]> Pileus Git - ~andy/linux/blob - drivers/md/raid5.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[~andy/linux] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71
72 #define NR_STRIPES              256
73 #define STRIPE_SIZE             PAGE_SIZE
74 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD            1
77 #define BYPASS_THRESHOLD        1
78 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK               (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH        8
81
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85         return &conf->stripe_hashtbl[hash];
86 }
87
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95         spin_lock_irq(conf->hash_locks + hash);
96         spin_lock(&conf->device_lock);
97 }
98
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101         spin_unlock(&conf->device_lock);
102         spin_unlock_irq(conf->hash_locks + hash);
103 }
104
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107         int i;
108         local_irq_disable();
109         spin_lock(conf->hash_locks);
110         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112         spin_lock(&conf->device_lock);
113 }
114
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117         int i;
118         spin_unlock(&conf->device_lock);
119         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120                 spin_unlock(conf->hash_locks + i - 1);
121         local_irq_enable();
122 }
123
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125  * order without overlap.  There may be several bio's per stripe+device, and
126  * a bio could span several devices.
127  * When walking this list for a particular stripe+device, we must never proceed
128  * beyond a bio that extends past this device, as the next bio might no longer
129  * be valid.
130  * This function is used to determine the 'next' bio in the list, given the sector
131  * of the current stripe+device
132  */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135         int sectors = bio_sectors(bio);
136         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
137                 return bio->bi_next;
138         else
139                 return NULL;
140 }
141
142 /*
143  * We maintain a biased count of active stripes in the bottom 16 bits of
144  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145  */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149         return (atomic_read(segments) >> 16) & 0xffff;
150 }
151
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155         return atomic_sub_return(1, segments) & 0xffff;
156 }
157
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161         atomic_inc(segments);
162 }
163
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165         unsigned int cnt)
166 {
167         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168         int old, new;
169
170         do {
171                 old = atomic_read(segments);
172                 new = (old & 0xffff) | (cnt << 16);
173         } while (atomic_cmpxchg(segments, old, new) != old);
174 }
175
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179         atomic_set(segments, cnt);
180 }
181
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185         if (sh->ddf_layout)
186                 /* ddf always start from first device */
187                 return 0;
188         /* md starts just after Q block */
189         if (sh->qd_idx == sh->disks - 1)
190                 return 0;
191         else
192                 return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196         disk++;
197         return (disk < raid_disks) ? disk : 0;
198 }
199
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201  * We need to map each disk to a 'slot', where the data disks are slot
202  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203  * is raid_disks-1.  This help does that mapping.
204  */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206                              int *count, int syndrome_disks)
207 {
208         int slot = *count;
209
210         if (sh->ddf_layout)
211                 (*count)++;
212         if (idx == sh->pd_idx)
213                 return syndrome_disks;
214         if (idx == sh->qd_idx)
215                 return syndrome_disks + 1;
216         if (!sh->ddf_layout)
217                 (*count)++;
218         return slot;
219 }
220
221 static void return_io(struct bio *return_bi)
222 {
223         struct bio *bi = return_bi;
224         while (bi) {
225
226                 return_bi = bi->bi_next;
227                 bi->bi_next = NULL;
228                 bi->bi_size = 0;
229                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230                                          bi, 0);
231                 bio_endio(bi, 0);
232                 bi = return_bi;
233         }
234 }
235
236 static void print_raid5_conf (struct r5conf *conf);
237
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240         return sh->check_state || sh->reconstruct_state ||
241                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247         struct r5conf *conf = sh->raid_conf;
248         struct r5worker_group *group;
249         int thread_cnt;
250         int i, cpu = sh->cpu;
251
252         if (!cpu_online(cpu)) {
253                 cpu = cpumask_any(cpu_online_mask);
254                 sh->cpu = cpu;
255         }
256
257         if (list_empty(&sh->lru)) {
258                 struct r5worker_group *group;
259                 group = conf->worker_groups + cpu_to_group(cpu);
260                 list_add_tail(&sh->lru, &group->handle_list);
261                 group->stripes_cnt++;
262                 sh->group = group;
263         }
264
265         if (conf->worker_cnt_per_group == 0) {
266                 md_wakeup_thread(conf->mddev->thread);
267                 return;
268         }
269
270         group = conf->worker_groups + cpu_to_group(sh->cpu);
271
272         group->workers[0].working = true;
273         /* at least one worker should run to avoid race */
274         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275
276         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277         /* wakeup more workers */
278         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279                 if (group->workers[i].working == false) {
280                         group->workers[i].working = true;
281                         queue_work_on(sh->cpu, raid5_wq,
282                                       &group->workers[i].work);
283                         thread_cnt--;
284                 }
285         }
286 }
287
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289                               struct list_head *temp_inactive_list)
290 {
291         BUG_ON(!list_empty(&sh->lru));
292         BUG_ON(atomic_read(&conf->active_stripes)==0);
293         if (test_bit(STRIPE_HANDLE, &sh->state)) {
294                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
295                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
296                         list_add_tail(&sh->lru, &conf->delayed_list);
297                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
298                            sh->bm_seq - conf->seq_write > 0)
299                         list_add_tail(&sh->lru, &conf->bitmap_list);
300                 else {
301                         clear_bit(STRIPE_DELAYED, &sh->state);
302                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
303                         if (conf->worker_cnt_per_group == 0) {
304                                 list_add_tail(&sh->lru, &conf->handle_list);
305                         } else {
306                                 raid5_wakeup_stripe_thread(sh);
307                                 return;
308                         }
309                 }
310                 md_wakeup_thread(conf->mddev->thread);
311         } else {
312                 BUG_ON(stripe_operations_active(sh));
313                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
314                         if (atomic_dec_return(&conf->preread_active_stripes)
315                             < IO_THRESHOLD)
316                                 md_wakeup_thread(conf->mddev->thread);
317                 atomic_dec(&conf->active_stripes);
318                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
319                         list_add_tail(&sh->lru, temp_inactive_list);
320         }
321 }
322
323 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
324                              struct list_head *temp_inactive_list)
325 {
326         if (atomic_dec_and_test(&sh->count))
327                 do_release_stripe(conf, sh, temp_inactive_list);
328 }
329
330 /*
331  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
332  *
333  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334  * given time. Adding stripes only takes device lock, while deleting stripes
335  * only takes hash lock.
336  */
337 static void release_inactive_stripe_list(struct r5conf *conf,
338                                          struct list_head *temp_inactive_list,
339                                          int hash)
340 {
341         int size;
342         bool do_wakeup = false;
343         unsigned long flags;
344
345         if (hash == NR_STRIPE_HASH_LOCKS) {
346                 size = NR_STRIPE_HASH_LOCKS;
347                 hash = NR_STRIPE_HASH_LOCKS - 1;
348         } else
349                 size = 1;
350         while (size) {
351                 struct list_head *list = &temp_inactive_list[size - 1];
352
353                 /*
354                  * We don't hold any lock here yet, get_active_stripe() might
355                  * remove stripes from the list
356                  */
357                 if (!list_empty_careful(list)) {
358                         spin_lock_irqsave(conf->hash_locks + hash, flags);
359                         if (list_empty(conf->inactive_list + hash) &&
360                             !list_empty(list))
361                                 atomic_dec(&conf->empty_inactive_list_nr);
362                         list_splice_tail_init(list, conf->inactive_list + hash);
363                         do_wakeup = true;
364                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
365                 }
366                 size--;
367                 hash--;
368         }
369
370         if (do_wakeup) {
371                 wake_up(&conf->wait_for_stripe);
372                 if (conf->retry_read_aligned)
373                         md_wakeup_thread(conf->mddev->thread);
374         }
375 }
376
377 /* should hold conf->device_lock already */
378 static int release_stripe_list(struct r5conf *conf,
379                                struct list_head *temp_inactive_list)
380 {
381         struct stripe_head *sh;
382         int count = 0;
383         struct llist_node *head;
384
385         head = llist_del_all(&conf->released_stripes);
386         head = llist_reverse_order(head);
387         while (head) {
388                 int hash;
389
390                 sh = llist_entry(head, struct stripe_head, release_list);
391                 head = llist_next(head);
392                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
393                 smp_mb();
394                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
395                 /*
396                  * Don't worry the bit is set here, because if the bit is set
397                  * again, the count is always > 1. This is true for
398                  * STRIPE_ON_UNPLUG_LIST bit too.
399                  */
400                 hash = sh->hash_lock_index;
401                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
402                 count++;
403         }
404
405         return count;
406 }
407
408 static void release_stripe(struct stripe_head *sh)
409 {
410         struct r5conf *conf = sh->raid_conf;
411         unsigned long flags;
412         struct list_head list;
413         int hash;
414         bool wakeup;
415
416         if (unlikely(!conf->mddev->thread) ||
417                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
418                 goto slow_path;
419         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
420         if (wakeup)
421                 md_wakeup_thread(conf->mddev->thread);
422         return;
423 slow_path:
424         local_irq_save(flags);
425         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
426         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
427                 INIT_LIST_HEAD(&list);
428                 hash = sh->hash_lock_index;
429                 do_release_stripe(conf, sh, &list);
430                 spin_unlock(&conf->device_lock);
431                 release_inactive_stripe_list(conf, &list, hash);
432         }
433         local_irq_restore(flags);
434 }
435
436 static inline void remove_hash(struct stripe_head *sh)
437 {
438         pr_debug("remove_hash(), stripe %llu\n",
439                 (unsigned long long)sh->sector);
440
441         hlist_del_init(&sh->hash);
442 }
443
444 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
445 {
446         struct hlist_head *hp = stripe_hash(conf, sh->sector);
447
448         pr_debug("insert_hash(), stripe %llu\n",
449                 (unsigned long long)sh->sector);
450
451         hlist_add_head(&sh->hash, hp);
452 }
453
454
455 /* find an idle stripe, make sure it is unhashed, and return it. */
456 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
457 {
458         struct stripe_head *sh = NULL;
459         struct list_head *first;
460
461         if (list_empty(conf->inactive_list + hash))
462                 goto out;
463         first = (conf->inactive_list + hash)->next;
464         sh = list_entry(first, struct stripe_head, lru);
465         list_del_init(first);
466         remove_hash(sh);
467         atomic_inc(&conf->active_stripes);
468         BUG_ON(hash != sh->hash_lock_index);
469         if (list_empty(conf->inactive_list + hash))
470                 atomic_inc(&conf->empty_inactive_list_nr);
471 out:
472         return sh;
473 }
474
475 static void shrink_buffers(struct stripe_head *sh)
476 {
477         struct page *p;
478         int i;
479         int num = sh->raid_conf->pool_size;
480
481         for (i = 0; i < num ; i++) {
482                 p = sh->dev[i].page;
483                 if (!p)
484                         continue;
485                 sh->dev[i].page = NULL;
486                 put_page(p);
487         }
488 }
489
490 static int grow_buffers(struct stripe_head *sh)
491 {
492         int i;
493         int num = sh->raid_conf->pool_size;
494
495         for (i = 0; i < num; i++) {
496                 struct page *page;
497
498                 if (!(page = alloc_page(GFP_KERNEL))) {
499                         return 1;
500                 }
501                 sh->dev[i].page = page;
502         }
503         return 0;
504 }
505
506 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
507 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
508                             struct stripe_head *sh);
509
510 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
511 {
512         struct r5conf *conf = sh->raid_conf;
513         int i, seq;
514
515         BUG_ON(atomic_read(&sh->count) != 0);
516         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
517         BUG_ON(stripe_operations_active(sh));
518
519         pr_debug("init_stripe called, stripe %llu\n",
520                 (unsigned long long)sh->sector);
521
522         remove_hash(sh);
523 retry:
524         seq = read_seqcount_begin(&conf->gen_lock);
525         sh->generation = conf->generation - previous;
526         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
527         sh->sector = sector;
528         stripe_set_idx(sector, conf, previous, sh);
529         sh->state = 0;
530
531
532         for (i = sh->disks; i--; ) {
533                 struct r5dev *dev = &sh->dev[i];
534
535                 if (dev->toread || dev->read || dev->towrite || dev->written ||
536                     test_bit(R5_LOCKED, &dev->flags)) {
537                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
538                                (unsigned long long)sh->sector, i, dev->toread,
539                                dev->read, dev->towrite, dev->written,
540                                test_bit(R5_LOCKED, &dev->flags));
541                         WARN_ON(1);
542                 }
543                 dev->flags = 0;
544                 raid5_build_block(sh, i, previous);
545         }
546         if (read_seqcount_retry(&conf->gen_lock, seq))
547                 goto retry;
548         insert_hash(conf, sh);
549         sh->cpu = smp_processor_id();
550 }
551
552 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
553                                          short generation)
554 {
555         struct stripe_head *sh;
556
557         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
558         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
559                 if (sh->sector == sector && sh->generation == generation)
560                         return sh;
561         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
562         return NULL;
563 }
564
565 /*
566  * Need to check if array has failed when deciding whether to:
567  *  - start an array
568  *  - remove non-faulty devices
569  *  - add a spare
570  *  - allow a reshape
571  * This determination is simple when no reshape is happening.
572  * However if there is a reshape, we need to carefully check
573  * both the before and after sections.
574  * This is because some failed devices may only affect one
575  * of the two sections, and some non-in_sync devices may
576  * be insync in the section most affected by failed devices.
577  */
578 static int calc_degraded(struct r5conf *conf)
579 {
580         int degraded, degraded2;
581         int i;
582
583         rcu_read_lock();
584         degraded = 0;
585         for (i = 0; i < conf->previous_raid_disks; i++) {
586                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
587                 if (rdev && test_bit(Faulty, &rdev->flags))
588                         rdev = rcu_dereference(conf->disks[i].replacement);
589                 if (!rdev || test_bit(Faulty, &rdev->flags))
590                         degraded++;
591                 else if (test_bit(In_sync, &rdev->flags))
592                         ;
593                 else
594                         /* not in-sync or faulty.
595                          * If the reshape increases the number of devices,
596                          * this is being recovered by the reshape, so
597                          * this 'previous' section is not in_sync.
598                          * If the number of devices is being reduced however,
599                          * the device can only be part of the array if
600                          * we are reverting a reshape, so this section will
601                          * be in-sync.
602                          */
603                         if (conf->raid_disks >= conf->previous_raid_disks)
604                                 degraded++;
605         }
606         rcu_read_unlock();
607         if (conf->raid_disks == conf->previous_raid_disks)
608                 return degraded;
609         rcu_read_lock();
610         degraded2 = 0;
611         for (i = 0; i < conf->raid_disks; i++) {
612                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
613                 if (rdev && test_bit(Faulty, &rdev->flags))
614                         rdev = rcu_dereference(conf->disks[i].replacement);
615                 if (!rdev || test_bit(Faulty, &rdev->flags))
616                         degraded2++;
617                 else if (test_bit(In_sync, &rdev->flags))
618                         ;
619                 else
620                         /* not in-sync or faulty.
621                          * If reshape increases the number of devices, this
622                          * section has already been recovered, else it
623                          * almost certainly hasn't.
624                          */
625                         if (conf->raid_disks <= conf->previous_raid_disks)
626                                 degraded2++;
627         }
628         rcu_read_unlock();
629         if (degraded2 > degraded)
630                 return degraded2;
631         return degraded;
632 }
633
634 static int has_failed(struct r5conf *conf)
635 {
636         int degraded;
637
638         if (conf->mddev->reshape_position == MaxSector)
639                 return conf->mddev->degraded > conf->max_degraded;
640
641         degraded = calc_degraded(conf);
642         if (degraded > conf->max_degraded)
643                 return 1;
644         return 0;
645 }
646
647 static struct stripe_head *
648 get_active_stripe(struct r5conf *conf, sector_t sector,
649                   int previous, int noblock, int noquiesce)
650 {
651         struct stripe_head *sh;
652         int hash = stripe_hash_locks_hash(sector);
653
654         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
655
656         spin_lock_irq(conf->hash_locks + hash);
657
658         do {
659                 wait_event_lock_irq(conf->wait_for_stripe,
660                                     conf->quiesce == 0 || noquiesce,
661                                     *(conf->hash_locks + hash));
662                 sh = __find_stripe(conf, sector, conf->generation - previous);
663                 if (!sh) {
664                         if (!conf->inactive_blocked)
665                                 sh = get_free_stripe(conf, hash);
666                         if (noblock && sh == NULL)
667                                 break;
668                         if (!sh) {
669                                 conf->inactive_blocked = 1;
670                                 wait_event_lock_irq(
671                                         conf->wait_for_stripe,
672                                         !list_empty(conf->inactive_list + hash) &&
673                                         (atomic_read(&conf->active_stripes)
674                                          < (conf->max_nr_stripes * 3 / 4)
675                                          || !conf->inactive_blocked),
676                                         *(conf->hash_locks + hash));
677                                 conf->inactive_blocked = 0;
678                         } else
679                                 init_stripe(sh, sector, previous);
680                 } else {
681                         spin_lock(&conf->device_lock);
682                         if (atomic_read(&sh->count)) {
683                                 BUG_ON(!list_empty(&sh->lru)
684                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
685                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
686                                         );
687                         } else {
688                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
689                                         atomic_inc(&conf->active_stripes);
690                                 BUG_ON(list_empty(&sh->lru) &&
691                                        !test_bit(STRIPE_EXPANDING, &sh->state));
692                                 list_del_init(&sh->lru);
693                                 if (sh->group) {
694                                         sh->group->stripes_cnt--;
695                                         sh->group = NULL;
696                                 }
697                         }
698                         spin_unlock(&conf->device_lock);
699                 }
700         } while (sh == NULL);
701
702         if (sh)
703                 atomic_inc(&sh->count);
704
705         spin_unlock_irq(conf->hash_locks + hash);
706         return sh;
707 }
708
709 /* Determine if 'data_offset' or 'new_data_offset' should be used
710  * in this stripe_head.
711  */
712 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
713 {
714         sector_t progress = conf->reshape_progress;
715         /* Need a memory barrier to make sure we see the value
716          * of conf->generation, or ->data_offset that was set before
717          * reshape_progress was updated.
718          */
719         smp_rmb();
720         if (progress == MaxSector)
721                 return 0;
722         if (sh->generation == conf->generation - 1)
723                 return 0;
724         /* We are in a reshape, and this is a new-generation stripe,
725          * so use new_data_offset.
726          */
727         return 1;
728 }
729
730 static void
731 raid5_end_read_request(struct bio *bi, int error);
732 static void
733 raid5_end_write_request(struct bio *bi, int error);
734
735 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
736 {
737         struct r5conf *conf = sh->raid_conf;
738         int i, disks = sh->disks;
739
740         might_sleep();
741
742         for (i = disks; i--; ) {
743                 int rw;
744                 int replace_only = 0;
745                 struct bio *bi, *rbi;
746                 struct md_rdev *rdev, *rrdev = NULL;
747                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
748                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
749                                 rw = WRITE_FUA;
750                         else
751                                 rw = WRITE;
752                         if (test_bit(R5_Discard, &sh->dev[i].flags))
753                                 rw |= REQ_DISCARD;
754                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
755                         rw = READ;
756                 else if (test_and_clear_bit(R5_WantReplace,
757                                             &sh->dev[i].flags)) {
758                         rw = WRITE;
759                         replace_only = 1;
760                 } else
761                         continue;
762                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
763                         rw |= REQ_SYNC;
764
765                 bi = &sh->dev[i].req;
766                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
767
768                 rcu_read_lock();
769                 rrdev = rcu_dereference(conf->disks[i].replacement);
770                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
771                 rdev = rcu_dereference(conf->disks[i].rdev);
772                 if (!rdev) {
773                         rdev = rrdev;
774                         rrdev = NULL;
775                 }
776                 if (rw & WRITE) {
777                         if (replace_only)
778                                 rdev = NULL;
779                         if (rdev == rrdev)
780                                 /* We raced and saw duplicates */
781                                 rrdev = NULL;
782                 } else {
783                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
784                                 rdev = rrdev;
785                         rrdev = NULL;
786                 }
787
788                 if (rdev && test_bit(Faulty, &rdev->flags))
789                         rdev = NULL;
790                 if (rdev)
791                         atomic_inc(&rdev->nr_pending);
792                 if (rrdev && test_bit(Faulty, &rrdev->flags))
793                         rrdev = NULL;
794                 if (rrdev)
795                         atomic_inc(&rrdev->nr_pending);
796                 rcu_read_unlock();
797
798                 /* We have already checked bad blocks for reads.  Now
799                  * need to check for writes.  We never accept write errors
800                  * on the replacement, so we don't to check rrdev.
801                  */
802                 while ((rw & WRITE) && rdev &&
803                        test_bit(WriteErrorSeen, &rdev->flags)) {
804                         sector_t first_bad;
805                         int bad_sectors;
806                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
807                                               &first_bad, &bad_sectors);
808                         if (!bad)
809                                 break;
810
811                         if (bad < 0) {
812                                 set_bit(BlockedBadBlocks, &rdev->flags);
813                                 if (!conf->mddev->external &&
814                                     conf->mddev->flags) {
815                                         /* It is very unlikely, but we might
816                                          * still need to write out the
817                                          * bad block log - better give it
818                                          * a chance*/
819                                         md_check_recovery(conf->mddev);
820                                 }
821                                 /*
822                                  * Because md_wait_for_blocked_rdev
823                                  * will dec nr_pending, we must
824                                  * increment it first.
825                                  */
826                                 atomic_inc(&rdev->nr_pending);
827                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
828                         } else {
829                                 /* Acknowledged bad block - skip the write */
830                                 rdev_dec_pending(rdev, conf->mddev);
831                                 rdev = NULL;
832                         }
833                 }
834
835                 if (rdev) {
836                         if (s->syncing || s->expanding || s->expanded
837                             || s->replacing)
838                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
839
840                         set_bit(STRIPE_IO_STARTED, &sh->state);
841
842                         bio_reset(bi);
843                         bi->bi_bdev = rdev->bdev;
844                         bi->bi_rw = rw;
845                         bi->bi_end_io = (rw & WRITE)
846                                 ? raid5_end_write_request
847                                 : raid5_end_read_request;
848                         bi->bi_private = sh;
849
850                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
851                                 __func__, (unsigned long long)sh->sector,
852                                 bi->bi_rw, i);
853                         atomic_inc(&sh->count);
854                         if (use_new_offset(conf, sh))
855                                 bi->bi_sector = (sh->sector
856                                                  + rdev->new_data_offset);
857                         else
858                                 bi->bi_sector = (sh->sector
859                                                  + rdev->data_offset);
860                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
861                                 bi->bi_rw |= REQ_NOMERGE;
862
863                         bi->bi_vcnt = 1;
864                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
865                         bi->bi_io_vec[0].bv_offset = 0;
866                         bi->bi_size = STRIPE_SIZE;
867                         /*
868                          * If this is discard request, set bi_vcnt 0. We don't
869                          * want to confuse SCSI because SCSI will replace payload
870                          */
871                         if (rw & REQ_DISCARD)
872                                 bi->bi_vcnt = 0;
873                         if (rrdev)
874                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
875
876                         if (conf->mddev->gendisk)
877                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
878                                                       bi, disk_devt(conf->mddev->gendisk),
879                                                       sh->dev[i].sector);
880                         generic_make_request(bi);
881                 }
882                 if (rrdev) {
883                         if (s->syncing || s->expanding || s->expanded
884                             || s->replacing)
885                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
886
887                         set_bit(STRIPE_IO_STARTED, &sh->state);
888
889                         bio_reset(rbi);
890                         rbi->bi_bdev = rrdev->bdev;
891                         rbi->bi_rw = rw;
892                         BUG_ON(!(rw & WRITE));
893                         rbi->bi_end_io = raid5_end_write_request;
894                         rbi->bi_private = sh;
895
896                         pr_debug("%s: for %llu schedule op %ld on "
897                                  "replacement disc %d\n",
898                                 __func__, (unsigned long long)sh->sector,
899                                 rbi->bi_rw, i);
900                         atomic_inc(&sh->count);
901                         if (use_new_offset(conf, sh))
902                                 rbi->bi_sector = (sh->sector
903                                                   + rrdev->new_data_offset);
904                         else
905                                 rbi->bi_sector = (sh->sector
906                                                   + rrdev->data_offset);
907                         rbi->bi_vcnt = 1;
908                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
909                         rbi->bi_io_vec[0].bv_offset = 0;
910                         rbi->bi_size = STRIPE_SIZE;
911                         /*
912                          * If this is discard request, set bi_vcnt 0. We don't
913                          * want to confuse SCSI because SCSI will replace payload
914                          */
915                         if (rw & REQ_DISCARD)
916                                 rbi->bi_vcnt = 0;
917                         if (conf->mddev->gendisk)
918                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
919                                                       rbi, disk_devt(conf->mddev->gendisk),
920                                                       sh->dev[i].sector);
921                         generic_make_request(rbi);
922                 }
923                 if (!rdev && !rrdev) {
924                         if (rw & WRITE)
925                                 set_bit(STRIPE_DEGRADED, &sh->state);
926                         pr_debug("skip op %ld on disc %d for sector %llu\n",
927                                 bi->bi_rw, i, (unsigned long long)sh->sector);
928                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
929                         set_bit(STRIPE_HANDLE, &sh->state);
930                 }
931         }
932 }
933
934 static struct dma_async_tx_descriptor *
935 async_copy_data(int frombio, struct bio *bio, struct page *page,
936         sector_t sector, struct dma_async_tx_descriptor *tx)
937 {
938         struct bio_vec *bvl;
939         struct page *bio_page;
940         int i;
941         int page_offset;
942         struct async_submit_ctl submit;
943         enum async_tx_flags flags = 0;
944
945         if (bio->bi_sector >= sector)
946                 page_offset = (signed)(bio->bi_sector - sector) * 512;
947         else
948                 page_offset = (signed)(sector - bio->bi_sector) * -512;
949
950         if (frombio)
951                 flags |= ASYNC_TX_FENCE;
952         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
953
954         bio_for_each_segment(bvl, bio, i) {
955                 int len = bvl->bv_len;
956                 int clen;
957                 int b_offset = 0;
958
959                 if (page_offset < 0) {
960                         b_offset = -page_offset;
961                         page_offset += b_offset;
962                         len -= b_offset;
963                 }
964
965                 if (len > 0 && page_offset + len > STRIPE_SIZE)
966                         clen = STRIPE_SIZE - page_offset;
967                 else
968                         clen = len;
969
970                 if (clen > 0) {
971                         b_offset += bvl->bv_offset;
972                         bio_page = bvl->bv_page;
973                         if (frombio)
974                                 tx = async_memcpy(page, bio_page, page_offset,
975                                                   b_offset, clen, &submit);
976                         else
977                                 tx = async_memcpy(bio_page, page, b_offset,
978                                                   page_offset, clen, &submit);
979                 }
980                 /* chain the operations */
981                 submit.depend_tx = tx;
982
983                 if (clen < len) /* hit end of page */
984                         break;
985                 page_offset +=  len;
986         }
987
988         return tx;
989 }
990
991 static void ops_complete_biofill(void *stripe_head_ref)
992 {
993         struct stripe_head *sh = stripe_head_ref;
994         struct bio *return_bi = NULL;
995         int i;
996
997         pr_debug("%s: stripe %llu\n", __func__,
998                 (unsigned long long)sh->sector);
999
1000         /* clear completed biofills */
1001         for (i = sh->disks; i--; ) {
1002                 struct r5dev *dev = &sh->dev[i];
1003
1004                 /* acknowledge completion of a biofill operation */
1005                 /* and check if we need to reply to a read request,
1006                  * new R5_Wantfill requests are held off until
1007                  * !STRIPE_BIOFILL_RUN
1008                  */
1009                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1010                         struct bio *rbi, *rbi2;
1011
1012                         BUG_ON(!dev->read);
1013                         rbi = dev->read;
1014                         dev->read = NULL;
1015                         while (rbi && rbi->bi_sector <
1016                                 dev->sector + STRIPE_SECTORS) {
1017                                 rbi2 = r5_next_bio(rbi, dev->sector);
1018                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1019                                         rbi->bi_next = return_bi;
1020                                         return_bi = rbi;
1021                                 }
1022                                 rbi = rbi2;
1023                         }
1024                 }
1025         }
1026         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1027
1028         return_io(return_bi);
1029
1030         set_bit(STRIPE_HANDLE, &sh->state);
1031         release_stripe(sh);
1032 }
1033
1034 static void ops_run_biofill(struct stripe_head *sh)
1035 {
1036         struct dma_async_tx_descriptor *tx = NULL;
1037         struct async_submit_ctl submit;
1038         int i;
1039
1040         pr_debug("%s: stripe %llu\n", __func__,
1041                 (unsigned long long)sh->sector);
1042
1043         for (i = sh->disks; i--; ) {
1044                 struct r5dev *dev = &sh->dev[i];
1045                 if (test_bit(R5_Wantfill, &dev->flags)) {
1046                         struct bio *rbi;
1047                         spin_lock_irq(&sh->stripe_lock);
1048                         dev->read = rbi = dev->toread;
1049                         dev->toread = NULL;
1050                         spin_unlock_irq(&sh->stripe_lock);
1051                         while (rbi && rbi->bi_sector <
1052                                 dev->sector + STRIPE_SECTORS) {
1053                                 tx = async_copy_data(0, rbi, dev->page,
1054                                         dev->sector, tx);
1055                                 rbi = r5_next_bio(rbi, dev->sector);
1056                         }
1057                 }
1058         }
1059
1060         atomic_inc(&sh->count);
1061         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1062         async_trigger_callback(&submit);
1063 }
1064
1065 static void mark_target_uptodate(struct stripe_head *sh, int target)
1066 {
1067         struct r5dev *tgt;
1068
1069         if (target < 0)
1070                 return;
1071
1072         tgt = &sh->dev[target];
1073         set_bit(R5_UPTODATE, &tgt->flags);
1074         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1075         clear_bit(R5_Wantcompute, &tgt->flags);
1076 }
1077
1078 static void ops_complete_compute(void *stripe_head_ref)
1079 {
1080         struct stripe_head *sh = stripe_head_ref;
1081
1082         pr_debug("%s: stripe %llu\n", __func__,
1083                 (unsigned long long)sh->sector);
1084
1085         /* mark the computed target(s) as uptodate */
1086         mark_target_uptodate(sh, sh->ops.target);
1087         mark_target_uptodate(sh, sh->ops.target2);
1088
1089         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1090         if (sh->check_state == check_state_compute_run)
1091                 sh->check_state = check_state_compute_result;
1092         set_bit(STRIPE_HANDLE, &sh->state);
1093         release_stripe(sh);
1094 }
1095
1096 /* return a pointer to the address conversion region of the scribble buffer */
1097 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1098                                  struct raid5_percpu *percpu)
1099 {
1100         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1101 }
1102
1103 static struct dma_async_tx_descriptor *
1104 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1105 {
1106         int disks = sh->disks;
1107         struct page **xor_srcs = percpu->scribble;
1108         int target = sh->ops.target;
1109         struct r5dev *tgt = &sh->dev[target];
1110         struct page *xor_dest = tgt->page;
1111         int count = 0;
1112         struct dma_async_tx_descriptor *tx;
1113         struct async_submit_ctl submit;
1114         int i;
1115
1116         pr_debug("%s: stripe %llu block: %d\n",
1117                 __func__, (unsigned long long)sh->sector, target);
1118         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1119
1120         for (i = disks; i--; )
1121                 if (i != target)
1122                         xor_srcs[count++] = sh->dev[i].page;
1123
1124         atomic_inc(&sh->count);
1125
1126         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1127                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
1128         if (unlikely(count == 1))
1129                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1130         else
1131                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1132
1133         return tx;
1134 }
1135
1136 /* set_syndrome_sources - populate source buffers for gen_syndrome
1137  * @srcs - (struct page *) array of size sh->disks
1138  * @sh - stripe_head to parse
1139  *
1140  * Populates srcs in proper layout order for the stripe and returns the
1141  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1142  * destination buffer is recorded in srcs[count] and the Q destination
1143  * is recorded in srcs[count+1]].
1144  */
1145 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1146 {
1147         int disks = sh->disks;
1148         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1149         int d0_idx = raid6_d0(sh);
1150         int count;
1151         int i;
1152
1153         for (i = 0; i < disks; i++)
1154                 srcs[i] = NULL;
1155
1156         count = 0;
1157         i = d0_idx;
1158         do {
1159                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1160
1161                 srcs[slot] = sh->dev[i].page;
1162                 i = raid6_next_disk(i, disks);
1163         } while (i != d0_idx);
1164
1165         return syndrome_disks;
1166 }
1167
1168 static struct dma_async_tx_descriptor *
1169 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1170 {
1171         int disks = sh->disks;
1172         struct page **blocks = percpu->scribble;
1173         int target;
1174         int qd_idx = sh->qd_idx;
1175         struct dma_async_tx_descriptor *tx;
1176         struct async_submit_ctl submit;
1177         struct r5dev *tgt;
1178         struct page *dest;
1179         int i;
1180         int count;
1181
1182         if (sh->ops.target < 0)
1183                 target = sh->ops.target2;
1184         else if (sh->ops.target2 < 0)
1185                 target = sh->ops.target;
1186         else
1187                 /* we should only have one valid target */
1188                 BUG();
1189         BUG_ON(target < 0);
1190         pr_debug("%s: stripe %llu block: %d\n",
1191                 __func__, (unsigned long long)sh->sector, target);
1192
1193         tgt = &sh->dev[target];
1194         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1195         dest = tgt->page;
1196
1197         atomic_inc(&sh->count);
1198
1199         if (target == qd_idx) {
1200                 count = set_syndrome_sources(blocks, sh);
1201                 blocks[count] = NULL; /* regenerating p is not necessary */
1202                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1203                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1204                                   ops_complete_compute, sh,
1205                                   to_addr_conv(sh, percpu));
1206                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1207         } else {
1208                 /* Compute any data- or p-drive using XOR */
1209                 count = 0;
1210                 for (i = disks; i-- ; ) {
1211                         if (i == target || i == qd_idx)
1212                                 continue;
1213                         blocks[count++] = sh->dev[i].page;
1214                 }
1215
1216                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1217                                   NULL, ops_complete_compute, sh,
1218                                   to_addr_conv(sh, percpu));
1219                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1220         }
1221
1222         return tx;
1223 }
1224
1225 static struct dma_async_tx_descriptor *
1226 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1227 {
1228         int i, count, disks = sh->disks;
1229         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1230         int d0_idx = raid6_d0(sh);
1231         int faila = -1, failb = -1;
1232         int target = sh->ops.target;
1233         int target2 = sh->ops.target2;
1234         struct r5dev *tgt = &sh->dev[target];
1235         struct r5dev *tgt2 = &sh->dev[target2];
1236         struct dma_async_tx_descriptor *tx;
1237         struct page **blocks = percpu->scribble;
1238         struct async_submit_ctl submit;
1239
1240         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1241                  __func__, (unsigned long long)sh->sector, target, target2);
1242         BUG_ON(target < 0 || target2 < 0);
1243         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1244         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1245
1246         /* we need to open-code set_syndrome_sources to handle the
1247          * slot number conversion for 'faila' and 'failb'
1248          */
1249         for (i = 0; i < disks ; i++)
1250                 blocks[i] = NULL;
1251         count = 0;
1252         i = d0_idx;
1253         do {
1254                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1255
1256                 blocks[slot] = sh->dev[i].page;
1257
1258                 if (i == target)
1259                         faila = slot;
1260                 if (i == target2)
1261                         failb = slot;
1262                 i = raid6_next_disk(i, disks);
1263         } while (i != d0_idx);
1264
1265         BUG_ON(faila == failb);
1266         if (failb < faila)
1267                 swap(faila, failb);
1268         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1269                  __func__, (unsigned long long)sh->sector, faila, failb);
1270
1271         atomic_inc(&sh->count);
1272
1273         if (failb == syndrome_disks+1) {
1274                 /* Q disk is one of the missing disks */
1275                 if (faila == syndrome_disks) {
1276                         /* Missing P+Q, just recompute */
1277                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1278                                           ops_complete_compute, sh,
1279                                           to_addr_conv(sh, percpu));
1280                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1281                                                   STRIPE_SIZE, &submit);
1282                 } else {
1283                         struct page *dest;
1284                         int data_target;
1285                         int qd_idx = sh->qd_idx;
1286
1287                         /* Missing D+Q: recompute D from P, then recompute Q */
1288                         if (target == qd_idx)
1289                                 data_target = target2;
1290                         else
1291                                 data_target = target;
1292
1293                         count = 0;
1294                         for (i = disks; i-- ; ) {
1295                                 if (i == data_target || i == qd_idx)
1296                                         continue;
1297                                 blocks[count++] = sh->dev[i].page;
1298                         }
1299                         dest = sh->dev[data_target].page;
1300                         init_async_submit(&submit,
1301                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1302                                           NULL, NULL, NULL,
1303                                           to_addr_conv(sh, percpu));
1304                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1305                                        &submit);
1306
1307                         count = set_syndrome_sources(blocks, sh);
1308                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1309                                           ops_complete_compute, sh,
1310                                           to_addr_conv(sh, percpu));
1311                         return async_gen_syndrome(blocks, 0, count+2,
1312                                                   STRIPE_SIZE, &submit);
1313                 }
1314         } else {
1315                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1316                                   ops_complete_compute, sh,
1317                                   to_addr_conv(sh, percpu));
1318                 if (failb == syndrome_disks) {
1319                         /* We're missing D+P. */
1320                         return async_raid6_datap_recov(syndrome_disks+2,
1321                                                        STRIPE_SIZE, faila,
1322                                                        blocks, &submit);
1323                 } else {
1324                         /* We're missing D+D. */
1325                         return async_raid6_2data_recov(syndrome_disks+2,
1326                                                        STRIPE_SIZE, faila, failb,
1327                                                        blocks, &submit);
1328                 }
1329         }
1330 }
1331
1332
1333 static void ops_complete_prexor(void *stripe_head_ref)
1334 {
1335         struct stripe_head *sh = stripe_head_ref;
1336
1337         pr_debug("%s: stripe %llu\n", __func__,
1338                 (unsigned long long)sh->sector);
1339 }
1340
1341 static struct dma_async_tx_descriptor *
1342 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1343                struct dma_async_tx_descriptor *tx)
1344 {
1345         int disks = sh->disks;
1346         struct page **xor_srcs = percpu->scribble;
1347         int count = 0, pd_idx = sh->pd_idx, i;
1348         struct async_submit_ctl submit;
1349
1350         /* existing parity data subtracted */
1351         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1352
1353         pr_debug("%s: stripe %llu\n", __func__,
1354                 (unsigned long long)sh->sector);
1355
1356         for (i = disks; i--; ) {
1357                 struct r5dev *dev = &sh->dev[i];
1358                 /* Only process blocks that are known to be uptodate */
1359                 if (test_bit(R5_Wantdrain, &dev->flags))
1360                         xor_srcs[count++] = dev->page;
1361         }
1362
1363         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1364                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1365         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1366
1367         return tx;
1368 }
1369
1370 static struct dma_async_tx_descriptor *
1371 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1372 {
1373         int disks = sh->disks;
1374         int i;
1375
1376         pr_debug("%s: stripe %llu\n", __func__,
1377                 (unsigned long long)sh->sector);
1378
1379         for (i = disks; i--; ) {
1380                 struct r5dev *dev = &sh->dev[i];
1381                 struct bio *chosen;
1382
1383                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1384                         struct bio *wbi;
1385
1386                         spin_lock_irq(&sh->stripe_lock);
1387                         chosen = dev->towrite;
1388                         dev->towrite = NULL;
1389                         BUG_ON(dev->written);
1390                         wbi = dev->written = chosen;
1391                         spin_unlock_irq(&sh->stripe_lock);
1392
1393                         while (wbi && wbi->bi_sector <
1394                                 dev->sector + STRIPE_SECTORS) {
1395                                 if (wbi->bi_rw & REQ_FUA)
1396                                         set_bit(R5_WantFUA, &dev->flags);
1397                                 if (wbi->bi_rw & REQ_SYNC)
1398                                         set_bit(R5_SyncIO, &dev->flags);
1399                                 if (wbi->bi_rw & REQ_DISCARD)
1400                                         set_bit(R5_Discard, &dev->flags);
1401                                 else
1402                                         tx = async_copy_data(1, wbi, dev->page,
1403                                                 dev->sector, tx);
1404                                 wbi = r5_next_bio(wbi, dev->sector);
1405                         }
1406                 }
1407         }
1408
1409         return tx;
1410 }
1411
1412 static void ops_complete_reconstruct(void *stripe_head_ref)
1413 {
1414         struct stripe_head *sh = stripe_head_ref;
1415         int disks = sh->disks;
1416         int pd_idx = sh->pd_idx;
1417         int qd_idx = sh->qd_idx;
1418         int i;
1419         bool fua = false, sync = false, discard = false;
1420
1421         pr_debug("%s: stripe %llu\n", __func__,
1422                 (unsigned long long)sh->sector);
1423
1424         for (i = disks; i--; ) {
1425                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1426                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1427                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1428         }
1429
1430         for (i = disks; i--; ) {
1431                 struct r5dev *dev = &sh->dev[i];
1432
1433                 if (dev->written || i == pd_idx || i == qd_idx) {
1434                         if (!discard)
1435                                 set_bit(R5_UPTODATE, &dev->flags);
1436                         if (fua)
1437                                 set_bit(R5_WantFUA, &dev->flags);
1438                         if (sync)
1439                                 set_bit(R5_SyncIO, &dev->flags);
1440                 }
1441         }
1442
1443         if (sh->reconstruct_state == reconstruct_state_drain_run)
1444                 sh->reconstruct_state = reconstruct_state_drain_result;
1445         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1446                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1447         else {
1448                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1449                 sh->reconstruct_state = reconstruct_state_result;
1450         }
1451
1452         set_bit(STRIPE_HANDLE, &sh->state);
1453         release_stripe(sh);
1454 }
1455
1456 static void
1457 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1458                      struct dma_async_tx_descriptor *tx)
1459 {
1460         int disks = sh->disks;
1461         struct page **xor_srcs = percpu->scribble;
1462         struct async_submit_ctl submit;
1463         int count = 0, pd_idx = sh->pd_idx, i;
1464         struct page *xor_dest;
1465         int prexor = 0;
1466         unsigned long flags;
1467
1468         pr_debug("%s: stripe %llu\n", __func__,
1469                 (unsigned long long)sh->sector);
1470
1471         for (i = 0; i < sh->disks; i++) {
1472                 if (pd_idx == i)
1473                         continue;
1474                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1475                         break;
1476         }
1477         if (i >= sh->disks) {
1478                 atomic_inc(&sh->count);
1479                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1480                 ops_complete_reconstruct(sh);
1481                 return;
1482         }
1483         /* check if prexor is active which means only process blocks
1484          * that are part of a read-modify-write (written)
1485          */
1486         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1487                 prexor = 1;
1488                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1489                 for (i = disks; i--; ) {
1490                         struct r5dev *dev = &sh->dev[i];
1491                         if (dev->written)
1492                                 xor_srcs[count++] = dev->page;
1493                 }
1494         } else {
1495                 xor_dest = sh->dev[pd_idx].page;
1496                 for (i = disks; i--; ) {
1497                         struct r5dev *dev = &sh->dev[i];
1498                         if (i != pd_idx)
1499                                 xor_srcs[count++] = dev->page;
1500                 }
1501         }
1502
1503         /* 1/ if we prexor'd then the dest is reused as a source
1504          * 2/ if we did not prexor then we are redoing the parity
1505          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1506          * for the synchronous xor case
1507          */
1508         flags = ASYNC_TX_ACK |
1509                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1510
1511         atomic_inc(&sh->count);
1512
1513         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1514                           to_addr_conv(sh, percpu));
1515         if (unlikely(count == 1))
1516                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1517         else
1518                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1519 }
1520
1521 static void
1522 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1523                      struct dma_async_tx_descriptor *tx)
1524 {
1525         struct async_submit_ctl submit;
1526         struct page **blocks = percpu->scribble;
1527         int count, i;
1528
1529         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1530
1531         for (i = 0; i < sh->disks; i++) {
1532                 if (sh->pd_idx == i || sh->qd_idx == i)
1533                         continue;
1534                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1535                         break;
1536         }
1537         if (i >= sh->disks) {
1538                 atomic_inc(&sh->count);
1539                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1540                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1541                 ops_complete_reconstruct(sh);
1542                 return;
1543         }
1544
1545         count = set_syndrome_sources(blocks, sh);
1546
1547         atomic_inc(&sh->count);
1548
1549         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1550                           sh, to_addr_conv(sh, percpu));
1551         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1552 }
1553
1554 static void ops_complete_check(void *stripe_head_ref)
1555 {
1556         struct stripe_head *sh = stripe_head_ref;
1557
1558         pr_debug("%s: stripe %llu\n", __func__,
1559                 (unsigned long long)sh->sector);
1560
1561         sh->check_state = check_state_check_result;
1562         set_bit(STRIPE_HANDLE, &sh->state);
1563         release_stripe(sh);
1564 }
1565
1566 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1567 {
1568         int disks = sh->disks;
1569         int pd_idx = sh->pd_idx;
1570         int qd_idx = sh->qd_idx;
1571         struct page *xor_dest;
1572         struct page **xor_srcs = percpu->scribble;
1573         struct dma_async_tx_descriptor *tx;
1574         struct async_submit_ctl submit;
1575         int count;
1576         int i;
1577
1578         pr_debug("%s: stripe %llu\n", __func__,
1579                 (unsigned long long)sh->sector);
1580
1581         count = 0;
1582         xor_dest = sh->dev[pd_idx].page;
1583         xor_srcs[count++] = xor_dest;
1584         for (i = disks; i--; ) {
1585                 if (i == pd_idx || i == qd_idx)
1586                         continue;
1587                 xor_srcs[count++] = sh->dev[i].page;
1588         }
1589
1590         init_async_submit(&submit, 0, NULL, NULL, NULL,
1591                           to_addr_conv(sh, percpu));
1592         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1593                            &sh->ops.zero_sum_result, &submit);
1594
1595         atomic_inc(&sh->count);
1596         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1597         tx = async_trigger_callback(&submit);
1598 }
1599
1600 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1601 {
1602         struct page **srcs = percpu->scribble;
1603         struct async_submit_ctl submit;
1604         int count;
1605
1606         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1607                 (unsigned long long)sh->sector, checkp);
1608
1609         count = set_syndrome_sources(srcs, sh);
1610         if (!checkp)
1611                 srcs[count] = NULL;
1612
1613         atomic_inc(&sh->count);
1614         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1615                           sh, to_addr_conv(sh, percpu));
1616         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1617                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1618 }
1619
1620 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1621 {
1622         int overlap_clear = 0, i, disks = sh->disks;
1623         struct dma_async_tx_descriptor *tx = NULL;
1624         struct r5conf *conf = sh->raid_conf;
1625         int level = conf->level;
1626         struct raid5_percpu *percpu;
1627         unsigned long cpu;
1628
1629         cpu = get_cpu();
1630         percpu = per_cpu_ptr(conf->percpu, cpu);
1631         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1632                 ops_run_biofill(sh);
1633                 overlap_clear++;
1634         }
1635
1636         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1637                 if (level < 6)
1638                         tx = ops_run_compute5(sh, percpu);
1639                 else {
1640                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1641                                 tx = ops_run_compute6_1(sh, percpu);
1642                         else
1643                                 tx = ops_run_compute6_2(sh, percpu);
1644                 }
1645                 /* terminate the chain if reconstruct is not set to be run */
1646                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1647                         async_tx_ack(tx);
1648         }
1649
1650         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1651                 tx = ops_run_prexor(sh, percpu, tx);
1652
1653         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1654                 tx = ops_run_biodrain(sh, tx);
1655                 overlap_clear++;
1656         }
1657
1658         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1659                 if (level < 6)
1660                         ops_run_reconstruct5(sh, percpu, tx);
1661                 else
1662                         ops_run_reconstruct6(sh, percpu, tx);
1663         }
1664
1665         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1666                 if (sh->check_state == check_state_run)
1667                         ops_run_check_p(sh, percpu);
1668                 else if (sh->check_state == check_state_run_q)
1669                         ops_run_check_pq(sh, percpu, 0);
1670                 else if (sh->check_state == check_state_run_pq)
1671                         ops_run_check_pq(sh, percpu, 1);
1672                 else
1673                         BUG();
1674         }
1675
1676         if (overlap_clear)
1677                 for (i = disks; i--; ) {
1678                         struct r5dev *dev = &sh->dev[i];
1679                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1680                                 wake_up(&sh->raid_conf->wait_for_overlap);
1681                 }
1682         put_cpu();
1683 }
1684
1685 static int grow_one_stripe(struct r5conf *conf, int hash)
1686 {
1687         struct stripe_head *sh;
1688         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1689         if (!sh)
1690                 return 0;
1691
1692         sh->raid_conf = conf;
1693
1694         spin_lock_init(&sh->stripe_lock);
1695
1696         if (grow_buffers(sh)) {
1697                 shrink_buffers(sh);
1698                 kmem_cache_free(conf->slab_cache, sh);
1699                 return 0;
1700         }
1701         sh->hash_lock_index = hash;
1702         /* we just created an active stripe so... */
1703         atomic_set(&sh->count, 1);
1704         atomic_inc(&conf->active_stripes);
1705         INIT_LIST_HEAD(&sh->lru);
1706         release_stripe(sh);
1707         return 1;
1708 }
1709
1710 static int grow_stripes(struct r5conf *conf, int num)
1711 {
1712         struct kmem_cache *sc;
1713         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1714         int hash;
1715
1716         if (conf->mddev->gendisk)
1717                 sprintf(conf->cache_name[0],
1718                         "raid%d-%s", conf->level, mdname(conf->mddev));
1719         else
1720                 sprintf(conf->cache_name[0],
1721                         "raid%d-%p", conf->level, conf->mddev);
1722         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1723
1724         conf->active_name = 0;
1725         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1726                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1727                                0, 0, NULL);
1728         if (!sc)
1729                 return 1;
1730         conf->slab_cache = sc;
1731         conf->pool_size = devs;
1732         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1733         while (num--) {
1734                 if (!grow_one_stripe(conf, hash))
1735                         return 1;
1736                 conf->max_nr_stripes++;
1737                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1738         }
1739         return 0;
1740 }
1741
1742 /**
1743  * scribble_len - return the required size of the scribble region
1744  * @num - total number of disks in the array
1745  *
1746  * The size must be enough to contain:
1747  * 1/ a struct page pointer for each device in the array +2
1748  * 2/ room to convert each entry in (1) to its corresponding dma
1749  *    (dma_map_page()) or page (page_address()) address.
1750  *
1751  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1752  * calculate over all devices (not just the data blocks), using zeros in place
1753  * of the P and Q blocks.
1754  */
1755 static size_t scribble_len(int num)
1756 {
1757         size_t len;
1758
1759         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1760
1761         return len;
1762 }
1763
1764 static int resize_stripes(struct r5conf *conf, int newsize)
1765 {
1766         /* Make all the stripes able to hold 'newsize' devices.
1767          * New slots in each stripe get 'page' set to a new page.
1768          *
1769          * This happens in stages:
1770          * 1/ create a new kmem_cache and allocate the required number of
1771          *    stripe_heads.
1772          * 2/ gather all the old stripe_heads and transfer the pages across
1773          *    to the new stripe_heads.  This will have the side effect of
1774          *    freezing the array as once all stripe_heads have been collected,
1775          *    no IO will be possible.  Old stripe heads are freed once their
1776          *    pages have been transferred over, and the old kmem_cache is
1777          *    freed when all stripes are done.
1778          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1779          *    we simple return a failre status - no need to clean anything up.
1780          * 4/ allocate new pages for the new slots in the new stripe_heads.
1781          *    If this fails, we don't bother trying the shrink the
1782          *    stripe_heads down again, we just leave them as they are.
1783          *    As each stripe_head is processed the new one is released into
1784          *    active service.
1785          *
1786          * Once step2 is started, we cannot afford to wait for a write,
1787          * so we use GFP_NOIO allocations.
1788          */
1789         struct stripe_head *osh, *nsh;
1790         LIST_HEAD(newstripes);
1791         struct disk_info *ndisks;
1792         unsigned long cpu;
1793         int err;
1794         struct kmem_cache *sc;
1795         int i;
1796         int hash, cnt;
1797
1798         if (newsize <= conf->pool_size)
1799                 return 0; /* never bother to shrink */
1800
1801         err = md_allow_write(conf->mddev);
1802         if (err)
1803                 return err;
1804
1805         /* Step 1 */
1806         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1807                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1808                                0, 0, NULL);
1809         if (!sc)
1810                 return -ENOMEM;
1811
1812         for (i = conf->max_nr_stripes; i; i--) {
1813                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1814                 if (!nsh)
1815                         break;
1816
1817                 nsh->raid_conf = conf;
1818                 spin_lock_init(&nsh->stripe_lock);
1819
1820                 list_add(&nsh->lru, &newstripes);
1821         }
1822         if (i) {
1823                 /* didn't get enough, give up */
1824                 while (!list_empty(&newstripes)) {
1825                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1826                         list_del(&nsh->lru);
1827                         kmem_cache_free(sc, nsh);
1828                 }
1829                 kmem_cache_destroy(sc);
1830                 return -ENOMEM;
1831         }
1832         /* Step 2 - Must use GFP_NOIO now.
1833          * OK, we have enough stripes, start collecting inactive
1834          * stripes and copying them over
1835          */
1836         hash = 0;
1837         cnt = 0;
1838         list_for_each_entry(nsh, &newstripes, lru) {
1839                 lock_device_hash_lock(conf, hash);
1840                 wait_event_cmd(conf->wait_for_stripe,
1841                                     !list_empty(conf->inactive_list + hash),
1842                                     unlock_device_hash_lock(conf, hash),
1843                                     lock_device_hash_lock(conf, hash));
1844                 osh = get_free_stripe(conf, hash);
1845                 unlock_device_hash_lock(conf, hash);
1846                 atomic_set(&nsh->count, 1);
1847                 for(i=0; i<conf->pool_size; i++)
1848                         nsh->dev[i].page = osh->dev[i].page;
1849                 for( ; i<newsize; i++)
1850                         nsh->dev[i].page = NULL;
1851                 nsh->hash_lock_index = hash;
1852                 kmem_cache_free(conf->slab_cache, osh);
1853                 cnt++;
1854                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1855                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1856                         hash++;
1857                         cnt = 0;
1858                 }
1859         }
1860         kmem_cache_destroy(conf->slab_cache);
1861
1862         /* Step 3.
1863          * At this point, we are holding all the stripes so the array
1864          * is completely stalled, so now is a good time to resize
1865          * conf->disks and the scribble region
1866          */
1867         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1868         if (ndisks) {
1869                 for (i=0; i<conf->raid_disks; i++)
1870                         ndisks[i] = conf->disks[i];
1871                 kfree(conf->disks);
1872                 conf->disks = ndisks;
1873         } else
1874                 err = -ENOMEM;
1875
1876         get_online_cpus();
1877         conf->scribble_len = scribble_len(newsize);
1878         for_each_present_cpu(cpu) {
1879                 struct raid5_percpu *percpu;
1880                 void *scribble;
1881
1882                 percpu = per_cpu_ptr(conf->percpu, cpu);
1883                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1884
1885                 if (scribble) {
1886                         kfree(percpu->scribble);
1887                         percpu->scribble = scribble;
1888                 } else {
1889                         err = -ENOMEM;
1890                         break;
1891                 }
1892         }
1893         put_online_cpus();
1894
1895         /* Step 4, return new stripes to service */
1896         while(!list_empty(&newstripes)) {
1897                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1898                 list_del_init(&nsh->lru);
1899
1900                 for (i=conf->raid_disks; i < newsize; i++)
1901                         if (nsh->dev[i].page == NULL) {
1902                                 struct page *p = alloc_page(GFP_NOIO);
1903                                 nsh->dev[i].page = p;
1904                                 if (!p)
1905                                         err = -ENOMEM;
1906                         }
1907                 release_stripe(nsh);
1908         }
1909         /* critical section pass, GFP_NOIO no longer needed */
1910
1911         conf->slab_cache = sc;
1912         conf->active_name = 1-conf->active_name;
1913         conf->pool_size = newsize;
1914         return err;
1915 }
1916
1917 static int drop_one_stripe(struct r5conf *conf, int hash)
1918 {
1919         struct stripe_head *sh;
1920
1921         spin_lock_irq(conf->hash_locks + hash);
1922         sh = get_free_stripe(conf, hash);
1923         spin_unlock_irq(conf->hash_locks + hash);
1924         if (!sh)
1925                 return 0;
1926         BUG_ON(atomic_read(&sh->count));
1927         shrink_buffers(sh);
1928         kmem_cache_free(conf->slab_cache, sh);
1929         atomic_dec(&conf->active_stripes);
1930         return 1;
1931 }
1932
1933 static void shrink_stripes(struct r5conf *conf)
1934 {
1935         int hash;
1936         for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1937                 while (drop_one_stripe(conf, hash))
1938                         ;
1939
1940         if (conf->slab_cache)
1941                 kmem_cache_destroy(conf->slab_cache);
1942         conf->slab_cache = NULL;
1943 }
1944
1945 static void raid5_end_read_request(struct bio * bi, int error)
1946 {
1947         struct stripe_head *sh = bi->bi_private;
1948         struct r5conf *conf = sh->raid_conf;
1949         int disks = sh->disks, i;
1950         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1951         char b[BDEVNAME_SIZE];
1952         struct md_rdev *rdev = NULL;
1953         sector_t s;
1954
1955         for (i=0 ; i<disks; i++)
1956                 if (bi == &sh->dev[i].req)
1957                         break;
1958
1959         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1960                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1961                 uptodate);
1962         if (i == disks) {
1963                 BUG();
1964                 return;
1965         }
1966         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1967                 /* If replacement finished while this request was outstanding,
1968                  * 'replacement' might be NULL already.
1969                  * In that case it moved down to 'rdev'.
1970                  * rdev is not removed until all requests are finished.
1971                  */
1972                 rdev = conf->disks[i].replacement;
1973         if (!rdev)
1974                 rdev = conf->disks[i].rdev;
1975
1976         if (use_new_offset(conf, sh))
1977                 s = sh->sector + rdev->new_data_offset;
1978         else
1979                 s = sh->sector + rdev->data_offset;
1980         if (uptodate) {
1981                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1982                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1983                         /* Note that this cannot happen on a
1984                          * replacement device.  We just fail those on
1985                          * any error
1986                          */
1987                         printk_ratelimited(
1988                                 KERN_INFO
1989                                 "md/raid:%s: read error corrected"
1990                                 " (%lu sectors at %llu on %s)\n",
1991                                 mdname(conf->mddev), STRIPE_SECTORS,
1992                                 (unsigned long long)s,
1993                                 bdevname(rdev->bdev, b));
1994                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1995                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1996                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1997                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1998                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1999
2000                 if (atomic_read(&rdev->read_errors))
2001                         atomic_set(&rdev->read_errors, 0);
2002         } else {
2003                 const char *bdn = bdevname(rdev->bdev, b);
2004                 int retry = 0;
2005                 int set_bad = 0;
2006
2007                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2008                 atomic_inc(&rdev->read_errors);
2009                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2010                         printk_ratelimited(
2011                                 KERN_WARNING
2012                                 "md/raid:%s: read error on replacement device "
2013                                 "(sector %llu on %s).\n",
2014                                 mdname(conf->mddev),
2015                                 (unsigned long long)s,
2016                                 bdn);
2017                 else if (conf->mddev->degraded >= conf->max_degraded) {
2018                         set_bad = 1;
2019                         printk_ratelimited(
2020                                 KERN_WARNING
2021                                 "md/raid:%s: read error not correctable "
2022                                 "(sector %llu on %s).\n",
2023                                 mdname(conf->mddev),
2024                                 (unsigned long long)s,
2025                                 bdn);
2026                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2027                         /* Oh, no!!! */
2028                         set_bad = 1;
2029                         printk_ratelimited(
2030                                 KERN_WARNING
2031                                 "md/raid:%s: read error NOT corrected!! "
2032                                 "(sector %llu on %s).\n",
2033                                 mdname(conf->mddev),
2034                                 (unsigned long long)s,
2035                                 bdn);
2036                 } else if (atomic_read(&rdev->read_errors)
2037                          > conf->max_nr_stripes)
2038                         printk(KERN_WARNING
2039                                "md/raid:%s: Too many read errors, failing device %s.\n",
2040                                mdname(conf->mddev), bdn);
2041                 else
2042                         retry = 1;
2043                 if (set_bad && test_bit(In_sync, &rdev->flags)
2044                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2045                         retry = 1;
2046                 if (retry)
2047                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2048                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2049                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2050                         } else
2051                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2052                 else {
2053                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2054                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2055                         if (!(set_bad
2056                               && test_bit(In_sync, &rdev->flags)
2057                               && rdev_set_badblocks(
2058                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2059                                 md_error(conf->mddev, rdev);
2060                 }
2061         }
2062         rdev_dec_pending(rdev, conf->mddev);
2063         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2064         set_bit(STRIPE_HANDLE, &sh->state);
2065         release_stripe(sh);
2066 }
2067
2068 static void raid5_end_write_request(struct bio *bi, int error)
2069 {
2070         struct stripe_head *sh = bi->bi_private;
2071         struct r5conf *conf = sh->raid_conf;
2072         int disks = sh->disks, i;
2073         struct md_rdev *uninitialized_var(rdev);
2074         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2075         sector_t first_bad;
2076         int bad_sectors;
2077         int replacement = 0;
2078
2079         for (i = 0 ; i < disks; i++) {
2080                 if (bi == &sh->dev[i].req) {
2081                         rdev = conf->disks[i].rdev;
2082                         break;
2083                 }
2084                 if (bi == &sh->dev[i].rreq) {
2085                         rdev = conf->disks[i].replacement;
2086                         if (rdev)
2087                                 replacement = 1;
2088                         else
2089                                 /* rdev was removed and 'replacement'
2090                                  * replaced it.  rdev is not removed
2091                                  * until all requests are finished.
2092                                  */
2093                                 rdev = conf->disks[i].rdev;
2094                         break;
2095                 }
2096         }
2097         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2098                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2099                 uptodate);
2100         if (i == disks) {
2101                 BUG();
2102                 return;
2103         }
2104
2105         if (replacement) {
2106                 if (!uptodate)
2107                         md_error(conf->mddev, rdev);
2108                 else if (is_badblock(rdev, sh->sector,
2109                                      STRIPE_SECTORS,
2110                                      &first_bad, &bad_sectors))
2111                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2112         } else {
2113                 if (!uptodate) {
2114                         set_bit(WriteErrorSeen, &rdev->flags);
2115                         set_bit(R5_WriteError, &sh->dev[i].flags);
2116                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2117                                 set_bit(MD_RECOVERY_NEEDED,
2118                                         &rdev->mddev->recovery);
2119                 } else if (is_badblock(rdev, sh->sector,
2120                                        STRIPE_SECTORS,
2121                                        &first_bad, &bad_sectors)) {
2122                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2123                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2124                                 /* That was a successful write so make
2125                                  * sure it looks like we already did
2126                                  * a re-write.
2127                                  */
2128                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2129                 }
2130         }
2131         rdev_dec_pending(rdev, conf->mddev);
2132
2133         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2134                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2135         set_bit(STRIPE_HANDLE, &sh->state);
2136         release_stripe(sh);
2137 }
2138
2139 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2140         
2141 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2142 {
2143         struct r5dev *dev = &sh->dev[i];
2144
2145         bio_init(&dev->req);
2146         dev->req.bi_io_vec = &dev->vec;
2147         dev->req.bi_vcnt++;
2148         dev->req.bi_max_vecs++;
2149         dev->req.bi_private = sh;
2150         dev->vec.bv_page = dev->page;
2151
2152         bio_init(&dev->rreq);
2153         dev->rreq.bi_io_vec = &dev->rvec;
2154         dev->rreq.bi_vcnt++;
2155         dev->rreq.bi_max_vecs++;
2156         dev->rreq.bi_private = sh;
2157         dev->rvec.bv_page = dev->page;
2158
2159         dev->flags = 0;
2160         dev->sector = compute_blocknr(sh, i, previous);
2161 }
2162
2163 static void error(struct mddev *mddev, struct md_rdev *rdev)
2164 {
2165         char b[BDEVNAME_SIZE];
2166         struct r5conf *conf = mddev->private;
2167         unsigned long flags;
2168         pr_debug("raid456: error called\n");
2169
2170         spin_lock_irqsave(&conf->device_lock, flags);
2171         clear_bit(In_sync, &rdev->flags);
2172         mddev->degraded = calc_degraded(conf);
2173         spin_unlock_irqrestore(&conf->device_lock, flags);
2174         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2175
2176         set_bit(Blocked, &rdev->flags);
2177         set_bit(Faulty, &rdev->flags);
2178         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2179         printk(KERN_ALERT
2180                "md/raid:%s: Disk failure on %s, disabling device.\n"
2181                "md/raid:%s: Operation continuing on %d devices.\n",
2182                mdname(mddev),
2183                bdevname(rdev->bdev, b),
2184                mdname(mddev),
2185                conf->raid_disks - mddev->degraded);
2186 }
2187
2188 /*
2189  * Input: a 'big' sector number,
2190  * Output: index of the data and parity disk, and the sector # in them.
2191  */
2192 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2193                                      int previous, int *dd_idx,
2194                                      struct stripe_head *sh)
2195 {
2196         sector_t stripe, stripe2;
2197         sector_t chunk_number;
2198         unsigned int chunk_offset;
2199         int pd_idx, qd_idx;
2200         int ddf_layout = 0;
2201         sector_t new_sector;
2202         int algorithm = previous ? conf->prev_algo
2203                                  : conf->algorithm;
2204         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2205                                          : conf->chunk_sectors;
2206         int raid_disks = previous ? conf->previous_raid_disks
2207                                   : conf->raid_disks;
2208         int data_disks = raid_disks - conf->max_degraded;
2209
2210         /* First compute the information on this sector */
2211
2212         /*
2213          * Compute the chunk number and the sector offset inside the chunk
2214          */
2215         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2216         chunk_number = r_sector;
2217
2218         /*
2219          * Compute the stripe number
2220          */
2221         stripe = chunk_number;
2222         *dd_idx = sector_div(stripe, data_disks);
2223         stripe2 = stripe;
2224         /*
2225          * Select the parity disk based on the user selected algorithm.
2226          */
2227         pd_idx = qd_idx = -1;
2228         switch(conf->level) {
2229         case 4:
2230                 pd_idx = data_disks;
2231                 break;
2232         case 5:
2233                 switch (algorithm) {
2234                 case ALGORITHM_LEFT_ASYMMETRIC:
2235                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2236                         if (*dd_idx >= pd_idx)
2237                                 (*dd_idx)++;
2238                         break;
2239                 case ALGORITHM_RIGHT_ASYMMETRIC:
2240                         pd_idx = sector_div(stripe2, raid_disks);
2241                         if (*dd_idx >= pd_idx)
2242                                 (*dd_idx)++;
2243                         break;
2244                 case ALGORITHM_LEFT_SYMMETRIC:
2245                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2246                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2247                         break;
2248                 case ALGORITHM_RIGHT_SYMMETRIC:
2249                         pd_idx = sector_div(stripe2, raid_disks);
2250                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2251                         break;
2252                 case ALGORITHM_PARITY_0:
2253                         pd_idx = 0;
2254                         (*dd_idx)++;
2255                         break;
2256                 case ALGORITHM_PARITY_N:
2257                         pd_idx = data_disks;
2258                         break;
2259                 default:
2260                         BUG();
2261                 }
2262                 break;
2263         case 6:
2264
2265                 switch (algorithm) {
2266                 case ALGORITHM_LEFT_ASYMMETRIC:
2267                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2268                         qd_idx = pd_idx + 1;
2269                         if (pd_idx == raid_disks-1) {
2270                                 (*dd_idx)++;    /* Q D D D P */
2271                                 qd_idx = 0;
2272                         } else if (*dd_idx >= pd_idx)
2273                                 (*dd_idx) += 2; /* D D P Q D */
2274                         break;
2275                 case ALGORITHM_RIGHT_ASYMMETRIC:
2276                         pd_idx = sector_div(stripe2, raid_disks);
2277                         qd_idx = pd_idx + 1;
2278                         if (pd_idx == raid_disks-1) {
2279                                 (*dd_idx)++;    /* Q D D D P */
2280                                 qd_idx = 0;
2281                         } else if (*dd_idx >= pd_idx)
2282                                 (*dd_idx) += 2; /* D D P Q D */
2283                         break;
2284                 case ALGORITHM_LEFT_SYMMETRIC:
2285                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2286                         qd_idx = (pd_idx + 1) % raid_disks;
2287                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2288                         break;
2289                 case ALGORITHM_RIGHT_SYMMETRIC:
2290                         pd_idx = sector_div(stripe2, raid_disks);
2291                         qd_idx = (pd_idx + 1) % raid_disks;
2292                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2293                         break;
2294
2295                 case ALGORITHM_PARITY_0:
2296                         pd_idx = 0;
2297                         qd_idx = 1;
2298                         (*dd_idx) += 2;
2299                         break;
2300                 case ALGORITHM_PARITY_N:
2301                         pd_idx = data_disks;
2302                         qd_idx = data_disks + 1;
2303                         break;
2304
2305                 case ALGORITHM_ROTATING_ZERO_RESTART:
2306                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2307                          * of blocks for computing Q is different.
2308                          */
2309                         pd_idx = sector_div(stripe2, raid_disks);
2310                         qd_idx = pd_idx + 1;
2311                         if (pd_idx == raid_disks-1) {
2312                                 (*dd_idx)++;    /* Q D D D P */
2313                                 qd_idx = 0;
2314                         } else if (*dd_idx >= pd_idx)
2315                                 (*dd_idx) += 2; /* D D P Q D */
2316                         ddf_layout = 1;
2317                         break;
2318
2319                 case ALGORITHM_ROTATING_N_RESTART:
2320                         /* Same a left_asymmetric, by first stripe is
2321                          * D D D P Q  rather than
2322                          * Q D D D P
2323                          */
2324                         stripe2 += 1;
2325                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2326                         qd_idx = pd_idx + 1;
2327                         if (pd_idx == raid_disks-1) {
2328                                 (*dd_idx)++;    /* Q D D D P */
2329                                 qd_idx = 0;
2330                         } else if (*dd_idx >= pd_idx)
2331                                 (*dd_idx) += 2; /* D D P Q D */
2332                         ddf_layout = 1;
2333                         break;
2334
2335                 case ALGORITHM_ROTATING_N_CONTINUE:
2336                         /* Same as left_symmetric but Q is before P */
2337                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2338                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2339                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2340                         ddf_layout = 1;
2341                         break;
2342
2343                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2344                         /* RAID5 left_asymmetric, with Q on last device */
2345                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2346                         if (*dd_idx >= pd_idx)
2347                                 (*dd_idx)++;
2348                         qd_idx = raid_disks - 1;
2349                         break;
2350
2351                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2352                         pd_idx = sector_div(stripe2, raid_disks-1);
2353                         if (*dd_idx >= pd_idx)
2354                                 (*dd_idx)++;
2355                         qd_idx = raid_disks - 1;
2356                         break;
2357
2358                 case ALGORITHM_LEFT_SYMMETRIC_6:
2359                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2360                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2361                         qd_idx = raid_disks - 1;
2362                         break;
2363
2364                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2365                         pd_idx = sector_div(stripe2, raid_disks-1);
2366                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2367                         qd_idx = raid_disks - 1;
2368                         break;
2369
2370                 case ALGORITHM_PARITY_0_6:
2371                         pd_idx = 0;
2372                         (*dd_idx)++;
2373                         qd_idx = raid_disks - 1;
2374                         break;
2375
2376                 default:
2377                         BUG();
2378                 }
2379                 break;
2380         }
2381
2382         if (sh) {
2383                 sh->pd_idx = pd_idx;
2384                 sh->qd_idx = qd_idx;
2385                 sh->ddf_layout = ddf_layout;
2386         }
2387         /*
2388          * Finally, compute the new sector number
2389          */
2390         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2391         return new_sector;
2392 }
2393
2394
2395 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2396 {
2397         struct r5conf *conf = sh->raid_conf;
2398         int raid_disks = sh->disks;
2399         int data_disks = raid_disks - conf->max_degraded;
2400         sector_t new_sector = sh->sector, check;
2401         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2402                                          : conf->chunk_sectors;
2403         int algorithm = previous ? conf->prev_algo
2404                                  : conf->algorithm;
2405         sector_t stripe;
2406         int chunk_offset;
2407         sector_t chunk_number;
2408         int dummy1, dd_idx = i;
2409         sector_t r_sector;
2410         struct stripe_head sh2;
2411
2412
2413         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2414         stripe = new_sector;
2415
2416         if (i == sh->pd_idx)
2417                 return 0;
2418         switch(conf->level) {
2419         case 4: break;
2420         case 5:
2421                 switch (algorithm) {
2422                 case ALGORITHM_LEFT_ASYMMETRIC:
2423                 case ALGORITHM_RIGHT_ASYMMETRIC:
2424                         if (i > sh->pd_idx)
2425                                 i--;
2426                         break;
2427                 case ALGORITHM_LEFT_SYMMETRIC:
2428                 case ALGORITHM_RIGHT_SYMMETRIC:
2429                         if (i < sh->pd_idx)
2430                                 i += raid_disks;
2431                         i -= (sh->pd_idx + 1);
2432                         break;
2433                 case ALGORITHM_PARITY_0:
2434                         i -= 1;
2435                         break;
2436                 case ALGORITHM_PARITY_N:
2437                         break;
2438                 default:
2439                         BUG();
2440                 }
2441                 break;
2442         case 6:
2443                 if (i == sh->qd_idx)
2444                         return 0; /* It is the Q disk */
2445                 switch (algorithm) {
2446                 case ALGORITHM_LEFT_ASYMMETRIC:
2447                 case ALGORITHM_RIGHT_ASYMMETRIC:
2448                 case ALGORITHM_ROTATING_ZERO_RESTART:
2449                 case ALGORITHM_ROTATING_N_RESTART:
2450                         if (sh->pd_idx == raid_disks-1)
2451                                 i--;    /* Q D D D P */
2452                         else if (i > sh->pd_idx)
2453                                 i -= 2; /* D D P Q D */
2454                         break;
2455                 case ALGORITHM_LEFT_SYMMETRIC:
2456                 case ALGORITHM_RIGHT_SYMMETRIC:
2457                         if (sh->pd_idx == raid_disks-1)
2458                                 i--; /* Q D D D P */
2459                         else {
2460                                 /* D D P Q D */
2461                                 if (i < sh->pd_idx)
2462                                         i += raid_disks;
2463                                 i -= (sh->pd_idx + 2);
2464                         }
2465                         break;
2466                 case ALGORITHM_PARITY_0:
2467                         i -= 2;
2468                         break;
2469                 case ALGORITHM_PARITY_N:
2470                         break;
2471                 case ALGORITHM_ROTATING_N_CONTINUE:
2472                         /* Like left_symmetric, but P is before Q */
2473                         if (sh->pd_idx == 0)
2474                                 i--;    /* P D D D Q */
2475                         else {
2476                                 /* D D Q P D */
2477                                 if (i < sh->pd_idx)
2478                                         i += raid_disks;
2479                                 i -= (sh->pd_idx + 1);
2480                         }
2481                         break;
2482                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2483                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2484                         if (i > sh->pd_idx)
2485                                 i--;
2486                         break;
2487                 case ALGORITHM_LEFT_SYMMETRIC_6:
2488                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2489                         if (i < sh->pd_idx)
2490                                 i += data_disks + 1;
2491                         i -= (sh->pd_idx + 1);
2492                         break;
2493                 case ALGORITHM_PARITY_0_6:
2494                         i -= 1;
2495                         break;
2496                 default:
2497                         BUG();
2498                 }
2499                 break;
2500         }
2501
2502         chunk_number = stripe * data_disks + i;
2503         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2504
2505         check = raid5_compute_sector(conf, r_sector,
2506                                      previous, &dummy1, &sh2);
2507         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2508                 || sh2.qd_idx != sh->qd_idx) {
2509                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2510                        mdname(conf->mddev));
2511                 return 0;
2512         }
2513         return r_sector;
2514 }
2515
2516
2517 static void
2518 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2519                          int rcw, int expand)
2520 {
2521         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2522         struct r5conf *conf = sh->raid_conf;
2523         int level = conf->level;
2524
2525         if (rcw) {
2526
2527                 for (i = disks; i--; ) {
2528                         struct r5dev *dev = &sh->dev[i];
2529
2530                         if (dev->towrite) {
2531                                 set_bit(R5_LOCKED, &dev->flags);
2532                                 set_bit(R5_Wantdrain, &dev->flags);
2533                                 if (!expand)
2534                                         clear_bit(R5_UPTODATE, &dev->flags);
2535                                 s->locked++;
2536                         }
2537                 }
2538                 /* if we are not expanding this is a proper write request, and
2539                  * there will be bios with new data to be drained into the
2540                  * stripe cache
2541                  */
2542                 if (!expand) {
2543                         if (!s->locked)
2544                                 /* False alarm, nothing to do */
2545                                 return;
2546                         sh->reconstruct_state = reconstruct_state_drain_run;
2547                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2548                 } else
2549                         sh->reconstruct_state = reconstruct_state_run;
2550
2551                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2552
2553                 if (s->locked + conf->max_degraded == disks)
2554                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2555                                 atomic_inc(&conf->pending_full_writes);
2556         } else {
2557                 BUG_ON(level == 6);
2558                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2559                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2560
2561                 for (i = disks; i--; ) {
2562                         struct r5dev *dev = &sh->dev[i];
2563                         if (i == pd_idx)
2564                                 continue;
2565
2566                         if (dev->towrite &&
2567                             (test_bit(R5_UPTODATE, &dev->flags) ||
2568                              test_bit(R5_Wantcompute, &dev->flags))) {
2569                                 set_bit(R5_Wantdrain, &dev->flags);
2570                                 set_bit(R5_LOCKED, &dev->flags);
2571                                 clear_bit(R5_UPTODATE, &dev->flags);
2572                                 s->locked++;
2573                         }
2574                 }
2575                 if (!s->locked)
2576                         /* False alarm - nothing to do */
2577                         return;
2578                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2579                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2580                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2581                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2582         }
2583
2584         /* keep the parity disk(s) locked while asynchronous operations
2585          * are in flight
2586          */
2587         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2588         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2589         s->locked++;
2590
2591         if (level == 6) {
2592                 int qd_idx = sh->qd_idx;
2593                 struct r5dev *dev = &sh->dev[qd_idx];
2594
2595                 set_bit(R5_LOCKED, &dev->flags);
2596                 clear_bit(R5_UPTODATE, &dev->flags);
2597                 s->locked++;
2598         }
2599
2600         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2601                 __func__, (unsigned long long)sh->sector,
2602                 s->locked, s->ops_request);
2603 }
2604
2605 /*
2606  * Each stripe/dev can have one or more bion attached.
2607  * toread/towrite point to the first in a chain.
2608  * The bi_next chain must be in order.
2609  */
2610 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2611 {
2612         struct bio **bip;
2613         struct r5conf *conf = sh->raid_conf;
2614         int firstwrite=0;
2615
2616         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2617                 (unsigned long long)bi->bi_sector,
2618                 (unsigned long long)sh->sector);
2619
2620         /*
2621          * If several bio share a stripe. The bio bi_phys_segments acts as a
2622          * reference count to avoid race. The reference count should already be
2623          * increased before this function is called (for example, in
2624          * make_request()), so other bio sharing this stripe will not free the
2625          * stripe. If a stripe is owned by one stripe, the stripe lock will
2626          * protect it.
2627          */
2628         spin_lock_irq(&sh->stripe_lock);
2629         if (forwrite) {
2630                 bip = &sh->dev[dd_idx].towrite;
2631                 if (*bip == NULL)
2632                         firstwrite = 1;
2633         } else
2634                 bip = &sh->dev[dd_idx].toread;
2635         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2636                 if (bio_end_sector(*bip) > bi->bi_sector)
2637                         goto overlap;
2638                 bip = & (*bip)->bi_next;
2639         }
2640         if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
2641                 goto overlap;
2642
2643         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2644         if (*bip)
2645                 bi->bi_next = *bip;
2646         *bip = bi;
2647         raid5_inc_bi_active_stripes(bi);
2648
2649         if (forwrite) {
2650                 /* check if page is covered */
2651                 sector_t sector = sh->dev[dd_idx].sector;
2652                 for (bi=sh->dev[dd_idx].towrite;
2653                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2654                              bi && bi->bi_sector <= sector;
2655                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2656                         if (bio_end_sector(bi) >= sector)
2657                                 sector = bio_end_sector(bi);
2658                 }
2659                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2660                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2661         }
2662
2663         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2664                 (unsigned long long)(*bip)->bi_sector,
2665                 (unsigned long long)sh->sector, dd_idx);
2666         spin_unlock_irq(&sh->stripe_lock);
2667
2668         if (conf->mddev->bitmap && firstwrite) {
2669                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2670                                   STRIPE_SECTORS, 0);
2671                 sh->bm_seq = conf->seq_flush+1;
2672                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2673         }
2674         return 1;
2675
2676  overlap:
2677         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2678         spin_unlock_irq(&sh->stripe_lock);
2679         return 0;
2680 }
2681
2682 static void end_reshape(struct r5conf *conf);
2683
2684 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2685                             struct stripe_head *sh)
2686 {
2687         int sectors_per_chunk =
2688                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2689         int dd_idx;
2690         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2691         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2692
2693         raid5_compute_sector(conf,
2694                              stripe * (disks - conf->max_degraded)
2695                              *sectors_per_chunk + chunk_offset,
2696                              previous,
2697                              &dd_idx, sh);
2698 }
2699
2700 static void
2701 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2702                                 struct stripe_head_state *s, int disks,
2703                                 struct bio **return_bi)
2704 {
2705         int i;
2706         for (i = disks; i--; ) {
2707                 struct bio *bi;
2708                 int bitmap_end = 0;
2709
2710                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2711                         struct md_rdev *rdev;
2712                         rcu_read_lock();
2713                         rdev = rcu_dereference(conf->disks[i].rdev);
2714                         if (rdev && test_bit(In_sync, &rdev->flags))
2715                                 atomic_inc(&rdev->nr_pending);
2716                         else
2717                                 rdev = NULL;
2718                         rcu_read_unlock();
2719                         if (rdev) {
2720                                 if (!rdev_set_badblocks(
2721                                             rdev,
2722                                             sh->sector,
2723                                             STRIPE_SECTORS, 0))
2724                                         md_error(conf->mddev, rdev);
2725                                 rdev_dec_pending(rdev, conf->mddev);
2726                         }
2727                 }
2728                 spin_lock_irq(&sh->stripe_lock);
2729                 /* fail all writes first */
2730                 bi = sh->dev[i].towrite;
2731                 sh->dev[i].towrite = NULL;
2732                 spin_unlock_irq(&sh->stripe_lock);
2733                 if (bi)
2734                         bitmap_end = 1;
2735
2736                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2737                         wake_up(&conf->wait_for_overlap);
2738
2739                 while (bi && bi->bi_sector <
2740                         sh->dev[i].sector + STRIPE_SECTORS) {
2741                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2742                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2743                         if (!raid5_dec_bi_active_stripes(bi)) {
2744                                 md_write_end(conf->mddev);
2745                                 bi->bi_next = *return_bi;
2746                                 *return_bi = bi;
2747                         }
2748                         bi = nextbi;
2749                 }
2750                 if (bitmap_end)
2751                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2752                                 STRIPE_SECTORS, 0, 0);
2753                 bitmap_end = 0;
2754                 /* and fail all 'written' */
2755                 bi = sh->dev[i].written;
2756                 sh->dev[i].written = NULL;
2757                 if (bi) bitmap_end = 1;
2758                 while (bi && bi->bi_sector <
2759                        sh->dev[i].sector + STRIPE_SECTORS) {
2760                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2761                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2762                         if (!raid5_dec_bi_active_stripes(bi)) {
2763                                 md_write_end(conf->mddev);
2764                                 bi->bi_next = *return_bi;
2765                                 *return_bi = bi;
2766                         }
2767                         bi = bi2;
2768                 }
2769
2770                 /* fail any reads if this device is non-operational and
2771                  * the data has not reached the cache yet.
2772                  */
2773                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2774                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2775                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2776                         spin_lock_irq(&sh->stripe_lock);
2777                         bi = sh->dev[i].toread;
2778                         sh->dev[i].toread = NULL;
2779                         spin_unlock_irq(&sh->stripe_lock);
2780                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2781                                 wake_up(&conf->wait_for_overlap);
2782                         while (bi && bi->bi_sector <
2783                                sh->dev[i].sector + STRIPE_SECTORS) {
2784                                 struct bio *nextbi =
2785                                         r5_next_bio(bi, sh->dev[i].sector);
2786                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2787                                 if (!raid5_dec_bi_active_stripes(bi)) {
2788                                         bi->bi_next = *return_bi;
2789                                         *return_bi = bi;
2790                                 }
2791                                 bi = nextbi;
2792                         }
2793                 }
2794                 if (bitmap_end)
2795                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2796                                         STRIPE_SECTORS, 0, 0);
2797                 /* If we were in the middle of a write the parity block might
2798                  * still be locked - so just clear all R5_LOCKED flags
2799                  */
2800                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2801         }
2802
2803         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2804                 if (atomic_dec_and_test(&conf->pending_full_writes))
2805                         md_wakeup_thread(conf->mddev->thread);
2806 }
2807
2808 static void
2809 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2810                    struct stripe_head_state *s)
2811 {
2812         int abort = 0;
2813         int i;
2814
2815         clear_bit(STRIPE_SYNCING, &sh->state);
2816         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2817                 wake_up(&conf->wait_for_overlap);
2818         s->syncing = 0;
2819         s->replacing = 0;
2820         /* There is nothing more to do for sync/check/repair.
2821          * Don't even need to abort as that is handled elsewhere
2822          * if needed, and not always wanted e.g. if there is a known
2823          * bad block here.
2824          * For recover/replace we need to record a bad block on all
2825          * non-sync devices, or abort the recovery
2826          */
2827         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2828                 /* During recovery devices cannot be removed, so
2829                  * locking and refcounting of rdevs is not needed
2830                  */
2831                 for (i = 0; i < conf->raid_disks; i++) {
2832                         struct md_rdev *rdev = conf->disks[i].rdev;
2833                         if (rdev
2834                             && !test_bit(Faulty, &rdev->flags)
2835                             && !test_bit(In_sync, &rdev->flags)
2836                             && !rdev_set_badblocks(rdev, sh->sector,
2837                                                    STRIPE_SECTORS, 0))
2838                                 abort = 1;
2839                         rdev = conf->disks[i].replacement;
2840                         if (rdev
2841                             && !test_bit(Faulty, &rdev->flags)
2842                             && !test_bit(In_sync, &rdev->flags)
2843                             && !rdev_set_badblocks(rdev, sh->sector,
2844                                                    STRIPE_SECTORS, 0))
2845                                 abort = 1;
2846                 }
2847                 if (abort)
2848                         conf->recovery_disabled =
2849                                 conf->mddev->recovery_disabled;
2850         }
2851         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2852 }
2853
2854 static int want_replace(struct stripe_head *sh, int disk_idx)
2855 {
2856         struct md_rdev *rdev;
2857         int rv = 0;
2858         /* Doing recovery so rcu locking not required */
2859         rdev = sh->raid_conf->disks[disk_idx].replacement;
2860         if (rdev
2861             && !test_bit(Faulty, &rdev->flags)
2862             && !test_bit(In_sync, &rdev->flags)
2863             && (rdev->recovery_offset <= sh->sector
2864                 || rdev->mddev->recovery_cp <= sh->sector))
2865                 rv = 1;
2866
2867         return rv;
2868 }
2869
2870 /* fetch_block - checks the given member device to see if its data needs
2871  * to be read or computed to satisfy a request.
2872  *
2873  * Returns 1 when no more member devices need to be checked, otherwise returns
2874  * 0 to tell the loop in handle_stripe_fill to continue
2875  */
2876 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2877                        int disk_idx, int disks)
2878 {
2879         struct r5dev *dev = &sh->dev[disk_idx];
2880         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2881                                   &sh->dev[s->failed_num[1]] };
2882
2883         /* is the data in this block needed, and can we get it? */
2884         if (!test_bit(R5_LOCKED, &dev->flags) &&
2885             !test_bit(R5_UPTODATE, &dev->flags) &&
2886             (dev->toread ||
2887              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2888              s->syncing || s->expanding ||
2889              (s->replacing && want_replace(sh, disk_idx)) ||
2890              (s->failed >= 1 && fdev[0]->toread) ||
2891              (s->failed >= 2 && fdev[1]->toread) ||
2892              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2893               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2894              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2895                 /* we would like to get this block, possibly by computing it,
2896                  * otherwise read it if the backing disk is insync
2897                  */
2898                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2899                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2900                 if ((s->uptodate == disks - 1) &&
2901                     (s->failed && (disk_idx == s->failed_num[0] ||
2902                                    disk_idx == s->failed_num[1]))) {
2903                         /* have disk failed, and we're requested to fetch it;
2904                          * do compute it
2905                          */
2906                         pr_debug("Computing stripe %llu block %d\n",
2907                                (unsigned long long)sh->sector, disk_idx);
2908                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2909                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2910                         set_bit(R5_Wantcompute, &dev->flags);
2911                         sh->ops.target = disk_idx;
2912                         sh->ops.target2 = -1; /* no 2nd target */
2913                         s->req_compute = 1;
2914                         /* Careful: from this point on 'uptodate' is in the eye
2915                          * of raid_run_ops which services 'compute' operations
2916                          * before writes. R5_Wantcompute flags a block that will
2917                          * be R5_UPTODATE by the time it is needed for a
2918                          * subsequent operation.
2919                          */
2920                         s->uptodate++;
2921                         return 1;
2922                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2923                         /* Computing 2-failure is *very* expensive; only
2924                          * do it if failed >= 2
2925                          */
2926                         int other;
2927                         for (other = disks; other--; ) {
2928                                 if (other == disk_idx)
2929                                         continue;
2930                                 if (!test_bit(R5_UPTODATE,
2931                                       &sh->dev[other].flags))
2932                                         break;
2933                         }
2934                         BUG_ON(other < 0);
2935                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2936                                (unsigned long long)sh->sector,
2937                                disk_idx, other);
2938                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2939                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2940                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2941                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2942                         sh->ops.target = disk_idx;
2943                         sh->ops.target2 = other;
2944                         s->uptodate += 2;
2945                         s->req_compute = 1;
2946                         return 1;
2947                 } else if (test_bit(R5_Insync, &dev->flags)) {
2948                         set_bit(R5_LOCKED, &dev->flags);
2949                         set_bit(R5_Wantread, &dev->flags);
2950                         s->locked++;
2951                         pr_debug("Reading block %d (sync=%d)\n",
2952                                 disk_idx, s->syncing);
2953                 }
2954         }
2955
2956         return 0;
2957 }
2958
2959 /**
2960  * handle_stripe_fill - read or compute data to satisfy pending requests.
2961  */
2962 static void handle_stripe_fill(struct stripe_head *sh,
2963                                struct stripe_head_state *s,
2964                                int disks)
2965 {
2966         int i;
2967
2968         /* look for blocks to read/compute, skip this if a compute
2969          * is already in flight, or if the stripe contents are in the
2970          * midst of changing due to a write
2971          */
2972         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2973             !sh->reconstruct_state)
2974                 for (i = disks; i--; )
2975                         if (fetch_block(sh, s, i, disks))
2976                                 break;
2977         set_bit(STRIPE_HANDLE, &sh->state);
2978 }
2979
2980
2981 /* handle_stripe_clean_event
2982  * any written block on an uptodate or failed drive can be returned.
2983  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2984  * never LOCKED, so we don't need to test 'failed' directly.
2985  */
2986 static void handle_stripe_clean_event(struct r5conf *conf,
2987         struct stripe_head *sh, int disks, struct bio **return_bi)
2988 {
2989         int i;
2990         struct r5dev *dev;
2991         int discard_pending = 0;
2992
2993         for (i = disks; i--; )
2994                 if (sh->dev[i].written) {
2995                         dev = &sh->dev[i];
2996                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2997                             (test_bit(R5_UPTODATE, &dev->flags) ||
2998                              test_bit(R5_Discard, &dev->flags))) {
2999                                 /* We can return any write requests */
3000                                 struct bio *wbi, *wbi2;
3001                                 pr_debug("Return write for disc %d\n", i);
3002                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3003                                         clear_bit(R5_UPTODATE, &dev->flags);
3004                                 wbi = dev->written;
3005                                 dev->written = NULL;
3006                                 while (wbi && wbi->bi_sector <
3007                                         dev->sector + STRIPE_SECTORS) {
3008                                         wbi2 = r5_next_bio(wbi, dev->sector);
3009                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3010                                                 md_write_end(conf->mddev);
3011                                                 wbi->bi_next = *return_bi;
3012                                                 *return_bi = wbi;
3013                                         }
3014                                         wbi = wbi2;
3015                                 }
3016                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3017                                                 STRIPE_SECTORS,
3018                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3019                                                 0);
3020                         } else if (test_bit(R5_Discard, &dev->flags))
3021                                 discard_pending = 1;
3022                 }
3023         if (!discard_pending &&
3024             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3025                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3026                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3027                 if (sh->qd_idx >= 0) {
3028                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3029                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3030                 }
3031                 /* now that discard is done we can proceed with any sync */
3032                 clear_bit(STRIPE_DISCARD, &sh->state);
3033                 /*
3034                  * SCSI discard will change some bio fields and the stripe has
3035                  * no updated data, so remove it from hash list and the stripe
3036                  * will be reinitialized
3037                  */
3038                 spin_lock_irq(&conf->device_lock);
3039                 remove_hash(sh);
3040                 spin_unlock_irq(&conf->device_lock);
3041                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3042                         set_bit(STRIPE_HANDLE, &sh->state);
3043
3044         }
3045
3046         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3047                 if (atomic_dec_and_test(&conf->pending_full_writes))
3048                         md_wakeup_thread(conf->mddev->thread);
3049 }
3050
3051 static void handle_stripe_dirtying(struct r5conf *conf,
3052                                    struct stripe_head *sh,
3053                                    struct stripe_head_state *s,
3054                                    int disks)
3055 {
3056         int rmw = 0, rcw = 0, i;
3057         sector_t recovery_cp = conf->mddev->recovery_cp;
3058
3059         /* RAID6 requires 'rcw' in current implementation.
3060          * Otherwise, check whether resync is now happening or should start.
3061          * If yes, then the array is dirty (after unclean shutdown or
3062          * initial creation), so parity in some stripes might be inconsistent.
3063          * In this case, we need to always do reconstruct-write, to ensure
3064          * that in case of drive failure or read-error correction, we
3065          * generate correct data from the parity.
3066          */
3067         if (conf->max_degraded == 2 ||
3068             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3069                 /* Calculate the real rcw later - for now make it
3070                  * look like rcw is cheaper
3071                  */
3072                 rcw = 1; rmw = 2;
3073                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3074                          conf->max_degraded, (unsigned long long)recovery_cp,
3075                          (unsigned long long)sh->sector);
3076         } else for (i = disks; i--; ) {
3077                 /* would I have to read this buffer for read_modify_write */
3078                 struct r5dev *dev = &sh->dev[i];
3079                 if ((dev->towrite || i == sh->pd_idx) &&
3080                     !test_bit(R5_LOCKED, &dev->flags) &&
3081                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3082                       test_bit(R5_Wantcompute, &dev->flags))) {
3083                         if (test_bit(R5_Insync, &dev->flags))
3084                                 rmw++;
3085                         else
3086                                 rmw += 2*disks;  /* cannot read it */
3087                 }
3088                 /* Would I have to read this buffer for reconstruct_write */
3089                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3090                     !test_bit(R5_LOCKED, &dev->flags) &&
3091                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3092                     test_bit(R5_Wantcompute, &dev->flags))) {
3093                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
3094                         else
3095                                 rcw += 2*disks;
3096                 }
3097         }
3098         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3099                 (unsigned long long)sh->sector, rmw, rcw);
3100         set_bit(STRIPE_HANDLE, &sh->state);
3101         if (rmw < rcw && rmw > 0) {
3102                 /* prefer read-modify-write, but need to get some data */
3103                 if (conf->mddev->queue)
3104                         blk_add_trace_msg(conf->mddev->queue,
3105                                           "raid5 rmw %llu %d",
3106                                           (unsigned long long)sh->sector, rmw);
3107                 for (i = disks; i--; ) {
3108                         struct r5dev *dev = &sh->dev[i];
3109                         if ((dev->towrite || i == sh->pd_idx) &&
3110                             !test_bit(R5_LOCKED, &dev->flags) &&
3111                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3112                             test_bit(R5_Wantcompute, &dev->flags)) &&
3113                             test_bit(R5_Insync, &dev->flags)) {
3114                                 if (
3115                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3116                                         pr_debug("Read_old block "
3117                                                  "%d for r-m-w\n", i);
3118                                         set_bit(R5_LOCKED, &dev->flags);
3119                                         set_bit(R5_Wantread, &dev->flags);
3120                                         s->locked++;
3121                                 } else {
3122                                         set_bit(STRIPE_DELAYED, &sh->state);
3123                                         set_bit(STRIPE_HANDLE, &sh->state);
3124                                 }
3125                         }
3126                 }
3127         }
3128         if (rcw <= rmw && rcw > 0) {
3129                 /* want reconstruct write, but need to get some data */
3130                 int qread =0;
3131                 rcw = 0;
3132                 for (i = disks; i--; ) {
3133                         struct r5dev *dev = &sh->dev[i];
3134                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3135                             i != sh->pd_idx && i != sh->qd_idx &&
3136                             !test_bit(R5_LOCKED, &dev->flags) &&
3137                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3138                               test_bit(R5_Wantcompute, &dev->flags))) {
3139                                 rcw++;
3140                                 if (!test_bit(R5_Insync, &dev->flags))
3141                                         continue; /* it's a failed drive */
3142                                 if (
3143                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3144                                         pr_debug("Read_old block "
3145                                                 "%d for Reconstruct\n", i);
3146                                         set_bit(R5_LOCKED, &dev->flags);
3147                                         set_bit(R5_Wantread, &dev->flags);
3148                                         s->locked++;
3149                                         qread++;
3150                                 } else {
3151                                         set_bit(STRIPE_DELAYED, &sh->state);
3152                                         set_bit(STRIPE_HANDLE, &sh->state);
3153                                 }
3154                         }
3155                 }
3156                 if (rcw && conf->mddev->queue)
3157                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3158                                           (unsigned long long)sh->sector,
3159                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3160         }
3161         /* now if nothing is locked, and if we have enough data,
3162          * we can start a write request
3163          */
3164         /* since handle_stripe can be called at any time we need to handle the
3165          * case where a compute block operation has been submitted and then a
3166          * subsequent call wants to start a write request.  raid_run_ops only
3167          * handles the case where compute block and reconstruct are requested
3168          * simultaneously.  If this is not the case then new writes need to be
3169          * held off until the compute completes.
3170          */
3171         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3172             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3173             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3174                 schedule_reconstruction(sh, s, rcw == 0, 0);
3175 }
3176
3177 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3178                                 struct stripe_head_state *s, int disks)
3179 {
3180         struct r5dev *dev = NULL;
3181
3182         set_bit(STRIPE_HANDLE, &sh->state);
3183
3184         switch (sh->check_state) {
3185         case check_state_idle:
3186                 /* start a new check operation if there are no failures */
3187                 if (s->failed == 0) {
3188                         BUG_ON(s->uptodate != disks);
3189                         sh->check_state = check_state_run;
3190                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3191                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3192                         s->uptodate--;
3193                         break;
3194                 }
3195                 dev = &sh->dev[s->failed_num[0]];
3196                 /* fall through */
3197         case check_state_compute_result:
3198                 sh->check_state = check_state_idle;
3199                 if (!dev)
3200                         dev = &sh->dev[sh->pd_idx];
3201
3202                 /* check that a write has not made the stripe insync */
3203                 if (test_bit(STRIPE_INSYNC, &sh->state))
3204                         break;
3205
3206                 /* either failed parity check, or recovery is happening */
3207                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3208                 BUG_ON(s->uptodate != disks);
3209
3210                 set_bit(R5_LOCKED, &dev->flags);
3211                 s->locked++;
3212                 set_bit(R5_Wantwrite, &dev->flags);
3213
3214                 clear_bit(STRIPE_DEGRADED, &sh->state);
3215                 set_bit(STRIPE_INSYNC, &sh->state);
3216                 break;
3217         case check_state_run:
3218                 break; /* we will be called again upon completion */
3219         case check_state_check_result:
3220                 sh->check_state = check_state_idle;
3221
3222                 /* if a failure occurred during the check operation, leave
3223                  * STRIPE_INSYNC not set and let the stripe be handled again
3224                  */
3225                 if (s->failed)
3226                         break;
3227
3228                 /* handle a successful check operation, if parity is correct
3229                  * we are done.  Otherwise update the mismatch count and repair
3230                  * parity if !MD_RECOVERY_CHECK
3231                  */
3232                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3233                         /* parity is correct (on disc,
3234                          * not in buffer any more)
3235                          */
3236                         set_bit(STRIPE_INSYNC, &sh->state);
3237                 else {
3238                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3239                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3240                                 /* don't try to repair!! */
3241                                 set_bit(STRIPE_INSYNC, &sh->state);
3242                         else {
3243                                 sh->check_state = check_state_compute_run;
3244                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3245                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3246                                 set_bit(R5_Wantcompute,
3247                                         &sh->dev[sh->pd_idx].flags);
3248                                 sh->ops.target = sh->pd_idx;
3249                                 sh->ops.target2 = -1;
3250                                 s->uptodate++;
3251                         }
3252                 }
3253                 break;
3254         case check_state_compute_run:
3255                 break;
3256         default:
3257                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3258                        __func__, sh->check_state,
3259                        (unsigned long long) sh->sector);
3260                 BUG();
3261         }
3262 }
3263
3264
3265 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3266                                   struct stripe_head_state *s,
3267                                   int disks)
3268 {
3269         int pd_idx = sh->pd_idx;
3270         int qd_idx = sh->qd_idx;
3271         struct r5dev *dev;
3272
3273         set_bit(STRIPE_HANDLE, &sh->state);
3274
3275         BUG_ON(s->failed > 2);
3276
3277         /* Want to check and possibly repair P and Q.
3278          * However there could be one 'failed' device, in which
3279          * case we can only check one of them, possibly using the
3280          * other to generate missing data
3281          */
3282
3283         switch (sh->check_state) {
3284         case check_state_idle:
3285                 /* start a new check operation if there are < 2 failures */
3286                 if (s->failed == s->q_failed) {
3287                         /* The only possible failed device holds Q, so it
3288                          * makes sense to check P (If anything else were failed,
3289                          * we would have used P to recreate it).
3290                          */
3291                         sh->check_state = check_state_run;
3292                 }
3293                 if (!s->q_failed && s->failed < 2) {
3294                         /* Q is not failed, and we didn't use it to generate
3295                          * anything, so it makes sense to check it
3296                          */
3297                         if (sh->check_state == check_state_run)
3298                                 sh->check_state = check_state_run_pq;
3299                         else
3300                                 sh->check_state = check_state_run_q;
3301                 }
3302
3303                 /* discard potentially stale zero_sum_result */
3304                 sh->ops.zero_sum_result = 0;
3305
3306                 if (sh->check_state == check_state_run) {
3307                         /* async_xor_zero_sum destroys the contents of P */
3308                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3309                         s->uptodate--;
3310                 }
3311                 if (sh->check_state >= check_state_run &&
3312                     sh->check_state <= check_state_run_pq) {
3313                         /* async_syndrome_zero_sum preserves P and Q, so
3314                          * no need to mark them !uptodate here
3315                          */
3316                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3317                         break;
3318                 }
3319
3320                 /* we have 2-disk failure */
3321                 BUG_ON(s->failed != 2);
3322                 /* fall through */
3323         case check_state_compute_result:
3324                 sh->check_state = check_state_idle;
3325
3326                 /* check that a write has not made the stripe insync */
3327                 if (test_bit(STRIPE_INSYNC, &sh->state))
3328                         break;
3329
3330                 /* now write out any block on a failed drive,
3331                  * or P or Q if they were recomputed
3332                  */
3333                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3334                 if (s->failed == 2) {
3335                         dev = &sh->dev[s->failed_num[1]];
3336                         s->locked++;
3337                         set_bit(R5_LOCKED, &dev->flags);
3338                         set_bit(R5_Wantwrite, &dev->flags);
3339                 }
3340                 if (s->failed >= 1) {
3341                         dev = &sh->dev[s->failed_num[0]];
3342                         s->locked++;
3343                         set_bit(R5_LOCKED, &dev->flags);
3344                         set_bit(R5_Wantwrite, &dev->flags);
3345                 }
3346                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3347                         dev = &sh->dev[pd_idx];
3348                         s->locked++;
3349                         set_bit(R5_LOCKED, &dev->flags);
3350                         set_bit(R5_Wantwrite, &dev->flags);
3351                 }
3352                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3353                         dev = &sh->dev[qd_idx];
3354                         s->locked++;
3355                         set_bit(R5_LOCKED, &dev->flags);
3356                         set_bit(R5_Wantwrite, &dev->flags);
3357                 }
3358                 clear_bit(STRIPE_DEGRADED, &sh->state);
3359
3360                 set_bit(STRIPE_INSYNC, &sh->state);
3361                 break;
3362         case check_state_run:
3363         case check_state_run_q:
3364         case check_state_run_pq:
3365                 break; /* we will be called again upon completion */
3366         case check_state_check_result:
3367                 sh->check_state = check_state_idle;
3368
3369                 /* handle a successful check operation, if parity is correct
3370                  * we are done.  Otherwise update the mismatch count and repair
3371                  * parity if !MD_RECOVERY_CHECK
3372                  */
3373                 if (sh->ops.zero_sum_result == 0) {
3374                         /* both parities are correct */
3375                         if (!s->failed)
3376                                 set_bit(STRIPE_INSYNC, &sh->state);
3377                         else {
3378                                 /* in contrast to the raid5 case we can validate
3379                                  * parity, but still have a failure to write
3380                                  * back
3381                                  */
3382                                 sh->check_state = check_state_compute_result;
3383                                 /* Returning at this point means that we may go
3384                                  * off and bring p and/or q uptodate again so
3385                                  * we make sure to check zero_sum_result again
3386                                  * to verify if p or q need writeback
3387                                  */
3388                         }
3389                 } else {
3390                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3391                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3392                                 /* don't try to repair!! */
3393                                 set_bit(STRIPE_INSYNC, &sh->state);
3394                         else {
3395                                 int *target = &sh->ops.target;
3396
3397                                 sh->ops.target = -1;
3398                                 sh->ops.target2 = -1;
3399                                 sh->check_state = check_state_compute_run;
3400                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3401                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3402                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3403                                         set_bit(R5_Wantcompute,
3404                                                 &sh->dev[pd_idx].flags);
3405                                         *target = pd_idx;
3406                                         target = &sh->ops.target2;
3407                                         s->uptodate++;
3408                                 }
3409                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3410                                         set_bit(R5_Wantcompute,
3411                                                 &sh->dev[qd_idx].flags);
3412                                         *target = qd_idx;
3413                                         s->uptodate++;
3414                                 }
3415                         }
3416                 }
3417                 break;
3418         case check_state_compute_run:
3419                 break;
3420         default:
3421                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3422                        __func__, sh->check_state,
3423                        (unsigned long long) sh->sector);
3424                 BUG();
3425         }
3426 }
3427
3428 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3429 {
3430         int i;
3431
3432         /* We have read all the blocks in this stripe and now we need to
3433          * copy some of them into a target stripe for expand.
3434          */
3435         struct dma_async_tx_descriptor *tx = NULL;
3436         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3437         for (i = 0; i < sh->disks; i++)
3438                 if (i != sh->pd_idx && i != sh->qd_idx) {
3439                         int dd_idx, j;
3440                         struct stripe_head *sh2;
3441                         struct async_submit_ctl submit;
3442
3443                         sector_t bn = compute_blocknr(sh, i, 1);
3444                         sector_t s = raid5_compute_sector(conf, bn, 0,
3445                                                           &dd_idx, NULL);
3446                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3447                         if (sh2 == NULL)
3448                                 /* so far only the early blocks of this stripe
3449                                  * have been requested.  When later blocks
3450                                  * get requested, we will try again
3451                                  */
3452                                 continue;
3453                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3454                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3455                                 /* must have already done this block */
3456                                 release_stripe(sh2);
3457                                 continue;
3458                         }
3459
3460                         /* place all the copies on one channel */
3461                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3462                         tx = async_memcpy(sh2->dev[dd_idx].page,
3463                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3464                                           &submit);
3465
3466                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3467                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3468                         for (j = 0; j < conf->raid_disks; j++)
3469                                 if (j != sh2->pd_idx &&
3470                                     j != sh2->qd_idx &&
3471                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3472                                         break;
3473                         if (j == conf->raid_disks) {
3474                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3475                                 set_bit(STRIPE_HANDLE, &sh2->state);
3476                         }
3477                         release_stripe(sh2);
3478
3479                 }
3480         /* done submitting copies, wait for them to complete */
3481         async_tx_quiesce(&tx);
3482 }
3483
3484 /*
3485  * handle_stripe - do things to a stripe.
3486  *
3487  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3488  * state of various bits to see what needs to be done.
3489  * Possible results:
3490  *    return some read requests which now have data
3491  *    return some write requests which are safely on storage
3492  *    schedule a read on some buffers
3493  *    schedule a write of some buffers
3494  *    return confirmation of parity correctness
3495  *
3496  */
3497
3498 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3499 {
3500         struct r5conf *conf = sh->raid_conf;
3501         int disks = sh->disks;
3502         struct r5dev *dev;
3503         int i;
3504         int do_recovery = 0;
3505
3506         memset(s, 0, sizeof(*s));
3507
3508         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3509         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3510         s->failed_num[0] = -1;
3511         s->failed_num[1] = -1;
3512
3513         /* Now to look around and see what can be done */
3514         rcu_read_lock();
3515         for (i=disks; i--; ) {
3516                 struct md_rdev *rdev;
3517                 sector_t first_bad;
3518                 int bad_sectors;
3519                 int is_bad = 0;
3520
3521                 dev = &sh->dev[i];
3522
3523                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3524                          i, dev->flags,
3525                          dev->toread, dev->towrite, dev->written);
3526                 /* maybe we can reply to a read
3527                  *
3528                  * new wantfill requests are only permitted while
3529                  * ops_complete_biofill is guaranteed to be inactive
3530                  */
3531                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3532                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3533                         set_bit(R5_Wantfill, &dev->flags);
3534
3535                 /* now count some things */
3536                 if (test_bit(R5_LOCKED, &dev->flags))
3537                         s->locked++;
3538                 if (test_bit(R5_UPTODATE, &dev->flags))
3539                         s->uptodate++;
3540                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3541                         s->compute++;
3542                         BUG_ON(s->compute > 2);
3543                 }
3544
3545                 if (test_bit(R5_Wantfill, &dev->flags))
3546                         s->to_fill++;
3547                 else if (dev->toread)
3548                         s->to_read++;
3549                 if (dev->towrite) {
3550                         s->to_write++;
3551                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3552                                 s->non_overwrite++;
3553                 }
3554                 if (dev->written)
3555                         s->written++;
3556                 /* Prefer to use the replacement for reads, but only
3557                  * if it is recovered enough and has no bad blocks.
3558                  */
3559                 rdev = rcu_dereference(conf->disks[i].replacement);
3560                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3561                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3562                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3563                                  &first_bad, &bad_sectors))
3564                         set_bit(R5_ReadRepl, &dev->flags);
3565                 else {
3566                         if (rdev)
3567                                 set_bit(R5_NeedReplace, &dev->flags);
3568                         rdev = rcu_dereference(conf->disks[i].rdev);
3569                         clear_bit(R5_ReadRepl, &dev->flags);
3570                 }
3571                 if (rdev && test_bit(Faulty, &rdev->flags))
3572                         rdev = NULL;
3573                 if (rdev) {
3574                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3575                                              &first_bad, &bad_sectors);
3576                         if (s->blocked_rdev == NULL
3577                             && (test_bit(Blocked, &rdev->flags)
3578                                 || is_bad < 0)) {
3579                                 if (is_bad < 0)
3580                                         set_bit(BlockedBadBlocks,
3581                                                 &rdev->flags);
3582                                 s->blocked_rdev = rdev;
3583                                 atomic_inc(&rdev->nr_pending);
3584                         }
3585                 }
3586                 clear_bit(R5_Insync, &dev->flags);
3587                 if (!rdev)
3588                         /* Not in-sync */;
3589                 else if (is_bad) {
3590                         /* also not in-sync */
3591                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3592                             test_bit(R5_UPTODATE, &dev->flags)) {
3593                                 /* treat as in-sync, but with a read error
3594                                  * which we can now try to correct
3595                                  */
3596                                 set_bit(R5_Insync, &dev->flags);
3597                                 set_bit(R5_ReadError, &dev->flags);
3598                         }
3599                 } else if (test_bit(In_sync, &rdev->flags))
3600                         set_bit(R5_Insync, &dev->flags);
3601                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3602                         /* in sync if before recovery_offset */
3603                         set_bit(R5_Insync, &dev->flags);
3604                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3605                          test_bit(R5_Expanded, &dev->flags))
3606                         /* If we've reshaped into here, we assume it is Insync.
3607                          * We will shortly update recovery_offset to make
3608                          * it official.
3609                          */
3610                         set_bit(R5_Insync, &dev->flags);
3611
3612                 if (test_bit(R5_WriteError, &dev->flags)) {
3613                         /* This flag does not apply to '.replacement'
3614                          * only to .rdev, so make sure to check that*/
3615                         struct md_rdev *rdev2 = rcu_dereference(
3616                                 conf->disks[i].rdev);
3617                         if (rdev2 == rdev)
3618                                 clear_bit(R5_Insync, &dev->flags);
3619                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3620                                 s->handle_bad_blocks = 1;
3621                                 atomic_inc(&rdev2->nr_pending);
3622                         } else
3623                                 clear_bit(R5_WriteError, &dev->flags);
3624                 }
3625                 if (test_bit(R5_MadeGood, &dev->flags)) {
3626                         /* This flag does not apply to '.replacement'
3627                          * only to .rdev, so make sure to check that*/
3628                         struct md_rdev *rdev2 = rcu_dereference(
3629                                 conf->disks[i].rdev);
3630                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3631                                 s->handle_bad_blocks = 1;
3632                                 atomic_inc(&rdev2->nr_pending);
3633                         } else
3634                                 clear_bit(R5_MadeGood, &dev->flags);
3635                 }
3636                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3637                         struct md_rdev *rdev2 = rcu_dereference(
3638                                 conf->disks[i].replacement);
3639                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3640                                 s->handle_bad_blocks = 1;
3641                                 atomic_inc(&rdev2->nr_pending);
3642                         } else
3643                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3644                 }
3645                 if (!test_bit(R5_Insync, &dev->flags)) {
3646                         /* The ReadError flag will just be confusing now */
3647                         clear_bit(R5_ReadError, &dev->flags);
3648                         clear_bit(R5_ReWrite, &dev->flags);
3649                 }
3650                 if (test_bit(R5_ReadError, &dev->flags))
3651                         clear_bit(R5_Insync, &dev->flags);
3652                 if (!test_bit(R5_Insync, &dev->flags)) {
3653                         if (s->failed < 2)
3654                                 s->failed_num[s->failed] = i;
3655                         s->failed++;
3656                         if (rdev && !test_bit(Faulty, &rdev->flags))
3657                                 do_recovery = 1;
3658                 }
3659         }
3660         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3661                 /* If there is a failed device being replaced,
3662                  *     we must be recovering.
3663                  * else if we are after recovery_cp, we must be syncing
3664                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3665                  * else we can only be replacing
3666                  * sync and recovery both need to read all devices, and so
3667                  * use the same flag.
3668                  */
3669                 if (do_recovery ||
3670                     sh->sector >= conf->mddev->recovery_cp ||
3671                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3672                         s->syncing = 1;
3673                 else
3674                         s->replacing = 1;
3675         }
3676         rcu_read_unlock();
3677 }
3678
3679 static void handle_stripe(struct stripe_head *sh)
3680 {
3681         struct stripe_head_state s;
3682         struct r5conf *conf = sh->raid_conf;
3683         int i;
3684         int prexor;
3685         int disks = sh->disks;
3686         struct r5dev *pdev, *qdev;
3687
3688         clear_bit(STRIPE_HANDLE, &sh->state);
3689         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3690                 /* already being handled, ensure it gets handled
3691                  * again when current action finishes */
3692                 set_bit(STRIPE_HANDLE, &sh->state);
3693                 return;
3694         }
3695
3696         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3697                 spin_lock(&sh->stripe_lock);
3698                 /* Cannot process 'sync' concurrently with 'discard' */
3699                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3700                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3701                         set_bit(STRIPE_SYNCING, &sh->state);
3702                         clear_bit(STRIPE_INSYNC, &sh->state);
3703                         clear_bit(STRIPE_REPLACED, &sh->state);
3704                 }
3705                 spin_unlock(&sh->stripe_lock);
3706         }
3707         clear_bit(STRIPE_DELAYED, &sh->state);
3708
3709         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3710                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3711                (unsigned long long)sh->sector, sh->state,
3712                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3713                sh->check_state, sh->reconstruct_state);
3714
3715         analyse_stripe(sh, &s);
3716
3717         if (s.handle_bad_blocks) {
3718                 set_bit(STRIPE_HANDLE, &sh->state);
3719                 goto finish;
3720         }
3721
3722         if (unlikely(s.blocked_rdev)) {
3723                 if (s.syncing || s.expanding || s.expanded ||
3724                     s.replacing || s.to_write || s.written) {
3725                         set_bit(STRIPE_HANDLE, &sh->state);
3726                         goto finish;
3727                 }
3728                 /* There is nothing for the blocked_rdev to block */
3729                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3730                 s.blocked_rdev = NULL;
3731         }
3732
3733         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3734                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3735                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3736         }
3737
3738         pr_debug("locked=%d uptodate=%d to_read=%d"
3739                " to_write=%d failed=%d failed_num=%d,%d\n",
3740                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3741                s.failed_num[0], s.failed_num[1]);
3742         /* check if the array has lost more than max_degraded devices and,
3743          * if so, some requests might need to be failed.
3744          */
3745         if (s.failed > conf->max_degraded) {
3746                 sh->check_state = 0;
3747                 sh->reconstruct_state = 0;
3748                 if (s.to_read+s.to_write+s.written)
3749                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3750                 if (s.syncing + s.replacing)
3751                         handle_failed_sync(conf, sh, &s);
3752         }
3753
3754         /* Now we check to see if any write operations have recently
3755          * completed
3756          */
3757         prexor = 0;
3758         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3759                 prexor = 1;
3760         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3761             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3762                 sh->reconstruct_state = reconstruct_state_idle;
3763
3764                 /* All the 'written' buffers and the parity block are ready to
3765                  * be written back to disk
3766                  */
3767                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3768                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3769                 BUG_ON(sh->qd_idx >= 0 &&
3770                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3771                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3772                 for (i = disks; i--; ) {
3773                         struct r5dev *dev = &sh->dev[i];
3774                         if (test_bit(R5_LOCKED, &dev->flags) &&
3775                                 (i == sh->pd_idx || i == sh->qd_idx ||
3776                                  dev->written)) {
3777                                 pr_debug("Writing block %d\n", i);
3778                                 set_bit(R5_Wantwrite, &dev->flags);
3779                                 if (prexor)
3780                                         continue;
3781                                 if (!test_bit(R5_Insync, &dev->flags) ||
3782                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3783                                      s.failed == 0))
3784                                         set_bit(STRIPE_INSYNC, &sh->state);
3785                         }
3786                 }
3787                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3788                         s.dec_preread_active = 1;
3789         }
3790
3791         /*
3792          * might be able to return some write requests if the parity blocks
3793          * are safe, or on a failed drive
3794          */
3795         pdev = &sh->dev[sh->pd_idx];
3796         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3797                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3798         qdev = &sh->dev[sh->qd_idx];
3799         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3800                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3801                 || conf->level < 6;
3802
3803         if (s.written &&
3804             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3805                              && !test_bit(R5_LOCKED, &pdev->flags)
3806                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3807                                  test_bit(R5_Discard, &pdev->flags))))) &&
3808             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3809                              && !test_bit(R5_LOCKED, &qdev->flags)
3810                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3811                                  test_bit(R5_Discard, &qdev->flags))))))
3812                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3813
3814         /* Now we might consider reading some blocks, either to check/generate
3815          * parity, or to satisfy requests
3816          * or to load a block that is being partially written.
3817          */
3818         if (s.to_read || s.non_overwrite
3819             || (conf->level == 6 && s.to_write && s.failed)
3820             || (s.syncing && (s.uptodate + s.compute < disks))
3821             || s.replacing
3822             || s.expanding)
3823                 handle_stripe_fill(sh, &s, disks);
3824
3825         /* Now to consider new write requests and what else, if anything
3826          * should be read.  We do not handle new writes when:
3827          * 1/ A 'write' operation (copy+xor) is already in flight.
3828          * 2/ A 'check' operation is in flight, as it may clobber the parity
3829          *    block.
3830          */
3831         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3832                 handle_stripe_dirtying(conf, sh, &s, disks);
3833
3834         /* maybe we need to check and possibly fix the parity for this stripe
3835          * Any reads will already have been scheduled, so we just see if enough
3836          * data is available.  The parity check is held off while parity
3837          * dependent operations are in flight.
3838          */
3839         if (sh->check_state ||
3840             (s.syncing && s.locked == 0 &&
3841              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3842              !test_bit(STRIPE_INSYNC, &sh->state))) {
3843                 if (conf->level == 6)
3844                         handle_parity_checks6(conf, sh, &s, disks);
3845                 else
3846                         handle_parity_checks5(conf, sh, &s, disks);
3847         }
3848
3849         if ((s.replacing || s.syncing) && s.locked == 0
3850             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3851             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3852                 /* Write out to replacement devices where possible */
3853                 for (i = 0; i < conf->raid_disks; i++)
3854                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3855                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3856                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3857                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3858                                 s.locked++;
3859                         }
3860                 if (s.replacing)
3861                         set_bit(STRIPE_INSYNC, &sh->state);
3862                 set_bit(STRIPE_REPLACED, &sh->state);
3863         }
3864         if ((s.syncing || s.replacing) && s.locked == 0 &&
3865             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3866             test_bit(STRIPE_INSYNC, &sh->state)) {
3867                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3868                 clear_bit(STRIPE_SYNCING, &sh->state);
3869                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3870                         wake_up(&conf->wait_for_overlap);
3871         }
3872
3873         /* If the failed drives are just a ReadError, then we might need
3874          * to progress the repair/check process
3875          */
3876         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3877                 for (i = 0; i < s.failed; i++) {
3878                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3879                         if (test_bit(R5_ReadError, &dev->flags)
3880                             && !test_bit(R5_LOCKED, &dev->flags)
3881                             && test_bit(R5_UPTODATE, &dev->flags)
3882                                 ) {
3883                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3884                                         set_bit(R5_Wantwrite, &dev->flags);
3885                                         set_bit(R5_ReWrite, &dev->flags);
3886                                         set_bit(R5_LOCKED, &dev->flags);
3887                                         s.locked++;
3888                                 } else {
3889                                         /* let's read it back */
3890                                         set_bit(R5_Wantread, &dev->flags);
3891                                         set_bit(R5_LOCKED, &dev->flags);
3892                                         s.locked++;
3893                                 }
3894                         }
3895                 }
3896
3897
3898         /* Finish reconstruct operations initiated by the expansion process */
3899         if (sh->reconstruct_state == reconstruct_state_result) {
3900                 struct stripe_head *sh_src
3901                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3902                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3903                         /* sh cannot be written until sh_src has been read.
3904                          * so arrange for sh to be delayed a little
3905                          */
3906                         set_bit(STRIPE_DELAYED, &sh->state);
3907                         set_bit(STRIPE_HANDLE, &sh->state);
3908                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3909                                               &sh_src->state))
3910                                 atomic_inc(&conf->preread_active_stripes);
3911                         release_stripe(sh_src);
3912                         goto finish;
3913                 }
3914                 if (sh_src)
3915                         release_stripe(sh_src);
3916
3917                 sh->reconstruct_state = reconstruct_state_idle;
3918                 clear_bit(STRIPE_EXPANDING, &sh->state);
3919                 for (i = conf->raid_disks; i--; ) {
3920                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3921                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3922                         s.locked++;
3923                 }
3924         }
3925
3926         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3927             !sh->reconstruct_state) {
3928                 /* Need to write out all blocks after computing parity */
3929                 sh->disks = conf->raid_disks;
3930                 stripe_set_idx(sh->sector, conf, 0, sh);
3931                 schedule_reconstruction(sh, &s, 1, 1);
3932         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3933                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3934                 atomic_dec(&conf->reshape_stripes);
3935                 wake_up(&conf->wait_for_overlap);
3936                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3937         }
3938
3939         if (s.expanding && s.locked == 0 &&
3940             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3941                 handle_stripe_expansion(conf, sh);
3942
3943 finish:
3944         /* wait for this device to become unblocked */
3945         if (unlikely(s.blocked_rdev)) {
3946                 if (conf->mddev->external)
3947                         md_wait_for_blocked_rdev(s.blocked_rdev,
3948                                                  conf->mddev);
3949                 else
3950                         /* Internal metadata will immediately
3951                          * be written by raid5d, so we don't
3952                          * need to wait here.
3953                          */
3954                         rdev_dec_pending(s.blocked_rdev,
3955                                          conf->mddev);
3956         }
3957
3958         if (s.handle_bad_blocks)
3959                 for (i = disks; i--; ) {
3960                         struct md_rdev *rdev;
3961                         struct r5dev *dev = &sh->dev[i];
3962                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3963                                 /* We own a safe reference to the rdev */
3964                                 rdev = conf->disks[i].rdev;
3965                                 if (!rdev_set_badblocks(rdev, sh->sector,
3966                                                         STRIPE_SECTORS, 0))
3967                                         md_error(conf->mddev, rdev);
3968                                 rdev_dec_pending(rdev, conf->mddev);
3969                         }
3970                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3971                                 rdev = conf->disks[i].rdev;
3972                                 rdev_clear_badblocks(rdev, sh->sector,
3973                                                      STRIPE_SECTORS, 0);
3974                                 rdev_dec_pending(rdev, conf->mddev);
3975                         }
3976                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3977                                 rdev = conf->disks[i].replacement;
3978                                 if (!rdev)
3979                                         /* rdev have been moved down */
3980                                         rdev = conf->disks[i].rdev;
3981                                 rdev_clear_badblocks(rdev, sh->sector,
3982                                                      STRIPE_SECTORS, 0);
3983                                 rdev_dec_pending(rdev, conf->mddev);
3984                         }
3985                 }
3986
3987         if (s.ops_request)
3988                 raid_run_ops(sh, s.ops_request);
3989
3990         ops_run_io(sh, &s);
3991
3992         if (s.dec_preread_active) {
3993                 /* We delay this until after ops_run_io so that if make_request
3994                  * is waiting on a flush, it won't continue until the writes
3995                  * have actually been submitted.
3996                  */
3997                 atomic_dec(&conf->preread_active_stripes);
3998                 if (atomic_read(&conf->preread_active_stripes) <
3999                     IO_THRESHOLD)
4000                         md_wakeup_thread(conf->mddev->thread);
4001         }
4002
4003         return_io(s.return_bi);
4004
4005         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4006 }
4007
4008 static void raid5_activate_delayed(struct r5conf *conf)
4009 {
4010         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4011                 while (!list_empty(&conf->delayed_list)) {
4012                         struct list_head *l = conf->delayed_list.next;
4013                         struct stripe_head *sh;
4014                         sh = list_entry(l, struct stripe_head, lru);
4015                         list_del_init(l);
4016                         clear_bit(STRIPE_DELAYED, &sh->state);
4017                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4018                                 atomic_inc(&conf->preread_active_stripes);
4019                         list_add_tail(&sh->lru, &conf->hold_list);
4020                         raid5_wakeup_stripe_thread(sh);
4021                 }
4022         }
4023 }
4024
4025 static void activate_bit_delay(struct r5conf *conf,
4026         struct list_head *temp_inactive_list)
4027 {
4028         /* device_lock is held */
4029         struct list_head head;
4030         list_add(&head, &conf->bitmap_list);
4031         list_del_init(&conf->bitmap_list);
4032         while (!list_empty(&head)) {
4033                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4034                 int hash;
4035                 list_del_init(&sh->lru);
4036                 atomic_inc(&sh->count);
4037                 hash = sh->hash_lock_index;
4038                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4039         }
4040 }
4041
4042 int md_raid5_congested(struct mddev *mddev, int bits)
4043 {
4044         struct r5conf *conf = mddev->private;
4045
4046         /* No difference between reads and writes.  Just check
4047          * how busy the stripe_cache is
4048          */
4049
4050         if (conf->inactive_blocked)
4051                 return 1;
4052         if (conf->quiesce)
4053                 return 1;
4054         if (atomic_read(&conf->empty_inactive_list_nr))
4055                 return 1;
4056
4057         return 0;
4058 }
4059 EXPORT_SYMBOL_GPL(md_raid5_congested);
4060
4061 static int raid5_congested(void *data, int bits)
4062 {
4063         struct mddev *mddev = data;
4064
4065         return mddev_congested(mddev, bits) ||
4066                 md_raid5_congested(mddev, bits);
4067 }
4068
4069 /* We want read requests to align with chunks where possible,
4070  * but write requests don't need to.
4071  */
4072 static int raid5_mergeable_bvec(struct request_queue *q,
4073                                 struct bvec_merge_data *bvm,
4074                                 struct bio_vec *biovec)
4075 {
4076         struct mddev *mddev = q->queuedata;
4077         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4078         int max;
4079         unsigned int chunk_sectors = mddev->chunk_sectors;
4080         unsigned int bio_sectors = bvm->bi_size >> 9;
4081
4082         if ((bvm->bi_rw & 1) == WRITE)
4083                 return biovec->bv_len; /* always allow writes to be mergeable */
4084
4085         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4086                 chunk_sectors = mddev->new_chunk_sectors;
4087         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4088         if (max < 0) max = 0;
4089         if (max <= biovec->bv_len && bio_sectors == 0)
4090                 return biovec->bv_len;
4091         else
4092                 return max;
4093 }
4094
4095
4096 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4097 {
4098         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
4099         unsigned int chunk_sectors = mddev->chunk_sectors;
4100         unsigned int bio_sectors = bio_sectors(bio);
4101
4102         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4103                 chunk_sectors = mddev->new_chunk_sectors;
4104         return  chunk_sectors >=
4105                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4106 }
4107
4108 /*
4109  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4110  *  later sampled by raid5d.
4111  */
4112 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4113 {
4114         unsigned long flags;
4115
4116         spin_lock_irqsave(&conf->device_lock, flags);
4117
4118         bi->bi_next = conf->retry_read_aligned_list;
4119         conf->retry_read_aligned_list = bi;
4120
4121         spin_unlock_irqrestore(&conf->device_lock, flags);
4122         md_wakeup_thread(conf->mddev->thread);
4123 }
4124
4125
4126 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4127 {
4128         struct bio *bi;
4129
4130         bi = conf->retry_read_aligned;
4131         if (bi) {
4132                 conf->retry_read_aligned = NULL;
4133                 return bi;
4134         }
4135         bi = conf->retry_read_aligned_list;
4136         if(bi) {
4137                 conf->retry_read_aligned_list = bi->bi_next;
4138                 bi->bi_next = NULL;
4139                 /*
4140                  * this sets the active strip count to 1 and the processed
4141                  * strip count to zero (upper 8 bits)
4142                  */
4143                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4144         }
4145
4146         return bi;
4147 }
4148
4149
4150 /*
4151  *  The "raid5_align_endio" should check if the read succeeded and if it
4152  *  did, call bio_endio on the original bio (having bio_put the new bio
4153  *  first).
4154  *  If the read failed..
4155  */
4156 static void raid5_align_endio(struct bio *bi, int error)
4157 {
4158         struct bio* raid_bi  = bi->bi_private;
4159         struct mddev *mddev;
4160         struct r5conf *conf;
4161         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4162         struct md_rdev *rdev;
4163
4164         bio_put(bi);
4165
4166         rdev = (void*)raid_bi->bi_next;
4167         raid_bi->bi_next = NULL;
4168         mddev = rdev->mddev;
4169         conf = mddev->private;
4170
4171         rdev_dec_pending(rdev, conf->mddev);
4172
4173         if (!error && uptodate) {
4174                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4175                                          raid_bi, 0);
4176                 bio_endio(raid_bi, 0);
4177                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4178                         wake_up(&conf->wait_for_stripe);
4179                 return;
4180         }
4181
4182
4183         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4184
4185         add_bio_to_retry(raid_bi, conf);
4186 }
4187
4188 static int bio_fits_rdev(struct bio *bi)
4189 {
4190         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4191
4192         if (bio_sectors(bi) > queue_max_sectors(q))
4193                 return 0;
4194         blk_recount_segments(q, bi);
4195         if (bi->bi_phys_segments > queue_max_segments(q))
4196                 return 0;
4197
4198         if (q->merge_bvec_fn)
4199                 /* it's too hard to apply the merge_bvec_fn at this stage,
4200                  * just just give up
4201                  */
4202                 return 0;
4203
4204         return 1;
4205 }
4206
4207
4208 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4209 {
4210         struct r5conf *conf = mddev->private;
4211         int dd_idx;
4212         struct bio* align_bi;
4213         struct md_rdev *rdev;
4214         sector_t end_sector;
4215
4216         if (!in_chunk_boundary(mddev, raid_bio)) {
4217                 pr_debug("chunk_aligned_read : non aligned\n");
4218                 return 0;
4219         }
4220         /*
4221          * use bio_clone_mddev to make a copy of the bio
4222          */
4223         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4224         if (!align_bi)
4225                 return 0;
4226         /*
4227          *   set bi_end_io to a new function, and set bi_private to the
4228          *     original bio.
4229          */
4230         align_bi->bi_end_io  = raid5_align_endio;
4231         align_bi->bi_private = raid_bio;
4232         /*
4233          *      compute position
4234          */
4235         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
4236                                                     0,
4237                                                     &dd_idx, NULL);
4238
4239         end_sector = bio_end_sector(align_bi);
4240         rcu_read_lock();
4241         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4242         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4243             rdev->recovery_offset < end_sector) {
4244                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4245                 if (rdev &&
4246                     (test_bit(Faulty, &rdev->flags) ||
4247                     !(test_bit(In_sync, &rdev->flags) ||
4248                       rdev->recovery_offset >= end_sector)))
4249                         rdev = NULL;
4250         }
4251         if (rdev) {
4252                 sector_t first_bad;
4253                 int bad_sectors;
4254
4255                 atomic_inc(&rdev->nr_pending);
4256                 rcu_read_unlock();
4257                 raid_bio->bi_next = (void*)rdev;
4258                 align_bi->bi_bdev =  rdev->bdev;
4259                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4260
4261                 if (!bio_fits_rdev(align_bi) ||
4262                     is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
4263                                 &first_bad, &bad_sectors)) {
4264                         /* too big in some way, or has a known bad block */
4265                         bio_put(align_bi);
4266                         rdev_dec_pending(rdev, mddev);
4267                         return 0;
4268                 }
4269
4270                 /* No reshape active, so we can trust rdev->data_offset */
4271                 align_bi->bi_sector += rdev->data_offset;
4272
4273                 spin_lock_irq(&conf->device_lock);
4274                 wait_event_lock_irq(conf->wait_for_stripe,
4275                                     conf->quiesce == 0,
4276                                     conf->device_lock);
4277                 atomic_inc(&conf->active_aligned_reads);
4278                 spin_unlock_irq(&conf->device_lock);
4279
4280                 if (mddev->gendisk)
4281                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4282                                               align_bi, disk_devt(mddev->gendisk),
4283                                               raid_bio->bi_sector);
4284                 generic_make_request(align_bi);
4285                 return 1;
4286         } else {
4287                 rcu_read_unlock();
4288                 bio_put(align_bi);
4289                 return 0;
4290         }
4291 }
4292
4293 /* __get_priority_stripe - get the next stripe to process
4294  *
4295  * Full stripe writes are allowed to pass preread active stripes up until
4296  * the bypass_threshold is exceeded.  In general the bypass_count
4297  * increments when the handle_list is handled before the hold_list; however, it
4298  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4299  * stripe with in flight i/o.  The bypass_count will be reset when the
4300  * head of the hold_list has changed, i.e. the head was promoted to the
4301  * handle_list.
4302  */
4303 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4304 {
4305         struct stripe_head *sh = NULL, *tmp;
4306         struct list_head *handle_list = NULL;
4307         struct r5worker_group *wg = NULL;
4308
4309         if (conf->worker_cnt_per_group == 0) {
4310                 handle_list = &conf->handle_list;
4311         } else if (group != ANY_GROUP) {
4312                 handle_list = &conf->worker_groups[group].handle_list;
4313                 wg = &conf->worker_groups[group];
4314         } else {
4315                 int i;
4316                 for (i = 0; i < conf->group_cnt; i++) {
4317                         handle_list = &conf->worker_groups[i].handle_list;
4318                         wg = &conf->worker_groups[i];
4319                         if (!list_empty(handle_list))
4320                                 break;
4321                 }
4322         }
4323
4324         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4325                   __func__,
4326                   list_empty(handle_list) ? "empty" : "busy",
4327                   list_empty(&conf->hold_list) ? "empty" : "busy",
4328                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4329
4330         if (!list_empty(handle_list)) {
4331                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4332
4333                 if (list_empty(&conf->hold_list))
4334                         conf->bypass_count = 0;
4335                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4336                         if (conf->hold_list.next == conf->last_hold)
4337                                 conf->bypass_count++;
4338                         else {
4339                                 conf->last_hold = conf->hold_list.next;
4340                                 conf->bypass_count -= conf->bypass_threshold;
4341                                 if (conf->bypass_count < 0)
4342                                         conf->bypass_count = 0;
4343                         }
4344                 }
4345         } else if (!list_empty(&conf->hold_list) &&
4346                    ((conf->bypass_threshold &&
4347                      conf->bypass_count > conf->bypass_threshold) ||
4348                     atomic_read(&conf->pending_full_writes) == 0)) {
4349
4350                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4351                         if (conf->worker_cnt_per_group == 0 ||
4352                             group == ANY_GROUP ||
4353                             !cpu_online(tmp->cpu) ||
4354                             cpu_to_group(tmp->cpu) == group) {
4355                                 sh = tmp;
4356                                 break;
4357                         }
4358                 }
4359
4360                 if (sh) {
4361                         conf->bypass_count -= conf->bypass_threshold;
4362                         if (conf->bypass_count < 0)
4363                                 conf->bypass_count = 0;
4364                 }
4365                 wg = NULL;
4366         }
4367
4368         if (!sh)
4369                 return NULL;
4370
4371         if (wg) {
4372                 wg->stripes_cnt--;
4373                 sh->group = NULL;
4374         }
4375         list_del_init(&sh->lru);
4376         atomic_inc(&sh->count);
4377         BUG_ON(atomic_read(&sh->count) != 1);
4378         return sh;
4379 }
4380
4381 struct raid5_plug_cb {
4382         struct blk_plug_cb      cb;
4383         struct list_head        list;
4384         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4385 };
4386
4387 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4388 {
4389         struct raid5_plug_cb *cb = container_of(
4390                 blk_cb, struct raid5_plug_cb, cb);
4391         struct stripe_head *sh;
4392         struct mddev *mddev = cb->cb.data;
4393         struct r5conf *conf = mddev->private;
4394         int cnt = 0;
4395         int hash;
4396
4397         if (cb->list.next && !list_empty(&cb->list)) {
4398                 spin_lock_irq(&conf->device_lock);
4399                 while (!list_empty(&cb->list)) {
4400                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4401                         list_del_init(&sh->lru);
4402                         /*
4403                          * avoid race release_stripe_plug() sees
4404                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4405                          * is still in our list
4406                          */
4407                         smp_mb__before_clear_bit();
4408                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4409                         /*
4410                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4411                          * case, the count is always > 1 here
4412                          */
4413                         hash = sh->hash_lock_index;
4414                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4415                         cnt++;
4416                 }
4417                 spin_unlock_irq(&conf->device_lock);
4418         }
4419         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4420                                      NR_STRIPE_HASH_LOCKS);
4421         if (mddev->queue)
4422                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4423         kfree(cb);
4424 }
4425
4426 static void release_stripe_plug(struct mddev *mddev,
4427                                 struct stripe_head *sh)
4428 {
4429         struct blk_plug_cb *blk_cb = blk_check_plugged(
4430                 raid5_unplug, mddev,
4431                 sizeof(struct raid5_plug_cb));
4432         struct raid5_plug_cb *cb;
4433
4434         if (!blk_cb) {
4435                 release_stripe(sh);
4436                 return;
4437         }
4438
4439         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4440
4441         if (cb->list.next == NULL) {
4442                 int i;
4443                 INIT_LIST_HEAD(&cb->list);
4444                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4445                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
4446         }
4447
4448         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4449                 list_add_tail(&sh->lru, &cb->list);
4450         else
4451                 release_stripe(sh);
4452 }
4453
4454 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4455 {
4456         struct r5conf *conf = mddev->private;
4457         sector_t logical_sector, last_sector;
4458         struct stripe_head *sh;
4459         int remaining;
4460         int stripe_sectors;
4461
4462         if (mddev->reshape_position != MaxSector)
4463                 /* Skip discard while reshape is happening */
4464                 return;
4465
4466         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4467         last_sector = bi->bi_sector + (bi->bi_size>>9);
4468
4469         bi->bi_next = NULL;
4470         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4471
4472         stripe_sectors = conf->chunk_sectors *
4473                 (conf->raid_disks - conf->max_degraded);
4474         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4475                                                stripe_sectors);
4476         sector_div(last_sector, stripe_sectors);
4477
4478         logical_sector *= conf->chunk_sectors;
4479         last_sector *= conf->chunk_sectors;
4480
4481         for (; logical_sector < last_sector;
4482              logical_sector += STRIPE_SECTORS) {
4483                 DEFINE_WAIT(w);
4484                 int d;
4485         again:
4486                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4487                 prepare_to_wait(&conf->wait_for_overlap, &w,
4488                                 TASK_UNINTERRUPTIBLE);
4489                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4490                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4491                         release_stripe(sh);
4492                         schedule();
4493                         goto again;
4494                 }
4495                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4496                 spin_lock_irq(&sh->stripe_lock);
4497                 for (d = 0; d < conf->raid_disks; d++) {
4498                         if (d == sh->pd_idx || d == sh->qd_idx)
4499                                 continue;
4500                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4501                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4502                                 spin_unlock_irq(&sh->stripe_lock);
4503                                 release_stripe(sh);
4504                                 schedule();
4505                                 goto again;
4506                         }
4507                 }
4508                 set_bit(STRIPE_DISCARD, &sh->state);
4509                 finish_wait(&conf->wait_for_overlap, &w);
4510                 for (d = 0; d < conf->raid_disks; d++) {
4511                         if (d == sh->pd_idx || d == sh->qd_idx)
4512                                 continue;
4513                         sh->dev[d].towrite = bi;
4514                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4515                         raid5_inc_bi_active_stripes(bi);
4516                 }
4517                 spin_unlock_irq(&sh->stripe_lock);
4518                 if (conf->mddev->bitmap) {
4519                         for (d = 0;
4520                              d < conf->raid_disks - conf->max_degraded;
4521                              d++)
4522                                 bitmap_startwrite(mddev->bitmap,
4523                                                   sh->sector,
4524                                                   STRIPE_SECTORS,
4525                                                   0);
4526                         sh->bm_seq = conf->seq_flush + 1;
4527                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4528                 }
4529
4530                 set_bit(STRIPE_HANDLE, &sh->state);
4531                 clear_bit(STRIPE_DELAYED, &sh->state);
4532                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4533                         atomic_inc(&conf->preread_active_stripes);
4534                 release_stripe_plug(mddev, sh);
4535         }
4536
4537         remaining = raid5_dec_bi_active_stripes(bi);
4538         if (remaining == 0) {
4539                 md_write_end(mddev);
4540                 bio_endio(bi, 0);
4541         }
4542 }
4543
4544 static void make_request(struct mddev *mddev, struct bio * bi)
4545 {
4546         struct r5conf *conf = mddev->private;
4547         int dd_idx;
4548         sector_t new_sector;
4549         sector_t logical_sector, last_sector;
4550         struct stripe_head *sh;
4551         const int rw = bio_data_dir(bi);
4552         int remaining;
4553
4554         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4555                 md_flush_request(mddev, bi);
4556                 return;
4557         }
4558
4559         md_write_start(mddev, bi);
4560
4561         if (rw == READ &&
4562              mddev->reshape_position == MaxSector &&
4563              chunk_aligned_read(mddev,bi))
4564                 return;
4565
4566         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4567                 make_discard_request(mddev, bi);
4568                 return;
4569         }
4570
4571         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4572         last_sector = bio_end_sector(bi);
4573         bi->bi_next = NULL;
4574         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4575
4576         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4577                 DEFINE_WAIT(w);
4578                 int previous;
4579                 int seq;
4580
4581         retry:
4582                 seq = read_seqcount_begin(&conf->gen_lock);
4583                 previous = 0;
4584                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4585                 if (unlikely(conf->reshape_progress != MaxSector)) {
4586                         /* spinlock is needed as reshape_progress may be
4587                          * 64bit on a 32bit platform, and so it might be
4588                          * possible to see a half-updated value
4589                          * Of course reshape_progress could change after
4590                          * the lock is dropped, so once we get a reference
4591                          * to the stripe that we think it is, we will have
4592                          * to check again.
4593                          */
4594                         spin_lock_irq(&conf->device_lock);
4595                         if (mddev->reshape_backwards
4596                             ? logical_sector < conf->reshape_progress
4597                             : logical_sector >= conf->reshape_progress) {
4598                                 previous = 1;
4599                         } else {
4600                                 if (mddev->reshape_backwards
4601                                     ? logical_sector < conf->reshape_safe
4602                                     : logical_sector >= conf->reshape_safe) {
4603                                         spin_unlock_irq(&conf->device_lock);
4604                                         schedule();
4605                                         goto retry;
4606                                 }
4607                         }
4608                         spin_unlock_irq(&conf->device_lock);
4609                 }
4610
4611                 new_sector = raid5_compute_sector(conf, logical_sector,
4612                                                   previous,
4613                                                   &dd_idx, NULL);
4614                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4615                         (unsigned long long)new_sector,
4616                         (unsigned long long)logical_sector);
4617
4618                 sh = get_active_stripe(conf, new_sector, previous,
4619                                        (bi->bi_rw&RWA_MASK), 0);
4620                 if (sh) {
4621                         if (unlikely(previous)) {
4622                                 /* expansion might have moved on while waiting for a
4623                                  * stripe, so we must do the range check again.
4624                                  * Expansion could still move past after this
4625                                  * test, but as we are holding a reference to
4626                                  * 'sh', we know that if that happens,
4627                                  *  STRIPE_EXPANDING will get set and the expansion
4628                                  * won't proceed until we finish with the stripe.
4629                                  */
4630                                 int must_retry = 0;
4631                                 spin_lock_irq(&conf->device_lock);
4632                                 if (mddev->reshape_backwards
4633                                     ? logical_sector >= conf->reshape_progress
4634                                     : logical_sector < conf->reshape_progress)
4635                                         /* mismatch, need to try again */
4636                                         must_retry = 1;
4637                                 spin_unlock_irq(&conf->device_lock);
4638                                 if (must_retry) {
4639                                         release_stripe(sh);
4640                                         schedule();
4641                                         goto retry;
4642                                 }
4643                         }
4644                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
4645                                 /* Might have got the wrong stripe_head
4646                                  * by accident
4647                                  */
4648                                 release_stripe(sh);
4649                                 goto retry;
4650                         }
4651
4652                         if (rw == WRITE &&
4653                             logical_sector >= mddev->suspend_lo &&
4654                             logical_sector < mddev->suspend_hi) {
4655                                 release_stripe(sh);
4656                                 /* As the suspend_* range is controlled by
4657                                  * userspace, we want an interruptible
4658                                  * wait.
4659                                  */
4660                                 flush_signals(current);
4661                                 prepare_to_wait(&conf->wait_for_overlap,
4662                                                 &w, TASK_INTERRUPTIBLE);
4663                                 if (logical_sector >= mddev->suspend_lo &&
4664                                     logical_sector < mddev->suspend_hi)
4665                                         schedule();
4666                                 goto retry;
4667                         }
4668
4669                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4670                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4671                                 /* Stripe is busy expanding or
4672                                  * add failed due to overlap.  Flush everything
4673                                  * and wait a while
4674                                  */
4675                                 md_wakeup_thread(mddev->thread);
4676                                 release_stripe(sh);
4677                                 schedule();
4678                                 goto retry;
4679                         }
4680                         finish_wait(&conf->wait_for_overlap, &w);
4681                         set_bit(STRIPE_HANDLE, &sh->state);
4682                         clear_bit(STRIPE_DELAYED, &sh->state);
4683                         if ((bi->bi_rw & REQ_SYNC) &&
4684                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4685                                 atomic_inc(&conf->preread_active_stripes);
4686                         release_stripe_plug(mddev, sh);
4687                 } else {
4688                         /* cannot get stripe for read-ahead, just give-up */
4689                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4690                         finish_wait(&conf->wait_for_overlap, &w);
4691                         break;
4692                 }
4693         }
4694
4695         remaining = raid5_dec_bi_active_stripes(bi);
4696         if (remaining == 0) {
4697
4698                 if ( rw == WRITE )
4699                         md_write_end(mddev);
4700
4701                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4702                                          bi, 0);
4703                 bio_endio(bi, 0);
4704         }
4705 }
4706
4707 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4708
4709 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4710 {
4711         /* reshaping is quite different to recovery/resync so it is
4712          * handled quite separately ... here.
4713          *
4714          * On each call to sync_request, we gather one chunk worth of
4715          * destination stripes and flag them as expanding.
4716          * Then we find all the source stripes and request reads.
4717          * As the reads complete, handle_stripe will copy the data
4718          * into the destination stripe and release that stripe.
4719          */
4720         struct r5conf *conf = mddev->private;
4721         struct stripe_head *sh;
4722         sector_t first_sector, last_sector;
4723         int raid_disks = conf->previous_raid_disks;
4724         int data_disks = raid_disks - conf->max_degraded;
4725         int new_data_disks = conf->raid_disks - conf->max_degraded;
4726         int i;
4727         int dd_idx;
4728         sector_t writepos, readpos, safepos;
4729         sector_t stripe_addr;
4730         int reshape_sectors;
4731         struct list_head stripes;
4732
4733         if (sector_nr == 0) {
4734                 /* If restarting in the middle, skip the initial sectors */
4735                 if (mddev->reshape_backwards &&
4736                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4737                         sector_nr = raid5_size(mddev, 0, 0)
4738                                 - conf->reshape_progress;
4739                 } else if (!mddev->reshape_backwards &&
4740                            conf->reshape_progress > 0)
4741                         sector_nr = conf->reshape_progress;
4742                 sector_div(sector_nr, new_data_disks);
4743                 if (sector_nr) {
4744                         mddev->curr_resync_completed = sector_nr;
4745                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4746                         *skipped = 1;
4747                         return sector_nr;
4748                 }
4749         }
4750
4751         /* We need to process a full chunk at a time.
4752          * If old and new chunk sizes differ, we need to process the
4753          * largest of these
4754          */
4755         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4756                 reshape_sectors = mddev->new_chunk_sectors;
4757         else
4758                 reshape_sectors = mddev->chunk_sectors;
4759
4760         /* We update the metadata at least every 10 seconds, or when
4761          * the data about to be copied would over-write the source of
4762          * the data at the front of the range.  i.e. one new_stripe
4763          * along from reshape_progress new_maps to after where
4764          * reshape_safe old_maps to
4765          */
4766         writepos = conf->reshape_progress;
4767         sector_div(writepos, new_data_disks);
4768         readpos = conf->reshape_progress;
4769         sector_div(readpos, data_disks);
4770         safepos = conf->reshape_safe;
4771         sector_div(safepos, data_disks);
4772         if (mddev->reshape_backwards) {
4773                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4774                 readpos += reshape_sectors;
4775                 safepos += reshape_sectors;
4776         } else {
4777                 writepos += reshape_sectors;
4778                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4779                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4780         }
4781
4782         /* Having calculated the 'writepos' possibly use it
4783          * to set 'stripe_addr' which is where we will write to.
4784          */
4785         if (mddev->reshape_backwards) {
4786                 BUG_ON(conf->reshape_progress == 0);
4787                 stripe_addr = writepos;
4788                 BUG_ON((mddev->dev_sectors &
4789                         ~((sector_t)reshape_sectors - 1))
4790                        - reshape_sectors - stripe_addr
4791                        != sector_nr);
4792         } else {
4793                 BUG_ON(writepos != sector_nr + reshape_sectors);
4794                 stripe_addr = sector_nr;
4795         }
4796
4797         /* 'writepos' is the most advanced device address we might write.
4798          * 'readpos' is the least advanced device address we might read.
4799          * 'safepos' is the least address recorded in the metadata as having
4800          *     been reshaped.
4801          * If there is a min_offset_diff, these are adjusted either by
4802          * increasing the safepos/readpos if diff is negative, or
4803          * increasing writepos if diff is positive.
4804          * If 'readpos' is then behind 'writepos', there is no way that we can
4805          * ensure safety in the face of a crash - that must be done by userspace
4806          * making a backup of the data.  So in that case there is no particular
4807          * rush to update metadata.
4808          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4809          * update the metadata to advance 'safepos' to match 'readpos' so that
4810          * we can be safe in the event of a crash.
4811          * So we insist on updating metadata if safepos is behind writepos and
4812          * readpos is beyond writepos.
4813          * In any case, update the metadata every 10 seconds.
4814          * Maybe that number should be configurable, but I'm not sure it is
4815          * worth it.... maybe it could be a multiple of safemode_delay???
4816          */
4817         if (conf->min_offset_diff < 0) {
4818                 safepos += -conf->min_offset_diff;
4819                 readpos += -conf->min_offset_diff;
4820         } else
4821                 writepos += conf->min_offset_diff;
4822
4823         if ((mddev->reshape_backwards
4824              ? (safepos > writepos && readpos < writepos)
4825              : (safepos < writepos && readpos > writepos)) ||
4826             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4827                 /* Cannot proceed until we've updated the superblock... */
4828                 wait_event(conf->wait_for_overlap,
4829                            atomic_read(&conf->reshape_stripes)==0
4830                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4831                 if (atomic_read(&conf->reshape_stripes) != 0)
4832                         return 0;
4833                 mddev->reshape_position = conf->reshape_progress;
4834                 mddev->curr_resync_completed = sector_nr;
4835                 conf->reshape_checkpoint = jiffies;
4836                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4837                 md_wakeup_thread(mddev->thread);
4838                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4839                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4840                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4841                         return 0;
4842                 spin_lock_irq(&conf->device_lock);
4843                 conf->reshape_safe = mddev->reshape_position;
4844                 spin_unlock_irq(&conf->device_lock);
4845                 wake_up(&conf->wait_for_overlap);
4846                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4847         }
4848
4849         INIT_LIST_HEAD(&stripes);
4850         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4851                 int j;
4852                 int skipped_disk = 0;
4853                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4854                 set_bit(STRIPE_EXPANDING, &sh->state);
4855                 atomic_inc(&conf->reshape_stripes);
4856                 /* If any of this stripe is beyond the end of the old
4857                  * array, then we need to zero those blocks
4858                  */
4859                 for (j=sh->disks; j--;) {
4860                         sector_t s;
4861                         if (j == sh->pd_idx)
4862                                 continue;
4863                         if (conf->level == 6 &&
4864                             j == sh->qd_idx)
4865                                 continue;
4866                         s = compute_blocknr(sh, j, 0);
4867                         if (s < raid5_size(mddev, 0, 0)) {
4868                                 skipped_disk = 1;
4869                                 continue;
4870                         }
4871                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4872                         set_bit(R5_Expanded, &sh->dev[j].flags);
4873                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4874                 }
4875                 if (!skipped_disk) {
4876                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4877                         set_bit(STRIPE_HANDLE, &sh->state);
4878                 }
4879                 list_add(&sh->lru, &stripes);
4880         }
4881         spin_lock_irq(&conf->device_lock);
4882         if (mddev->reshape_backwards)
4883                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4884         else
4885                 conf->reshape_progress += reshape_sectors * new_data_disks;
4886         spin_unlock_irq(&conf->device_lock);
4887         /* Ok, those stripe are ready. We can start scheduling
4888          * reads on the source stripes.
4889          * The source stripes are determined by mapping the first and last
4890          * block on the destination stripes.
4891          */
4892         first_sector =
4893                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4894                                      1, &dd_idx, NULL);
4895         last_sector =
4896                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4897                                             * new_data_disks - 1),
4898                                      1, &dd_idx, NULL);
4899         if (last_sector >= mddev->dev_sectors)
4900                 last_sector = mddev->dev_sectors - 1;
4901         while (first_sector <= last_sector) {
4902                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4903                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4904                 set_bit(STRIPE_HANDLE, &sh->state);
4905                 release_stripe(sh);
4906                 first_sector += STRIPE_SECTORS;
4907         }
4908         /* Now that the sources are clearly marked, we can release
4909          * the destination stripes
4910          */
4911         while (!list_empty(&stripes)) {
4912                 sh = list_entry(stripes.next, struct stripe_head, lru);
4913                 list_del_init(&sh->lru);
4914                 release_stripe(sh);
4915         }
4916         /* If this takes us to the resync_max point where we have to pause,
4917          * then we need to write out the superblock.
4918          */
4919         sector_nr += reshape_sectors;
4920         if ((sector_nr - mddev->curr_resync_completed) * 2
4921             >= mddev->resync_max - mddev->curr_resync_completed) {
4922                 /* Cannot proceed until we've updated the superblock... */
4923                 wait_event(conf->wait_for_overlap,
4924                            atomic_read(&conf->reshape_stripes) == 0
4925                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4926                 if (atomic_read(&conf->reshape_stripes) != 0)
4927                         goto ret;
4928                 mddev->reshape_position = conf->reshape_progress;
4929                 mddev->curr_resync_completed = sector_nr;
4930                 conf->reshape_checkpoint = jiffies;
4931                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4932                 md_wakeup_thread(mddev->thread);
4933                 wait_event(mddev->sb_wait,
4934                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4935                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4936                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4937                         goto ret;
4938                 spin_lock_irq(&conf->device_lock);
4939                 conf->reshape_safe = mddev->reshape_position;
4940                 spin_unlock_irq(&conf->device_lock);
4941                 wake_up(&conf->wait_for_overlap);
4942                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4943         }
4944 ret:
4945         return reshape_sectors;
4946 }
4947
4948 /* FIXME go_faster isn't used */
4949 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4950 {
4951         struct r5conf *conf = mddev->private;
4952         struct stripe_head *sh;
4953         sector_t max_sector = mddev->dev_sectors;
4954         sector_t sync_blocks;
4955         int still_degraded = 0;
4956         int i;
4957
4958         if (sector_nr >= max_sector) {
4959                 /* just being told to finish up .. nothing much to do */
4960
4961                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4962                         end_reshape(conf);
4963                         return 0;
4964                 }
4965
4966                 if (mddev->curr_resync < max_sector) /* aborted */
4967                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4968                                         &sync_blocks, 1);
4969                 else /* completed sync */
4970                         conf->fullsync = 0;
4971                 bitmap_close_sync(mddev->bitmap);
4972
4973                 return 0;
4974         }
4975
4976         /* Allow raid5_quiesce to complete */
4977         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4978
4979         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4980                 return reshape_request(mddev, sector_nr, skipped);
4981
4982         /* No need to check resync_max as we never do more than one
4983          * stripe, and as resync_max will always be on a chunk boundary,
4984          * if the check in md_do_sync didn't fire, there is no chance
4985          * of overstepping resync_max here
4986          */
4987
4988         /* if there is too many failed drives and we are trying
4989          * to resync, then assert that we are finished, because there is
4990          * nothing we can do.
4991          */
4992         if (mddev->degraded >= conf->max_degraded &&
4993             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4994                 sector_t rv = mddev->dev_sectors - sector_nr;
4995                 *skipped = 1;
4996                 return rv;
4997         }
4998         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4999             !conf->fullsync &&
5000             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5001             sync_blocks >= STRIPE_SECTORS) {
5002                 /* we can skip this block, and probably more */
5003                 sync_blocks /= STRIPE_SECTORS;
5004                 *skipped = 1;
5005                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5006         }
5007
5008         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5009
5010         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5011         if (sh == NULL) {
5012                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5013                 /* make sure we don't swamp the stripe cache if someone else
5014                  * is trying to get access
5015                  */
5016                 schedule_timeout_uninterruptible(1);
5017         }
5018         /* Need to check if array will still be degraded after recovery/resync
5019          * We don't need to check the 'failed' flag as when that gets set,
5020          * recovery aborts.
5021          */
5022         for (i = 0; i < conf->raid_disks; i++)
5023                 if (conf->disks[i].rdev == NULL)
5024                         still_degraded = 1;
5025
5026         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5027
5028         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5029
5030         handle_stripe(sh);
5031         release_stripe(sh);
5032
5033         return STRIPE_SECTORS;
5034 }
5035
5036 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5037 {
5038         /* We may not be able to submit a whole bio at once as there
5039          * may not be enough stripe_heads available.
5040          * We cannot pre-allocate enough stripe_heads as we may need
5041          * more than exist in the cache (if we allow ever large chunks).
5042          * So we do one stripe head at a time and record in
5043          * ->bi_hw_segments how many have been done.
5044          *
5045          * We *know* that this entire raid_bio is in one chunk, so
5046          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5047          */
5048         struct stripe_head *sh;
5049         int dd_idx;
5050         sector_t sector, logical_sector, last_sector;
5051         int scnt = 0;
5052         int remaining;
5053         int handled = 0;
5054
5055         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5056         sector = raid5_compute_sector(conf, logical_sector,
5057                                       0, &dd_idx, NULL);
5058         last_sector = bio_end_sector(raid_bio);
5059
5060         for (; logical_sector < last_sector;
5061              logical_sector += STRIPE_SECTORS,
5062                      sector += STRIPE_SECTORS,
5063                      scnt++) {
5064
5065                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5066                         /* already done this stripe */
5067                         continue;
5068
5069                 sh = get_active_stripe(conf, sector, 0, 1, 0);
5070
5071                 if (!sh) {
5072                         /* failed to get a stripe - must wait */
5073                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5074                         conf->retry_read_aligned = raid_bio;
5075                         return handled;
5076                 }
5077
5078                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5079                         release_stripe(sh);
5080                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5081                         conf->retry_read_aligned = raid_bio;
5082                         return handled;
5083                 }
5084
5085                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5086                 handle_stripe(sh);
5087                 release_stripe(sh);
5088                 handled++;
5089         }
5090         remaining = raid5_dec_bi_active_stripes(raid_bio);
5091         if (remaining == 0) {
5092                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5093                                          raid_bio, 0);
5094                 bio_endio(raid_bio, 0);
5095         }
5096         if (atomic_dec_and_test(&conf->active_aligned_reads))
5097                 wake_up(&conf->wait_for_stripe);
5098         return handled;
5099 }
5100
5101 static int handle_active_stripes(struct r5conf *conf, int group,
5102                                  struct r5worker *worker,
5103                                  struct list_head *temp_inactive_list)
5104 {
5105         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5106         int i, batch_size = 0, hash;
5107         bool release_inactive = false;
5108
5109         while (batch_size < MAX_STRIPE_BATCH &&
5110                         (sh = __get_priority_stripe(conf, group)) != NULL)
5111                 batch[batch_size++] = sh;
5112
5113         if (batch_size == 0) {
5114                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5115                         if (!list_empty(temp_inactive_list + i))
5116                                 break;
5117                 if (i == NR_STRIPE_HASH_LOCKS)
5118                         return batch_size;
5119                 release_inactive = true;
5120         }
5121         spin_unlock_irq(&conf->device_lock);
5122
5123         release_inactive_stripe_list(conf, temp_inactive_list,
5124                                      NR_STRIPE_HASH_LOCKS);
5125
5126         if (release_inactive) {
5127                 spin_lock_irq(&conf->device_lock);
5128                 return 0;
5129         }
5130
5131         for (i = 0; i < batch_size; i++)
5132                 handle_stripe(batch[i]);
5133
5134         cond_resched();
5135
5136         spin_lock_irq(&conf->device_lock);
5137         for (i = 0; i < batch_size; i++) {
5138                 hash = batch[i]->hash_lock_index;
5139                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5140         }
5141         return batch_size;
5142 }
5143
5144 static void raid5_do_work(struct work_struct *work)
5145 {
5146         struct r5worker *worker = container_of(work, struct r5worker, work);
5147         struct r5worker_group *group = worker->group;
5148         struct r5conf *conf = group->conf;
5149         int group_id = group - conf->worker_groups;
5150         int handled;
5151         struct blk_plug plug;
5152
5153         pr_debug("+++ raid5worker active\n");
5154
5155         blk_start_plug(&plug);
5156         handled = 0;
5157         spin_lock_irq(&conf->device_lock);
5158         while (1) {
5159                 int batch_size, released;
5160
5161                 released = release_stripe_list(conf, worker->temp_inactive_list);
5162
5163                 batch_size = handle_active_stripes(conf, group_id, worker,
5164                                                    worker->temp_inactive_list);
5165                 worker->working = false;
5166                 if (!batch_size && !released)
5167                         break;
5168                 handled += batch_size;
5169         }
5170         pr_debug("%d stripes handled\n", handled);
5171
5172         spin_unlock_irq(&conf->device_lock);
5173         blk_finish_plug(&plug);
5174
5175         pr_debug("--- raid5worker inactive\n");
5176 }
5177
5178 /*
5179  * This is our raid5 kernel thread.
5180  *
5181  * We scan the hash table for stripes which can be handled now.
5182  * During the scan, completed stripes are saved for us by the interrupt
5183  * handler, so that they will not have to wait for our next wakeup.
5184  */
5185 static void raid5d(struct md_thread *thread)
5186 {
5187         struct mddev *mddev = thread->mddev;
5188         struct r5conf *conf = mddev->private;
5189         int handled;
5190         struct blk_plug plug;
5191
5192         pr_debug("+++ raid5d active\n");
5193
5194         md_check_recovery(mddev);
5195
5196         blk_start_plug(&plug);
5197         handled = 0;
5198         spin_lock_irq(&conf->device_lock);
5199         while (1) {
5200                 struct bio *bio;
5201                 int batch_size, released;
5202
5203                 released = release_stripe_list(conf, conf->temp_inactive_list);
5204
5205                 if (
5206                     !list_empty(&conf->bitmap_list)) {
5207                         /* Now is a good time to flush some bitmap updates */
5208                         conf->seq_flush++;
5209                         spin_unlock_irq(&conf->device_lock);
5210                         bitmap_unplug(mddev->bitmap);
5211                         spin_lock_irq(&conf->device_lock);
5212                         conf->seq_write = conf->seq_flush;
5213                         activate_bit_delay(conf, conf->temp_inactive_list);
5214                 }
5215                 raid5_activate_delayed(conf);
5216
5217                 while ((bio = remove_bio_from_retry(conf))) {
5218                         int ok;
5219                         spin_unlock_irq(&conf->device_lock);
5220                         ok = retry_aligned_read(conf, bio);
5221                         spin_lock_irq(&conf->device_lock);
5222                         if (!ok)
5223                                 break;
5224                         handled++;
5225                 }
5226
5227                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5228                                                    conf->temp_inactive_list);
5229                 if (!batch_size && !released)
5230                         break;
5231                 handled += batch_size;
5232
5233                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5234                         spin_unlock_irq(&conf->device_lock);
5235                         md_check_recovery(mddev);
5236                         spin_lock_irq(&conf->device_lock);
5237                 }
5238         }
5239         pr_debug("%d stripes handled\n", handled);
5240
5241         spin_unlock_irq(&conf->device_lock);
5242
5243         async_tx_issue_pending_all();
5244         blk_finish_plug(&plug);
5245
5246         pr_debug("--- raid5d inactive\n");
5247 }
5248
5249 static ssize_t
5250 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5251 {
5252         struct r5conf *conf = mddev->private;
5253         if (conf)
5254                 return sprintf(page, "%d\n", conf->max_nr_stripes);
5255         else
5256                 return 0;
5257 }
5258
5259 int
5260 raid5_set_cache_size(struct mddev *mddev, int size)
5261 {
5262         struct r5conf *conf = mddev->private;
5263         int err;
5264         int hash;
5265
5266         if (size <= 16 || size > 32768)
5267                 return -EINVAL;
5268         hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5269         while (size < conf->max_nr_stripes) {
5270                 if (drop_one_stripe(conf, hash))
5271                         conf->max_nr_stripes--;
5272                 else
5273                         break;
5274                 hash--;
5275                 if (hash < 0)
5276                         hash = NR_STRIPE_HASH_LOCKS - 1;
5277         }
5278         err = md_allow_write(mddev);
5279         if (err)
5280                 return err;
5281         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5282         while (size > conf->max_nr_stripes) {
5283                 if (grow_one_stripe(conf, hash))
5284                         conf->max_nr_stripes++;
5285                 else break;
5286                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5287         }
5288         return 0;
5289 }
5290 EXPORT_SYMBOL(raid5_set_cache_size);
5291
5292 static ssize_t
5293 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5294 {
5295         struct r5conf *conf = mddev->private;
5296         unsigned long new;
5297         int err;
5298
5299         if (len >= PAGE_SIZE)
5300                 return -EINVAL;
5301         if (!conf)
5302                 return -ENODEV;
5303
5304         if (kstrtoul(page, 10, &new))
5305                 return -EINVAL;
5306         err = raid5_set_cache_size(mddev, new);
5307         if (err)
5308                 return err;
5309         return len;
5310 }
5311
5312 static struct md_sysfs_entry
5313 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5314                                 raid5_show_stripe_cache_size,
5315                                 raid5_store_stripe_cache_size);
5316
5317 static ssize_t
5318 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5319 {
5320         struct r5conf *conf = mddev->private;
5321         if (conf)
5322                 return sprintf(page, "%d\n", conf->bypass_threshold);
5323         else
5324                 return 0;
5325 }
5326
5327 static ssize_t
5328 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5329 {
5330         struct r5conf *conf = mddev->private;
5331         unsigned long new;
5332         if (len >= PAGE_SIZE)
5333                 return -EINVAL;
5334         if (!conf)
5335                 return -ENODEV;
5336
5337         if (kstrtoul(page, 10, &new))
5338                 return -EINVAL;
5339         if (new > conf->max_nr_stripes)
5340                 return -EINVAL;
5341         conf->bypass_threshold = new;
5342         return len;
5343 }
5344
5345 static struct md_sysfs_entry
5346 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5347                                         S_IRUGO | S_IWUSR,
5348                                         raid5_show_preread_threshold,
5349                                         raid5_store_preread_threshold);
5350
5351 static ssize_t
5352 stripe_cache_active_show(struct mddev *mddev, char *page)
5353 {
5354         struct r5conf *conf = mddev->private;
5355         if (conf)
5356                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5357         else
5358                 return 0;
5359 }
5360
5361 static struct md_sysfs_entry
5362 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5363
5364 static ssize_t
5365 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5366 {
5367         struct r5conf *conf = mddev->private;
5368         if (conf)
5369                 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5370         else
5371                 return 0;
5372 }
5373
5374 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5375                                int *group_cnt,
5376                                int *worker_cnt_per_group,
5377                                struct r5worker_group **worker_groups);
5378 static ssize_t
5379 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5380 {
5381         struct r5conf *conf = mddev->private;
5382         unsigned long new;
5383         int err;
5384         struct r5worker_group *new_groups, *old_groups;
5385         int group_cnt, worker_cnt_per_group;
5386
5387         if (len >= PAGE_SIZE)
5388                 return -EINVAL;
5389         if (!conf)
5390                 return -ENODEV;
5391
5392         if (kstrtoul(page, 10, &new))
5393                 return -EINVAL;
5394
5395         if (new == conf->worker_cnt_per_group)
5396                 return len;
5397
5398         mddev_suspend(mddev);
5399
5400         old_groups = conf->worker_groups;
5401         if (old_groups)
5402                 flush_workqueue(raid5_wq);
5403
5404         err = alloc_thread_groups(conf, new,
5405                                   &group_cnt, &worker_cnt_per_group,
5406                                   &new_groups);
5407         if (!err) {
5408                 spin_lock_irq(&conf->device_lock);
5409                 conf->group_cnt = group_cnt;
5410                 conf->worker_cnt_per_group = worker_cnt_per_group;
5411                 conf->worker_groups = new_groups;
5412                 spin_unlock_irq(&conf->device_lock);
5413
5414                 if (old_groups)
5415                         kfree(old_groups[0].workers);
5416                 kfree(old_groups);
5417         }
5418
5419         mddev_resume(mddev);
5420
5421         if (err)
5422                 return err;
5423         return len;
5424 }
5425
5426 static struct md_sysfs_entry
5427 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5428                                 raid5_show_group_thread_cnt,
5429                                 raid5_store_group_thread_cnt);
5430
5431 static struct attribute *raid5_attrs[] =  {
5432         &raid5_stripecache_size.attr,
5433         &raid5_stripecache_active.attr,
5434         &raid5_preread_bypass_threshold.attr,
5435         &raid5_group_thread_cnt.attr,
5436         NULL,
5437 };
5438 static struct attribute_group raid5_attrs_group = {
5439         .name = NULL,
5440         .attrs = raid5_attrs,
5441 };
5442
5443 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5444                                int *group_cnt,
5445                                int *worker_cnt_per_group,
5446                                struct r5worker_group **worker_groups)
5447 {
5448         int i, j, k;
5449         ssize_t size;
5450         struct r5worker *workers;
5451
5452         *worker_cnt_per_group = cnt;
5453         if (cnt == 0) {
5454                 *group_cnt = 0;
5455                 *worker_groups = NULL;
5456                 return 0;
5457         }
5458         *group_cnt = num_possible_nodes();
5459         size = sizeof(struct r5worker) * cnt;
5460         workers = kzalloc(size * *group_cnt, GFP_NOIO);
5461         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5462                                 *group_cnt, GFP_NOIO);
5463         if (!*worker_groups || !workers) {
5464                 kfree(workers);
5465                 kfree(*worker_groups);
5466                 return -ENOMEM;
5467         }
5468
5469         for (i = 0; i < *group_cnt; i++) {
5470                 struct r5worker_group *group;
5471
5472                 group = &(*worker_groups)[i];
5473                 INIT_LIST_HEAD(&group->handle_list);
5474                 group->conf = conf;
5475                 group->workers = workers + i * cnt;
5476
5477                 for (j = 0; j < cnt; j++) {
5478                         struct r5worker *worker = group->workers + j;
5479                         worker->group = group;
5480                         INIT_WORK(&worker->work, raid5_do_work);
5481
5482                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5483                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5484                 }
5485         }
5486
5487         return 0;
5488 }
5489
5490 static void free_thread_groups(struct r5conf *conf)
5491 {
5492         if (conf->worker_groups)
5493                 kfree(conf->worker_groups[0].workers);
5494         kfree(conf->worker_groups);
5495         conf->worker_groups = NULL;
5496 }
5497
5498 static sector_t
5499 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5500 {
5501         struct r5conf *conf = mddev->private;
5502
5503         if (!sectors)
5504                 sectors = mddev->dev_sectors;
5505         if (!raid_disks)
5506                 /* size is defined by the smallest of previous and new size */
5507                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5508
5509         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5510         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5511         return sectors * (raid_disks - conf->max_degraded);
5512 }
5513
5514 static void raid5_free_percpu(struct r5conf *conf)
5515 {
5516         struct raid5_percpu *percpu;
5517         unsigned long cpu;
5518
5519         if (!conf->percpu)
5520                 return;
5521
5522         get_online_cpus();
5523         for_each_possible_cpu(cpu) {
5524                 percpu = per_cpu_ptr(conf->percpu, cpu);
5525                 safe_put_page(percpu->spare_page);
5526                 kfree(percpu->scribble);
5527         }
5528 #ifdef CONFIG_HOTPLUG_CPU
5529         unregister_cpu_notifier(&conf->cpu_notify);
5530 #endif
5531         put_online_cpus();
5532
5533         free_percpu(conf->percpu);
5534 }
5535
5536 static void free_conf(struct r5conf *conf)
5537 {
5538         free_thread_groups(conf);
5539         shrink_stripes(conf);
5540         raid5_free_percpu(conf);
5541         kfree(conf->disks);
5542         kfree(conf->stripe_hashtbl);
5543         kfree(conf);
5544 }
5545
5546 #ifdef CONFIG_HOTPLUG_CPU
5547 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5548                               void *hcpu)
5549 {
5550         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5551         long cpu = (long)hcpu;
5552         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5553
5554         switch (action) {
5555         case CPU_UP_PREPARE:
5556         case CPU_UP_PREPARE_FROZEN:
5557                 if (conf->level == 6 && !percpu->spare_page)
5558                         percpu->spare_page = alloc_page(GFP_KERNEL);
5559                 if (!percpu->scribble)
5560                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5561
5562                 if (!percpu->scribble ||
5563                     (conf->level == 6 && !percpu->spare_page)) {
5564                         safe_put_page(percpu->spare_page);
5565                         kfree(percpu->scribble);
5566                         pr_err("%s: failed memory allocation for cpu%ld\n",
5567                                __func__, cpu);
5568                         return notifier_from_errno(-ENOMEM);
5569                 }
5570                 break;
5571         case CPU_DEAD:
5572         case CPU_DEAD_FROZEN:
5573                 safe_put_page(percpu->spare_page);
5574                 kfree(percpu->scribble);
5575                 percpu->spare_page = NULL;
5576                 percpu->scribble = NULL;
5577                 break;
5578         default:
5579                 break;
5580         }
5581         return NOTIFY_OK;
5582 }
5583 #endif
5584
5585 static int raid5_alloc_percpu(struct r5conf *conf)
5586 {
5587         unsigned long cpu;
5588         struct page *spare_page;
5589         struct raid5_percpu __percpu *allcpus;
5590         void *scribble;
5591         int err;
5592
5593         allcpus = alloc_percpu(struct raid5_percpu);
5594         if (!allcpus)
5595                 return -ENOMEM;
5596         conf->percpu = allcpus;
5597
5598         get_online_cpus();
5599         err = 0;
5600         for_each_present_cpu(cpu) {
5601                 if (conf->level == 6) {
5602                         spare_page = alloc_page(GFP_KERNEL);
5603                         if (!spare_page) {
5604                                 err = -ENOMEM;
5605                                 break;
5606                         }
5607                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5608                 }
5609                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5610                 if (!scribble) {
5611                         err = -ENOMEM;
5612                         break;
5613                 }
5614                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5615         }
5616 #ifdef CONFIG_HOTPLUG_CPU
5617         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5618         conf->cpu_notify.priority = 0;
5619         if (err == 0)
5620                 err = register_cpu_notifier(&conf->cpu_notify);
5621 #endif
5622         put_online_cpus();
5623
5624         return err;
5625 }
5626
5627 static struct r5conf *setup_conf(struct mddev *mddev)
5628 {
5629         struct r5conf *conf;
5630         int raid_disk, memory, max_disks;
5631         struct md_rdev *rdev;
5632         struct disk_info *disk;
5633         char pers_name[6];
5634         int i;
5635         int group_cnt, worker_cnt_per_group;
5636         struct r5worker_group *new_group;
5637
5638         if (mddev->new_level != 5
5639             && mddev->new_level != 4
5640             && mddev->new_level != 6) {
5641                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5642                        mdname(mddev), mddev->new_level);
5643                 return ERR_PTR(-EIO);
5644         }
5645         if ((mddev->new_level == 5
5646              && !algorithm_valid_raid5(mddev->new_layout)) ||
5647             (mddev->new_level == 6
5648              && !algorithm_valid_raid6(mddev->new_layout))) {
5649                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5650                        mdname(mddev), mddev->new_layout);
5651                 return ERR_PTR(-EIO);
5652         }
5653         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5654                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5655                        mdname(mddev), mddev->raid_disks);
5656                 return ERR_PTR(-EINVAL);
5657         }
5658
5659         if (!mddev->new_chunk_sectors ||
5660             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5661             !is_power_of_2(mddev->new_chunk_sectors)) {
5662                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5663                        mdname(mddev), mddev->new_chunk_sectors << 9);
5664                 return ERR_PTR(-EINVAL);
5665         }
5666
5667         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5668         if (conf == NULL)
5669                 goto abort;
5670         /* Don't enable multi-threading by default*/
5671         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5672                                  &new_group)) {
5673                 conf->group_cnt = group_cnt;
5674                 conf->worker_cnt_per_group = worker_cnt_per_group;
5675                 conf->worker_groups = new_group;
5676         } else
5677                 goto abort;
5678         spin_lock_init(&conf->device_lock);
5679         seqcount_init(&conf->gen_lock);
5680         init_waitqueue_head(&conf->wait_for_stripe);
5681         init_waitqueue_head(&conf->wait_for_overlap);
5682         INIT_LIST_HEAD(&conf->handle_list);
5683         INIT_LIST_HEAD(&conf->hold_list);
5684         INIT_LIST_HEAD(&conf->delayed_list);
5685         INIT_LIST_HEAD(&conf->bitmap_list);
5686         init_llist_head(&conf->released_stripes);
5687         atomic_set(&conf->active_stripes, 0);
5688         atomic_set(&conf->preread_active_stripes, 0);
5689         atomic_set(&conf->active_aligned_reads, 0);
5690         conf->bypass_threshold = BYPASS_THRESHOLD;
5691         conf->recovery_disabled = mddev->recovery_disabled - 1;
5692
5693         conf->raid_disks = mddev->raid_disks;
5694         if (mddev->reshape_position == MaxSector)
5695                 conf->previous_raid_disks = mddev->raid_disks;
5696         else
5697                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5698         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5699         conf->scribble_len = scribble_len(max_disks);
5700
5701         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5702                               GFP_KERNEL);
5703         if (!conf->disks)
5704                 goto abort;
5705
5706         conf->mddev = mddev;
5707
5708         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5709                 goto abort;
5710
5711         /* We init hash_locks[0] separately to that it can be used
5712          * as the reference lock in the spin_lock_nest_lock() call
5713          * in lock_all_device_hash_locks_irq in order to convince
5714          * lockdep that we know what we are doing.
5715          */
5716         spin_lock_init(conf->hash_locks);
5717         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5718                 spin_lock_init(conf->hash_locks + i);
5719
5720         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5721                 INIT_LIST_HEAD(conf->inactive_list + i);
5722
5723         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5724                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5725
5726         conf->level = mddev->new_level;
5727         if (raid5_alloc_percpu(conf) != 0)
5728                 goto abort;
5729
5730         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5731
5732         rdev_for_each(rdev, mddev) {
5733                 raid_disk = rdev->raid_disk;
5734                 if (raid_disk >= max_disks
5735                     || raid_disk < 0)
5736                         continue;
5737                 disk = conf->disks + raid_disk;
5738
5739                 if (test_bit(Replacement, &rdev->flags)) {
5740                         if (disk->replacement)
5741                                 goto abort;
5742                         disk->replacement = rdev;
5743                 } else {
5744                         if (disk->rdev)
5745                                 goto abort;
5746                         disk->rdev = rdev;
5747                 }
5748
5749                 if (test_bit(In_sync, &rdev->flags)) {
5750                         char b[BDEVNAME_SIZE];
5751                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5752                                " disk %d\n",
5753                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5754                 } else if (rdev->saved_raid_disk != raid_disk)
5755                         /* Cannot rely on bitmap to complete recovery */
5756                         conf->fullsync = 1;
5757         }
5758
5759         conf->chunk_sectors = mddev->new_chunk_sectors;
5760         conf->level = mddev->new_level;
5761         if (conf->level == 6)
5762                 conf->max_degraded = 2;
5763         else
5764                 conf->max_degraded = 1;
5765         conf->algorithm = mddev->new_layout;
5766         conf->reshape_progress = mddev->reshape_position;
5767         if (conf->reshape_progress != MaxSector) {
5768                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5769                 conf->prev_algo = mddev->layout;
5770         }
5771
5772         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5773                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5774         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5775         if (grow_stripes(conf, NR_STRIPES)) {
5776                 printk(KERN_ERR
5777                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5778                        mdname(mddev), memory);
5779                 goto abort;
5780         } else
5781                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5782                        mdname(mddev), memory);
5783
5784         sprintf(pers_name, "raid%d", mddev->new_level);
5785         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5786         if (!conf->thread) {
5787                 printk(KERN_ERR
5788                        "md/raid:%s: couldn't allocate thread.\n",
5789                        mdname(mddev));
5790                 goto abort;
5791         }
5792
5793         return conf;
5794
5795  abort:
5796         if (conf) {
5797                 free_conf(conf);
5798                 return ERR_PTR(-EIO);
5799         } else
5800                 return ERR_PTR(-ENOMEM);
5801 }
5802
5803
5804 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5805 {
5806         switch (algo) {
5807         case ALGORITHM_PARITY_0:
5808                 if (raid_disk < max_degraded)
5809                         return 1;
5810                 break;
5811         case ALGORITHM_PARITY_N:
5812                 if (raid_disk >= raid_disks - max_degraded)
5813                         return 1;
5814                 break;
5815         case ALGORITHM_PARITY_0_6:
5816                 if (raid_disk == 0 || 
5817                     raid_disk == raid_disks - 1)
5818                         return 1;
5819                 break;
5820         case ALGORITHM_LEFT_ASYMMETRIC_6:
5821         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5822         case ALGORITHM_LEFT_SYMMETRIC_6:
5823         case ALGORITHM_RIGHT_SYMMETRIC_6:
5824                 if (raid_disk == raid_disks - 1)
5825                         return 1;
5826         }
5827         return 0;
5828 }
5829
5830 static int run(struct mddev *mddev)
5831 {
5832         struct r5conf *conf;
5833         int working_disks = 0;
5834         int dirty_parity_disks = 0;
5835         struct md_rdev *rdev;
5836         sector_t reshape_offset = 0;
5837         int i;
5838         long long min_offset_diff = 0;
5839         int first = 1;
5840
5841         if (mddev->recovery_cp != MaxSector)
5842                 printk(KERN_NOTICE "md/raid:%s: not clean"
5843                        " -- starting background reconstruction\n",
5844                        mdname(mddev));
5845
5846         rdev_for_each(rdev, mddev) {
5847                 long long diff;
5848                 if (rdev->raid_disk < 0)
5849                         continue;
5850                 diff = (rdev->new_data_offset - rdev->data_offset);
5851                 if (first) {
5852                         min_offset_diff = diff;
5853                         first = 0;
5854                 } else if (mddev->reshape_backwards &&
5855                          diff < min_offset_diff)
5856                         min_offset_diff = diff;
5857                 else if (!mddev->reshape_backwards &&
5858                          diff > min_offset_diff)
5859                         min_offset_diff = diff;
5860         }
5861
5862         if (mddev->reshape_position != MaxSector) {
5863                 /* Check that we can continue the reshape.
5864                  * Difficulties arise if the stripe we would write to
5865                  * next is at or after the stripe we would read from next.
5866                  * For a reshape that changes the number of devices, this
5867                  * is only possible for a very short time, and mdadm makes
5868                  * sure that time appears to have past before assembling
5869                  * the array.  So we fail if that time hasn't passed.
5870                  * For a reshape that keeps the number of devices the same
5871                  * mdadm must be monitoring the reshape can keeping the
5872                  * critical areas read-only and backed up.  It will start
5873                  * the array in read-only mode, so we check for that.
5874                  */
5875                 sector_t here_new, here_old;
5876                 int old_disks;
5877                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5878
5879                 if (mddev->new_level != mddev->level) {
5880                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5881                                "required - aborting.\n",
5882                                mdname(mddev));
5883                         return -EINVAL;
5884                 }
5885                 old_disks = mddev->raid_disks - mddev->delta_disks;
5886                 /* reshape_position must be on a new-stripe boundary, and one
5887                  * further up in new geometry must map after here in old
5888                  * geometry.
5889                  */
5890                 here_new = mddev->reshape_position;
5891                 if (sector_div(here_new, mddev->new_chunk_sectors *
5892                                (mddev->raid_disks - max_degraded))) {
5893                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5894                                "on a stripe boundary\n", mdname(mddev));
5895                         return -EINVAL;
5896                 }
5897                 reshape_offset = here_new * mddev->new_chunk_sectors;
5898                 /* here_new is the stripe we will write to */
5899                 here_old = mddev->reshape_position;
5900                 sector_div(here_old, mddev->chunk_sectors *
5901                            (old_disks-max_degraded));
5902                 /* here_old is the first stripe that we might need to read
5903                  * from */
5904                 if (mddev->delta_disks == 0) {
5905                         if ((here_new * mddev->new_chunk_sectors !=
5906                              here_old * mddev->chunk_sectors)) {
5907                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5908                                        " confused - aborting\n", mdname(mddev));
5909                                 return -EINVAL;
5910                         }
5911                         /* We cannot be sure it is safe to start an in-place
5912                          * reshape.  It is only safe if user-space is monitoring
5913                          * and taking constant backups.
5914                          * mdadm always starts a situation like this in
5915                          * readonly mode so it can take control before
5916                          * allowing any writes.  So just check for that.
5917                          */
5918                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5919                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5920                                 /* not really in-place - so OK */;
5921                         else if (mddev->ro == 0) {
5922                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5923                                        "must be started in read-only mode "
5924                                        "- aborting\n",
5925                                        mdname(mddev));
5926                                 return -EINVAL;
5927                         }
5928                 } else if (mddev->reshape_backwards
5929                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5930                        here_old * mddev->chunk_sectors)
5931                     : (here_new * mddev->new_chunk_sectors >=
5932                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5933                         /* Reading from the same stripe as writing to - bad */
5934                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5935                                "auto-recovery - aborting.\n",
5936                                mdname(mddev));
5937                         return -EINVAL;
5938                 }
5939                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5940                        mdname(mddev));
5941                 /* OK, we should be able to continue; */
5942         } else {
5943                 BUG_ON(mddev->level != mddev->new_level);
5944                 BUG_ON(mddev->layout != mddev->new_layout);
5945                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5946                 BUG_ON(mddev->delta_disks != 0);
5947         }
5948
5949         if (mddev->private == NULL)
5950                 conf = setup_conf(mddev);
5951         else
5952                 conf = mddev->private;
5953
5954         if (IS_ERR(conf))
5955                 return PTR_ERR(conf);
5956
5957         conf->min_offset_diff = min_offset_diff;
5958         mddev->thread = conf->thread;
5959         conf->thread = NULL;
5960         mddev->private = conf;
5961
5962         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5963              i++) {
5964                 rdev = conf->disks[i].rdev;
5965                 if (!rdev && conf->disks[i].replacement) {
5966                         /* The replacement is all we have yet */
5967                         rdev = conf->disks[i].replacement;
5968                         conf->disks[i].replacement = NULL;
5969                         clear_bit(Replacement, &rdev->flags);
5970                         conf->disks[i].rdev = rdev;
5971                 }
5972                 if (!rdev)
5973                         continue;
5974                 if (conf->disks[i].replacement &&
5975                     conf->reshape_progress != MaxSector) {
5976                         /* replacements and reshape simply do not mix. */
5977                         printk(KERN_ERR "md: cannot handle concurrent "
5978                                "replacement and reshape.\n");
5979                         goto abort;
5980                 }
5981                 if (test_bit(In_sync, &rdev->flags)) {
5982                         working_disks++;
5983                         continue;
5984                 }
5985                 /* This disc is not fully in-sync.  However if it
5986                  * just stored parity (beyond the recovery_offset),
5987                  * when we don't need to be concerned about the
5988                  * array being dirty.
5989                  * When reshape goes 'backwards', we never have
5990                  * partially completed devices, so we only need
5991                  * to worry about reshape going forwards.
5992                  */
5993                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5994                 if (mddev->major_version == 0 &&
5995                     mddev->minor_version > 90)
5996                         rdev->recovery_offset = reshape_offset;
5997
5998                 if (rdev->recovery_offset < reshape_offset) {
5999                         /* We need to check old and new layout */
6000                         if (!only_parity(rdev->raid_disk,
6001                                          conf->algorithm,
6002                                          conf->raid_disks,
6003                                          conf->max_degraded))
6004                                 continue;
6005                 }
6006                 if (!only_parity(rdev->raid_disk,
6007                                  conf->prev_algo,
6008                                  conf->previous_raid_disks,
6009                                  conf->max_degraded))
6010                         continue;
6011                 dirty_parity_disks++;
6012         }
6013
6014         /*
6015          * 0 for a fully functional array, 1 or 2 for a degraded array.
6016          */
6017         mddev->degraded = calc_degraded(conf);
6018
6019         if (has_failed(conf)) {
6020                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6021                         " (%d/%d failed)\n",
6022                         mdname(mddev), mddev->degraded, conf->raid_disks);
6023                 goto abort;
6024         }
6025
6026         /* device size must be a multiple of chunk size */
6027         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6028         mddev->resync_max_sectors = mddev->dev_sectors;
6029
6030         if (mddev->degraded > dirty_parity_disks &&
6031             mddev->recovery_cp != MaxSector) {
6032                 if (mddev->ok_start_degraded)
6033                         printk(KERN_WARNING
6034                                "md/raid:%s: starting dirty degraded array"
6035                                " - data corruption possible.\n",
6036                                mdname(mddev));
6037                 else {
6038                         printk(KERN_ERR
6039                                "md/raid:%s: cannot start dirty degraded array.\n",
6040                                mdname(mddev));
6041                         goto abort;
6042                 }
6043         }
6044
6045         if (mddev->degraded == 0)
6046                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6047                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6048                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6049                        mddev->new_layout);
6050         else
6051                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6052                        " out of %d devices, algorithm %d\n",
6053                        mdname(mddev), conf->level,
6054                        mddev->raid_disks - mddev->degraded,
6055                        mddev->raid_disks, mddev->new_layout);
6056
6057         print_raid5_conf(conf);
6058
6059         if (conf->reshape_progress != MaxSector) {
6060                 conf->reshape_safe = conf->reshape_progress;
6061                 atomic_set(&conf->reshape_stripes, 0);
6062                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6063                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6064                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6065                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6066                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6067                                                         "reshape");
6068         }
6069
6070
6071         /* Ok, everything is just fine now */
6072         if (mddev->to_remove == &raid5_attrs_group)
6073                 mddev->to_remove = NULL;
6074         else if (mddev->kobj.sd &&
6075             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6076                 printk(KERN_WARNING
6077                        "raid5: failed to create sysfs attributes for %s\n",
6078                        mdname(mddev));
6079         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6080
6081         if (mddev->queue) {
6082                 int chunk_size;
6083                 bool discard_supported = true;
6084                 /* read-ahead size must cover two whole stripes, which
6085                  * is 2 * (datadisks) * chunksize where 'n' is the
6086                  * number of raid devices
6087                  */
6088                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6089                 int stripe = data_disks *
6090                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6091                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6092                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6093
6094                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6095
6096                 mddev->queue->backing_dev_info.congested_data = mddev;
6097                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6098
6099                 chunk_size = mddev->chunk_sectors << 9;
6100                 blk_queue_io_min(mddev->queue, chunk_size);
6101                 blk_queue_io_opt(mddev->queue, chunk_size *
6102                                  (conf->raid_disks - conf->max_degraded));
6103                 /*
6104                  * We can only discard a whole stripe. It doesn't make sense to
6105                  * discard data disk but write parity disk
6106                  */
6107                 stripe = stripe * PAGE_SIZE;
6108                 /* Round up to power of 2, as discard handling
6109                  * currently assumes that */
6110                 while ((stripe-1) & stripe)
6111                         stripe = (stripe | (stripe-1)) + 1;
6112                 mddev->queue->limits.discard_alignment = stripe;
6113                 mddev->queue->limits.discard_granularity = stripe;
6114                 /*
6115                  * unaligned part of discard request will be ignored, so can't
6116                  * guarantee discard_zerors_data
6117                  */
6118                 mddev->queue->limits.discard_zeroes_data = 0;
6119
6120                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6121
6122                 rdev_for_each(rdev, mddev) {
6123                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6124                                           rdev->data_offset << 9);
6125                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6126                                           rdev->new_data_offset << 9);
6127                         /*
6128                          * discard_zeroes_data is required, otherwise data
6129                          * could be lost. Consider a scenario: discard a stripe
6130                          * (the stripe could be inconsistent if
6131                          * discard_zeroes_data is 0); write one disk of the
6132                          * stripe (the stripe could be inconsistent again
6133                          * depending on which disks are used to calculate
6134                          * parity); the disk is broken; The stripe data of this
6135                          * disk is lost.
6136                          */
6137                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6138                             !bdev_get_queue(rdev->bdev)->
6139                                                 limits.discard_zeroes_data)
6140                                 discard_supported = false;
6141                 }
6142
6143                 if (discard_supported &&
6144                    mddev->queue->limits.max_discard_sectors >= stripe &&
6145                    mddev->queue->limits.discard_granularity >= stripe)
6146                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6147                                                 mddev->queue);
6148                 else
6149                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6150                                                 mddev->queue);
6151         }
6152
6153         return 0;
6154 abort:
6155         md_unregister_thread(&mddev->thread);
6156         print_raid5_conf(conf);
6157         free_conf(conf);
6158         mddev->private = NULL;
6159         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6160         return -EIO;
6161 }
6162
6163 static int stop(struct mddev *mddev)
6164 {
6165         struct r5conf *conf = mddev->private;
6166
6167         md_unregister_thread(&mddev->thread);
6168         if (mddev->queue)
6169                 mddev->queue->backing_dev_info.congested_fn = NULL;
6170         free_conf(conf);
6171         mddev->private = NULL;
6172         mddev->to_remove = &raid5_attrs_group;
6173         return 0;
6174 }
6175
6176 static void status(struct seq_file *seq, struct mddev *mddev)
6177 {
6178         struct r5conf *conf = mddev->private;
6179         int i;
6180
6181         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6182                 mddev->chunk_sectors / 2, mddev->layout);
6183         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6184         for (i = 0; i < conf->raid_disks; i++)
6185                 seq_printf (seq, "%s",
6186                                conf->disks[i].rdev &&
6187                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6188         seq_printf (seq, "]");
6189 }
6190
6191 static void print_raid5_conf (struct r5conf *conf)
6192 {
6193         int i;
6194         struct disk_info *tmp;
6195
6196         printk(KERN_DEBUG "RAID conf printout:\n");
6197         if (!conf) {
6198                 printk("(conf==NULL)\n");
6199                 return;
6200         }
6201         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6202                conf->raid_disks,
6203                conf->raid_disks - conf->mddev->degraded);
6204
6205         for (i = 0; i < conf->raid_disks; i++) {
6206                 char b[BDEVNAME_SIZE];
6207                 tmp = conf->disks + i;
6208                 if (tmp->rdev)
6209                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6210                                i, !test_bit(Faulty, &tmp->rdev->flags),
6211                                bdevname(tmp->rdev->bdev, b));
6212         }
6213 }
6214
6215 static int raid5_spare_active(struct mddev *mddev)
6216 {
6217         int i;
6218         struct r5conf *conf = mddev->private;
6219         struct disk_info *tmp;
6220         int count = 0;
6221         unsigned long flags;
6222
6223         for (i = 0; i < conf->raid_disks; i++) {
6224                 tmp = conf->disks + i;
6225                 if (tmp->replacement
6226                     && tmp->replacement->recovery_offset == MaxSector
6227                     && !test_bit(Faulty, &tmp->replacement->flags)
6228                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6229                         /* Replacement has just become active. */
6230                         if (!tmp->rdev
6231                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6232                                 count++;
6233                         if (tmp->rdev) {
6234                                 /* Replaced device not technically faulty,
6235                                  * but we need to be sure it gets removed
6236                                  * and never re-added.
6237                                  */
6238                                 set_bit(Faulty, &tmp->rdev->flags);
6239                                 sysfs_notify_dirent_safe(
6240                                         tmp->rdev->sysfs_state);
6241                         }
6242                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6243                 } else if (tmp->rdev
6244                     && tmp->rdev->recovery_offset == MaxSector
6245                     && !test_bit(Faulty, &tmp->rdev->flags)
6246                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6247                         count++;
6248                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6249                 }
6250         }
6251         spin_lock_irqsave(&conf->device_lock, flags);
6252         mddev->degraded = calc_degraded(conf);
6253         spin_unlock_irqrestore(&conf->device_lock, flags);
6254         print_raid5_conf(conf);
6255         return count;
6256 }
6257
6258 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6259 {
6260         struct r5conf *conf = mddev->private;
6261         int err = 0;
6262         int number = rdev->raid_disk;
6263         struct md_rdev **rdevp;
6264         struct disk_info *p = conf->disks + number;
6265
6266         print_raid5_conf(conf);
6267         if (rdev == p->rdev)
6268                 rdevp = &p->rdev;
6269         else if (rdev == p->replacement)
6270                 rdevp = &p->replacement;
6271         else
6272                 return 0;
6273
6274         if (number >= conf->raid_disks &&
6275             conf->reshape_progress == MaxSector)
6276                 clear_bit(In_sync, &rdev->flags);
6277
6278         if (test_bit(In_sync, &rdev->flags) ||
6279             atomic_read(&rdev->nr_pending)) {
6280                 err = -EBUSY;
6281                 goto abort;
6282         }
6283         /* Only remove non-faulty devices if recovery
6284          * isn't possible.
6285          */
6286         if (!test_bit(Faulty, &rdev->flags) &&
6287             mddev->recovery_disabled != conf->recovery_disabled &&
6288             !has_failed(conf) &&
6289             (!p->replacement || p->replacement == rdev) &&
6290             number < conf->raid_disks) {
6291                 err = -EBUSY;
6292                 goto abort;
6293         }
6294         *rdevp = NULL;
6295         synchronize_rcu();
6296         if (atomic_read(&rdev->nr_pending)) {
6297                 /* lost the race, try later */
6298                 err = -EBUSY;
6299                 *rdevp = rdev;
6300         } else if (p->replacement) {
6301                 /* We must have just cleared 'rdev' */
6302                 p->rdev = p->replacement;
6303                 clear_bit(Replacement, &p->replacement->flags);
6304                 smp_mb(); /* Make sure other CPUs may see both as identical
6305                            * but will never see neither - if they are careful
6306                            */
6307                 p->replacement = NULL;
6308                 clear_bit(WantReplacement, &rdev->flags);
6309         } else
6310                 /* We might have just removed the Replacement as faulty-
6311                  * clear the bit just in case
6312                  */
6313                 clear_bit(WantReplacement, &rdev->flags);
6314 abort:
6315
6316         print_raid5_conf(conf);
6317         return err;
6318 }
6319
6320 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6321 {
6322         struct r5conf *conf = mddev->private;
6323         int err = -EEXIST;
6324         int disk;
6325         struct disk_info *p;
6326         int first = 0;
6327         int last = conf->raid_disks - 1;
6328
6329         if (mddev->recovery_disabled == conf->recovery_disabled)
6330                 return -EBUSY;
6331
6332         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6333                 /* no point adding a device */
6334                 return -EINVAL;
6335
6336         if (rdev->raid_disk >= 0)
6337                 first = last = rdev->raid_disk;
6338
6339         /*
6340          * find the disk ... but prefer rdev->saved_raid_disk
6341          * if possible.
6342          */
6343         if (rdev->saved_raid_disk >= 0 &&
6344             rdev->saved_raid_disk >= first &&
6345             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6346                 first = rdev->saved_raid_disk;
6347
6348         for (disk = first; disk <= last; disk++) {
6349                 p = conf->disks + disk;
6350                 if (p->rdev == NULL) {
6351                         clear_bit(In_sync, &rdev->flags);
6352                         rdev->raid_disk = disk;
6353                         err = 0;
6354                         if (rdev->saved_raid_disk != disk)
6355                                 conf->fullsync = 1;
6356                         rcu_assign_pointer(p->rdev, rdev);
6357                         goto out;
6358                 }
6359         }
6360         for (disk = first; disk <= last; disk++) {
6361                 p = conf->disks + disk;
6362                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6363                     p->replacement == NULL) {
6364                         clear_bit(In_sync, &rdev->flags);
6365                         set_bit(Replacement, &rdev->flags);
6366                         rdev->raid_disk = disk;
6367                         err = 0;
6368                         conf->fullsync = 1;
6369                         rcu_assign_pointer(p->replacement, rdev);
6370                         break;
6371                 }
6372         }
6373 out:
6374         print_raid5_conf(conf);
6375         return err;
6376 }
6377
6378 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6379 {
6380         /* no resync is happening, and there is enough space
6381          * on all devices, so we can resize.
6382          * We need to make sure resync covers any new space.
6383          * If the array is shrinking we should possibly wait until
6384          * any io in the removed space completes, but it hardly seems
6385          * worth it.
6386          */
6387         sector_t newsize;
6388         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6389         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6390         if (mddev->external_size &&
6391             mddev->array_sectors > newsize)
6392                 return -EINVAL;
6393         if (mddev->bitmap) {
6394                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6395                 if (ret)
6396                         return ret;
6397         }
6398         md_set_array_sectors(mddev, newsize);
6399         set_capacity(mddev->gendisk, mddev->array_sectors);
6400         revalidate_disk(mddev->gendisk);
6401         if (sectors > mddev->dev_sectors &&
6402             mddev->recovery_cp > mddev->dev_sectors) {
6403                 mddev->recovery_cp = mddev->dev_sectors;
6404                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6405         }
6406         mddev->dev_sectors = sectors;
6407         mddev->resync_max_sectors = sectors;
6408         return 0;
6409 }
6410
6411 static int check_stripe_cache(struct mddev *mddev)
6412 {
6413         /* Can only proceed if there are plenty of stripe_heads.
6414          * We need a minimum of one full stripe,, and for sensible progress
6415          * it is best to have about 4 times that.
6416          * If we require 4 times, then the default 256 4K stripe_heads will
6417          * allow for chunk sizes up to 256K, which is probably OK.
6418          * If the chunk size is greater, user-space should request more
6419          * stripe_heads first.
6420          */
6421         struct r5conf *conf = mddev->private;
6422         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6423             > conf->max_nr_stripes ||
6424             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6425             > conf->max_nr_stripes) {
6426                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6427                        mdname(mddev),
6428                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6429                         / STRIPE_SIZE)*4);
6430                 return 0;
6431         }
6432         return 1;
6433 }
6434
6435 static int check_reshape(struct mddev *mddev)
6436 {
6437         struct r5conf *conf = mddev->private;
6438
6439         if (mddev->delta_disks == 0 &&
6440             mddev->new_layout == mddev->layout &&
6441             mddev->new_chunk_sectors == mddev->chunk_sectors)
6442                 return 0; /* nothing to do */
6443         if (has_failed(conf))
6444                 return -EINVAL;
6445         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6446                 /* We might be able to shrink, but the devices must
6447                  * be made bigger first.
6448                  * For raid6, 4 is the minimum size.
6449                  * Otherwise 2 is the minimum
6450                  */
6451                 int min = 2;
6452                 if (mddev->level == 6)
6453                         min = 4;
6454                 if (mddev->raid_disks + mddev->delta_disks < min)
6455                         return -EINVAL;
6456         }
6457
6458         if (!check_stripe_cache(mddev))
6459                 return -ENOSPC;
6460
6461         return resize_stripes(conf, (conf->previous_raid_disks
6462                                      + mddev->delta_disks));
6463 }
6464
6465 static int raid5_start_reshape(struct mddev *mddev)
6466 {
6467         struct r5conf *conf = mddev->private;
6468         struct md_rdev *rdev;
6469         int spares = 0;
6470         unsigned long flags;
6471
6472         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6473                 return -EBUSY;
6474
6475         if (!check_stripe_cache(mddev))
6476                 return -ENOSPC;
6477
6478         if (has_failed(conf))
6479                 return -EINVAL;
6480
6481         rdev_for_each(rdev, mddev) {
6482                 if (!test_bit(In_sync, &rdev->flags)
6483                     && !test_bit(Faulty, &rdev->flags))
6484                         spares++;
6485         }
6486
6487         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6488                 /* Not enough devices even to make a degraded array
6489                  * of that size
6490                  */
6491                 return -EINVAL;
6492
6493         /* Refuse to reduce size of the array.  Any reductions in
6494          * array size must be through explicit setting of array_size
6495          * attribute.
6496          */
6497         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6498             < mddev->array_sectors) {
6499                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6500                        "before number of disks\n", mdname(mddev));
6501                 return -EINVAL;
6502         }
6503
6504         atomic_set(&conf->reshape_stripes, 0);
6505         spin_lock_irq(&conf->device_lock);
6506         write_seqcount_begin(&conf->gen_lock);
6507         conf->previous_raid_disks = conf->raid_disks;
6508         conf->raid_disks += mddev->delta_disks;
6509         conf->prev_chunk_sectors = conf->chunk_sectors;
6510         conf->chunk_sectors = mddev->new_chunk_sectors;
6511         conf->prev_algo = conf->algorithm;
6512         conf->algorithm = mddev->new_layout;
6513         conf->generation++;
6514         /* Code that selects data_offset needs to see the generation update
6515          * if reshape_progress has been set - so a memory barrier needed.
6516          */
6517         smp_mb();
6518         if (mddev->reshape_backwards)
6519                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6520         else
6521                 conf->reshape_progress = 0;
6522         conf->reshape_safe = conf->reshape_progress;
6523         write_seqcount_end(&conf->gen_lock);
6524         spin_unlock_irq(&conf->device_lock);
6525
6526         /* Now make sure any requests that proceeded on the assumption
6527          * the reshape wasn't running - like Discard or Read - have
6528          * completed.
6529          */
6530         mddev_suspend(mddev);
6531         mddev_resume(mddev);
6532
6533         /* Add some new drives, as many as will fit.
6534          * We know there are enough to make the newly sized array work.
6535          * Don't add devices if we are reducing the number of
6536          * devices in the array.  This is because it is not possible
6537          * to correctly record the "partially reconstructed" state of
6538          * such devices during the reshape and confusion could result.
6539          */
6540         if (mddev->delta_disks >= 0) {
6541                 rdev_for_each(rdev, mddev)
6542                         if (rdev->raid_disk < 0 &&
6543                             !test_bit(Faulty, &rdev->flags)) {
6544                                 if (raid5_add_disk(mddev, rdev) == 0) {
6545                                         if (rdev->raid_disk
6546                                             >= conf->previous_raid_disks)
6547                                                 set_bit(In_sync, &rdev->flags);
6548                                         else
6549                                                 rdev->recovery_offset = 0;
6550
6551                                         if (sysfs_link_rdev(mddev, rdev))
6552                                                 /* Failure here is OK */;
6553                                 }
6554                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6555                                    && !test_bit(Faulty, &rdev->flags)) {
6556                                 /* This is a spare that was manually added */
6557                                 set_bit(In_sync, &rdev->flags);
6558                         }
6559
6560                 /* When a reshape changes the number of devices,
6561                  * ->degraded is measured against the larger of the
6562                  * pre and post number of devices.
6563                  */
6564                 spin_lock_irqsave(&conf->device_lock, flags);
6565                 mddev->degraded = calc_degraded(conf);
6566                 spin_unlock_irqrestore(&conf->device_lock, flags);
6567         }
6568         mddev->raid_disks = conf->raid_disks;
6569         mddev->reshape_position = conf->reshape_progress;
6570         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6571
6572         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6573         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6574         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6575         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6576         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6577                                                 "reshape");
6578         if (!mddev->sync_thread) {
6579                 mddev->recovery = 0;
6580                 spin_lock_irq(&conf->device_lock);
6581                 write_seqcount_begin(&conf->gen_lock);
6582                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6583                 mddev->new_chunk_sectors =
6584                         conf->chunk_sectors = conf->prev_chunk_sectors;
6585                 mddev->new_layout = conf->algorithm = conf->prev_algo;
6586                 rdev_for_each(rdev, mddev)
6587                         rdev->new_data_offset = rdev->data_offset;
6588                 smp_wmb();
6589                 conf->generation --;
6590                 conf->reshape_progress = MaxSector;
6591                 mddev->reshape_position = MaxSector;
6592                 write_seqcount_end(&conf->gen_lock);
6593                 spin_unlock_irq(&conf->device_lock);
6594                 return -EAGAIN;
6595         }
6596         conf->reshape_checkpoint = jiffies;
6597         md_wakeup_thread(mddev->sync_thread);
6598         md_new_event(mddev);
6599         return 0;
6600 }
6601
6602 /* This is called from the reshape thread and should make any
6603  * changes needed in 'conf'
6604  */
6605 static void end_reshape(struct r5conf *conf)
6606 {
6607
6608         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6609                 struct md_rdev *rdev;
6610
6611                 spin_lock_irq(&conf->device_lock);
6612                 conf->previous_raid_disks = conf->raid_disks;
6613                 rdev_for_each(rdev, conf->mddev)
6614                         rdev->data_offset = rdev->new_data_offset;
6615                 smp_wmb();
6616                 conf->reshape_progress = MaxSector;
6617                 spin_unlock_irq(&conf->device_lock);
6618                 wake_up(&conf->wait_for_overlap);
6619
6620                 /* read-ahead size must cover two whole stripes, which is
6621                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6622                  */
6623                 if (conf->mddev->queue) {
6624                         int data_disks = conf->raid_disks - conf->max_degraded;
6625                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6626                                                    / PAGE_SIZE);
6627                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6628                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6629                 }
6630         }
6631 }
6632
6633 /* This is called from the raid5d thread with mddev_lock held.
6634  * It makes config changes to the device.
6635  */
6636 static void raid5_finish_reshape(struct mddev *mddev)
6637 {
6638         struct r5conf *conf = mddev->private;
6639
6640         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6641
6642                 if (mddev->delta_disks > 0) {
6643                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6644                         set_capacity(mddev->gendisk, mddev->array_sectors);
6645                         revalidate_disk(mddev->gendisk);
6646                 } else {
6647                         int d;
6648                         spin_lock_irq(&conf->device_lock);
6649                         mddev->degraded = calc_degraded(conf);
6650                         spin_unlock_irq(&conf->device_lock);
6651                         for (d = conf->raid_disks ;
6652                              d < conf->raid_disks - mddev->delta_disks;
6653                              d++) {
6654                                 struct md_rdev *rdev = conf->disks[d].rdev;
6655                                 if (rdev)
6656                                         clear_bit(In_sync, &rdev->flags);
6657                                 rdev = conf->disks[d].replacement;
6658                                 if (rdev)
6659                                         clear_bit(In_sync, &rdev->flags);
6660                         }
6661                 }
6662                 mddev->layout = conf->algorithm;
6663                 mddev->chunk_sectors = conf->chunk_sectors;
6664                 mddev->reshape_position = MaxSector;
6665                 mddev->delta_disks = 0;
6666                 mddev->reshape_backwards = 0;
6667         }
6668 }
6669
6670 static void raid5_quiesce(struct mddev *mddev, int state)
6671 {
6672         struct r5conf *conf = mddev->private;
6673
6674         switch(state) {
6675         case 2: /* resume for a suspend */
6676                 wake_up(&conf->wait_for_overlap);
6677                 break;
6678
6679         case 1: /* stop all writes */
6680                 lock_all_device_hash_locks_irq(conf);
6681                 /* '2' tells resync/reshape to pause so that all
6682                  * active stripes can drain
6683                  */
6684                 conf->quiesce = 2;
6685                 wait_event_cmd(conf->wait_for_stripe,
6686                                     atomic_read(&conf->active_stripes) == 0 &&
6687                                     atomic_read(&conf->active_aligned_reads) == 0,
6688                                     unlock_all_device_hash_locks_irq(conf),
6689                                     lock_all_device_hash_locks_irq(conf));
6690                 conf->quiesce = 1;
6691                 unlock_all_device_hash_locks_irq(conf);
6692                 /* allow reshape to continue */
6693                 wake_up(&conf->wait_for_overlap);
6694                 break;
6695
6696         case 0: /* re-enable writes */
6697                 lock_all_device_hash_locks_irq(conf);
6698                 conf->quiesce = 0;
6699                 wake_up(&conf->wait_for_stripe);
6700                 wake_up(&conf->wait_for_overlap);
6701                 unlock_all_device_hash_locks_irq(conf);
6702                 break;
6703         }
6704 }
6705
6706
6707 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6708 {
6709         struct r0conf *raid0_conf = mddev->private;
6710         sector_t sectors;
6711
6712         /* for raid0 takeover only one zone is supported */
6713         if (raid0_conf->nr_strip_zones > 1) {
6714                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6715                        mdname(mddev));
6716                 return ERR_PTR(-EINVAL);
6717         }
6718
6719         sectors = raid0_conf->strip_zone[0].zone_end;
6720         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6721         mddev->dev_sectors = sectors;
6722         mddev->new_level = level;
6723         mddev->new_layout = ALGORITHM_PARITY_N;
6724         mddev->new_chunk_sectors = mddev->chunk_sectors;
6725         mddev->raid_disks += 1;
6726         mddev->delta_disks = 1;
6727         /* make sure it will be not marked as dirty */
6728         mddev->recovery_cp = MaxSector;
6729
6730         return setup_conf(mddev);
6731 }
6732
6733
6734 static void *raid5_takeover_raid1(struct mddev *mddev)
6735 {
6736         int chunksect;
6737
6738         if (mddev->raid_disks != 2 ||
6739             mddev->degraded > 1)
6740                 return ERR_PTR(-EINVAL);
6741
6742         /* Should check if there are write-behind devices? */
6743
6744         chunksect = 64*2; /* 64K by default */
6745
6746         /* The array must be an exact multiple of chunksize */
6747         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6748                 chunksect >>= 1;
6749
6750         if ((chunksect<<9) < STRIPE_SIZE)
6751                 /* array size does not allow a suitable chunk size */
6752                 return ERR_PTR(-EINVAL);
6753
6754         mddev->new_level = 5;
6755         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6756         mddev->new_chunk_sectors = chunksect;
6757
6758         return setup_conf(mddev);
6759 }
6760
6761 static void *raid5_takeover_raid6(struct mddev *mddev)
6762 {
6763         int new_layout;
6764
6765         switch (mddev->layout) {
6766         case ALGORITHM_LEFT_ASYMMETRIC_6:
6767                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6768                 break;
6769         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6770                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6771                 break;
6772         case ALGORITHM_LEFT_SYMMETRIC_6:
6773                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6774                 break;
6775         case ALGORITHM_RIGHT_SYMMETRIC_6:
6776                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6777                 break;
6778         case ALGORITHM_PARITY_0_6:
6779                 new_layout = ALGORITHM_PARITY_0;
6780                 break;
6781         case ALGORITHM_PARITY_N:
6782                 new_layout = ALGORITHM_PARITY_N;
6783                 break;
6784         default:
6785                 return ERR_PTR(-EINVAL);
6786         }
6787         mddev->new_level = 5;
6788         mddev->new_layout = new_layout;
6789         mddev->delta_disks = -1;
6790         mddev->raid_disks -= 1;
6791         return setup_conf(mddev);
6792 }
6793
6794
6795 static int raid5_check_reshape(struct mddev *mddev)
6796 {
6797         /* For a 2-drive array, the layout and chunk size can be changed
6798          * immediately as not restriping is needed.
6799          * For larger arrays we record the new value - after validation
6800          * to be used by a reshape pass.
6801          */
6802         struct r5conf *conf = mddev->private;
6803         int new_chunk = mddev->new_chunk_sectors;
6804
6805         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6806                 return -EINVAL;
6807         if (new_chunk > 0) {
6808                 if (!is_power_of_2(new_chunk))
6809                         return -EINVAL;
6810                 if (new_chunk < (PAGE_SIZE>>9))
6811                         return -EINVAL;
6812                 if (mddev->array_sectors & (new_chunk-1))
6813                         /* not factor of array size */
6814                         return -EINVAL;
6815         }
6816
6817         /* They look valid */
6818
6819         if (mddev->raid_disks == 2) {
6820                 /* can make the change immediately */
6821                 if (mddev->new_layout >= 0) {
6822                         conf->algorithm = mddev->new_layout;
6823                         mddev->layout = mddev->new_layout;
6824                 }
6825                 if (new_chunk > 0) {
6826                         conf->chunk_sectors = new_chunk ;
6827                         mddev->chunk_sectors = new_chunk;
6828                 }
6829                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6830                 md_wakeup_thread(mddev->thread);
6831         }
6832         return check_reshape(mddev);
6833 }
6834
6835 static int raid6_check_reshape(struct mddev *mddev)
6836 {
6837         int new_chunk = mddev->new_chunk_sectors;
6838
6839         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6840                 return -EINVAL;
6841         if (new_chunk > 0) {
6842                 if (!is_power_of_2(new_chunk))
6843                         return -EINVAL;
6844                 if (new_chunk < (PAGE_SIZE >> 9))
6845                         return -EINVAL;
6846                 if (mddev->array_sectors & (new_chunk-1))
6847                         /* not factor of array size */
6848                         return -EINVAL;
6849         }
6850
6851         /* They look valid */
6852         return check_reshape(mddev);
6853 }
6854
6855 static void *raid5_takeover(struct mddev *mddev)
6856 {
6857         /* raid5 can take over:
6858          *  raid0 - if there is only one strip zone - make it a raid4 layout
6859          *  raid1 - if there are two drives.  We need to know the chunk size
6860          *  raid4 - trivial - just use a raid4 layout.
6861          *  raid6 - Providing it is a *_6 layout
6862          */
6863         if (mddev->level == 0)
6864                 return raid45_takeover_raid0(mddev, 5);
6865         if (mddev->level == 1)
6866                 return raid5_takeover_raid1(mddev);
6867         if (mddev->level == 4) {
6868                 mddev->new_layout = ALGORITHM_PARITY_N;
6869                 mddev->new_level = 5;
6870                 return setup_conf(mddev);
6871         }
6872         if (mddev->level == 6)
6873                 return raid5_takeover_raid6(mddev);
6874
6875         return ERR_PTR(-EINVAL);
6876 }
6877
6878 static void *raid4_takeover(struct mddev *mddev)
6879 {
6880         /* raid4 can take over:
6881          *  raid0 - if there is only one strip zone
6882          *  raid5 - if layout is right
6883          */
6884         if (mddev->level == 0)
6885                 return raid45_takeover_raid0(mddev, 4);
6886         if (mddev->level == 5 &&
6887             mddev->layout == ALGORITHM_PARITY_N) {
6888                 mddev->new_layout = 0;
6889                 mddev->new_level = 4;
6890                 return setup_conf(mddev);
6891         }
6892         return ERR_PTR(-EINVAL);
6893 }
6894
6895 static struct md_personality raid5_personality;
6896
6897 static void *raid6_takeover(struct mddev *mddev)
6898 {
6899         /* Currently can only take over a raid5.  We map the
6900          * personality to an equivalent raid6 personality
6901          * with the Q block at the end.
6902          */
6903         int new_layout;
6904
6905         if (mddev->pers != &raid5_personality)
6906                 return ERR_PTR(-EINVAL);
6907         if (mddev->degraded > 1)
6908                 return ERR_PTR(-EINVAL);
6909         if (mddev->raid_disks > 253)
6910                 return ERR_PTR(-EINVAL);
6911         if (mddev->raid_disks < 3)
6912                 return ERR_PTR(-EINVAL);
6913
6914         switch (mddev->layout) {
6915         case ALGORITHM_LEFT_ASYMMETRIC:
6916                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6917                 break;
6918         case ALGORITHM_RIGHT_ASYMMETRIC:
6919                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6920                 break;
6921         case ALGORITHM_LEFT_SYMMETRIC:
6922                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6923                 break;
6924         case ALGORITHM_RIGHT_SYMMETRIC:
6925                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6926                 break;
6927         case ALGORITHM_PARITY_0:
6928                 new_layout = ALGORITHM_PARITY_0_6;
6929                 break;
6930         case ALGORITHM_PARITY_N:
6931                 new_layout = ALGORITHM_PARITY_N;
6932                 break;
6933         default:
6934                 return ERR_PTR(-EINVAL);
6935         }
6936         mddev->new_level = 6;
6937         mddev->new_layout = new_layout;
6938         mddev->delta_disks = 1;
6939         mddev->raid_disks += 1;
6940         return setup_conf(mddev);
6941 }
6942
6943
6944 static struct md_personality raid6_personality =
6945 {
6946         .name           = "raid6",
6947         .level          = 6,
6948         .owner          = THIS_MODULE,
6949         .make_request   = make_request,
6950         .run            = run,
6951         .stop           = stop,
6952         .status         = status,
6953         .error_handler  = error,
6954         .hot_add_disk   = raid5_add_disk,
6955         .hot_remove_disk= raid5_remove_disk,
6956         .spare_active   = raid5_spare_active,
6957         .sync_request   = sync_request,
6958         .resize         = raid5_resize,
6959         .size           = raid5_size,
6960         .check_reshape  = raid6_check_reshape,
6961         .start_reshape  = raid5_start_reshape,
6962         .finish_reshape = raid5_finish_reshape,
6963         .quiesce        = raid5_quiesce,
6964         .takeover       = raid6_takeover,
6965 };
6966 static struct md_personality raid5_personality =
6967 {
6968         .name           = "raid5",
6969         .level          = 5,
6970         .owner          = THIS_MODULE,
6971         .make_request   = make_request,
6972         .run            = run,
6973         .stop           = stop,
6974         .status         = status,
6975         .error_handler  = error,
6976         .hot_add_disk   = raid5_add_disk,
6977         .hot_remove_disk= raid5_remove_disk,
6978         .spare_active   = raid5_spare_active,
6979         .sync_request   = sync_request,
6980         .resize         = raid5_resize,
6981         .size           = raid5_size,
6982         .check_reshape  = raid5_check_reshape,
6983         .start_reshape  = raid5_start_reshape,
6984         .finish_reshape = raid5_finish_reshape,
6985         .quiesce        = raid5_quiesce,
6986         .takeover       = raid5_takeover,
6987 };
6988
6989 static struct md_personality raid4_personality =
6990 {
6991         .name           = "raid4",
6992         .level          = 4,
6993         .owner          = THIS_MODULE,
6994         .make_request   = make_request,
6995         .run            = run,
6996         .stop           = stop,
6997         .status         = status,
6998         .error_handler  = error,
6999         .hot_add_disk   = raid5_add_disk,
7000         .hot_remove_disk= raid5_remove_disk,
7001         .spare_active   = raid5_spare_active,
7002         .sync_request   = sync_request,
7003         .resize         = raid5_resize,
7004         .size           = raid5_size,
7005         .check_reshape  = raid5_check_reshape,
7006         .start_reshape  = raid5_start_reshape,
7007         .finish_reshape = raid5_finish_reshape,
7008         .quiesce        = raid5_quiesce,
7009         .takeover       = raid4_takeover,
7010 };
7011
7012 static int __init raid5_init(void)
7013 {
7014         raid5_wq = alloc_workqueue("raid5wq",
7015                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7016         if (!raid5_wq)
7017                 return -ENOMEM;
7018         register_md_personality(&raid6_personality);
7019         register_md_personality(&raid5_personality);
7020         register_md_personality(&raid4_personality);
7021         return 0;
7022 }
7023
7024 static void raid5_exit(void)
7025 {
7026         unregister_md_personality(&raid6_personality);
7027         unregister_md_personality(&raid5_personality);
7028         unregister_md_personality(&raid4_personality);
7029         destroy_workqueue(raid5_wq);
7030 }
7031
7032 module_init(raid5_init);
7033 module_exit(raid5_exit);
7034 MODULE_LICENSE("GPL");
7035 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7036 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7037 MODULE_ALIAS("md-raid5");
7038 MODULE_ALIAS("md-raid4");
7039 MODULE_ALIAS("md-level-5");
7040 MODULE_ALIAS("md-level-4");
7041 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7042 MODULE_ALIAS("md-raid6");
7043 MODULE_ALIAS("md-level-6");
7044
7045 /* This used to be two separate modules, they were: */
7046 MODULE_ALIAS("raid5");
7047 MODULE_ALIAS("raid6");