]> Pileus Git - ~andy/linux/blob - drivers/md/bcache/request.c
mg_disk: Spelling s/finised/finished/
[~andy/linux] / drivers / md / bcache / request.c
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/cgroup.h>
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include "blk-cgroup.h"
20
21 #include <trace/events/bcache.h>
22
23 #define CUTOFF_CACHE_ADD        95
24 #define CUTOFF_CACHE_READA      90
25
26 struct kmem_cache *bch_search_cache;
27
28 static void bch_data_insert_start(struct closure *);
29
30 /* Cgroup interface */
31
32 #ifdef CONFIG_CGROUP_BCACHE
33 static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
34
35 static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
36 {
37         struct cgroup_subsys_state *css;
38         return cgroup &&
39                 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40                 ? container_of(css, struct bch_cgroup, css)
41                 : &bcache_default_cgroup;
42 }
43
44 struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
45 {
46         struct cgroup_subsys_state *css = bio->bi_css
47                 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48                 : task_subsys_state(current, bcache_subsys_id);
49
50         return css
51                 ? container_of(css, struct bch_cgroup, css)
52                 : &bcache_default_cgroup;
53 }
54
55 static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
56                         struct file *file,
57                         char __user *buf, size_t nbytes, loff_t *ppos)
58 {
59         char tmp[1024];
60         int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61                                           cgroup_to_bcache(cgrp)->cache_mode + 1);
62
63         if (len < 0)
64                 return len;
65
66         return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
67 }
68
69 static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
70                             const char *buf)
71 {
72         int v = bch_read_string_list(buf, bch_cache_modes);
73         if (v < 0)
74                 return v;
75
76         cgroup_to_bcache(cgrp)->cache_mode = v - 1;
77         return 0;
78 }
79
80 static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
81 {
82         return cgroup_to_bcache(cgrp)->verify;
83 }
84
85 static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
86 {
87         cgroup_to_bcache(cgrp)->verify = val;
88         return 0;
89 }
90
91 static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
92 {
93         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94         return atomic_read(&bcachecg->stats.cache_hits);
95 }
96
97 static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
98 {
99         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100         return atomic_read(&bcachecg->stats.cache_misses);
101 }
102
103 static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
104                                          struct cftype *cft)
105 {
106         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107         return atomic_read(&bcachecg->stats.cache_bypass_hits);
108 }
109
110 static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
111                                            struct cftype *cft)
112 {
113         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114         return atomic_read(&bcachecg->stats.cache_bypass_misses);
115 }
116
117 static struct cftype bch_files[] = {
118         {
119                 .name           = "cache_mode",
120                 .read           = cache_mode_read,
121                 .write_string   = cache_mode_write,
122         },
123         {
124                 .name           = "verify",
125                 .read_u64       = bch_verify_read,
126                 .write_u64      = bch_verify_write,
127         },
128         {
129                 .name           = "cache_hits",
130                 .read_u64       = bch_cache_hits_read,
131         },
132         {
133                 .name           = "cache_misses",
134                 .read_u64       = bch_cache_misses_read,
135         },
136         {
137                 .name           = "cache_bypass_hits",
138                 .read_u64       = bch_cache_bypass_hits_read,
139         },
140         {
141                 .name           = "cache_bypass_misses",
142                 .read_u64       = bch_cache_bypass_misses_read,
143         },
144         { }     /* terminate */
145 };
146
147 static void init_bch_cgroup(struct bch_cgroup *cg)
148 {
149         cg->cache_mode = -1;
150 }
151
152 static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
153 {
154         struct bch_cgroup *cg;
155
156         cg = kzalloc(sizeof(*cg), GFP_KERNEL);
157         if (!cg)
158                 return ERR_PTR(-ENOMEM);
159         init_bch_cgroup(cg);
160         return &cg->css;
161 }
162
163 static void bcachecg_destroy(struct cgroup *cgroup)
164 {
165         struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166         free_css_id(&bcache_subsys, &cg->css);
167         kfree(cg);
168 }
169
170 struct cgroup_subsys bcache_subsys = {
171         .create         = bcachecg_create,
172         .destroy        = bcachecg_destroy,
173         .subsys_id      = bcache_subsys_id,
174         .name           = "bcache",
175         .module         = THIS_MODULE,
176 };
177 EXPORT_SYMBOL_GPL(bcache_subsys);
178 #endif
179
180 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
181 {
182 #ifdef CONFIG_CGROUP_BCACHE
183         int r = bch_bio_to_cgroup(bio)->cache_mode;
184         if (r >= 0)
185                 return r;
186 #endif
187         return BDEV_CACHE_MODE(&dc->sb);
188 }
189
190 static bool verify(struct cached_dev *dc, struct bio *bio)
191 {
192 #ifdef CONFIG_CGROUP_BCACHE
193         if (bch_bio_to_cgroup(bio)->verify)
194                 return true;
195 #endif
196         return dc->verify;
197 }
198
199 static void bio_csum(struct bio *bio, struct bkey *k)
200 {
201         struct bio_vec bv;
202         struct bvec_iter iter;
203         uint64_t csum = 0;
204
205         bio_for_each_segment(bv, bio, iter) {
206                 void *d = kmap(bv.bv_page) + bv.bv_offset;
207                 csum = bch_crc64_update(csum, d, bv.bv_len);
208                 kunmap(bv.bv_page);
209         }
210
211         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
212 }
213
214 /* Insert data into cache */
215
216 static void bch_data_insert_keys(struct closure *cl)
217 {
218         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
219         atomic_t *journal_ref = NULL;
220         struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
221         int ret;
222
223         /*
224          * If we're looping, might already be waiting on
225          * another journal write - can't wait on more than one journal write at
226          * a time
227          *
228          * XXX: this looks wrong
229          */
230 #if 0
231         while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
232                 closure_sync(&s->cl);
233 #endif
234
235         if (!op->replace)
236                 journal_ref = bch_journal(op->c, &op->insert_keys,
237                                           op->flush_journal ? cl : NULL);
238
239         ret = bch_btree_insert(op->c, &op->insert_keys,
240                                journal_ref, replace_key);
241         if (ret == -ESRCH) {
242                 op->replace_collision = true;
243         } else if (ret) {
244                 op->error               = -ENOMEM;
245                 op->insert_data_done    = true;
246         }
247
248         if (journal_ref)
249                 atomic_dec_bug(journal_ref);
250
251         if (!op->insert_data_done)
252                 continue_at(cl, bch_data_insert_start, bcache_wq);
253
254         bch_keylist_free(&op->insert_keys);
255         closure_return(cl);
256 }
257
258 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
259                                struct cache_set *c)
260 {
261         size_t oldsize = bch_keylist_nkeys(l);
262         size_t newsize = oldsize + u64s;
263
264         /*
265          * The journalling code doesn't handle the case where the keys to insert
266          * is bigger than an empty write: If we just return -ENOMEM here,
267          * bio_insert() and bio_invalidate() will insert the keys created so far
268          * and finish the rest when the keylist is empty.
269          */
270         if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
271                 return -ENOMEM;
272
273         return __bch_keylist_realloc(l, u64s);
274 }
275
276 static void bch_data_invalidate(struct closure *cl)
277 {
278         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
279         struct bio *bio = op->bio;
280
281         pr_debug("invalidating %i sectors from %llu",
282                  bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
283
284         while (bio_sectors(bio)) {
285                 unsigned sectors = min(bio_sectors(bio),
286                                        1U << (KEY_SIZE_BITS - 1));
287
288                 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
289                         goto out;
290
291                 bio->bi_iter.bi_sector  += sectors;
292                 bio->bi_iter.bi_size    -= sectors << 9;
293
294                 bch_keylist_add(&op->insert_keys,
295                                 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
296         }
297
298         op->insert_data_done = true;
299         bio_put(bio);
300 out:
301         continue_at(cl, bch_data_insert_keys, bcache_wq);
302 }
303
304 static void bch_data_insert_error(struct closure *cl)
305 {
306         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
307
308         /*
309          * Our data write just errored, which means we've got a bunch of keys to
310          * insert that point to data that wasn't succesfully written.
311          *
312          * We don't have to insert those keys but we still have to invalidate
313          * that region of the cache - so, if we just strip off all the pointers
314          * from the keys we'll accomplish just that.
315          */
316
317         struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
318
319         while (src != op->insert_keys.top) {
320                 struct bkey *n = bkey_next(src);
321
322                 SET_KEY_PTRS(src, 0);
323                 memmove(dst, src, bkey_bytes(src));
324
325                 dst = bkey_next(dst);
326                 src = n;
327         }
328
329         op->insert_keys.top = dst;
330
331         bch_data_insert_keys(cl);
332 }
333
334 static void bch_data_insert_endio(struct bio *bio, int error)
335 {
336         struct closure *cl = bio->bi_private;
337         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
338
339         if (error) {
340                 /* TODO: We could try to recover from this. */
341                 if (op->writeback)
342                         op->error = error;
343                 else if (!op->replace)
344                         set_closure_fn(cl, bch_data_insert_error, bcache_wq);
345                 else
346                         set_closure_fn(cl, NULL, NULL);
347         }
348
349         bch_bbio_endio(op->c, bio, error, "writing data to cache");
350 }
351
352 static void bch_data_insert_start(struct closure *cl)
353 {
354         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
355         struct bio *bio = op->bio, *n;
356
357         if (op->bypass)
358                 return bch_data_invalidate(cl);
359
360         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
361                 set_gc_sectors(op->c);
362                 wake_up_gc(op->c);
363         }
364
365         /*
366          * Journal writes are marked REQ_FLUSH; if the original write was a
367          * flush, it'll wait on the journal write.
368          */
369         bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
370
371         do {
372                 unsigned i;
373                 struct bkey *k;
374                 struct bio_set *split = op->c->bio_split;
375
376                 /* 1 for the device pointer and 1 for the chksum */
377                 if (bch_keylist_realloc(&op->insert_keys,
378                                         3 + (op->csum ? 1 : 0),
379                                         op->c))
380                         continue_at(cl, bch_data_insert_keys, bcache_wq);
381
382                 k = op->insert_keys.top;
383                 bkey_init(k);
384                 SET_KEY_INODE(k, op->inode);
385                 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
386
387                 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
388                                        op->write_point, op->write_prio,
389                                        op->writeback))
390                         goto err;
391
392                 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
393
394                 n->bi_end_io    = bch_data_insert_endio;
395                 n->bi_private   = cl;
396
397                 if (op->writeback) {
398                         SET_KEY_DIRTY(k, true);
399
400                         for (i = 0; i < KEY_PTRS(k); i++)
401                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
402                                             GC_MARK_DIRTY);
403                 }
404
405                 SET_KEY_CSUM(k, op->csum);
406                 if (KEY_CSUM(k))
407                         bio_csum(n, k);
408
409                 trace_bcache_cache_insert(k);
410                 bch_keylist_push(&op->insert_keys);
411
412                 n->bi_rw |= REQ_WRITE;
413                 bch_submit_bbio(n, op->c, k, 0);
414         } while (n != bio);
415
416         op->insert_data_done = true;
417         continue_at(cl, bch_data_insert_keys, bcache_wq);
418 err:
419         /* bch_alloc_sectors() blocks if s->writeback = true */
420         BUG_ON(op->writeback);
421
422         /*
423          * But if it's not a writeback write we'd rather just bail out if
424          * there aren't any buckets ready to write to - it might take awhile and
425          * we might be starving btree writes for gc or something.
426          */
427
428         if (!op->replace) {
429                 /*
430                  * Writethrough write: We can't complete the write until we've
431                  * updated the index. But we don't want to delay the write while
432                  * we wait for buckets to be freed up, so just invalidate the
433                  * rest of the write.
434                  */
435                 op->bypass = true;
436                 return bch_data_invalidate(cl);
437         } else {
438                 /*
439                  * From a cache miss, we can just insert the keys for the data
440                  * we have written or bail out if we didn't do anything.
441                  */
442                 op->insert_data_done = true;
443                 bio_put(bio);
444
445                 if (!bch_keylist_empty(&op->insert_keys))
446                         continue_at(cl, bch_data_insert_keys, bcache_wq);
447                 else
448                         closure_return(cl);
449         }
450 }
451
452 /**
453  * bch_data_insert - stick some data in the cache
454  *
455  * This is the starting point for any data to end up in a cache device; it could
456  * be from a normal write, or a writeback write, or a write to a flash only
457  * volume - it's also used by the moving garbage collector to compact data in
458  * mostly empty buckets.
459  *
460  * It first writes the data to the cache, creating a list of keys to be inserted
461  * (if the data had to be fragmented there will be multiple keys); after the
462  * data is written it calls bch_journal, and after the keys have been added to
463  * the next journal write they're inserted into the btree.
464  *
465  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
466  * and op->inode is used for the key inode.
467  *
468  * If s->bypass is true, instead of inserting the data it invalidates the
469  * region of the cache represented by s->cache_bio and op->inode.
470  */
471 void bch_data_insert(struct closure *cl)
472 {
473         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
474
475         trace_bcache_write(op->bio, op->writeback, op->bypass);
476
477         bch_keylist_init(&op->insert_keys);
478         bio_get(op->bio);
479         bch_data_insert_start(cl);
480 }
481
482 /* Congested? */
483
484 unsigned bch_get_congested(struct cache_set *c)
485 {
486         int i;
487         long rand;
488
489         if (!c->congested_read_threshold_us &&
490             !c->congested_write_threshold_us)
491                 return 0;
492
493         i = (local_clock_us() - c->congested_last_us) / 1024;
494         if (i < 0)
495                 return 0;
496
497         i += atomic_read(&c->congested);
498         if (i >= 0)
499                 return 0;
500
501         i += CONGESTED_MAX;
502
503         if (i > 0)
504                 i = fract_exp_two(i, 6);
505
506         rand = get_random_int();
507         i -= bitmap_weight(&rand, BITS_PER_LONG);
508
509         return i > 0 ? i : 1;
510 }
511
512 static void add_sequential(struct task_struct *t)
513 {
514         ewma_add(t->sequential_io_avg,
515                  t->sequential_io, 8, 0);
516
517         t->sequential_io = 0;
518 }
519
520 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
521 {
522         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
523 }
524
525 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
526 {
527         struct cache_set *c = dc->disk.c;
528         unsigned mode = cache_mode(dc, bio);
529         unsigned sectors, congested = bch_get_congested(c);
530         struct task_struct *task = current;
531         struct io *i;
532
533         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
534             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
535             (bio->bi_rw & REQ_DISCARD))
536                 goto skip;
537
538         if (mode == CACHE_MODE_NONE ||
539             (mode == CACHE_MODE_WRITEAROUND &&
540              (bio->bi_rw & REQ_WRITE)))
541                 goto skip;
542
543         if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
544             bio_sectors(bio) & (c->sb.block_size - 1)) {
545                 pr_debug("skipping unaligned io");
546                 goto skip;
547         }
548
549         if (bypass_torture_test(dc)) {
550                 if ((get_random_int() & 3) == 3)
551                         goto skip;
552                 else
553                         goto rescale;
554         }
555
556         if (!congested && !dc->sequential_cutoff)
557                 goto rescale;
558
559         if (!congested &&
560             mode == CACHE_MODE_WRITEBACK &&
561             (bio->bi_rw & REQ_WRITE) &&
562             (bio->bi_rw & REQ_SYNC))
563                 goto rescale;
564
565         spin_lock(&dc->io_lock);
566
567         hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
568                 if (i->last == bio->bi_iter.bi_sector &&
569                     time_before(jiffies, i->jiffies))
570                         goto found;
571
572         i = list_first_entry(&dc->io_lru, struct io, lru);
573
574         add_sequential(task);
575         i->sequential = 0;
576 found:
577         if (i->sequential + bio->bi_iter.bi_size > i->sequential)
578                 i->sequential   += bio->bi_iter.bi_size;
579
580         i->last                  = bio_end_sector(bio);
581         i->jiffies               = jiffies + msecs_to_jiffies(5000);
582         task->sequential_io      = i->sequential;
583
584         hlist_del(&i->hash);
585         hlist_add_head(&i->hash, iohash(dc, i->last));
586         list_move_tail(&i->lru, &dc->io_lru);
587
588         spin_unlock(&dc->io_lock);
589
590         sectors = max(task->sequential_io,
591                       task->sequential_io_avg) >> 9;
592
593         if (dc->sequential_cutoff &&
594             sectors >= dc->sequential_cutoff >> 9) {
595                 trace_bcache_bypass_sequential(bio);
596                 goto skip;
597         }
598
599         if (congested && sectors >= congested) {
600                 trace_bcache_bypass_congested(bio);
601                 goto skip;
602         }
603
604 rescale:
605         bch_rescale_priorities(c, bio_sectors(bio));
606         return false;
607 skip:
608         bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
609         return true;
610 }
611
612 /* Cache lookup */
613
614 struct search {
615         /* Stack frame for bio_complete */
616         struct closure          cl;
617
618         struct bbio             bio;
619         struct bio              *orig_bio;
620         struct bio              *cache_miss;
621         struct bcache_device    *d;
622
623         unsigned                insert_bio_sectors;
624         unsigned                recoverable:1;
625         unsigned                write:1;
626         unsigned                read_dirty_data:1;
627
628         unsigned long           start_time;
629
630         struct btree_op         op;
631         struct data_insert_op   iop;
632 };
633
634 static void bch_cache_read_endio(struct bio *bio, int error)
635 {
636         struct bbio *b = container_of(bio, struct bbio, bio);
637         struct closure *cl = bio->bi_private;
638         struct search *s = container_of(cl, struct search, cl);
639
640         /*
641          * If the bucket was reused while our bio was in flight, we might have
642          * read the wrong data. Set s->error but not error so it doesn't get
643          * counted against the cache device, but we'll still reread the data
644          * from the backing device.
645          */
646
647         if (error)
648                 s->iop.error = error;
649         else if (!KEY_DIRTY(&b->key) &&
650                  ptr_stale(s->iop.c, &b->key, 0)) {
651                 atomic_long_inc(&s->iop.c->cache_read_races);
652                 s->iop.error = -EINTR;
653         }
654
655         bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
656 }
657
658 /*
659  * Read from a single key, handling the initial cache miss if the key starts in
660  * the middle of the bio
661  */
662 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
663 {
664         struct search *s = container_of(op, struct search, op);
665         struct bio *n, *bio = &s->bio.bio;
666         struct bkey *bio_key;
667         unsigned ptr;
668
669         if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
670                 return MAP_CONTINUE;
671
672         if (KEY_INODE(k) != s->iop.inode ||
673             KEY_START(k) > bio->bi_iter.bi_sector) {
674                 unsigned bio_sectors = bio_sectors(bio);
675                 unsigned sectors = KEY_INODE(k) == s->iop.inode
676                         ? min_t(uint64_t, INT_MAX,
677                                 KEY_START(k) - bio->bi_iter.bi_sector)
678                         : INT_MAX;
679
680                 int ret = s->d->cache_miss(b, s, bio, sectors);
681                 if (ret != MAP_CONTINUE)
682                         return ret;
683
684                 /* if this was a complete miss we shouldn't get here */
685                 BUG_ON(bio_sectors <= sectors);
686         }
687
688         if (!KEY_SIZE(k))
689                 return MAP_CONTINUE;
690
691         /* XXX: figure out best pointer - for multiple cache devices */
692         ptr = 0;
693
694         PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
695
696         if (KEY_DIRTY(k))
697                 s->read_dirty_data = true;
698
699         n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
700                                       KEY_OFFSET(k) - bio->bi_iter.bi_sector),
701                            GFP_NOIO, s->d->bio_split);
702
703         bio_key = &container_of(n, struct bbio, bio)->key;
704         bch_bkey_copy_single_ptr(bio_key, k, ptr);
705
706         bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
707         bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
708
709         n->bi_end_io    = bch_cache_read_endio;
710         n->bi_private   = &s->cl;
711
712         /*
713          * The bucket we're reading from might be reused while our bio
714          * is in flight, and we could then end up reading the wrong
715          * data.
716          *
717          * We guard against this by checking (in cache_read_endio()) if
718          * the pointer is stale again; if so, we treat it as an error
719          * and reread from the backing device (but we don't pass that
720          * error up anywhere).
721          */
722
723         __bch_submit_bbio(n, b->c);
724         return n == bio ? MAP_DONE : MAP_CONTINUE;
725 }
726
727 static void cache_lookup(struct closure *cl)
728 {
729         struct search *s = container_of(cl, struct search, iop.cl);
730         struct bio *bio = &s->bio.bio;
731         int ret;
732
733         bch_btree_op_init(&s->op, -1);
734
735         ret = bch_btree_map_keys(&s->op, s->iop.c,
736                                  &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
737                                  cache_lookup_fn, MAP_END_KEY);
738         if (ret == -EAGAIN)
739                 continue_at(cl, cache_lookup, bcache_wq);
740
741         closure_return(cl);
742 }
743
744 /* Common code for the make_request functions */
745
746 static void request_endio(struct bio *bio, int error)
747 {
748         struct closure *cl = bio->bi_private;
749
750         if (error) {
751                 struct search *s = container_of(cl, struct search, cl);
752                 s->iop.error = error;
753                 /* Only cache read errors are recoverable */
754                 s->recoverable = false;
755         }
756
757         bio_put(bio);
758         closure_put(cl);
759 }
760
761 static void bio_complete(struct search *s)
762 {
763         if (s->orig_bio) {
764                 int cpu, rw = bio_data_dir(s->orig_bio);
765                 unsigned long duration = jiffies - s->start_time;
766
767                 cpu = part_stat_lock();
768                 part_round_stats(cpu, &s->d->disk->part0);
769                 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
770                 part_stat_unlock();
771
772                 trace_bcache_request_end(s->d, s->orig_bio);
773                 bio_endio(s->orig_bio, s->iop.error);
774                 s->orig_bio = NULL;
775         }
776 }
777
778 static void do_bio_hook(struct search *s, struct bio *orig_bio)
779 {
780         struct bio *bio = &s->bio.bio;
781
782         bio_init(bio);
783         __bio_clone_fast(bio, orig_bio);
784         bio->bi_end_io          = request_endio;
785         bio->bi_private         = &s->cl;
786
787         atomic_set(&bio->bi_cnt, 3);
788 }
789
790 static void search_free(struct closure *cl)
791 {
792         struct search *s = container_of(cl, struct search, cl);
793         bio_complete(s);
794
795         if (s->iop.bio)
796                 bio_put(s->iop.bio);
797
798         closure_debug_destroy(cl);
799         mempool_free(s, s->d->c->search);
800 }
801
802 static inline struct search *search_alloc(struct bio *bio,
803                                           struct bcache_device *d)
804 {
805         struct search *s;
806
807         s = mempool_alloc(d->c->search, GFP_NOIO);
808
809         closure_init(&s->cl, NULL);
810         do_bio_hook(s, bio);
811
812         s->orig_bio             = bio;
813         s->cache_miss           = NULL;
814         s->d                    = d;
815         s->recoverable          = 1;
816         s->write                = (bio->bi_rw & REQ_WRITE) != 0;
817         s->read_dirty_data      = 0;
818         s->start_time           = jiffies;
819
820         s->iop.c                = d->c;
821         s->iop.bio              = NULL;
822         s->iop.inode            = d->id;
823         s->iop.write_point      = hash_long((unsigned long) current, 16);
824         s->iop.write_prio       = 0;
825         s->iop.error            = 0;
826         s->iop.flags            = 0;
827         s->iop.flush_journal    = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
828
829         return s;
830 }
831
832 /* Cached devices */
833
834 static void cached_dev_bio_complete(struct closure *cl)
835 {
836         struct search *s = container_of(cl, struct search, cl);
837         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
838
839         search_free(cl);
840         cached_dev_put(dc);
841 }
842
843 /* Process reads */
844
845 static void cached_dev_cache_miss_done(struct closure *cl)
846 {
847         struct search *s = container_of(cl, struct search, cl);
848
849         if (s->iop.replace_collision)
850                 bch_mark_cache_miss_collision(s->iop.c, s->d);
851
852         if (s->iop.bio) {
853                 int i;
854                 struct bio_vec *bv;
855
856                 bio_for_each_segment_all(bv, s->iop.bio, i)
857                         __free_page(bv->bv_page);
858         }
859
860         cached_dev_bio_complete(cl);
861 }
862
863 static void cached_dev_read_error(struct closure *cl)
864 {
865         struct search *s = container_of(cl, struct search, cl);
866         struct bio *bio = &s->bio.bio;
867
868         if (s->recoverable) {
869                 /* Retry from the backing device: */
870                 trace_bcache_read_retry(s->orig_bio);
871
872                 s->iop.error = 0;
873                 do_bio_hook(s, s->orig_bio);
874
875                 /* XXX: invalidate cache */
876
877                 closure_bio_submit(bio, cl, s->d);
878         }
879
880         continue_at(cl, cached_dev_cache_miss_done, NULL);
881 }
882
883 static void cached_dev_read_done(struct closure *cl)
884 {
885         struct search *s = container_of(cl, struct search, cl);
886         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
887
888         /*
889          * We had a cache miss; cache_bio now contains data ready to be inserted
890          * into the cache.
891          *
892          * First, we copy the data we just read from cache_bio's bounce buffers
893          * to the buffers the original bio pointed to:
894          */
895
896         if (s->iop.bio) {
897                 bio_reset(s->iop.bio);
898                 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
899                 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
900                 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
901                 bch_bio_map(s->iop.bio, NULL);
902
903                 bio_copy_data(s->cache_miss, s->iop.bio);
904
905                 bio_put(s->cache_miss);
906                 s->cache_miss = NULL;
907         }
908
909         if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
910                 bch_data_verify(dc, s->orig_bio);
911
912         bio_complete(s);
913
914         if (s->iop.bio &&
915             !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
916                 BUG_ON(!s->iop.replace);
917                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
918         }
919
920         continue_at(cl, cached_dev_cache_miss_done, NULL);
921 }
922
923 static void cached_dev_read_done_bh(struct closure *cl)
924 {
925         struct search *s = container_of(cl, struct search, cl);
926         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
927
928         bch_mark_cache_accounting(s->iop.c, s->d,
929                                   !s->cache_miss, s->iop.bypass);
930         trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
931
932         if (s->iop.error)
933                 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
934         else if (s->iop.bio || verify(dc, &s->bio.bio))
935                 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
936         else
937                 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
938 }
939
940 static int cached_dev_cache_miss(struct btree *b, struct search *s,
941                                  struct bio *bio, unsigned sectors)
942 {
943         int ret = MAP_CONTINUE;
944         unsigned reada = 0;
945         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
946         struct bio *miss, *cache_bio;
947
948         if (s->cache_miss || s->iop.bypass) {
949                 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
950                 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
951                 goto out_submit;
952         }
953
954         if (!(bio->bi_rw & REQ_RAHEAD) &&
955             !(bio->bi_rw & REQ_META) &&
956             s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
957                 reada = min_t(sector_t, dc->readahead >> 9,
958                               bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
959
960         s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
961
962         s->iop.replace_key = KEY(s->iop.inode,
963                                  bio->bi_iter.bi_sector + s->insert_bio_sectors,
964                                  s->insert_bio_sectors);
965
966         ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
967         if (ret)
968                 return ret;
969
970         s->iop.replace = true;
971
972         miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
973
974         /* btree_search_recurse()'s btree iterator is no good anymore */
975         ret = miss == bio ? MAP_DONE : -EINTR;
976
977         cache_bio = bio_alloc_bioset(GFP_NOWAIT,
978                         DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
979                         dc->disk.bio_split);
980         if (!cache_bio)
981                 goto out_submit;
982
983         cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
984         cache_bio->bi_bdev              = miss->bi_bdev;
985         cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
986
987         cache_bio->bi_end_io    = request_endio;
988         cache_bio->bi_private   = &s->cl;
989
990         bch_bio_map(cache_bio, NULL);
991         if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
992                 goto out_put;
993
994         if (reada)
995                 bch_mark_cache_readahead(s->iop.c, s->d);
996
997         s->cache_miss   = miss;
998         s->iop.bio      = cache_bio;
999         bio_get(cache_bio);
1000         closure_bio_submit(cache_bio, &s->cl, s->d);
1001
1002         return ret;
1003 out_put:
1004         bio_put(cache_bio);
1005 out_submit:
1006         miss->bi_end_io         = request_endio;
1007         miss->bi_private        = &s->cl;
1008         closure_bio_submit(miss, &s->cl, s->d);
1009         return ret;
1010 }
1011
1012 static void cached_dev_read(struct cached_dev *dc, struct search *s)
1013 {
1014         struct closure *cl = &s->cl;
1015
1016         closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1017         continue_at(cl, cached_dev_read_done_bh, NULL);
1018 }
1019
1020 /* Process writes */
1021
1022 static void cached_dev_write_complete(struct closure *cl)
1023 {
1024         struct search *s = container_of(cl, struct search, cl);
1025         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1026
1027         up_read_non_owner(&dc->writeback_lock);
1028         cached_dev_bio_complete(cl);
1029 }
1030
1031 static void cached_dev_write(struct cached_dev *dc, struct search *s)
1032 {
1033         struct closure *cl = &s->cl;
1034         struct bio *bio = &s->bio.bio;
1035         struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
1036         struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
1037
1038         bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
1039
1040         down_read_non_owner(&dc->writeback_lock);
1041         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
1042                 /*
1043                  * We overlap with some dirty data undergoing background
1044                  * writeback, force this write to writeback
1045                  */
1046                 s->iop.bypass = false;
1047                 s->iop.writeback = true;
1048         }
1049
1050         /*
1051          * Discards aren't _required_ to do anything, so skipping if
1052          * check_overlapping returned true is ok
1053          *
1054          * But check_overlapping drops dirty keys for which io hasn't started,
1055          * so we still want to call it.
1056          */
1057         if (bio->bi_rw & REQ_DISCARD)
1058                 s->iop.bypass = true;
1059
1060         if (should_writeback(dc, s->orig_bio,
1061                              cache_mode(dc, bio),
1062                              s->iop.bypass)) {
1063                 s->iop.bypass = false;
1064                 s->iop.writeback = true;
1065         }
1066
1067         if (s->iop.bypass) {
1068                 s->iop.bio = s->orig_bio;
1069                 bio_get(s->iop.bio);
1070
1071                 if (!(bio->bi_rw & REQ_DISCARD) ||
1072                     blk_queue_discard(bdev_get_queue(dc->bdev)))
1073                         closure_bio_submit(bio, cl, s->d);
1074         } else if (s->iop.writeback) {
1075                 bch_writeback_add(dc);
1076                 s->iop.bio = bio;
1077
1078                 if (bio->bi_rw & REQ_FLUSH) {
1079                         /* Also need to send a flush to the backing device */
1080                         struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
1081                                                              dc->disk.bio_split);
1082
1083                         flush->bi_rw    = WRITE_FLUSH;
1084                         flush->bi_bdev  = bio->bi_bdev;
1085                         flush->bi_end_io = request_endio;
1086                         flush->bi_private = cl;
1087
1088                         closure_bio_submit(flush, cl, s->d);
1089                 }
1090         } else {
1091                 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
1092
1093                 closure_bio_submit(bio, cl, s->d);
1094         }
1095
1096         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1097         continue_at(cl, cached_dev_write_complete, NULL);
1098 }
1099
1100 static void cached_dev_nodata(struct closure *cl)
1101 {
1102         struct search *s = container_of(cl, struct search, cl);
1103         struct bio *bio = &s->bio.bio;
1104
1105         if (s->iop.flush_journal)
1106                 bch_journal_meta(s->iop.c, cl);
1107
1108         /* If it's a flush, we send the flush to the backing device too */
1109         closure_bio_submit(bio, cl, s->d);
1110
1111         continue_at(cl, cached_dev_bio_complete, NULL);
1112 }
1113
1114 /* Cached devices - read & write stuff */
1115
1116 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1117 {
1118         struct search *s;
1119         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1120         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1121         int cpu, rw = bio_data_dir(bio);
1122
1123         cpu = part_stat_lock();
1124         part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1125         part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1126         part_stat_unlock();
1127
1128         bio->bi_bdev = dc->bdev;
1129         bio->bi_iter.bi_sector += dc->sb.data_offset;
1130
1131         if (cached_dev_get(dc)) {
1132                 s = search_alloc(bio, d);
1133                 trace_bcache_request_start(s->d, bio);
1134
1135                 if (!bio->bi_iter.bi_size) {
1136                         /*
1137                          * can't call bch_journal_meta from under
1138                          * generic_make_request
1139                          */
1140                         continue_at_nobarrier(&s->cl,
1141                                               cached_dev_nodata,
1142                                               bcache_wq);
1143                 } else {
1144                         s->iop.bypass = check_should_bypass(dc, bio);
1145
1146                         if (rw)
1147                                 cached_dev_write(dc, s);
1148                         else
1149                                 cached_dev_read(dc, s);
1150                 }
1151         } else {
1152                 if ((bio->bi_rw & REQ_DISCARD) &&
1153                     !blk_queue_discard(bdev_get_queue(dc->bdev)))
1154                         bio_endio(bio, 0);
1155                 else
1156                         bch_generic_make_request(bio, &d->bio_split_hook);
1157         }
1158 }
1159
1160 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1161                             unsigned int cmd, unsigned long arg)
1162 {
1163         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1164         return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1165 }
1166
1167 static int cached_dev_congested(void *data, int bits)
1168 {
1169         struct bcache_device *d = data;
1170         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1171         struct request_queue *q = bdev_get_queue(dc->bdev);
1172         int ret = 0;
1173
1174         if (bdi_congested(&q->backing_dev_info, bits))
1175                 return 1;
1176
1177         if (cached_dev_get(dc)) {
1178                 unsigned i;
1179                 struct cache *ca;
1180
1181                 for_each_cache(ca, d->c, i) {
1182                         q = bdev_get_queue(ca->bdev);
1183                         ret |= bdi_congested(&q->backing_dev_info, bits);
1184                 }
1185
1186                 cached_dev_put(dc);
1187         }
1188
1189         return ret;
1190 }
1191
1192 void bch_cached_dev_request_init(struct cached_dev *dc)
1193 {
1194         struct gendisk *g = dc->disk.disk;
1195
1196         g->queue->make_request_fn               = cached_dev_make_request;
1197         g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1198         dc->disk.cache_miss                     = cached_dev_cache_miss;
1199         dc->disk.ioctl                          = cached_dev_ioctl;
1200 }
1201
1202 /* Flash backed devices */
1203
1204 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1205                                 struct bio *bio, unsigned sectors)
1206 {
1207         struct bio_vec bv;
1208         struct bvec_iter iter;
1209
1210         /* Zero fill bio */
1211
1212         bio_for_each_segment(bv, bio, iter) {
1213                 unsigned j = min(bv.bv_len >> 9, sectors);
1214
1215                 void *p = kmap(bv.bv_page);
1216                 memset(p + bv.bv_offset, 0, j << 9);
1217                 kunmap(bv.bv_page);
1218
1219                 sectors -= j;
1220         }
1221
1222         bio_advance(bio, min(sectors << 9, bio->bi_iter.bi_size));
1223
1224         if (!bio->bi_iter.bi_size)
1225                 return MAP_DONE;
1226
1227         return MAP_CONTINUE;
1228 }
1229
1230 static void flash_dev_nodata(struct closure *cl)
1231 {
1232         struct search *s = container_of(cl, struct search, cl);
1233
1234         if (s->iop.flush_journal)
1235                 bch_journal_meta(s->iop.c, cl);
1236
1237         continue_at(cl, search_free, NULL);
1238 }
1239
1240 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1241 {
1242         struct search *s;
1243         struct closure *cl;
1244         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1245         int cpu, rw = bio_data_dir(bio);
1246
1247         cpu = part_stat_lock();
1248         part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1249         part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1250         part_stat_unlock();
1251
1252         s = search_alloc(bio, d);
1253         cl = &s->cl;
1254         bio = &s->bio.bio;
1255
1256         trace_bcache_request_start(s->d, bio);
1257
1258         if (!bio->bi_iter.bi_size) {
1259                 /*
1260                  * can't call bch_journal_meta from under
1261                  * generic_make_request
1262                  */
1263                 continue_at_nobarrier(&s->cl,
1264                                       flash_dev_nodata,
1265                                       bcache_wq);
1266         } else if (rw) {
1267                 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1268                                         &KEY(d->id, bio->bi_iter.bi_sector, 0),
1269                                         &KEY(d->id, bio_end_sector(bio), 0));
1270
1271                 s->iop.bypass           = (bio->bi_rw & REQ_DISCARD) != 0;
1272                 s->iop.writeback        = true;
1273                 s->iop.bio              = bio;
1274
1275                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1276         } else {
1277                 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1278         }
1279
1280         continue_at(cl, search_free, NULL);
1281 }
1282
1283 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1284                            unsigned int cmd, unsigned long arg)
1285 {
1286         return -ENOTTY;
1287 }
1288
1289 static int flash_dev_congested(void *data, int bits)
1290 {
1291         struct bcache_device *d = data;
1292         struct request_queue *q;
1293         struct cache *ca;
1294         unsigned i;
1295         int ret = 0;
1296
1297         for_each_cache(ca, d->c, i) {
1298                 q = bdev_get_queue(ca->bdev);
1299                 ret |= bdi_congested(&q->backing_dev_info, bits);
1300         }
1301
1302         return ret;
1303 }
1304
1305 void bch_flash_dev_request_init(struct bcache_device *d)
1306 {
1307         struct gendisk *g = d->disk;
1308
1309         g->queue->make_request_fn               = flash_dev_make_request;
1310         g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1311         d->cache_miss                           = flash_dev_cache_miss;
1312         d->ioctl                                = flash_dev_ioctl;
1313 }
1314
1315 void bch_request_exit(void)
1316 {
1317 #ifdef CONFIG_CGROUP_BCACHE
1318         cgroup_unload_subsys(&bcache_subsys);
1319 #endif
1320         if (bch_search_cache)
1321                 kmem_cache_destroy(bch_search_cache);
1322 }
1323
1324 int __init bch_request_init(void)
1325 {
1326         bch_search_cache = KMEM_CACHE(search, 0);
1327         if (!bch_search_cache)
1328                 return -ENOMEM;
1329
1330 #ifdef CONFIG_CGROUP_BCACHE
1331         cgroup_load_subsys(&bcache_subsys);
1332         init_bch_cgroup(&bcache_default_cgroup);
1333
1334         cgroup_add_cftypes(&bcache_subsys, bch_files);
1335 #endif
1336         return 0;
1337 }