]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_dp.c
Merge tag 'v3.13-rc3' into drm-intel-next-queued
[~andy/linux] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69  * @intel_dp: DP struct
70  *
71  * If a CPU or PCH DP output is attached to an eDP panel, this function
72  * will return true, and false otherwise.
73  */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85         return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94
95 static int
96 intel_dp_max_link_bw(struct intel_dp *intel_dp)
97 {
98         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
99
100         switch (max_link_bw) {
101         case DP_LINK_BW_1_62:
102         case DP_LINK_BW_2_7:
103                 break;
104         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
105                 max_link_bw = DP_LINK_BW_2_7;
106                 break;
107         default:
108                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
109                      max_link_bw);
110                 max_link_bw = DP_LINK_BW_1_62;
111                 break;
112         }
113         return max_link_bw;
114 }
115
116 /*
117  * The units on the numbers in the next two are... bizarre.  Examples will
118  * make it clearer; this one parallels an example in the eDP spec.
119  *
120  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
121  *
122  *     270000 * 1 * 8 / 10 == 216000
123  *
124  * The actual data capacity of that configuration is 2.16Gbit/s, so the
125  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
126  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
127  * 119000.  At 18bpp that's 2142000 kilobits per second.
128  *
129  * Thus the strange-looking division by 10 in intel_dp_link_required, to
130  * get the result in decakilobits instead of kilobits.
131  */
132
133 static int
134 intel_dp_link_required(int pixel_clock, int bpp)
135 {
136         return (pixel_clock * bpp + 9) / 10;
137 }
138
139 static int
140 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
141 {
142         return (max_link_clock * max_lanes * 8) / 10;
143 }
144
145 static enum drm_mode_status
146 intel_dp_mode_valid(struct drm_connector *connector,
147                     struct drm_display_mode *mode)
148 {
149         struct intel_dp *intel_dp = intel_attached_dp(connector);
150         struct intel_connector *intel_connector = to_intel_connector(connector);
151         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
152         int target_clock = mode->clock;
153         int max_rate, mode_rate, max_lanes, max_link_clock;
154
155         if (is_edp(intel_dp) && fixed_mode) {
156                 if (mode->hdisplay > fixed_mode->hdisplay)
157                         return MODE_PANEL;
158
159                 if (mode->vdisplay > fixed_mode->vdisplay)
160                         return MODE_PANEL;
161
162                 target_clock = fixed_mode->clock;
163         }
164
165         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
166         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
167
168         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
169         mode_rate = intel_dp_link_required(target_clock, 18);
170
171         if (mode_rate > max_rate)
172                 return MODE_CLOCK_HIGH;
173
174         if (mode->clock < 10000)
175                 return MODE_CLOCK_LOW;
176
177         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
178                 return MODE_H_ILLEGAL;
179
180         return MODE_OK;
181 }
182
183 static uint32_t
184 pack_aux(uint8_t *src, int src_bytes)
185 {
186         int     i;
187         uint32_t v = 0;
188
189         if (src_bytes > 4)
190                 src_bytes = 4;
191         for (i = 0; i < src_bytes; i++)
192                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
193         return v;
194 }
195
196 static void
197 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
198 {
199         int i;
200         if (dst_bytes > 4)
201                 dst_bytes = 4;
202         for (i = 0; i < dst_bytes; i++)
203                 dst[i] = src >> ((3-i) * 8);
204 }
205
206 /* hrawclock is 1/4 the FSB frequency */
207 static int
208 intel_hrawclk(struct drm_device *dev)
209 {
210         struct drm_i915_private *dev_priv = dev->dev_private;
211         uint32_t clkcfg;
212
213         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
214         if (IS_VALLEYVIEW(dev))
215                 return 200;
216
217         clkcfg = I915_READ(CLKCFG);
218         switch (clkcfg & CLKCFG_FSB_MASK) {
219         case CLKCFG_FSB_400:
220                 return 100;
221         case CLKCFG_FSB_533:
222                 return 133;
223         case CLKCFG_FSB_667:
224                 return 166;
225         case CLKCFG_FSB_800:
226                 return 200;
227         case CLKCFG_FSB_1067:
228                 return 266;
229         case CLKCFG_FSB_1333:
230                 return 333;
231         /* these two are just a guess; one of them might be right */
232         case CLKCFG_FSB_1600:
233         case CLKCFG_FSB_1600_ALT:
234                 return 400;
235         default:
236                 return 133;
237         }
238 }
239
240 static void
241 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
242                                     struct intel_dp *intel_dp,
243                                     struct edp_power_seq *out);
244 static void
245 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
246                                               struct intel_dp *intel_dp,
247                                               struct edp_power_seq *out);
248
249 static enum pipe
250 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
251 {
252         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
253         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
254         struct drm_device *dev = intel_dig_port->base.base.dev;
255         struct drm_i915_private *dev_priv = dev->dev_private;
256         enum port port = intel_dig_port->port;
257         enum pipe pipe;
258
259         /* modeset should have pipe */
260         if (crtc)
261                 return to_intel_crtc(crtc)->pipe;
262
263         /* init time, try to find a pipe with this port selected */
264         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
265                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
266                         PANEL_PORT_SELECT_MASK;
267                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
268                         return pipe;
269                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
270                         return pipe;
271         }
272
273         /* shrug */
274         return PIPE_A;
275 }
276
277 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
278 {
279         struct drm_device *dev = intel_dp_to_dev(intel_dp);
280
281         if (HAS_PCH_SPLIT(dev))
282                 return PCH_PP_CONTROL;
283         else
284                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
285 }
286
287 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
288 {
289         struct drm_device *dev = intel_dp_to_dev(intel_dp);
290
291         if (HAS_PCH_SPLIT(dev))
292                 return PCH_PP_STATUS;
293         else
294                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
295 }
296
297 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
298 {
299         struct drm_device *dev = intel_dp_to_dev(intel_dp);
300         struct drm_i915_private *dev_priv = dev->dev_private;
301
302         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
303 }
304
305 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
306 {
307         struct drm_device *dev = intel_dp_to_dev(intel_dp);
308         struct drm_i915_private *dev_priv = dev->dev_private;
309
310         return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
311 }
312
313 static void
314 intel_dp_check_edp(struct intel_dp *intel_dp)
315 {
316         struct drm_device *dev = intel_dp_to_dev(intel_dp);
317         struct drm_i915_private *dev_priv = dev->dev_private;
318
319         if (!is_edp(intel_dp))
320                 return;
321
322         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
323                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
324                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
325                               I915_READ(_pp_stat_reg(intel_dp)),
326                               I915_READ(_pp_ctrl_reg(intel_dp)));
327         }
328 }
329
330 static uint32_t
331 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
332 {
333         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334         struct drm_device *dev = intel_dig_port->base.base.dev;
335         struct drm_i915_private *dev_priv = dev->dev_private;
336         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
337         uint32_t status;
338         bool done;
339
340 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
341         if (has_aux_irq)
342                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
343                                           msecs_to_jiffies_timeout(10));
344         else
345                 done = wait_for_atomic(C, 10) == 0;
346         if (!done)
347                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
348                           has_aux_irq);
349 #undef C
350
351         return status;
352 }
353
354 static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
355                                       int index)
356 {
357         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
358         struct drm_device *dev = intel_dig_port->base.base.dev;
359         struct drm_i915_private *dev_priv = dev->dev_private;
360
361         /* The clock divider is based off the hrawclk,
362          * and would like to run at 2MHz. So, take the
363          * hrawclk value and divide by 2 and use that
364          *
365          * Note that PCH attached eDP panels should use a 125MHz input
366          * clock divider.
367          */
368         if (IS_VALLEYVIEW(dev)) {
369                 return index ? 0 : 100;
370         } else if (intel_dig_port->port == PORT_A) {
371                 if (index)
372                         return 0;
373                 if (HAS_DDI(dev))
374                         return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
375                 else if (IS_GEN6(dev) || IS_GEN7(dev))
376                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
377                 else
378                         return 225; /* eDP input clock at 450Mhz */
379         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
380                 /* Workaround for non-ULT HSW */
381                 switch (index) {
382                 case 0: return 63;
383                 case 1: return 72;
384                 default: return 0;
385                 }
386         } else if (HAS_PCH_SPLIT(dev)) {
387                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
388         } else {
389                 return index ? 0 :intel_hrawclk(dev) / 2;
390         }
391 }
392
393 static int
394 intel_dp_aux_ch(struct intel_dp *intel_dp,
395                 uint8_t *send, int send_bytes,
396                 uint8_t *recv, int recv_size)
397 {
398         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399         struct drm_device *dev = intel_dig_port->base.base.dev;
400         struct drm_i915_private *dev_priv = dev->dev_private;
401         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
402         uint32_t ch_data = ch_ctl + 4;
403         uint32_t aux_clock_divider;
404         int i, ret, recv_bytes;
405         uint32_t status;
406         int try, precharge, clock = 0;
407         bool has_aux_irq = true;
408         uint32_t timeout;
409
410         /* dp aux is extremely sensitive to irq latency, hence request the
411          * lowest possible wakeup latency and so prevent the cpu from going into
412          * deep sleep states.
413          */
414         pm_qos_update_request(&dev_priv->pm_qos, 0);
415
416         intel_dp_check_edp(intel_dp);
417
418         if (IS_GEN6(dev))
419                 precharge = 3;
420         else
421                 precharge = 5;
422
423         if (IS_BROADWELL(dev) && ch_ctl == DPA_AUX_CH_CTL)
424                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
425         else
426                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
427
428         intel_aux_display_runtime_get(dev_priv);
429
430         /* Try to wait for any previous AUX channel activity */
431         for (try = 0; try < 3; try++) {
432                 status = I915_READ_NOTRACE(ch_ctl);
433                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
434                         break;
435                 msleep(1);
436         }
437
438         if (try == 3) {
439                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
440                      I915_READ(ch_ctl));
441                 ret = -EBUSY;
442                 goto out;
443         }
444
445         /* Only 5 data registers! */
446         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
447                 ret = -E2BIG;
448                 goto out;
449         }
450
451         while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
452                 /* Must try at least 3 times according to DP spec */
453                 for (try = 0; try < 5; try++) {
454                         /* Load the send data into the aux channel data registers */
455                         for (i = 0; i < send_bytes; i += 4)
456                                 I915_WRITE(ch_data + i,
457                                            pack_aux(send + i, send_bytes - i));
458
459                         /* Send the command and wait for it to complete */
460                         I915_WRITE(ch_ctl,
461                                    DP_AUX_CH_CTL_SEND_BUSY |
462                                    (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
463                                    timeout |
464                                    (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
465                                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
466                                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
467                                    DP_AUX_CH_CTL_DONE |
468                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
469                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
470
471                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
472
473                         /* Clear done status and any errors */
474                         I915_WRITE(ch_ctl,
475                                    status |
476                                    DP_AUX_CH_CTL_DONE |
477                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
478                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
479
480                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
481                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
482                                 continue;
483                         if (status & DP_AUX_CH_CTL_DONE)
484                                 break;
485                 }
486                 if (status & DP_AUX_CH_CTL_DONE)
487                         break;
488         }
489
490         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
491                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
492                 ret = -EBUSY;
493                 goto out;
494         }
495
496         /* Check for timeout or receive error.
497          * Timeouts occur when the sink is not connected
498          */
499         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
500                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
501                 ret = -EIO;
502                 goto out;
503         }
504
505         /* Timeouts occur when the device isn't connected, so they're
506          * "normal" -- don't fill the kernel log with these */
507         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
508                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
509                 ret = -ETIMEDOUT;
510                 goto out;
511         }
512
513         /* Unload any bytes sent back from the other side */
514         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
515                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
516         if (recv_bytes > recv_size)
517                 recv_bytes = recv_size;
518
519         for (i = 0; i < recv_bytes; i += 4)
520                 unpack_aux(I915_READ(ch_data + i),
521                            recv + i, recv_bytes - i);
522
523         ret = recv_bytes;
524 out:
525         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
526         intel_aux_display_runtime_put(dev_priv);
527
528         return ret;
529 }
530
531 /* Write data to the aux channel in native mode */
532 static int
533 intel_dp_aux_native_write(struct intel_dp *intel_dp,
534                           uint16_t address, uint8_t *send, int send_bytes)
535 {
536         int ret;
537         uint8_t msg[20];
538         int msg_bytes;
539         uint8_t ack;
540
541         if (WARN_ON(send_bytes > 16))
542                 return -E2BIG;
543
544         intel_dp_check_edp(intel_dp);
545         msg[0] = AUX_NATIVE_WRITE << 4;
546         msg[1] = address >> 8;
547         msg[2] = address & 0xff;
548         msg[3] = send_bytes - 1;
549         memcpy(&msg[4], send, send_bytes);
550         msg_bytes = send_bytes + 4;
551         for (;;) {
552                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
553                 if (ret < 0)
554                         return ret;
555                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
556                         break;
557                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
558                         udelay(100);
559                 else
560                         return -EIO;
561         }
562         return send_bytes;
563 }
564
565 /* Write a single byte to the aux channel in native mode */
566 static int
567 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
568                             uint16_t address, uint8_t byte)
569 {
570         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
571 }
572
573 /* read bytes from a native aux channel */
574 static int
575 intel_dp_aux_native_read(struct intel_dp *intel_dp,
576                          uint16_t address, uint8_t *recv, int recv_bytes)
577 {
578         uint8_t msg[4];
579         int msg_bytes;
580         uint8_t reply[20];
581         int reply_bytes;
582         uint8_t ack;
583         int ret;
584
585         if (WARN_ON(recv_bytes > 19))
586                 return -E2BIG;
587
588         intel_dp_check_edp(intel_dp);
589         msg[0] = AUX_NATIVE_READ << 4;
590         msg[1] = address >> 8;
591         msg[2] = address & 0xff;
592         msg[3] = recv_bytes - 1;
593
594         msg_bytes = 4;
595         reply_bytes = recv_bytes + 1;
596
597         for (;;) {
598                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
599                                       reply, reply_bytes);
600                 if (ret == 0)
601                         return -EPROTO;
602                 if (ret < 0)
603                         return ret;
604                 ack = reply[0];
605                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
606                         memcpy(recv, reply + 1, ret - 1);
607                         return ret - 1;
608                 }
609                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
610                         udelay(100);
611                 else
612                         return -EIO;
613         }
614 }
615
616 static int
617 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
618                     uint8_t write_byte, uint8_t *read_byte)
619 {
620         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
621         struct intel_dp *intel_dp = container_of(adapter,
622                                                 struct intel_dp,
623                                                 adapter);
624         uint16_t address = algo_data->address;
625         uint8_t msg[5];
626         uint8_t reply[2];
627         unsigned retry;
628         int msg_bytes;
629         int reply_bytes;
630         int ret;
631
632         ironlake_edp_panel_vdd_on(intel_dp);
633         intel_dp_check_edp(intel_dp);
634         /* Set up the command byte */
635         if (mode & MODE_I2C_READ)
636                 msg[0] = AUX_I2C_READ << 4;
637         else
638                 msg[0] = AUX_I2C_WRITE << 4;
639
640         if (!(mode & MODE_I2C_STOP))
641                 msg[0] |= AUX_I2C_MOT << 4;
642
643         msg[1] = address >> 8;
644         msg[2] = address;
645
646         switch (mode) {
647         case MODE_I2C_WRITE:
648                 msg[3] = 0;
649                 msg[4] = write_byte;
650                 msg_bytes = 5;
651                 reply_bytes = 1;
652                 break;
653         case MODE_I2C_READ:
654                 msg[3] = 0;
655                 msg_bytes = 4;
656                 reply_bytes = 2;
657                 break;
658         default:
659                 msg_bytes = 3;
660                 reply_bytes = 1;
661                 break;
662         }
663
664         /*
665          * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
666          * required to retry at least seven times upon receiving AUX_DEFER
667          * before giving up the AUX transaction.
668          */
669         for (retry = 0; retry < 7; retry++) {
670                 ret = intel_dp_aux_ch(intel_dp,
671                                       msg, msg_bytes,
672                                       reply, reply_bytes);
673                 if (ret < 0) {
674                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
675                         goto out;
676                 }
677
678                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
679                 case AUX_NATIVE_REPLY_ACK:
680                         /* I2C-over-AUX Reply field is only valid
681                          * when paired with AUX ACK.
682                          */
683                         break;
684                 case AUX_NATIVE_REPLY_NACK:
685                         DRM_DEBUG_KMS("aux_ch native nack\n");
686                         ret = -EREMOTEIO;
687                         goto out;
688                 case AUX_NATIVE_REPLY_DEFER:
689                         /*
690                          * For now, just give more slack to branch devices. We
691                          * could check the DPCD for I2C bit rate capabilities,
692                          * and if available, adjust the interval. We could also
693                          * be more careful with DP-to-Legacy adapters where a
694                          * long legacy cable may force very low I2C bit rates.
695                          */
696                         if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
697                             DP_DWN_STRM_PORT_PRESENT)
698                                 usleep_range(500, 600);
699                         else
700                                 usleep_range(300, 400);
701                         continue;
702                 default:
703                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
704                                   reply[0]);
705                         ret = -EREMOTEIO;
706                         goto out;
707                 }
708
709                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
710                 case AUX_I2C_REPLY_ACK:
711                         if (mode == MODE_I2C_READ) {
712                                 *read_byte = reply[1];
713                         }
714                         ret = reply_bytes - 1;
715                         goto out;
716                 case AUX_I2C_REPLY_NACK:
717                         DRM_DEBUG_KMS("aux_i2c nack\n");
718                         ret = -EREMOTEIO;
719                         goto out;
720                 case AUX_I2C_REPLY_DEFER:
721                         DRM_DEBUG_KMS("aux_i2c defer\n");
722                         udelay(100);
723                         break;
724                 default:
725                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
726                         ret = -EREMOTEIO;
727                         goto out;
728                 }
729         }
730
731         DRM_ERROR("too many retries, giving up\n");
732         ret = -EREMOTEIO;
733
734 out:
735         ironlake_edp_panel_vdd_off(intel_dp, false);
736         return ret;
737 }
738
739 static int
740 intel_dp_i2c_init(struct intel_dp *intel_dp,
741                   struct intel_connector *intel_connector, const char *name)
742 {
743         int     ret;
744
745         DRM_DEBUG_KMS("i2c_init %s\n", name);
746         intel_dp->algo.running = false;
747         intel_dp->algo.address = 0;
748         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
749
750         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
751         intel_dp->adapter.owner = THIS_MODULE;
752         intel_dp->adapter.class = I2C_CLASS_DDC;
753         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
754         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
755         intel_dp->adapter.algo_data = &intel_dp->algo;
756         intel_dp->adapter.dev.parent = intel_connector->base.kdev;
757
758         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
759         return ret;
760 }
761
762 static void
763 intel_dp_set_clock(struct intel_encoder *encoder,
764                    struct intel_crtc_config *pipe_config, int link_bw)
765 {
766         struct drm_device *dev = encoder->base.dev;
767         const struct dp_link_dpll *divisor = NULL;
768         int i, count = 0;
769
770         if (IS_G4X(dev)) {
771                 divisor = gen4_dpll;
772                 count = ARRAY_SIZE(gen4_dpll);
773         } else if (IS_HASWELL(dev)) {
774                 /* Haswell has special-purpose DP DDI clocks. */
775         } else if (HAS_PCH_SPLIT(dev)) {
776                 divisor = pch_dpll;
777                 count = ARRAY_SIZE(pch_dpll);
778         } else if (IS_VALLEYVIEW(dev)) {
779                 divisor = vlv_dpll;
780                 count = ARRAY_SIZE(vlv_dpll);
781         }
782
783         if (divisor && count) {
784                 for (i = 0; i < count; i++) {
785                         if (link_bw == divisor[i].link_bw) {
786                                 pipe_config->dpll = divisor[i].dpll;
787                                 pipe_config->clock_set = true;
788                                 break;
789                         }
790                 }
791         }
792 }
793
794 bool
795 intel_dp_compute_config(struct intel_encoder *encoder,
796                         struct intel_crtc_config *pipe_config)
797 {
798         struct drm_device *dev = encoder->base.dev;
799         struct drm_i915_private *dev_priv = dev->dev_private;
800         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
801         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
802         enum port port = dp_to_dig_port(intel_dp)->port;
803         struct intel_crtc *intel_crtc = encoder->new_crtc;
804         struct intel_connector *intel_connector = intel_dp->attached_connector;
805         int lane_count, clock;
806         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
807         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
808         int bpp, mode_rate;
809         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
810         int link_avail, link_clock;
811
812         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
813                 pipe_config->has_pch_encoder = true;
814
815         pipe_config->has_dp_encoder = true;
816
817         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
818                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
819                                        adjusted_mode);
820                 if (!HAS_PCH_SPLIT(dev))
821                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
822                                                  intel_connector->panel.fitting_mode);
823                 else
824                         intel_pch_panel_fitting(intel_crtc, pipe_config,
825                                                 intel_connector->panel.fitting_mode);
826         }
827
828         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
829                 return false;
830
831         DRM_DEBUG_KMS("DP link computation with max lane count %i "
832                       "max bw %02x pixel clock %iKHz\n",
833                       max_lane_count, bws[max_clock],
834                       adjusted_mode->crtc_clock);
835
836         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
837          * bpc in between. */
838         bpp = pipe_config->pipe_bpp;
839         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
840             dev_priv->vbt.edp_bpp < bpp) {
841                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
842                               dev_priv->vbt.edp_bpp);
843                 bpp = dev_priv->vbt.edp_bpp;
844         }
845
846         for (; bpp >= 6*3; bpp -= 2*3) {
847                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
848                                                    bpp);
849
850                 for (clock = 0; clock <= max_clock; clock++) {
851                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
852                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
853                                 link_avail = intel_dp_max_data_rate(link_clock,
854                                                                     lane_count);
855
856                                 if (mode_rate <= link_avail) {
857                                         goto found;
858                                 }
859                         }
860                 }
861         }
862
863         return false;
864
865 found:
866         if (intel_dp->color_range_auto) {
867                 /*
868                  * See:
869                  * CEA-861-E - 5.1 Default Encoding Parameters
870                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
871                  */
872                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
873                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
874                 else
875                         intel_dp->color_range = 0;
876         }
877
878         if (intel_dp->color_range)
879                 pipe_config->limited_color_range = true;
880
881         intel_dp->link_bw = bws[clock];
882         intel_dp->lane_count = lane_count;
883         pipe_config->pipe_bpp = bpp;
884         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
885
886         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
887                       intel_dp->link_bw, intel_dp->lane_count,
888                       pipe_config->port_clock, bpp);
889         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
890                       mode_rate, link_avail);
891
892         intel_link_compute_m_n(bpp, lane_count,
893                                adjusted_mode->crtc_clock,
894                                pipe_config->port_clock,
895                                &pipe_config->dp_m_n);
896
897         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
898
899         return true;
900 }
901
902 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
903 {
904         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
905         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
906         struct drm_device *dev = crtc->base.dev;
907         struct drm_i915_private *dev_priv = dev->dev_private;
908         u32 dpa_ctl;
909
910         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
911         dpa_ctl = I915_READ(DP_A);
912         dpa_ctl &= ~DP_PLL_FREQ_MASK;
913
914         if (crtc->config.port_clock == 162000) {
915                 /* For a long time we've carried around a ILK-DevA w/a for the
916                  * 160MHz clock. If we're really unlucky, it's still required.
917                  */
918                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
919                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
920                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
921         } else {
922                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
923                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
924         }
925
926         I915_WRITE(DP_A, dpa_ctl);
927
928         POSTING_READ(DP_A);
929         udelay(500);
930 }
931
932 static void intel_dp_mode_set(struct intel_encoder *encoder)
933 {
934         struct drm_device *dev = encoder->base.dev;
935         struct drm_i915_private *dev_priv = dev->dev_private;
936         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
937         enum port port = dp_to_dig_port(intel_dp)->port;
938         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
939         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
940
941         /*
942          * There are four kinds of DP registers:
943          *
944          *      IBX PCH
945          *      SNB CPU
946          *      IVB CPU
947          *      CPT PCH
948          *
949          * IBX PCH and CPU are the same for almost everything,
950          * except that the CPU DP PLL is configured in this
951          * register
952          *
953          * CPT PCH is quite different, having many bits moved
954          * to the TRANS_DP_CTL register instead. That
955          * configuration happens (oddly) in ironlake_pch_enable
956          */
957
958         /* Preserve the BIOS-computed detected bit. This is
959          * supposed to be read-only.
960          */
961         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
962
963         /* Handle DP bits in common between all three register formats */
964         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
965         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
966
967         if (intel_dp->has_audio) {
968                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
969                                  pipe_name(crtc->pipe));
970                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
971                 intel_write_eld(&encoder->base, adjusted_mode);
972         }
973
974         /* Split out the IBX/CPU vs CPT settings */
975
976         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
977                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
978                         intel_dp->DP |= DP_SYNC_HS_HIGH;
979                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
980                         intel_dp->DP |= DP_SYNC_VS_HIGH;
981                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
982
983                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
984                         intel_dp->DP |= DP_ENHANCED_FRAMING;
985
986                 intel_dp->DP |= crtc->pipe << 29;
987         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
988                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
989                         intel_dp->DP |= intel_dp->color_range;
990
991                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
992                         intel_dp->DP |= DP_SYNC_HS_HIGH;
993                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
994                         intel_dp->DP |= DP_SYNC_VS_HIGH;
995                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
996
997                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
998                         intel_dp->DP |= DP_ENHANCED_FRAMING;
999
1000                 if (crtc->pipe == 1)
1001                         intel_dp->DP |= DP_PIPEB_SELECT;
1002         } else {
1003                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1004         }
1005
1006         if (port == PORT_A && !IS_VALLEYVIEW(dev))
1007                 ironlake_set_pll_cpu_edp(intel_dp);
1008 }
1009
1010 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1011 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1012
1013 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1014 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1015
1016 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1017 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1018
1019 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1020                                        u32 mask,
1021                                        u32 value)
1022 {
1023         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1024         struct drm_i915_private *dev_priv = dev->dev_private;
1025         u32 pp_stat_reg, pp_ctrl_reg;
1026
1027         pp_stat_reg = _pp_stat_reg(intel_dp);
1028         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1029
1030         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1031                         mask, value,
1032                         I915_READ(pp_stat_reg),
1033                         I915_READ(pp_ctrl_reg));
1034
1035         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1036                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1037                                 I915_READ(pp_stat_reg),
1038                                 I915_READ(pp_ctrl_reg));
1039         }
1040
1041         DRM_DEBUG_KMS("Wait complete\n");
1042 }
1043
1044 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1045 {
1046         DRM_DEBUG_KMS("Wait for panel power on\n");
1047         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1048 }
1049
1050 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1051 {
1052         DRM_DEBUG_KMS("Wait for panel power off time\n");
1053         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1054 }
1055
1056 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1057 {
1058         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1059         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1060 }
1061
1062
1063 /* Read the current pp_control value, unlocking the register if it
1064  * is locked
1065  */
1066
1067 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1068 {
1069         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         u32 control;
1072
1073         control = I915_READ(_pp_ctrl_reg(intel_dp));
1074         control &= ~PANEL_UNLOCK_MASK;
1075         control |= PANEL_UNLOCK_REGS;
1076         return control;
1077 }
1078
1079 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1080 {
1081         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1082         struct drm_i915_private *dev_priv = dev->dev_private;
1083         u32 pp;
1084         u32 pp_stat_reg, pp_ctrl_reg;
1085
1086         if (!is_edp(intel_dp))
1087                 return;
1088
1089         WARN(intel_dp->want_panel_vdd,
1090              "eDP VDD already requested on\n");
1091
1092         intel_dp->want_panel_vdd = true;
1093
1094         if (ironlake_edp_have_panel_vdd(intel_dp))
1095                 return;
1096
1097         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1098
1099         if (!ironlake_edp_have_panel_power(intel_dp))
1100                 ironlake_wait_panel_power_cycle(intel_dp);
1101
1102         pp = ironlake_get_pp_control(intel_dp);
1103         pp |= EDP_FORCE_VDD;
1104
1105         pp_stat_reg = _pp_stat_reg(intel_dp);
1106         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1107
1108         I915_WRITE(pp_ctrl_reg, pp);
1109         POSTING_READ(pp_ctrl_reg);
1110         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1111                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1112         /*
1113          * If the panel wasn't on, delay before accessing aux channel
1114          */
1115         if (!ironlake_edp_have_panel_power(intel_dp)) {
1116                 DRM_DEBUG_KMS("eDP was not running\n");
1117                 msleep(intel_dp->panel_power_up_delay);
1118         }
1119 }
1120
1121 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1122 {
1123         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1124         struct drm_i915_private *dev_priv = dev->dev_private;
1125         u32 pp;
1126         u32 pp_stat_reg, pp_ctrl_reg;
1127
1128         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1129
1130         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1131                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1132
1133                 pp = ironlake_get_pp_control(intel_dp);
1134                 pp &= ~EDP_FORCE_VDD;
1135
1136                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1137                 pp_stat_reg = _pp_stat_reg(intel_dp);
1138
1139                 I915_WRITE(pp_ctrl_reg, pp);
1140                 POSTING_READ(pp_ctrl_reg);
1141
1142                 /* Make sure sequencer is idle before allowing subsequent activity */
1143                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1144                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1145                 msleep(intel_dp->panel_power_down_delay);
1146         }
1147 }
1148
1149 static void ironlake_panel_vdd_work(struct work_struct *__work)
1150 {
1151         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1152                                                  struct intel_dp, panel_vdd_work);
1153         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1154
1155         mutex_lock(&dev->mode_config.mutex);
1156         ironlake_panel_vdd_off_sync(intel_dp);
1157         mutex_unlock(&dev->mode_config.mutex);
1158 }
1159
1160 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1161 {
1162         if (!is_edp(intel_dp))
1163                 return;
1164
1165         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1166
1167         intel_dp->want_panel_vdd = false;
1168
1169         if (sync) {
1170                 ironlake_panel_vdd_off_sync(intel_dp);
1171         } else {
1172                 /*
1173                  * Queue the timer to fire a long
1174                  * time from now (relative to the power down delay)
1175                  * to keep the panel power up across a sequence of operations
1176                  */
1177                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1178                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1179         }
1180 }
1181
1182 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1183 {
1184         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1185         struct drm_i915_private *dev_priv = dev->dev_private;
1186         u32 pp;
1187         u32 pp_ctrl_reg;
1188
1189         if (!is_edp(intel_dp))
1190                 return;
1191
1192         DRM_DEBUG_KMS("Turn eDP power on\n");
1193
1194         if (ironlake_edp_have_panel_power(intel_dp)) {
1195                 DRM_DEBUG_KMS("eDP power already on\n");
1196                 return;
1197         }
1198
1199         ironlake_wait_panel_power_cycle(intel_dp);
1200
1201         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1202         pp = ironlake_get_pp_control(intel_dp);
1203         if (IS_GEN5(dev)) {
1204                 /* ILK workaround: disable reset around power sequence */
1205                 pp &= ~PANEL_POWER_RESET;
1206                 I915_WRITE(pp_ctrl_reg, pp);
1207                 POSTING_READ(pp_ctrl_reg);
1208         }
1209
1210         pp |= POWER_TARGET_ON;
1211         if (!IS_GEN5(dev))
1212                 pp |= PANEL_POWER_RESET;
1213
1214         I915_WRITE(pp_ctrl_reg, pp);
1215         POSTING_READ(pp_ctrl_reg);
1216
1217         ironlake_wait_panel_on(intel_dp);
1218
1219         if (IS_GEN5(dev)) {
1220                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1221                 I915_WRITE(pp_ctrl_reg, pp);
1222                 POSTING_READ(pp_ctrl_reg);
1223         }
1224 }
1225
1226 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1227 {
1228         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1229         struct drm_i915_private *dev_priv = dev->dev_private;
1230         u32 pp;
1231         u32 pp_ctrl_reg;
1232
1233         if (!is_edp(intel_dp))
1234                 return;
1235
1236         DRM_DEBUG_KMS("Turn eDP power off\n");
1237
1238         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1239
1240         pp = ironlake_get_pp_control(intel_dp);
1241         /* We need to switch off panel power _and_ force vdd, for otherwise some
1242          * panels get very unhappy and cease to work. */
1243         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1244
1245         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1246
1247         I915_WRITE(pp_ctrl_reg, pp);
1248         POSTING_READ(pp_ctrl_reg);
1249
1250         intel_dp->want_panel_vdd = false;
1251
1252         ironlake_wait_panel_off(intel_dp);
1253 }
1254
1255 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1256 {
1257         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1258         struct drm_device *dev = intel_dig_port->base.base.dev;
1259         struct drm_i915_private *dev_priv = dev->dev_private;
1260         u32 pp;
1261         u32 pp_ctrl_reg;
1262
1263         if (!is_edp(intel_dp))
1264                 return;
1265
1266         DRM_DEBUG_KMS("\n");
1267         /*
1268          * If we enable the backlight right away following a panel power
1269          * on, we may see slight flicker as the panel syncs with the eDP
1270          * link.  So delay a bit to make sure the image is solid before
1271          * allowing it to appear.
1272          */
1273         msleep(intel_dp->backlight_on_delay);
1274         pp = ironlake_get_pp_control(intel_dp);
1275         pp |= EDP_BLC_ENABLE;
1276
1277         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1278
1279         I915_WRITE(pp_ctrl_reg, pp);
1280         POSTING_READ(pp_ctrl_reg);
1281
1282         intel_panel_enable_backlight(intel_dp->attached_connector);
1283 }
1284
1285 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1286 {
1287         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1288         struct drm_i915_private *dev_priv = dev->dev_private;
1289         u32 pp;
1290         u32 pp_ctrl_reg;
1291
1292         if (!is_edp(intel_dp))
1293                 return;
1294
1295         intel_panel_disable_backlight(intel_dp->attached_connector);
1296
1297         DRM_DEBUG_KMS("\n");
1298         pp = ironlake_get_pp_control(intel_dp);
1299         pp &= ~EDP_BLC_ENABLE;
1300
1301         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1302
1303         I915_WRITE(pp_ctrl_reg, pp);
1304         POSTING_READ(pp_ctrl_reg);
1305         msleep(intel_dp->backlight_off_delay);
1306 }
1307
1308 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1309 {
1310         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1311         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1312         struct drm_device *dev = crtc->dev;
1313         struct drm_i915_private *dev_priv = dev->dev_private;
1314         u32 dpa_ctl;
1315
1316         assert_pipe_disabled(dev_priv,
1317                              to_intel_crtc(crtc)->pipe);
1318
1319         DRM_DEBUG_KMS("\n");
1320         dpa_ctl = I915_READ(DP_A);
1321         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1322         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1323
1324         /* We don't adjust intel_dp->DP while tearing down the link, to
1325          * facilitate link retraining (e.g. after hotplug). Hence clear all
1326          * enable bits here to ensure that we don't enable too much. */
1327         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1328         intel_dp->DP |= DP_PLL_ENABLE;
1329         I915_WRITE(DP_A, intel_dp->DP);
1330         POSTING_READ(DP_A);
1331         udelay(200);
1332 }
1333
1334 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1335 {
1336         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1337         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1338         struct drm_device *dev = crtc->dev;
1339         struct drm_i915_private *dev_priv = dev->dev_private;
1340         u32 dpa_ctl;
1341
1342         assert_pipe_disabled(dev_priv,
1343                              to_intel_crtc(crtc)->pipe);
1344
1345         dpa_ctl = I915_READ(DP_A);
1346         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1347              "dp pll off, should be on\n");
1348         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1349
1350         /* We can't rely on the value tracked for the DP register in
1351          * intel_dp->DP because link_down must not change that (otherwise link
1352          * re-training will fail. */
1353         dpa_ctl &= ~DP_PLL_ENABLE;
1354         I915_WRITE(DP_A, dpa_ctl);
1355         POSTING_READ(DP_A);
1356         udelay(200);
1357 }
1358
1359 /* If the sink supports it, try to set the power state appropriately */
1360 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1361 {
1362         int ret, i;
1363
1364         /* Should have a valid DPCD by this point */
1365         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1366                 return;
1367
1368         if (mode != DRM_MODE_DPMS_ON) {
1369                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1370                                                   DP_SET_POWER_D3);
1371                 if (ret != 1)
1372                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1373         } else {
1374                 /*
1375                  * When turning on, we need to retry for 1ms to give the sink
1376                  * time to wake up.
1377                  */
1378                 for (i = 0; i < 3; i++) {
1379                         ret = intel_dp_aux_native_write_1(intel_dp,
1380                                                           DP_SET_POWER,
1381                                                           DP_SET_POWER_D0);
1382                         if (ret == 1)
1383                                 break;
1384                         msleep(1);
1385                 }
1386         }
1387 }
1388
1389 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1390                                   enum pipe *pipe)
1391 {
1392         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1393         enum port port = dp_to_dig_port(intel_dp)->port;
1394         struct drm_device *dev = encoder->base.dev;
1395         struct drm_i915_private *dev_priv = dev->dev_private;
1396         u32 tmp = I915_READ(intel_dp->output_reg);
1397
1398         if (!(tmp & DP_PORT_EN))
1399                 return false;
1400
1401         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1402                 *pipe = PORT_TO_PIPE_CPT(tmp);
1403         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1404                 *pipe = PORT_TO_PIPE(tmp);
1405         } else {
1406                 u32 trans_sel;
1407                 u32 trans_dp;
1408                 int i;
1409
1410                 switch (intel_dp->output_reg) {
1411                 case PCH_DP_B:
1412                         trans_sel = TRANS_DP_PORT_SEL_B;
1413                         break;
1414                 case PCH_DP_C:
1415                         trans_sel = TRANS_DP_PORT_SEL_C;
1416                         break;
1417                 case PCH_DP_D:
1418                         trans_sel = TRANS_DP_PORT_SEL_D;
1419                         break;
1420                 default:
1421                         return true;
1422                 }
1423
1424                 for_each_pipe(i) {
1425                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1426                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1427                                 *pipe = i;
1428                                 return true;
1429                         }
1430                 }
1431
1432                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1433                               intel_dp->output_reg);
1434         }
1435
1436         return true;
1437 }
1438
1439 static void intel_dp_get_config(struct intel_encoder *encoder,
1440                                 struct intel_crtc_config *pipe_config)
1441 {
1442         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1443         u32 tmp, flags = 0;
1444         struct drm_device *dev = encoder->base.dev;
1445         struct drm_i915_private *dev_priv = dev->dev_private;
1446         enum port port = dp_to_dig_port(intel_dp)->port;
1447         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1448         int dotclock;
1449
1450         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1451                 tmp = I915_READ(intel_dp->output_reg);
1452                 if (tmp & DP_SYNC_HS_HIGH)
1453                         flags |= DRM_MODE_FLAG_PHSYNC;
1454                 else
1455                         flags |= DRM_MODE_FLAG_NHSYNC;
1456
1457                 if (tmp & DP_SYNC_VS_HIGH)
1458                         flags |= DRM_MODE_FLAG_PVSYNC;
1459                 else
1460                         flags |= DRM_MODE_FLAG_NVSYNC;
1461         } else {
1462                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1463                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1464                         flags |= DRM_MODE_FLAG_PHSYNC;
1465                 else
1466                         flags |= DRM_MODE_FLAG_NHSYNC;
1467
1468                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1469                         flags |= DRM_MODE_FLAG_PVSYNC;
1470                 else
1471                         flags |= DRM_MODE_FLAG_NVSYNC;
1472         }
1473
1474         pipe_config->adjusted_mode.flags |= flags;
1475
1476         pipe_config->has_dp_encoder = true;
1477
1478         intel_dp_get_m_n(crtc, pipe_config);
1479
1480         if (port == PORT_A) {
1481                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1482                         pipe_config->port_clock = 162000;
1483                 else
1484                         pipe_config->port_clock = 270000;
1485         }
1486
1487         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1488                                             &pipe_config->dp_m_n);
1489
1490         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1491                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1492
1493         pipe_config->adjusted_mode.crtc_clock = dotclock;
1494
1495         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1496             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1497                 /*
1498                  * This is a big fat ugly hack.
1499                  *
1500                  * Some machines in UEFI boot mode provide us a VBT that has 18
1501                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1502                  * unknown we fail to light up. Yet the same BIOS boots up with
1503                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1504                  * max, not what it tells us to use.
1505                  *
1506                  * Note: This will still be broken if the eDP panel is not lit
1507                  * up by the BIOS, and thus we can't get the mode at module
1508                  * load.
1509                  */
1510                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1511                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1512                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1513         }
1514 }
1515
1516 static bool is_edp_psr(struct drm_device *dev)
1517 {
1518         struct drm_i915_private *dev_priv = dev->dev_private;
1519
1520         return dev_priv->psr.sink_support;
1521 }
1522
1523 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1524 {
1525         struct drm_i915_private *dev_priv = dev->dev_private;
1526
1527         if (!HAS_PSR(dev))
1528                 return false;
1529
1530         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1531 }
1532
1533 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1534                                     struct edp_vsc_psr *vsc_psr)
1535 {
1536         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1537         struct drm_device *dev = dig_port->base.base.dev;
1538         struct drm_i915_private *dev_priv = dev->dev_private;
1539         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1540         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1541         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1542         uint32_t *data = (uint32_t *) vsc_psr;
1543         unsigned int i;
1544
1545         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1546            the video DIP being updated before program video DIP data buffer
1547            registers for DIP being updated. */
1548         I915_WRITE(ctl_reg, 0);
1549         POSTING_READ(ctl_reg);
1550
1551         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1552                 if (i < sizeof(struct edp_vsc_psr))
1553                         I915_WRITE(data_reg + i, *data++);
1554                 else
1555                         I915_WRITE(data_reg + i, 0);
1556         }
1557
1558         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1559         POSTING_READ(ctl_reg);
1560 }
1561
1562 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1563 {
1564         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1565         struct drm_i915_private *dev_priv = dev->dev_private;
1566         struct edp_vsc_psr psr_vsc;
1567
1568         if (intel_dp->psr_setup_done)
1569                 return;
1570
1571         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1572         memset(&psr_vsc, 0, sizeof(psr_vsc));
1573         psr_vsc.sdp_header.HB0 = 0;
1574         psr_vsc.sdp_header.HB1 = 0x7;
1575         psr_vsc.sdp_header.HB2 = 0x2;
1576         psr_vsc.sdp_header.HB3 = 0x8;
1577         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1578
1579         /* Avoid continuous PSR exit by masking memup and hpd */
1580         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1581                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1582
1583         intel_dp->psr_setup_done = true;
1584 }
1585
1586 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1587 {
1588         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1589         struct drm_i915_private *dev_priv = dev->dev_private;
1590         uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1591         int precharge = 0x3;
1592         int msg_size = 5;       /* Header(4) + Message(1) */
1593
1594         /* Enable PSR in sink */
1595         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1596                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1597                                             DP_PSR_ENABLE &
1598                                             ~DP_PSR_MAIN_LINK_ACTIVE);
1599         else
1600                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1601                                             DP_PSR_ENABLE |
1602                                             DP_PSR_MAIN_LINK_ACTIVE);
1603
1604         /* Setup AUX registers */
1605         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1606         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1607         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1608                    DP_AUX_CH_CTL_TIME_OUT_400us |
1609                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1610                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1611                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1612 }
1613
1614 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1615 {
1616         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618         uint32_t max_sleep_time = 0x1f;
1619         uint32_t idle_frames = 1;
1620         uint32_t val = 0x0;
1621         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1622
1623         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1624                 val |= EDP_PSR_LINK_STANDBY;
1625                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1626                 val |= EDP_PSR_TP1_TIME_0us;
1627                 val |= EDP_PSR_SKIP_AUX_EXIT;
1628         } else
1629                 val |= EDP_PSR_LINK_DISABLE;
1630
1631         I915_WRITE(EDP_PSR_CTL(dev), val |
1632                    IS_BROADWELL(dev) ? 0 : link_entry_time |
1633                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1634                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1635                    EDP_PSR_ENABLE);
1636 }
1637
1638 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1639 {
1640         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1641         struct drm_device *dev = dig_port->base.base.dev;
1642         struct drm_i915_private *dev_priv = dev->dev_private;
1643         struct drm_crtc *crtc = dig_port->base.base.crtc;
1644         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1645         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1646         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1647
1648         dev_priv->psr.source_ok = false;
1649
1650         if (!HAS_PSR(dev)) {
1651                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1652                 return false;
1653         }
1654
1655         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1656             (dig_port->port != PORT_A)) {
1657                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1658                 return false;
1659         }
1660
1661         if (!i915_enable_psr) {
1662                 DRM_DEBUG_KMS("PSR disable by flag\n");
1663                 return false;
1664         }
1665
1666         crtc = dig_port->base.base.crtc;
1667         if (crtc == NULL) {
1668                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1669                 return false;
1670         }
1671
1672         intel_crtc = to_intel_crtc(crtc);
1673         if (!intel_crtc_active(crtc)) {
1674                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1675                 return false;
1676         }
1677
1678         obj = to_intel_framebuffer(crtc->fb)->obj;
1679         if (obj->tiling_mode != I915_TILING_X ||
1680             obj->fence_reg == I915_FENCE_REG_NONE) {
1681                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1682                 return false;
1683         }
1684
1685         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1686                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1687                 return false;
1688         }
1689
1690         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1691             S3D_ENABLE) {
1692                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1693                 return false;
1694         }
1695
1696         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1697                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1698                 return false;
1699         }
1700
1701         dev_priv->psr.source_ok = true;
1702         return true;
1703 }
1704
1705 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1706 {
1707         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1708
1709         if (!intel_edp_psr_match_conditions(intel_dp) ||
1710             intel_edp_is_psr_enabled(dev))
1711                 return;
1712
1713         /* Setup PSR once */
1714         intel_edp_psr_setup(intel_dp);
1715
1716         /* Enable PSR on the panel */
1717         intel_edp_psr_enable_sink(intel_dp);
1718
1719         /* Enable PSR on the host */
1720         intel_edp_psr_enable_source(intel_dp);
1721 }
1722
1723 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1724 {
1725         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1726
1727         if (intel_edp_psr_match_conditions(intel_dp) &&
1728             !intel_edp_is_psr_enabled(dev))
1729                 intel_edp_psr_do_enable(intel_dp);
1730 }
1731
1732 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1733 {
1734         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1735         struct drm_i915_private *dev_priv = dev->dev_private;
1736
1737         if (!intel_edp_is_psr_enabled(dev))
1738                 return;
1739
1740         I915_WRITE(EDP_PSR_CTL(dev),
1741                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1742
1743         /* Wait till PSR is idle */
1744         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1745                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1746                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1747 }
1748
1749 void intel_edp_psr_update(struct drm_device *dev)
1750 {
1751         struct intel_encoder *encoder;
1752         struct intel_dp *intel_dp = NULL;
1753
1754         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1755                 if (encoder->type == INTEL_OUTPUT_EDP) {
1756                         intel_dp = enc_to_intel_dp(&encoder->base);
1757
1758                         if (!is_edp_psr(dev))
1759                                 return;
1760
1761                         if (!intel_edp_psr_match_conditions(intel_dp))
1762                                 intel_edp_psr_disable(intel_dp);
1763                         else
1764                                 if (!intel_edp_is_psr_enabled(dev))
1765                                         intel_edp_psr_do_enable(intel_dp);
1766                 }
1767 }
1768
1769 static void intel_disable_dp(struct intel_encoder *encoder)
1770 {
1771         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1772         enum port port = dp_to_dig_port(intel_dp)->port;
1773         struct drm_device *dev = encoder->base.dev;
1774
1775         /* Make sure the panel is off before trying to change the mode. But also
1776          * ensure that we have vdd while we switch off the panel. */
1777         ironlake_edp_panel_vdd_on(intel_dp);
1778         ironlake_edp_backlight_off(intel_dp);
1779         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1780         ironlake_edp_panel_off(intel_dp);
1781
1782         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1783         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1784                 intel_dp_link_down(intel_dp);
1785 }
1786
1787 static void intel_post_disable_dp(struct intel_encoder *encoder)
1788 {
1789         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1790         enum port port = dp_to_dig_port(intel_dp)->port;
1791         struct drm_device *dev = encoder->base.dev;
1792
1793         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1794                 intel_dp_link_down(intel_dp);
1795                 if (!IS_VALLEYVIEW(dev))
1796                         ironlake_edp_pll_off(intel_dp);
1797         }
1798 }
1799
1800 static void intel_enable_dp(struct intel_encoder *encoder)
1801 {
1802         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1803         struct drm_device *dev = encoder->base.dev;
1804         struct drm_i915_private *dev_priv = dev->dev_private;
1805         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1806
1807         if (WARN_ON(dp_reg & DP_PORT_EN))
1808                 return;
1809
1810         ironlake_edp_panel_vdd_on(intel_dp);
1811         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1812         intel_dp_start_link_train(intel_dp);
1813         ironlake_edp_panel_on(intel_dp);
1814         ironlake_edp_panel_vdd_off(intel_dp, true);
1815         intel_dp_complete_link_train(intel_dp);
1816         intel_dp_stop_link_train(intel_dp);
1817 }
1818
1819 static void g4x_enable_dp(struct intel_encoder *encoder)
1820 {
1821         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1822
1823         intel_enable_dp(encoder);
1824         ironlake_edp_backlight_on(intel_dp);
1825 }
1826
1827 static void vlv_enable_dp(struct intel_encoder *encoder)
1828 {
1829         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1830
1831         ironlake_edp_backlight_on(intel_dp);
1832 }
1833
1834 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1835 {
1836         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1837         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1838
1839         if (dport->port == PORT_A)
1840                 ironlake_edp_pll_on(intel_dp);
1841 }
1842
1843 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1844 {
1845         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1846         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1847         struct drm_device *dev = encoder->base.dev;
1848         struct drm_i915_private *dev_priv = dev->dev_private;
1849         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1850         enum dpio_channel port = vlv_dport_to_channel(dport);
1851         int pipe = intel_crtc->pipe;
1852         struct edp_power_seq power_seq;
1853         u32 val;
1854
1855         mutex_lock(&dev_priv->dpio_lock);
1856
1857         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1858         val = 0;
1859         if (pipe)
1860                 val |= (1<<21);
1861         else
1862                 val &= ~(1<<21);
1863         val |= 0x001000c4;
1864         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1865         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1866         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1867
1868         mutex_unlock(&dev_priv->dpio_lock);
1869
1870         /* init power sequencer on this pipe and port */
1871         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1872         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1873                                                       &power_seq);
1874
1875         intel_enable_dp(encoder);
1876
1877         vlv_wait_port_ready(dev_priv, dport);
1878 }
1879
1880 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1881 {
1882         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1883         struct drm_device *dev = encoder->base.dev;
1884         struct drm_i915_private *dev_priv = dev->dev_private;
1885         struct intel_crtc *intel_crtc =
1886                 to_intel_crtc(encoder->base.crtc);
1887         enum dpio_channel port = vlv_dport_to_channel(dport);
1888         int pipe = intel_crtc->pipe;
1889
1890         /* Program Tx lane resets to default */
1891         mutex_lock(&dev_priv->dpio_lock);
1892         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1893                          DPIO_PCS_TX_LANE2_RESET |
1894                          DPIO_PCS_TX_LANE1_RESET);
1895         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1896                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1897                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1898                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1899                                  DPIO_PCS_CLK_SOFT_RESET);
1900
1901         /* Fix up inter-pair skew failure */
1902         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1903         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1904         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1905         mutex_unlock(&dev_priv->dpio_lock);
1906 }
1907
1908 /*
1909  * Native read with retry for link status and receiver capability reads for
1910  * cases where the sink may still be asleep.
1911  */
1912 static bool
1913 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1914                                uint8_t *recv, int recv_bytes)
1915 {
1916         int ret, i;
1917
1918         /*
1919          * Sinks are *supposed* to come up within 1ms from an off state,
1920          * but we're also supposed to retry 3 times per the spec.
1921          */
1922         for (i = 0; i < 3; i++) {
1923                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1924                                                recv_bytes);
1925                 if (ret == recv_bytes)
1926                         return true;
1927                 msleep(1);
1928         }
1929
1930         return false;
1931 }
1932
1933 /*
1934  * Fetch AUX CH registers 0x202 - 0x207 which contain
1935  * link status information
1936  */
1937 static bool
1938 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1939 {
1940         return intel_dp_aux_native_read_retry(intel_dp,
1941                                               DP_LANE0_1_STATUS,
1942                                               link_status,
1943                                               DP_LINK_STATUS_SIZE);
1944 }
1945
1946 /*
1947  * These are source-specific values; current Intel hardware supports
1948  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1949  */
1950
1951 static uint8_t
1952 intel_dp_voltage_max(struct intel_dp *intel_dp)
1953 {
1954         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1955         enum port port = dp_to_dig_port(intel_dp)->port;
1956
1957         if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
1958                 return DP_TRAIN_VOLTAGE_SWING_1200;
1959         else if (IS_GEN7(dev) && port == PORT_A)
1960                 return DP_TRAIN_VOLTAGE_SWING_800;
1961         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1962                 return DP_TRAIN_VOLTAGE_SWING_1200;
1963         else
1964                 return DP_TRAIN_VOLTAGE_SWING_800;
1965 }
1966
1967 static uint8_t
1968 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1969 {
1970         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1971         enum port port = dp_to_dig_port(intel_dp)->port;
1972
1973         if (IS_BROADWELL(dev)) {
1974                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1975                 case DP_TRAIN_VOLTAGE_SWING_400:
1976                 case DP_TRAIN_VOLTAGE_SWING_600:
1977                         return DP_TRAIN_PRE_EMPHASIS_6;
1978                 case DP_TRAIN_VOLTAGE_SWING_800:
1979                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1980                 case DP_TRAIN_VOLTAGE_SWING_1200:
1981                 default:
1982                         return DP_TRAIN_PRE_EMPHASIS_0;
1983                 }
1984         } else if (IS_HASWELL(dev)) {
1985                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1986                 case DP_TRAIN_VOLTAGE_SWING_400:
1987                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1988                 case DP_TRAIN_VOLTAGE_SWING_600:
1989                         return DP_TRAIN_PRE_EMPHASIS_6;
1990                 case DP_TRAIN_VOLTAGE_SWING_800:
1991                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1992                 case DP_TRAIN_VOLTAGE_SWING_1200:
1993                 default:
1994                         return DP_TRAIN_PRE_EMPHASIS_0;
1995                 }
1996         } else if (IS_VALLEYVIEW(dev)) {
1997                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1998                 case DP_TRAIN_VOLTAGE_SWING_400:
1999                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2000                 case DP_TRAIN_VOLTAGE_SWING_600:
2001                         return DP_TRAIN_PRE_EMPHASIS_6;
2002                 case DP_TRAIN_VOLTAGE_SWING_800:
2003                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2004                 case DP_TRAIN_VOLTAGE_SWING_1200:
2005                 default:
2006                         return DP_TRAIN_PRE_EMPHASIS_0;
2007                 }
2008         } else if (IS_GEN7(dev) && port == PORT_A) {
2009                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2010                 case DP_TRAIN_VOLTAGE_SWING_400:
2011                         return DP_TRAIN_PRE_EMPHASIS_6;
2012                 case DP_TRAIN_VOLTAGE_SWING_600:
2013                 case DP_TRAIN_VOLTAGE_SWING_800:
2014                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2015                 default:
2016                         return DP_TRAIN_PRE_EMPHASIS_0;
2017                 }
2018         } else {
2019                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2020                 case DP_TRAIN_VOLTAGE_SWING_400:
2021                         return DP_TRAIN_PRE_EMPHASIS_6;
2022                 case DP_TRAIN_VOLTAGE_SWING_600:
2023                         return DP_TRAIN_PRE_EMPHASIS_6;
2024                 case DP_TRAIN_VOLTAGE_SWING_800:
2025                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2026                 case DP_TRAIN_VOLTAGE_SWING_1200:
2027                 default:
2028                         return DP_TRAIN_PRE_EMPHASIS_0;
2029                 }
2030         }
2031 }
2032
2033 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2034 {
2035         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2036         struct drm_i915_private *dev_priv = dev->dev_private;
2037         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2038         struct intel_crtc *intel_crtc =
2039                 to_intel_crtc(dport->base.base.crtc);
2040         unsigned long demph_reg_value, preemph_reg_value,
2041                 uniqtranscale_reg_value;
2042         uint8_t train_set = intel_dp->train_set[0];
2043         enum dpio_channel port = vlv_dport_to_channel(dport);
2044         int pipe = intel_crtc->pipe;
2045
2046         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2047         case DP_TRAIN_PRE_EMPHASIS_0:
2048                 preemph_reg_value = 0x0004000;
2049                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2050                 case DP_TRAIN_VOLTAGE_SWING_400:
2051                         demph_reg_value = 0x2B405555;
2052                         uniqtranscale_reg_value = 0x552AB83A;
2053                         break;
2054                 case DP_TRAIN_VOLTAGE_SWING_600:
2055                         demph_reg_value = 0x2B404040;
2056                         uniqtranscale_reg_value = 0x5548B83A;
2057                         break;
2058                 case DP_TRAIN_VOLTAGE_SWING_800:
2059                         demph_reg_value = 0x2B245555;
2060                         uniqtranscale_reg_value = 0x5560B83A;
2061                         break;
2062                 case DP_TRAIN_VOLTAGE_SWING_1200:
2063                         demph_reg_value = 0x2B405555;
2064                         uniqtranscale_reg_value = 0x5598DA3A;
2065                         break;
2066                 default:
2067                         return 0;
2068                 }
2069                 break;
2070         case DP_TRAIN_PRE_EMPHASIS_3_5:
2071                 preemph_reg_value = 0x0002000;
2072                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2073                 case DP_TRAIN_VOLTAGE_SWING_400:
2074                         demph_reg_value = 0x2B404040;
2075                         uniqtranscale_reg_value = 0x5552B83A;
2076                         break;
2077                 case DP_TRAIN_VOLTAGE_SWING_600:
2078                         demph_reg_value = 0x2B404848;
2079                         uniqtranscale_reg_value = 0x5580B83A;
2080                         break;
2081                 case DP_TRAIN_VOLTAGE_SWING_800:
2082                         demph_reg_value = 0x2B404040;
2083                         uniqtranscale_reg_value = 0x55ADDA3A;
2084                         break;
2085                 default:
2086                         return 0;
2087                 }
2088                 break;
2089         case DP_TRAIN_PRE_EMPHASIS_6:
2090                 preemph_reg_value = 0x0000000;
2091                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2092                 case DP_TRAIN_VOLTAGE_SWING_400:
2093                         demph_reg_value = 0x2B305555;
2094                         uniqtranscale_reg_value = 0x5570B83A;
2095                         break;
2096                 case DP_TRAIN_VOLTAGE_SWING_600:
2097                         demph_reg_value = 0x2B2B4040;
2098                         uniqtranscale_reg_value = 0x55ADDA3A;
2099                         break;
2100                 default:
2101                         return 0;
2102                 }
2103                 break;
2104         case DP_TRAIN_PRE_EMPHASIS_9_5:
2105                 preemph_reg_value = 0x0006000;
2106                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2107                 case DP_TRAIN_VOLTAGE_SWING_400:
2108                         demph_reg_value = 0x1B405555;
2109                         uniqtranscale_reg_value = 0x55ADDA3A;
2110                         break;
2111                 default:
2112                         return 0;
2113                 }
2114                 break;
2115         default:
2116                 return 0;
2117         }
2118
2119         mutex_lock(&dev_priv->dpio_lock);
2120         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2121         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2122         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2123                          uniqtranscale_reg_value);
2124         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2125         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2126         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2127         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2128         mutex_unlock(&dev_priv->dpio_lock);
2129
2130         return 0;
2131 }
2132
2133 static void
2134 intel_get_adjust_train(struct intel_dp *intel_dp,
2135                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2136 {
2137         uint8_t v = 0;
2138         uint8_t p = 0;
2139         int lane;
2140         uint8_t voltage_max;
2141         uint8_t preemph_max;
2142
2143         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2144                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2145                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2146
2147                 if (this_v > v)
2148                         v = this_v;
2149                 if (this_p > p)
2150                         p = this_p;
2151         }
2152
2153         voltage_max = intel_dp_voltage_max(intel_dp);
2154         if (v >= voltage_max)
2155                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2156
2157         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2158         if (p >= preemph_max)
2159                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2160
2161         for (lane = 0; lane < 4; lane++)
2162                 intel_dp->train_set[lane] = v | p;
2163 }
2164
2165 static uint32_t
2166 intel_gen4_signal_levels(uint8_t train_set)
2167 {
2168         uint32_t        signal_levels = 0;
2169
2170         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2171         case DP_TRAIN_VOLTAGE_SWING_400:
2172         default:
2173                 signal_levels |= DP_VOLTAGE_0_4;
2174                 break;
2175         case DP_TRAIN_VOLTAGE_SWING_600:
2176                 signal_levels |= DP_VOLTAGE_0_6;
2177                 break;
2178         case DP_TRAIN_VOLTAGE_SWING_800:
2179                 signal_levels |= DP_VOLTAGE_0_8;
2180                 break;
2181         case DP_TRAIN_VOLTAGE_SWING_1200:
2182                 signal_levels |= DP_VOLTAGE_1_2;
2183                 break;
2184         }
2185         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2186         case DP_TRAIN_PRE_EMPHASIS_0:
2187         default:
2188                 signal_levels |= DP_PRE_EMPHASIS_0;
2189                 break;
2190         case DP_TRAIN_PRE_EMPHASIS_3_5:
2191                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2192                 break;
2193         case DP_TRAIN_PRE_EMPHASIS_6:
2194                 signal_levels |= DP_PRE_EMPHASIS_6;
2195                 break;
2196         case DP_TRAIN_PRE_EMPHASIS_9_5:
2197                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2198                 break;
2199         }
2200         return signal_levels;
2201 }
2202
2203 /* Gen6's DP voltage swing and pre-emphasis control */
2204 static uint32_t
2205 intel_gen6_edp_signal_levels(uint8_t train_set)
2206 {
2207         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2208                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2209         switch (signal_levels) {
2210         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2211         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2212                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2213         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2214                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2215         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2216         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2217                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2218         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2219         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2220                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2221         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2222         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2223                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2224         default:
2225                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2226                               "0x%x\n", signal_levels);
2227                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2228         }
2229 }
2230
2231 /* Gen7's DP voltage swing and pre-emphasis control */
2232 static uint32_t
2233 intel_gen7_edp_signal_levels(uint8_t train_set)
2234 {
2235         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2236                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2237         switch (signal_levels) {
2238         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2239                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2240         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2241                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2242         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2243                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2244
2245         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2246                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2247         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2248                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2249
2250         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2251                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2252         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2253                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2254
2255         default:
2256                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2257                               "0x%x\n", signal_levels);
2258                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2259         }
2260 }
2261
2262 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2263 static uint32_t
2264 intel_hsw_signal_levels(uint8_t train_set)
2265 {
2266         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2267                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2268         switch (signal_levels) {
2269         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2270                 return DDI_BUF_EMP_400MV_0DB_HSW;
2271         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2272                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2273         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2274                 return DDI_BUF_EMP_400MV_6DB_HSW;
2275         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2276                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2277
2278         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2279                 return DDI_BUF_EMP_600MV_0DB_HSW;
2280         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2281                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2282         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2283                 return DDI_BUF_EMP_600MV_6DB_HSW;
2284
2285         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2286                 return DDI_BUF_EMP_800MV_0DB_HSW;
2287         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2288                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2289         default:
2290                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2291                               "0x%x\n", signal_levels);
2292                 return DDI_BUF_EMP_400MV_0DB_HSW;
2293         }
2294 }
2295
2296 static uint32_t
2297 intel_bdw_signal_levels(uint8_t train_set)
2298 {
2299         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2300                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2301         switch (signal_levels) {
2302         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2303                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2304         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2305                 return DDI_BUF_EMP_400MV_3_5DB_BDW;     /* Sel1 */
2306         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2307                 return DDI_BUF_EMP_400MV_6DB_BDW;       /* Sel2 */
2308
2309         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2310                 return DDI_BUF_EMP_600MV_0DB_BDW;       /* Sel3 */
2311         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2312                 return DDI_BUF_EMP_600MV_3_5DB_BDW;     /* Sel4 */
2313         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2314                 return DDI_BUF_EMP_600MV_6DB_BDW;       /* Sel5 */
2315
2316         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2317                 return DDI_BUF_EMP_800MV_0DB_BDW;       /* Sel6 */
2318         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2319                 return DDI_BUF_EMP_800MV_3_5DB_BDW;     /* Sel7 */
2320
2321         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2322                 return DDI_BUF_EMP_1200MV_0DB_BDW;      /* Sel8 */
2323
2324         default:
2325                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2326                               "0x%x\n", signal_levels);
2327                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2328         }
2329 }
2330
2331 /* Properly updates "DP" with the correct signal levels. */
2332 static void
2333 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2334 {
2335         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2336         enum port port = intel_dig_port->port;
2337         struct drm_device *dev = intel_dig_port->base.base.dev;
2338         uint32_t signal_levels, mask;
2339         uint8_t train_set = intel_dp->train_set[0];
2340
2341         if (IS_BROADWELL(dev)) {
2342                 signal_levels = intel_bdw_signal_levels(train_set);
2343                 mask = DDI_BUF_EMP_MASK;
2344         } else if (IS_HASWELL(dev)) {
2345                 signal_levels = intel_hsw_signal_levels(train_set);
2346                 mask = DDI_BUF_EMP_MASK;
2347         } else if (IS_VALLEYVIEW(dev)) {
2348                 signal_levels = intel_vlv_signal_levels(intel_dp);
2349                 mask = 0;
2350         } else if (IS_GEN7(dev) && port == PORT_A) {
2351                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2352                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2353         } else if (IS_GEN6(dev) && port == PORT_A) {
2354                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2355                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2356         } else {
2357                 signal_levels = intel_gen4_signal_levels(train_set);
2358                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2359         }
2360
2361         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2362
2363         *DP = (*DP & ~mask) | signal_levels;
2364 }
2365
2366 static bool
2367 intel_dp_set_link_train(struct intel_dp *intel_dp,
2368                         uint32_t *DP,
2369                         uint8_t dp_train_pat)
2370 {
2371         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2372         struct drm_device *dev = intel_dig_port->base.base.dev;
2373         struct drm_i915_private *dev_priv = dev->dev_private;
2374         enum port port = intel_dig_port->port;
2375         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2376         int ret, len;
2377
2378         if (HAS_DDI(dev)) {
2379                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2380
2381                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2382                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2383                 else
2384                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2385
2386                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2387                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2388                 case DP_TRAINING_PATTERN_DISABLE:
2389                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2390
2391                         break;
2392                 case DP_TRAINING_PATTERN_1:
2393                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2394                         break;
2395                 case DP_TRAINING_PATTERN_2:
2396                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2397                         break;
2398                 case DP_TRAINING_PATTERN_3:
2399                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2400                         break;
2401                 }
2402                 I915_WRITE(DP_TP_CTL(port), temp);
2403
2404         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2405                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2406
2407                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2408                 case DP_TRAINING_PATTERN_DISABLE:
2409                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2410                         break;
2411                 case DP_TRAINING_PATTERN_1:
2412                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2413                         break;
2414                 case DP_TRAINING_PATTERN_2:
2415                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2416                         break;
2417                 case DP_TRAINING_PATTERN_3:
2418                         DRM_ERROR("DP training pattern 3 not supported\n");
2419                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2420                         break;
2421                 }
2422
2423         } else {
2424                 *DP &= ~DP_LINK_TRAIN_MASK;
2425
2426                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2427                 case DP_TRAINING_PATTERN_DISABLE:
2428                         *DP |= DP_LINK_TRAIN_OFF;
2429                         break;
2430                 case DP_TRAINING_PATTERN_1:
2431                         *DP |= DP_LINK_TRAIN_PAT_1;
2432                         break;
2433                 case DP_TRAINING_PATTERN_2:
2434                         *DP |= DP_LINK_TRAIN_PAT_2;
2435                         break;
2436                 case DP_TRAINING_PATTERN_3:
2437                         DRM_ERROR("DP training pattern 3 not supported\n");
2438                         *DP |= DP_LINK_TRAIN_PAT_2;
2439                         break;
2440                 }
2441         }
2442
2443         I915_WRITE(intel_dp->output_reg, *DP);
2444         POSTING_READ(intel_dp->output_reg);
2445
2446         buf[0] = dp_train_pat;
2447         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2448             DP_TRAINING_PATTERN_DISABLE) {
2449                 /* don't write DP_TRAINING_LANEx_SET on disable */
2450                 len = 1;
2451         } else {
2452                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2453                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2454                 len = intel_dp->lane_count + 1;
2455         }
2456
2457         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2458                                         buf, len);
2459
2460         return ret == len;
2461 }
2462
2463 static bool
2464 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2465                         uint8_t dp_train_pat)
2466 {
2467         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2468         intel_dp_set_signal_levels(intel_dp, DP);
2469         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2470 }
2471
2472 static bool
2473 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2474                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2475 {
2476         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2477         struct drm_device *dev = intel_dig_port->base.base.dev;
2478         struct drm_i915_private *dev_priv = dev->dev_private;
2479         int ret;
2480
2481         intel_get_adjust_train(intel_dp, link_status);
2482         intel_dp_set_signal_levels(intel_dp, DP);
2483
2484         I915_WRITE(intel_dp->output_reg, *DP);
2485         POSTING_READ(intel_dp->output_reg);
2486
2487         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
2488                                         intel_dp->train_set,
2489                                         intel_dp->lane_count);
2490
2491         return ret == intel_dp->lane_count;
2492 }
2493
2494 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2495 {
2496         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2497         struct drm_device *dev = intel_dig_port->base.base.dev;
2498         struct drm_i915_private *dev_priv = dev->dev_private;
2499         enum port port = intel_dig_port->port;
2500         uint32_t val;
2501
2502         if (!HAS_DDI(dev))
2503                 return;
2504
2505         val = I915_READ(DP_TP_CTL(port));
2506         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2507         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2508         I915_WRITE(DP_TP_CTL(port), val);
2509
2510         /*
2511          * On PORT_A we can have only eDP in SST mode. There the only reason
2512          * we need to set idle transmission mode is to work around a HW issue
2513          * where we enable the pipe while not in idle link-training mode.
2514          * In this case there is requirement to wait for a minimum number of
2515          * idle patterns to be sent.
2516          */
2517         if (port == PORT_A)
2518                 return;
2519
2520         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2521                      1))
2522                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2523 }
2524
2525 /* Enable corresponding port and start training pattern 1 */
2526 void
2527 intel_dp_start_link_train(struct intel_dp *intel_dp)
2528 {
2529         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2530         struct drm_device *dev = encoder->dev;
2531         int i;
2532         uint8_t voltage;
2533         int voltage_tries, loop_tries;
2534         uint32_t DP = intel_dp->DP;
2535         uint8_t link_config[2];
2536
2537         if (HAS_DDI(dev))
2538                 intel_ddi_prepare_link_retrain(encoder);
2539
2540         /* Write the link configuration data */
2541         link_config[0] = intel_dp->link_bw;
2542         link_config[1] = intel_dp->lane_count;
2543         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2544                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2545         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
2546
2547         link_config[0] = 0;
2548         link_config[1] = DP_SET_ANSI_8B10B;
2549         intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
2550
2551         DP |= DP_PORT_EN;
2552
2553         /* clock recovery */
2554         if (!intel_dp_reset_link_train(intel_dp, &DP,
2555                                        DP_TRAINING_PATTERN_1 |
2556                                        DP_LINK_SCRAMBLING_DISABLE)) {
2557                 DRM_ERROR("failed to enable link training\n");
2558                 return;
2559         }
2560
2561         voltage = 0xff;
2562         voltage_tries = 0;
2563         loop_tries = 0;
2564         for (;;) {
2565                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2566
2567                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2568                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2569                         DRM_ERROR("failed to get link status\n");
2570                         break;
2571                 }
2572
2573                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2574                         DRM_DEBUG_KMS("clock recovery OK\n");
2575                         break;
2576                 }
2577
2578                 /* Check to see if we've tried the max voltage */
2579                 for (i = 0; i < intel_dp->lane_count; i++)
2580                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2581                                 break;
2582                 if (i == intel_dp->lane_count) {
2583                         ++loop_tries;
2584                         if (loop_tries == 5) {
2585                                 DRM_ERROR("too many full retries, give up\n");
2586                                 break;
2587                         }
2588                         intel_dp_reset_link_train(intel_dp, &DP,
2589                                                   DP_TRAINING_PATTERN_1 |
2590                                                   DP_LINK_SCRAMBLING_DISABLE);
2591                         voltage_tries = 0;
2592                         continue;
2593                 }
2594
2595                 /* Check to see if we've tried the same voltage 5 times */
2596                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2597                         ++voltage_tries;
2598                         if (voltage_tries == 5) {
2599                                 DRM_ERROR("too many voltage retries, give up\n");
2600                                 break;
2601                         }
2602                 } else
2603                         voltage_tries = 0;
2604                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2605
2606                 /* Update training set as requested by target */
2607                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2608                         DRM_ERROR("failed to update link training\n");
2609                         break;
2610                 }
2611         }
2612
2613         intel_dp->DP = DP;
2614 }
2615
2616 void
2617 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2618 {
2619         bool channel_eq = false;
2620         int tries, cr_tries;
2621         uint32_t DP = intel_dp->DP;
2622
2623         /* channel equalization */
2624         if (!intel_dp_set_link_train(intel_dp, &DP,
2625                                      DP_TRAINING_PATTERN_2 |
2626                                      DP_LINK_SCRAMBLING_DISABLE)) {
2627                 DRM_ERROR("failed to start channel equalization\n");
2628                 return;
2629         }
2630
2631         tries = 0;
2632         cr_tries = 0;
2633         channel_eq = false;
2634         for (;;) {
2635                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2636
2637                 if (cr_tries > 5) {
2638                         DRM_ERROR("failed to train DP, aborting\n");
2639                         intel_dp_link_down(intel_dp);
2640                         break;
2641                 }
2642
2643                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2644                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2645                         DRM_ERROR("failed to get link status\n");
2646                         break;
2647                 }
2648
2649                 /* Make sure clock is still ok */
2650                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2651                         intel_dp_start_link_train(intel_dp);
2652                         intel_dp_set_link_train(intel_dp, &DP,
2653                                                 DP_TRAINING_PATTERN_2 |
2654                                                 DP_LINK_SCRAMBLING_DISABLE);
2655                         cr_tries++;
2656                         continue;
2657                 }
2658
2659                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2660                         channel_eq = true;
2661                         break;
2662                 }
2663
2664                 /* Try 5 times, then try clock recovery if that fails */
2665                 if (tries > 5) {
2666                         intel_dp_link_down(intel_dp);
2667                         intel_dp_start_link_train(intel_dp);
2668                         intel_dp_set_link_train(intel_dp, &DP,
2669                                                 DP_TRAINING_PATTERN_2 |
2670                                                 DP_LINK_SCRAMBLING_DISABLE);
2671                         tries = 0;
2672                         cr_tries++;
2673                         continue;
2674                 }
2675
2676                 /* Update training set as requested by target */
2677                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2678                         DRM_ERROR("failed to update link training\n");
2679                         break;
2680                 }
2681                 ++tries;
2682         }
2683
2684         intel_dp_set_idle_link_train(intel_dp);
2685
2686         intel_dp->DP = DP;
2687
2688         if (channel_eq)
2689                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2690
2691 }
2692
2693 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2694 {
2695         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2696                                 DP_TRAINING_PATTERN_DISABLE);
2697 }
2698
2699 static void
2700 intel_dp_link_down(struct intel_dp *intel_dp)
2701 {
2702         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2703         enum port port = intel_dig_port->port;
2704         struct drm_device *dev = intel_dig_port->base.base.dev;
2705         struct drm_i915_private *dev_priv = dev->dev_private;
2706         struct intel_crtc *intel_crtc =
2707                 to_intel_crtc(intel_dig_port->base.base.crtc);
2708         uint32_t DP = intel_dp->DP;
2709
2710         /*
2711          * DDI code has a strict mode set sequence and we should try to respect
2712          * it, otherwise we might hang the machine in many different ways. So we
2713          * really should be disabling the port only on a complete crtc_disable
2714          * sequence. This function is just called under two conditions on DDI
2715          * code:
2716          * - Link train failed while doing crtc_enable, and on this case we
2717          *   really should respect the mode set sequence and wait for a
2718          *   crtc_disable.
2719          * - Someone turned the monitor off and intel_dp_check_link_status
2720          *   called us. We don't need to disable the whole port on this case, so
2721          *   when someone turns the monitor on again,
2722          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2723          *   train.
2724          */
2725         if (HAS_DDI(dev))
2726                 return;
2727
2728         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2729                 return;
2730
2731         DRM_DEBUG_KMS("\n");
2732
2733         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2734                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2735                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2736         } else {
2737                 DP &= ~DP_LINK_TRAIN_MASK;
2738                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2739         }
2740         POSTING_READ(intel_dp->output_reg);
2741
2742         /* We don't really know why we're doing this */
2743         intel_wait_for_vblank(dev, intel_crtc->pipe);
2744
2745         if (HAS_PCH_IBX(dev) &&
2746             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2747                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2748
2749                 /* Hardware workaround: leaving our transcoder select
2750                  * set to transcoder B while it's off will prevent the
2751                  * corresponding HDMI output on transcoder A.
2752                  *
2753                  * Combine this with another hardware workaround:
2754                  * transcoder select bit can only be cleared while the
2755                  * port is enabled.
2756                  */
2757                 DP &= ~DP_PIPEB_SELECT;
2758                 I915_WRITE(intel_dp->output_reg, DP);
2759
2760                 /* Changes to enable or select take place the vblank
2761                  * after being written.
2762                  */
2763                 if (WARN_ON(crtc == NULL)) {
2764                         /* We should never try to disable a port without a crtc
2765                          * attached. For paranoia keep the code around for a
2766                          * bit. */
2767                         POSTING_READ(intel_dp->output_reg);
2768                         msleep(50);
2769                 } else
2770                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2771         }
2772
2773         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2774         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2775         POSTING_READ(intel_dp->output_reg);
2776         msleep(intel_dp->panel_power_down_delay);
2777 }
2778
2779 static bool
2780 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2781 {
2782         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2783         struct drm_device *dev = dig_port->base.base.dev;
2784         struct drm_i915_private *dev_priv = dev->dev_private;
2785
2786         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2787
2788         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2789                                            sizeof(intel_dp->dpcd)) == 0)
2790                 return false; /* aux transfer failed */
2791
2792         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2793                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2794         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2795
2796         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2797                 return false; /* DPCD not present */
2798
2799         /* Check if the panel supports PSR */
2800         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2801         if (is_edp(intel_dp)) {
2802                 intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2803                                                intel_dp->psr_dpcd,
2804                                                sizeof(intel_dp->psr_dpcd));
2805                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2806                         dev_priv->psr.sink_support = true;
2807                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2808                 }
2809         }
2810
2811         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2812               DP_DWN_STRM_PORT_PRESENT))
2813                 return true; /* native DP sink */
2814
2815         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2816                 return true; /* no per-port downstream info */
2817
2818         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2819                                            intel_dp->downstream_ports,
2820                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2821                 return false; /* downstream port status fetch failed */
2822
2823         return true;
2824 }
2825
2826 static void
2827 intel_dp_probe_oui(struct intel_dp *intel_dp)
2828 {
2829         u8 buf[3];
2830
2831         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2832                 return;
2833
2834         ironlake_edp_panel_vdd_on(intel_dp);
2835
2836         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2837                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2838                               buf[0], buf[1], buf[2]);
2839
2840         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2841                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2842                               buf[0], buf[1], buf[2]);
2843
2844         ironlake_edp_panel_vdd_off(intel_dp, false);
2845 }
2846
2847 static bool
2848 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2849 {
2850         int ret;
2851
2852         ret = intel_dp_aux_native_read_retry(intel_dp,
2853                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2854                                              sink_irq_vector, 1);
2855         if (!ret)
2856                 return false;
2857
2858         return true;
2859 }
2860
2861 static void
2862 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2863 {
2864         /* NAK by default */
2865         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2866 }
2867
2868 /*
2869  * According to DP spec
2870  * 5.1.2:
2871  *  1. Read DPCD
2872  *  2. Configure link according to Receiver Capabilities
2873  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2874  *  4. Check link status on receipt of hot-plug interrupt
2875  */
2876
2877 void
2878 intel_dp_check_link_status(struct intel_dp *intel_dp)
2879 {
2880         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2881         u8 sink_irq_vector;
2882         u8 link_status[DP_LINK_STATUS_SIZE];
2883
2884         if (!intel_encoder->connectors_active)
2885                 return;
2886
2887         if (WARN_ON(!intel_encoder->base.crtc))
2888                 return;
2889
2890         /* Try to read receiver status if the link appears to be up */
2891         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2892                 intel_dp_link_down(intel_dp);
2893                 return;
2894         }
2895
2896         /* Now read the DPCD to see if it's actually running */
2897         if (!intel_dp_get_dpcd(intel_dp)) {
2898                 intel_dp_link_down(intel_dp);
2899                 return;
2900         }
2901
2902         /* Try to read the source of the interrupt */
2903         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2904             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2905                 /* Clear interrupt source */
2906                 intel_dp_aux_native_write_1(intel_dp,
2907                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2908                                             sink_irq_vector);
2909
2910                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2911                         intel_dp_handle_test_request(intel_dp);
2912                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2913                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2914         }
2915
2916         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2917                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2918                               drm_get_encoder_name(&intel_encoder->base));
2919                 intel_dp_start_link_train(intel_dp);
2920                 intel_dp_complete_link_train(intel_dp);
2921                 intel_dp_stop_link_train(intel_dp);
2922         }
2923 }
2924
2925 /* XXX this is probably wrong for multiple downstream ports */
2926 static enum drm_connector_status
2927 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2928 {
2929         uint8_t *dpcd = intel_dp->dpcd;
2930         uint8_t type;
2931
2932         if (!intel_dp_get_dpcd(intel_dp))
2933                 return connector_status_disconnected;
2934
2935         /* if there's no downstream port, we're done */
2936         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2937                 return connector_status_connected;
2938
2939         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2940         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2941             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
2942                 uint8_t reg;
2943                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2944                                                     &reg, 1))
2945                         return connector_status_unknown;
2946                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2947                                               : connector_status_disconnected;
2948         }
2949
2950         /* If no HPD, poke DDC gently */
2951         if (drm_probe_ddc(&intel_dp->adapter))
2952                 return connector_status_connected;
2953
2954         /* Well we tried, say unknown for unreliable port types */
2955         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
2956                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2957                 if (type == DP_DS_PORT_TYPE_VGA ||
2958                     type == DP_DS_PORT_TYPE_NON_EDID)
2959                         return connector_status_unknown;
2960         } else {
2961                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2962                         DP_DWN_STRM_PORT_TYPE_MASK;
2963                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
2964                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
2965                         return connector_status_unknown;
2966         }
2967
2968         /* Anything else is out of spec, warn and ignore */
2969         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2970         return connector_status_disconnected;
2971 }
2972
2973 static enum drm_connector_status
2974 ironlake_dp_detect(struct intel_dp *intel_dp)
2975 {
2976         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2977         struct drm_i915_private *dev_priv = dev->dev_private;
2978         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2979         enum drm_connector_status status;
2980
2981         /* Can't disconnect eDP, but you can close the lid... */
2982         if (is_edp(intel_dp)) {
2983                 status = intel_panel_detect(dev);
2984                 if (status == connector_status_unknown)
2985                         status = connector_status_connected;
2986                 return status;
2987         }
2988
2989         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2990                 return connector_status_disconnected;
2991
2992         return intel_dp_detect_dpcd(intel_dp);
2993 }
2994
2995 static enum drm_connector_status
2996 g4x_dp_detect(struct intel_dp *intel_dp)
2997 {
2998         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2999         struct drm_i915_private *dev_priv = dev->dev_private;
3000         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3001         uint32_t bit;
3002
3003         /* Can't disconnect eDP, but you can close the lid... */
3004         if (is_edp(intel_dp)) {
3005                 enum drm_connector_status status;
3006
3007                 status = intel_panel_detect(dev);
3008                 if (status == connector_status_unknown)
3009                         status = connector_status_connected;
3010                 return status;
3011         }
3012
3013         switch (intel_dig_port->port) {
3014         case PORT_B:
3015                 bit = PORTB_HOTPLUG_LIVE_STATUS;
3016                 break;
3017         case PORT_C:
3018                 bit = PORTC_HOTPLUG_LIVE_STATUS;
3019                 break;
3020         case PORT_D:
3021                 bit = PORTD_HOTPLUG_LIVE_STATUS;
3022                 break;
3023         default:
3024                 return connector_status_unknown;
3025         }
3026
3027         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3028                 return connector_status_disconnected;
3029
3030         return intel_dp_detect_dpcd(intel_dp);
3031 }
3032
3033 static struct edid *
3034 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3035 {
3036         struct intel_connector *intel_connector = to_intel_connector(connector);
3037
3038         /* use cached edid if we have one */
3039         if (intel_connector->edid) {
3040                 /* invalid edid */
3041                 if (IS_ERR(intel_connector->edid))
3042                         return NULL;
3043
3044                 return drm_edid_duplicate(intel_connector->edid);
3045         }
3046
3047         return drm_get_edid(connector, adapter);
3048 }
3049
3050 static int
3051 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3052 {
3053         struct intel_connector *intel_connector = to_intel_connector(connector);
3054
3055         /* use cached edid if we have one */
3056         if (intel_connector->edid) {
3057                 /* invalid edid */
3058                 if (IS_ERR(intel_connector->edid))
3059                         return 0;
3060
3061                 return intel_connector_update_modes(connector,
3062                                                     intel_connector->edid);
3063         }
3064
3065         return intel_ddc_get_modes(connector, adapter);
3066 }
3067
3068 static enum drm_connector_status
3069 intel_dp_detect(struct drm_connector *connector, bool force)
3070 {
3071         struct intel_dp *intel_dp = intel_attached_dp(connector);
3072         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3073         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3074         struct drm_device *dev = connector->dev;
3075         enum drm_connector_status status;
3076         struct edid *edid = NULL;
3077
3078         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3079                       connector->base.id, drm_get_connector_name(connector));
3080
3081         intel_dp->has_audio = false;
3082
3083         if (HAS_PCH_SPLIT(dev))
3084                 status = ironlake_dp_detect(intel_dp);
3085         else
3086                 status = g4x_dp_detect(intel_dp);
3087
3088         if (status != connector_status_connected)
3089                 return status;
3090
3091         intel_dp_probe_oui(intel_dp);
3092
3093         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3094                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3095         } else {
3096                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3097                 if (edid) {
3098                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3099                         kfree(edid);
3100                 }
3101         }
3102
3103         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3104                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3105         return connector_status_connected;
3106 }
3107
3108 static int intel_dp_get_modes(struct drm_connector *connector)
3109 {
3110         struct intel_dp *intel_dp = intel_attached_dp(connector);
3111         struct intel_connector *intel_connector = to_intel_connector(connector);
3112         struct drm_device *dev = connector->dev;
3113         int ret;
3114
3115         /* We should parse the EDID data and find out if it has an audio sink
3116          */
3117
3118         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3119         if (ret)
3120                 return ret;
3121
3122         /* if eDP has no EDID, fall back to fixed mode */
3123         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3124                 struct drm_display_mode *mode;
3125                 mode = drm_mode_duplicate(dev,
3126                                           intel_connector->panel.fixed_mode);
3127                 if (mode) {
3128                         drm_mode_probed_add(connector, mode);
3129                         return 1;
3130                 }
3131         }
3132         return 0;
3133 }
3134
3135 static bool
3136 intel_dp_detect_audio(struct drm_connector *connector)
3137 {
3138         struct intel_dp *intel_dp = intel_attached_dp(connector);
3139         struct edid *edid;
3140         bool has_audio = false;
3141
3142         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3143         if (edid) {
3144                 has_audio = drm_detect_monitor_audio(edid);
3145                 kfree(edid);
3146         }
3147
3148         return has_audio;
3149 }
3150
3151 static int
3152 intel_dp_set_property(struct drm_connector *connector,
3153                       struct drm_property *property,
3154                       uint64_t val)
3155 {
3156         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3157         struct intel_connector *intel_connector = to_intel_connector(connector);
3158         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3159         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3160         int ret;
3161
3162         ret = drm_object_property_set_value(&connector->base, property, val);
3163         if (ret)
3164                 return ret;
3165
3166         if (property == dev_priv->force_audio_property) {
3167                 int i = val;
3168                 bool has_audio;
3169
3170                 if (i == intel_dp->force_audio)
3171                         return 0;
3172
3173                 intel_dp->force_audio = i;
3174
3175                 if (i == HDMI_AUDIO_AUTO)
3176                         has_audio = intel_dp_detect_audio(connector);
3177                 else
3178                         has_audio = (i == HDMI_AUDIO_ON);
3179
3180                 if (has_audio == intel_dp->has_audio)
3181                         return 0;
3182
3183                 intel_dp->has_audio = has_audio;
3184                 goto done;
3185         }
3186
3187         if (property == dev_priv->broadcast_rgb_property) {
3188                 bool old_auto = intel_dp->color_range_auto;
3189                 uint32_t old_range = intel_dp->color_range;
3190
3191                 switch (val) {
3192                 case INTEL_BROADCAST_RGB_AUTO:
3193                         intel_dp->color_range_auto = true;
3194                         break;
3195                 case INTEL_BROADCAST_RGB_FULL:
3196                         intel_dp->color_range_auto = false;
3197                         intel_dp->color_range = 0;
3198                         break;
3199                 case INTEL_BROADCAST_RGB_LIMITED:
3200                         intel_dp->color_range_auto = false;
3201                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3202                         break;
3203                 default:
3204                         return -EINVAL;
3205                 }
3206
3207                 if (old_auto == intel_dp->color_range_auto &&
3208                     old_range == intel_dp->color_range)
3209                         return 0;
3210
3211                 goto done;
3212         }
3213
3214         if (is_edp(intel_dp) &&
3215             property == connector->dev->mode_config.scaling_mode_property) {
3216                 if (val == DRM_MODE_SCALE_NONE) {
3217                         DRM_DEBUG_KMS("no scaling not supported\n");
3218                         return -EINVAL;
3219                 }
3220
3221                 if (intel_connector->panel.fitting_mode == val) {
3222                         /* the eDP scaling property is not changed */
3223                         return 0;
3224                 }
3225                 intel_connector->panel.fitting_mode = val;
3226
3227                 goto done;
3228         }
3229
3230         return -EINVAL;
3231
3232 done:
3233         if (intel_encoder->base.crtc)
3234                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3235
3236         return 0;
3237 }
3238
3239 static void
3240 intel_dp_connector_destroy(struct drm_connector *connector)
3241 {
3242         struct intel_connector *intel_connector = to_intel_connector(connector);
3243
3244         if (!IS_ERR_OR_NULL(intel_connector->edid))
3245                 kfree(intel_connector->edid);
3246
3247         /* Can't call is_edp() since the encoder may have been destroyed
3248          * already. */
3249         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3250                 intel_panel_fini(&intel_connector->panel);
3251
3252         drm_connector_cleanup(connector);
3253         kfree(connector);
3254 }
3255
3256 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3257 {
3258         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3259         struct intel_dp *intel_dp = &intel_dig_port->dp;
3260         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3261
3262         i2c_del_adapter(&intel_dp->adapter);
3263         drm_encoder_cleanup(encoder);
3264         if (is_edp(intel_dp)) {
3265                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3266                 mutex_lock(&dev->mode_config.mutex);
3267                 ironlake_panel_vdd_off_sync(intel_dp);
3268                 mutex_unlock(&dev->mode_config.mutex);
3269         }
3270         kfree(intel_dig_port);
3271 }
3272
3273 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3274         .dpms = intel_connector_dpms,
3275         .detect = intel_dp_detect,
3276         .fill_modes = drm_helper_probe_single_connector_modes,
3277         .set_property = intel_dp_set_property,
3278         .destroy = intel_dp_connector_destroy,
3279 };
3280
3281 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3282         .get_modes = intel_dp_get_modes,
3283         .mode_valid = intel_dp_mode_valid,
3284         .best_encoder = intel_best_encoder,
3285 };
3286
3287 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3288         .destroy = intel_dp_encoder_destroy,
3289 };
3290
3291 static void
3292 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3293 {
3294         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3295
3296         intel_dp_check_link_status(intel_dp);
3297 }
3298
3299 /* Return which DP Port should be selected for Transcoder DP control */
3300 int
3301 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3302 {
3303         struct drm_device *dev = crtc->dev;
3304         struct intel_encoder *intel_encoder;
3305         struct intel_dp *intel_dp;
3306
3307         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3308                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3309
3310                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3311                     intel_encoder->type == INTEL_OUTPUT_EDP)
3312                         return intel_dp->output_reg;
3313         }
3314
3315         return -1;
3316 }
3317
3318 /* check the VBT to see whether the eDP is on DP-D port */
3319 bool intel_dpd_is_edp(struct drm_device *dev)
3320 {
3321         struct drm_i915_private *dev_priv = dev->dev_private;
3322         union child_device_config *p_child;
3323         int i;
3324
3325         if (!dev_priv->vbt.child_dev_num)
3326                 return false;
3327
3328         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3329                 p_child = dev_priv->vbt.child_dev + i;
3330
3331                 if (p_child->common.dvo_port == PORT_IDPD &&
3332                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3333                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3334                         return true;
3335         }
3336         return false;
3337 }
3338
3339 static void
3340 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3341 {
3342         struct intel_connector *intel_connector = to_intel_connector(connector);
3343
3344         intel_attach_force_audio_property(connector);
3345         intel_attach_broadcast_rgb_property(connector);
3346         intel_dp->color_range_auto = true;
3347
3348         if (is_edp(intel_dp)) {
3349                 drm_mode_create_scaling_mode_property(connector->dev);
3350                 drm_object_attach_property(
3351                         &connector->base,
3352                         connector->dev->mode_config.scaling_mode_property,
3353                         DRM_MODE_SCALE_ASPECT);
3354                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3355         }
3356 }
3357
3358 static void
3359 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3360                                     struct intel_dp *intel_dp,
3361                                     struct edp_power_seq *out)
3362 {
3363         struct drm_i915_private *dev_priv = dev->dev_private;
3364         struct edp_power_seq cur, vbt, spec, final;
3365         u32 pp_on, pp_off, pp_div, pp;
3366         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3367
3368         if (HAS_PCH_SPLIT(dev)) {
3369                 pp_ctrl_reg = PCH_PP_CONTROL;
3370                 pp_on_reg = PCH_PP_ON_DELAYS;
3371                 pp_off_reg = PCH_PP_OFF_DELAYS;
3372                 pp_div_reg = PCH_PP_DIVISOR;
3373         } else {
3374                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3375
3376                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3377                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3378                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3379                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3380         }
3381
3382         /* Workaround: Need to write PP_CONTROL with the unlock key as
3383          * the very first thing. */
3384         pp = ironlake_get_pp_control(intel_dp);
3385         I915_WRITE(pp_ctrl_reg, pp);
3386
3387         pp_on = I915_READ(pp_on_reg);
3388         pp_off = I915_READ(pp_off_reg);
3389         pp_div = I915_READ(pp_div_reg);
3390
3391         /* Pull timing values out of registers */
3392         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3393                 PANEL_POWER_UP_DELAY_SHIFT;
3394
3395         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3396                 PANEL_LIGHT_ON_DELAY_SHIFT;
3397
3398         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3399                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3400
3401         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3402                 PANEL_POWER_DOWN_DELAY_SHIFT;
3403
3404         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3405                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3406
3407         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3408                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3409
3410         vbt = dev_priv->vbt.edp_pps;
3411
3412         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3413          * our hw here, which are all in 100usec. */
3414         spec.t1_t3 = 210 * 10;
3415         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3416         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3417         spec.t10 = 500 * 10;
3418         /* This one is special and actually in units of 100ms, but zero
3419          * based in the hw (so we need to add 100 ms). But the sw vbt
3420          * table multiplies it with 1000 to make it in units of 100usec,
3421          * too. */
3422         spec.t11_t12 = (510 + 100) * 10;
3423
3424         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3425                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3426
3427         /* Use the max of the register settings and vbt. If both are
3428          * unset, fall back to the spec limits. */
3429 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3430                                        spec.field : \
3431                                        max(cur.field, vbt.field))
3432         assign_final(t1_t3);
3433         assign_final(t8);
3434         assign_final(t9);
3435         assign_final(t10);
3436         assign_final(t11_t12);
3437 #undef assign_final
3438
3439 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3440         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3441         intel_dp->backlight_on_delay = get_delay(t8);
3442         intel_dp->backlight_off_delay = get_delay(t9);
3443         intel_dp->panel_power_down_delay = get_delay(t10);
3444         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3445 #undef get_delay
3446
3447         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3448                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3449                       intel_dp->panel_power_cycle_delay);
3450
3451         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3452                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3453
3454         if (out)
3455                 *out = final;
3456 }
3457
3458 static void
3459 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3460                                               struct intel_dp *intel_dp,
3461                                               struct edp_power_seq *seq)
3462 {
3463         struct drm_i915_private *dev_priv = dev->dev_private;
3464         u32 pp_on, pp_off, pp_div, port_sel = 0;
3465         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3466         int pp_on_reg, pp_off_reg, pp_div_reg;
3467
3468         if (HAS_PCH_SPLIT(dev)) {
3469                 pp_on_reg = PCH_PP_ON_DELAYS;
3470                 pp_off_reg = PCH_PP_OFF_DELAYS;
3471                 pp_div_reg = PCH_PP_DIVISOR;
3472         } else {
3473                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3474
3475                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3476                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3477                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3478         }
3479
3480         /* And finally store the new values in the power sequencer. */
3481         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3482                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3483         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3484                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3485         /* Compute the divisor for the pp clock, simply match the Bspec
3486          * formula. */
3487         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3488         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3489                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3490
3491         /* Haswell doesn't have any port selection bits for the panel
3492          * power sequencer any more. */
3493         if (IS_VALLEYVIEW(dev)) {
3494                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3495                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3496                 else
3497                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3498         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3499                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3500                         port_sel = PANEL_PORT_SELECT_DPA;
3501                 else
3502                         port_sel = PANEL_PORT_SELECT_DPD;
3503         }
3504
3505         pp_on |= port_sel;
3506
3507         I915_WRITE(pp_on_reg, pp_on);
3508         I915_WRITE(pp_off_reg, pp_off);
3509         I915_WRITE(pp_div_reg, pp_div);
3510
3511         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3512                       I915_READ(pp_on_reg),
3513                       I915_READ(pp_off_reg),
3514                       I915_READ(pp_div_reg));
3515 }
3516
3517 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3518                                      struct intel_connector *intel_connector)
3519 {
3520         struct drm_connector *connector = &intel_connector->base;
3521         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3522         struct drm_device *dev = intel_dig_port->base.base.dev;
3523         struct drm_i915_private *dev_priv = dev->dev_private;
3524         struct drm_display_mode *fixed_mode = NULL;
3525         struct edp_power_seq power_seq = { 0 };
3526         bool has_dpcd;
3527         struct drm_display_mode *scan;
3528         struct edid *edid;
3529
3530         if (!is_edp(intel_dp))
3531                 return true;
3532
3533         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3534
3535         /* Cache DPCD and EDID for edp. */
3536         ironlake_edp_panel_vdd_on(intel_dp);
3537         has_dpcd = intel_dp_get_dpcd(intel_dp);
3538         ironlake_edp_panel_vdd_off(intel_dp, false);
3539
3540         if (has_dpcd) {
3541                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3542                         dev_priv->no_aux_handshake =
3543                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3544                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3545         } else {
3546                 /* if this fails, presume the device is a ghost */
3547                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3548                 return false;
3549         }
3550
3551         /* We now know it's not a ghost, init power sequence regs. */
3552         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3553                                                       &power_seq);
3554
3555         edid = drm_get_edid(connector, &intel_dp->adapter);
3556         if (edid) {
3557                 if (drm_add_edid_modes(connector, edid)) {
3558                         drm_mode_connector_update_edid_property(connector,
3559                                                                 edid);
3560                         drm_edid_to_eld(connector, edid);
3561                 } else {
3562                         kfree(edid);
3563                         edid = ERR_PTR(-EINVAL);
3564                 }
3565         } else {
3566                 edid = ERR_PTR(-ENOENT);
3567         }
3568         intel_connector->edid = edid;
3569
3570         /* prefer fixed mode from EDID if available */
3571         list_for_each_entry(scan, &connector->probed_modes, head) {
3572                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3573                         fixed_mode = drm_mode_duplicate(dev, scan);
3574                         break;
3575                 }
3576         }
3577
3578         /* fallback to VBT if available for eDP */
3579         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3580                 fixed_mode = drm_mode_duplicate(dev,
3581                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3582                 if (fixed_mode)
3583                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3584         }
3585
3586         intel_panel_init(&intel_connector->panel, fixed_mode);
3587         intel_panel_setup_backlight(connector);
3588
3589         return true;
3590 }
3591
3592 bool
3593 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3594                         struct intel_connector *intel_connector)
3595 {
3596         struct drm_connector *connector = &intel_connector->base;
3597         struct intel_dp *intel_dp = &intel_dig_port->dp;
3598         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3599         struct drm_device *dev = intel_encoder->base.dev;
3600         struct drm_i915_private *dev_priv = dev->dev_private;
3601         enum port port = intel_dig_port->port;
3602         const char *name = NULL;
3603         int type, error;
3604
3605         /* Preserve the current hw state. */
3606         intel_dp->DP = I915_READ(intel_dp->output_reg);
3607         intel_dp->attached_connector = intel_connector;
3608
3609         type = DRM_MODE_CONNECTOR_DisplayPort;
3610         /*
3611          * FIXME : We need to initialize built-in panels before external panels.
3612          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3613          */
3614         switch (port) {
3615         case PORT_A:
3616                 type = DRM_MODE_CONNECTOR_eDP;
3617                 break;
3618         case PORT_C:
3619                 if (IS_VALLEYVIEW(dev))
3620                         type = DRM_MODE_CONNECTOR_eDP;
3621                 break;
3622         case PORT_D:
3623                 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3624                         type = DRM_MODE_CONNECTOR_eDP;
3625                 break;
3626         default:        /* silence GCC warning */
3627                 break;
3628         }
3629
3630         /*
3631          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3632          * for DP the encoder type can be set by the caller to
3633          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3634          */
3635         if (type == DRM_MODE_CONNECTOR_eDP)
3636                 intel_encoder->type = INTEL_OUTPUT_EDP;
3637
3638         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3639                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3640                         port_name(port));
3641
3642         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3643         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3644
3645         connector->interlace_allowed = true;
3646         connector->doublescan_allowed = 0;
3647
3648         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3649                           ironlake_panel_vdd_work);
3650
3651         intel_connector_attach_encoder(intel_connector, intel_encoder);
3652         drm_sysfs_connector_add(connector);
3653
3654         if (HAS_DDI(dev))
3655                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3656         else
3657                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3658
3659         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3660         if (HAS_DDI(dev)) {
3661                 switch (intel_dig_port->port) {
3662                 case PORT_A:
3663                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3664                         break;
3665                 case PORT_B:
3666                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3667                         break;
3668                 case PORT_C:
3669                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3670                         break;
3671                 case PORT_D:
3672                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3673                         break;
3674                 default:
3675                         BUG();
3676                 }
3677         }
3678
3679         /* Set up the DDC bus. */
3680         switch (port) {
3681         case PORT_A:
3682                 intel_encoder->hpd_pin = HPD_PORT_A;
3683                 name = "DPDDC-A";
3684                 break;
3685         case PORT_B:
3686                 intel_encoder->hpd_pin = HPD_PORT_B;
3687                 name = "DPDDC-B";
3688                 break;
3689         case PORT_C:
3690                 intel_encoder->hpd_pin = HPD_PORT_C;
3691                 name = "DPDDC-C";
3692                 break;
3693         case PORT_D:
3694                 intel_encoder->hpd_pin = HPD_PORT_D;
3695                 name = "DPDDC-D";
3696                 break;
3697         default:
3698                 BUG();
3699         }
3700
3701         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3702         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3703              error, port_name(port));
3704
3705         intel_dp->psr_setup_done = false;
3706
3707         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3708                 i2c_del_adapter(&intel_dp->adapter);
3709                 if (is_edp(intel_dp)) {
3710                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3711                         mutex_lock(&dev->mode_config.mutex);
3712                         ironlake_panel_vdd_off_sync(intel_dp);
3713                         mutex_unlock(&dev->mode_config.mutex);
3714                 }
3715                 drm_sysfs_connector_remove(connector);
3716                 drm_connector_cleanup(connector);
3717                 return false;
3718         }
3719
3720         intel_dp_add_properties(intel_dp, connector);
3721
3722         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3723          * 0xd.  Failure to do so will result in spurious interrupts being
3724          * generated on the port when a cable is not attached.
3725          */
3726         if (IS_G4X(dev) && !IS_GM45(dev)) {
3727                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3728                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3729         }
3730
3731         return true;
3732 }
3733
3734 void
3735 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3736 {
3737         struct intel_digital_port *intel_dig_port;
3738         struct intel_encoder *intel_encoder;
3739         struct drm_encoder *encoder;
3740         struct intel_connector *intel_connector;
3741
3742         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3743         if (!intel_dig_port)
3744                 return;
3745
3746         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3747         if (!intel_connector) {
3748                 kfree(intel_dig_port);
3749                 return;
3750         }
3751
3752         intel_encoder = &intel_dig_port->base;
3753         encoder = &intel_encoder->base;
3754
3755         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3756                          DRM_MODE_ENCODER_TMDS);
3757
3758         intel_encoder->compute_config = intel_dp_compute_config;
3759         intel_encoder->mode_set = intel_dp_mode_set;
3760         intel_encoder->disable = intel_disable_dp;
3761         intel_encoder->post_disable = intel_post_disable_dp;
3762         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3763         intel_encoder->get_config = intel_dp_get_config;
3764         if (IS_VALLEYVIEW(dev)) {
3765                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3766                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3767                 intel_encoder->enable = vlv_enable_dp;
3768         } else {
3769                 intel_encoder->pre_enable = g4x_pre_enable_dp;
3770                 intel_encoder->enable = g4x_enable_dp;
3771         }
3772
3773         intel_dig_port->port = port;
3774         intel_dig_port->dp.output_reg = output_reg;
3775
3776         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3777         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3778         intel_encoder->cloneable = false;
3779         intel_encoder->hot_plug = intel_dp_hot_plug;
3780
3781         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3782                 drm_encoder_cleanup(encoder);
3783                 kfree(intel_dig_port);
3784                 kfree(intel_connector);
3785         }
3786 }