]> Pileus Git - ~andy/linux/blob - drivers/md/dm-thin.c
xtensa: fixup simdisk driver to work with immutable bio_vecs
[~andy/linux] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154         struct list_head list;
155         struct dm_target *ti;   /* Only set if a pool target is bound */
156
157         struct mapped_device *pool_md;
158         struct block_device *md_dev;
159         struct dm_pool_metadata *pmd;
160
161         dm_block_t low_water_blocks;
162         uint32_t sectors_per_block;
163         int sectors_per_block_shift;
164
165         struct pool_features pf;
166         unsigned low_water_triggered:1; /* A dm event has been sent */
167         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207         struct dm_target *ti;
208         struct pool *pool;
209         struct dm_dev *data_dev;
210         struct dm_dev *metadata_dev;
211         struct dm_target_callbacks callbacks;
212
213         dm_block_t low_water_blocks;
214         struct pool_features requested_pf; /* Features requested during table load */
215         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222         struct dm_dev *pool_dev;
223         struct dm_dev *origin_dev;
224         dm_thin_id dev_id;
225
226         struct pool *pool;
227         struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233  * wake_worker() is used when new work is queued and when pool_resume is
234  * ready to continue deferred IO processing.
235  */
236 static void wake_worker(struct pool *pool)
237 {
238         queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244                       struct dm_bio_prison_cell **cell_result)
245 {
246         int r;
247         struct dm_bio_prison_cell *cell_prealloc;
248
249         /*
250          * Allocate a cell from the prison's mempool.
251          * This might block but it can't fail.
252          */
253         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256         if (r)
257                 /*
258                  * We reused an old cell; we can get rid of
259                  * the new one.
260                  */
261                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263         return r;
264 }
265
266 static void cell_release(struct pool *pool,
267                          struct dm_bio_prison_cell *cell,
268                          struct bio_list *bios)
269 {
270         dm_cell_release(pool->prison, cell, bios);
271         dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275                                    struct dm_bio_prison_cell *cell,
276                                    struct bio_list *bios)
277 {
278         dm_cell_release_no_holder(pool->prison, cell, bios);
279         dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283                                          struct dm_bio_prison_cell *cell)
284 {
285         struct pool *pool = tc->pool;
286         unsigned long flags;
287
288         spin_lock_irqsave(&pool->lock, flags);
289         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290         spin_unlock_irqrestore(&pool->lock, flags);
291
292         wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296                        struct dm_bio_prison_cell *cell)
297 {
298         dm_cell_error(pool->prison, cell);
299         dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305  * A global list of pools that uses a struct mapped_device as a key.
306  */
307 static struct dm_thin_pool_table {
308         struct mutex mutex;
309         struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314         mutex_init(&dm_thin_pool_table.mutex);
315         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321         list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327         list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332         struct pool *pool = NULL, *tmp;
333
334         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337                 if (tmp->pool_md == md) {
338                         pool = tmp;
339                         break;
340                 }
341         }
342
343         return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348         struct pool *pool = NULL, *tmp;
349
350         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353                 if (tmp->md_dev == md_dev) {
354                         pool = tmp;
355                         break;
356                 }
357         }
358
359         return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365         struct thin_c *tc;
366         struct dm_deferred_entry *shared_read_entry;
367         struct dm_deferred_entry *all_io_entry;
368         struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373         struct bio *bio;
374         struct bio_list bios;
375
376         bio_list_init(&bios);
377         bio_list_merge(&bios, master);
378         bio_list_init(master);
379
380         while ((bio = bio_list_pop(&bios))) {
381                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383                 if (h->tc == tc)
384                         bio_endio(bio, DM_ENDIO_REQUEUE);
385                 else
386                         bio_list_add(master, bio);
387         }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392         struct pool *pool = tc->pool;
393         unsigned long flags;
394
395         spin_lock_irqsave(&pool->lock, flags);
396         __requeue_bio_list(tc, &pool->deferred_bios);
397         __requeue_bio_list(tc, &pool->retry_on_resume_list);
398         spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402  * This section of code contains the logic for processing a thin device's IO.
403  * Much of the code depends on pool object resources (lists, workqueues, etc)
404  * but most is exclusively called from the thin target rather than the thin-pool
405  * target.
406  */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410         return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415         struct pool *pool = tc->pool;
416         sector_t block_nr = bio->bi_iter.bi_sector;
417
418         if (block_size_is_power_of_two(pool))
419                 block_nr >>= pool->sectors_per_block_shift;
420         else
421                 (void) sector_div(block_nr, pool->sectors_per_block);
422
423         return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428         struct pool *pool = tc->pool;
429         sector_t bi_sector = bio->bi_iter.bi_sector;
430
431         bio->bi_bdev = tc->pool_dev->bdev;
432         if (block_size_is_power_of_two(pool))
433                 bio->bi_iter.bi_sector =
434                         (block << pool->sectors_per_block_shift) |
435                         (bi_sector & (pool->sectors_per_block - 1));
436         else
437                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
438                                  sector_div(bi_sector, pool->sectors_per_block);
439 }
440
441 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
442 {
443         bio->bi_bdev = tc->origin_dev->bdev;
444 }
445
446 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
447 {
448         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
449                 dm_thin_changed_this_transaction(tc->td);
450 }
451
452 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
453 {
454         struct dm_thin_endio_hook *h;
455
456         if (bio->bi_rw & REQ_DISCARD)
457                 return;
458
459         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
460         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
461 }
462
463 static void issue(struct thin_c *tc, struct bio *bio)
464 {
465         struct pool *pool = tc->pool;
466         unsigned long flags;
467
468         if (!bio_triggers_commit(tc, bio)) {
469                 generic_make_request(bio);
470                 return;
471         }
472
473         /*
474          * Complete bio with an error if earlier I/O caused changes to
475          * the metadata that can't be committed e.g, due to I/O errors
476          * on the metadata device.
477          */
478         if (dm_thin_aborted_changes(tc->td)) {
479                 bio_io_error(bio);
480                 return;
481         }
482
483         /*
484          * Batch together any bios that trigger commits and then issue a
485          * single commit for them in process_deferred_bios().
486          */
487         spin_lock_irqsave(&pool->lock, flags);
488         bio_list_add(&pool->deferred_flush_bios, bio);
489         spin_unlock_irqrestore(&pool->lock, flags);
490 }
491
492 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
493 {
494         remap_to_origin(tc, bio);
495         issue(tc, bio);
496 }
497
498 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
499                             dm_block_t block)
500 {
501         remap(tc, bio, block);
502         issue(tc, bio);
503 }
504
505 /*----------------------------------------------------------------*/
506
507 /*
508  * Bio endio functions.
509  */
510 struct dm_thin_new_mapping {
511         struct list_head list;
512
513         unsigned quiesced:1;
514         unsigned prepared:1;
515         unsigned pass_discard:1;
516
517         struct thin_c *tc;
518         dm_block_t virt_block;
519         dm_block_t data_block;
520         struct dm_bio_prison_cell *cell, *cell2;
521         int err;
522
523         /*
524          * If the bio covers the whole area of a block then we can avoid
525          * zeroing or copying.  Instead this bio is hooked.  The bio will
526          * still be in the cell, so care has to be taken to avoid issuing
527          * the bio twice.
528          */
529         struct bio *bio;
530         bio_end_io_t *saved_bi_end_io;
531 };
532
533 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
534 {
535         struct pool *pool = m->tc->pool;
536
537         if (m->quiesced && m->prepared) {
538                 list_add(&m->list, &pool->prepared_mappings);
539                 wake_worker(pool);
540         }
541 }
542
543 static void copy_complete(int read_err, unsigned long write_err, void *context)
544 {
545         unsigned long flags;
546         struct dm_thin_new_mapping *m = context;
547         struct pool *pool = m->tc->pool;
548
549         m->err = read_err || write_err ? -EIO : 0;
550
551         spin_lock_irqsave(&pool->lock, flags);
552         m->prepared = 1;
553         __maybe_add_mapping(m);
554         spin_unlock_irqrestore(&pool->lock, flags);
555 }
556
557 static void overwrite_endio(struct bio *bio, int err)
558 {
559         unsigned long flags;
560         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
561         struct dm_thin_new_mapping *m = h->overwrite_mapping;
562         struct pool *pool = m->tc->pool;
563
564         m->err = err;
565
566         spin_lock_irqsave(&pool->lock, flags);
567         m->prepared = 1;
568         __maybe_add_mapping(m);
569         spin_unlock_irqrestore(&pool->lock, flags);
570 }
571
572 /*----------------------------------------------------------------*/
573
574 /*
575  * Workqueue.
576  */
577
578 /*
579  * Prepared mapping jobs.
580  */
581
582 /*
583  * This sends the bios in the cell back to the deferred_bios list.
584  */
585 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
586 {
587         struct pool *pool = tc->pool;
588         unsigned long flags;
589
590         spin_lock_irqsave(&pool->lock, flags);
591         cell_release(pool, cell, &pool->deferred_bios);
592         spin_unlock_irqrestore(&tc->pool->lock, flags);
593
594         wake_worker(pool);
595 }
596
597 /*
598  * Same as cell_defer above, except it omits the original holder of the cell.
599  */
600 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
601 {
602         struct pool *pool = tc->pool;
603         unsigned long flags;
604
605         spin_lock_irqsave(&pool->lock, flags);
606         cell_release_no_holder(pool, cell, &pool->deferred_bios);
607         spin_unlock_irqrestore(&pool->lock, flags);
608
609         wake_worker(pool);
610 }
611
612 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
613 {
614         if (m->bio) {
615                 m->bio->bi_end_io = m->saved_bi_end_io;
616                 atomic_inc(&m->bio->bi_remaining);
617         }
618         cell_error(m->tc->pool, m->cell);
619         list_del(&m->list);
620         mempool_free(m, m->tc->pool->mapping_pool);
621 }
622
623 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
624 {
625         struct thin_c *tc = m->tc;
626         struct pool *pool = tc->pool;
627         struct bio *bio;
628         int r;
629
630         bio = m->bio;
631         if (bio) {
632                 bio->bi_end_io = m->saved_bi_end_io;
633                 atomic_inc(&bio->bi_remaining);
634         }
635
636         if (m->err) {
637                 cell_error(pool, m->cell);
638                 goto out;
639         }
640
641         /*
642          * Commit the prepared block into the mapping btree.
643          * Any I/O for this block arriving after this point will get
644          * remapped to it directly.
645          */
646         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
647         if (r) {
648                 DMERR_LIMIT("%s: dm_thin_insert_block() failed: error = %d",
649                             dm_device_name(pool->pool_md), r);
650                 set_pool_mode(pool, PM_READ_ONLY);
651                 cell_error(pool, m->cell);
652                 goto out;
653         }
654
655         /*
656          * Release any bios held while the block was being provisioned.
657          * If we are processing a write bio that completely covers the block,
658          * we already processed it so can ignore it now when processing
659          * the bios in the cell.
660          */
661         if (bio) {
662                 cell_defer_no_holder(tc, m->cell);
663                 bio_endio(bio, 0);
664         } else
665                 cell_defer(tc, m->cell);
666
667 out:
668         list_del(&m->list);
669         mempool_free(m, pool->mapping_pool);
670 }
671
672 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
673 {
674         struct thin_c *tc = m->tc;
675
676         bio_io_error(m->bio);
677         cell_defer_no_holder(tc, m->cell);
678         cell_defer_no_holder(tc, m->cell2);
679         mempool_free(m, tc->pool->mapping_pool);
680 }
681
682 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
683 {
684         struct thin_c *tc = m->tc;
685
686         inc_all_io_entry(tc->pool, m->bio);
687         cell_defer_no_holder(tc, m->cell);
688         cell_defer_no_holder(tc, m->cell2);
689
690         if (m->pass_discard)
691                 remap_and_issue(tc, m->bio, m->data_block);
692         else
693                 bio_endio(m->bio, 0);
694
695         mempool_free(m, tc->pool->mapping_pool);
696 }
697
698 static void process_prepared_discard(struct dm_thin_new_mapping *m)
699 {
700         int r;
701         struct thin_c *tc = m->tc;
702
703         r = dm_thin_remove_block(tc->td, m->virt_block);
704         if (r)
705                 DMERR_LIMIT("dm_thin_remove_block() failed");
706
707         process_prepared_discard_passdown(m);
708 }
709
710 static void process_prepared(struct pool *pool, struct list_head *head,
711                              process_mapping_fn *fn)
712 {
713         unsigned long flags;
714         struct list_head maps;
715         struct dm_thin_new_mapping *m, *tmp;
716
717         INIT_LIST_HEAD(&maps);
718         spin_lock_irqsave(&pool->lock, flags);
719         list_splice_init(head, &maps);
720         spin_unlock_irqrestore(&pool->lock, flags);
721
722         list_for_each_entry_safe(m, tmp, &maps, list)
723                 (*fn)(m);
724 }
725
726 /*
727  * Deferred bio jobs.
728  */
729 static int io_overlaps_block(struct pool *pool, struct bio *bio)
730 {
731         return bio->bi_iter.bi_size ==
732                 (pool->sectors_per_block << SECTOR_SHIFT);
733 }
734
735 static int io_overwrites_block(struct pool *pool, struct bio *bio)
736 {
737         return (bio_data_dir(bio) == WRITE) &&
738                 io_overlaps_block(pool, bio);
739 }
740
741 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
742                                bio_end_io_t *fn)
743 {
744         *save = bio->bi_end_io;
745         bio->bi_end_io = fn;
746 }
747
748 static int ensure_next_mapping(struct pool *pool)
749 {
750         if (pool->next_mapping)
751                 return 0;
752
753         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
754
755         return pool->next_mapping ? 0 : -ENOMEM;
756 }
757
758 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
759 {
760         struct dm_thin_new_mapping *r = pool->next_mapping;
761
762         BUG_ON(!pool->next_mapping);
763
764         pool->next_mapping = NULL;
765
766         return r;
767 }
768
769 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
770                           struct dm_dev *origin, dm_block_t data_origin,
771                           dm_block_t data_dest,
772                           struct dm_bio_prison_cell *cell, struct bio *bio)
773 {
774         int r;
775         struct pool *pool = tc->pool;
776         struct dm_thin_new_mapping *m = get_next_mapping(pool);
777
778         INIT_LIST_HEAD(&m->list);
779         m->quiesced = 0;
780         m->prepared = 0;
781         m->tc = tc;
782         m->virt_block = virt_block;
783         m->data_block = data_dest;
784         m->cell = cell;
785         m->err = 0;
786         m->bio = NULL;
787
788         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
789                 m->quiesced = 1;
790
791         /*
792          * IO to pool_dev remaps to the pool target's data_dev.
793          *
794          * If the whole block of data is being overwritten, we can issue the
795          * bio immediately. Otherwise we use kcopyd to clone the data first.
796          */
797         if (io_overwrites_block(pool, bio)) {
798                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
799
800                 h->overwrite_mapping = m;
801                 m->bio = bio;
802                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
803                 inc_all_io_entry(pool, bio);
804                 remap_and_issue(tc, bio, data_dest);
805         } else {
806                 struct dm_io_region from, to;
807
808                 from.bdev = origin->bdev;
809                 from.sector = data_origin * pool->sectors_per_block;
810                 from.count = pool->sectors_per_block;
811
812                 to.bdev = tc->pool_dev->bdev;
813                 to.sector = data_dest * pool->sectors_per_block;
814                 to.count = pool->sectors_per_block;
815
816                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
817                                    0, copy_complete, m);
818                 if (r < 0) {
819                         mempool_free(m, pool->mapping_pool);
820                         DMERR_LIMIT("dm_kcopyd_copy() failed");
821                         cell_error(pool, cell);
822                 }
823         }
824 }
825
826 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
827                                    dm_block_t data_origin, dm_block_t data_dest,
828                                    struct dm_bio_prison_cell *cell, struct bio *bio)
829 {
830         schedule_copy(tc, virt_block, tc->pool_dev,
831                       data_origin, data_dest, cell, bio);
832 }
833
834 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
835                                    dm_block_t data_dest,
836                                    struct dm_bio_prison_cell *cell, struct bio *bio)
837 {
838         schedule_copy(tc, virt_block, tc->origin_dev,
839                       virt_block, data_dest, cell, bio);
840 }
841
842 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
843                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
844                           struct bio *bio)
845 {
846         struct pool *pool = tc->pool;
847         struct dm_thin_new_mapping *m = get_next_mapping(pool);
848
849         INIT_LIST_HEAD(&m->list);
850         m->quiesced = 1;
851         m->prepared = 0;
852         m->tc = tc;
853         m->virt_block = virt_block;
854         m->data_block = data_block;
855         m->cell = cell;
856         m->err = 0;
857         m->bio = NULL;
858
859         /*
860          * If the whole block of data is being overwritten or we are not
861          * zeroing pre-existing data, we can issue the bio immediately.
862          * Otherwise we use kcopyd to zero the data first.
863          */
864         if (!pool->pf.zero_new_blocks)
865                 process_prepared_mapping(m);
866
867         else if (io_overwrites_block(pool, bio)) {
868                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
869
870                 h->overwrite_mapping = m;
871                 m->bio = bio;
872                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
873                 inc_all_io_entry(pool, bio);
874                 remap_and_issue(tc, bio, data_block);
875         } else {
876                 int r;
877                 struct dm_io_region to;
878
879                 to.bdev = tc->pool_dev->bdev;
880                 to.sector = data_block * pool->sectors_per_block;
881                 to.count = pool->sectors_per_block;
882
883                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
884                 if (r < 0) {
885                         mempool_free(m, pool->mapping_pool);
886                         DMERR_LIMIT("dm_kcopyd_zero() failed");
887                         cell_error(pool, cell);
888                 }
889         }
890 }
891
892 /*
893  * A non-zero return indicates read_only or fail_io mode.
894  * Many callers don't care about the return value.
895  */
896 static int commit(struct pool *pool)
897 {
898         int r;
899
900         if (get_pool_mode(pool) != PM_WRITE)
901                 return -EINVAL;
902
903         r = dm_pool_commit_metadata(pool->pmd);
904         if (r) {
905                 DMERR_LIMIT("%s: dm_pool_commit_metadata failed: error = %d",
906                             dm_device_name(pool->pool_md), r);
907                 set_pool_mode(pool, PM_READ_ONLY);
908         }
909
910         return r;
911 }
912
913 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
914 {
915         int r;
916         dm_block_t free_blocks;
917         unsigned long flags;
918         struct pool *pool = tc->pool;
919
920         /*
921          * Once no_free_space is set we must not allow allocation to succeed.
922          * Otherwise it is difficult to explain, debug, test and support.
923          */
924         if (pool->no_free_space)
925                 return -ENOSPC;
926
927         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
928         if (r)
929                 return r;
930
931         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
932                 DMWARN("%s: reached low water mark for data device: sending event.",
933                        dm_device_name(pool->pool_md));
934                 spin_lock_irqsave(&pool->lock, flags);
935                 pool->low_water_triggered = 1;
936                 spin_unlock_irqrestore(&pool->lock, flags);
937                 dm_table_event(pool->ti->table);
938         }
939
940         if (!free_blocks) {
941                 /*
942                  * Try to commit to see if that will free up some
943                  * more space.
944                  */
945                 r = commit(pool);
946                 if (r)
947                         return r;
948
949                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
950                 if (r)
951                         return r;
952
953                 /*
954                  * If we still have no space we set a flag to avoid
955                  * doing all this checking and return -ENOSPC.  This
956                  * flag serves as a latch that disallows allocations from
957                  * this pool until the admin takes action (e.g. resize or
958                  * table reload).
959                  */
960                 if (!free_blocks) {
961                         DMWARN("%s: no free data space available.",
962                                dm_device_name(pool->pool_md));
963                         spin_lock_irqsave(&pool->lock, flags);
964                         pool->no_free_space = 1;
965                         spin_unlock_irqrestore(&pool->lock, flags);
966                         return -ENOSPC;
967                 }
968         }
969
970         r = dm_pool_alloc_data_block(pool->pmd, result);
971         if (r) {
972                 if (r == -ENOSPC &&
973                     !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
974                     !free_blocks) {
975                         DMWARN("%s: no free metadata space available.",
976                                dm_device_name(pool->pool_md));
977                         set_pool_mode(pool, PM_READ_ONLY);
978                 }
979                 return r;
980         }
981
982         return 0;
983 }
984
985 /*
986  * If we have run out of space, queue bios until the device is
987  * resumed, presumably after having been reloaded with more space.
988  */
989 static void retry_on_resume(struct bio *bio)
990 {
991         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
992         struct thin_c *tc = h->tc;
993         struct pool *pool = tc->pool;
994         unsigned long flags;
995
996         spin_lock_irqsave(&pool->lock, flags);
997         bio_list_add(&pool->retry_on_resume_list, bio);
998         spin_unlock_irqrestore(&pool->lock, flags);
999 }
1000
1001 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
1002 {
1003         struct bio *bio;
1004         struct bio_list bios;
1005
1006         bio_list_init(&bios);
1007         cell_release(pool, cell, &bios);
1008
1009         while ((bio = bio_list_pop(&bios)))
1010                 retry_on_resume(bio);
1011 }
1012
1013 static void process_discard(struct thin_c *tc, struct bio *bio)
1014 {
1015         int r;
1016         unsigned long flags;
1017         struct pool *pool = tc->pool;
1018         struct dm_bio_prison_cell *cell, *cell2;
1019         struct dm_cell_key key, key2;
1020         dm_block_t block = get_bio_block(tc, bio);
1021         struct dm_thin_lookup_result lookup_result;
1022         struct dm_thin_new_mapping *m;
1023
1024         build_virtual_key(tc->td, block, &key);
1025         if (bio_detain(tc->pool, &key, bio, &cell))
1026                 return;
1027
1028         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1029         switch (r) {
1030         case 0:
1031                 /*
1032                  * Check nobody is fiddling with this pool block.  This can
1033                  * happen if someone's in the process of breaking sharing
1034                  * on this block.
1035                  */
1036                 build_data_key(tc->td, lookup_result.block, &key2);
1037                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1038                         cell_defer_no_holder(tc, cell);
1039                         break;
1040                 }
1041
1042                 if (io_overlaps_block(pool, bio)) {
1043                         /*
1044                          * IO may still be going to the destination block.  We must
1045                          * quiesce before we can do the removal.
1046                          */
1047                         m = get_next_mapping(pool);
1048                         m->tc = tc;
1049                         m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1050                         m->virt_block = block;
1051                         m->data_block = lookup_result.block;
1052                         m->cell = cell;
1053                         m->cell2 = cell2;
1054                         m->err = 0;
1055                         m->bio = bio;
1056
1057                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1058                                 spin_lock_irqsave(&pool->lock, flags);
1059                                 list_add(&m->list, &pool->prepared_discards);
1060                                 spin_unlock_irqrestore(&pool->lock, flags);
1061                                 wake_worker(pool);
1062                         }
1063                 } else {
1064                         inc_all_io_entry(pool, bio);
1065                         cell_defer_no_holder(tc, cell);
1066                         cell_defer_no_holder(tc, cell2);
1067
1068                         /*
1069                          * The DM core makes sure that the discard doesn't span
1070                          * a block boundary.  So we submit the discard of a
1071                          * partial block appropriately.
1072                          */
1073                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1074                                 remap_and_issue(tc, bio, lookup_result.block);
1075                         else
1076                                 bio_endio(bio, 0);
1077                 }
1078                 break;
1079
1080         case -ENODATA:
1081                 /*
1082                  * It isn't provisioned, just forget it.
1083                  */
1084                 cell_defer_no_holder(tc, cell);
1085                 bio_endio(bio, 0);
1086                 break;
1087
1088         default:
1089                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1090                             __func__, r);
1091                 cell_defer_no_holder(tc, cell);
1092                 bio_io_error(bio);
1093                 break;
1094         }
1095 }
1096
1097 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1098                           struct dm_cell_key *key,
1099                           struct dm_thin_lookup_result *lookup_result,
1100                           struct dm_bio_prison_cell *cell)
1101 {
1102         int r;
1103         dm_block_t data_block;
1104         struct pool *pool = tc->pool;
1105
1106         r = alloc_data_block(tc, &data_block);
1107         switch (r) {
1108         case 0:
1109                 schedule_internal_copy(tc, block, lookup_result->block,
1110                                        data_block, cell, bio);
1111                 break;
1112
1113         case -ENOSPC:
1114                 no_space(pool, cell);
1115                 break;
1116
1117         default:
1118                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1119                             __func__, r);
1120                 set_pool_mode(pool, PM_READ_ONLY);
1121                 cell_error(pool, cell);
1122                 break;
1123         }
1124 }
1125
1126 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1127                                dm_block_t block,
1128                                struct dm_thin_lookup_result *lookup_result)
1129 {
1130         struct dm_bio_prison_cell *cell;
1131         struct pool *pool = tc->pool;
1132         struct dm_cell_key key;
1133
1134         /*
1135          * If cell is already occupied, then sharing is already in the process
1136          * of being broken so we have nothing further to do here.
1137          */
1138         build_data_key(tc->td, lookup_result->block, &key);
1139         if (bio_detain(pool, &key, bio, &cell))
1140                 return;
1141
1142         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1143                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1144         else {
1145                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1146
1147                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1148                 inc_all_io_entry(pool, bio);
1149                 cell_defer_no_holder(tc, cell);
1150
1151                 remap_and_issue(tc, bio, lookup_result->block);
1152         }
1153 }
1154
1155 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1156                             struct dm_bio_prison_cell *cell)
1157 {
1158         int r;
1159         dm_block_t data_block;
1160         struct pool *pool = tc->pool;
1161
1162         /*
1163          * Remap empty bios (flushes) immediately, without provisioning.
1164          */
1165         if (!bio->bi_iter.bi_size) {
1166                 inc_all_io_entry(pool, bio);
1167                 cell_defer_no_holder(tc, cell);
1168
1169                 remap_and_issue(tc, bio, 0);
1170                 return;
1171         }
1172
1173         /*
1174          * Fill read bios with zeroes and complete them immediately.
1175          */
1176         if (bio_data_dir(bio) == READ) {
1177                 zero_fill_bio(bio);
1178                 cell_defer_no_holder(tc, cell);
1179                 bio_endio(bio, 0);
1180                 return;
1181         }
1182
1183         r = alloc_data_block(tc, &data_block);
1184         switch (r) {
1185         case 0:
1186                 if (tc->origin_dev)
1187                         schedule_external_copy(tc, block, data_block, cell, bio);
1188                 else
1189                         schedule_zero(tc, block, data_block, cell, bio);
1190                 break;
1191
1192         case -ENOSPC:
1193                 no_space(pool, cell);
1194                 break;
1195
1196         default:
1197                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1198                             __func__, r);
1199                 set_pool_mode(pool, PM_READ_ONLY);
1200                 cell_error(pool, cell);
1201                 break;
1202         }
1203 }
1204
1205 static void process_bio(struct thin_c *tc, struct bio *bio)
1206 {
1207         int r;
1208         struct pool *pool = tc->pool;
1209         dm_block_t block = get_bio_block(tc, bio);
1210         struct dm_bio_prison_cell *cell;
1211         struct dm_cell_key key;
1212         struct dm_thin_lookup_result lookup_result;
1213
1214         /*
1215          * If cell is already occupied, then the block is already
1216          * being provisioned so we have nothing further to do here.
1217          */
1218         build_virtual_key(tc->td, block, &key);
1219         if (bio_detain(pool, &key, bio, &cell))
1220                 return;
1221
1222         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1223         switch (r) {
1224         case 0:
1225                 if (lookup_result.shared) {
1226                         process_shared_bio(tc, bio, block, &lookup_result);
1227                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1228                 } else {
1229                         inc_all_io_entry(pool, bio);
1230                         cell_defer_no_holder(tc, cell);
1231
1232                         remap_and_issue(tc, bio, lookup_result.block);
1233                 }
1234                 break;
1235
1236         case -ENODATA:
1237                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1238                         inc_all_io_entry(pool, bio);
1239                         cell_defer_no_holder(tc, cell);
1240
1241                         remap_to_origin_and_issue(tc, bio);
1242                 } else
1243                         provision_block(tc, bio, block, cell);
1244                 break;
1245
1246         default:
1247                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1248                             __func__, r);
1249                 cell_defer_no_holder(tc, cell);
1250                 bio_io_error(bio);
1251                 break;
1252         }
1253 }
1254
1255 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1256 {
1257         int r;
1258         int rw = bio_data_dir(bio);
1259         dm_block_t block = get_bio_block(tc, bio);
1260         struct dm_thin_lookup_result lookup_result;
1261
1262         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1263         switch (r) {
1264         case 0:
1265                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1266                         bio_io_error(bio);
1267                 else {
1268                         inc_all_io_entry(tc->pool, bio);
1269                         remap_and_issue(tc, bio, lookup_result.block);
1270                 }
1271                 break;
1272
1273         case -ENODATA:
1274                 if (rw != READ) {
1275                         bio_io_error(bio);
1276                         break;
1277                 }
1278
1279                 if (tc->origin_dev) {
1280                         inc_all_io_entry(tc->pool, bio);
1281                         remap_to_origin_and_issue(tc, bio);
1282                         break;
1283                 }
1284
1285                 zero_fill_bio(bio);
1286                 bio_endio(bio, 0);
1287                 break;
1288
1289         default:
1290                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1291                             __func__, r);
1292                 bio_io_error(bio);
1293                 break;
1294         }
1295 }
1296
1297 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1298 {
1299         bio_io_error(bio);
1300 }
1301
1302 /*
1303  * FIXME: should we also commit due to size of transaction, measured in
1304  * metadata blocks?
1305  */
1306 static int need_commit_due_to_time(struct pool *pool)
1307 {
1308         return jiffies < pool->last_commit_jiffies ||
1309                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1310 }
1311
1312 static void process_deferred_bios(struct pool *pool)
1313 {
1314         unsigned long flags;
1315         struct bio *bio;
1316         struct bio_list bios;
1317
1318         bio_list_init(&bios);
1319
1320         spin_lock_irqsave(&pool->lock, flags);
1321         bio_list_merge(&bios, &pool->deferred_bios);
1322         bio_list_init(&pool->deferred_bios);
1323         spin_unlock_irqrestore(&pool->lock, flags);
1324
1325         while ((bio = bio_list_pop(&bios))) {
1326                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1327                 struct thin_c *tc = h->tc;
1328
1329                 /*
1330                  * If we've got no free new_mapping structs, and processing
1331                  * this bio might require one, we pause until there are some
1332                  * prepared mappings to process.
1333                  */
1334                 if (ensure_next_mapping(pool)) {
1335                         spin_lock_irqsave(&pool->lock, flags);
1336                         bio_list_merge(&pool->deferred_bios, &bios);
1337                         spin_unlock_irqrestore(&pool->lock, flags);
1338
1339                         break;
1340                 }
1341
1342                 if (bio->bi_rw & REQ_DISCARD)
1343                         pool->process_discard(tc, bio);
1344                 else
1345                         pool->process_bio(tc, bio);
1346         }
1347
1348         /*
1349          * If there are any deferred flush bios, we must commit
1350          * the metadata before issuing them.
1351          */
1352         bio_list_init(&bios);
1353         spin_lock_irqsave(&pool->lock, flags);
1354         bio_list_merge(&bios, &pool->deferred_flush_bios);
1355         bio_list_init(&pool->deferred_flush_bios);
1356         spin_unlock_irqrestore(&pool->lock, flags);
1357
1358         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1359                 return;
1360
1361         if (commit(pool)) {
1362                 while ((bio = bio_list_pop(&bios)))
1363                         bio_io_error(bio);
1364                 return;
1365         }
1366         pool->last_commit_jiffies = jiffies;
1367
1368         while ((bio = bio_list_pop(&bios)))
1369                 generic_make_request(bio);
1370 }
1371
1372 static void do_worker(struct work_struct *ws)
1373 {
1374         struct pool *pool = container_of(ws, struct pool, worker);
1375
1376         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1377         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1378         process_deferred_bios(pool);
1379 }
1380
1381 /*
1382  * We want to commit periodically so that not too much
1383  * unwritten data builds up.
1384  */
1385 static void do_waker(struct work_struct *ws)
1386 {
1387         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1388         wake_worker(pool);
1389         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1390 }
1391
1392 /*----------------------------------------------------------------*/
1393
1394 static enum pool_mode get_pool_mode(struct pool *pool)
1395 {
1396         return pool->pf.mode;
1397 }
1398
1399 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1400 {
1401         int r;
1402
1403         pool->pf.mode = mode;
1404
1405         switch (mode) {
1406         case PM_FAIL:
1407                 DMERR("%s: switching pool to failure mode",
1408                       dm_device_name(pool->pool_md));
1409                 dm_pool_metadata_read_only(pool->pmd);
1410                 pool->process_bio = process_bio_fail;
1411                 pool->process_discard = process_bio_fail;
1412                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1413                 pool->process_prepared_discard = process_prepared_discard_fail;
1414                 break;
1415
1416         case PM_READ_ONLY:
1417                 DMERR("%s: switching pool to read-only mode",
1418                       dm_device_name(pool->pool_md));
1419                 r = dm_pool_abort_metadata(pool->pmd);
1420                 if (r) {
1421                         DMERR("%s: aborting transaction failed",
1422                               dm_device_name(pool->pool_md));
1423                         set_pool_mode(pool, PM_FAIL);
1424                 } else {
1425                         dm_pool_metadata_read_only(pool->pmd);
1426                         pool->process_bio = process_bio_read_only;
1427                         pool->process_discard = process_discard;
1428                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1429                         pool->process_prepared_discard = process_prepared_discard_passdown;
1430                 }
1431                 break;
1432
1433         case PM_WRITE:
1434                 dm_pool_metadata_read_write(pool->pmd);
1435                 pool->process_bio = process_bio;
1436                 pool->process_discard = process_discard;
1437                 pool->process_prepared_mapping = process_prepared_mapping;
1438                 pool->process_prepared_discard = process_prepared_discard;
1439                 break;
1440         }
1441 }
1442
1443 /*----------------------------------------------------------------*/
1444
1445 /*
1446  * Mapping functions.
1447  */
1448
1449 /*
1450  * Called only while mapping a thin bio to hand it over to the workqueue.
1451  */
1452 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1453 {
1454         unsigned long flags;
1455         struct pool *pool = tc->pool;
1456
1457         spin_lock_irqsave(&pool->lock, flags);
1458         bio_list_add(&pool->deferred_bios, bio);
1459         spin_unlock_irqrestore(&pool->lock, flags);
1460
1461         wake_worker(pool);
1462 }
1463
1464 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1465 {
1466         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1467
1468         h->tc = tc;
1469         h->shared_read_entry = NULL;
1470         h->all_io_entry = NULL;
1471         h->overwrite_mapping = NULL;
1472 }
1473
1474 /*
1475  * Non-blocking function called from the thin target's map function.
1476  */
1477 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1478 {
1479         int r;
1480         struct thin_c *tc = ti->private;
1481         dm_block_t block = get_bio_block(tc, bio);
1482         struct dm_thin_device *td = tc->td;
1483         struct dm_thin_lookup_result result;
1484         struct dm_bio_prison_cell cell1, cell2;
1485         struct dm_bio_prison_cell *cell_result;
1486         struct dm_cell_key key;
1487
1488         thin_hook_bio(tc, bio);
1489
1490         if (get_pool_mode(tc->pool) == PM_FAIL) {
1491                 bio_io_error(bio);
1492                 return DM_MAPIO_SUBMITTED;
1493         }
1494
1495         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1496                 thin_defer_bio(tc, bio);
1497                 return DM_MAPIO_SUBMITTED;
1498         }
1499
1500         r = dm_thin_find_block(td, block, 0, &result);
1501
1502         /*
1503          * Note that we defer readahead too.
1504          */
1505         switch (r) {
1506         case 0:
1507                 if (unlikely(result.shared)) {
1508                         /*
1509                          * We have a race condition here between the
1510                          * result.shared value returned by the lookup and
1511                          * snapshot creation, which may cause new
1512                          * sharing.
1513                          *
1514                          * To avoid this always quiesce the origin before
1515                          * taking the snap.  You want to do this anyway to
1516                          * ensure a consistent application view
1517                          * (i.e. lockfs).
1518                          *
1519                          * More distant ancestors are irrelevant. The
1520                          * shared flag will be set in their case.
1521                          */
1522                         thin_defer_bio(tc, bio);
1523                         return DM_MAPIO_SUBMITTED;
1524                 }
1525
1526                 build_virtual_key(tc->td, block, &key);
1527                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1528                         return DM_MAPIO_SUBMITTED;
1529
1530                 build_data_key(tc->td, result.block, &key);
1531                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1532                         cell_defer_no_holder_no_free(tc, &cell1);
1533                         return DM_MAPIO_SUBMITTED;
1534                 }
1535
1536                 inc_all_io_entry(tc->pool, bio);
1537                 cell_defer_no_holder_no_free(tc, &cell2);
1538                 cell_defer_no_holder_no_free(tc, &cell1);
1539
1540                 remap(tc, bio, result.block);
1541                 return DM_MAPIO_REMAPPED;
1542
1543         case -ENODATA:
1544                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1545                         /*
1546                          * This block isn't provisioned, and we have no way
1547                          * of doing so.  Just error it.
1548                          */
1549                         bio_io_error(bio);
1550                         return DM_MAPIO_SUBMITTED;
1551                 }
1552                 /* fall through */
1553
1554         case -EWOULDBLOCK:
1555                 /*
1556                  * In future, the failed dm_thin_find_block above could
1557                  * provide the hint to load the metadata into cache.
1558                  */
1559                 thin_defer_bio(tc, bio);
1560                 return DM_MAPIO_SUBMITTED;
1561
1562         default:
1563                 /*
1564                  * Must always call bio_io_error on failure.
1565                  * dm_thin_find_block can fail with -EINVAL if the
1566                  * pool is switched to fail-io mode.
1567                  */
1568                 bio_io_error(bio);
1569                 return DM_MAPIO_SUBMITTED;
1570         }
1571 }
1572
1573 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1574 {
1575         int r;
1576         unsigned long flags;
1577         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1578
1579         spin_lock_irqsave(&pt->pool->lock, flags);
1580         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1581         spin_unlock_irqrestore(&pt->pool->lock, flags);
1582
1583         if (!r) {
1584                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1585                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1586         }
1587
1588         return r;
1589 }
1590
1591 static void __requeue_bios(struct pool *pool)
1592 {
1593         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1594         bio_list_init(&pool->retry_on_resume_list);
1595 }
1596
1597 /*----------------------------------------------------------------
1598  * Binding of control targets to a pool object
1599  *--------------------------------------------------------------*/
1600 static bool data_dev_supports_discard(struct pool_c *pt)
1601 {
1602         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1603
1604         return q && blk_queue_discard(q);
1605 }
1606
1607 static bool is_factor(sector_t block_size, uint32_t n)
1608 {
1609         return !sector_div(block_size, n);
1610 }
1611
1612 /*
1613  * If discard_passdown was enabled verify that the data device
1614  * supports discards.  Disable discard_passdown if not.
1615  */
1616 static void disable_passdown_if_not_supported(struct pool_c *pt)
1617 {
1618         struct pool *pool = pt->pool;
1619         struct block_device *data_bdev = pt->data_dev->bdev;
1620         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1621         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1622         const char *reason = NULL;
1623         char buf[BDEVNAME_SIZE];
1624
1625         if (!pt->adjusted_pf.discard_passdown)
1626                 return;
1627
1628         if (!data_dev_supports_discard(pt))
1629                 reason = "discard unsupported";
1630
1631         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1632                 reason = "max discard sectors smaller than a block";
1633
1634         else if (data_limits->discard_granularity > block_size)
1635                 reason = "discard granularity larger than a block";
1636
1637         else if (!is_factor(block_size, data_limits->discard_granularity))
1638                 reason = "discard granularity not a factor of block size";
1639
1640         if (reason) {
1641                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1642                 pt->adjusted_pf.discard_passdown = false;
1643         }
1644 }
1645
1646 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1647 {
1648         struct pool_c *pt = ti->private;
1649
1650         /*
1651          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1652          */
1653         enum pool_mode old_mode = pool->pf.mode;
1654         enum pool_mode new_mode = pt->adjusted_pf.mode;
1655
1656         /*
1657          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1658          * not going to recover without a thin_repair.  So we never let the
1659          * pool move out of the old mode.  On the other hand a PM_READ_ONLY
1660          * may have been due to a lack of metadata or data space, and may
1661          * now work (ie. if the underlying devices have been resized).
1662          */
1663         if (old_mode == PM_FAIL)
1664                 new_mode = old_mode;
1665
1666         pool->ti = ti;
1667         pool->low_water_blocks = pt->low_water_blocks;
1668         pool->pf = pt->adjusted_pf;
1669
1670         set_pool_mode(pool, new_mode);
1671
1672         return 0;
1673 }
1674
1675 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1676 {
1677         if (pool->ti == ti)
1678                 pool->ti = NULL;
1679 }
1680
1681 /*----------------------------------------------------------------
1682  * Pool creation
1683  *--------------------------------------------------------------*/
1684 /* Initialize pool features. */
1685 static void pool_features_init(struct pool_features *pf)
1686 {
1687         pf->mode = PM_WRITE;
1688         pf->zero_new_blocks = true;
1689         pf->discard_enabled = true;
1690         pf->discard_passdown = true;
1691 }
1692
1693 static void __pool_destroy(struct pool *pool)
1694 {
1695         __pool_table_remove(pool);
1696
1697         if (dm_pool_metadata_close(pool->pmd) < 0)
1698                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1699
1700         dm_bio_prison_destroy(pool->prison);
1701         dm_kcopyd_client_destroy(pool->copier);
1702
1703         if (pool->wq)
1704                 destroy_workqueue(pool->wq);
1705
1706         if (pool->next_mapping)
1707                 mempool_free(pool->next_mapping, pool->mapping_pool);
1708         mempool_destroy(pool->mapping_pool);
1709         dm_deferred_set_destroy(pool->shared_read_ds);
1710         dm_deferred_set_destroy(pool->all_io_ds);
1711         kfree(pool);
1712 }
1713
1714 static struct kmem_cache *_new_mapping_cache;
1715
1716 static struct pool *pool_create(struct mapped_device *pool_md,
1717                                 struct block_device *metadata_dev,
1718                                 unsigned long block_size,
1719                                 int read_only, char **error)
1720 {
1721         int r;
1722         void *err_p;
1723         struct pool *pool;
1724         struct dm_pool_metadata *pmd;
1725         bool format_device = read_only ? false : true;
1726
1727         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1728         if (IS_ERR(pmd)) {
1729                 *error = "Error creating metadata object";
1730                 return (struct pool *)pmd;
1731         }
1732
1733         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1734         if (!pool) {
1735                 *error = "Error allocating memory for pool";
1736                 err_p = ERR_PTR(-ENOMEM);
1737                 goto bad_pool;
1738         }
1739
1740         pool->pmd = pmd;
1741         pool->sectors_per_block = block_size;
1742         if (block_size & (block_size - 1))
1743                 pool->sectors_per_block_shift = -1;
1744         else
1745                 pool->sectors_per_block_shift = __ffs(block_size);
1746         pool->low_water_blocks = 0;
1747         pool_features_init(&pool->pf);
1748         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1749         if (!pool->prison) {
1750                 *error = "Error creating pool's bio prison";
1751                 err_p = ERR_PTR(-ENOMEM);
1752                 goto bad_prison;
1753         }
1754
1755         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1756         if (IS_ERR(pool->copier)) {
1757                 r = PTR_ERR(pool->copier);
1758                 *error = "Error creating pool's kcopyd client";
1759                 err_p = ERR_PTR(r);
1760                 goto bad_kcopyd_client;
1761         }
1762
1763         /*
1764          * Create singlethreaded workqueue that will service all devices
1765          * that use this metadata.
1766          */
1767         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1768         if (!pool->wq) {
1769                 *error = "Error creating pool's workqueue";
1770                 err_p = ERR_PTR(-ENOMEM);
1771                 goto bad_wq;
1772         }
1773
1774         INIT_WORK(&pool->worker, do_worker);
1775         INIT_DELAYED_WORK(&pool->waker, do_waker);
1776         spin_lock_init(&pool->lock);
1777         bio_list_init(&pool->deferred_bios);
1778         bio_list_init(&pool->deferred_flush_bios);
1779         INIT_LIST_HEAD(&pool->prepared_mappings);
1780         INIT_LIST_HEAD(&pool->prepared_discards);
1781         pool->low_water_triggered = 0;
1782         pool->no_free_space = 0;
1783         bio_list_init(&pool->retry_on_resume_list);
1784
1785         pool->shared_read_ds = dm_deferred_set_create();
1786         if (!pool->shared_read_ds) {
1787                 *error = "Error creating pool's shared read deferred set";
1788                 err_p = ERR_PTR(-ENOMEM);
1789                 goto bad_shared_read_ds;
1790         }
1791
1792         pool->all_io_ds = dm_deferred_set_create();
1793         if (!pool->all_io_ds) {
1794                 *error = "Error creating pool's all io deferred set";
1795                 err_p = ERR_PTR(-ENOMEM);
1796                 goto bad_all_io_ds;
1797         }
1798
1799         pool->next_mapping = NULL;
1800         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1801                                                       _new_mapping_cache);
1802         if (!pool->mapping_pool) {
1803                 *error = "Error creating pool's mapping mempool";
1804                 err_p = ERR_PTR(-ENOMEM);
1805                 goto bad_mapping_pool;
1806         }
1807
1808         pool->ref_count = 1;
1809         pool->last_commit_jiffies = jiffies;
1810         pool->pool_md = pool_md;
1811         pool->md_dev = metadata_dev;
1812         __pool_table_insert(pool);
1813
1814         return pool;
1815
1816 bad_mapping_pool:
1817         dm_deferred_set_destroy(pool->all_io_ds);
1818 bad_all_io_ds:
1819         dm_deferred_set_destroy(pool->shared_read_ds);
1820 bad_shared_read_ds:
1821         destroy_workqueue(pool->wq);
1822 bad_wq:
1823         dm_kcopyd_client_destroy(pool->copier);
1824 bad_kcopyd_client:
1825         dm_bio_prison_destroy(pool->prison);
1826 bad_prison:
1827         kfree(pool);
1828 bad_pool:
1829         if (dm_pool_metadata_close(pmd))
1830                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1831
1832         return err_p;
1833 }
1834
1835 static void __pool_inc(struct pool *pool)
1836 {
1837         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1838         pool->ref_count++;
1839 }
1840
1841 static void __pool_dec(struct pool *pool)
1842 {
1843         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1844         BUG_ON(!pool->ref_count);
1845         if (!--pool->ref_count)
1846                 __pool_destroy(pool);
1847 }
1848
1849 static struct pool *__pool_find(struct mapped_device *pool_md,
1850                                 struct block_device *metadata_dev,
1851                                 unsigned long block_size, int read_only,
1852                                 char **error, int *created)
1853 {
1854         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1855
1856         if (pool) {
1857                 if (pool->pool_md != pool_md) {
1858                         *error = "metadata device already in use by a pool";
1859                         return ERR_PTR(-EBUSY);
1860                 }
1861                 __pool_inc(pool);
1862
1863         } else {
1864                 pool = __pool_table_lookup(pool_md);
1865                 if (pool) {
1866                         if (pool->md_dev != metadata_dev) {
1867                                 *error = "different pool cannot replace a pool";
1868                                 return ERR_PTR(-EINVAL);
1869                         }
1870                         __pool_inc(pool);
1871
1872                 } else {
1873                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1874                         *created = 1;
1875                 }
1876         }
1877
1878         return pool;
1879 }
1880
1881 /*----------------------------------------------------------------
1882  * Pool target methods
1883  *--------------------------------------------------------------*/
1884 static void pool_dtr(struct dm_target *ti)
1885 {
1886         struct pool_c *pt = ti->private;
1887
1888         mutex_lock(&dm_thin_pool_table.mutex);
1889
1890         unbind_control_target(pt->pool, ti);
1891         __pool_dec(pt->pool);
1892         dm_put_device(ti, pt->metadata_dev);
1893         dm_put_device(ti, pt->data_dev);
1894         kfree(pt);
1895
1896         mutex_unlock(&dm_thin_pool_table.mutex);
1897 }
1898
1899 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1900                                struct dm_target *ti)
1901 {
1902         int r;
1903         unsigned argc;
1904         const char *arg_name;
1905
1906         static struct dm_arg _args[] = {
1907                 {0, 3, "Invalid number of pool feature arguments"},
1908         };
1909
1910         /*
1911          * No feature arguments supplied.
1912          */
1913         if (!as->argc)
1914                 return 0;
1915
1916         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1917         if (r)
1918                 return -EINVAL;
1919
1920         while (argc && !r) {
1921                 arg_name = dm_shift_arg(as);
1922                 argc--;
1923
1924                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1925                         pf->zero_new_blocks = false;
1926
1927                 else if (!strcasecmp(arg_name, "ignore_discard"))
1928                         pf->discard_enabled = false;
1929
1930                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1931                         pf->discard_passdown = false;
1932
1933                 else if (!strcasecmp(arg_name, "read_only"))
1934                         pf->mode = PM_READ_ONLY;
1935
1936                 else {
1937                         ti->error = "Unrecognised pool feature requested";
1938                         r = -EINVAL;
1939                         break;
1940                 }
1941         }
1942
1943         return r;
1944 }
1945
1946 static void metadata_low_callback(void *context)
1947 {
1948         struct pool *pool = context;
1949
1950         DMWARN("%s: reached low water mark for metadata device: sending event.",
1951                dm_device_name(pool->pool_md));
1952
1953         dm_table_event(pool->ti->table);
1954 }
1955
1956 static sector_t get_metadata_dev_size(struct block_device *bdev)
1957 {
1958         sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1959         char buffer[BDEVNAME_SIZE];
1960
1961         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1962                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1963                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1964                 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1965         }
1966
1967         return metadata_dev_size;
1968 }
1969
1970 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1971 {
1972         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1973
1974         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1975
1976         return metadata_dev_size;
1977 }
1978
1979 /*
1980  * When a metadata threshold is crossed a dm event is triggered, and
1981  * userland should respond by growing the metadata device.  We could let
1982  * userland set the threshold, like we do with the data threshold, but I'm
1983  * not sure they know enough to do this well.
1984  */
1985 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1986 {
1987         /*
1988          * 4M is ample for all ops with the possible exception of thin
1989          * device deletion which is harmless if it fails (just retry the
1990          * delete after you've grown the device).
1991          */
1992         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1993         return min((dm_block_t)1024ULL /* 4M */, quarter);
1994 }
1995
1996 /*
1997  * thin-pool <metadata dev> <data dev>
1998  *           <data block size (sectors)>
1999  *           <low water mark (blocks)>
2000  *           [<#feature args> [<arg>]*]
2001  *
2002  * Optional feature arguments are:
2003  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2004  *           ignore_discard: disable discard
2005  *           no_discard_passdown: don't pass discards down to the data device
2006  */
2007 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2008 {
2009         int r, pool_created = 0;
2010         struct pool_c *pt;
2011         struct pool *pool;
2012         struct pool_features pf;
2013         struct dm_arg_set as;
2014         struct dm_dev *data_dev;
2015         unsigned long block_size;
2016         dm_block_t low_water_blocks;
2017         struct dm_dev *metadata_dev;
2018         fmode_t metadata_mode;
2019
2020         /*
2021          * FIXME Remove validation from scope of lock.
2022          */
2023         mutex_lock(&dm_thin_pool_table.mutex);
2024
2025         if (argc < 4) {
2026                 ti->error = "Invalid argument count";
2027                 r = -EINVAL;
2028                 goto out_unlock;
2029         }
2030
2031         as.argc = argc;
2032         as.argv = argv;
2033
2034         /*
2035          * Set default pool features.
2036          */
2037         pool_features_init(&pf);
2038
2039         dm_consume_args(&as, 4);
2040         r = parse_pool_features(&as, &pf, ti);
2041         if (r)
2042                 goto out_unlock;
2043
2044         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2045         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2046         if (r) {
2047                 ti->error = "Error opening metadata block device";
2048                 goto out_unlock;
2049         }
2050
2051         /*
2052          * Run for the side-effect of possibly issuing a warning if the
2053          * device is too big.
2054          */
2055         (void) get_metadata_dev_size(metadata_dev->bdev);
2056
2057         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2058         if (r) {
2059                 ti->error = "Error getting data device";
2060                 goto out_metadata;
2061         }
2062
2063         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2064             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2065             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2066             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2067                 ti->error = "Invalid block size";
2068                 r = -EINVAL;
2069                 goto out;
2070         }
2071
2072         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2073                 ti->error = "Invalid low water mark";
2074                 r = -EINVAL;
2075                 goto out;
2076         }
2077
2078         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2079         if (!pt) {
2080                 r = -ENOMEM;
2081                 goto out;
2082         }
2083
2084         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2085                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2086         if (IS_ERR(pool)) {
2087                 r = PTR_ERR(pool);
2088                 goto out_free_pt;
2089         }
2090
2091         /*
2092          * 'pool_created' reflects whether this is the first table load.
2093          * Top level discard support is not allowed to be changed after
2094          * initial load.  This would require a pool reload to trigger thin
2095          * device changes.
2096          */
2097         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2098                 ti->error = "Discard support cannot be disabled once enabled";
2099                 r = -EINVAL;
2100                 goto out_flags_changed;
2101         }
2102
2103         pt->pool = pool;
2104         pt->ti = ti;
2105         pt->metadata_dev = metadata_dev;
2106         pt->data_dev = data_dev;
2107         pt->low_water_blocks = low_water_blocks;
2108         pt->adjusted_pf = pt->requested_pf = pf;
2109         ti->num_flush_bios = 1;
2110
2111         /*
2112          * Only need to enable discards if the pool should pass
2113          * them down to the data device.  The thin device's discard
2114          * processing will cause mappings to be removed from the btree.
2115          */
2116         ti->discard_zeroes_data_unsupported = true;
2117         if (pf.discard_enabled && pf.discard_passdown) {
2118                 ti->num_discard_bios = 1;
2119
2120                 /*
2121                  * Setting 'discards_supported' circumvents the normal
2122                  * stacking of discard limits (this keeps the pool and
2123                  * thin devices' discard limits consistent).
2124                  */
2125                 ti->discards_supported = true;
2126         }
2127         ti->private = pt;
2128
2129         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2130                                                 calc_metadata_threshold(pt),
2131                                                 metadata_low_callback,
2132                                                 pool);
2133         if (r)
2134                 goto out_free_pt;
2135
2136         pt->callbacks.congested_fn = pool_is_congested;
2137         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2138
2139         mutex_unlock(&dm_thin_pool_table.mutex);
2140
2141         return 0;
2142
2143 out_flags_changed:
2144         __pool_dec(pool);
2145 out_free_pt:
2146         kfree(pt);
2147 out:
2148         dm_put_device(ti, data_dev);
2149 out_metadata:
2150         dm_put_device(ti, metadata_dev);
2151 out_unlock:
2152         mutex_unlock(&dm_thin_pool_table.mutex);
2153
2154         return r;
2155 }
2156
2157 static int pool_map(struct dm_target *ti, struct bio *bio)
2158 {
2159         int r;
2160         struct pool_c *pt = ti->private;
2161         struct pool *pool = pt->pool;
2162         unsigned long flags;
2163
2164         /*
2165          * As this is a singleton target, ti->begin is always zero.
2166          */
2167         spin_lock_irqsave(&pool->lock, flags);
2168         bio->bi_bdev = pt->data_dev->bdev;
2169         r = DM_MAPIO_REMAPPED;
2170         spin_unlock_irqrestore(&pool->lock, flags);
2171
2172         return r;
2173 }
2174
2175 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2176 {
2177         int r;
2178         struct pool_c *pt = ti->private;
2179         struct pool *pool = pt->pool;
2180         sector_t data_size = ti->len;
2181         dm_block_t sb_data_size;
2182
2183         *need_commit = false;
2184
2185         (void) sector_div(data_size, pool->sectors_per_block);
2186
2187         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2188         if (r) {
2189                 DMERR("%s: failed to retrieve data device size",
2190                       dm_device_name(pool->pool_md));
2191                 return r;
2192         }
2193
2194         if (data_size < sb_data_size) {
2195                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2196                       dm_device_name(pool->pool_md),
2197                       (unsigned long long)data_size, sb_data_size);
2198                 return -EINVAL;
2199
2200         } else if (data_size > sb_data_size) {
2201                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2202                 if (r) {
2203                         DMERR("%s: failed to resize data device",
2204                               dm_device_name(pool->pool_md));
2205                         set_pool_mode(pool, PM_READ_ONLY);
2206                         return r;
2207                 }
2208
2209                 *need_commit = true;
2210         }
2211
2212         return 0;
2213 }
2214
2215 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2216 {
2217         int r;
2218         struct pool_c *pt = ti->private;
2219         struct pool *pool = pt->pool;
2220         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2221
2222         *need_commit = false;
2223
2224         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2225
2226         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2227         if (r) {
2228                 DMERR("%s: failed to retrieve metadata device size",
2229                       dm_device_name(pool->pool_md));
2230                 return r;
2231         }
2232
2233         if (metadata_dev_size < sb_metadata_dev_size) {
2234                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2235                       dm_device_name(pool->pool_md),
2236                       metadata_dev_size, sb_metadata_dev_size);
2237                 return -EINVAL;
2238
2239         } else if (metadata_dev_size > sb_metadata_dev_size) {
2240                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2241                 if (r) {
2242                         DMERR("%s: failed to resize metadata device",
2243                               dm_device_name(pool->pool_md));
2244                         return r;
2245                 }
2246
2247                 *need_commit = true;
2248         }
2249
2250         return 0;
2251 }
2252
2253 /*
2254  * Retrieves the number of blocks of the data device from
2255  * the superblock and compares it to the actual device size,
2256  * thus resizing the data device in case it has grown.
2257  *
2258  * This both copes with opening preallocated data devices in the ctr
2259  * being followed by a resume
2260  * -and-
2261  * calling the resume method individually after userspace has
2262  * grown the data device in reaction to a table event.
2263  */
2264 static int pool_preresume(struct dm_target *ti)
2265 {
2266         int r;
2267         bool need_commit1, need_commit2;
2268         struct pool_c *pt = ti->private;
2269         struct pool *pool = pt->pool;
2270
2271         /*
2272          * Take control of the pool object.
2273          */
2274         r = bind_control_target(pool, ti);
2275         if (r)
2276                 return r;
2277
2278         r = maybe_resize_data_dev(ti, &need_commit1);
2279         if (r)
2280                 return r;
2281
2282         r = maybe_resize_metadata_dev(ti, &need_commit2);
2283         if (r)
2284                 return r;
2285
2286         if (need_commit1 || need_commit2)
2287                 (void) commit(pool);
2288
2289         return 0;
2290 }
2291
2292 static void pool_resume(struct dm_target *ti)
2293 {
2294         struct pool_c *pt = ti->private;
2295         struct pool *pool = pt->pool;
2296         unsigned long flags;
2297
2298         spin_lock_irqsave(&pool->lock, flags);
2299         pool->low_water_triggered = 0;
2300         pool->no_free_space = 0;
2301         __requeue_bios(pool);
2302         spin_unlock_irqrestore(&pool->lock, flags);
2303
2304         do_waker(&pool->waker.work);
2305 }
2306
2307 static void pool_postsuspend(struct dm_target *ti)
2308 {
2309         struct pool_c *pt = ti->private;
2310         struct pool *pool = pt->pool;
2311
2312         cancel_delayed_work(&pool->waker);
2313         flush_workqueue(pool->wq);
2314         (void) commit(pool);
2315 }
2316
2317 static int check_arg_count(unsigned argc, unsigned args_required)
2318 {
2319         if (argc != args_required) {
2320                 DMWARN("Message received with %u arguments instead of %u.",
2321                        argc, args_required);
2322                 return -EINVAL;
2323         }
2324
2325         return 0;
2326 }
2327
2328 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2329 {
2330         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2331             *dev_id <= MAX_DEV_ID)
2332                 return 0;
2333
2334         if (warning)
2335                 DMWARN("Message received with invalid device id: %s", arg);
2336
2337         return -EINVAL;
2338 }
2339
2340 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2341 {
2342         dm_thin_id dev_id;
2343         int r;
2344
2345         r = check_arg_count(argc, 2);
2346         if (r)
2347                 return r;
2348
2349         r = read_dev_id(argv[1], &dev_id, 1);
2350         if (r)
2351                 return r;
2352
2353         r = dm_pool_create_thin(pool->pmd, dev_id);
2354         if (r) {
2355                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2356                        argv[1]);
2357                 return r;
2358         }
2359
2360         return 0;
2361 }
2362
2363 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2364 {
2365         dm_thin_id dev_id;
2366         dm_thin_id origin_dev_id;
2367         int r;
2368
2369         r = check_arg_count(argc, 3);
2370         if (r)
2371                 return r;
2372
2373         r = read_dev_id(argv[1], &dev_id, 1);
2374         if (r)
2375                 return r;
2376
2377         r = read_dev_id(argv[2], &origin_dev_id, 1);
2378         if (r)
2379                 return r;
2380
2381         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2382         if (r) {
2383                 DMWARN("Creation of new snapshot %s of device %s failed.",
2384                        argv[1], argv[2]);
2385                 return r;
2386         }
2387
2388         return 0;
2389 }
2390
2391 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2392 {
2393         dm_thin_id dev_id;
2394         int r;
2395
2396         r = check_arg_count(argc, 2);
2397         if (r)
2398                 return r;
2399
2400         r = read_dev_id(argv[1], &dev_id, 1);
2401         if (r)
2402                 return r;
2403
2404         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2405         if (r)
2406                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2407
2408         return r;
2409 }
2410
2411 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2412 {
2413         dm_thin_id old_id, new_id;
2414         int r;
2415
2416         r = check_arg_count(argc, 3);
2417         if (r)
2418                 return r;
2419
2420         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2421                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2422                 return -EINVAL;
2423         }
2424
2425         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2426                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2427                 return -EINVAL;
2428         }
2429
2430         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2431         if (r) {
2432                 DMWARN("Failed to change transaction id from %s to %s.",
2433                        argv[1], argv[2]);
2434                 return r;
2435         }
2436
2437         return 0;
2438 }
2439
2440 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2441 {
2442         int r;
2443
2444         r = check_arg_count(argc, 1);
2445         if (r)
2446                 return r;
2447
2448         (void) commit(pool);
2449
2450         r = dm_pool_reserve_metadata_snap(pool->pmd);
2451         if (r)
2452                 DMWARN("reserve_metadata_snap message failed.");
2453
2454         return r;
2455 }
2456
2457 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2458 {
2459         int r;
2460
2461         r = check_arg_count(argc, 1);
2462         if (r)
2463                 return r;
2464
2465         r = dm_pool_release_metadata_snap(pool->pmd);
2466         if (r)
2467                 DMWARN("release_metadata_snap message failed.");
2468
2469         return r;
2470 }
2471
2472 /*
2473  * Messages supported:
2474  *   create_thin        <dev_id>
2475  *   create_snap        <dev_id> <origin_id>
2476  *   delete             <dev_id>
2477  *   trim               <dev_id> <new_size_in_sectors>
2478  *   set_transaction_id <current_trans_id> <new_trans_id>
2479  *   reserve_metadata_snap
2480  *   release_metadata_snap
2481  */
2482 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2483 {
2484         int r = -EINVAL;
2485         struct pool_c *pt = ti->private;
2486         struct pool *pool = pt->pool;
2487
2488         if (!strcasecmp(argv[0], "create_thin"))
2489                 r = process_create_thin_mesg(argc, argv, pool);
2490
2491         else if (!strcasecmp(argv[0], "create_snap"))
2492                 r = process_create_snap_mesg(argc, argv, pool);
2493
2494         else if (!strcasecmp(argv[0], "delete"))
2495                 r = process_delete_mesg(argc, argv, pool);
2496
2497         else if (!strcasecmp(argv[0], "set_transaction_id"))
2498                 r = process_set_transaction_id_mesg(argc, argv, pool);
2499
2500         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2501                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2502
2503         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2504                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2505
2506         else
2507                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2508
2509         if (!r)
2510                 (void) commit(pool);
2511
2512         return r;
2513 }
2514
2515 static void emit_flags(struct pool_features *pf, char *result,
2516                        unsigned sz, unsigned maxlen)
2517 {
2518         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2519                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2520         DMEMIT("%u ", count);
2521
2522         if (!pf->zero_new_blocks)
2523                 DMEMIT("skip_block_zeroing ");
2524
2525         if (!pf->discard_enabled)
2526                 DMEMIT("ignore_discard ");
2527
2528         if (!pf->discard_passdown)
2529                 DMEMIT("no_discard_passdown ");
2530
2531         if (pf->mode == PM_READ_ONLY)
2532                 DMEMIT("read_only ");
2533 }
2534
2535 /*
2536  * Status line is:
2537  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2538  *    <used data sectors>/<total data sectors> <held metadata root>
2539  */
2540 static void pool_status(struct dm_target *ti, status_type_t type,
2541                         unsigned status_flags, char *result, unsigned maxlen)
2542 {
2543         int r;
2544         unsigned sz = 0;
2545         uint64_t transaction_id;
2546         dm_block_t nr_free_blocks_data;
2547         dm_block_t nr_free_blocks_metadata;
2548         dm_block_t nr_blocks_data;
2549         dm_block_t nr_blocks_metadata;
2550         dm_block_t held_root;
2551         char buf[BDEVNAME_SIZE];
2552         char buf2[BDEVNAME_SIZE];
2553         struct pool_c *pt = ti->private;
2554         struct pool *pool = pt->pool;
2555
2556         switch (type) {
2557         case STATUSTYPE_INFO:
2558                 if (get_pool_mode(pool) == PM_FAIL) {
2559                         DMEMIT("Fail");
2560                         break;
2561                 }
2562
2563                 /* Commit to ensure statistics aren't out-of-date */
2564                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2565                         (void) commit(pool);
2566
2567                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2568                 if (r) {
2569                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2570                               dm_device_name(pool->pool_md), r);
2571                         goto err;
2572                 }
2573
2574                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2575                 if (r) {
2576                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2577                               dm_device_name(pool->pool_md), r);
2578                         goto err;
2579                 }
2580
2581                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2582                 if (r) {
2583                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2584                               dm_device_name(pool->pool_md), r);
2585                         goto err;
2586                 }
2587
2588                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2589                 if (r) {
2590                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2591                               dm_device_name(pool->pool_md), r);
2592                         goto err;
2593                 }
2594
2595                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2596                 if (r) {
2597                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2598                               dm_device_name(pool->pool_md), r);
2599                         goto err;
2600                 }
2601
2602                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2603                 if (r) {
2604                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2605                               dm_device_name(pool->pool_md), r);
2606                         goto err;
2607                 }
2608
2609                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2610                        (unsigned long long)transaction_id,
2611                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2612                        (unsigned long long)nr_blocks_metadata,
2613                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2614                        (unsigned long long)nr_blocks_data);
2615
2616                 if (held_root)
2617                         DMEMIT("%llu ", held_root);
2618                 else
2619                         DMEMIT("- ");
2620
2621                 if (pool->pf.mode == PM_READ_ONLY)
2622                         DMEMIT("ro ");
2623                 else
2624                         DMEMIT("rw ");
2625
2626                 if (!pool->pf.discard_enabled)
2627                         DMEMIT("ignore_discard");
2628                 else if (pool->pf.discard_passdown)
2629                         DMEMIT("discard_passdown");
2630                 else
2631                         DMEMIT("no_discard_passdown");
2632
2633                 break;
2634
2635         case STATUSTYPE_TABLE:
2636                 DMEMIT("%s %s %lu %llu ",
2637                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2638                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2639                        (unsigned long)pool->sectors_per_block,
2640                        (unsigned long long)pt->low_water_blocks);
2641                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2642                 break;
2643         }
2644         return;
2645
2646 err:
2647         DMEMIT("Error");
2648 }
2649
2650 static int pool_iterate_devices(struct dm_target *ti,
2651                                 iterate_devices_callout_fn fn, void *data)
2652 {
2653         struct pool_c *pt = ti->private;
2654
2655         return fn(ti, pt->data_dev, 0, ti->len, data);
2656 }
2657
2658 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2659                       struct bio_vec *biovec, int max_size)
2660 {
2661         struct pool_c *pt = ti->private;
2662         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2663
2664         if (!q->merge_bvec_fn)
2665                 return max_size;
2666
2667         bvm->bi_bdev = pt->data_dev->bdev;
2668
2669         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2670 }
2671
2672 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2673 {
2674         struct pool *pool = pt->pool;
2675         struct queue_limits *data_limits;
2676
2677         limits->max_discard_sectors = pool->sectors_per_block;
2678
2679         /*
2680          * discard_granularity is just a hint, and not enforced.
2681          */
2682         if (pt->adjusted_pf.discard_passdown) {
2683                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2684                 limits->discard_granularity = data_limits->discard_granularity;
2685         } else
2686                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2687 }
2688
2689 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2690 {
2691         struct pool_c *pt = ti->private;
2692         struct pool *pool = pt->pool;
2693         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2694
2695         /*
2696          * If the system-determined stacked limits are compatible with the
2697          * pool's blocksize (io_opt is a factor) do not override them.
2698          */
2699         if (io_opt_sectors < pool->sectors_per_block ||
2700             do_div(io_opt_sectors, pool->sectors_per_block)) {
2701                 blk_limits_io_min(limits, 0);
2702                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2703         }
2704
2705         /*
2706          * pt->adjusted_pf is a staging area for the actual features to use.
2707          * They get transferred to the live pool in bind_control_target()
2708          * called from pool_preresume().
2709          */
2710         if (!pt->adjusted_pf.discard_enabled) {
2711                 /*
2712                  * Must explicitly disallow stacking discard limits otherwise the
2713                  * block layer will stack them if pool's data device has support.
2714                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2715                  * user to see that, so make sure to set all discard limits to 0.
2716                  */
2717                 limits->discard_granularity = 0;
2718                 return;
2719         }
2720
2721         disable_passdown_if_not_supported(pt);
2722
2723         set_discard_limits(pt, limits);
2724 }
2725
2726 static struct target_type pool_target = {
2727         .name = "thin-pool",
2728         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2729                     DM_TARGET_IMMUTABLE,
2730         .version = {1, 9, 0},
2731         .module = THIS_MODULE,
2732         .ctr = pool_ctr,
2733         .dtr = pool_dtr,
2734         .map = pool_map,
2735         .postsuspend = pool_postsuspend,
2736         .preresume = pool_preresume,
2737         .resume = pool_resume,
2738         .message = pool_message,
2739         .status = pool_status,
2740         .merge = pool_merge,
2741         .iterate_devices = pool_iterate_devices,
2742         .io_hints = pool_io_hints,
2743 };
2744
2745 /*----------------------------------------------------------------
2746  * Thin target methods
2747  *--------------------------------------------------------------*/
2748 static void thin_dtr(struct dm_target *ti)
2749 {
2750         struct thin_c *tc = ti->private;
2751
2752         mutex_lock(&dm_thin_pool_table.mutex);
2753
2754         __pool_dec(tc->pool);
2755         dm_pool_close_thin_device(tc->td);
2756         dm_put_device(ti, tc->pool_dev);
2757         if (tc->origin_dev)
2758                 dm_put_device(ti, tc->origin_dev);
2759         kfree(tc);
2760
2761         mutex_unlock(&dm_thin_pool_table.mutex);
2762 }
2763
2764 /*
2765  * Thin target parameters:
2766  *
2767  * <pool_dev> <dev_id> [origin_dev]
2768  *
2769  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2770  * dev_id: the internal device identifier
2771  * origin_dev: a device external to the pool that should act as the origin
2772  *
2773  * If the pool device has discards disabled, they get disabled for the thin
2774  * device as well.
2775  */
2776 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2777 {
2778         int r;
2779         struct thin_c *tc;
2780         struct dm_dev *pool_dev, *origin_dev;
2781         struct mapped_device *pool_md;
2782
2783         mutex_lock(&dm_thin_pool_table.mutex);
2784
2785         if (argc != 2 && argc != 3) {
2786                 ti->error = "Invalid argument count";
2787                 r = -EINVAL;
2788                 goto out_unlock;
2789         }
2790
2791         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2792         if (!tc) {
2793                 ti->error = "Out of memory";
2794                 r = -ENOMEM;
2795                 goto out_unlock;
2796         }
2797
2798         if (argc == 3) {
2799                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2800                 if (r) {
2801                         ti->error = "Error opening origin device";
2802                         goto bad_origin_dev;
2803                 }
2804                 tc->origin_dev = origin_dev;
2805         }
2806
2807         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2808         if (r) {
2809                 ti->error = "Error opening pool device";
2810                 goto bad_pool_dev;
2811         }
2812         tc->pool_dev = pool_dev;
2813
2814         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2815                 ti->error = "Invalid device id";
2816                 r = -EINVAL;
2817                 goto bad_common;
2818         }
2819
2820         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2821         if (!pool_md) {
2822                 ti->error = "Couldn't get pool mapped device";
2823                 r = -EINVAL;
2824                 goto bad_common;
2825         }
2826
2827         tc->pool = __pool_table_lookup(pool_md);
2828         if (!tc->pool) {
2829                 ti->error = "Couldn't find pool object";
2830                 r = -EINVAL;
2831                 goto bad_pool_lookup;
2832         }
2833         __pool_inc(tc->pool);
2834
2835         if (get_pool_mode(tc->pool) == PM_FAIL) {
2836                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2837                 goto bad_thin_open;
2838         }
2839
2840         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2841         if (r) {
2842                 ti->error = "Couldn't open thin internal device";
2843                 goto bad_thin_open;
2844         }
2845
2846         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2847         if (r)
2848                 goto bad_thin_open;
2849
2850         ti->num_flush_bios = 1;
2851         ti->flush_supported = true;
2852         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2853
2854         /* In case the pool supports discards, pass them on. */
2855         ti->discard_zeroes_data_unsupported = true;
2856         if (tc->pool->pf.discard_enabled) {
2857                 ti->discards_supported = true;
2858                 ti->num_discard_bios = 1;
2859                 /* Discard bios must be split on a block boundary */
2860                 ti->split_discard_bios = true;
2861         }
2862
2863         dm_put(pool_md);
2864
2865         mutex_unlock(&dm_thin_pool_table.mutex);
2866
2867         return 0;
2868
2869 bad_thin_open:
2870         __pool_dec(tc->pool);
2871 bad_pool_lookup:
2872         dm_put(pool_md);
2873 bad_common:
2874         dm_put_device(ti, tc->pool_dev);
2875 bad_pool_dev:
2876         if (tc->origin_dev)
2877                 dm_put_device(ti, tc->origin_dev);
2878 bad_origin_dev:
2879         kfree(tc);
2880 out_unlock:
2881         mutex_unlock(&dm_thin_pool_table.mutex);
2882
2883         return r;
2884 }
2885
2886 static int thin_map(struct dm_target *ti, struct bio *bio)
2887 {
2888         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
2889
2890         return thin_bio_map(ti, bio);
2891 }
2892
2893 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2894 {
2895         unsigned long flags;
2896         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2897         struct list_head work;
2898         struct dm_thin_new_mapping *m, *tmp;
2899         struct pool *pool = h->tc->pool;
2900
2901         if (h->shared_read_entry) {
2902                 INIT_LIST_HEAD(&work);
2903                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2904
2905                 spin_lock_irqsave(&pool->lock, flags);
2906                 list_for_each_entry_safe(m, tmp, &work, list) {
2907                         list_del(&m->list);
2908                         m->quiesced = 1;
2909                         __maybe_add_mapping(m);
2910                 }
2911                 spin_unlock_irqrestore(&pool->lock, flags);
2912         }
2913
2914         if (h->all_io_entry) {
2915                 INIT_LIST_HEAD(&work);
2916                 dm_deferred_entry_dec(h->all_io_entry, &work);
2917                 if (!list_empty(&work)) {
2918                         spin_lock_irqsave(&pool->lock, flags);
2919                         list_for_each_entry_safe(m, tmp, &work, list)
2920                                 list_add(&m->list, &pool->prepared_discards);
2921                         spin_unlock_irqrestore(&pool->lock, flags);
2922                         wake_worker(pool);
2923                 }
2924         }
2925
2926         return 0;
2927 }
2928
2929 static void thin_postsuspend(struct dm_target *ti)
2930 {
2931         if (dm_noflush_suspending(ti))
2932                 requeue_io((struct thin_c *)ti->private);
2933 }
2934
2935 /*
2936  * <nr mapped sectors> <highest mapped sector>
2937  */
2938 static void thin_status(struct dm_target *ti, status_type_t type,
2939                         unsigned status_flags, char *result, unsigned maxlen)
2940 {
2941         int r;
2942         ssize_t sz = 0;
2943         dm_block_t mapped, highest;
2944         char buf[BDEVNAME_SIZE];
2945         struct thin_c *tc = ti->private;
2946
2947         if (get_pool_mode(tc->pool) == PM_FAIL) {
2948                 DMEMIT("Fail");
2949                 return;
2950         }
2951
2952         if (!tc->td)
2953                 DMEMIT("-");
2954         else {
2955                 switch (type) {
2956                 case STATUSTYPE_INFO:
2957                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2958                         if (r) {
2959                                 DMERR("dm_thin_get_mapped_count returned %d", r);
2960                                 goto err;
2961                         }
2962
2963                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2964                         if (r < 0) {
2965                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2966                                 goto err;
2967                         }
2968
2969                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2970                         if (r)
2971                                 DMEMIT("%llu", ((highest + 1) *
2972                                                 tc->pool->sectors_per_block) - 1);
2973                         else
2974                                 DMEMIT("-");
2975                         break;
2976
2977                 case STATUSTYPE_TABLE:
2978                         DMEMIT("%s %lu",
2979                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2980                                (unsigned long) tc->dev_id);
2981                         if (tc->origin_dev)
2982                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2983                         break;
2984                 }
2985         }
2986
2987         return;
2988
2989 err:
2990         DMEMIT("Error");
2991 }
2992
2993 static int thin_iterate_devices(struct dm_target *ti,
2994                                 iterate_devices_callout_fn fn, void *data)
2995 {
2996         sector_t blocks;
2997         struct thin_c *tc = ti->private;
2998         struct pool *pool = tc->pool;
2999
3000         /*
3001          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3002          * we follow a more convoluted path through to the pool's target.
3003          */
3004         if (!pool->ti)
3005                 return 0;       /* nothing is bound */
3006
3007         blocks = pool->ti->len;
3008         (void) sector_div(blocks, pool->sectors_per_block);
3009         if (blocks)
3010                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3011
3012         return 0;
3013 }
3014
3015 static struct target_type thin_target = {
3016         .name = "thin",
3017         .version = {1, 9, 0},
3018         .module = THIS_MODULE,
3019         .ctr = thin_ctr,
3020         .dtr = thin_dtr,
3021         .map = thin_map,
3022         .end_io = thin_endio,
3023         .postsuspend = thin_postsuspend,
3024         .status = thin_status,
3025         .iterate_devices = thin_iterate_devices,
3026 };
3027
3028 /*----------------------------------------------------------------*/
3029
3030 static int __init dm_thin_init(void)
3031 {
3032         int r;
3033
3034         pool_table_init();
3035
3036         r = dm_register_target(&thin_target);
3037         if (r)
3038                 return r;
3039
3040         r = dm_register_target(&pool_target);
3041         if (r)
3042                 goto bad_pool_target;
3043
3044         r = -ENOMEM;
3045
3046         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3047         if (!_new_mapping_cache)
3048                 goto bad_new_mapping_cache;
3049
3050         return 0;
3051
3052 bad_new_mapping_cache:
3053         dm_unregister_target(&pool_target);
3054 bad_pool_target:
3055         dm_unregister_target(&thin_target);
3056
3057         return r;
3058 }
3059
3060 static void dm_thin_exit(void)
3061 {
3062         dm_unregister_target(&thin_target);
3063         dm_unregister_target(&pool_target);
3064
3065         kmem_cache_destroy(_new_mapping_cache);
3066 }
3067
3068 module_init(dm_thin_init);
3069 module_exit(dm_thin_exit);
3070
3071 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3072 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3073 MODULE_LICENSE("GPL");