]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/vmwgfx/vmwgfx_resource.c
Merge branch 'nfsd-next' of git://linux-nfs.org/~bfields/linux
[~andy/linux] / drivers / gpu / drm / vmwgfx / vmwgfx_resource.c
1 /**************************************************************************
2  *
3  * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34
35 #define VMW_RES_EVICT_ERR_COUNT 10
36
37 struct vmw_user_dma_buffer {
38         struct ttm_prime_object prime;
39         struct vmw_dma_buffer dma;
40 };
41
42 struct vmw_bo_user_rep {
43         uint32_t handle;
44         uint64_t map_handle;
45 };
46
47 struct vmw_stream {
48         struct vmw_resource res;
49         uint32_t stream_id;
50 };
51
52 struct vmw_user_stream {
53         struct ttm_base_object base;
54         struct vmw_stream stream;
55 };
56
57
58 static uint64_t vmw_user_stream_size;
59
60 static const struct vmw_res_func vmw_stream_func = {
61         .res_type = vmw_res_stream,
62         .needs_backup = false,
63         .may_evict = false,
64         .type_name = "video streams",
65         .backup_placement = NULL,
66         .create = NULL,
67         .destroy = NULL,
68         .bind = NULL,
69         .unbind = NULL
70 };
71
72 static inline struct vmw_dma_buffer *
73 vmw_dma_buffer(struct ttm_buffer_object *bo)
74 {
75         return container_of(bo, struct vmw_dma_buffer, base);
76 }
77
78 static inline struct vmw_user_dma_buffer *
79 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
80 {
81         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
82         return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
83 }
84
85 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
86 {
87         kref_get(&res->kref);
88         return res;
89 }
90
91 struct vmw_resource *
92 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
93 {
94         return kref_get_unless_zero(&res->kref) ? res : NULL;
95 }
96
97 /**
98  * vmw_resource_release_id - release a resource id to the id manager.
99  *
100  * @res: Pointer to the resource.
101  *
102  * Release the resource id to the resource id manager and set it to -1
103  */
104 void vmw_resource_release_id(struct vmw_resource *res)
105 {
106         struct vmw_private *dev_priv = res->dev_priv;
107         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
108
109         write_lock(&dev_priv->resource_lock);
110         if (res->id != -1)
111                 idr_remove(idr, res->id);
112         res->id = -1;
113         write_unlock(&dev_priv->resource_lock);
114 }
115
116 static void vmw_resource_release(struct kref *kref)
117 {
118         struct vmw_resource *res =
119             container_of(kref, struct vmw_resource, kref);
120         struct vmw_private *dev_priv = res->dev_priv;
121         int id;
122         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
123
124         res->avail = false;
125         list_del_init(&res->lru_head);
126         write_unlock(&dev_priv->resource_lock);
127         if (res->backup) {
128                 struct ttm_buffer_object *bo = &res->backup->base;
129
130                 ttm_bo_reserve(bo, false, false, false, 0);
131                 if (!list_empty(&res->mob_head) &&
132                     res->func->unbind != NULL) {
133                         struct ttm_validate_buffer val_buf;
134
135                         val_buf.bo = bo;
136                         res->func->unbind(res, false, &val_buf);
137                 }
138                 res->backup_dirty = false;
139                 list_del_init(&res->mob_head);
140                 ttm_bo_unreserve(bo);
141                 vmw_dmabuf_unreference(&res->backup);
142         }
143
144         if (likely(res->hw_destroy != NULL)) {
145                 res->hw_destroy(res);
146                 mutex_lock(&dev_priv->binding_mutex);
147                 vmw_context_binding_res_list_kill(&res->binding_head);
148                 mutex_unlock(&dev_priv->binding_mutex);
149         }
150
151         id = res->id;
152         if (res->res_free != NULL)
153                 res->res_free(res);
154         else
155                 kfree(res);
156
157         write_lock(&dev_priv->resource_lock);
158
159         if (id != -1)
160                 idr_remove(idr, id);
161 }
162
163 void vmw_resource_unreference(struct vmw_resource **p_res)
164 {
165         struct vmw_resource *res = *p_res;
166         struct vmw_private *dev_priv = res->dev_priv;
167
168         *p_res = NULL;
169         write_lock(&dev_priv->resource_lock);
170         kref_put(&res->kref, vmw_resource_release);
171         write_unlock(&dev_priv->resource_lock);
172 }
173
174
175 /**
176  * vmw_resource_alloc_id - release a resource id to the id manager.
177  *
178  * @res: Pointer to the resource.
179  *
180  * Allocate the lowest free resource from the resource manager, and set
181  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
182  */
183 int vmw_resource_alloc_id(struct vmw_resource *res)
184 {
185         struct vmw_private *dev_priv = res->dev_priv;
186         int ret;
187         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
188
189         BUG_ON(res->id != -1);
190
191         idr_preload(GFP_KERNEL);
192         write_lock(&dev_priv->resource_lock);
193
194         ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
195         if (ret >= 0)
196                 res->id = ret;
197
198         write_unlock(&dev_priv->resource_lock);
199         idr_preload_end();
200         return ret < 0 ? ret : 0;
201 }
202
203 /**
204  * vmw_resource_init - initialize a struct vmw_resource
205  *
206  * @dev_priv:       Pointer to a device private struct.
207  * @res:            The struct vmw_resource to initialize.
208  * @obj_type:       Resource object type.
209  * @delay_id:       Boolean whether to defer device id allocation until
210  *                  the first validation.
211  * @res_free:       Resource destructor.
212  * @func:           Resource function table.
213  */
214 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
215                       bool delay_id,
216                       void (*res_free) (struct vmw_resource *res),
217                       const struct vmw_res_func *func)
218 {
219         kref_init(&res->kref);
220         res->hw_destroy = NULL;
221         res->res_free = res_free;
222         res->avail = false;
223         res->dev_priv = dev_priv;
224         res->func = func;
225         INIT_LIST_HEAD(&res->lru_head);
226         INIT_LIST_HEAD(&res->mob_head);
227         INIT_LIST_HEAD(&res->binding_head);
228         res->id = -1;
229         res->backup = NULL;
230         res->backup_offset = 0;
231         res->backup_dirty = false;
232         res->res_dirty = false;
233         if (delay_id)
234                 return 0;
235         else
236                 return vmw_resource_alloc_id(res);
237 }
238
239 /**
240  * vmw_resource_activate
241  *
242  * @res:        Pointer to the newly created resource
243  * @hw_destroy: Destroy function. NULL if none.
244  *
245  * Activate a resource after the hardware has been made aware of it.
246  * Set tye destroy function to @destroy. Typically this frees the
247  * resource and destroys the hardware resources associated with it.
248  * Activate basically means that the function vmw_resource_lookup will
249  * find it.
250  */
251 void vmw_resource_activate(struct vmw_resource *res,
252                            void (*hw_destroy) (struct vmw_resource *))
253 {
254         struct vmw_private *dev_priv = res->dev_priv;
255
256         write_lock(&dev_priv->resource_lock);
257         res->avail = true;
258         res->hw_destroy = hw_destroy;
259         write_unlock(&dev_priv->resource_lock);
260 }
261
262 struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
263                                          struct idr *idr, int id)
264 {
265         struct vmw_resource *res;
266
267         read_lock(&dev_priv->resource_lock);
268         res = idr_find(idr, id);
269         if (res && res->avail)
270                 kref_get(&res->kref);
271         else
272                 res = NULL;
273         read_unlock(&dev_priv->resource_lock);
274
275         if (unlikely(res == NULL))
276                 return NULL;
277
278         return res;
279 }
280
281 /**
282  * vmw_user_resource_lookup_handle - lookup a struct resource from a
283  * TTM user-space handle and perform basic type checks
284  *
285  * @dev_priv:     Pointer to a device private struct
286  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
287  * @handle:       The TTM user-space handle
288  * @converter:    Pointer to an object describing the resource type
289  * @p_res:        On successful return the location pointed to will contain
290  *                a pointer to a refcounted struct vmw_resource.
291  *
292  * If the handle can't be found or is associated with an incorrect resource
293  * type, -EINVAL will be returned.
294  */
295 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
296                                     struct ttm_object_file *tfile,
297                                     uint32_t handle,
298                                     const struct vmw_user_resource_conv
299                                     *converter,
300                                     struct vmw_resource **p_res)
301 {
302         struct ttm_base_object *base;
303         struct vmw_resource *res;
304         int ret = -EINVAL;
305
306         base = ttm_base_object_lookup(tfile, handle);
307         if (unlikely(base == NULL))
308                 return -EINVAL;
309
310         if (unlikely(ttm_base_object_type(base) != converter->object_type))
311                 goto out_bad_resource;
312
313         res = converter->base_obj_to_res(base);
314
315         read_lock(&dev_priv->resource_lock);
316         if (!res->avail || res->res_free != converter->res_free) {
317                 read_unlock(&dev_priv->resource_lock);
318                 goto out_bad_resource;
319         }
320
321         kref_get(&res->kref);
322         read_unlock(&dev_priv->resource_lock);
323
324         *p_res = res;
325         ret = 0;
326
327 out_bad_resource:
328         ttm_base_object_unref(&base);
329
330         return ret;
331 }
332
333 /**
334  * Helper function that looks either a surface or dmabuf.
335  *
336  * The pointer this pointed at by out_surf and out_buf needs to be null.
337  */
338 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
339                            struct ttm_object_file *tfile,
340                            uint32_t handle,
341                            struct vmw_surface **out_surf,
342                            struct vmw_dma_buffer **out_buf)
343 {
344         struct vmw_resource *res;
345         int ret;
346
347         BUG_ON(*out_surf || *out_buf);
348
349         ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
350                                               user_surface_converter,
351                                               &res);
352         if (!ret) {
353                 *out_surf = vmw_res_to_srf(res);
354                 return 0;
355         }
356
357         *out_surf = NULL;
358         ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf);
359         return ret;
360 }
361
362 /**
363  * Buffer management.
364  */
365
366 /**
367  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
368  *
369  * @dev_priv: Pointer to a struct vmw_private identifying the device.
370  * @size: The requested buffer size.
371  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
372  */
373 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
374                                   bool user)
375 {
376         static size_t struct_size, user_struct_size;
377         size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
378         size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
379
380         if (unlikely(struct_size == 0)) {
381                 size_t backend_size = ttm_round_pot(vmw_tt_size);
382
383                 struct_size = backend_size +
384                         ttm_round_pot(sizeof(struct vmw_dma_buffer));
385                 user_struct_size = backend_size +
386                         ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
387         }
388
389         if (dev_priv->map_mode == vmw_dma_alloc_coherent)
390                 page_array_size +=
391                         ttm_round_pot(num_pages * sizeof(dma_addr_t));
392
393         return ((user) ? user_struct_size : struct_size) +
394                 page_array_size;
395 }
396
397 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
398 {
399         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
400
401         kfree(vmw_bo);
402 }
403
404 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
405 {
406         struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
407
408         ttm_prime_object_kfree(vmw_user_bo, prime);
409 }
410
411 int vmw_dmabuf_init(struct vmw_private *dev_priv,
412                     struct vmw_dma_buffer *vmw_bo,
413                     size_t size, struct ttm_placement *placement,
414                     bool interruptible,
415                     void (*bo_free) (struct ttm_buffer_object *bo))
416 {
417         struct ttm_bo_device *bdev = &dev_priv->bdev;
418         size_t acc_size;
419         int ret;
420         bool user = (bo_free == &vmw_user_dmabuf_destroy);
421
422         BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
423
424         acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
425         memset(vmw_bo, 0, sizeof(*vmw_bo));
426
427         INIT_LIST_HEAD(&vmw_bo->res_list);
428
429         ret = ttm_bo_init(bdev, &vmw_bo->base, size,
430                           ttm_bo_type_device, placement,
431                           0, interruptible,
432                           NULL, acc_size, NULL, bo_free);
433         return ret;
434 }
435
436 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
437 {
438         struct vmw_user_dma_buffer *vmw_user_bo;
439         struct ttm_base_object *base = *p_base;
440         struct ttm_buffer_object *bo;
441
442         *p_base = NULL;
443
444         if (unlikely(base == NULL))
445                 return;
446
447         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
448                                    prime.base);
449         bo = &vmw_user_bo->dma.base;
450         ttm_bo_unref(&bo);
451 }
452
453 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
454                                             enum ttm_ref_type ref_type)
455 {
456         struct vmw_user_dma_buffer *user_bo;
457         user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
458
459         switch (ref_type) {
460         case TTM_REF_SYNCCPU_WRITE:
461                 ttm_bo_synccpu_write_release(&user_bo->dma.base);
462                 break;
463         default:
464                 BUG();
465         }
466 }
467
468 /**
469  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
470  *
471  * @dev_priv: Pointer to a struct device private.
472  * @tfile: Pointer to a struct ttm_object_file on which to register the user
473  * object.
474  * @size: Size of the dma buffer.
475  * @shareable: Boolean whether the buffer is shareable with other open files.
476  * @handle: Pointer to where the handle value should be assigned.
477  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
478  * should be assigned.
479  */
480 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
481                           struct ttm_object_file *tfile,
482                           uint32_t size,
483                           bool shareable,
484                           uint32_t *handle,
485                           struct vmw_dma_buffer **p_dma_buf)
486 {
487         struct vmw_user_dma_buffer *user_bo;
488         struct ttm_buffer_object *tmp;
489         int ret;
490
491         user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
492         if (unlikely(user_bo == NULL)) {
493                 DRM_ERROR("Failed to allocate a buffer.\n");
494                 return -ENOMEM;
495         }
496
497         ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
498                               (dev_priv->has_mob) ?
499                               &vmw_sys_placement :
500                               &vmw_vram_sys_placement, true,
501                               &vmw_user_dmabuf_destroy);
502         if (unlikely(ret != 0))
503                 return ret;
504
505         tmp = ttm_bo_reference(&user_bo->dma.base);
506         ret = ttm_prime_object_init(tfile,
507                                     size,
508                                     &user_bo->prime,
509                                     shareable,
510                                     ttm_buffer_type,
511                                     &vmw_user_dmabuf_release,
512                                     &vmw_user_dmabuf_ref_obj_release);
513         if (unlikely(ret != 0)) {
514                 ttm_bo_unref(&tmp);
515                 goto out_no_base_object;
516         }
517
518         *p_dma_buf = &user_bo->dma;
519         *handle = user_bo->prime.base.hash.key;
520
521 out_no_base_object:
522         return ret;
523 }
524
525 /**
526  * vmw_user_dmabuf_verify_access - verify access permissions on this
527  * buffer object.
528  *
529  * @bo: Pointer to the buffer object being accessed
530  * @tfile: Identifying the caller.
531  */
532 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
533                                   struct ttm_object_file *tfile)
534 {
535         struct vmw_user_dma_buffer *vmw_user_bo;
536
537         if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
538                 return -EPERM;
539
540         vmw_user_bo = vmw_user_dma_buffer(bo);
541         return (vmw_user_bo->prime.base.tfile == tfile ||
542                 vmw_user_bo->prime.base.shareable) ? 0 : -EPERM;
543 }
544
545 /**
546  * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
547  * access, idling previous GPU operations on the buffer and optionally
548  * blocking it for further command submissions.
549  *
550  * @user_bo: Pointer to the buffer object being grabbed for CPU access
551  * @tfile: Identifying the caller.
552  * @flags: Flags indicating how the grab should be performed.
553  *
554  * A blocking grab will be automatically released when @tfile is closed.
555  */
556 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
557                                         struct ttm_object_file *tfile,
558                                         uint32_t flags)
559 {
560         struct ttm_buffer_object *bo = &user_bo->dma.base;
561         bool existed;
562         int ret;
563
564         if (flags & drm_vmw_synccpu_allow_cs) {
565                 struct ttm_bo_device *bdev = bo->bdev;
566
567                 spin_lock(&bdev->fence_lock);
568                 ret = ttm_bo_wait(bo, false, true,
569                                   !!(flags & drm_vmw_synccpu_dontblock));
570                 spin_unlock(&bdev->fence_lock);
571                 return ret;
572         }
573
574         ret = ttm_bo_synccpu_write_grab
575                 (bo, !!(flags & drm_vmw_synccpu_dontblock));
576         if (unlikely(ret != 0))
577                 return ret;
578
579         ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
580                                  TTM_REF_SYNCCPU_WRITE, &existed);
581         if (ret != 0 || existed)
582                 ttm_bo_synccpu_write_release(&user_bo->dma.base);
583
584         return ret;
585 }
586
587 /**
588  * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
589  * and unblock command submission on the buffer if blocked.
590  *
591  * @handle: Handle identifying the buffer object.
592  * @tfile: Identifying the caller.
593  * @flags: Flags indicating the type of release.
594  */
595 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
596                                            struct ttm_object_file *tfile,
597                                            uint32_t flags)
598 {
599         if (!(flags & drm_vmw_synccpu_allow_cs))
600                 return ttm_ref_object_base_unref(tfile, handle,
601                                                  TTM_REF_SYNCCPU_WRITE);
602
603         return 0;
604 }
605
606 /**
607  * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
608  * functionality.
609  *
610  * @dev: Identifies the drm device.
611  * @data: Pointer to the ioctl argument.
612  * @file_priv: Identifies the caller.
613  *
614  * This function checks the ioctl arguments for validity and calls the
615  * relevant synccpu functions.
616  */
617 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
618                                   struct drm_file *file_priv)
619 {
620         struct drm_vmw_synccpu_arg *arg =
621                 (struct drm_vmw_synccpu_arg *) data;
622         struct vmw_dma_buffer *dma_buf;
623         struct vmw_user_dma_buffer *user_bo;
624         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
625         int ret;
626
627         if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
628             || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
629                                drm_vmw_synccpu_dontblock |
630                                drm_vmw_synccpu_allow_cs)) != 0) {
631                 DRM_ERROR("Illegal synccpu flags.\n");
632                 return -EINVAL;
633         }
634
635         switch (arg->op) {
636         case drm_vmw_synccpu_grab:
637                 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf);
638                 if (unlikely(ret != 0))
639                         return ret;
640
641                 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
642                                        dma);
643                 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
644                 vmw_dmabuf_unreference(&dma_buf);
645                 if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
646                              ret != -EBUSY)) {
647                         DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
648                                   (unsigned int) arg->handle);
649                         return ret;
650                 }
651                 break;
652         case drm_vmw_synccpu_release:
653                 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
654                                                       arg->flags);
655                 if (unlikely(ret != 0)) {
656                         DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
657                                   (unsigned int) arg->handle);
658                         return ret;
659                 }
660                 break;
661         default:
662                 DRM_ERROR("Invalid synccpu operation.\n");
663                 return -EINVAL;
664         }
665
666         return 0;
667 }
668
669 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
670                            struct drm_file *file_priv)
671 {
672         struct vmw_private *dev_priv = vmw_priv(dev);
673         union drm_vmw_alloc_dmabuf_arg *arg =
674             (union drm_vmw_alloc_dmabuf_arg *)data;
675         struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
676         struct drm_vmw_dmabuf_rep *rep = &arg->rep;
677         struct vmw_dma_buffer *dma_buf;
678         uint32_t handle;
679         struct vmw_master *vmaster = vmw_master(file_priv->master);
680         int ret;
681
682         ret = ttm_read_lock(&vmaster->lock, true);
683         if (unlikely(ret != 0))
684                 return ret;
685
686         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
687                                     req->size, false, &handle, &dma_buf);
688         if (unlikely(ret != 0))
689                 goto out_no_dmabuf;
690
691         rep->handle = handle;
692         rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
693         rep->cur_gmr_id = handle;
694         rep->cur_gmr_offset = 0;
695
696         vmw_dmabuf_unreference(&dma_buf);
697
698 out_no_dmabuf:
699         ttm_read_unlock(&vmaster->lock);
700
701         return ret;
702 }
703
704 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
705                            struct drm_file *file_priv)
706 {
707         struct drm_vmw_unref_dmabuf_arg *arg =
708             (struct drm_vmw_unref_dmabuf_arg *)data;
709
710         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
711                                          arg->handle,
712                                          TTM_REF_USAGE);
713 }
714
715 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
716                            uint32_t handle, struct vmw_dma_buffer **out)
717 {
718         struct vmw_user_dma_buffer *vmw_user_bo;
719         struct ttm_base_object *base;
720
721         base = ttm_base_object_lookup(tfile, handle);
722         if (unlikely(base == NULL)) {
723                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
724                        (unsigned long)handle);
725                 return -ESRCH;
726         }
727
728         if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
729                 ttm_base_object_unref(&base);
730                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
731                        (unsigned long)handle);
732                 return -EINVAL;
733         }
734
735         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
736                                    prime.base);
737         (void)ttm_bo_reference(&vmw_user_bo->dma.base);
738         ttm_base_object_unref(&base);
739         *out = &vmw_user_bo->dma;
740
741         return 0;
742 }
743
744 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
745                               struct vmw_dma_buffer *dma_buf,
746                               uint32_t *handle)
747 {
748         struct vmw_user_dma_buffer *user_bo;
749
750         if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
751                 return -EINVAL;
752
753         user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
754
755         *handle = user_bo->prime.base.hash.key;
756         return ttm_ref_object_add(tfile, &user_bo->prime.base,
757                                   TTM_REF_USAGE, NULL);
758 }
759
760 /*
761  * Stream management
762  */
763
764 static void vmw_stream_destroy(struct vmw_resource *res)
765 {
766         struct vmw_private *dev_priv = res->dev_priv;
767         struct vmw_stream *stream;
768         int ret;
769
770         DRM_INFO("%s: unref\n", __func__);
771         stream = container_of(res, struct vmw_stream, res);
772
773         ret = vmw_overlay_unref(dev_priv, stream->stream_id);
774         WARN_ON(ret != 0);
775 }
776
777 static int vmw_stream_init(struct vmw_private *dev_priv,
778                            struct vmw_stream *stream,
779                            void (*res_free) (struct vmw_resource *res))
780 {
781         struct vmw_resource *res = &stream->res;
782         int ret;
783
784         ret = vmw_resource_init(dev_priv, res, false, res_free,
785                                 &vmw_stream_func);
786
787         if (unlikely(ret != 0)) {
788                 if (res_free == NULL)
789                         kfree(stream);
790                 else
791                         res_free(&stream->res);
792                 return ret;
793         }
794
795         ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
796         if (ret) {
797                 vmw_resource_unreference(&res);
798                 return ret;
799         }
800
801         DRM_INFO("%s: claimed\n", __func__);
802
803         vmw_resource_activate(&stream->res, vmw_stream_destroy);
804         return 0;
805 }
806
807 static void vmw_user_stream_free(struct vmw_resource *res)
808 {
809         struct vmw_user_stream *stream =
810             container_of(res, struct vmw_user_stream, stream.res);
811         struct vmw_private *dev_priv = res->dev_priv;
812
813         ttm_base_object_kfree(stream, base);
814         ttm_mem_global_free(vmw_mem_glob(dev_priv),
815                             vmw_user_stream_size);
816 }
817
818 /**
819  * This function is called when user space has no more references on the
820  * base object. It releases the base-object's reference on the resource object.
821  */
822
823 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
824 {
825         struct ttm_base_object *base = *p_base;
826         struct vmw_user_stream *stream =
827             container_of(base, struct vmw_user_stream, base);
828         struct vmw_resource *res = &stream->stream.res;
829
830         *p_base = NULL;
831         vmw_resource_unreference(&res);
832 }
833
834 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
835                            struct drm_file *file_priv)
836 {
837         struct vmw_private *dev_priv = vmw_priv(dev);
838         struct vmw_resource *res;
839         struct vmw_user_stream *stream;
840         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
841         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
842         struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
843         int ret = 0;
844
845
846         res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
847         if (unlikely(res == NULL))
848                 return -EINVAL;
849
850         if (res->res_free != &vmw_user_stream_free) {
851                 ret = -EINVAL;
852                 goto out;
853         }
854
855         stream = container_of(res, struct vmw_user_stream, stream.res);
856         if (stream->base.tfile != tfile) {
857                 ret = -EINVAL;
858                 goto out;
859         }
860
861         ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
862 out:
863         vmw_resource_unreference(&res);
864         return ret;
865 }
866
867 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
868                            struct drm_file *file_priv)
869 {
870         struct vmw_private *dev_priv = vmw_priv(dev);
871         struct vmw_user_stream *stream;
872         struct vmw_resource *res;
873         struct vmw_resource *tmp;
874         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
875         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
876         struct vmw_master *vmaster = vmw_master(file_priv->master);
877         int ret;
878
879         /*
880          * Approximate idr memory usage with 128 bytes. It will be limited
881          * by maximum number_of streams anyway?
882          */
883
884         if (unlikely(vmw_user_stream_size == 0))
885                 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
886
887         ret = ttm_read_lock(&vmaster->lock, true);
888         if (unlikely(ret != 0))
889                 return ret;
890
891         ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
892                                    vmw_user_stream_size,
893                                    false, true);
894         if (unlikely(ret != 0)) {
895                 if (ret != -ERESTARTSYS)
896                         DRM_ERROR("Out of graphics memory for stream"
897                                   " creation.\n");
898                 goto out_unlock;
899         }
900
901
902         stream = kmalloc(sizeof(*stream), GFP_KERNEL);
903         if (unlikely(stream == NULL)) {
904                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
905                                     vmw_user_stream_size);
906                 ret = -ENOMEM;
907                 goto out_unlock;
908         }
909
910         res = &stream->stream.res;
911         stream->base.shareable = false;
912         stream->base.tfile = NULL;
913
914         /*
915          * From here on, the destructor takes over resource freeing.
916          */
917
918         ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
919         if (unlikely(ret != 0))
920                 goto out_unlock;
921
922         tmp = vmw_resource_reference(res);
923         ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
924                                    &vmw_user_stream_base_release, NULL);
925
926         if (unlikely(ret != 0)) {
927                 vmw_resource_unreference(&tmp);
928                 goto out_err;
929         }
930
931         arg->stream_id = res->id;
932 out_err:
933         vmw_resource_unreference(&res);
934 out_unlock:
935         ttm_read_unlock(&vmaster->lock);
936         return ret;
937 }
938
939 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
940                            struct ttm_object_file *tfile,
941                            uint32_t *inout_id, struct vmw_resource **out)
942 {
943         struct vmw_user_stream *stream;
944         struct vmw_resource *res;
945         int ret;
946
947         res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
948                                   *inout_id);
949         if (unlikely(res == NULL))
950                 return -EINVAL;
951
952         if (res->res_free != &vmw_user_stream_free) {
953                 ret = -EINVAL;
954                 goto err_ref;
955         }
956
957         stream = container_of(res, struct vmw_user_stream, stream.res);
958         if (stream->base.tfile != tfile) {
959                 ret = -EPERM;
960                 goto err_ref;
961         }
962
963         *inout_id = stream->stream.stream_id;
964         *out = res;
965         return 0;
966 err_ref:
967         vmw_resource_unreference(&res);
968         return ret;
969 }
970
971
972 /**
973  * vmw_dumb_create - Create a dumb kms buffer
974  *
975  * @file_priv: Pointer to a struct drm_file identifying the caller.
976  * @dev: Pointer to the drm device.
977  * @args: Pointer to a struct drm_mode_create_dumb structure
978  *
979  * This is a driver callback for the core drm create_dumb functionality.
980  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
981  * that the arguments have a different format.
982  */
983 int vmw_dumb_create(struct drm_file *file_priv,
984                     struct drm_device *dev,
985                     struct drm_mode_create_dumb *args)
986 {
987         struct vmw_private *dev_priv = vmw_priv(dev);
988         struct vmw_master *vmaster = vmw_master(file_priv->master);
989         struct vmw_dma_buffer *dma_buf;
990         int ret;
991
992         args->pitch = args->width * ((args->bpp + 7) / 8);
993         args->size = args->pitch * args->height;
994
995         ret = ttm_read_lock(&vmaster->lock, true);
996         if (unlikely(ret != 0))
997                 return ret;
998
999         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1000                                     args->size, false, &args->handle,
1001                                     &dma_buf);
1002         if (unlikely(ret != 0))
1003                 goto out_no_dmabuf;
1004
1005         vmw_dmabuf_unreference(&dma_buf);
1006 out_no_dmabuf:
1007         ttm_read_unlock(&vmaster->lock);
1008         return ret;
1009 }
1010
1011 /**
1012  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1013  *
1014  * @file_priv: Pointer to a struct drm_file identifying the caller.
1015  * @dev: Pointer to the drm device.
1016  * @handle: Handle identifying the dumb buffer.
1017  * @offset: The address space offset returned.
1018  *
1019  * This is a driver callback for the core drm dumb_map_offset functionality.
1020  */
1021 int vmw_dumb_map_offset(struct drm_file *file_priv,
1022                         struct drm_device *dev, uint32_t handle,
1023                         uint64_t *offset)
1024 {
1025         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1026         struct vmw_dma_buffer *out_buf;
1027         int ret;
1028
1029         ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf);
1030         if (ret != 0)
1031                 return -EINVAL;
1032
1033         *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1034         vmw_dmabuf_unreference(&out_buf);
1035         return 0;
1036 }
1037
1038 /**
1039  * vmw_dumb_destroy - Destroy a dumb boffer
1040  *
1041  * @file_priv: Pointer to a struct drm_file identifying the caller.
1042  * @dev: Pointer to the drm device.
1043  * @handle: Handle identifying the dumb buffer.
1044  *
1045  * This is a driver callback for the core drm dumb_destroy functionality.
1046  */
1047 int vmw_dumb_destroy(struct drm_file *file_priv,
1048                      struct drm_device *dev,
1049                      uint32_t handle)
1050 {
1051         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1052                                          handle, TTM_REF_USAGE);
1053 }
1054
1055 /**
1056  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1057  *
1058  * @res:            The resource for which to allocate a backup buffer.
1059  * @interruptible:  Whether any sleeps during allocation should be
1060  *                  performed while interruptible.
1061  */
1062 static int vmw_resource_buf_alloc(struct vmw_resource *res,
1063                                   bool interruptible)
1064 {
1065         unsigned long size =
1066                 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1067         struct vmw_dma_buffer *backup;
1068         int ret;
1069
1070         if (likely(res->backup)) {
1071                 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1072                 return 0;
1073         }
1074
1075         backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1076         if (unlikely(backup == NULL))
1077                 return -ENOMEM;
1078
1079         ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1080                               res->func->backup_placement,
1081                               interruptible,
1082                               &vmw_dmabuf_bo_free);
1083         if (unlikely(ret != 0))
1084                 goto out_no_dmabuf;
1085
1086         res->backup = backup;
1087
1088 out_no_dmabuf:
1089         return ret;
1090 }
1091
1092 /**
1093  * vmw_resource_do_validate - Make a resource up-to-date and visible
1094  *                            to the device.
1095  *
1096  * @res:            The resource to make visible to the device.
1097  * @val_buf:        Information about a buffer possibly
1098  *                  containing backup data if a bind operation is needed.
1099  *
1100  * On hardware resource shortage, this function returns -EBUSY and
1101  * should be retried once resources have been freed up.
1102  */
1103 static int vmw_resource_do_validate(struct vmw_resource *res,
1104                                     struct ttm_validate_buffer *val_buf)
1105 {
1106         int ret = 0;
1107         const struct vmw_res_func *func = res->func;
1108
1109         if (unlikely(res->id == -1)) {
1110                 ret = func->create(res);
1111                 if (unlikely(ret != 0))
1112                         return ret;
1113         }
1114
1115         if (func->bind &&
1116             ((func->needs_backup && list_empty(&res->mob_head) &&
1117               val_buf->bo != NULL) ||
1118              (!func->needs_backup && val_buf->bo != NULL))) {
1119                 ret = func->bind(res, val_buf);
1120                 if (unlikely(ret != 0))
1121                         goto out_bind_failed;
1122                 if (func->needs_backup)
1123                         list_add_tail(&res->mob_head, &res->backup->res_list);
1124         }
1125
1126         /*
1127          * Only do this on write operations, and move to
1128          * vmw_resource_unreserve if it can be called after
1129          * backup buffers have been unreserved. Otherwise
1130          * sort out locking.
1131          */
1132         res->res_dirty = true;
1133
1134         return 0;
1135
1136 out_bind_failed:
1137         func->destroy(res);
1138
1139         return ret;
1140 }
1141
1142 /**
1143  * vmw_resource_unreserve - Unreserve a resource previously reserved for
1144  * command submission.
1145  *
1146  * @res:               Pointer to the struct vmw_resource to unreserve.
1147  * @new_backup:        Pointer to new backup buffer if command submission
1148  *                     switched.
1149  * @new_backup_offset: New backup offset if @new_backup is !NULL.
1150  *
1151  * Currently unreserving a resource means putting it back on the device's
1152  * resource lru list, so that it can be evicted if necessary.
1153  */
1154 void vmw_resource_unreserve(struct vmw_resource *res,
1155                             struct vmw_dma_buffer *new_backup,
1156                             unsigned long new_backup_offset)
1157 {
1158         struct vmw_private *dev_priv = res->dev_priv;
1159
1160         if (!list_empty(&res->lru_head))
1161                 return;
1162
1163         if (new_backup && new_backup != res->backup) {
1164
1165                 if (res->backup) {
1166                         lockdep_assert_held(&res->backup->base.resv->lock.base);
1167                         list_del_init(&res->mob_head);
1168                         vmw_dmabuf_unreference(&res->backup);
1169                 }
1170
1171                 res->backup = vmw_dmabuf_reference(new_backup);
1172                 lockdep_assert_held(&new_backup->base.resv->lock.base);
1173                 list_add_tail(&res->mob_head, &new_backup->res_list);
1174         }
1175         if (new_backup)
1176                 res->backup_offset = new_backup_offset;
1177
1178         if (!res->func->may_evict || res->id == -1)
1179                 return;
1180
1181         write_lock(&dev_priv->resource_lock);
1182         list_add_tail(&res->lru_head,
1183                       &res->dev_priv->res_lru[res->func->res_type]);
1184         write_unlock(&dev_priv->resource_lock);
1185 }
1186
1187 /**
1188  * vmw_resource_check_buffer - Check whether a backup buffer is needed
1189  *                             for a resource and in that case, allocate
1190  *                             one, reserve and validate it.
1191  *
1192  * @res:            The resource for which to allocate a backup buffer.
1193  * @interruptible:  Whether any sleeps during allocation should be
1194  *                  performed while interruptible.
1195  * @val_buf:        On successful return contains data about the
1196  *                  reserved and validated backup buffer.
1197  */
1198 static int
1199 vmw_resource_check_buffer(struct vmw_resource *res,
1200                           bool interruptible,
1201                           struct ttm_validate_buffer *val_buf)
1202 {
1203         struct list_head val_list;
1204         bool backup_dirty = false;
1205         int ret;
1206
1207         if (unlikely(res->backup == NULL)) {
1208                 ret = vmw_resource_buf_alloc(res, interruptible);
1209                 if (unlikely(ret != 0))
1210                         return ret;
1211         }
1212
1213         INIT_LIST_HEAD(&val_list);
1214         val_buf->bo = ttm_bo_reference(&res->backup->base);
1215         list_add_tail(&val_buf->head, &val_list);
1216         ret = ttm_eu_reserve_buffers(NULL, &val_list);
1217         if (unlikely(ret != 0))
1218                 goto out_no_reserve;
1219
1220         if (res->func->needs_backup && list_empty(&res->mob_head))
1221                 return 0;
1222
1223         backup_dirty = res->backup_dirty;
1224         ret = ttm_bo_validate(&res->backup->base,
1225                               res->func->backup_placement,
1226                               true, false);
1227
1228         if (unlikely(ret != 0))
1229                 goto out_no_validate;
1230
1231         return 0;
1232
1233 out_no_validate:
1234         ttm_eu_backoff_reservation(NULL, &val_list);
1235 out_no_reserve:
1236         ttm_bo_unref(&val_buf->bo);
1237         if (backup_dirty)
1238                 vmw_dmabuf_unreference(&res->backup);
1239
1240         return ret;
1241 }
1242
1243 /**
1244  * vmw_resource_reserve - Reserve a resource for command submission
1245  *
1246  * @res:            The resource to reserve.
1247  *
1248  * This function takes the resource off the LRU list and make sure
1249  * a backup buffer is present for guest-backed resources. However,
1250  * the buffer may not be bound to the resource at this point.
1251  *
1252  */
1253 int vmw_resource_reserve(struct vmw_resource *res, bool no_backup)
1254 {
1255         struct vmw_private *dev_priv = res->dev_priv;
1256         int ret;
1257
1258         write_lock(&dev_priv->resource_lock);
1259         list_del_init(&res->lru_head);
1260         write_unlock(&dev_priv->resource_lock);
1261
1262         if (res->func->needs_backup && res->backup == NULL &&
1263             !no_backup) {
1264                 ret = vmw_resource_buf_alloc(res, true);
1265                 if (unlikely(ret != 0))
1266                         return ret;
1267         }
1268
1269         return 0;
1270 }
1271
1272 /**
1273  * vmw_resource_backoff_reservation - Unreserve and unreference a
1274  *                                    backup buffer
1275  *.
1276  * @val_buf:        Backup buffer information.
1277  */
1278 static void
1279 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1280 {
1281         struct list_head val_list;
1282
1283         if (likely(val_buf->bo == NULL))
1284                 return;
1285
1286         INIT_LIST_HEAD(&val_list);
1287         list_add_tail(&val_buf->head, &val_list);
1288         ttm_eu_backoff_reservation(NULL, &val_list);
1289         ttm_bo_unref(&val_buf->bo);
1290 }
1291
1292 /**
1293  * vmw_resource_do_evict - Evict a resource, and transfer its data
1294  *                         to a backup buffer.
1295  *
1296  * @res:            The resource to evict.
1297  * @interruptible:  Whether to wait interruptible.
1298  */
1299 int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1300 {
1301         struct ttm_validate_buffer val_buf;
1302         const struct vmw_res_func *func = res->func;
1303         int ret;
1304
1305         BUG_ON(!func->may_evict);
1306
1307         val_buf.bo = NULL;
1308         ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1309         if (unlikely(ret != 0))
1310                 return ret;
1311
1312         if (unlikely(func->unbind != NULL &&
1313                      (!func->needs_backup || !list_empty(&res->mob_head)))) {
1314                 ret = func->unbind(res, res->res_dirty, &val_buf);
1315                 if (unlikely(ret != 0))
1316                         goto out_no_unbind;
1317                 list_del_init(&res->mob_head);
1318         }
1319         ret = func->destroy(res);
1320         res->backup_dirty = true;
1321         res->res_dirty = false;
1322 out_no_unbind:
1323         vmw_resource_backoff_reservation(&val_buf);
1324
1325         return ret;
1326 }
1327
1328
1329 /**
1330  * vmw_resource_validate - Make a resource up-to-date and visible
1331  *                         to the device.
1332  *
1333  * @res:            The resource to make visible to the device.
1334  *
1335  * On succesful return, any backup DMA buffer pointed to by @res->backup will
1336  * be reserved and validated.
1337  * On hardware resource shortage, this function will repeatedly evict
1338  * resources of the same type until the validation succeeds.
1339  */
1340 int vmw_resource_validate(struct vmw_resource *res)
1341 {
1342         int ret;
1343         struct vmw_resource *evict_res;
1344         struct vmw_private *dev_priv = res->dev_priv;
1345         struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1346         struct ttm_validate_buffer val_buf;
1347         unsigned err_count = 0;
1348
1349         if (likely(!res->func->may_evict))
1350                 return 0;
1351
1352         val_buf.bo = NULL;
1353         if (res->backup)
1354                 val_buf.bo = &res->backup->base;
1355         do {
1356                 ret = vmw_resource_do_validate(res, &val_buf);
1357                 if (likely(ret != -EBUSY))
1358                         break;
1359
1360                 write_lock(&dev_priv->resource_lock);
1361                 if (list_empty(lru_list) || !res->func->may_evict) {
1362                         DRM_ERROR("Out of device device resources "
1363                                   "for %s.\n", res->func->type_name);
1364                         ret = -EBUSY;
1365                         write_unlock(&dev_priv->resource_lock);
1366                         break;
1367                 }
1368
1369                 evict_res = vmw_resource_reference
1370                         (list_first_entry(lru_list, struct vmw_resource,
1371                                           lru_head));
1372                 list_del_init(&evict_res->lru_head);
1373
1374                 write_unlock(&dev_priv->resource_lock);
1375
1376                 ret = vmw_resource_do_evict(evict_res, true);
1377                 if (unlikely(ret != 0)) {
1378                         write_lock(&dev_priv->resource_lock);
1379                         list_add_tail(&evict_res->lru_head, lru_list);
1380                         write_unlock(&dev_priv->resource_lock);
1381                         if (ret == -ERESTARTSYS ||
1382                             ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1383                                 vmw_resource_unreference(&evict_res);
1384                                 goto out_no_validate;
1385                         }
1386                 }
1387
1388                 vmw_resource_unreference(&evict_res);
1389         } while (1);
1390
1391         if (unlikely(ret != 0))
1392                 goto out_no_validate;
1393         else if (!res->func->needs_backup && res->backup) {
1394                 list_del_init(&res->mob_head);
1395                 vmw_dmabuf_unreference(&res->backup);
1396         }
1397
1398         return 0;
1399
1400 out_no_validate:
1401         return ret;
1402 }
1403
1404 /**
1405  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1406  *                       object without unreserving it.
1407  *
1408  * @bo:             Pointer to the struct ttm_buffer_object to fence.
1409  * @fence:          Pointer to the fence. If NULL, this function will
1410  *                  insert a fence into the command stream..
1411  *
1412  * Contrary to the ttm_eu version of this function, it takes only
1413  * a single buffer object instead of a list, and it also doesn't
1414  * unreserve the buffer object, which needs to be done separately.
1415  */
1416 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1417                          struct vmw_fence_obj *fence)
1418 {
1419         struct ttm_bo_device *bdev = bo->bdev;
1420         struct ttm_bo_driver *driver = bdev->driver;
1421         struct vmw_fence_obj *old_fence_obj;
1422         struct vmw_private *dev_priv =
1423                 container_of(bdev, struct vmw_private, bdev);
1424
1425         if (fence == NULL)
1426                 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1427         else
1428                 driver->sync_obj_ref(fence);
1429
1430         spin_lock(&bdev->fence_lock);
1431
1432         old_fence_obj = bo->sync_obj;
1433         bo->sync_obj = fence;
1434
1435         spin_unlock(&bdev->fence_lock);
1436
1437         if (old_fence_obj)
1438                 vmw_fence_obj_unreference(&old_fence_obj);
1439 }
1440
1441 /**
1442  * vmw_resource_move_notify - TTM move_notify_callback
1443  *
1444  * @bo:             The TTM buffer object about to move.
1445  * @mem:            The truct ttm_mem_reg indicating to what memory
1446  *                  region the move is taking place.
1447  *
1448  * Evicts the Guest Backed hardware resource if the backup
1449  * buffer is being moved out of MOB memory.
1450  * Note that this function should not race with the resource
1451  * validation code as long as it accesses only members of struct
1452  * resource that remain static while bo::res is !NULL and
1453  * while we have @bo reserved. struct resource::backup is *not* a
1454  * static member. The resource validation code will take care
1455  * to set @bo::res to NULL, while having @bo reserved when the
1456  * buffer is no longer bound to the resource, so @bo:res can be
1457  * used to determine whether there is a need to unbind and whether
1458  * it is safe to unbind.
1459  */
1460 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1461                               struct ttm_mem_reg *mem)
1462 {
1463         struct vmw_dma_buffer *dma_buf;
1464
1465         if (mem == NULL)
1466                 return;
1467
1468         if (bo->destroy != vmw_dmabuf_bo_free &&
1469             bo->destroy != vmw_user_dmabuf_destroy)
1470                 return;
1471
1472         dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1473
1474         if (mem->mem_type != VMW_PL_MOB) {
1475                 struct vmw_resource *res, *n;
1476                 struct ttm_bo_device *bdev = bo->bdev;
1477                 struct ttm_validate_buffer val_buf;
1478
1479                 val_buf.bo = bo;
1480
1481                 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1482
1483                         if (unlikely(res->func->unbind == NULL))
1484                                 continue;
1485
1486                         (void) res->func->unbind(res, true, &val_buf);
1487                         res->backup_dirty = true;
1488                         res->res_dirty = false;
1489                         list_del_init(&res->mob_head);
1490                 }
1491
1492                 spin_lock(&bdev->fence_lock);
1493                 (void) ttm_bo_wait(bo, false, false, false);
1494                 spin_unlock(&bdev->fence_lock);
1495         }
1496 }
1497
1498 /**
1499  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1500  *
1501  * @res:            The resource being queried.
1502  */
1503 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1504 {
1505         return res->func->needs_backup;
1506 }
1507
1508 /**
1509  * vmw_resource_evict_type - Evict all resources of a specific type
1510  *
1511  * @dev_priv:       Pointer to a device private struct
1512  * @type:           The resource type to evict
1513  *
1514  * To avoid thrashing starvation or as part of the hibernation sequence,
1515  * try to evict all evictable resources of a specific type.
1516  */
1517 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1518                                     enum vmw_res_type type)
1519 {
1520         struct list_head *lru_list = &dev_priv->res_lru[type];
1521         struct vmw_resource *evict_res;
1522         unsigned err_count = 0;
1523         int ret;
1524
1525         do {
1526                 write_lock(&dev_priv->resource_lock);
1527
1528                 if (list_empty(lru_list))
1529                         goto out_unlock;
1530
1531                 evict_res = vmw_resource_reference(
1532                         list_first_entry(lru_list, struct vmw_resource,
1533                                          lru_head));
1534                 list_del_init(&evict_res->lru_head);
1535                 write_unlock(&dev_priv->resource_lock);
1536
1537                 ret = vmw_resource_do_evict(evict_res, false);
1538                 if (unlikely(ret != 0)) {
1539                         write_lock(&dev_priv->resource_lock);
1540                         list_add_tail(&evict_res->lru_head, lru_list);
1541                         write_unlock(&dev_priv->resource_lock);
1542                         if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1543                                 vmw_resource_unreference(&evict_res);
1544                                 return;
1545                         }
1546                 }
1547
1548                 vmw_resource_unreference(&evict_res);
1549         } while (1);
1550
1551 out_unlock:
1552         write_unlock(&dev_priv->resource_lock);
1553 }
1554
1555 /**
1556  * vmw_resource_evict_all - Evict all evictable resources
1557  *
1558  * @dev_priv:       Pointer to a device private struct
1559  *
1560  * To avoid thrashing starvation or as part of the hibernation sequence,
1561  * evict all evictable resources. In particular this means that all
1562  * guest-backed resources that are registered with the device are
1563  * evicted and the OTable becomes clean.
1564  */
1565 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1566 {
1567         enum vmw_res_type type;
1568
1569         mutex_lock(&dev_priv->cmdbuf_mutex);
1570
1571         for (type = 0; type < vmw_res_max; ++type)
1572                 vmw_resource_evict_type(dev_priv, type);
1573
1574         mutex_unlock(&dev_priv->cmdbuf_mutex);
1575 }