]> Pileus Git - ~andy/linux/blob - drivers/media/i2c/smiapp/smiapp-core.c
83c7ed7ffcc2c7b7b8d94d82e42a84879410b10a
[~andy/linux] / drivers / media / i2c / smiapp / smiapp-core.c
1 /*
2  * drivers/media/i2c/smiapp/smiapp-core.c
3  *
4  * Generic driver for SMIA/SMIA++ compliant camera modules
5  *
6  * Copyright (C) 2010--2012 Nokia Corporation
7  * Contact: Sakari Ailus <sakari.ailus@iki.fi>
8  *
9  * Based on smiapp driver by Vimarsh Zutshi
10  * Based on jt8ev1.c by Vimarsh Zutshi
11  * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * version 2 as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25  * 02110-1301 USA
26  *
27  */
28
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/device.h>
32 #include <linux/gpio.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/regulator/consumer.h>
36 #include <linux/v4l2-mediabus.h>
37 #include <media/v4l2-device.h>
38
39 #include "smiapp.h"
40
41 #define SMIAPP_ALIGN_DIM(dim, flags)    \
42         ((flags) & V4L2_SEL_FLAG_GE     \
43          ? ALIGN((dim), 2)              \
44          : (dim) & ~1)
45
46 /*
47  * smiapp_module_idents - supported camera modules
48  */
49 static const struct smiapp_module_ident smiapp_module_idents[] = {
50         SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
51         SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
52         SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
53         SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
54         SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
55         SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
56         SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
57         SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
58         SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
59         SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
60         SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
61 };
62
63 /*
64  *
65  * Dynamic Capability Identification
66  *
67  */
68
69 static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
70 {
71         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
72         u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
73         unsigned int i;
74         int rval;
75         int line_count = 0;
76         int embedded_start = -1, embedded_end = -1;
77         int image_start = 0;
78
79         rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
80                            &fmt_model_type);
81         if (rval)
82                 return rval;
83
84         rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
85                            &fmt_model_subtype);
86         if (rval)
87                 return rval;
88
89         ncol_desc = (fmt_model_subtype
90                      & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
91                 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
92         nrow_desc = fmt_model_subtype
93                 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
94
95         dev_dbg(&client->dev, "format_model_type %s\n",
96                 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
97                 ? "2 byte" :
98                 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
99                 ? "4 byte" : "is simply bad");
100
101         for (i = 0; i < ncol_desc + nrow_desc; i++) {
102                 u32 desc;
103                 u32 pixelcode;
104                 u32 pixels;
105                 char *which;
106                 char *what;
107
108                 if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
109                         rval = smiapp_read(
110                                 sensor,
111                                 SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
112                                 &desc);
113                         if (rval)
114                                 return rval;
115
116                         pixelcode =
117                                 (desc
118                                  & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
119                                 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
120                         pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
121                 } else if (fmt_model_type
122                            == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
123                         rval = smiapp_read(
124                                 sensor,
125                                 SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
126                                 &desc);
127                         if (rval)
128                                 return rval;
129
130                         pixelcode =
131                                 (desc
132                                  & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
133                                 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
134                         pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
135                 } else {
136                         dev_dbg(&client->dev,
137                                 "invalid frame format model type %d\n",
138                                 fmt_model_type);
139                         return -EINVAL;
140                 }
141
142                 if (i < ncol_desc)
143                         which = "columns";
144                 else
145                         which = "rows";
146
147                 switch (pixelcode) {
148                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
149                         what = "embedded";
150                         break;
151                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
152                         what = "dummy";
153                         break;
154                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
155                         what = "black";
156                         break;
157                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
158                         what = "dark";
159                         break;
160                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
161                         what = "visible";
162                         break;
163                 default:
164                         what = "invalid";
165                         dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
166                         break;
167                 }
168
169                 dev_dbg(&client->dev, "%s pixels: %d %s\n",
170                         what, pixels, which);
171
172                 if (i < ncol_desc)
173                         continue;
174
175                 /* Handle row descriptors */
176                 if (pixelcode
177                     == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
178                         embedded_start = line_count;
179                 } else {
180                         if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
181                             || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
182                                 image_start = line_count;
183                         if (embedded_start != -1 && embedded_end == -1)
184                                 embedded_end = line_count;
185                 }
186                 line_count += pixels;
187         }
188
189         if (embedded_start == -1 || embedded_end == -1) {
190                 embedded_start = 0;
191                 embedded_end = 0;
192         }
193
194         dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
195                 embedded_start, embedded_end);
196         dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
197
198         return 0;
199 }
200
201 static int smiapp_pll_configure(struct smiapp_sensor *sensor)
202 {
203         struct smiapp_pll *pll = &sensor->pll;
204         int rval;
205
206         rval = smiapp_write(
207                 sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt_pix_clk_div);
208         if (rval < 0)
209                 return rval;
210
211         rval = smiapp_write(
212                 sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt_sys_clk_div);
213         if (rval < 0)
214                 return rval;
215
216         rval = smiapp_write(
217                 sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
218         if (rval < 0)
219                 return rval;
220
221         rval = smiapp_write(
222                 sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
223         if (rval < 0)
224                 return rval;
225
226         /* Lane op clock ratio does not apply here. */
227         rval = smiapp_write(
228                 sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
229                 DIV_ROUND_UP(pll->op_sys_clk_freq_hz, 1000000 / 256 / 256));
230         if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
231                 return rval;
232
233         rval = smiapp_write(
234                 sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op_pix_clk_div);
235         if (rval < 0)
236                 return rval;
237
238         return smiapp_write(
239                 sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op_sys_clk_div);
240 }
241
242 static int smiapp_pll_update(struct smiapp_sensor *sensor)
243 {
244         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
245         struct smiapp_pll_limits lim = {
246                 .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
247                 .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
248                 .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
249                 .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
250                 .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
251                 .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
252                 .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
253                 .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
254
255                 .op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
256                 .op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
257                 .op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
258                 .op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
259                 .op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
260                 .op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
261                 .op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
262                 .op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
263
264                 .vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
265                 .vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
266                 .vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
267                 .vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
268                 .vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
269                 .vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
270                 .vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
271                 .vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
272
273                 .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
274                 .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
275         };
276         struct smiapp_pll *pll = &sensor->pll;
277         int rval;
278
279         if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) {
280                 /*
281                  * Fill in operational clock divisors limits from the
282                  * video timing ones. On profile 0 sensors the
283                  * requirements regarding them are essentially the
284                  * same as on VT ones.
285                  */
286                 lim.op = lim.vt;
287         }
288
289         pll->binning_horizontal = sensor->binning_horizontal;
290         pll->binning_vertical = sensor->binning_vertical;
291         pll->link_freq =
292                 sensor->link_freq->qmenu_int[sensor->link_freq->val];
293         pll->scale_m = sensor->scale_m;
294         pll->bits_per_pixel = sensor->csi_format->compressed;
295
296         rval = smiapp_pll_calculate(&client->dev, &lim, pll);
297         if (rval < 0)
298                 return rval;
299
300         sensor->pixel_rate_parray->cur.val64 = pll->vt_pix_clk_freq_hz;
301         sensor->pixel_rate_csi->cur.val64 = pll->pixel_rate_csi;
302
303         return 0;
304 }
305
306
307 /*
308  *
309  * V4L2 Controls handling
310  *
311  */
312
313 static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
314 {
315         struct v4l2_ctrl *ctrl = sensor->exposure;
316         int max;
317
318         max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
319                 + sensor->vblank->val
320                 - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
321
322         ctrl->maximum = max;
323         if (ctrl->default_value > max)
324                 ctrl->default_value = max;
325         if (ctrl->val > max)
326                 ctrl->val = max;
327         if (ctrl->cur.val > max)
328                 ctrl->cur.val = max;
329 }
330
331 /*
332  * Order matters.
333  *
334  * 1. Bits-per-pixel, descending.
335  * 2. Bits-per-pixel compressed, descending.
336  * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
337  *    orders must be defined.
338  */
339 static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
340         { V4L2_MBUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
341         { V4L2_MBUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
342         { V4L2_MBUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
343         { V4L2_MBUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
344         { V4L2_MBUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
345         { V4L2_MBUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
346         { V4L2_MBUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
347         { V4L2_MBUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
348         { V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
349         { V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
350         { V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
351         { V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
352         { V4L2_MBUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
353         { V4L2_MBUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
354         { V4L2_MBUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
355         { V4L2_MBUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
356 };
357
358 const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
359
360 #define to_csi_format_idx(fmt) (((unsigned long)(fmt)                   \
361                                  - (unsigned long)smiapp_csi_data_formats) \
362                                 / sizeof(*smiapp_csi_data_formats))
363
364 static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
365 {
366         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
367         int flip = 0;
368
369         if (sensor->hflip) {
370                 if (sensor->hflip->val)
371                         flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
372
373                 if (sensor->vflip->val)
374                         flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
375         }
376
377         flip ^= sensor->hvflip_inv_mask;
378
379         dev_dbg(&client->dev, "flip %d\n", flip);
380         return sensor->default_pixel_order ^ flip;
381 }
382
383 static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
384 {
385         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
386         unsigned int csi_format_idx =
387                 to_csi_format_idx(sensor->csi_format) & ~3;
388         unsigned int internal_csi_format_idx =
389                 to_csi_format_idx(sensor->internal_csi_format) & ~3;
390         unsigned int pixel_order = smiapp_pixel_order(sensor);
391
392         sensor->mbus_frame_fmts =
393                 sensor->default_mbus_frame_fmts << pixel_order;
394         sensor->csi_format =
395                 &smiapp_csi_data_formats[csi_format_idx + pixel_order];
396         sensor->internal_csi_format =
397                 &smiapp_csi_data_formats[internal_csi_format_idx
398                                          + pixel_order];
399
400         BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
401                >= ARRAY_SIZE(smiapp_csi_data_formats));
402         BUG_ON(min(internal_csi_format_idx, csi_format_idx) < 0);
403
404         dev_dbg(&client->dev, "new pixel order %s\n",
405                 pixel_order_str[pixel_order]);
406 }
407
408 static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
409 {
410         struct smiapp_sensor *sensor =
411                 container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
412                         ->sensor;
413         u32 orient = 0;
414         int exposure;
415         int rval;
416
417         switch (ctrl->id) {
418         case V4L2_CID_ANALOGUE_GAIN:
419                 return smiapp_write(
420                         sensor,
421                         SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
422
423         case V4L2_CID_EXPOSURE:
424                 return smiapp_write(
425                         sensor,
426                         SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
427
428         case V4L2_CID_HFLIP:
429         case V4L2_CID_VFLIP:
430                 if (sensor->streaming)
431                         return -EBUSY;
432
433                 if (sensor->hflip->val)
434                         orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
435
436                 if (sensor->vflip->val)
437                         orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
438
439                 orient ^= sensor->hvflip_inv_mask;
440                 rval = smiapp_write(sensor,
441                                     SMIAPP_REG_U8_IMAGE_ORIENTATION,
442                                     orient);
443                 if (rval < 0)
444                         return rval;
445
446                 smiapp_update_mbus_formats(sensor);
447
448                 return 0;
449
450         case V4L2_CID_VBLANK:
451                 exposure = sensor->exposure->val;
452
453                 __smiapp_update_exposure_limits(sensor);
454
455                 if (exposure > sensor->exposure->maximum) {
456                         sensor->exposure->val =
457                                 sensor->exposure->maximum;
458                         rval = smiapp_set_ctrl(
459                                 sensor->exposure);
460                         if (rval < 0)
461                                 return rval;
462                 }
463
464                 return smiapp_write(
465                         sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
466                         sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
467                         + ctrl->val);
468
469         case V4L2_CID_HBLANK:
470                 return smiapp_write(
471                         sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
472                         sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
473                         + ctrl->val);
474
475         case V4L2_CID_LINK_FREQ:
476                 if (sensor->streaming)
477                         return -EBUSY;
478
479                 return smiapp_pll_update(sensor);
480
481         default:
482                 return -EINVAL;
483         }
484 }
485
486 static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
487         .s_ctrl = smiapp_set_ctrl,
488 };
489
490 static int smiapp_init_controls(struct smiapp_sensor *sensor)
491 {
492         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
493         unsigned int max;
494         int rval;
495
496         rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 7);
497         if (rval)
498                 return rval;
499         sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
500
501         sensor->analog_gain = v4l2_ctrl_new_std(
502                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
503                 V4L2_CID_ANALOGUE_GAIN,
504                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
505                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
506                 max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
507                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
508
509         /* Exposure limits will be updated soon, use just something here. */
510         sensor->exposure = v4l2_ctrl_new_std(
511                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
512                 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
513
514         sensor->hflip = v4l2_ctrl_new_std(
515                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
516                 V4L2_CID_HFLIP, 0, 1, 1, 0);
517         sensor->vflip = v4l2_ctrl_new_std(
518                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
519                 V4L2_CID_VFLIP, 0, 1, 1, 0);
520
521         sensor->vblank = v4l2_ctrl_new_std(
522                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
523                 V4L2_CID_VBLANK, 0, 1, 1, 0);
524
525         if (sensor->vblank)
526                 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
527
528         sensor->hblank = v4l2_ctrl_new_std(
529                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
530                 V4L2_CID_HBLANK, 0, 1, 1, 0);
531
532         if (sensor->hblank)
533                 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
534
535         sensor->pixel_rate_parray = v4l2_ctrl_new_std(
536                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
537                 V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
538
539         if (sensor->pixel_array->ctrl_handler.error) {
540                 dev_err(&client->dev,
541                         "pixel array controls initialization failed (%d)\n",
542                         sensor->pixel_array->ctrl_handler.error);
543                 rval = sensor->pixel_array->ctrl_handler.error;
544                 goto error;
545         }
546
547         sensor->pixel_array->sd.ctrl_handler =
548                 &sensor->pixel_array->ctrl_handler;
549
550         v4l2_ctrl_cluster(2, &sensor->hflip);
551
552         rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
553         if (rval)
554                 goto error;
555         sensor->src->ctrl_handler.lock = &sensor->mutex;
556
557         for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++);
558
559         sensor->link_freq = v4l2_ctrl_new_int_menu(
560                 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
561                 V4L2_CID_LINK_FREQ, max, 0,
562                 sensor->platform_data->op_sys_clock);
563
564         sensor->pixel_rate_csi = v4l2_ctrl_new_std(
565                 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
566                 V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
567
568         if (sensor->src->ctrl_handler.error) {
569                 dev_err(&client->dev,
570                         "src controls initialization failed (%d)\n",
571                         sensor->src->ctrl_handler.error);
572                 rval = sensor->src->ctrl_handler.error;
573                 goto error;
574         }
575
576         sensor->src->sd.ctrl_handler =
577                 &sensor->src->ctrl_handler;
578
579         return 0;
580
581 error:
582         v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler);
583         v4l2_ctrl_handler_free(&sensor->src->ctrl_handler);
584
585         return rval;
586 }
587
588 static void smiapp_free_controls(struct smiapp_sensor *sensor)
589 {
590         unsigned int i;
591
592         for (i = 0; i < sensor->ssds_used; i++)
593                 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
594 }
595
596 static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
597                              unsigned int n)
598 {
599         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
600         unsigned int i;
601         u32 val;
602         int rval;
603
604         for (i = 0; i < n; i++) {
605                 rval = smiapp_read(
606                         sensor, smiapp_reg_limits[limit[i]].addr, &val);
607                 if (rval)
608                         return rval;
609                 sensor->limits[limit[i]] = val;
610                 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %d, 0x%x\n",
611                         smiapp_reg_limits[limit[i]].addr,
612                         smiapp_reg_limits[limit[i]].what, val, val);
613         }
614
615         return 0;
616 }
617
618 static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
619 {
620         unsigned int i;
621         int rval;
622
623         for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
624                 rval = smiapp_get_limits(sensor, &i, 1);
625                 if (rval < 0)
626                         return rval;
627         }
628
629         if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
630                 smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
631
632         return 0;
633 }
634
635 static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
636 {
637         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
638         static u32 const limits[] = {
639                 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
640                 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
641                 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
642                 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
643                 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
644                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
645                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
646         };
647         static u32 const limits_replace[] = {
648                 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
649                 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
650                 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
651                 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
652                 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
653                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
654                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
655         };
656         unsigned int i;
657         int rval;
658
659         if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
660             SMIAPP_BINNING_CAPABILITY_NO) {
661                 for (i = 0; i < ARRAY_SIZE(limits); i++)
662                         sensor->limits[limits[i]] =
663                                 sensor->limits[limits_replace[i]];
664
665                 return 0;
666         }
667
668         rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
669         if (rval < 0)
670                 return rval;
671
672         /*
673          * Sanity check whether the binning limits are valid. If not,
674          * use the non-binning ones.
675          */
676         if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
677             && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
678             && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
679                 return 0;
680
681         for (i = 0; i < ARRAY_SIZE(limits); i++) {
682                 dev_dbg(&client->dev,
683                         "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
684                         smiapp_reg_limits[limits[i]].addr,
685                         smiapp_reg_limits[limits[i]].what,
686                         sensor->limits[limits_replace[i]],
687                         sensor->limits[limits_replace[i]]);
688                 sensor->limits[limits[i]] =
689                         sensor->limits[limits_replace[i]];
690         }
691
692         return 0;
693 }
694
695 static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
696 {
697         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
698         unsigned int type, n;
699         unsigned int i, pixel_order;
700         int rval;
701
702         rval = smiapp_read(
703                 sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
704         if (rval)
705                 return rval;
706
707         dev_dbg(&client->dev, "data_format_model_type %d\n", type);
708
709         rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
710                            &pixel_order);
711         if (rval)
712                 return rval;
713
714         if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
715                 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
716                 return -EINVAL;
717         }
718
719         dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
720                 pixel_order_str[pixel_order]);
721
722         switch (type) {
723         case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
724                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
725                 break;
726         case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
727                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
728                 break;
729         default:
730                 return -EINVAL;
731         }
732
733         sensor->default_pixel_order = pixel_order;
734         sensor->mbus_frame_fmts = 0;
735
736         for (i = 0; i < n; i++) {
737                 unsigned int fmt, j;
738
739                 rval = smiapp_read(
740                         sensor,
741                         SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
742                 if (rval)
743                         return rval;
744
745                 dev_dbg(&client->dev, "bpp %d, compressed %d\n",
746                         fmt >> 8, (u8)fmt);
747
748                 for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
749                         const struct smiapp_csi_data_format *f =
750                                 &smiapp_csi_data_formats[j];
751
752                         if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
753                                 continue;
754
755                         if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
756                                 continue;
757
758                         dev_dbg(&client->dev, "jolly good! %d\n", j);
759
760                         sensor->default_mbus_frame_fmts |= 1 << j;
761                         if (!sensor->csi_format
762                             || f->width > sensor->csi_format->width
763                             || (f->width == sensor->csi_format->width
764                                 && f->compressed
765                                 > sensor->csi_format->compressed)) {
766                                 sensor->csi_format = f;
767                                 sensor->internal_csi_format = f;
768                         }
769                 }
770         }
771
772         if (!sensor->csi_format) {
773                 dev_err(&client->dev, "no supported mbus code found\n");
774                 return -EINVAL;
775         }
776
777         smiapp_update_mbus_formats(sensor);
778
779         return 0;
780 }
781
782 static void smiapp_update_blanking(struct smiapp_sensor *sensor)
783 {
784         struct v4l2_ctrl *vblank = sensor->vblank;
785         struct v4l2_ctrl *hblank = sensor->hblank;
786
787         vblank->minimum =
788                 max_t(int,
789                       sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
790                       sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
791                       sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
792         vblank->maximum =
793                 sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
794                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
795
796         vblank->val = clamp_t(int, vblank->val,
797                               vblank->minimum, vblank->maximum);
798         vblank->default_value = vblank->minimum;
799         vblank->val = vblank->val;
800         vblank->cur.val = vblank->val;
801
802         hblank->minimum =
803                 max_t(int,
804                       sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
805                       sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
806                       sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
807         hblank->maximum =
808                 sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
809                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
810
811         hblank->val = clamp_t(int, hblank->val,
812                               hblank->minimum, hblank->maximum);
813         hblank->default_value = hblank->minimum;
814         hblank->val = hblank->val;
815         hblank->cur.val = hblank->val;
816
817         __smiapp_update_exposure_limits(sensor);
818 }
819
820 static int smiapp_update_mode(struct smiapp_sensor *sensor)
821 {
822         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
823         unsigned int binning_mode;
824         int rval;
825
826         dev_dbg(&client->dev, "frame size: %dx%d\n",
827                 sensor->src->crop[SMIAPP_PAD_SRC].width,
828                 sensor->src->crop[SMIAPP_PAD_SRC].height);
829         dev_dbg(&client->dev, "csi format width: %d\n",
830                 sensor->csi_format->width);
831
832         /* Binning has to be set up here; it affects limits */
833         if (sensor->binning_horizontal == 1 &&
834             sensor->binning_vertical == 1) {
835                 binning_mode = 0;
836         } else {
837                 u8 binning_type =
838                         (sensor->binning_horizontal << 4)
839                         | sensor->binning_vertical;
840
841                 rval = smiapp_write(
842                         sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
843                 if (rval < 0)
844                         return rval;
845
846                 binning_mode = 1;
847         }
848         rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
849         if (rval < 0)
850                 return rval;
851
852         /* Get updated limits due to binning */
853         rval = smiapp_get_limits_binning(sensor);
854         if (rval < 0)
855                 return rval;
856
857         rval = smiapp_pll_update(sensor);
858         if (rval < 0)
859                 return rval;
860
861         /* Output from pixel array, including blanking */
862         smiapp_update_blanking(sensor);
863
864         dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
865         dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
866
867         dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
868                 sensor->pll.vt_pix_clk_freq_hz /
869                 ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
870                   + sensor->hblank->val) *
871                  (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
872                   + sensor->vblank->val) / 100));
873
874         return 0;
875 }
876
877 /*
878  *
879  * SMIA++ NVM handling
880  *
881  */
882 static int smiapp_read_nvm(struct smiapp_sensor *sensor,
883                            unsigned char *nvm)
884 {
885         u32 i, s, p, np, v;
886         int rval = 0, rval2;
887
888         np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
889         for (p = 0; p < np; p++) {
890                 rval = smiapp_write(
891                         sensor,
892                         SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
893                 if (rval)
894                         goto out;
895
896                 rval = smiapp_write(sensor,
897                                     SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
898                                     SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
899                                     SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
900                 if (rval)
901                         goto out;
902
903                 for (i = 0; i < 1000; i++) {
904                         rval = smiapp_read(
905                                 sensor,
906                                 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
907
908                         if (rval)
909                                 goto out;
910
911                         if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
912                                 break;
913
914                         if (--i == 0) {
915                                 rval = -ETIMEDOUT;
916                                 goto out;
917                         }
918
919                 }
920
921                 for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
922                         rval = smiapp_read(
923                                 sensor,
924                                 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
925                                 &v);
926                         if (rval)
927                                 goto out;
928
929                         *nvm++ = v;
930                 }
931         }
932
933 out:
934         rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
935         if (rval < 0)
936                 return rval;
937         else
938                 return rval2;
939 }
940
941 /*
942  *
943  * SMIA++ CCI address control
944  *
945  */
946 static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
947 {
948         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
949         int rval;
950         u32 val;
951
952         client->addr = sensor->platform_data->i2c_addr_dfl;
953
954         rval = smiapp_write(sensor,
955                             SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
956                             sensor->platform_data->i2c_addr_alt << 1);
957         if (rval)
958                 return rval;
959
960         client->addr = sensor->platform_data->i2c_addr_alt;
961
962         /* verify addr change went ok */
963         rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
964         if (rval)
965                 return rval;
966
967         if (val != sensor->platform_data->i2c_addr_alt << 1)
968                 return -ENODEV;
969
970         return 0;
971 }
972
973 /*
974  *
975  * SMIA++ Mode Control
976  *
977  */
978 static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
979 {
980         struct smiapp_flash_strobe_parms *strobe_setup;
981         unsigned int ext_freq = sensor->platform_data->ext_clk;
982         u32 tmp;
983         u32 strobe_adjustment;
984         u32 strobe_width_high_rs;
985         int rval;
986
987         strobe_setup = sensor->platform_data->strobe_setup;
988
989         /*
990          * How to calculate registers related to strobe length. Please
991          * do not change, or if you do at least know what you're
992          * doing. :-)
993          *
994          * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
995          *
996          * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
997          *      / EXTCLK freq [Hz]) * flash_strobe_adjustment
998          *
999          * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1000          * flash_strobe_adjustment E N, [1 - 0xff]
1001          *
1002          * The formula above is written as below to keep it on one
1003          * line:
1004          *
1005          * l / 10^6 = w / e * a
1006          *
1007          * Let's mark w * a by x:
1008          *
1009          * x = w * a
1010          *
1011          * Thus, we get:
1012          *
1013          * x = l * e / 10^6
1014          *
1015          * The strobe width must be at least as long as requested,
1016          * thus rounding upwards is needed.
1017          *
1018          * x = (l * e + 10^6 - 1) / 10^6
1019          * -----------------------------
1020          *
1021          * Maximum possible accuracy is wanted at all times. Thus keep
1022          * a as small as possible.
1023          *
1024          * Calculate a, assuming maximum w, with rounding upwards:
1025          *
1026          * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1027          * -------------------------------------
1028          *
1029          * Thus, we also get w, with that a, with rounding upwards:
1030          *
1031          * w = (x + a - 1) / a
1032          * -------------------
1033          *
1034          * To get limits:
1035          *
1036          * x E [1, (2^16 - 1) * (2^8 - 1)]
1037          *
1038          * Substituting maximum x to the original formula (with rounding),
1039          * the maximum l is thus
1040          *
1041          * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1042          *
1043          * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1044          * --------------------------------------------------
1045          *
1046          * flash_strobe_length must be clamped between 1 and
1047          * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1048          *
1049          * Then,
1050          *
1051          * flash_strobe_adjustment = ((flash_strobe_length *
1052          *      EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1053          *
1054          * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1055          *      EXTCLK freq + 10^6 - 1) / 10^6 +
1056          *      flash_strobe_adjustment - 1) / flash_strobe_adjustment
1057          */
1058         tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1059                       1000000 + 1, ext_freq);
1060         strobe_setup->strobe_width_high_us =
1061                 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1062
1063         tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1064                         1000000 - 1), 1000000ULL);
1065         strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1066         strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1067                                 strobe_adjustment;
1068
1069         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1070                             strobe_setup->mode);
1071         if (rval < 0)
1072                 goto out;
1073
1074         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1075                             strobe_adjustment);
1076         if (rval < 0)
1077                 goto out;
1078
1079         rval = smiapp_write(
1080                 sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1081                 strobe_width_high_rs);
1082         if (rval < 0)
1083                 goto out;
1084
1085         rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1086                             strobe_setup->strobe_delay);
1087         if (rval < 0)
1088                 goto out;
1089
1090         rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1091                             strobe_setup->stobe_start_point);
1092         if (rval < 0)
1093                 goto out;
1094
1095         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1096                             strobe_setup->trigger);
1097
1098 out:
1099         sensor->platform_data->strobe_setup->trigger = 0;
1100
1101         return rval;
1102 }
1103
1104 /* -----------------------------------------------------------------------------
1105  * Power management
1106  */
1107
1108 static int smiapp_power_on(struct smiapp_sensor *sensor)
1109 {
1110         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1111         unsigned int sleep;
1112         int rval;
1113
1114         rval = regulator_enable(sensor->vana);
1115         if (rval) {
1116                 dev_err(&client->dev, "failed to enable vana regulator\n");
1117                 return rval;
1118         }
1119         usleep_range(1000, 1000);
1120
1121         if (sensor->platform_data->set_xclk)
1122                 rval = sensor->platform_data->set_xclk(
1123                         &sensor->src->sd, sensor->platform_data->ext_clk);
1124         else
1125                 rval = clk_enable(sensor->ext_clk);
1126         if (rval < 0) {
1127                 dev_dbg(&client->dev, "failed to set xclk\n");
1128                 goto out_xclk_fail;
1129         }
1130         usleep_range(1000, 1000);
1131
1132         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1133                 gpio_set_value(sensor->platform_data->xshutdown, 1);
1134
1135         sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
1136         usleep_range(sleep, sleep);
1137
1138         /*
1139          * Failures to respond to the address change command have been noticed.
1140          * Those failures seem to be caused by the sensor requiring a longer
1141          * boot time than advertised. An additional 10ms delay seems to work
1142          * around the issue, but the SMIA++ I2C write retry hack makes the delay
1143          * unnecessary. The failures need to be investigated to find a proper
1144          * fix, and a delay will likely need to be added here if the I2C write
1145          * retry hack is reverted before the root cause of the boot time issue
1146          * is found.
1147          */
1148
1149         if (sensor->platform_data->i2c_addr_alt) {
1150                 rval = smiapp_change_cci_addr(sensor);
1151                 if (rval) {
1152                         dev_err(&client->dev, "cci address change error\n");
1153                         goto out_cci_addr_fail;
1154                 }
1155         }
1156
1157         rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1158                             SMIAPP_SOFTWARE_RESET);
1159         if (rval < 0) {
1160                 dev_err(&client->dev, "software reset failed\n");
1161                 goto out_cci_addr_fail;
1162         }
1163
1164         if (sensor->platform_data->i2c_addr_alt) {
1165                 rval = smiapp_change_cci_addr(sensor);
1166                 if (rval) {
1167                         dev_err(&client->dev, "cci address change error\n");
1168                         goto out_cci_addr_fail;
1169                 }
1170         }
1171
1172         rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1173                             SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1174         if (rval) {
1175                 dev_err(&client->dev, "compression mode set failed\n");
1176                 goto out_cci_addr_fail;
1177         }
1178
1179         rval = smiapp_write(
1180                 sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1181                 sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
1182         if (rval) {
1183                 dev_err(&client->dev, "extclk frequency set failed\n");
1184                 goto out_cci_addr_fail;
1185         }
1186
1187         rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1188                             sensor->platform_data->lanes - 1);
1189         if (rval) {
1190                 dev_err(&client->dev, "csi lane mode set failed\n");
1191                 goto out_cci_addr_fail;
1192         }
1193
1194         rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1195                             SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1196         if (rval) {
1197                 dev_err(&client->dev, "fast standby set failed\n");
1198                 goto out_cci_addr_fail;
1199         }
1200
1201         rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1202                             sensor->platform_data->csi_signalling_mode);
1203         if (rval) {
1204                 dev_err(&client->dev, "csi signalling mode set failed\n");
1205                 goto out_cci_addr_fail;
1206         }
1207
1208         /* DPHY control done by sensor based on requested link rate */
1209         rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1210                             SMIAPP_DPHY_CTRL_UI);
1211         if (rval < 0)
1212                 return rval;
1213
1214         rval = smiapp_call_quirk(sensor, post_poweron);
1215         if (rval) {
1216                 dev_err(&client->dev, "post_poweron quirks failed\n");
1217                 goto out_cci_addr_fail;
1218         }
1219
1220         /* Are we still initialising...? If yes, return here. */
1221         if (!sensor->pixel_array)
1222                 return 0;
1223
1224         rval = v4l2_ctrl_handler_setup(
1225                 &sensor->pixel_array->ctrl_handler);
1226         if (rval)
1227                 goto out_cci_addr_fail;
1228
1229         rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1230         if (rval)
1231                 goto out_cci_addr_fail;
1232
1233         mutex_lock(&sensor->mutex);
1234         rval = smiapp_update_mode(sensor);
1235         mutex_unlock(&sensor->mutex);
1236         if (rval < 0)
1237                 goto out_cci_addr_fail;
1238
1239         return 0;
1240
1241 out_cci_addr_fail:
1242         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1243                 gpio_set_value(sensor->platform_data->xshutdown, 0);
1244         if (sensor->platform_data->set_xclk)
1245                 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1246         else
1247                 clk_disable(sensor->ext_clk);
1248
1249 out_xclk_fail:
1250         regulator_disable(sensor->vana);
1251         return rval;
1252 }
1253
1254 static void smiapp_power_off(struct smiapp_sensor *sensor)
1255 {
1256         /*
1257          * Currently power/clock to lens are enable/disabled separately
1258          * but they are essentially the same signals. So if the sensor is
1259          * powered off while the lens is powered on the sensor does not
1260          * really see a power off and next time the cci address change
1261          * will fail. So do a soft reset explicitly here.
1262          */
1263         if (sensor->platform_data->i2c_addr_alt)
1264                 smiapp_write(sensor,
1265                              SMIAPP_REG_U8_SOFTWARE_RESET,
1266                              SMIAPP_SOFTWARE_RESET);
1267
1268         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1269                 gpio_set_value(sensor->platform_data->xshutdown, 0);
1270         if (sensor->platform_data->set_xclk)
1271                 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1272         else
1273                 clk_disable(sensor->ext_clk);
1274         usleep_range(5000, 5000);
1275         regulator_disable(sensor->vana);
1276         sensor->streaming = 0;
1277 }
1278
1279 static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
1280 {
1281         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1282         int ret = 0;
1283
1284         mutex_lock(&sensor->power_mutex);
1285
1286         /*
1287          * If the power count is modified from 0 to != 0 or from != 0
1288          * to 0, update the power state.
1289          */
1290         if (!sensor->power_count == !on)
1291                 goto out;
1292
1293         if (on) {
1294                 /* Power on and perform initialisation. */
1295                 ret = smiapp_power_on(sensor);
1296                 if (ret < 0)
1297                         goto out;
1298         } else {
1299                 smiapp_power_off(sensor);
1300         }
1301
1302         /* Update the power count. */
1303         sensor->power_count += on ? 1 : -1;
1304         WARN_ON(sensor->power_count < 0);
1305
1306 out:
1307         mutex_unlock(&sensor->power_mutex);
1308         return ret;
1309 }
1310
1311 /* -----------------------------------------------------------------------------
1312  * Video stream management
1313  */
1314
1315 static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1316 {
1317         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1318         int rval;
1319
1320         mutex_lock(&sensor->mutex);
1321
1322         rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1323                             (sensor->csi_format->width << 8) |
1324                             sensor->csi_format->compressed);
1325         if (rval)
1326                 goto out;
1327
1328         rval = smiapp_pll_configure(sensor);
1329         if (rval)
1330                 goto out;
1331
1332         /* Analog crop start coordinates */
1333         rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1334                             sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1335         if (rval < 0)
1336                 goto out;
1337
1338         rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1339                             sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1340         if (rval < 0)
1341                 goto out;
1342
1343         /* Analog crop end coordinates */
1344         rval = smiapp_write(
1345                 sensor, SMIAPP_REG_U16_X_ADDR_END,
1346                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1347                 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1348         if (rval < 0)
1349                 goto out;
1350
1351         rval = smiapp_write(
1352                 sensor, SMIAPP_REG_U16_Y_ADDR_END,
1353                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1354                 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1355         if (rval < 0)
1356                 goto out;
1357
1358         /*
1359          * Output from pixel array, including blanking, is set using
1360          * controls below. No need to set here.
1361          */
1362
1363         /* Digital crop */
1364         if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1365             == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1366                 rval = smiapp_write(
1367                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1368                         sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1369                 if (rval < 0)
1370                         goto out;
1371
1372                 rval = smiapp_write(
1373                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1374                         sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1375                 if (rval < 0)
1376                         goto out;
1377
1378                 rval = smiapp_write(
1379                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1380                         sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1381                 if (rval < 0)
1382                         goto out;
1383
1384                 rval = smiapp_write(
1385                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1386                         sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1387                 if (rval < 0)
1388                         goto out;
1389         }
1390
1391         /* Scaling */
1392         if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1393             != SMIAPP_SCALING_CAPABILITY_NONE) {
1394                 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1395                                     sensor->scaling_mode);
1396                 if (rval < 0)
1397                         goto out;
1398
1399                 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1400                                     sensor->scale_m);
1401                 if (rval < 0)
1402                         goto out;
1403         }
1404
1405         /* Output size from sensor */
1406         rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1407                             sensor->src->crop[SMIAPP_PAD_SRC].width);
1408         if (rval < 0)
1409                 goto out;
1410         rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1411                             sensor->src->crop[SMIAPP_PAD_SRC].height);
1412         if (rval < 0)
1413                 goto out;
1414
1415         if ((sensor->flash_capability &
1416              (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1417               SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1418             sensor->platform_data->strobe_setup != NULL &&
1419             sensor->platform_data->strobe_setup->trigger != 0) {
1420                 rval = smiapp_setup_flash_strobe(sensor);
1421                 if (rval)
1422                         goto out;
1423         }
1424
1425         rval = smiapp_call_quirk(sensor, pre_streamon);
1426         if (rval) {
1427                 dev_err(&client->dev, "pre_streamon quirks failed\n");
1428                 goto out;
1429         }
1430
1431         rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1432                             SMIAPP_MODE_SELECT_STREAMING);
1433
1434 out:
1435         mutex_unlock(&sensor->mutex);
1436
1437         return rval;
1438 }
1439
1440 static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1441 {
1442         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1443         int rval;
1444
1445         mutex_lock(&sensor->mutex);
1446         rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1447                             SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1448         if (rval)
1449                 goto out;
1450
1451         rval = smiapp_call_quirk(sensor, post_streamoff);
1452         if (rval)
1453                 dev_err(&client->dev, "post_streamoff quirks failed\n");
1454
1455 out:
1456         mutex_unlock(&sensor->mutex);
1457         return rval;
1458 }
1459
1460 /* -----------------------------------------------------------------------------
1461  * V4L2 subdev video operations
1462  */
1463
1464 static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1465 {
1466         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1467         int rval;
1468
1469         if (sensor->streaming == enable)
1470                 return 0;
1471
1472         if (enable) {
1473                 sensor->streaming = 1;
1474                 rval = smiapp_start_streaming(sensor);
1475                 if (rval < 0)
1476                         sensor->streaming = 0;
1477         } else {
1478                 rval = smiapp_stop_streaming(sensor);
1479                 sensor->streaming = 0;
1480         }
1481
1482         return rval;
1483 }
1484
1485 static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1486                                  struct v4l2_subdev_fh *fh,
1487                                  struct v4l2_subdev_mbus_code_enum *code)
1488 {
1489         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1490         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1491         unsigned int i;
1492         int idx = -1;
1493         int rval = -EINVAL;
1494
1495         mutex_lock(&sensor->mutex);
1496
1497         dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1498                 subdev->name, code->pad, code->index);
1499
1500         if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1501                 if (code->index)
1502                         goto out;
1503
1504                 code->code = sensor->internal_csi_format->code;
1505                 rval = 0;
1506                 goto out;
1507         }
1508
1509         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1510                 if (sensor->mbus_frame_fmts & (1 << i))
1511                         idx++;
1512
1513                 if (idx == code->index) {
1514                         code->code = smiapp_csi_data_formats[i].code;
1515                         dev_err(&client->dev, "found index %d, i %d, code %x\n",
1516                                 code->index, i, code->code);
1517                         rval = 0;
1518                         break;
1519                 }
1520         }
1521
1522 out:
1523         mutex_unlock(&sensor->mutex);
1524
1525         return rval;
1526 }
1527
1528 static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1529                                   unsigned int pad)
1530 {
1531         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1532
1533         if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1534                 return sensor->csi_format->code;
1535         else
1536                 return sensor->internal_csi_format->code;
1537 }
1538
1539 static int __smiapp_get_format(struct v4l2_subdev *subdev,
1540                                struct v4l2_subdev_fh *fh,
1541                                struct v4l2_subdev_format *fmt)
1542 {
1543         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1544
1545         if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1546                 fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad);
1547         } else {
1548                 struct v4l2_rect *r;
1549
1550                 if (fmt->pad == ssd->source_pad)
1551                         r = &ssd->crop[ssd->source_pad];
1552                 else
1553                         r = &ssd->sink_fmt;
1554
1555                 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1556                 fmt->format.width = r->width;
1557                 fmt->format.height = r->height;
1558         }
1559
1560         return 0;
1561 }
1562
1563 static int smiapp_get_format(struct v4l2_subdev *subdev,
1564                              struct v4l2_subdev_fh *fh,
1565                              struct v4l2_subdev_format *fmt)
1566 {
1567         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1568         int rval;
1569
1570         mutex_lock(&sensor->mutex);
1571         rval = __smiapp_get_format(subdev, fh, fmt);
1572         mutex_unlock(&sensor->mutex);
1573
1574         return rval;
1575 }
1576
1577 static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1578                                     struct v4l2_subdev_fh *fh,
1579                                     struct v4l2_rect **crops,
1580                                     struct v4l2_rect **comps, int which)
1581 {
1582         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1583         unsigned int i;
1584
1585         if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1586                 if (crops)
1587                         for (i = 0; i < subdev->entity.num_pads; i++)
1588                                 crops[i] = &ssd->crop[i];
1589                 if (comps)
1590                         *comps = &ssd->compose;
1591         } else {
1592                 if (crops) {
1593                         for (i = 0; i < subdev->entity.num_pads; i++) {
1594                                 crops[i] = v4l2_subdev_get_try_crop(fh, i);
1595                                 BUG_ON(!crops[i]);
1596                         }
1597                 }
1598                 if (comps) {
1599                         *comps = v4l2_subdev_get_try_compose(fh,
1600                                                              SMIAPP_PAD_SINK);
1601                         BUG_ON(!*comps);
1602                 }
1603         }
1604 }
1605
1606 /* Changes require propagation only on sink pad. */
1607 static void smiapp_propagate(struct v4l2_subdev *subdev,
1608                              struct v4l2_subdev_fh *fh, int which,
1609                              int target)
1610 {
1611         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1612         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1613         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1614
1615         smiapp_get_crop_compose(subdev, fh, crops, &comp, which);
1616
1617         switch (target) {
1618         case V4L2_SEL_TGT_CROP:
1619                 comp->width = crops[SMIAPP_PAD_SINK]->width;
1620                 comp->height = crops[SMIAPP_PAD_SINK]->height;
1621                 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1622                         if (ssd == sensor->scaler) {
1623                                 sensor->scale_m =
1624                                         sensor->limits[
1625                                                 SMIAPP_LIMIT_SCALER_N_MIN];
1626                                 sensor->scaling_mode =
1627                                         SMIAPP_SCALING_MODE_NONE;
1628                         } else if (ssd == sensor->binner) {
1629                                 sensor->binning_horizontal = 1;
1630                                 sensor->binning_vertical = 1;
1631                         }
1632                 }
1633                 /* Fall through */
1634         case V4L2_SEL_TGT_COMPOSE:
1635                 *crops[SMIAPP_PAD_SRC] = *comp;
1636                 break;
1637         default:
1638                 BUG();
1639         }
1640 }
1641
1642 static const struct smiapp_csi_data_format
1643 *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1644 {
1645         const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
1646         unsigned int i;
1647
1648         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1649                 if (sensor->mbus_frame_fmts & (1 << i)
1650                     && smiapp_csi_data_formats[i].code == code)
1651                         return &smiapp_csi_data_formats[i];
1652         }
1653
1654         return csi_format;
1655 }
1656
1657 static int smiapp_set_format(struct v4l2_subdev *subdev,
1658                              struct v4l2_subdev_fh *fh,
1659                              struct v4l2_subdev_format *fmt)
1660 {
1661         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1662         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1663         struct v4l2_rect *crops[SMIAPP_PADS];
1664
1665         mutex_lock(&sensor->mutex);
1666
1667         /*
1668          * Media bus code is changeable on src subdev's source pad. On
1669          * other source pads we just get format here.
1670          */
1671         if (fmt->pad == ssd->source_pad) {
1672                 u32 code = fmt->format.code;
1673                 int rval = __smiapp_get_format(subdev, fh, fmt);
1674
1675                 if (!rval && subdev == &sensor->src->sd) {
1676                         const struct smiapp_csi_data_format *csi_format =
1677                                 smiapp_validate_csi_data_format(sensor, code);
1678                         if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1679                                 sensor->csi_format = csi_format;
1680                         fmt->format.code = csi_format->code;
1681                 }
1682
1683                 mutex_unlock(&sensor->mutex);
1684                 return rval;
1685         }
1686
1687         /* Sink pad. Width and height are changeable here. */
1688         fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1689         fmt->format.width &= ~1;
1690         fmt->format.height &= ~1;
1691
1692         fmt->format.width =
1693                 clamp(fmt->format.width,
1694                       sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1695                       sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1696         fmt->format.height =
1697                 clamp(fmt->format.height,
1698                       sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1699                       sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1700
1701         smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which);
1702
1703         crops[ssd->sink_pad]->left = 0;
1704         crops[ssd->sink_pad]->top = 0;
1705         crops[ssd->sink_pad]->width = fmt->format.width;
1706         crops[ssd->sink_pad]->height = fmt->format.height;
1707         if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1708                 ssd->sink_fmt = *crops[ssd->sink_pad];
1709         smiapp_propagate(subdev, fh, fmt->which,
1710                          V4L2_SEL_TGT_CROP);
1711
1712         mutex_unlock(&sensor->mutex);
1713
1714         return 0;
1715 }
1716
1717 /*
1718  * Calculate goodness of scaled image size compared to expected image
1719  * size and flags provided.
1720  */
1721 #define SCALING_GOODNESS                100000
1722 #define SCALING_GOODNESS_EXTREME        100000000
1723 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1724                             int h, int ask_h, u32 flags)
1725 {
1726         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1727         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1728         int val = 0;
1729
1730         w &= ~1;
1731         ask_w &= ~1;
1732         h &= ~1;
1733         ask_h &= ~1;
1734
1735         if (flags & V4L2_SEL_FLAG_GE) {
1736                 if (w < ask_w)
1737                         val -= SCALING_GOODNESS;
1738                 if (h < ask_h)
1739                         val -= SCALING_GOODNESS;
1740         }
1741
1742         if (flags & V4L2_SEL_FLAG_LE) {
1743                 if (w > ask_w)
1744                         val -= SCALING_GOODNESS;
1745                 if (h > ask_h)
1746                         val -= SCALING_GOODNESS;
1747         }
1748
1749         val -= abs(w - ask_w);
1750         val -= abs(h - ask_h);
1751
1752         if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1753                 val -= SCALING_GOODNESS_EXTREME;
1754
1755         dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1756                 w, ask_h, h, ask_h, val);
1757
1758         return val;
1759 }
1760
1761 static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1762                                       struct v4l2_subdev_fh *fh,
1763                                       struct v4l2_subdev_selection *sel,
1764                                       struct v4l2_rect **crops,
1765                                       struct v4l2_rect *comp)
1766 {
1767         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1768         unsigned int i;
1769         unsigned int binh = 1, binv = 1;
1770         unsigned int best = scaling_goodness(
1771                 subdev,
1772                 crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1773                 crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1774
1775         for (i = 0; i < sensor->nbinning_subtypes; i++) {
1776                 int this = scaling_goodness(
1777                         subdev,
1778                         crops[SMIAPP_PAD_SINK]->width
1779                         / sensor->binning_subtypes[i].horizontal,
1780                         sel->r.width,
1781                         crops[SMIAPP_PAD_SINK]->height
1782                         / sensor->binning_subtypes[i].vertical,
1783                         sel->r.height, sel->flags);
1784
1785                 if (this > best) {
1786                         binh = sensor->binning_subtypes[i].horizontal;
1787                         binv = sensor->binning_subtypes[i].vertical;
1788                         best = this;
1789                 }
1790         }
1791         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1792                 sensor->binning_vertical = binv;
1793                 sensor->binning_horizontal = binh;
1794         }
1795
1796         sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1797         sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1798 }
1799
1800 /*
1801  * Calculate best scaling ratio and mode for given output resolution.
1802  *
1803  * Try all of these: horizontal ratio, vertical ratio and smallest
1804  * size possible (horizontally).
1805  *
1806  * Also try whether horizontal scaler or full scaler gives a better
1807  * result.
1808  */
1809 static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1810                                       struct v4l2_subdev_fh *fh,
1811                                       struct v4l2_subdev_selection *sel,
1812                                       struct v4l2_rect **crops,
1813                                       struct v4l2_rect *comp)
1814 {
1815         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1816         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1817         u32 min, max, a, b, max_m;
1818         u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1819         int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1820         u32 try[4];
1821         u32 ntry = 0;
1822         unsigned int i;
1823         int best = INT_MIN;
1824
1825         sel->r.width = min_t(unsigned int, sel->r.width,
1826                              crops[SMIAPP_PAD_SINK]->width);
1827         sel->r.height = min_t(unsigned int, sel->r.height,
1828                               crops[SMIAPP_PAD_SINK]->height);
1829
1830         a = crops[SMIAPP_PAD_SINK]->width
1831                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1832         b = crops[SMIAPP_PAD_SINK]->height
1833                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1834         max_m = crops[SMIAPP_PAD_SINK]->width
1835                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1836                 / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1837
1838         a = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1839                 max(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1840         b = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1841                 max(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1842         max_m = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1843                     max(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1844
1845         dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1846
1847         min = min(max_m, min(a, b));
1848         max = min(max_m, max(a, b));
1849
1850         try[ntry] = min;
1851         ntry++;
1852         if (min != max) {
1853                 try[ntry] = max;
1854                 ntry++;
1855         }
1856         if (max != max_m) {
1857                 try[ntry] = min + 1;
1858                 ntry++;
1859                 if (min != max) {
1860                         try[ntry] = max + 1;
1861                         ntry++;
1862                 }
1863         }
1864
1865         for (i = 0; i < ntry; i++) {
1866                 int this = scaling_goodness(
1867                         subdev,
1868                         crops[SMIAPP_PAD_SINK]->width
1869                         / try[i]
1870                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1871                         sel->r.width,
1872                         crops[SMIAPP_PAD_SINK]->height,
1873                         sel->r.height,
1874                         sel->flags);
1875
1876                 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
1877
1878                 if (this > best) {
1879                         scale_m = try[i];
1880                         mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1881                         best = this;
1882                 }
1883
1884                 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1885                     == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
1886                         continue;
1887
1888                 this = scaling_goodness(
1889                         subdev, crops[SMIAPP_PAD_SINK]->width
1890                         / try[i]
1891                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1892                         sel->r.width,
1893                         crops[SMIAPP_PAD_SINK]->height
1894                         / try[i]
1895                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1896                         sel->r.height,
1897                         sel->flags);
1898
1899                 if (this > best) {
1900                         scale_m = try[i];
1901                         mode = SMIAPP_SCALING_MODE_BOTH;
1902                         best = this;
1903                 }
1904         }
1905
1906         sel->r.width =
1907                 (crops[SMIAPP_PAD_SINK]->width
1908                  / scale_m
1909                  * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
1910         if (mode == SMIAPP_SCALING_MODE_BOTH)
1911                 sel->r.height =
1912                         (crops[SMIAPP_PAD_SINK]->height
1913                          / scale_m
1914                          * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
1915                         & ~1;
1916         else
1917                 sel->r.height = crops[SMIAPP_PAD_SINK]->height;
1918
1919         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1920                 sensor->scale_m = scale_m;
1921                 sensor->scaling_mode = mode;
1922         }
1923 }
1924 /* We're only called on source pads. This function sets scaling. */
1925 static int smiapp_set_compose(struct v4l2_subdev *subdev,
1926                               struct v4l2_subdev_fh *fh,
1927                               struct v4l2_subdev_selection *sel)
1928 {
1929         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1930         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1931         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1932
1933         smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
1934
1935         sel->r.top = 0;
1936         sel->r.left = 0;
1937
1938         if (ssd == sensor->binner)
1939                 smiapp_set_compose_binner(subdev, fh, sel, crops, comp);
1940         else
1941                 smiapp_set_compose_scaler(subdev, fh, sel, crops, comp);
1942
1943         *comp = sel->r;
1944         smiapp_propagate(subdev, fh, sel->which,
1945                          V4L2_SEL_TGT_COMPOSE);
1946
1947         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1948                 return smiapp_update_mode(sensor);
1949
1950         return 0;
1951 }
1952
1953 static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
1954                                   struct v4l2_subdev_selection *sel)
1955 {
1956         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1957         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1958
1959         /* We only implement crop in three places. */
1960         switch (sel->target) {
1961         case V4L2_SEL_TGT_CROP:
1962         case V4L2_SEL_TGT_CROP_BOUNDS:
1963                 if (ssd == sensor->pixel_array
1964                     && sel->pad == SMIAPP_PA_PAD_SRC)
1965                         return 0;
1966                 if (ssd == sensor->src
1967                     && sel->pad == SMIAPP_PAD_SRC)
1968                         return 0;
1969                 if (ssd == sensor->scaler
1970                     && sel->pad == SMIAPP_PAD_SINK
1971                     && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1972                     == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
1973                         return 0;
1974                 return -EINVAL;
1975         case V4L2_SEL_TGT_COMPOSE:
1976         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
1977                 if (sel->pad == ssd->source_pad)
1978                         return -EINVAL;
1979                 if (ssd == sensor->binner)
1980                         return 0;
1981                 if (ssd == sensor->scaler
1982                     && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1983                     != SMIAPP_SCALING_CAPABILITY_NONE)
1984                         return 0;
1985                 /* Fall through */
1986         default:
1987                 return -EINVAL;
1988         }
1989 }
1990
1991 static int smiapp_set_crop(struct v4l2_subdev *subdev,
1992                            struct v4l2_subdev_fh *fh,
1993                            struct v4l2_subdev_selection *sel)
1994 {
1995         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1996         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1997         struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
1998         struct v4l2_rect _r;
1999
2000         smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which);
2001
2002         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2003                 if (sel->pad == ssd->sink_pad)
2004                         src_size = &ssd->sink_fmt;
2005                 else
2006                         src_size = &ssd->compose;
2007         } else {
2008                 if (sel->pad == ssd->sink_pad) {
2009                         _r.left = 0;
2010                         _r.top = 0;
2011                         _r.width = v4l2_subdev_get_try_format(fh, sel->pad)
2012                                 ->width;
2013                         _r.height = v4l2_subdev_get_try_format(fh, sel->pad)
2014                                 ->height;
2015                         src_size = &_r;
2016                 } else {
2017                         src_size =
2018                                 v4l2_subdev_get_try_compose(
2019                                         fh, ssd->sink_pad);
2020                 }
2021         }
2022
2023         if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2024                 sel->r.left = 0;
2025                 sel->r.top = 0;
2026         }
2027
2028         sel->r.width = min(sel->r.width, src_size->width);
2029         sel->r.height = min(sel->r.height, src_size->height);
2030
2031         sel->r.left = min(sel->r.left, src_size->width - sel->r.width);
2032         sel->r.top = min(sel->r.top, src_size->height - sel->r.height);
2033
2034         *crops[sel->pad] = sel->r;
2035
2036         if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2037                 smiapp_propagate(subdev, fh, sel->which,
2038                                  V4L2_SEL_TGT_CROP);
2039
2040         return 0;
2041 }
2042
2043 static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2044                                   struct v4l2_subdev_fh *fh,
2045                                   struct v4l2_subdev_selection *sel)
2046 {
2047         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2048         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2049         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2050         struct v4l2_rect sink_fmt;
2051         int ret;
2052
2053         ret = __smiapp_sel_supported(subdev, sel);
2054         if (ret)
2055                 return ret;
2056
2057         smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
2058
2059         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2060                 sink_fmt = ssd->sink_fmt;
2061         } else {
2062                 struct v4l2_mbus_framefmt *fmt =
2063                         v4l2_subdev_get_try_format(fh, ssd->sink_pad);
2064
2065                 sink_fmt.left = 0;
2066                 sink_fmt.top = 0;
2067                 sink_fmt.width = fmt->width;
2068                 sink_fmt.height = fmt->height;
2069         }
2070
2071         switch (sel->target) {
2072         case V4L2_SEL_TGT_CROP_BOUNDS:
2073                 if (ssd == sensor->pixel_array) {
2074                         sel->r.width =
2075                                 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2076                         sel->r.height =
2077                                 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2078                 } else if (sel->pad == ssd->sink_pad) {
2079                         sel->r = sink_fmt;
2080                 } else {
2081                         sel->r = *comp;
2082                 }
2083                 break;
2084         case V4L2_SEL_TGT_CROP:
2085         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2086                 sel->r = *crops[sel->pad];
2087                 break;
2088         case V4L2_SEL_TGT_COMPOSE:
2089                 sel->r = *comp;
2090                 break;
2091         }
2092
2093         return 0;
2094 }
2095
2096 static int smiapp_get_selection(struct v4l2_subdev *subdev,
2097                                 struct v4l2_subdev_fh *fh,
2098                                 struct v4l2_subdev_selection *sel)
2099 {
2100         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2101         int rval;
2102
2103         mutex_lock(&sensor->mutex);
2104         rval = __smiapp_get_selection(subdev, fh, sel);
2105         mutex_unlock(&sensor->mutex);
2106
2107         return rval;
2108 }
2109 static int smiapp_set_selection(struct v4l2_subdev *subdev,
2110                                 struct v4l2_subdev_fh *fh,
2111                                 struct v4l2_subdev_selection *sel)
2112 {
2113         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2114         int ret;
2115
2116         ret = __smiapp_sel_supported(subdev, sel);
2117         if (ret)
2118                 return ret;
2119
2120         mutex_lock(&sensor->mutex);
2121
2122         sel->r.left = max(0, sel->r.left & ~1);
2123         sel->r.top = max(0, sel->r.top & ~1);
2124         sel->r.width = max(0, SMIAPP_ALIGN_DIM(sel->r.width, sel->flags));
2125         sel->r.height = max(0, SMIAPP_ALIGN_DIM(sel->r.height, sel->flags));
2126
2127         sel->r.width = max_t(unsigned int,
2128                              sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2129                              sel->r.width);
2130         sel->r.height = max_t(unsigned int,
2131                               sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2132                               sel->r.height);
2133
2134         switch (sel->target) {
2135         case V4L2_SEL_TGT_CROP:
2136                 ret = smiapp_set_crop(subdev, fh, sel);
2137                 break;
2138         case V4L2_SEL_TGT_COMPOSE:
2139                 ret = smiapp_set_compose(subdev, fh, sel);
2140                 break;
2141         default:
2142                 BUG();
2143         }
2144
2145         mutex_unlock(&sensor->mutex);
2146         return ret;
2147 }
2148
2149 static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2150 {
2151         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2152
2153         *frames = sensor->frame_skip;
2154         return 0;
2155 }
2156
2157 /* -----------------------------------------------------------------------------
2158  * sysfs attributes
2159  */
2160
2161 static ssize_t
2162 smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2163                       char *buf)
2164 {
2165         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2166         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2167         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2168         unsigned int nbytes;
2169
2170         if (!sensor->dev_init_done)
2171                 return -EBUSY;
2172
2173         if (!sensor->nvm_size) {
2174                 /* NVM not read yet - read it now */
2175                 sensor->nvm_size = sensor->platform_data->nvm_size;
2176                 if (smiapp_set_power(subdev, 1) < 0)
2177                         return -ENODEV;
2178                 if (smiapp_read_nvm(sensor, sensor->nvm)) {
2179                         dev_err(&client->dev, "nvm read failed\n");
2180                         return -ENODEV;
2181                 }
2182                 smiapp_set_power(subdev, 0);
2183         }
2184         /*
2185          * NVM is still way below a PAGE_SIZE, so we can safely
2186          * assume this for now.
2187          */
2188         nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2189         memcpy(buf, sensor->nvm, nbytes);
2190
2191         return nbytes;
2192 }
2193 static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2194
2195 static ssize_t
2196 smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2197                         char *buf)
2198 {
2199         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2200         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2201         struct smiapp_module_info *minfo = &sensor->minfo;
2202
2203         return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2204                         minfo->manufacturer_id, minfo->model_id,
2205                         minfo->revision_number_major) + 1;
2206 }
2207
2208 static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
2209
2210 /* -----------------------------------------------------------------------------
2211  * V4L2 subdev core operations
2212  */
2213
2214 static int smiapp_identify_module(struct v4l2_subdev *subdev)
2215 {
2216         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2217         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2218         struct smiapp_module_info *minfo = &sensor->minfo;
2219         unsigned int i;
2220         int rval = 0;
2221
2222         minfo->name = SMIAPP_NAME;
2223
2224         /* Module info */
2225         rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2226                                  &minfo->manufacturer_id);
2227         if (!rval)
2228                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2229                                          &minfo->model_id);
2230         if (!rval)
2231                 rval = smiapp_read_8only(sensor,
2232                                          SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2233                                          &minfo->revision_number_major);
2234         if (!rval)
2235                 rval = smiapp_read_8only(sensor,
2236                                          SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2237                                          &minfo->revision_number_minor);
2238         if (!rval)
2239                 rval = smiapp_read_8only(sensor,
2240                                          SMIAPP_REG_U8_MODULE_DATE_YEAR,
2241                                          &minfo->module_year);
2242         if (!rval)
2243                 rval = smiapp_read_8only(sensor,
2244                                          SMIAPP_REG_U8_MODULE_DATE_MONTH,
2245                                          &minfo->module_month);
2246         if (!rval)
2247                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2248                                          &minfo->module_day);
2249
2250         /* Sensor info */
2251         if (!rval)
2252                 rval = smiapp_read_8only(sensor,
2253                                          SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2254                                          &minfo->sensor_manufacturer_id);
2255         if (!rval)
2256                 rval = smiapp_read_8only(sensor,
2257                                          SMIAPP_REG_U16_SENSOR_MODEL_ID,
2258                                          &minfo->sensor_model_id);
2259         if (!rval)
2260                 rval = smiapp_read_8only(sensor,
2261                                          SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2262                                          &minfo->sensor_revision_number);
2263         if (!rval)
2264                 rval = smiapp_read_8only(sensor,
2265                                          SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2266                                          &minfo->sensor_firmware_version);
2267
2268         /* SMIA */
2269         if (!rval)
2270                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2271                                          &minfo->smia_version);
2272         if (!rval)
2273                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2274                                          &minfo->smiapp_version);
2275
2276         if (rval) {
2277                 dev_err(&client->dev, "sensor detection failed\n");
2278                 return -ENODEV;
2279         }
2280
2281         dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2282                 minfo->manufacturer_id, minfo->model_id);
2283
2284         dev_dbg(&client->dev,
2285                 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2286                 minfo->revision_number_major, minfo->revision_number_minor,
2287                 minfo->module_year, minfo->module_month, minfo->module_day);
2288
2289         dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2290                 minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2291
2292         dev_dbg(&client->dev,
2293                 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2294                 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2295
2296         dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2297                 minfo->smia_version, minfo->smiapp_version);
2298
2299         /*
2300          * Some modules have bad data in the lvalues below. Hope the
2301          * rvalues have better stuff. The lvalues are module
2302          * parameters whereas the rvalues are sensor parameters.
2303          */
2304         if (!minfo->manufacturer_id && !minfo->model_id) {
2305                 minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2306                 minfo->model_id = minfo->sensor_model_id;
2307                 minfo->revision_number_major = minfo->sensor_revision_number;
2308         }
2309
2310         for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2311                 if (smiapp_module_idents[i].manufacturer_id
2312                     != minfo->manufacturer_id)
2313                         continue;
2314                 if (smiapp_module_idents[i].model_id != minfo->model_id)
2315                         continue;
2316                 if (smiapp_module_idents[i].flags
2317                     & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2318                         if (smiapp_module_idents[i].revision_number_major
2319                             < minfo->revision_number_major)
2320                                 continue;
2321                 } else {
2322                         if (smiapp_module_idents[i].revision_number_major
2323                             != minfo->revision_number_major)
2324                                 continue;
2325                 }
2326
2327                 minfo->name = smiapp_module_idents[i].name;
2328                 minfo->quirk = smiapp_module_idents[i].quirk;
2329                 break;
2330         }
2331
2332         if (i >= ARRAY_SIZE(smiapp_module_idents))
2333                 dev_warn(&client->dev,
2334                          "no quirks for this module; let's hope it's fully compliant\n");
2335
2336         dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2337                 minfo->name, minfo->manufacturer_id, minfo->model_id,
2338                 minfo->revision_number_major);
2339
2340         strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name));
2341
2342         return 0;
2343 }
2344
2345 static const struct v4l2_subdev_ops smiapp_ops;
2346 static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2347 static const struct media_entity_operations smiapp_entity_ops;
2348
2349 static int smiapp_registered(struct v4l2_subdev *subdev)
2350 {
2351         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2352         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2353         struct smiapp_pll *pll = &sensor->pll;
2354         struct smiapp_subdev *last = NULL;
2355         u32 tmp;
2356         unsigned int i;
2357         int rval;
2358
2359         sensor->vana = devm_regulator_get(&client->dev, "VANA");
2360         if (IS_ERR(sensor->vana)) {
2361                 dev_err(&client->dev, "could not get regulator for vana\n");
2362                 return -ENODEV;
2363         }
2364
2365         if (!sensor->platform_data->set_xclk) {
2366                 sensor->ext_clk = devm_clk_get(&client->dev,
2367                                         sensor->platform_data->ext_clk_name);
2368                 if (IS_ERR(sensor->ext_clk)) {
2369                         dev_err(&client->dev, "could not get clock %s\n",
2370                                 sensor->platform_data->ext_clk_name);
2371                         return -ENODEV;
2372                 }
2373
2374                 rval = clk_set_rate(sensor->ext_clk,
2375                                     sensor->platform_data->ext_clk);
2376                 if (rval < 0) {
2377                         dev_err(&client->dev,
2378                                 "unable to set clock %s freq to %u\n",
2379                                 sensor->platform_data->ext_clk_name,
2380                                 sensor->platform_data->ext_clk);
2381                         return -ENODEV;
2382                 }
2383         }
2384
2385         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN) {
2386                 if (gpio_request_one(sensor->platform_data->xshutdown, 0,
2387                                      "SMIA++ xshutdown") != 0) {
2388                         dev_err(&client->dev,
2389                                 "unable to acquire reset gpio %d\n",
2390                                 sensor->platform_data->xshutdown);
2391                         return -ENODEV;
2392                 }
2393         }
2394
2395         rval = smiapp_power_on(sensor);
2396         if (rval) {
2397                 rval = -ENODEV;
2398                 goto out_smiapp_power_on;
2399         }
2400
2401         rval = smiapp_identify_module(subdev);
2402         if (rval) {
2403                 rval = -ENODEV;
2404                 goto out_power_off;
2405         }
2406
2407         rval = smiapp_get_all_limits(sensor);
2408         if (rval) {
2409                 rval = -ENODEV;
2410                 goto out_power_off;
2411         }
2412
2413         /*
2414          * Handle Sensor Module orientation on the board.
2415          *
2416          * The application of H-FLIP and V-FLIP on the sensor is modified by
2417          * the sensor orientation on the board.
2418          *
2419          * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2420          * both H-FLIP and V-FLIP for normal operation which also implies
2421          * that a set/unset operation for user space HFLIP and VFLIP v4l2
2422          * controls will need to be internally inverted.
2423          *
2424          * Rotation also changes the bayer pattern.
2425          */
2426         if (sensor->platform_data->module_board_orient ==
2427             SMIAPP_MODULE_BOARD_ORIENT_180)
2428                 sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2429                                           SMIAPP_IMAGE_ORIENTATION_VFLIP;
2430
2431         rval = smiapp_get_mbus_formats(sensor);
2432         if (rval) {
2433                 rval = -ENODEV;
2434                 goto out_power_off;
2435         }
2436
2437         if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2438                 u32 val;
2439
2440                 rval = smiapp_read(sensor,
2441                                    SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2442                 if (rval < 0) {
2443                         rval = -ENODEV;
2444                         goto out_power_off;
2445                 }
2446                 sensor->nbinning_subtypes = min_t(u8, val,
2447                                                   SMIAPP_BINNING_SUBTYPES);
2448
2449                 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2450                         rval = smiapp_read(
2451                                 sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2452                         if (rval < 0) {
2453                                 rval = -ENODEV;
2454                                 goto out_power_off;
2455                         }
2456                         sensor->binning_subtypes[i] =
2457                                 *(struct smiapp_binning_subtype *)&val;
2458
2459                         dev_dbg(&client->dev, "binning %xx%x\n",
2460                                 sensor->binning_subtypes[i].horizontal,
2461                                 sensor->binning_subtypes[i].vertical);
2462                 }
2463         }
2464         sensor->binning_horizontal = 1;
2465         sensor->binning_vertical = 1;
2466
2467         if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
2468                 dev_err(&client->dev, "sysfs ident entry creation failed\n");
2469                 rval = -ENOENT;
2470                 goto out_power_off;
2471         }
2472         /* SMIA++ NVM initialization - it will be read from the sensor
2473          * when it is first requested by userspace.
2474          */
2475         if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
2476                 sensor->nvm = devm_kzalloc(&client->dev,
2477                                 sensor->platform_data->nvm_size, GFP_KERNEL);
2478                 if (sensor->nvm == NULL) {
2479                         dev_err(&client->dev, "nvm buf allocation failed\n");
2480                         rval = -ENOMEM;
2481                         goto out_ident_release;
2482                 }
2483
2484                 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
2485                         dev_err(&client->dev, "sysfs nvm entry failed\n");
2486                         rval = -EBUSY;
2487                         goto out_ident_release;
2488                 }
2489         }
2490
2491         rval = smiapp_call_quirk(sensor, limits);
2492         if (rval) {
2493                 dev_err(&client->dev, "limits quirks failed\n");
2494                 goto out_nvm_release;
2495         }
2496
2497         /* We consider this as profile 0 sensor if any of these are zero. */
2498         if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
2499             !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
2500             !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
2501             !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
2502                 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
2503         } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2504                    != SMIAPP_SCALING_CAPABILITY_NONE) {
2505                 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2506                     == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2507                         sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
2508                 else
2509                         sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
2510                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2511                 sensor->ssds_used++;
2512         } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2513                    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
2514                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2515                 sensor->ssds_used++;
2516         }
2517         sensor->binner = &sensor->ssds[sensor->ssds_used];
2518         sensor->ssds_used++;
2519         sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
2520         sensor->ssds_used++;
2521
2522         sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2523
2524         for (i = 0; i < SMIAPP_SUBDEVS; i++) {
2525                 struct {
2526                         struct smiapp_subdev *ssd;
2527                         char *name;
2528                 } const __this[] = {
2529                         { sensor->scaler, "scaler", },
2530                         { sensor->binner, "binner", },
2531                         { sensor->pixel_array, "pixel array", },
2532                 }, *_this = &__this[i];
2533                 struct smiapp_subdev *this = _this->ssd;
2534
2535                 if (!this)
2536                         continue;
2537
2538                 if (this != sensor->src)
2539                         v4l2_subdev_init(&this->sd, &smiapp_ops);
2540
2541                 this->sensor = sensor;
2542
2543                 if (this == sensor->pixel_array) {
2544                         this->npads = 1;
2545                 } else {
2546                         this->npads = 2;
2547                         this->source_pad = 1;
2548                 }
2549
2550                 snprintf(this->sd.name,
2551                          sizeof(this->sd.name), "%s %s",
2552                          sensor->minfo.name, _this->name);
2553
2554                 this->sink_fmt.width =
2555                         sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2556                 this->sink_fmt.height =
2557                         sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2558                 this->compose.width = this->sink_fmt.width;
2559                 this->compose.height = this->sink_fmt.height;
2560                 this->crop[this->source_pad] = this->compose;
2561                 this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2562                 if (this != sensor->pixel_array) {
2563                         this->crop[this->sink_pad] = this->compose;
2564                         this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
2565                 }
2566
2567                 this->sd.entity.ops = &smiapp_entity_ops;
2568
2569                 if (last == NULL) {
2570                         last = this;
2571                         continue;
2572                 }
2573
2574                 this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2575                 this->sd.internal_ops = &smiapp_internal_ops;
2576                 this->sd.owner = NULL;
2577                 v4l2_set_subdevdata(&this->sd, client);
2578
2579                 rval = media_entity_init(&this->sd.entity,
2580                                          this->npads, this->pads, 0);
2581                 if (rval) {
2582                         dev_err(&client->dev,
2583                                 "media_entity_init failed\n");
2584                         goto out_nvm_release;
2585                 }
2586
2587                 rval = media_entity_create_link(&this->sd.entity,
2588                                                 this->source_pad,
2589                                                 &last->sd.entity,
2590                                                 last->sink_pad,
2591                                                 MEDIA_LNK_FL_ENABLED |
2592                                                 MEDIA_LNK_FL_IMMUTABLE);
2593                 if (rval) {
2594                         dev_err(&client->dev,
2595                                 "media_entity_create_link failed\n");
2596                         goto out_nvm_release;
2597                 }
2598
2599                 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2600                                                    &this->sd);
2601                 if (rval) {
2602                         dev_err(&client->dev,
2603                                 "v4l2_device_register_subdev failed\n");
2604                         goto out_nvm_release;
2605                 }
2606
2607                 last = this;
2608         }
2609
2610         dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
2611
2612         sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
2613
2614         /* final steps */
2615         smiapp_read_frame_fmt(sensor);
2616         rval = smiapp_init_controls(sensor);
2617         if (rval < 0)
2618                 goto out_nvm_release;
2619
2620         /* prepare PLL configuration input values */
2621         pll->bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
2622         pll->csi2.lanes = sensor->platform_data->lanes;
2623         pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
2624         /* Profile 0 sensors have no separate OP clock branch. */
2625         if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
2626                 pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
2627         if (smiapp_needs_quirk(sensor,
2628                                SMIAPP_QUIRK_FLAG_OP_PIX_CLOCK_PER_LANE))
2629                 pll->flags |= SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE;
2630         pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2631
2632         rval = smiapp_update_mode(sensor);
2633         if (rval) {
2634                 dev_err(&client->dev, "update mode failed\n");
2635                 goto out_nvm_release;
2636         }
2637
2638         sensor->streaming = false;
2639         sensor->dev_init_done = true;
2640
2641         /* check flash capability */
2642         rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp);
2643         sensor->flash_capability = tmp;
2644         if (rval)
2645                 goto out_nvm_release;
2646
2647         smiapp_power_off(sensor);
2648
2649         return 0;
2650
2651 out_nvm_release:
2652         device_remove_file(&client->dev, &dev_attr_nvm);
2653
2654 out_ident_release:
2655         device_remove_file(&client->dev, &dev_attr_ident);
2656
2657 out_power_off:
2658         smiapp_power_off(sensor);
2659
2660 out_smiapp_power_on:
2661         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2662                 gpio_free(sensor->platform_data->xshutdown);
2663
2664         return rval;
2665 }
2666
2667 static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2668 {
2669         struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2670         struct smiapp_sensor *sensor = ssd->sensor;
2671         u32 mbus_code =
2672                 smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
2673         unsigned int i;
2674
2675         mutex_lock(&sensor->mutex);
2676
2677         for (i = 0; i < ssd->npads; i++) {
2678                 struct v4l2_mbus_framefmt *try_fmt =
2679                         v4l2_subdev_get_try_format(fh, i);
2680                 struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i);
2681                 struct v4l2_rect *try_comp;
2682
2683                 try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2684                 try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2685                 try_fmt->code = mbus_code;
2686
2687                 try_crop->top = 0;
2688                 try_crop->left = 0;
2689                 try_crop->width = try_fmt->width;
2690                 try_crop->height = try_fmt->height;
2691
2692                 if (ssd != sensor->pixel_array)
2693                         continue;
2694
2695                 try_comp = v4l2_subdev_get_try_compose(fh, i);
2696                 *try_comp = *try_crop;
2697         }
2698
2699         mutex_unlock(&sensor->mutex);
2700
2701         return smiapp_set_power(sd, 1);
2702 }
2703
2704 static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2705 {
2706         return smiapp_set_power(sd, 0);
2707 }
2708
2709 static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2710         .s_stream = smiapp_set_stream,
2711 };
2712
2713 static const struct v4l2_subdev_core_ops smiapp_core_ops = {
2714         .s_power = smiapp_set_power,
2715 };
2716
2717 static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2718         .enum_mbus_code = smiapp_enum_mbus_code,
2719         .get_fmt = smiapp_get_format,
2720         .set_fmt = smiapp_set_format,
2721         .get_selection = smiapp_get_selection,
2722         .set_selection = smiapp_set_selection,
2723 };
2724
2725 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2726         .g_skip_frames = smiapp_get_skip_frames,
2727 };
2728
2729 static const struct v4l2_subdev_ops smiapp_ops = {
2730         .core = &smiapp_core_ops,
2731         .video = &smiapp_video_ops,
2732         .pad = &smiapp_pad_ops,
2733         .sensor = &smiapp_sensor_ops,
2734 };
2735
2736 static const struct media_entity_operations smiapp_entity_ops = {
2737         .link_validate = v4l2_subdev_link_validate,
2738 };
2739
2740 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2741         .registered = smiapp_registered,
2742         .open = smiapp_open,
2743         .close = smiapp_close,
2744 };
2745
2746 static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2747         .open = smiapp_open,
2748         .close = smiapp_close,
2749 };
2750
2751 /* -----------------------------------------------------------------------------
2752  * I2C Driver
2753  */
2754
2755 #ifdef CONFIG_PM
2756
2757 static int smiapp_suspend(struct device *dev)
2758 {
2759         struct i2c_client *client = to_i2c_client(dev);
2760         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2761         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2762         bool streaming;
2763
2764         BUG_ON(mutex_is_locked(&sensor->mutex));
2765
2766         if (sensor->power_count == 0)
2767                 return 0;
2768
2769         if (sensor->streaming)
2770                 smiapp_stop_streaming(sensor);
2771
2772         streaming = sensor->streaming;
2773
2774         smiapp_power_off(sensor);
2775
2776         /* save state for resume */
2777         sensor->streaming = streaming;
2778
2779         return 0;
2780 }
2781
2782 static int smiapp_resume(struct device *dev)
2783 {
2784         struct i2c_client *client = to_i2c_client(dev);
2785         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2786         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2787         int rval;
2788
2789         if (sensor->power_count == 0)
2790                 return 0;
2791
2792         rval = smiapp_power_on(sensor);
2793         if (rval)
2794                 return rval;
2795
2796         if (sensor->streaming)
2797                 rval = smiapp_start_streaming(sensor);
2798
2799         return rval;
2800 }
2801
2802 #else
2803
2804 #define smiapp_suspend  NULL
2805 #define smiapp_resume   NULL
2806
2807 #endif /* CONFIG_PM */
2808
2809 static int smiapp_probe(struct i2c_client *client,
2810                         const struct i2c_device_id *devid)
2811 {
2812         struct smiapp_sensor *sensor;
2813
2814         if (client->dev.platform_data == NULL)
2815                 return -ENODEV;
2816
2817         sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
2818         if (sensor == NULL)
2819                 return -ENOMEM;
2820
2821         sensor->platform_data = client->dev.platform_data;
2822         mutex_init(&sensor->mutex);
2823         mutex_init(&sensor->power_mutex);
2824         sensor->src = &sensor->ssds[sensor->ssds_used];
2825
2826         v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
2827         sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
2828         sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2829         sensor->src->sensor = sensor;
2830
2831         sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
2832         return media_entity_init(&sensor->src->sd.entity, 2,
2833                                  sensor->src->pads, 0);
2834 }
2835
2836 static int __exit smiapp_remove(struct i2c_client *client)
2837 {
2838         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2839         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2840         unsigned int i;
2841
2842         if (sensor->power_count) {
2843                 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2844                         gpio_set_value(sensor->platform_data->xshutdown, 0);
2845                 if (sensor->platform_data->set_xclk)
2846                         sensor->platform_data->set_xclk(&sensor->src->sd, 0);
2847                 else
2848                         clk_disable(sensor->ext_clk);
2849                 sensor->power_count = 0;
2850         }
2851
2852         device_remove_file(&client->dev, &dev_attr_ident);
2853         if (sensor->nvm)
2854                 device_remove_file(&client->dev, &dev_attr_nvm);
2855
2856         for (i = 0; i < sensor->ssds_used; i++) {
2857                 media_entity_cleanup(&sensor->ssds[i].sd.entity);
2858                 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2859         }
2860         smiapp_free_controls(sensor);
2861         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2862                 gpio_free(sensor->platform_data->xshutdown);
2863
2864         return 0;
2865 }
2866
2867 static const struct i2c_device_id smiapp_id_table[] = {
2868         { SMIAPP_NAME, 0 },
2869         { },
2870 };
2871 MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
2872
2873 static const struct dev_pm_ops smiapp_pm_ops = {
2874         .suspend        = smiapp_suspend,
2875         .resume         = smiapp_resume,
2876 };
2877
2878 static struct i2c_driver smiapp_i2c_driver = {
2879         .driver = {
2880                 .name = SMIAPP_NAME,
2881                 .pm = &smiapp_pm_ops,
2882         },
2883         .probe  = smiapp_probe,
2884         .remove = __exit_p(smiapp_remove),
2885         .id_table = smiapp_id_table,
2886 };
2887
2888 module_i2c_driver(smiapp_i2c_driver);
2889
2890 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
2891 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
2892 MODULE_LICENSE("GPL");