]> Pileus Git - ~andy/linux/blob - drivers/md/bcache/request.c
Merge tag 'stable/for-linus-3.14-rc0-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[~andy/linux] / drivers / md / bcache / request.c
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/cgroup.h>
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include "blk-cgroup.h"
20
21 #include <trace/events/bcache.h>
22
23 #define CUTOFF_CACHE_ADD        95
24 #define CUTOFF_CACHE_READA      90
25
26 struct kmem_cache *bch_search_cache;
27
28 static void bch_data_insert_start(struct closure *);
29
30 /* Cgroup interface */
31
32 #ifdef CONFIG_CGROUP_BCACHE
33 static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
34
35 static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
36 {
37         struct cgroup_subsys_state *css;
38         return cgroup &&
39                 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40                 ? container_of(css, struct bch_cgroup, css)
41                 : &bcache_default_cgroup;
42 }
43
44 struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
45 {
46         struct cgroup_subsys_state *css = bio->bi_css
47                 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48                 : task_subsys_state(current, bcache_subsys_id);
49
50         return css
51                 ? container_of(css, struct bch_cgroup, css)
52                 : &bcache_default_cgroup;
53 }
54
55 static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
56                         struct file *file,
57                         char __user *buf, size_t nbytes, loff_t *ppos)
58 {
59         char tmp[1024];
60         int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61                                           cgroup_to_bcache(cgrp)->cache_mode + 1);
62
63         if (len < 0)
64                 return len;
65
66         return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
67 }
68
69 static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
70                             const char *buf)
71 {
72         int v = bch_read_string_list(buf, bch_cache_modes);
73         if (v < 0)
74                 return v;
75
76         cgroup_to_bcache(cgrp)->cache_mode = v - 1;
77         return 0;
78 }
79
80 static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
81 {
82         return cgroup_to_bcache(cgrp)->verify;
83 }
84
85 static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
86 {
87         cgroup_to_bcache(cgrp)->verify = val;
88         return 0;
89 }
90
91 static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
92 {
93         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94         return atomic_read(&bcachecg->stats.cache_hits);
95 }
96
97 static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
98 {
99         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100         return atomic_read(&bcachecg->stats.cache_misses);
101 }
102
103 static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
104                                          struct cftype *cft)
105 {
106         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107         return atomic_read(&bcachecg->stats.cache_bypass_hits);
108 }
109
110 static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
111                                            struct cftype *cft)
112 {
113         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114         return atomic_read(&bcachecg->stats.cache_bypass_misses);
115 }
116
117 static struct cftype bch_files[] = {
118         {
119                 .name           = "cache_mode",
120                 .read           = cache_mode_read,
121                 .write_string   = cache_mode_write,
122         },
123         {
124                 .name           = "verify",
125                 .read_u64       = bch_verify_read,
126                 .write_u64      = bch_verify_write,
127         },
128         {
129                 .name           = "cache_hits",
130                 .read_u64       = bch_cache_hits_read,
131         },
132         {
133                 .name           = "cache_misses",
134                 .read_u64       = bch_cache_misses_read,
135         },
136         {
137                 .name           = "cache_bypass_hits",
138                 .read_u64       = bch_cache_bypass_hits_read,
139         },
140         {
141                 .name           = "cache_bypass_misses",
142                 .read_u64       = bch_cache_bypass_misses_read,
143         },
144         { }     /* terminate */
145 };
146
147 static void init_bch_cgroup(struct bch_cgroup *cg)
148 {
149         cg->cache_mode = -1;
150 }
151
152 static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
153 {
154         struct bch_cgroup *cg;
155
156         cg = kzalloc(sizeof(*cg), GFP_KERNEL);
157         if (!cg)
158                 return ERR_PTR(-ENOMEM);
159         init_bch_cgroup(cg);
160         return &cg->css;
161 }
162
163 static void bcachecg_destroy(struct cgroup *cgroup)
164 {
165         struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166         kfree(cg);
167 }
168
169 struct cgroup_subsys bcache_subsys = {
170         .create         = bcachecg_create,
171         .destroy        = bcachecg_destroy,
172         .subsys_id      = bcache_subsys_id,
173         .name           = "bcache",
174         .module         = THIS_MODULE,
175 };
176 EXPORT_SYMBOL_GPL(bcache_subsys);
177 #endif
178
179 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
180 {
181 #ifdef CONFIG_CGROUP_BCACHE
182         int r = bch_bio_to_cgroup(bio)->cache_mode;
183         if (r >= 0)
184                 return r;
185 #endif
186         return BDEV_CACHE_MODE(&dc->sb);
187 }
188
189 static bool verify(struct cached_dev *dc, struct bio *bio)
190 {
191 #ifdef CONFIG_CGROUP_BCACHE
192         if (bch_bio_to_cgroup(bio)->verify)
193                 return true;
194 #endif
195         return dc->verify;
196 }
197
198 static void bio_csum(struct bio *bio, struct bkey *k)
199 {
200         struct bio_vec *bv;
201         uint64_t csum = 0;
202         int i;
203
204         bio_for_each_segment(bv, bio, i) {
205                 void *d = kmap(bv->bv_page) + bv->bv_offset;
206                 csum = bch_crc64_update(csum, d, bv->bv_len);
207                 kunmap(bv->bv_page);
208         }
209
210         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
211 }
212
213 /* Insert data into cache */
214
215 static void bch_data_insert_keys(struct closure *cl)
216 {
217         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
218         atomic_t *journal_ref = NULL;
219         struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
220         int ret;
221
222         /*
223          * If we're looping, might already be waiting on
224          * another journal write - can't wait on more than one journal write at
225          * a time
226          *
227          * XXX: this looks wrong
228          */
229 #if 0
230         while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
231                 closure_sync(&s->cl);
232 #endif
233
234         if (!op->replace)
235                 journal_ref = bch_journal(op->c, &op->insert_keys,
236                                           op->flush_journal ? cl : NULL);
237
238         ret = bch_btree_insert(op->c, &op->insert_keys,
239                                journal_ref, replace_key);
240         if (ret == -ESRCH) {
241                 op->replace_collision = true;
242         } else if (ret) {
243                 op->error               = -ENOMEM;
244                 op->insert_data_done    = true;
245         }
246
247         if (journal_ref)
248                 atomic_dec_bug(journal_ref);
249
250         if (!op->insert_data_done)
251                 continue_at(cl, bch_data_insert_start, bcache_wq);
252
253         bch_keylist_free(&op->insert_keys);
254         closure_return(cl);
255 }
256
257 static void bch_data_invalidate(struct closure *cl)
258 {
259         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
260         struct bio *bio = op->bio;
261
262         pr_debug("invalidating %i sectors from %llu",
263                  bio_sectors(bio), (uint64_t) bio->bi_sector);
264
265         while (bio_sectors(bio)) {
266                 unsigned sectors = min(bio_sectors(bio),
267                                        1U << (KEY_SIZE_BITS - 1));
268
269                 if (bch_keylist_realloc(&op->insert_keys, 0, op->c))
270                         goto out;
271
272                 bio->bi_sector  += sectors;
273                 bio->bi_size    -= sectors << 9;
274
275                 bch_keylist_add(&op->insert_keys,
276                                 &KEY(op->inode, bio->bi_sector, sectors));
277         }
278
279         op->insert_data_done = true;
280         bio_put(bio);
281 out:
282         continue_at(cl, bch_data_insert_keys, bcache_wq);
283 }
284
285 static void bch_data_insert_error(struct closure *cl)
286 {
287         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
288
289         /*
290          * Our data write just errored, which means we've got a bunch of keys to
291          * insert that point to data that wasn't succesfully written.
292          *
293          * We don't have to insert those keys but we still have to invalidate
294          * that region of the cache - so, if we just strip off all the pointers
295          * from the keys we'll accomplish just that.
296          */
297
298         struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
299
300         while (src != op->insert_keys.top) {
301                 struct bkey *n = bkey_next(src);
302
303                 SET_KEY_PTRS(src, 0);
304                 memmove(dst, src, bkey_bytes(src));
305
306                 dst = bkey_next(dst);
307                 src = n;
308         }
309
310         op->insert_keys.top = dst;
311
312         bch_data_insert_keys(cl);
313 }
314
315 static void bch_data_insert_endio(struct bio *bio, int error)
316 {
317         struct closure *cl = bio->bi_private;
318         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
319
320         if (error) {
321                 /* TODO: We could try to recover from this. */
322                 if (op->writeback)
323                         op->error = error;
324                 else if (!op->replace)
325                         set_closure_fn(cl, bch_data_insert_error, bcache_wq);
326                 else
327                         set_closure_fn(cl, NULL, NULL);
328         }
329
330         bch_bbio_endio(op->c, bio, error, "writing data to cache");
331 }
332
333 static void bch_data_insert_start(struct closure *cl)
334 {
335         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
336         struct bio *bio = op->bio, *n;
337
338         if (op->bypass)
339                 return bch_data_invalidate(cl);
340
341         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
342                 set_gc_sectors(op->c);
343                 wake_up_gc(op->c);
344         }
345
346         /*
347          * Journal writes are marked REQ_FLUSH; if the original write was a
348          * flush, it'll wait on the journal write.
349          */
350         bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
351
352         do {
353                 unsigned i;
354                 struct bkey *k;
355                 struct bio_set *split = op->c->bio_split;
356
357                 /* 1 for the device pointer and 1 for the chksum */
358                 if (bch_keylist_realloc(&op->insert_keys,
359                                         1 + (op->csum ? 1 : 0),
360                                         op->c))
361                         continue_at(cl, bch_data_insert_keys, bcache_wq);
362
363                 k = op->insert_keys.top;
364                 bkey_init(k);
365                 SET_KEY_INODE(k, op->inode);
366                 SET_KEY_OFFSET(k, bio->bi_sector);
367
368                 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
369                                        op->write_point, op->write_prio,
370                                        op->writeback))
371                         goto err;
372
373                 n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
374
375                 n->bi_end_io    = bch_data_insert_endio;
376                 n->bi_private   = cl;
377
378                 if (op->writeback) {
379                         SET_KEY_DIRTY(k, true);
380
381                         for (i = 0; i < KEY_PTRS(k); i++)
382                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
383                                             GC_MARK_DIRTY);
384                 }
385
386                 SET_KEY_CSUM(k, op->csum);
387                 if (KEY_CSUM(k))
388                         bio_csum(n, k);
389
390                 trace_bcache_cache_insert(k);
391                 bch_keylist_push(&op->insert_keys);
392
393                 n->bi_rw |= REQ_WRITE;
394                 bch_submit_bbio(n, op->c, k, 0);
395         } while (n != bio);
396
397         op->insert_data_done = true;
398         continue_at(cl, bch_data_insert_keys, bcache_wq);
399 err:
400         /* bch_alloc_sectors() blocks if s->writeback = true */
401         BUG_ON(op->writeback);
402
403         /*
404          * But if it's not a writeback write we'd rather just bail out if
405          * there aren't any buckets ready to write to - it might take awhile and
406          * we might be starving btree writes for gc or something.
407          */
408
409         if (!op->replace) {
410                 /*
411                  * Writethrough write: We can't complete the write until we've
412                  * updated the index. But we don't want to delay the write while
413                  * we wait for buckets to be freed up, so just invalidate the
414                  * rest of the write.
415                  */
416                 op->bypass = true;
417                 return bch_data_invalidate(cl);
418         } else {
419                 /*
420                  * From a cache miss, we can just insert the keys for the data
421                  * we have written or bail out if we didn't do anything.
422                  */
423                 op->insert_data_done = true;
424                 bio_put(bio);
425
426                 if (!bch_keylist_empty(&op->insert_keys))
427                         continue_at(cl, bch_data_insert_keys, bcache_wq);
428                 else
429                         closure_return(cl);
430         }
431 }
432
433 /**
434  * bch_data_insert - stick some data in the cache
435  *
436  * This is the starting point for any data to end up in a cache device; it could
437  * be from a normal write, or a writeback write, or a write to a flash only
438  * volume - it's also used by the moving garbage collector to compact data in
439  * mostly empty buckets.
440  *
441  * It first writes the data to the cache, creating a list of keys to be inserted
442  * (if the data had to be fragmented there will be multiple keys); after the
443  * data is written it calls bch_journal, and after the keys have been added to
444  * the next journal write they're inserted into the btree.
445  *
446  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
447  * and op->inode is used for the key inode.
448  *
449  * If s->bypass is true, instead of inserting the data it invalidates the
450  * region of the cache represented by s->cache_bio and op->inode.
451  */
452 void bch_data_insert(struct closure *cl)
453 {
454         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
455
456         trace_bcache_write(op->bio, op->writeback, op->bypass);
457
458         bch_keylist_init(&op->insert_keys);
459         bio_get(op->bio);
460         bch_data_insert_start(cl);
461 }
462
463 /* Congested? */
464
465 unsigned bch_get_congested(struct cache_set *c)
466 {
467         int i;
468         long rand;
469
470         if (!c->congested_read_threshold_us &&
471             !c->congested_write_threshold_us)
472                 return 0;
473
474         i = (local_clock_us() - c->congested_last_us) / 1024;
475         if (i < 0)
476                 return 0;
477
478         i += atomic_read(&c->congested);
479         if (i >= 0)
480                 return 0;
481
482         i += CONGESTED_MAX;
483
484         if (i > 0)
485                 i = fract_exp_two(i, 6);
486
487         rand = get_random_int();
488         i -= bitmap_weight(&rand, BITS_PER_LONG);
489
490         return i > 0 ? i : 1;
491 }
492
493 static void add_sequential(struct task_struct *t)
494 {
495         ewma_add(t->sequential_io_avg,
496                  t->sequential_io, 8, 0);
497
498         t->sequential_io = 0;
499 }
500
501 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
502 {
503         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
504 }
505
506 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
507 {
508         struct cache_set *c = dc->disk.c;
509         unsigned mode = cache_mode(dc, bio);
510         unsigned sectors, congested = bch_get_congested(c);
511         struct task_struct *task = current;
512         struct io *i;
513
514         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
515             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
516             (bio->bi_rw & REQ_DISCARD))
517                 goto skip;
518
519         if (mode == CACHE_MODE_NONE ||
520             (mode == CACHE_MODE_WRITEAROUND &&
521              (bio->bi_rw & REQ_WRITE)))
522                 goto skip;
523
524         if (bio->bi_sector & (c->sb.block_size - 1) ||
525             bio_sectors(bio) & (c->sb.block_size - 1)) {
526                 pr_debug("skipping unaligned io");
527                 goto skip;
528         }
529
530         if (bypass_torture_test(dc)) {
531                 if ((get_random_int() & 3) == 3)
532                         goto skip;
533                 else
534                         goto rescale;
535         }
536
537         if (!congested && !dc->sequential_cutoff)
538                 goto rescale;
539
540         if (!congested &&
541             mode == CACHE_MODE_WRITEBACK &&
542             (bio->bi_rw & REQ_WRITE) &&
543             (bio->bi_rw & REQ_SYNC))
544                 goto rescale;
545
546         spin_lock(&dc->io_lock);
547
548         hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
549                 if (i->last == bio->bi_sector &&
550                     time_before(jiffies, i->jiffies))
551                         goto found;
552
553         i = list_first_entry(&dc->io_lru, struct io, lru);
554
555         add_sequential(task);
556         i->sequential = 0;
557 found:
558         if (i->sequential + bio->bi_size > i->sequential)
559                 i->sequential   += bio->bi_size;
560
561         i->last                  = bio_end_sector(bio);
562         i->jiffies               = jiffies + msecs_to_jiffies(5000);
563         task->sequential_io      = i->sequential;
564
565         hlist_del(&i->hash);
566         hlist_add_head(&i->hash, iohash(dc, i->last));
567         list_move_tail(&i->lru, &dc->io_lru);
568
569         spin_unlock(&dc->io_lock);
570
571         sectors = max(task->sequential_io,
572                       task->sequential_io_avg) >> 9;
573
574         if (dc->sequential_cutoff &&
575             sectors >= dc->sequential_cutoff >> 9) {
576                 trace_bcache_bypass_sequential(bio);
577                 goto skip;
578         }
579
580         if (congested && sectors >= congested) {
581                 trace_bcache_bypass_congested(bio);
582                 goto skip;
583         }
584
585 rescale:
586         bch_rescale_priorities(c, bio_sectors(bio));
587         return false;
588 skip:
589         bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
590         return true;
591 }
592
593 /* Cache lookup */
594
595 struct search {
596         /* Stack frame for bio_complete */
597         struct closure          cl;
598
599         struct bcache_device    *d;
600
601         struct bbio             bio;
602         struct bio              *orig_bio;
603         struct bio              *cache_miss;
604
605         unsigned                insert_bio_sectors;
606
607         unsigned                recoverable:1;
608         unsigned                unaligned_bvec:1;
609         unsigned                write:1;
610         unsigned                read_dirty_data:1;
611
612         unsigned long           start_time;
613
614         struct btree_op         op;
615         struct data_insert_op   iop;
616 };
617
618 static void bch_cache_read_endio(struct bio *bio, int error)
619 {
620         struct bbio *b = container_of(bio, struct bbio, bio);
621         struct closure *cl = bio->bi_private;
622         struct search *s = container_of(cl, struct search, cl);
623
624         /*
625          * If the bucket was reused while our bio was in flight, we might have
626          * read the wrong data. Set s->error but not error so it doesn't get
627          * counted against the cache device, but we'll still reread the data
628          * from the backing device.
629          */
630
631         if (error)
632                 s->iop.error = error;
633         else if (ptr_stale(s->iop.c, &b->key, 0)) {
634                 atomic_long_inc(&s->iop.c->cache_read_races);
635                 s->iop.error = -EINTR;
636         }
637
638         bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
639 }
640
641 /*
642  * Read from a single key, handling the initial cache miss if the key starts in
643  * the middle of the bio
644  */
645 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
646 {
647         struct search *s = container_of(op, struct search, op);
648         struct bio *n, *bio = &s->bio.bio;
649         struct bkey *bio_key;
650         unsigned ptr;
651
652         if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_sector, 0)) <= 0)
653                 return MAP_CONTINUE;
654
655         if (KEY_INODE(k) != s->iop.inode ||
656             KEY_START(k) > bio->bi_sector) {
657                 unsigned bio_sectors = bio_sectors(bio);
658                 unsigned sectors = KEY_INODE(k) == s->iop.inode
659                         ? min_t(uint64_t, INT_MAX,
660                                 KEY_START(k) - bio->bi_sector)
661                         : INT_MAX;
662
663                 int ret = s->d->cache_miss(b, s, bio, sectors);
664                 if (ret != MAP_CONTINUE)
665                         return ret;
666
667                 /* if this was a complete miss we shouldn't get here */
668                 BUG_ON(bio_sectors <= sectors);
669         }
670
671         if (!KEY_SIZE(k))
672                 return MAP_CONTINUE;
673
674         /* XXX: figure out best pointer - for multiple cache devices */
675         ptr = 0;
676
677         PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
678
679         if (KEY_DIRTY(k))
680                 s->read_dirty_data = true;
681
682         n = bch_bio_split(bio, min_t(uint64_t, INT_MAX,
683                                      KEY_OFFSET(k) - bio->bi_sector),
684                           GFP_NOIO, s->d->bio_split);
685
686         bio_key = &container_of(n, struct bbio, bio)->key;
687         bch_bkey_copy_single_ptr(bio_key, k, ptr);
688
689         bch_cut_front(&KEY(s->iop.inode, n->bi_sector, 0), bio_key);
690         bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
691
692         n->bi_end_io    = bch_cache_read_endio;
693         n->bi_private   = &s->cl;
694
695         /*
696          * The bucket we're reading from might be reused while our bio
697          * is in flight, and we could then end up reading the wrong
698          * data.
699          *
700          * We guard against this by checking (in cache_read_endio()) if
701          * the pointer is stale again; if so, we treat it as an error
702          * and reread from the backing device (but we don't pass that
703          * error up anywhere).
704          */
705
706         __bch_submit_bbio(n, b->c);
707         return n == bio ? MAP_DONE : MAP_CONTINUE;
708 }
709
710 static void cache_lookup(struct closure *cl)
711 {
712         struct search *s = container_of(cl, struct search, iop.cl);
713         struct bio *bio = &s->bio.bio;
714
715         int ret = bch_btree_map_keys(&s->op, s->iop.c,
716                                      &KEY(s->iop.inode, bio->bi_sector, 0),
717                                      cache_lookup_fn, MAP_END_KEY);
718         if (ret == -EAGAIN)
719                 continue_at(cl, cache_lookup, bcache_wq);
720
721         closure_return(cl);
722 }
723
724 /* Common code for the make_request functions */
725
726 static void request_endio(struct bio *bio, int error)
727 {
728         struct closure *cl = bio->bi_private;
729
730         if (error) {
731                 struct search *s = container_of(cl, struct search, cl);
732                 s->iop.error = error;
733                 /* Only cache read errors are recoverable */
734                 s->recoverable = false;
735         }
736
737         bio_put(bio);
738         closure_put(cl);
739 }
740
741 static void bio_complete(struct search *s)
742 {
743         if (s->orig_bio) {
744                 int cpu, rw = bio_data_dir(s->orig_bio);
745                 unsigned long duration = jiffies - s->start_time;
746
747                 cpu = part_stat_lock();
748                 part_round_stats(cpu, &s->d->disk->part0);
749                 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
750                 part_stat_unlock();
751
752                 trace_bcache_request_end(s->d, s->orig_bio);
753                 bio_endio(s->orig_bio, s->iop.error);
754                 s->orig_bio = NULL;
755         }
756 }
757
758 static void do_bio_hook(struct search *s)
759 {
760         struct bio *bio = &s->bio.bio;
761         memcpy(bio, s->orig_bio, sizeof(struct bio));
762
763         bio->bi_end_io          = request_endio;
764         bio->bi_private         = &s->cl;
765         atomic_set(&bio->bi_cnt, 3);
766 }
767
768 static void search_free(struct closure *cl)
769 {
770         struct search *s = container_of(cl, struct search, cl);
771         bio_complete(s);
772
773         if (s->iop.bio)
774                 bio_put(s->iop.bio);
775
776         if (s->unaligned_bvec)
777                 mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
778
779         closure_debug_destroy(cl);
780         mempool_free(s, s->d->c->search);
781 }
782
783 static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
784 {
785         struct search *s;
786         struct bio_vec *bv;
787
788         s = mempool_alloc(d->c->search, GFP_NOIO);
789         memset(s, 0, offsetof(struct search, iop.insert_keys));
790
791         __closure_init(&s->cl, NULL);
792
793         s->iop.inode            = d->id;
794         s->iop.c                = d->c;
795         s->d                    = d;
796         s->op.lock              = -1;
797         s->iop.write_point      = hash_long((unsigned long) current, 16);
798         s->orig_bio             = bio;
799         s->write                = (bio->bi_rw & REQ_WRITE) != 0;
800         s->iop.flush_journal    = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
801         s->recoverable          = 1;
802         s->start_time           = jiffies;
803         do_bio_hook(s);
804
805         if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
806                 bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
807                 memcpy(bv, bio_iovec(bio),
808                        sizeof(struct bio_vec) * bio_segments(bio));
809
810                 s->bio.bio.bi_io_vec    = bv;
811                 s->unaligned_bvec       = 1;
812         }
813
814         return s;
815 }
816
817 /* Cached devices */
818
819 static void cached_dev_bio_complete(struct closure *cl)
820 {
821         struct search *s = container_of(cl, struct search, cl);
822         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
823
824         search_free(cl);
825         cached_dev_put(dc);
826 }
827
828 /* Process reads */
829
830 static void cached_dev_cache_miss_done(struct closure *cl)
831 {
832         struct search *s = container_of(cl, struct search, cl);
833
834         if (s->iop.replace_collision)
835                 bch_mark_cache_miss_collision(s->iop.c, s->d);
836
837         if (s->iop.bio) {
838                 int i;
839                 struct bio_vec *bv;
840
841                 bio_for_each_segment_all(bv, s->iop.bio, i)
842                         __free_page(bv->bv_page);
843         }
844
845         cached_dev_bio_complete(cl);
846 }
847
848 static void cached_dev_read_error(struct closure *cl)
849 {
850         struct search *s = container_of(cl, struct search, cl);
851         struct bio *bio = &s->bio.bio;
852         struct bio_vec *bv;
853         int i;
854
855         if (s->recoverable) {
856                 /* Retry from the backing device: */
857                 trace_bcache_read_retry(s->orig_bio);
858
859                 s->iop.error = 0;
860                 bv = s->bio.bio.bi_io_vec;
861                 do_bio_hook(s);
862                 s->bio.bio.bi_io_vec = bv;
863
864                 if (!s->unaligned_bvec)
865                         bio_for_each_segment(bv, s->orig_bio, i)
866                                 bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
867                 else
868                         memcpy(s->bio.bio.bi_io_vec,
869                                bio_iovec(s->orig_bio),
870                                sizeof(struct bio_vec) *
871                                bio_segments(s->orig_bio));
872
873                 /* XXX: invalidate cache */
874
875                 closure_bio_submit(bio, cl, s->d);
876         }
877
878         continue_at(cl, cached_dev_cache_miss_done, NULL);
879 }
880
881 static void cached_dev_read_done(struct closure *cl)
882 {
883         struct search *s = container_of(cl, struct search, cl);
884         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
885
886         /*
887          * We had a cache miss; cache_bio now contains data ready to be inserted
888          * into the cache.
889          *
890          * First, we copy the data we just read from cache_bio's bounce buffers
891          * to the buffers the original bio pointed to:
892          */
893
894         if (s->iop.bio) {
895                 bio_reset(s->iop.bio);
896                 s->iop.bio->bi_sector = s->cache_miss->bi_sector;
897                 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
898                 s->iop.bio->bi_size = s->insert_bio_sectors << 9;
899                 bch_bio_map(s->iop.bio, NULL);
900
901                 bio_copy_data(s->cache_miss, s->iop.bio);
902
903                 bio_put(s->cache_miss);
904                 s->cache_miss = NULL;
905         }
906
907         if (verify(dc, &s->bio.bio) && s->recoverable &&
908             !s->unaligned_bvec && !s->read_dirty_data)
909                 bch_data_verify(dc, s->orig_bio);
910
911         bio_complete(s);
912
913         if (s->iop.bio &&
914             !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
915                 BUG_ON(!s->iop.replace);
916                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
917         }
918
919         continue_at(cl, cached_dev_cache_miss_done, NULL);
920 }
921
922 static void cached_dev_read_done_bh(struct closure *cl)
923 {
924         struct search *s = container_of(cl, struct search, cl);
925         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
926
927         bch_mark_cache_accounting(s->iop.c, s->d,
928                                   !s->cache_miss, s->iop.bypass);
929         trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
930
931         if (s->iop.error)
932                 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
933         else if (s->iop.bio || verify(dc, &s->bio.bio))
934                 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
935         else
936                 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
937 }
938
939 static int cached_dev_cache_miss(struct btree *b, struct search *s,
940                                  struct bio *bio, unsigned sectors)
941 {
942         int ret = MAP_CONTINUE;
943         unsigned reada = 0;
944         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
945         struct bio *miss, *cache_bio;
946
947         if (s->cache_miss || s->iop.bypass) {
948                 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
949                 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
950                 goto out_submit;
951         }
952
953         if (!(bio->bi_rw & REQ_RAHEAD) &&
954             !(bio->bi_rw & REQ_META) &&
955             s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
956                 reada = min_t(sector_t, dc->readahead >> 9,
957                               bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
958
959         s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
960
961         s->iop.replace_key = KEY(s->iop.inode,
962                                  bio->bi_sector + s->insert_bio_sectors,
963                                  s->insert_bio_sectors);
964
965         ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
966         if (ret)
967                 return ret;
968
969         s->iop.replace = true;
970
971         miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
972
973         /* btree_search_recurse()'s btree iterator is no good anymore */
974         ret = miss == bio ? MAP_DONE : -EINTR;
975
976         cache_bio = bio_alloc_bioset(GFP_NOWAIT,
977                         DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
978                         dc->disk.bio_split);
979         if (!cache_bio)
980                 goto out_submit;
981
982         cache_bio->bi_sector    = miss->bi_sector;
983         cache_bio->bi_bdev      = miss->bi_bdev;
984         cache_bio->bi_size      = s->insert_bio_sectors << 9;
985
986         cache_bio->bi_end_io    = request_endio;
987         cache_bio->bi_private   = &s->cl;
988
989         bch_bio_map(cache_bio, NULL);
990         if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
991                 goto out_put;
992
993         if (reada)
994                 bch_mark_cache_readahead(s->iop.c, s->d);
995
996         s->cache_miss   = miss;
997         s->iop.bio      = cache_bio;
998         bio_get(cache_bio);
999         closure_bio_submit(cache_bio, &s->cl, s->d);
1000
1001         return ret;
1002 out_put:
1003         bio_put(cache_bio);
1004 out_submit:
1005         miss->bi_end_io         = request_endio;
1006         miss->bi_private        = &s->cl;
1007         closure_bio_submit(miss, &s->cl, s->d);
1008         return ret;
1009 }
1010
1011 static void cached_dev_read(struct cached_dev *dc, struct search *s)
1012 {
1013         struct closure *cl = &s->cl;
1014
1015         closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1016         continue_at(cl, cached_dev_read_done_bh, NULL);
1017 }
1018
1019 /* Process writes */
1020
1021 static void cached_dev_write_complete(struct closure *cl)
1022 {
1023         struct search *s = container_of(cl, struct search, cl);
1024         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1025
1026         up_read_non_owner(&dc->writeback_lock);
1027         cached_dev_bio_complete(cl);
1028 }
1029
1030 static void cached_dev_write(struct cached_dev *dc, struct search *s)
1031 {
1032         struct closure *cl = &s->cl;
1033         struct bio *bio = &s->bio.bio;
1034         struct bkey start = KEY(dc->disk.id, bio->bi_sector, 0);
1035         struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
1036
1037         bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
1038
1039         down_read_non_owner(&dc->writeback_lock);
1040         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
1041                 /*
1042                  * We overlap with some dirty data undergoing background
1043                  * writeback, force this write to writeback
1044                  */
1045                 s->iop.bypass = false;
1046                 s->iop.writeback = true;
1047         }
1048
1049         /*
1050          * Discards aren't _required_ to do anything, so skipping if
1051          * check_overlapping returned true is ok
1052          *
1053          * But check_overlapping drops dirty keys for which io hasn't started,
1054          * so we still want to call it.
1055          */
1056         if (bio->bi_rw & REQ_DISCARD)
1057                 s->iop.bypass = true;
1058
1059         if (should_writeback(dc, s->orig_bio,
1060                              cache_mode(dc, bio),
1061                              s->iop.bypass)) {
1062                 s->iop.bypass = false;
1063                 s->iop.writeback = true;
1064         }
1065
1066         if (s->iop.bypass) {
1067                 s->iop.bio = s->orig_bio;
1068                 bio_get(s->iop.bio);
1069
1070                 if (!(bio->bi_rw & REQ_DISCARD) ||
1071                     blk_queue_discard(bdev_get_queue(dc->bdev)))
1072                         closure_bio_submit(bio, cl, s->d);
1073         } else if (s->iop.writeback) {
1074                 bch_writeback_add(dc);
1075                 s->iop.bio = bio;
1076
1077                 if (bio->bi_rw & REQ_FLUSH) {
1078                         /* Also need to send a flush to the backing device */
1079                         struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
1080                                                              dc->disk.bio_split);
1081
1082                         flush->bi_rw    = WRITE_FLUSH;
1083                         flush->bi_bdev  = bio->bi_bdev;
1084                         flush->bi_end_io = request_endio;
1085                         flush->bi_private = cl;
1086
1087                         closure_bio_submit(flush, cl, s->d);
1088                 }
1089         } else {
1090                 s->iop.bio = bio_clone_bioset(bio, GFP_NOIO,
1091                                               dc->disk.bio_split);
1092
1093                 closure_bio_submit(bio, cl, s->d);
1094         }
1095
1096         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1097         continue_at(cl, cached_dev_write_complete, NULL);
1098 }
1099
1100 static void cached_dev_nodata(struct closure *cl)
1101 {
1102         struct search *s = container_of(cl, struct search, cl);
1103         struct bio *bio = &s->bio.bio;
1104
1105         if (s->iop.flush_journal)
1106                 bch_journal_meta(s->iop.c, cl);
1107
1108         /* If it's a flush, we send the flush to the backing device too */
1109         closure_bio_submit(bio, cl, s->d);
1110
1111         continue_at(cl, cached_dev_bio_complete, NULL);
1112 }
1113
1114 /* Cached devices - read & write stuff */
1115
1116 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1117 {
1118         struct search *s;
1119         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1120         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1121         int cpu, rw = bio_data_dir(bio);
1122
1123         cpu = part_stat_lock();
1124         part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1125         part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1126         part_stat_unlock();
1127
1128         bio->bi_bdev = dc->bdev;
1129         bio->bi_sector += dc->sb.data_offset;
1130
1131         if (cached_dev_get(dc)) {
1132                 s = search_alloc(bio, d);
1133                 trace_bcache_request_start(s->d, bio);
1134
1135                 if (!bio->bi_size) {
1136                         /*
1137                          * can't call bch_journal_meta from under
1138                          * generic_make_request
1139                          */
1140                         continue_at_nobarrier(&s->cl,
1141                                               cached_dev_nodata,
1142                                               bcache_wq);
1143                 } else {
1144                         s->iop.bypass = check_should_bypass(dc, bio);
1145
1146                         if (rw)
1147                                 cached_dev_write(dc, s);
1148                         else
1149                                 cached_dev_read(dc, s);
1150                 }
1151         } else {
1152                 if ((bio->bi_rw & REQ_DISCARD) &&
1153                     !blk_queue_discard(bdev_get_queue(dc->bdev)))
1154                         bio_endio(bio, 0);
1155                 else
1156                         bch_generic_make_request(bio, &d->bio_split_hook);
1157         }
1158 }
1159
1160 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1161                             unsigned int cmd, unsigned long arg)
1162 {
1163         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1164         return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1165 }
1166
1167 static int cached_dev_congested(void *data, int bits)
1168 {
1169         struct bcache_device *d = data;
1170         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1171         struct request_queue *q = bdev_get_queue(dc->bdev);
1172         int ret = 0;
1173
1174         if (bdi_congested(&q->backing_dev_info, bits))
1175                 return 1;
1176
1177         if (cached_dev_get(dc)) {
1178                 unsigned i;
1179                 struct cache *ca;
1180
1181                 for_each_cache(ca, d->c, i) {
1182                         q = bdev_get_queue(ca->bdev);
1183                         ret |= bdi_congested(&q->backing_dev_info, bits);
1184                 }
1185
1186                 cached_dev_put(dc);
1187         }
1188
1189         return ret;
1190 }
1191
1192 void bch_cached_dev_request_init(struct cached_dev *dc)
1193 {
1194         struct gendisk *g = dc->disk.disk;
1195
1196         g->queue->make_request_fn               = cached_dev_make_request;
1197         g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1198         dc->disk.cache_miss                     = cached_dev_cache_miss;
1199         dc->disk.ioctl                          = cached_dev_ioctl;
1200 }
1201
1202 /* Flash backed devices */
1203
1204 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1205                                 struct bio *bio, unsigned sectors)
1206 {
1207         struct bio_vec *bv;
1208         int i;
1209
1210         /* Zero fill bio */
1211
1212         bio_for_each_segment(bv, bio, i) {
1213                 unsigned j = min(bv->bv_len >> 9, sectors);
1214
1215                 void *p = kmap(bv->bv_page);
1216                 memset(p + bv->bv_offset, 0, j << 9);
1217                 kunmap(bv->bv_page);
1218
1219                 sectors -= j;
1220         }
1221
1222         bio_advance(bio, min(sectors << 9, bio->bi_size));
1223
1224         if (!bio->bi_size)
1225                 return MAP_DONE;
1226
1227         return MAP_CONTINUE;
1228 }
1229
1230 static void flash_dev_nodata(struct closure *cl)
1231 {
1232         struct search *s = container_of(cl, struct search, cl);
1233
1234         if (s->iop.flush_journal)
1235                 bch_journal_meta(s->iop.c, cl);
1236
1237         continue_at(cl, search_free, NULL);
1238 }
1239
1240 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1241 {
1242         struct search *s;
1243         struct closure *cl;
1244         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1245         int cpu, rw = bio_data_dir(bio);
1246
1247         cpu = part_stat_lock();
1248         part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1249         part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1250         part_stat_unlock();
1251
1252         s = search_alloc(bio, d);
1253         cl = &s->cl;
1254         bio = &s->bio.bio;
1255
1256         trace_bcache_request_start(s->d, bio);
1257
1258         if (!bio->bi_size) {
1259                 /*
1260                  * can't call bch_journal_meta from under
1261                  * generic_make_request
1262                  */
1263                 continue_at_nobarrier(&s->cl,
1264                                       flash_dev_nodata,
1265                                       bcache_wq);
1266         } else if (rw) {
1267                 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1268                                         &KEY(d->id, bio->bi_sector, 0),
1269                                         &KEY(d->id, bio_end_sector(bio), 0));
1270
1271                 s->iop.bypass           = (bio->bi_rw & REQ_DISCARD) != 0;
1272                 s->iop.writeback        = true;
1273                 s->iop.bio              = bio;
1274
1275                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1276         } else {
1277                 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1278         }
1279
1280         continue_at(cl, search_free, NULL);
1281 }
1282
1283 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1284                            unsigned int cmd, unsigned long arg)
1285 {
1286         return -ENOTTY;
1287 }
1288
1289 static int flash_dev_congested(void *data, int bits)
1290 {
1291         struct bcache_device *d = data;
1292         struct request_queue *q;
1293         struct cache *ca;
1294         unsigned i;
1295         int ret = 0;
1296
1297         for_each_cache(ca, d->c, i) {
1298                 q = bdev_get_queue(ca->bdev);
1299                 ret |= bdi_congested(&q->backing_dev_info, bits);
1300         }
1301
1302         return ret;
1303 }
1304
1305 void bch_flash_dev_request_init(struct bcache_device *d)
1306 {
1307         struct gendisk *g = d->disk;
1308
1309         g->queue->make_request_fn               = flash_dev_make_request;
1310         g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1311         d->cache_miss                           = flash_dev_cache_miss;
1312         d->ioctl                                = flash_dev_ioctl;
1313 }
1314
1315 void bch_request_exit(void)
1316 {
1317 #ifdef CONFIG_CGROUP_BCACHE
1318         cgroup_unload_subsys(&bcache_subsys);
1319 #endif
1320         if (bch_search_cache)
1321                 kmem_cache_destroy(bch_search_cache);
1322 }
1323
1324 int __init bch_request_init(void)
1325 {
1326         bch_search_cache = KMEM_CACHE(search, 0);
1327         if (!bch_search_cache)
1328                 return -ENOMEM;
1329
1330 #ifdef CONFIG_CGROUP_BCACHE
1331         cgroup_load_subsys(&bcache_subsys);
1332         init_bch_cgroup(&bcache_default_cgroup);
1333
1334         cgroup_add_cftypes(&bcache_subsys, bch_files);
1335 #endif
1336         return 0;
1337 }