155                                            qpair->consume_q_size,
3156                                            buf, buf_size,
3157                                            qp_memcpy_from_queue, true);
3158
3159                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3160                     !qp_wait_for_ready_queue(qpair))
3161                         result = VMCI_ERROR_WOULD_BLOCK;
3162
3163         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3164
3165         qp_unlock(qpair);
3166
3167         return result;
3168 }
3169 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3170
3171 /*
3172  * vmci_qpair_peek() - Peek at the data in the queue.
3173  * @qpair:      Pointer to the queue pair struct.
3174  * @buf:        Pointer to buffer for the data
3175  * @buf_size:   Length of buffer.
3176  * @buf_type:   Buffer type (Unused on Linux).
3177  *
3178  * This is the client interface for peeking into a queue.  (I.e.,
3179  * copy data from the queue without updating the head pointer.)
3180  * Returns number of bytes dequeued or < 0 on error.
3181  */
3182 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3183                         void *buf,
3184                         size_t buf_size,
3185                         int buf_type)
3186 {
3187         ssize_t result;
3188
3189         if (!qpair || !buf)
3190                 return VMCI_ERROR_INVALID_ARGS;
3191
3192         qp_lock(qpair);
3193
3194         do {
3195                 result = qp_dequeue_locked(qpair->produce_q,
3196                                            qpair->consume_q,
3197                                            qpair->consume_q_size,
3198                                            buf, buf_size,
3199                                            qp_memcpy_from_queue, false);
3200
3201                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3202                     !qp_wait_for_ready_queue(qpair))
3203                         result = VMCI_ERROR_WOULD_BLOCK;
3204
3205         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3206
3207         qp_unlock(qpair);
3208
3209         return result;
3210 }
3211 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3212
3213 /*
3214  * vmci_qpair_enquev() - Throw data on the queue using iov.
3215  * @qpair:      Pointer to the queue pair struct.
3216  * @iov:        Pointer to buffer containing data
3217  * @iov_size:   Length of buffer.
3218  * @buf_type:   Buffer type (Unused).
3219  *
3220  * This is the client interface for enqueueing data into the queue.
3221  * This function uses IO vectors to handle the work. Returns number
3222  * of bytes enqueued or < 0 on error.
3223  */
3224 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3225                           void *iov,
3226                           size_t iov_size,
3227                           int buf_type)
3228 {
3229         ssize_t result;
3230
3231         if (!qpair || !iov)
3232                 return VMCI_ERROR_INVALID_ARGS;
3233
3234         qp_lock(qpair);
3235
3236         do {
3237                 result = qp_enqueue_locked(qpair->produce_q,
3238                                            qpair->consume_q,
3239                                            qpair->produce_q_size,
3240                                            iov, iov_size,
3241                                            qp_memcpy_to_queue_iov);
3242
3243                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3244                     !qp_wait_for_ready_queue(qpair))
3245                         result = VMCI_ERROR_WOULD_BLOCK;
3246
3247         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3248
3249         qp_unlock(qpair);
3250
3251         return result;
3252 }
3253 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3254
3255 /*
3256  * vmci_qpair_dequev() - Get data from the queue using iov.
3257  * @qpair:      Pointer to the queue pair struct.
3258  * @iov:        Pointer to buffer for the data
3259  * @iov_size:   Length of buffer.
3260  * @buf_type:   Buffer type (Unused).
3261  *
3262  * This is the client interface for dequeueing data from the queue.
3263  * This function uses IO vectors to handle the work. Returns number
3264  * of bytes dequeued or < 0 on error.
3265  */
3266 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3267                           void *iov,
3268                           size_t iov_size,
3269                           int buf_type)
3270 {
3271         ssize_t result;
3272
3273         if (!qpair || !iov)
3274                 return VMCI_ERROR_INVALID_ARGS;
3275
3276         qp_lock(qpair);
3277
3278         do {
3279                 result = qp_dequeue_locked(qpair->produce_q,
3280                                            qpair->consume_q,
3281                                            qpair->consume_q_size,
3282                                            iov, iov_size,
3283                                            qp_memcpy_from_queue_iov,
3284                                            true);
3285
3286                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3287                     !qp_wait_for_ready_queue(qpair))
3288                         result = VMCI_ERROR_WOULD_BLOCK;
3289
3290         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3291
3292         qp_unlock(qpair);
3293
3294         return result;
3295 }
3296 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3297
3298 /*
3299  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3300  * @qpair:      Pointer to the queue pair struct.
3301  * @iov:        Pointer to buffer for the data
3302  * @iov_size:   Length of buffer.
3303  * @buf_type:   Buffer type (Unused on Linux).
3304  *
3305  * This is the client interface for peeking into a queue.  (I.e.,
3306  * copy data from the queue without updating the head pointer.)
3307  * This function uses IO vectors to handle the work. Returns number
3308  * of bytes peeked or < 0 on error.
3309  */
3310 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3311                          void *iov,
3312                          size_t iov_size,
3313                          int buf_type)
3314 {
3315         ssize_t result;
3316
3317         if (!qpair || !iov)
3318                 return VMCI_ERROR_INVALID_ARGS;
3319
3320         qp_lock(qpair);
3321
3322         do {
3323                 result = qp_dequeue_locked(qpair->produce_q,
3324                                            qpair->consume_q,
3325                                            qpair->consume_q_size,
3326                                            iov, iov_size,
3327                                            qp_memcpy_from_queue_iov,
3328                                            false);
3329
3330                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3331                     !qp_wait_for_ready_queue(qpair))
3332                         result = VMCI_ERROR_WOULD_BLOCK;
3333
3334         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3335
3336         qp_unlock(qpair);
3337         return result;
3338 }
3339 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);