]> Pileus Git - ~andy/linux/blob - drivers/md/bcache/request.c
Merge branch 'for-3.14/core' of git://git.kernel.dk/linux-block
[~andy/linux] / drivers / md / bcache / request.c
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/cgroup.h>
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include "blk-cgroup.h"
20
21 #include <trace/events/bcache.h>
22
23 #define CUTOFF_CACHE_ADD        95
24 #define CUTOFF_CACHE_READA      90
25
26 struct kmem_cache *bch_search_cache;
27
28 static void bch_data_insert_start(struct closure *);
29
30 /* Cgroup interface */
31
32 #ifdef CONFIG_CGROUP_BCACHE
33 static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
34
35 static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
36 {
37         struct cgroup_subsys_state *css;
38         return cgroup &&
39                 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40                 ? container_of(css, struct bch_cgroup, css)
41                 : &bcache_default_cgroup;
42 }
43
44 struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
45 {
46         struct cgroup_subsys_state *css = bio->bi_css
47                 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48                 : task_subsys_state(current, bcache_subsys_id);
49
50         return css
51                 ? container_of(css, struct bch_cgroup, css)
52                 : &bcache_default_cgroup;
53 }
54
55 static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
56                         struct file *file,
57                         char __user *buf, size_t nbytes, loff_t *ppos)
58 {
59         char tmp[1024];
60         int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61                                           cgroup_to_bcache(cgrp)->cache_mode + 1);
62
63         if (len < 0)
64                 return len;
65
66         return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
67 }
68
69 static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
70                             const char *buf)
71 {
72         int v = bch_read_string_list(buf, bch_cache_modes);
73         if (v < 0)
74                 return v;
75
76         cgroup_to_bcache(cgrp)->cache_mode = v - 1;
77         return 0;
78 }
79
80 static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
81 {
82         return cgroup_to_bcache(cgrp)->verify;
83 }
84
85 static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
86 {
87         cgroup_to_bcache(cgrp)->verify = val;
88         return 0;
89 }
90
91 static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
92 {
93         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94         return atomic_read(&bcachecg->stats.cache_hits);
95 }
96
97 static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
98 {
99         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100         return atomic_read(&bcachecg->stats.cache_misses);
101 }
102
103 static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
104                                          struct cftype *cft)
105 {
106         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107         return atomic_read(&bcachecg->stats.cache_bypass_hits);
108 }
109
110 static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
111                                            struct cftype *cft)
112 {
113         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114         return atomic_read(&bcachecg->stats.cache_bypass_misses);
115 }
116
117 static struct cftype bch_files[] = {
118         {
119                 .name           = "cache_mode",
120                 .read           = cache_mode_read,
121                 .write_string   = cache_mode_write,
122         },
123         {
124                 .name           = "verify",
125                 .read_u64       = bch_verify_read,
126                 .write_u64      = bch_verify_write,
127         },
128         {
129                 .name           = "cache_hits",
130                 .read_u64       = bch_cache_hits_read,
131         },
132         {
133                 .name           = "cache_misses",
134                 .read_u64       = bch_cache_misses_read,
135         },
136         {
137                 .name           = "cache_bypass_hits",
138                 .read_u64       = bch_cache_bypass_hits_read,
139         },
140         {
141                 .name           = "cache_bypass_misses",
142                 .read_u64       = bch_cache_bypass_misses_read,
143         },
144         { }     /* terminate */
145 };
146
147 static void init_bch_cgroup(struct bch_cgroup *cg)
148 {
149         cg->cache_mode = -1;
150 }
151
152 static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
153 {
154         struct bch_cgroup *cg;
155
156         cg = kzalloc(sizeof(*cg), GFP_KERNEL);
157         if (!cg)
158                 return ERR_PTR(-ENOMEM);
159         init_bch_cgroup(cg);
160         return &cg->css;
161 }
162
163 static void bcachecg_destroy(struct cgroup *cgroup)
164 {
165         struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166         kfree(cg);
167 }
168
169 struct cgroup_subsys bcache_subsys = {
170         .create         = bcachecg_create,
171         .destroy        = bcachecg_destroy,
172         .subsys_id      = bcache_subsys_id,
173         .name           = "bcache",
174         .module         = THIS_MODULE,
175 };
176 EXPORT_SYMBOL_GPL(bcache_subsys);
177 #endif
178
179 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
180 {
181 #ifdef CONFIG_CGROUP_BCACHE
182         int r = bch_bio_to_cgroup(bio)->cache_mode;
183         if (r >= 0)
184                 return r;
185 #endif
186         return BDEV_CACHE_MODE(&dc->sb);
187 }
188
189 static bool verify(struct cached_dev *dc, struct bio *bio)
190 {
191 #ifdef CONFIG_CGROUP_BCACHE
192         if (bch_bio_to_cgroup(bio)->verify)
193                 return true;
194 #endif
195         return dc->verify;
196 }
197
198 static void bio_csum(struct bio *bio, struct bkey *k)
199 {
200         struct bio_vec bv;
201         struct bvec_iter iter;
202         uint64_t csum = 0;
203
204         bio_for_each_segment(bv, bio, iter) {
205                 void *d = kmap(bv.bv_page) + bv.bv_offset;
206                 csum = bch_crc64_update(csum, d, bv.bv_len);
207                 kunmap(bv.bv_page);
208         }
209
210         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
211 }
212
213 /* Insert data into cache */
214
215 static void bch_data_insert_keys(struct closure *cl)
216 {
217         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
218         atomic_t *journal_ref = NULL;
219         struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
220         int ret;
221
222         /*
223          * If we're looping, might already be waiting on
224          * another journal write - can't wait on more than one journal write at
225          * a time
226          *
227          * XXX: this looks wrong
228          */
229 #if 0
230         while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
231                 closure_sync(&s->cl);
232 #endif
233
234         if (!op->replace)
235                 journal_ref = bch_journal(op->c, &op->insert_keys,
236                                           op->flush_journal ? cl : NULL);
237
238         ret = bch_btree_insert(op->c, &op->insert_keys,
239                                journal_ref, replace_key);
240         if (ret == -ESRCH) {
241                 op->replace_collision = true;
242         } else if (ret) {
243                 op->error               = -ENOMEM;
244                 op->insert_data_done    = true;
245         }
246
247         if (journal_ref)
248                 atomic_dec_bug(journal_ref);
249
250         if (!op->insert_data_done)
251                 continue_at(cl, bch_data_insert_start, bcache_wq);
252
253         bch_keylist_free(&op->insert_keys);
254         closure_return(cl);
255 }
256
257 static void bch_data_invalidate(struct closure *cl)
258 {
259         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
260         struct bio *bio = op->bio;
261
262         pr_debug("invalidating %i sectors from %llu",
263                  bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
264
265         while (bio_sectors(bio)) {
266                 unsigned sectors = min(bio_sectors(bio),
267                                        1U << (KEY_SIZE_BITS - 1));
268
269                 if (bch_keylist_realloc(&op->insert_keys, 0, op->c))
270                         goto out;
271
272                 bio->bi_iter.bi_sector  += sectors;
273                 bio->bi_iter.bi_size    -= sectors << 9;
274
275                 bch_keylist_add(&op->insert_keys,
276                                 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
277         }
278
279         op->insert_data_done = true;
280         bio_put(bio);
281 out:
282         continue_at(cl, bch_data_insert_keys, bcache_wq);
283 }
284
285 static void bch_data_insert_error(struct closure *cl)
286 {
287         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
288
289         /*
290          * Our data write just errored, which means we've got a bunch of keys to
291          * insert that point to data that wasn't succesfully written.
292          *
293          * We don't have to insert those keys but we still have to invalidate
294          * that region of the cache - so, if we just strip off all the pointers
295          * from the keys we'll accomplish just that.
296          */
297
298         struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
299
300         while (src != op->insert_keys.top) {
301                 struct bkey *n = bkey_next(src);
302
303                 SET_KEY_PTRS(src, 0);
304                 memmove(dst, src, bkey_bytes(src));
305
306                 dst = bkey_next(dst);
307                 src = n;
308         }
309
310         op->insert_keys.top = dst;
311
312         bch_data_insert_keys(cl);
313 }
314
315 static void bch_data_insert_endio(struct bio *bio, int error)
316 {
317         struct closure *cl = bio->bi_private;
318         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
319
320         if (error) {
321                 /* TODO: We could try to recover from this. */
322                 if (op->writeback)
323                         op->error = error;
324                 else if (!op->replace)
325                         set_closure_fn(cl, bch_data_insert_error, bcache_wq);
326                 else
327                         set_closure_fn(cl, NULL, NULL);
328         }
329
330         bch_bbio_endio(op->c, bio, error, "writing data to cache");
331 }
332
333 static void bch_data_insert_start(struct closure *cl)
334 {
335         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
336         struct bio *bio = op->bio, *n;
337
338         if (op->bypass)
339                 return bch_data_invalidate(cl);
340
341         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
342                 set_gc_sectors(op->c);
343                 wake_up_gc(op->c);
344         }
345
346         /*
347          * Journal writes are marked REQ_FLUSH; if the original write was a
348          * flush, it'll wait on the journal write.
349          */
350         bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
351
352         do {
353                 unsigned i;
354                 struct bkey *k;
355                 struct bio_set *split = op->c->bio_split;
356
357                 /* 1 for the device pointer and 1 for the chksum */
358                 if (bch_keylist_realloc(&op->insert_keys,
359                                         1 + (op->csum ? 1 : 0),
360                                         op->c))
361                         continue_at(cl, bch_data_insert_keys, bcache_wq);
362
363                 k = op->insert_keys.top;
364                 bkey_init(k);
365                 SET_KEY_INODE(k, op->inode);
366                 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
367
368                 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
369                                        op->write_point, op->write_prio,
370                                        op->writeback))
371                         goto err;
372
373                 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
374
375                 n->bi_end_io    = bch_data_insert_endio;
376                 n->bi_private   = cl;
377
378                 if (op->writeback) {
379                         SET_KEY_DIRTY(k, true);
380
381                         for (i = 0; i < KEY_PTRS(k); i++)
382                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
383                                             GC_MARK_DIRTY);
384                 }
385
386                 SET_KEY_CSUM(k, op->csum);
387                 if (KEY_CSUM(k))
388                         bio_csum(n, k);
389
390                 trace_bcache_cache_insert(k);
391                 bch_keylist_push(&op->insert_keys);
392
393                 n->bi_rw |= REQ_WRITE;
394                 bch_submit_bbio(n, op->c, k, 0);
395         } while (n != bio);
396
397         op->insert_data_done = true;
398         continue_at(cl, bch_data_insert_keys, bcache_wq);
399 err:
400         /* bch_alloc_sectors() blocks if s->writeback = true */
401         BUG_ON(op->writeback);
402
403         /*
404          * But if it's not a writeback write we'd rather just bail out if
405          * there aren't any buckets ready to write to - it might take awhile and
406          * we might be starving btree writes for gc or something.
407          */
408
409         if (!op->replace) {
410                 /*
411                  * Writethrough write: We can't complete the write until we've
412                  * updated the index. But we don't want to delay the write while
413                  * we wait for buckets to be freed up, so just invalidate the
414                  * rest of the write.
415                  */
416                 op->bypass = true;
417                 return bch_data_invalidate(cl);
418         } else {
419                 /*
420                  * From a cache miss, we can just insert the keys for the data
421                  * we have written or bail out if we didn't do anything.
422                  */
423                 op->insert_data_done = true;
424                 bio_put(bio);
425
426                 if (!bch_keylist_empty(&op->insert_keys))
427                         continue_at(cl, bch_data_insert_keys, bcache_wq);
428                 else
429                         closure_return(cl);
430         }
431 }
432
433 /**
434  * bch_data_insert - stick some data in the cache
435  *
436  * This is the starting point for any data to end up in a cache device; it could
437  * be from a normal write, or a writeback write, or a write to a flash only
438  * volume - it's also used by the moving garbage collector to compact data in
439  * mostly empty buckets.
440  *
441  * It first writes the data to the cache, creating a list of keys to be inserted
442  * (if the data had to be fragmented there will be multiple keys); after the
443  * data is written it calls bch_journal, and after the keys have been added to
444  * the next journal write they're inserted into the btree.
445  *
446  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
447  * and op->inode is used for the key inode.
448  *
449  * If s->bypass is true, instead of inserting the data it invalidates the
450  * region of the cache represented by s->cache_bio and op->inode.
451  */
452 void bch_data_insert(struct closure *cl)
453 {
454         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
455
456         trace_bcache_write(op->bio, op->writeback, op->bypass);
457
458         bch_keylist_init(&op->insert_keys);
459         bio_get(op->bio);
460         bch_data_insert_start(cl);
461 }
462
463 /* Congested? */
464
465 unsigned bch_get_congested(struct cache_set *c)
466 {
467         int i;
468         long rand;
469
470         if (!c->congested_read_threshold_us &&
471             !c->congested_write_threshold_us)
472                 return 0;
473
474         i = (local_clock_us() - c->congested_last_us) / 1024;
475         if (i < 0)
476                 return 0;
477
478         i += atomic_read(&c->congested);
479         if (i >= 0)
480                 return 0;
481
482         i += CONGESTED_MAX;
483
484         if (i > 0)
485                 i = fract_exp_two(i, 6);
486
487         rand = get_random_int();
488         i -= bitmap_weight(&rand, BITS_PER_LONG);
489
490         return i > 0 ? i : 1;
491 }
492
493 static void add_sequential(struct task_struct *t)
494 {
495         ewma_add(t->sequential_io_avg,
496                  t->sequential_io, 8, 0);
497
498         t->sequential_io = 0;
499 }
500
501 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
502 {
503         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
504 }
505
506 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
507 {
508         struct cache_set *c = dc->disk.c;
509         unsigned mode = cache_mode(dc, bio);
510         unsigned sectors, congested = bch_get_congested(c);
511         struct task_struct *task = current;
512         struct io *i;
513
514         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
515             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
516             (bio->bi_rw & REQ_DISCARD))
517                 goto skip;
518
519         if (mode == CACHE_MODE_NONE ||
520             (mode == CACHE_MODE_WRITEAROUND &&
521              (bio->bi_rw & REQ_WRITE)))
522                 goto skip;
523
524         if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
525             bio_sectors(bio) & (c->sb.block_size - 1)) {
526                 pr_debug("skipping unaligned io");
527                 goto skip;
528         }
529
530         if (bypass_torture_test(dc)) {
531                 if ((get_random_int() & 3) == 3)
532                         goto skip;
533                 else
534                         goto rescale;
535         }
536
537         if (!congested && !dc->sequential_cutoff)
538                 goto rescale;
539
540         if (!congested &&
541             mode == CACHE_MODE_WRITEBACK &&
542             (bio->bi_rw & REQ_WRITE) &&
543             (bio->bi_rw & REQ_SYNC))
544                 goto rescale;
545
546         spin_lock(&dc->io_lock);
547
548         hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
549                 if (i->last == bio->bi_iter.bi_sector &&
550                     time_before(jiffies, i->jiffies))
551                         goto found;
552
553         i = list_first_entry(&dc->io_lru, struct io, lru);
554
555         add_sequential(task);
556         i->sequential = 0;
557 found:
558         if (i->sequential + bio->bi_iter.bi_size > i->sequential)
559                 i->sequential   += bio->bi_iter.bi_size;
560
561         i->last                  = bio_end_sector(bio);
562         i->jiffies               = jiffies + msecs_to_jiffies(5000);
563         task->sequential_io      = i->sequential;
564
565         hlist_del(&i->hash);
566         hlist_add_head(&i->hash, iohash(dc, i->last));
567         list_move_tail(&i->lru, &dc->io_lru);
568
569         spin_unlock(&dc->io_lock);
570
571         sectors = max(task->sequential_io,
572                       task->sequential_io_avg) >> 9;
573
574         if (dc->sequential_cutoff &&
575             sectors >= dc->sequential_cutoff >> 9) {
576                 trace_bcache_bypass_sequential(bio);
577                 goto skip;
578         }
579
580         if (congested && sectors >= congested) {
581                 trace_bcache_bypass_congested(bio);
582                 goto skip;
583         }
584
585 rescale:
586         bch_rescale_priorities(c, bio_sectors(bio));
587         return false;
588 skip:
589         bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
590         return true;
591 }
592
593 /* Cache lookup */
594
595 struct search {
596         /* Stack frame for bio_complete */
597         struct closure          cl;
598
599         struct bcache_device    *d;
600
601         struct bbio             bio;
602         struct bio              *orig_bio;
603         struct bio              *cache_miss;
604
605         unsigned                insert_bio_sectors;
606
607         unsigned                recoverable:1;
608         unsigned                write:1;
609         unsigned                read_dirty_data:1;
610
611         unsigned long           start_time;
612
613         struct btree_op         op;
614         struct data_insert_op   iop;
615 };
616
617 static void bch_cache_read_endio(struct bio *bio, int error)
618 {
619         struct bbio *b = container_of(bio, struct bbio, bio);
620         struct closure *cl = bio->bi_private;
621         struct search *s = container_of(cl, struct search, cl);
622
623         /*
624          * If the bucket was reused while our bio was in flight, we might have
625          * read the wrong data. Set s->error but not error so it doesn't get
626          * counted against the cache device, but we'll still reread the data
627          * from the backing device.
628          */
629
630         if (error)
631                 s->iop.error = error;
632         else if (ptr_stale(s->iop.c, &b->key, 0)) {
633                 atomic_long_inc(&s->iop.c->cache_read_races);
634                 s->iop.error = -EINTR;
635         }
636
637         bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
638 }
639
640 /*
641  * Read from a single key, handling the initial cache miss if the key starts in
642  * the middle of the bio
643  */
644 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
645 {
646         struct search *s = container_of(op, struct search, op);
647         struct bio *n, *bio = &s->bio.bio;
648         struct bkey *bio_key;
649         unsigned ptr;
650
651         if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
652                 return MAP_CONTINUE;
653
654         if (KEY_INODE(k) != s->iop.inode ||
655             KEY_START(k) > bio->bi_iter.bi_sector) {
656                 unsigned bio_sectors = bio_sectors(bio);
657                 unsigned sectors = KEY_INODE(k) == s->iop.inode
658                         ? min_t(uint64_t, INT_MAX,
659                                 KEY_START(k) - bio->bi_iter.bi_sector)
660                         : INT_MAX;
661
662                 int ret = s->d->cache_miss(b, s, bio, sectors);
663                 if (ret != MAP_CONTINUE)
664                         return ret;
665
666                 /* if this was a complete miss we shouldn't get here */
667                 BUG_ON(bio_sectors <= sectors);
668         }
669
670         if (!KEY_SIZE(k))
671                 return MAP_CONTINUE;
672
673         /* XXX: figure out best pointer - for multiple cache devices */
674         ptr = 0;
675
676         PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
677
678         if (KEY_DIRTY(k))
679                 s->read_dirty_data = true;
680
681         n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
682                                       KEY_OFFSET(k) - bio->bi_iter.bi_sector),
683                            GFP_NOIO, s->d->bio_split);
684
685         bio_key = &container_of(n, struct bbio, bio)->key;
686         bch_bkey_copy_single_ptr(bio_key, k, ptr);
687
688         bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
689         bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
690
691         n->bi_end_io    = bch_cache_read_endio;
692         n->bi_private   = &s->cl;
693
694         /*
695          * The bucket we're reading from might be reused while our bio
696          * is in flight, and we could then end up reading the wrong
697          * data.
698          *
699          * We guard against this by checking (in cache_read_endio()) if
700          * the pointer is stale again; if so, we treat it as an error
701          * and reread from the backing device (but we don't pass that
702          * error up anywhere).
703          */
704
705         __bch_submit_bbio(n, b->c);
706         return n == bio ? MAP_DONE : MAP_CONTINUE;
707 }
708
709 static void cache_lookup(struct closure *cl)
710 {
711         struct search *s = container_of(cl, struct search, iop.cl);
712         struct bio *bio = &s->bio.bio;
713
714         int ret = bch_btree_map_keys(&s->op, s->iop.c,
715                                      &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
716                                      cache_lookup_fn, MAP_END_KEY);
717         if (ret == -EAGAIN)
718                 continue_at(cl, cache_lookup, bcache_wq);
719
720         closure_return(cl);
721 }
722
723 /* Common code for the make_request functions */
724
725 static void request_endio(struct bio *bio, int error)
726 {
727         struct closure *cl = bio->bi_private;
728
729         if (error) {
730                 struct search *s = container_of(cl, struct search, cl);
731                 s->iop.error = error;
732                 /* Only cache read errors are recoverable */
733                 s->recoverable = false;
734         }
735
736         bio_put(bio);
737         closure_put(cl);
738 }
739
740 static void bio_complete(struct search *s)
741 {
742         if (s->orig_bio) {
743                 int cpu, rw = bio_data_dir(s->orig_bio);
744                 unsigned long duration = jiffies - s->start_time;
745
746                 cpu = part_stat_lock();
747                 part_round_stats(cpu, &s->d->disk->part0);
748                 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
749                 part_stat_unlock();
750
751                 trace_bcache_request_end(s->d, s->orig_bio);
752                 bio_endio(s->orig_bio, s->iop.error);
753                 s->orig_bio = NULL;
754         }
755 }
756
757 static void do_bio_hook(struct search *s)
758 {
759         struct bio *bio = &s->bio.bio;
760
761         bio_init(bio);
762         __bio_clone_fast(bio, s->orig_bio);
763         bio->bi_end_io          = request_endio;
764         bio->bi_private         = &s->cl;
765
766         atomic_set(&bio->bi_cnt, 3);
767 }
768
769 static void search_free(struct closure *cl)
770 {
771         struct search *s = container_of(cl, struct search, cl);
772         bio_complete(s);
773
774         if (s->iop.bio)
775                 bio_put(s->iop.bio);
776
777         closure_debug_destroy(cl);
778         mempool_free(s, s->d->c->search);
779 }
780
781 static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
782 {
783         struct search *s;
784
785         s = mempool_alloc(d->c->search, GFP_NOIO);
786         memset(s, 0, offsetof(struct search, iop.insert_keys));
787
788         __closure_init(&s->cl, NULL);
789
790         s->iop.inode            = d->id;
791         s->iop.c                = d->c;
792         s->d                    = d;
793         s->op.lock              = -1;
794         s->iop.write_point      = hash_long((unsigned long) current, 16);
795         s->orig_bio             = bio;
796         s->write                = (bio->bi_rw & REQ_WRITE) != 0;
797         s->iop.flush_journal    = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
798         s->recoverable          = 1;
799         s->start_time           = jiffies;
800         do_bio_hook(s);
801
802         return s;
803 }
804
805 /* Cached devices */
806
807 static void cached_dev_bio_complete(struct closure *cl)
808 {
809         struct search *s = container_of(cl, struct search, cl);
810         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
811
812         search_free(cl);
813         cached_dev_put(dc);
814 }
815
816 /* Process reads */
817
818 static void cached_dev_cache_miss_done(struct closure *cl)
819 {
820         struct search *s = container_of(cl, struct search, cl);
821
822         if (s->iop.replace_collision)
823                 bch_mark_cache_miss_collision(s->iop.c, s->d);
824
825         if (s->iop.bio) {
826                 int i;
827                 struct bio_vec *bv;
828
829                 bio_for_each_segment_all(bv, s->iop.bio, i)
830                         __free_page(bv->bv_page);
831         }
832
833         cached_dev_bio_complete(cl);
834 }
835
836 static void cached_dev_read_error(struct closure *cl)
837 {
838         struct search *s = container_of(cl, struct search, cl);
839         struct bio *bio = &s->bio.bio;
840
841         if (s->recoverable) {
842                 /* Retry from the backing device: */
843                 trace_bcache_read_retry(s->orig_bio);
844
845                 s->iop.error = 0;
846                 do_bio_hook(s);
847
848                 /* XXX: invalidate cache */
849
850                 closure_bio_submit(bio, cl, s->d);
851         }
852
853         continue_at(cl, cached_dev_cache_miss_done, NULL);
854 }
855
856 static void cached_dev_read_done(struct closure *cl)
857 {
858         struct search *s = container_of(cl, struct search, cl);
859         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
860
861         /*
862          * We had a cache miss; cache_bio now contains data ready to be inserted
863          * into the cache.
864          *
865          * First, we copy the data we just read from cache_bio's bounce buffers
866          * to the buffers the original bio pointed to:
867          */
868
869         if (s->iop.bio) {
870                 bio_reset(s->iop.bio);
871                 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
872                 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
873                 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
874                 bch_bio_map(s->iop.bio, NULL);
875
876                 bio_copy_data(s->cache_miss, s->iop.bio);
877
878                 bio_put(s->cache_miss);
879                 s->cache_miss = NULL;
880         }
881
882         if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
883                 bch_data_verify(dc, s->orig_bio);
884
885         bio_complete(s);
886
887         if (s->iop.bio &&
888             !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
889                 BUG_ON(!s->iop.replace);
890                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
891         }
892
893         continue_at(cl, cached_dev_cache_miss_done, NULL);
894 }
895
896 static void cached_dev_read_done_bh(struct closure *cl)
897 {
898         struct search *s = container_of(cl, struct search, cl);
899         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
900
901         bch_mark_cache_accounting(s->iop.c, s->d,
902                                   !s->cache_miss, s->iop.bypass);
903         trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
904
905         if (s->iop.error)
906                 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
907         else if (s->iop.bio || verify(dc, &s->bio.bio))
908                 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
909         else
910                 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
911 }
912
913 static int cached_dev_cache_miss(struct btree *b, struct search *s,
914                                  struct bio *bio, unsigned sectors)
915 {
916         int ret = MAP_CONTINUE;
917         unsigned reada = 0;
918         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
919         struct bio *miss, *cache_bio;
920
921         if (s->cache_miss || s->iop.bypass) {
922                 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
923                 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
924                 goto out_submit;
925         }
926
927         if (!(bio->bi_rw & REQ_RAHEAD) &&
928             !(bio->bi_rw & REQ_META) &&
929             s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
930                 reada = min_t(sector_t, dc->readahead >> 9,
931                               bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
932
933         s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
934
935         s->iop.replace_key = KEY(s->iop.inode,
936                                  bio->bi_iter.bi_sector + s->insert_bio_sectors,
937                                  s->insert_bio_sectors);
938
939         ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
940         if (ret)
941                 return ret;
942
943         s->iop.replace = true;
944
945         miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
946
947         /* btree_search_recurse()'s btree iterator is no good anymore */
948         ret = miss == bio ? MAP_DONE : -EINTR;
949
950         cache_bio = bio_alloc_bioset(GFP_NOWAIT,
951                         DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
952                         dc->disk.bio_split);
953         if (!cache_bio)
954                 goto out_submit;
955
956         cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
957         cache_bio->bi_bdev              = miss->bi_bdev;
958         cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
959
960         cache_bio->bi_end_io    = request_endio;
961         cache_bio->bi_private   = &s->cl;
962
963         bch_bio_map(cache_bio, NULL);
964         if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
965                 goto out_put;
966
967         if (reada)
968                 bch_mark_cache_readahead(s->iop.c, s->d);
969
970         s->cache_miss   = miss;
971         s->iop.bio      = cache_bio;
972         bio_get(cache_bio);
973         closure_bio_submit(cache_bio, &s->cl, s->d);
974
975         return ret;
976 out_put:
977         bio_put(cache_bio);
978 out_submit:
979         miss->bi_end_io         = request_endio;
980         miss->bi_private        = &s->cl;
981         closure_bio_submit(miss, &s->cl, s->d);
982         return ret;
983 }
984
985 static void cached_dev_read(struct cached_dev *dc, struct search *s)
986 {
987         struct closure *cl = &s->cl;
988
989         closure_call(&s->iop.cl, cache_lookup, NULL, cl);
990         continue_at(cl, cached_dev_read_done_bh, NULL);
991 }
992
993 /* Process writes */
994
995 static void cached_dev_write_complete(struct closure *cl)
996 {
997         struct search *s = container_of(cl, struct search, cl);
998         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
999
1000         up_read_non_owner(&dc->writeback_lock);
1001         cached_dev_bio_complete(cl);
1002 }
1003
1004 static void cached_dev_write(struct cached_dev *dc, struct search *s)
1005 {
1006         struct closure *cl = &s->cl;
1007         struct bio *bio = &s->bio.bio;
1008         struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
1009         struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
1010
1011         bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
1012
1013         down_read_non_owner(&dc->writeback_lock);
1014         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
1015                 /*
1016                  * We overlap with some dirty data undergoing background
1017                  * writeback, force this write to writeback
1018                  */
1019                 s->iop.bypass = false;
1020                 s->iop.writeback = true;
1021         }
1022
1023         /*
1024          * Discards aren't _required_ to do anything, so skipping if
1025          * check_overlapping returned true is ok
1026          *
1027          * But check_overlapping drops dirty keys for which io hasn't started,
1028          * so we still want to call it.
1029          */
1030         if (bio->bi_rw & REQ_DISCARD)
1031                 s->iop.bypass = true;
1032
1033         if (should_writeback(dc, s->orig_bio,
1034                              cache_mode(dc, bio),
1035                              s->iop.bypass)) {
1036                 s->iop.bypass = false;
1037                 s->iop.writeback = true;
1038         }
1039
1040         if (s->iop.bypass) {
1041                 s->iop.bio = s->orig_bio;
1042                 bio_get(s->iop.bio);
1043
1044                 if (!(bio->bi_rw & REQ_DISCARD) ||
1045                     blk_queue_discard(bdev_get_queue(dc->bdev)))
1046                         closure_bio_submit(bio, cl, s->d);
1047         } else if (s->iop.writeback) {
1048                 bch_writeback_add(dc);
1049                 s->iop.bio = bio;
1050
1051                 if (bio->bi_rw & REQ_FLUSH) {
1052                         /* Also need to send a flush to the backing device */
1053                         struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
1054                                                              dc->disk.bio_split);
1055
1056                         flush->bi_rw    = WRITE_FLUSH;
1057                         flush->bi_bdev  = bio->bi_bdev;
1058                         flush->bi_end_io = request_endio;
1059                         flush->bi_private = cl;
1060
1061                         closure_bio_submit(flush, cl, s->d);
1062                 }
1063         } else {
1064                 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
1065
1066                 closure_bio_submit(bio, cl, s->d);
1067         }
1068
1069         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1070         continue_at(cl, cached_dev_write_complete, NULL);
1071 }
1072
1073 static void cached_dev_nodata(struct closure *cl)
1074 {
1075         struct search *s = container_of(cl, struct search, cl);
1076         struct bio *bio = &s->bio.bio;
1077
1078         if (s->iop.flush_journal)
1079                 bch_journal_meta(s->iop.c, cl);
1080
1081         /* If it's a flush, we send the flush to the backing device too */
1082         closure_bio_submit(bio, cl, s->d);
1083
1084         continue_at(cl, cached_dev_bio_complete, NULL);
1085 }
1086
1087 /* Cached devices - read & write stuff */
1088
1089 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1090 {
1091         struct search *s;
1092         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1093         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1094         int cpu, rw = bio_data_dir(bio);
1095
1096         cpu = part_stat_lock();
1097         part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1098         part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1099         part_stat_unlock();
1100
1101         bio->bi_bdev = dc->bdev;
1102         bio->bi_iter.bi_sector += dc->sb.data_offset;
1103
1104         if (cached_dev_get(dc)) {
1105                 s = search_alloc(bio, d);
1106                 trace_bcache_request_start(s->d, bio);
1107
1108                 if (!bio->bi_iter.bi_size) {
1109                         /*
1110                          * can't call bch_journal_meta from under
1111                          * generic_make_request
1112                          */
1113                         continue_at_nobarrier(&s->cl,
1114                                               cached_dev_nodata,
1115                                               bcache_wq);
1116                 } else {
1117                         s->iop.bypass = check_should_bypass(dc, bio);
1118
1119                         if (rw)
1120                                 cached_dev_write(dc, s);
1121                         else
1122                                 cached_dev_read(dc, s);
1123                 }
1124         } else {
1125                 if ((bio->bi_rw & REQ_DISCARD) &&
1126                     !blk_queue_discard(bdev_get_queue(dc->bdev)))
1127                         bio_endio(bio, 0);
1128                 else
1129                         bch_generic_make_request(bio, &d->bio_split_hook);
1130         }
1131 }
1132
1133 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1134                             unsigned int cmd, unsigned long arg)
1135 {
1136         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1137         return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1138 }
1139
1140 static int cached_dev_congested(void *data, int bits)
1141 {
1142         struct bcache_device *d = data;
1143         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1144         struct request_queue *q = bdev_get_queue(dc->bdev);
1145         int ret = 0;
1146
1147         if (bdi_congested(&q->backing_dev_info, bits))
1148                 return 1;
1149
1150         if (cached_dev_get(dc)) {
1151                 unsigned i;
1152                 struct cache *ca;
1153
1154                 for_each_cache(ca, d->c, i) {
1155                         q = bdev_get_queue(ca->bdev);
1156                         ret |= bdi_congested(&q->backing_dev_info, bits);
1157                 }
1158
1159                 cached_dev_put(dc);
1160         }
1161
1162         return ret;
1163 }
1164
1165 void bch_cached_dev_request_init(struct cached_dev *dc)
1166 {
1167         struct gendisk *g = dc->disk.disk;
1168
1169         g->queue->make_request_fn               = cached_dev_make_request;
1170         g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1171         dc->disk.cache_miss                     = cached_dev_cache_miss;
1172         dc->disk.ioctl                          = cached_dev_ioctl;
1173 }
1174
1175 /* Flash backed devices */
1176
1177 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1178                                 struct bio *bio, unsigned sectors)
1179 {
1180         struct bio_vec bv;
1181         struct bvec_iter iter;
1182
1183         /* Zero fill bio */
1184
1185         bio_for_each_segment(bv, bio, iter) {
1186                 unsigned j = min(bv.bv_len >> 9, sectors);
1187
1188                 void *p = kmap(bv.bv_page);
1189                 memset(p + bv.bv_offset, 0, j << 9);
1190                 kunmap(bv.bv_page);
1191
1192                 sectors -= j;
1193         }
1194
1195         bio_advance(bio, min(sectors << 9, bio->bi_iter.bi_size));
1196
1197         if (!bio->bi_iter.bi_size)
1198                 return MAP_DONE;
1199
1200         return MAP_CONTINUE;
1201 }
1202
1203 static void flash_dev_nodata(struct closure *cl)
1204 {
1205         struct search *s = container_of(cl, struct search, cl);
1206
1207         if (s->iop.flush_journal)
1208                 bch_journal_meta(s->iop.c, cl);
1209
1210         continue_at(cl, search_free, NULL);
1211 }
1212
1213 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1214 {
1215         struct search *s;
1216         struct closure *cl;
1217         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1218         int cpu, rw = bio_data_dir(bio);
1219
1220         cpu = part_stat_lock();
1221         part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1222         part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1223         part_stat_unlock();
1224
1225         s = search_alloc(bio, d);
1226         cl = &s->cl;
1227         bio = &s->bio.bio;
1228
1229         trace_bcache_request_start(s->d, bio);
1230
1231         if (!bio->bi_iter.bi_size) {
1232                 /*
1233                  * can't call bch_journal_meta from under
1234                  * generic_make_request
1235                  */
1236                 continue_at_nobarrier(&s->cl,
1237                                       flash_dev_nodata,
1238                                       bcache_wq);
1239         } else if (rw) {
1240                 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1241                                         &KEY(d->id, bio->bi_iter.bi_sector, 0),
1242                                         &KEY(d->id, bio_end_sector(bio), 0));
1243
1244                 s->iop.bypass           = (bio->bi_rw & REQ_DISCARD) != 0;
1245                 s->iop.writeback        = true;
1246                 s->iop.bio              = bio;
1247
1248                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1249         } else {
1250                 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1251         }
1252
1253         continue_at(cl, search_free, NULL);
1254 }
1255
1256 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1257                            unsigned int cmd, unsigned long arg)
1258 {
1259         return -ENOTTY;
1260 }
1261
1262 static int flash_dev_congested(void *data, int bits)
1263 {
1264         struct bcache_device *d = data;
1265         struct request_queue *q;
1266         struct cache *ca;
1267         unsigned i;
1268         int ret = 0;
1269
1270         for_each_cache(ca, d->c, i) {
1271                 q = bdev_get_queue(ca->bdev);
1272                 ret |= bdi_congested(&q->backing_dev_info, bits);
1273         }
1274
1275         return ret;
1276 }
1277
1278 void bch_flash_dev_request_init(struct bcache_device *d)
1279 {
1280         struct gendisk *g = d->disk;
1281
1282         g->queue->make_request_fn               = flash_dev_make_request;
1283         g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1284         d->cache_miss                           = flash_dev_cache_miss;
1285         d->ioctl                                = flash_dev_ioctl;
1286 }
1287
1288 void bch_request_exit(void)
1289 {
1290 #ifdef CONFIG_CGROUP_BCACHE
1291         cgroup_unload_subsys(&bcache_subsys);
1292 #endif
1293         if (bch_search_cache)
1294                 kmem_cache_destroy(bch_search_cache);
1295 }
1296
1297 int __init bch_request_init(void)
1298 {
1299         bch_search_cache = KMEM_CACHE(search, 0);
1300         if (!bch_search_cache)
1301                 return -ENOMEM;
1302
1303 #ifdef CONFIG_CGROUP_BCACHE
1304         cgroup_load_subsys(&bcache_subsys);
1305         init_bch_cgroup(&bcache_default_cgroup);
1306
1307         cgroup_add_cftypes(&bcache_subsys, bch_files);
1308 #endif
1309         return 0;
1310 }