]> Pileus Git - ~andy/linux/blob - drivers/md/bcache/request.c
Merge branch 'for-3.14/drivers' of git://git.kernel.dk/linux-block
[~andy/linux] / drivers / md / bcache / request.c
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/cgroup.h>
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include "blk-cgroup.h"
20
21 #include <trace/events/bcache.h>
22
23 #define CUTOFF_CACHE_ADD        95
24 #define CUTOFF_CACHE_READA      90
25
26 struct kmem_cache *bch_search_cache;
27
28 static void bch_data_insert_start(struct closure *);
29
30 /* Cgroup interface */
31
32 #ifdef CONFIG_CGROUP_BCACHE
33 static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
34
35 static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
36 {
37         struct cgroup_subsys_state *css;
38         return cgroup &&
39                 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40                 ? container_of(css, struct bch_cgroup, css)
41                 : &bcache_default_cgroup;
42 }
43
44 struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
45 {
46         struct cgroup_subsys_state *css = bio->bi_css
47                 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48                 : task_subsys_state(current, bcache_subsys_id);
49
50         return css
51                 ? container_of(css, struct bch_cgroup, css)
52                 : &bcache_default_cgroup;
53 }
54
55 static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
56                         struct file *file,
57                         char __user *buf, size_t nbytes, loff_t *ppos)
58 {
59         char tmp[1024];
60         int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61                                           cgroup_to_bcache(cgrp)->cache_mode + 1);
62
63         if (len < 0)
64                 return len;
65
66         return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
67 }
68
69 static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
70                             const char *buf)
71 {
72         int v = bch_read_string_list(buf, bch_cache_modes);
73         if (v < 0)
74                 return v;
75
76         cgroup_to_bcache(cgrp)->cache_mode = v - 1;
77         return 0;
78 }
79
80 static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
81 {
82         return cgroup_to_bcache(cgrp)->verify;
83 }
84
85 static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
86 {
87         cgroup_to_bcache(cgrp)->verify = val;
88         return 0;
89 }
90
91 static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
92 {
93         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94         return atomic_read(&bcachecg->stats.cache_hits);
95 }
96
97 static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
98 {
99         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100         return atomic_read(&bcachecg->stats.cache_misses);
101 }
102
103 static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
104                                          struct cftype *cft)
105 {
106         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107         return atomic_read(&bcachecg->stats.cache_bypass_hits);
108 }
109
110 static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
111                                            struct cftype *cft)
112 {
113         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114         return atomic_read(&bcachecg->stats.cache_bypass_misses);
115 }
116
117 static struct cftype bch_files[] = {
118         {
119                 .name           = "cache_mode",
120                 .read           = cache_mode_read,
121                 .write_string   = cache_mode_write,
122         },
123         {
124                 .name           = "verify",
125                 .read_u64       = bch_verify_read,
126                 .write_u64      = bch_verify_write,
127         },
128         {
129                 .name           = "cache_hits",
130                 .read_u64       = bch_cache_hits_read,
131         },
132         {
133                 .name           = "cache_misses",
134                 .read_u64       = bch_cache_misses_read,
135         },
136         {
137                 .name           = "cache_bypass_hits",
138                 .read_u64       = bch_cache_bypass_hits_read,
139         },
140         {
141                 .name           = "cache_bypass_misses",
142                 .read_u64       = bch_cache_bypass_misses_read,
143         },
144         { }     /* terminate */
145 };
146
147 static void init_bch_cgroup(struct bch_cgroup *cg)
148 {
149         cg->cache_mode = -1;
150 }
151
152 static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
153 {
154         struct bch_cgroup *cg;
155
156         cg = kzalloc(sizeof(*cg), GFP_KERNEL);
157         if (!cg)
158                 return ERR_PTR(-ENOMEM);
159         init_bch_cgroup(cg);
160         return &cg->css;
161 }
162
163 static void bcachecg_destroy(struct cgroup *cgroup)
164 {
165         struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166         kfree(cg);
167 }
168
169 struct cgroup_subsys bcache_subsys = {
170         .create         = bcachecg_create,
171         .destroy        = bcachecg_destroy,
172         .subsys_id      = bcache_subsys_id,
173         .name           = "bcache",
174         .module         = THIS_MODULE,
175 };
176 EXPORT_SYMBOL_GPL(bcache_subsys);
177 #endif
178
179 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
180 {
181 #ifdef CONFIG_CGROUP_BCACHE
182         int r = bch_bio_to_cgroup(bio)->cache_mode;
183         if (r >= 0)
184                 return r;
185 #endif
186         return BDEV_CACHE_MODE(&dc->sb);
187 }
188
189 static bool verify(struct cached_dev *dc, struct bio *bio)
190 {
191 #ifdef CONFIG_CGROUP_BCACHE
192         if (bch_bio_to_cgroup(bio)->verify)
193                 return true;
194 #endif
195         return dc->verify;
196 }
197
198 static void bio_csum(struct bio *bio, struct bkey *k)
199 {
200         struct bio_vec bv;
201         struct bvec_iter iter;
202         uint64_t csum = 0;
203
204         bio_for_each_segment(bv, bio, iter) {
205                 void *d = kmap(bv.bv_page) + bv.bv_offset;
206                 csum = bch_crc64_update(csum, d, bv.bv_len);
207                 kunmap(bv.bv_page);
208         }
209
210         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
211 }
212
213 /* Insert data into cache */
214
215 static void bch_data_insert_keys(struct closure *cl)
216 {
217         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
218         atomic_t *journal_ref = NULL;
219         struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
220         int ret;
221
222         /*
223          * If we're looping, might already be waiting on
224          * another journal write - can't wait on more than one journal write at
225          * a time
226          *
227          * XXX: this looks wrong
228          */
229 #if 0
230         while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
231                 closure_sync(&s->cl);
232 #endif
233
234         if (!op->replace)
235                 journal_ref = bch_journal(op->c, &op->insert_keys,
236                                           op->flush_journal ? cl : NULL);
237
238         ret = bch_btree_insert(op->c, &op->insert_keys,
239                                journal_ref, replace_key);
240         if (ret == -ESRCH) {
241                 op->replace_collision = true;
242         } else if (ret) {
243                 op->error               = -ENOMEM;
244                 op->insert_data_done    = true;
245         }
246
247         if (journal_ref)
248                 atomic_dec_bug(journal_ref);
249
250         if (!op->insert_data_done)
251                 continue_at(cl, bch_data_insert_start, bcache_wq);
252
253         bch_keylist_free(&op->insert_keys);
254         closure_return(cl);
255 }
256
257 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
258                                struct cache_set *c)
259 {
260         size_t oldsize = bch_keylist_nkeys(l);
261         size_t newsize = oldsize + u64s;
262
263         /*
264          * The journalling code doesn't handle the case where the keys to insert
265          * is bigger than an empty write: If we just return -ENOMEM here,
266          * bio_insert() and bio_invalidate() will insert the keys created so far
267          * and finish the rest when the keylist is empty.
268          */
269         if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
270                 return -ENOMEM;
271
272         return __bch_keylist_realloc(l, u64s);
273 }
274
275 static void bch_data_invalidate(struct closure *cl)
276 {
277         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
278         struct bio *bio = op->bio;
279
280         pr_debug("invalidating %i sectors from %llu",
281                  bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
282
283         while (bio_sectors(bio)) {
284                 unsigned sectors = min(bio_sectors(bio),
285                                        1U << (KEY_SIZE_BITS - 1));
286
287                 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
288                         goto out;
289
290                 bio->bi_iter.bi_sector  += sectors;
291                 bio->bi_iter.bi_size    -= sectors << 9;
292
293                 bch_keylist_add(&op->insert_keys,
294                                 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
295         }
296
297         op->insert_data_done = true;
298         bio_put(bio);
299 out:
300         continue_at(cl, bch_data_insert_keys, bcache_wq);
301 }
302
303 static void bch_data_insert_error(struct closure *cl)
304 {
305         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
306
307         /*
308          * Our data write just errored, which means we've got a bunch of keys to
309          * insert that point to data that wasn't succesfully written.
310          *
311          * We don't have to insert those keys but we still have to invalidate
312          * that region of the cache - so, if we just strip off all the pointers
313          * from the keys we'll accomplish just that.
314          */
315
316         struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
317
318         while (src != op->insert_keys.top) {
319                 struct bkey *n = bkey_next(src);
320
321                 SET_KEY_PTRS(src, 0);
322                 memmove(dst, src, bkey_bytes(src));
323
324                 dst = bkey_next(dst);
325                 src = n;
326         }
327
328         op->insert_keys.top = dst;
329
330         bch_data_insert_keys(cl);
331 }
332
333 static void bch_data_insert_endio(struct bio *bio, int error)
334 {
335         struct closure *cl = bio->bi_private;
336         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
337
338         if (error) {
339                 /* TODO: We could try to recover from this. */
340                 if (op->writeback)
341                         op->error = error;
342                 else if (!op->replace)
343                         set_closure_fn(cl, bch_data_insert_error, bcache_wq);
344                 else
345                         set_closure_fn(cl, NULL, NULL);
346         }
347
348         bch_bbio_endio(op->c, bio, error, "writing data to cache");
349 }
350
351 static void bch_data_insert_start(struct closure *cl)
352 {
353         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
354         struct bio *bio = op->bio, *n;
355
356         if (op->bypass)
357                 return bch_data_invalidate(cl);
358
359         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
360                 set_gc_sectors(op->c);
361                 wake_up_gc(op->c);
362         }
363
364         /*
365          * Journal writes are marked REQ_FLUSH; if the original write was a
366          * flush, it'll wait on the journal write.
367          */
368         bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
369
370         do {
371                 unsigned i;
372                 struct bkey *k;
373                 struct bio_set *split = op->c->bio_split;
374
375                 /* 1 for the device pointer and 1 for the chksum */
376                 if (bch_keylist_realloc(&op->insert_keys,
377                                         3 + (op->csum ? 1 : 0),
378                                         op->c))
379                         continue_at(cl, bch_data_insert_keys, bcache_wq);
380
381                 k = op->insert_keys.top;
382                 bkey_init(k);
383                 SET_KEY_INODE(k, op->inode);
384                 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
385
386                 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
387                                        op->write_point, op->write_prio,
388                                        op->writeback))
389                         goto err;
390
391                 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
392
393                 n->bi_end_io    = bch_data_insert_endio;
394                 n->bi_private   = cl;
395
396                 if (op->writeback) {
397                         SET_KEY_DIRTY(k, true);
398
399                         for (i = 0; i < KEY_PTRS(k); i++)
400                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
401                                             GC_MARK_DIRTY);
402                 }
403
404                 SET_KEY_CSUM(k, op->csum);
405                 if (KEY_CSUM(k))
406                         bio_csum(n, k);
407
408                 trace_bcache_cache_insert(k);
409                 bch_keylist_push(&op->insert_keys);
410
411                 n->bi_rw |= REQ_WRITE;
412                 bch_submit_bbio(n, op->c, k, 0);
413         } while (n != bio);
414
415         op->insert_data_done = true;
416         continue_at(cl, bch_data_insert_keys, bcache_wq);
417 err:
418         /* bch_alloc_sectors() blocks if s->writeback = true */
419         BUG_ON(op->writeback);
420
421         /*
422          * But if it's not a writeback write we'd rather just bail out if
423          * there aren't any buckets ready to write to - it might take awhile and
424          * we might be starving btree writes for gc or something.
425          */
426
427         if (!op->replace) {
428                 /*
429                  * Writethrough write: We can't complete the write until we've
430                  * updated the index. But we don't want to delay the write while
431                  * we wait for buckets to be freed up, so just invalidate the
432                  * rest of the write.
433                  */
434                 op->bypass = true;
435                 return bch_data_invalidate(cl);
436         } else {
437                 /*
438                  * From a cache miss, we can just insert the keys for the data
439                  * we have written or bail out if we didn't do anything.
440                  */
441                 op->insert_data_done = true;
442                 bio_put(bio);
443
444                 if (!bch_keylist_empty(&op->insert_keys))
445                         continue_at(cl, bch_data_insert_keys, bcache_wq);
446                 else
447                         closure_return(cl);
448         }
449 }
450
451 /**
452  * bch_data_insert - stick some data in the cache
453  *
454  * This is the starting point for any data to end up in a cache device; it could
455  * be from a normal write, or a writeback write, or a write to a flash only
456  * volume - it's also used by the moving garbage collector to compact data in
457  * mostly empty buckets.
458  *
459  * It first writes the data to the cache, creating a list of keys to be inserted
460  * (if the data had to be fragmented there will be multiple keys); after the
461  * data is written it calls bch_journal, and after the keys have been added to
462  * the next journal write they're inserted into the btree.
463  *
464  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
465  * and op->inode is used for the key inode.
466  *
467  * If s->bypass is true, instead of inserting the data it invalidates the
468  * region of the cache represented by s->cache_bio and op->inode.
469  */
470 void bch_data_insert(struct closure *cl)
471 {
472         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
473
474         trace_bcache_write(op->bio, op->writeback, op->bypass);
475
476         bch_keylist_init(&op->insert_keys);
477         bio_get(op->bio);
478         bch_data_insert_start(cl);
479 }
480
481 /* Congested? */
482
483 unsigned bch_get_congested(struct cache_set *c)
484 {
485         int i;
486         long rand;
487
488         if (!c->congested_read_threshold_us &&
489             !c->congested_write_threshold_us)
490                 return 0;
491
492         i = (local_clock_us() - c->congested_last_us) / 1024;
493         if (i < 0)
494                 return 0;
495
496         i += atomic_read(&c->congested);
497         if (i >= 0)
498                 return 0;
499
500         i += CONGESTED_MAX;
501
502         if (i > 0)
503                 i = fract_exp_two(i, 6);
504
505         rand = get_random_int();
506         i -= bitmap_weight(&rand, BITS_PER_LONG);
507
508         return i > 0 ? i : 1;
509 }
510
511 static void add_sequential(struct task_struct *t)
512 {
513         ewma_add(t->sequential_io_avg,
514                  t->sequential_io, 8, 0);
515
516         t->sequential_io = 0;
517 }
518
519 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
520 {
521         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
522 }
523
524 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
525 {
526         struct cache_set *c = dc->disk.c;
527         unsigned mode = cache_mode(dc, bio);
528         unsigned sectors, congested = bch_get_congested(c);
529         struct task_struct *task = current;
530         struct io *i;
531
532         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
533             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
534             (bio->bi_rw & REQ_DISCARD))
535                 goto skip;
536
537         if (mode == CACHE_MODE_NONE ||
538             (mode == CACHE_MODE_WRITEAROUND &&
539              (bio->bi_rw & REQ_WRITE)))
540                 goto skip;
541
542         if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
543             bio_sectors(bio) & (c->sb.block_size - 1)) {
544                 pr_debug("skipping unaligned io");
545                 goto skip;
546         }
547
548         if (bypass_torture_test(dc)) {
549                 if ((get_random_int() & 3) == 3)
550                         goto skip;
551                 else
552                         goto rescale;
553         }
554
555         if (!congested && !dc->sequential_cutoff)
556                 goto rescale;
557
558         if (!congested &&
559             mode == CACHE_MODE_WRITEBACK &&
560             (bio->bi_rw & REQ_WRITE) &&
561             (bio->bi_rw & REQ_SYNC))
562                 goto rescale;
563
564         spin_lock(&dc->io_lock);
565
566         hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
567                 if (i->last == bio->bi_iter.bi_sector &&
568                     time_before(jiffies, i->jiffies))
569                         goto found;
570
571         i = list_first_entry(&dc->io_lru, struct io, lru);
572
573         add_sequential(task);
574         i->sequential = 0;
575 found:
576         if (i->sequential + bio->bi_iter.bi_size > i->sequential)
577                 i->sequential   += bio->bi_iter.bi_size;
578
579         i->last                  = bio_end_sector(bio);
580         i->jiffies               = jiffies + msecs_to_jiffies(5000);
581         task->sequential_io      = i->sequential;
582
583         hlist_del(&i->hash);
584         hlist_add_head(&i->hash, iohash(dc, i->last));
585         list_move_tail(&i->lru, &dc->io_lru);
586
587         spin_unlock(&dc->io_lock);
588
589         sectors = max(task->sequential_io,
590                       task->sequential_io_avg) >> 9;
591
592         if (dc->sequential_cutoff &&
593             sectors >= dc->sequential_cutoff >> 9) {
594                 trace_bcache_bypass_sequential(bio);
595                 goto skip;
596         }
597
598         if (congested && sectors >= congested) {
599                 trace_bcache_bypass_congested(bio);
600                 goto skip;
601         }
602
603 rescale:
604         bch_rescale_priorities(c, bio_sectors(bio));
605         return false;
606 skip:
607         bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
608         return true;
609 }
610
611 /* Cache lookup */
612
613 struct search {
614         /* Stack frame for bio_complete */
615         struct closure          cl;
616
617         struct bbio             bio;
618         struct bio              *orig_bio;
619         struct bio              *cache_miss;
620         struct bcache_device    *d;
621
622         unsigned                insert_bio_sectors;
623         unsigned                recoverable:1;
624         unsigned                write:1;
625         unsigned                read_dirty_data:1;
626
627         unsigned long           start_time;
628
629         struct btree_op         op;
630         struct data_insert_op   iop;
631 };
632
633 static void bch_cache_read_endio(struct bio *bio, int error)
634 {
635         struct bbio *b = container_of(bio, struct bbio, bio);
636         struct closure *cl = bio->bi_private;
637         struct search *s = container_of(cl, struct search, cl);
638
639         /*
640          * If the bucket was reused while our bio was in flight, we might have
641          * read the wrong data. Set s->error but not error so it doesn't get
642          * counted against the cache device, but we'll still reread the data
643          * from the backing device.
644          */
645
646         if (error)
647                 s->iop.error = error;
648         else if (!KEY_DIRTY(&b->key) &&
649                  ptr_stale(s->iop.c, &b->key, 0)) {
650                 atomic_long_inc(&s->iop.c->cache_read_races);
651                 s->iop.error = -EINTR;
652         }
653
654         bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
655 }
656
657 /*
658  * Read from a single key, handling the initial cache miss if the key starts in
659  * the middle of the bio
660  */
661 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
662 {
663         struct search *s = container_of(op, struct search, op);
664         struct bio *n, *bio = &s->bio.bio;
665         struct bkey *bio_key;
666         unsigned ptr;
667
668         if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
669                 return MAP_CONTINUE;
670
671         if (KEY_INODE(k) != s->iop.inode ||
672             KEY_START(k) > bio->bi_iter.bi_sector) {
673                 unsigned bio_sectors = bio_sectors(bio);
674                 unsigned sectors = KEY_INODE(k) == s->iop.inode
675                         ? min_t(uint64_t, INT_MAX,
676                                 KEY_START(k) - bio->bi_iter.bi_sector)
677                         : INT_MAX;
678
679                 int ret = s->d->cache_miss(b, s, bio, sectors);
680                 if (ret != MAP_CONTINUE)
681                         return ret;
682
683                 /* if this was a complete miss we shouldn't get here */
684                 BUG_ON(bio_sectors <= sectors);
685         }
686
687         if (!KEY_SIZE(k))
688                 return MAP_CONTINUE;
689
690         /* XXX: figure out best pointer - for multiple cache devices */
691         ptr = 0;
692
693         PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
694
695         if (KEY_DIRTY(k))
696                 s->read_dirty_data = true;
697
698         n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
699                                       KEY_OFFSET(k) - bio->bi_iter.bi_sector),
700                            GFP_NOIO, s->d->bio_split);
701
702         bio_key = &container_of(n, struct bbio, bio)->key;
703         bch_bkey_copy_single_ptr(bio_key, k, ptr);
704
705         bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
706         bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
707
708         n->bi_end_io    = bch_cache_read_endio;
709         n->bi_private   = &s->cl;
710
711         /*
712          * The bucket we're reading from might be reused while our bio
713          * is in flight, and we could then end up reading the wrong
714          * data.
715          *
716          * We guard against this by checking (in cache_read_endio()) if
717          * the pointer is stale again; if so, we treat it as an error
718          * and reread from the backing device (but we don't pass that
719          * error up anywhere).
720          */
721
722         __bch_submit_bbio(n, b->c);
723         return n == bio ? MAP_DONE : MAP_CONTINUE;
724 }
725
726 static void cache_lookup(struct closure *cl)
727 {
728         struct search *s = container_of(cl, struct search, iop.cl);
729         struct bio *bio = &s->bio.bio;
730         int ret;
731
732         bch_btree_op_init(&s->op, -1);
733
734         ret = bch_btree_map_keys(&s->op, s->iop.c,
735                                  &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
736                                  cache_lookup_fn, MAP_END_KEY);
737         if (ret == -EAGAIN)
738                 continue_at(cl, cache_lookup, bcache_wq);
739
740         closure_return(cl);
741 }
742
743 /* Common code for the make_request functions */
744
745 static void request_endio(struct bio *bio, int error)
746 {
747         struct closure *cl = bio->bi_private;
748
749         if (error) {
750                 struct search *s = container_of(cl, struct search, cl);
751                 s->iop.error = error;
752                 /* Only cache read errors are recoverable */
753                 s->recoverable = false;
754         }
755
756         bio_put(bio);
757         closure_put(cl);
758 }
759
760 static void bio_complete(struct search *s)
761 {
762         if (s->orig_bio) {
763                 int cpu, rw = bio_data_dir(s->orig_bio);
764                 unsigned long duration = jiffies - s->start_time;
765
766                 cpu = part_stat_lock();
767                 part_round_stats(cpu, &s->d->disk->part0);
768                 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
769                 part_stat_unlock();
770
771                 trace_bcache_request_end(s->d, s->orig_bio);
772                 bio_endio(s->orig_bio, s->iop.error);
773                 s->orig_bio = NULL;
774         }
775 }
776
777 static void do_bio_hook(struct search *s, struct bio *orig_bio)
778 {
779         struct bio *bio = &s->bio.bio;
780
781         bio_init(bio);
782         __bio_clone_fast(bio, orig_bio);
783         bio->bi_end_io          = request_endio;
784         bio->bi_private         = &s->cl;
785
786         atomic_set(&bio->bi_cnt, 3);
787 }
788
789 static void search_free(struct closure *cl)
790 {
791         struct search *s = container_of(cl, struct search, cl);
792         bio_complete(s);
793
794         if (s->iop.bio)
795                 bio_put(s->iop.bio);
796
797         closure_debug_destroy(cl);
798         mempool_free(s, s->d->c->search);
799 }
800
801 static inline struct search *search_alloc(struct bio *bio,
802                                           struct bcache_device *d)
803 {
804         struct search *s;
805
806         s = mempool_alloc(d->c->search, GFP_NOIO);
807
808         closure_init(&s->cl, NULL);
809         do_bio_hook(s, bio);
810
811         s->orig_bio             = bio;
812         s->cache_miss           = NULL;
813         s->d                    = d;
814         s->recoverable          = 1;
815         s->write                = (bio->bi_rw & REQ_WRITE) != 0;
816         s->read_dirty_data      = 0;
817         s->start_time           = jiffies;
818
819         s->iop.c                = d->c;
820         s->iop.bio              = NULL;
821         s->iop.inode            = d->id;
822         s->iop.write_point      = hash_long((unsigned long) current, 16);
823         s->iop.write_prio       = 0;
824         s->iop.error            = 0;
825         s->iop.flags            = 0;
826         s->iop.flush_journal    = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
827
828         return s;
829 }
830
831 /* Cached devices */
832
833 static void cached_dev_bio_complete(struct closure *cl)
834 {
835         struct search *s = container_of(cl, struct search, cl);
836         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
837
838         search_free(cl);
839         cached_dev_put(dc);
840 }
841
842 /* Process reads */
843
844 static void cached_dev_cache_miss_done(struct closure *cl)
845 {
846         struct search *s = container_of(cl, struct search, cl);
847
848         if (s->iop.replace_collision)
849                 bch_mark_cache_miss_collision(s->iop.c, s->d);
850
851         if (s->iop.bio) {
852                 int i;
853                 struct bio_vec *bv;
854
855                 bio_for_each_segment_all(bv, s->iop.bio, i)
856                         __free_page(bv->bv_page);
857         }
858
859         cached_dev_bio_complete(cl);
860 }
861
862 static void cached_dev_read_error(struct closure *cl)
863 {
864         struct search *s = container_of(cl, struct search, cl);
865         struct bio *bio = &s->bio.bio;
866
867         if (s->recoverable) {
868                 /* Retry from the backing device: */
869                 trace_bcache_read_retry(s->orig_bio);
870
871                 s->iop.error = 0;
872                 do_bio_hook(s, s->orig_bio);
873
874                 /* XXX: invalidate cache */
875
876                 closure_bio_submit(bio, cl, s->d);
877         }
878
879         continue_at(cl, cached_dev_cache_miss_done, NULL);
880 }
881
882 static void cached_dev_read_done(struct closure *cl)
883 {
884         struct search *s = container_of(cl, struct search, cl);
885         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
886
887         /*
888          * We had a cache miss; cache_bio now contains data ready to be inserted
889          * into the cache.
890          *
891          * First, we copy the data we just read from cache_bio's bounce buffers
892          * to the buffers the original bio pointed to:
893          */
894
895         if (s->iop.bio) {
896                 bio_reset(s->iop.bio);
897                 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
898                 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
899                 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
900                 bch_bio_map(s->iop.bio, NULL);
901
902                 bio_copy_data(s->cache_miss, s->iop.bio);
903
904                 bio_put(s->cache_miss);
905                 s->cache_miss = NULL;
906         }
907
908         if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
909                 bch_data_verify(dc, s->orig_bio);
910
911         bio_complete(s);
912
913         if (s->iop.bio &&
914             !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
915                 BUG_ON(!s->iop.replace);
916                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
917         }
918
919         continue_at(cl, cached_dev_cache_miss_done, NULL);
920 }
921
922 static void cached_dev_read_done_bh(struct closure *cl)
923 {
924         struct search *s = container_of(cl, struct search, cl);
925         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
926
927         bch_mark_cache_accounting(s->iop.c, s->d,
928                                   !s->cache_miss, s->iop.bypass);
929         trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
930
931         if (s->iop.error)
932                 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
933         else if (s->iop.bio || verify(dc, &s->bio.bio))
934                 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
935         else
936                 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
937 }
938
939 static int cached_dev_cache_miss(struct btree *b, struct search *s,
940                                  struct bio *bio, unsigned sectors)
941 {
942         int ret = MAP_CONTINUE;
943         unsigned reada = 0;
944         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
945         struct bio *miss, *cache_bio;
946
947         if (s->cache_miss || s->iop.bypass) {
948                 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
949                 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
950                 goto out_submit;
951         }
952
953         if (!(bio->bi_rw & REQ_RAHEAD) &&
954             !(bio->bi_rw & REQ_META) &&
955             s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
956                 reada = min_t(sector_t, dc->readahead >> 9,
957                               bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
958
959         s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
960
961         s->iop.replace_key = KEY(s->iop.inode,
962                                  bio->bi_iter.bi_sector + s->insert_bio_sectors,
963                                  s->insert_bio_sectors);
964
965         ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
966         if (ret)
967                 return ret;
968
969         s->iop.replace = true;
970
971         miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
972
973         /* btree_search_recurse()'s btree iterator is no good anymore */
974         ret = miss == bio ? MAP_DONE : -EINTR;
975
976         cache_bio = bio_alloc_bioset(GFP_NOWAIT,
977                         DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
978                         dc->disk.bio_split);
979         if (!cache_bio)
980                 goto out_submit;
981
982         cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
983         cache_bio->bi_bdev              = miss->bi_bdev;
984         cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
985
986         cache_bio->bi_end_io    = request_endio;
987         cache_bio->bi_private   = &s->cl;
988
989         bch_bio_map(cache_bio, NULL);
990         if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
991                 goto out_put;
992
993         if (reada)
994                 bch_mark_cache_readahead(s->iop.c, s->d);
995
996         s->cache_miss   = miss;
997         s->iop.bio      = cache_bio;
998         bio_get(cache_bio);
999         closure_bio_submit(cache_bio, &s->cl, s->d);
1000
1001         return ret;
1002 out_put:
1003         bio_put(cache_bio);
1004 out_submit:
1005         miss->bi_end_io         = request_endio;
1006         miss->bi_private        = &s->cl;
1007         closure_bio_submit(miss, &s->cl, s->d);
1008         return ret;
1009 }
1010
1011 static void cached_dev_read(struct cached_dev *dc, struct search *s)
1012 {
1013         struct closure *cl = &s->cl;
1014
1015         closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1016         continue_at(cl, cached_dev_read_done_bh, NULL);
1017 }
1018
1019 /* Process writes */
1020
1021 static void cached_dev_write_complete(struct closure *cl)
1022 {
1023         struct search *s = container_of(cl, struct search, cl);
1024         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1025
1026         up_read_non_owner(&dc->writeback_lock);
1027         cached_dev_bio_complete(cl);
1028 }
1029
1030 static void cached_dev_write(struct cached_dev *dc, struct search *s)
1031 {
1032         struct closure *cl = &s->cl;
1033         struct bio *bio = &s->bio.bio;
1034         struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
1035         struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
1036
1037         bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
1038
1039         down_read_non_owner(&dc->writeback_lock);
1040         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
1041                 /*
1042                  * We overlap with some dirty data undergoing background
1043                  * writeback, force this write to writeback
1044                  */
1045                 s->iop.bypass = false;
1046                 s->iop.writeback = true;
1047         }
1048
1049         /*
1050          * Discards aren't _required_ to do anything, so skipping if
1051          * check_overlapping returned true is ok
1052          *
1053          * But check_overlapping drops dirty keys for which io hasn't started,
1054          * so we still want to call it.
1055          */
1056         if (bio->bi_rw & REQ_DISCARD)
1057                 s->iop.bypass = true;
1058
1059         if (should_writeback(dc, s->orig_bio,
1060                              cache_mode(dc, bio),
1061                              s->iop.bypass)) {
1062                 s->iop.bypass = false;
1063                 s->iop.writeback = true;
1064         }
1065
1066         if (s->iop.bypass) {
1067                 s->iop.bio = s->orig_bio;
1068                 bio_get(s->iop.bio);
1069
1070                 if (!(bio->bi_rw & REQ_DISCARD) ||
1071                     blk_queue_discard(bdev_get_queue(dc->bdev)))
1072                         closure_bio_submit(bio, cl, s->d);
1073         } else if (s->iop.writeback) {
1074                 bch_writeback_add(dc);
1075                 s->iop.bio = bio;
1076
1077                 if (bio->bi_rw & REQ_FLUSH) {
1078                         /* Also need to send a flush to the backing device */
1079                         struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
1080                                                              dc->disk.bio_split);
1081
1082                         flush->bi_rw    = WRITE_FLUSH;
1083                         flush->bi_bdev  = bio->bi_bdev;
1084                         flush->bi_end_io = request_endio;
1085                         flush->bi_private = cl;
1086
1087                         closure_bio_submit(flush, cl, s->d);
1088                 }
1089         } else {
1090                 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
1091
1092                 closure_bio_submit(bio, cl, s->d);
1093         }
1094
1095         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1096         continue_at(cl, cached_dev_write_complete, NULL);
1097 }
1098
1099 static void cached_dev_nodata(struct closure *cl)
1100 {
1101         struct search *s = container_of(cl, struct search, cl);
1102         struct bio *bio = &s->bio.bio;
1103
1104         if (s->iop.flush_journal)
1105                 bch_journal_meta(s->iop.c, cl);
1106
1107         /* If it's a flush, we send the flush to the backing device too */
1108         closure_bio_submit(bio, cl, s->d);
1109
1110         continue_at(cl, cached_dev_bio_complete, NULL);
1111 }
1112
1113 /* Cached devices - read & write stuff */
1114
1115 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1116 {
1117         struct search *s;
1118         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1119         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1120         int cpu, rw = bio_data_dir(bio);
1121
1122         cpu = part_stat_lock();
1123         part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1124         part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1125         part_stat_unlock();
1126
1127         bio->bi_bdev = dc->bdev;
1128         bio->bi_iter.bi_sector += dc->sb.data_offset;
1129
1130         if (cached_dev_get(dc)) {
1131                 s = search_alloc(bio, d);
1132                 trace_bcache_request_start(s->d, bio);
1133
1134                 if (!bio->bi_iter.bi_size) {
1135                         /*
1136                          * can't call bch_journal_meta from under
1137                          * generic_make_request
1138                          */
1139                         continue_at_nobarrier(&s->cl,
1140                                               cached_dev_nodata,
1141                                               bcache_wq);
1142                 } else {
1143                         s->iop.bypass = check_should_bypass(dc, bio);
1144
1145                         if (rw)
1146                                 cached_dev_write(dc, s);
1147                         else
1148                                 cached_dev_read(dc, s);
1149                 }
1150         } else {
1151                 if ((bio->bi_rw & REQ_DISCARD) &&
1152                     !blk_queue_discard(bdev_get_queue(dc->bdev)))
1153                         bio_endio(bio, 0);
1154                 else
1155                         bch_generic_make_request(bio, &d->bio_split_hook);
1156         }
1157 }
1158
1159 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1160                             unsigned int cmd, unsigned long arg)
1161 {
1162         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1163         return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1164 }
1165
1166 static int cached_dev_congested(void *data, int bits)
1167 {
1168         struct bcache_device *d = data;
1169         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1170         struct request_queue *q = bdev_get_queue(dc->bdev);
1171         int ret = 0;
1172
1173         if (bdi_congested(&q->backing_dev_info, bits))
1174                 return 1;
1175
1176         if (cached_dev_get(dc)) {
1177                 unsigned i;
1178                 struct cache *ca;
1179
1180                 for_each_cache(ca, d->c, i) {
1181                         q = bdev_get_queue(ca->bdev);
1182                         ret |= bdi_congested(&q->backing_dev_info, bits);
1183                 }
1184
1185                 cached_dev_put(dc);
1186         }
1187
1188         return ret;
1189 }
1190
1191 void bch_cached_dev_request_init(struct cached_dev *dc)
1192 {
1193         struct gendisk *g = dc->disk.disk;
1194
1195         g->queue->make_request_fn               = cached_dev_make_request;
1196         g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1197         dc->disk.cache_miss                     = cached_dev_cache_miss;
1198         dc->disk.ioctl                          = cached_dev_ioctl;
1199 }
1200
1201 /* Flash backed devices */
1202
1203 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1204                                 struct bio *bio, unsigned sectors)
1205 {
1206         struct bio_vec bv;
1207         struct bvec_iter iter;
1208
1209         /* Zero fill bio */
1210
1211         bio_for_each_segment(bv, bio, iter) {
1212                 unsigned j = min(bv.bv_len >> 9, sectors);
1213
1214                 void *p = kmap(bv.bv_page);
1215                 memset(p + bv.bv_offset, 0, j << 9);
1216                 kunmap(bv.bv_page);
1217
1218                 sectors -= j;
1219         }
1220
1221         bio_advance(bio, min(sectors << 9, bio->bi_iter.bi_size));
1222
1223         if (!bio->bi_iter.bi_size)
1224                 return MAP_DONE;
1225
1226         return MAP_CONTINUE;
1227 }
1228
1229 static void flash_dev_nodata(struct closure *cl)
1230 {
1231         struct search *s = container_of(cl, struct search, cl);
1232
1233         if (s->iop.flush_journal)
1234                 bch_journal_meta(s->iop.c, cl);
1235
1236         continue_at(cl, search_free, NULL);
1237 }
1238
1239 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1240 {
1241         struct search *s;
1242         struct closure *cl;
1243         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1244         int cpu, rw = bio_data_dir(bio);
1245
1246         cpu = part_stat_lock();
1247         part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1248         part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1249         part_stat_unlock();
1250
1251         s = search_alloc(bio, d);
1252         cl = &s->cl;
1253         bio = &s->bio.bio;
1254
1255         trace_bcache_request_start(s->d, bio);
1256
1257         if (!bio->bi_iter.bi_size) {
1258                 /*
1259                  * can't call bch_journal_meta from under
1260                  * generic_make_request
1261                  */
1262                 continue_at_nobarrier(&s->cl,
1263                                       flash_dev_nodata,
1264                                       bcache_wq);
1265         } else if (rw) {
1266                 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1267                                         &KEY(d->id, bio->bi_iter.bi_sector, 0),
1268                                         &KEY(d->id, bio_end_sector(bio), 0));
1269
1270                 s->iop.bypass           = (bio->bi_rw & REQ_DISCARD) != 0;
1271                 s->iop.writeback        = true;
1272                 s->iop.bio              = bio;
1273
1274                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1275         } else {
1276                 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1277         }
1278
1279         continue_at(cl, search_free, NULL);
1280 }
1281
1282 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1283                            unsigned int cmd, unsigned long arg)
1284 {
1285         return -ENOTTY;
1286 }
1287
1288 static int flash_dev_congested(void *data, int bits)
1289 {
1290         struct bcache_device *d = data;
1291         struct request_queue *q;
1292         struct cache *ca;
1293         unsigned i;
1294         int ret = 0;
1295
1296         for_each_cache(ca, d->c, i) {
1297                 q = bdev_get_queue(ca->bdev);
1298                 ret |= bdi_congested(&q->backing_dev_info, bits);
1299         }
1300
1301         return ret;
1302 }
1303
1304 void bch_flash_dev_request_init(struct bcache_device *d)
1305 {
1306         struct gendisk *g = d->disk;
1307
1308         g->queue->make_request_fn               = flash_dev_make_request;
1309         g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1310         d->cache_miss                           = flash_dev_cache_miss;
1311         d->ioctl                                = flash_dev_ioctl;
1312 }
1313
1314 void bch_request_exit(void)
1315 {
1316 #ifdef CONFIG_CGROUP_BCACHE
1317         cgroup_unload_subsys(&bcache_subsys);
1318 #endif
1319         if (bch_search_cache)
1320                 kmem_cache_destroy(bch_search_cache);
1321 }
1322
1323 int __init bch_request_init(void)
1324 {
1325         bch_search_cache = KMEM_CACHE(search, 0);
1326         if (!bch_search_cache)
1327                 return -ENOMEM;
1328
1329 #ifdef CONFIG_CGROUP_BCACHE
1330         cgroup_load_subsys(&bcache_subsys);
1331         init_bch_cgroup(&bcache_default_cgroup);
1332
1333         cgroup_add_cftypes(&bcache_subsys, bch_files);
1334 #endif
1335         return 0;
1336 }