]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: reorder edp disabling to fix ivb MacBook Air
[~andy/linux] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "drm_edid.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "drm_dp_helper.h"
40
41 #define DP_RECEIVER_CAP_SIZE    0xf
42 #define DP_LINK_STATUS_SIZE     6
43 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
44
45 #define DP_LINK_CONFIGURATION_SIZE      9
46
47 struct intel_dp {
48         struct intel_encoder base;
49         uint32_t output_reg;
50         uint32_t DP;
51         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
52         bool has_audio;
53         enum hdmi_force_audio force_audio;
54         uint32_t color_range;
55         int dpms_mode;
56         uint8_t link_bw;
57         uint8_t lane_count;
58         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
59         struct i2c_adapter adapter;
60         struct i2c_algo_dp_aux_data algo;
61         bool is_pch_edp;
62         uint8_t train_set[4];
63         int panel_power_up_delay;
64         int panel_power_down_delay;
65         int panel_power_cycle_delay;
66         int backlight_on_delay;
67         int backlight_off_delay;
68         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
69         struct delayed_work panel_vdd_work;
70         bool want_panel_vdd;
71         struct edid *edid; /* cached EDID for eDP */
72         int edid_mode_count;
73 };
74
75 /**
76  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
77  * @intel_dp: DP struct
78  *
79  * If a CPU or PCH DP output is attached to an eDP panel, this function
80  * will return true, and false otherwise.
81  */
82 static bool is_edp(struct intel_dp *intel_dp)
83 {
84         return intel_dp->base.type == INTEL_OUTPUT_EDP;
85 }
86
87 /**
88  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
89  * @intel_dp: DP struct
90  *
91  * Returns true if the given DP struct corresponds to a PCH DP port attached
92  * to an eDP panel, false otherwise.  Helpful for determining whether we
93  * may need FDI resources for a given DP output or not.
94  */
95 static bool is_pch_edp(struct intel_dp *intel_dp)
96 {
97         return intel_dp->is_pch_edp;
98 }
99
100 /**
101  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
102  * @intel_dp: DP struct
103  *
104  * Returns true if the given DP struct corresponds to a CPU eDP port.
105  */
106 static bool is_cpu_edp(struct intel_dp *intel_dp)
107 {
108         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
109 }
110
111 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
112 {
113         return container_of(encoder, struct intel_dp, base.base);
114 }
115
116 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
117 {
118         return container_of(intel_attached_encoder(connector),
119                             struct intel_dp, base);
120 }
121
122 /**
123  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
124  * @encoder: DRM encoder
125  *
126  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
127  * by intel_display.c.
128  */
129 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
130 {
131         struct intel_dp *intel_dp;
132
133         if (!encoder)
134                 return false;
135
136         intel_dp = enc_to_intel_dp(encoder);
137
138         return is_pch_edp(intel_dp);
139 }
140
141 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
142 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
143 static void intel_dp_link_down(struct intel_dp *intel_dp);
144
145 void
146 intel_edp_link_config(struct intel_encoder *intel_encoder,
147                        int *lane_num, int *link_bw)
148 {
149         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
150
151         *lane_num = intel_dp->lane_count;
152         if (intel_dp->link_bw == DP_LINK_BW_1_62)
153                 *link_bw = 162000;
154         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
155                 *link_bw = 270000;
156 }
157
158 int
159 intel_edp_target_clock(struct intel_encoder *intel_encoder,
160                        struct drm_display_mode *mode)
161 {
162         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
163
164         if (intel_dp->panel_fixed_mode)
165                 return intel_dp->panel_fixed_mode->clock;
166         else
167                 return mode->clock;
168 }
169
170 static int
171 intel_dp_max_lane_count(struct intel_dp *intel_dp)
172 {
173         int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
174         switch (max_lane_count) {
175         case 1: case 2: case 4:
176                 break;
177         default:
178                 max_lane_count = 4;
179         }
180         return max_lane_count;
181 }
182
183 static int
184 intel_dp_max_link_bw(struct intel_dp *intel_dp)
185 {
186         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
187
188         switch (max_link_bw) {
189         case DP_LINK_BW_1_62:
190         case DP_LINK_BW_2_7:
191                 break;
192         default:
193                 max_link_bw = DP_LINK_BW_1_62;
194                 break;
195         }
196         return max_link_bw;
197 }
198
199 static int
200 intel_dp_link_clock(uint8_t link_bw)
201 {
202         if (link_bw == DP_LINK_BW_2_7)
203                 return 270000;
204         else
205                 return 162000;
206 }
207
208 /*
209  * The units on the numbers in the next two are... bizarre.  Examples will
210  * make it clearer; this one parallels an example in the eDP spec.
211  *
212  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
213  *
214  *     270000 * 1 * 8 / 10 == 216000
215  *
216  * The actual data capacity of that configuration is 2.16Gbit/s, so the
217  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
218  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
219  * 119000.  At 18bpp that's 2142000 kilobits per second.
220  *
221  * Thus the strange-looking division by 10 in intel_dp_link_required, to
222  * get the result in decakilobits instead of kilobits.
223  */
224
225 static int
226 intel_dp_link_required(int pixel_clock, int bpp)
227 {
228         return (pixel_clock * bpp + 9) / 10;
229 }
230
231 static int
232 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
233 {
234         return (max_link_clock * max_lanes * 8) / 10;
235 }
236
237 static bool
238 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
239                           struct drm_display_mode *mode,
240                           bool adjust_mode)
241 {
242         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
243         int max_lanes = intel_dp_max_lane_count(intel_dp);
244         int max_rate, mode_rate;
245
246         mode_rate = intel_dp_link_required(mode->clock, 24);
247         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
248
249         if (mode_rate > max_rate) {
250                 mode_rate = intel_dp_link_required(mode->clock, 18);
251                 if (mode_rate > max_rate)
252                         return false;
253
254                 if (adjust_mode)
255                         mode->private_flags
256                                 |= INTEL_MODE_DP_FORCE_6BPC;
257
258                 return true;
259         }
260
261         return true;
262 }
263
264 static int
265 intel_dp_mode_valid(struct drm_connector *connector,
266                     struct drm_display_mode *mode)
267 {
268         struct intel_dp *intel_dp = intel_attached_dp(connector);
269
270         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
271                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
272                         return MODE_PANEL;
273
274                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
275                         return MODE_PANEL;
276         }
277
278         if (!intel_dp_adjust_dithering(intel_dp, mode, false))
279                 return MODE_CLOCK_HIGH;
280
281         if (mode->clock < 10000)
282                 return MODE_CLOCK_LOW;
283
284         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
285                 return MODE_H_ILLEGAL;
286
287         return MODE_OK;
288 }
289
290 static uint32_t
291 pack_aux(uint8_t *src, int src_bytes)
292 {
293         int     i;
294         uint32_t v = 0;
295
296         if (src_bytes > 4)
297                 src_bytes = 4;
298         for (i = 0; i < src_bytes; i++)
299                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
300         return v;
301 }
302
303 static void
304 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
305 {
306         int i;
307         if (dst_bytes > 4)
308                 dst_bytes = 4;
309         for (i = 0; i < dst_bytes; i++)
310                 dst[i] = src >> ((3-i) * 8);
311 }
312
313 /* hrawclock is 1/4 the FSB frequency */
314 static int
315 intel_hrawclk(struct drm_device *dev)
316 {
317         struct drm_i915_private *dev_priv = dev->dev_private;
318         uint32_t clkcfg;
319
320         clkcfg = I915_READ(CLKCFG);
321         switch (clkcfg & CLKCFG_FSB_MASK) {
322         case CLKCFG_FSB_400:
323                 return 100;
324         case CLKCFG_FSB_533:
325                 return 133;
326         case CLKCFG_FSB_667:
327                 return 166;
328         case CLKCFG_FSB_800:
329                 return 200;
330         case CLKCFG_FSB_1067:
331                 return 266;
332         case CLKCFG_FSB_1333:
333                 return 333;
334         /* these two are just a guess; one of them might be right */
335         case CLKCFG_FSB_1600:
336         case CLKCFG_FSB_1600_ALT:
337                 return 400;
338         default:
339                 return 133;
340         }
341 }
342
343 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
344 {
345         struct drm_device *dev = intel_dp->base.base.dev;
346         struct drm_i915_private *dev_priv = dev->dev_private;
347
348         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
349 }
350
351 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
352 {
353         struct drm_device *dev = intel_dp->base.base.dev;
354         struct drm_i915_private *dev_priv = dev->dev_private;
355
356         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
357 }
358
359 static void
360 intel_dp_check_edp(struct intel_dp *intel_dp)
361 {
362         struct drm_device *dev = intel_dp->base.base.dev;
363         struct drm_i915_private *dev_priv = dev->dev_private;
364
365         if (!is_edp(intel_dp))
366                 return;
367         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
368                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
369                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
370                               I915_READ(PCH_PP_STATUS),
371                               I915_READ(PCH_PP_CONTROL));
372         }
373 }
374
375 static int
376 intel_dp_aux_ch(struct intel_dp *intel_dp,
377                 uint8_t *send, int send_bytes,
378                 uint8_t *recv, int recv_size)
379 {
380         uint32_t output_reg = intel_dp->output_reg;
381         struct drm_device *dev = intel_dp->base.base.dev;
382         struct drm_i915_private *dev_priv = dev->dev_private;
383         uint32_t ch_ctl = output_reg + 0x10;
384         uint32_t ch_data = ch_ctl + 4;
385         int i;
386         int recv_bytes;
387         uint32_t status;
388         uint32_t aux_clock_divider;
389         int try, precharge;
390
391         intel_dp_check_edp(intel_dp);
392         /* The clock divider is based off the hrawclk,
393          * and would like to run at 2MHz. So, take the
394          * hrawclk value and divide by 2 and use that
395          *
396          * Note that PCH attached eDP panels should use a 125MHz input
397          * clock divider.
398          */
399         if (is_cpu_edp(intel_dp)) {
400                 if (IS_GEN6(dev) || IS_GEN7(dev))
401                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
402                 else
403                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
404         } else if (HAS_PCH_SPLIT(dev))
405                 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
406         else
407                 aux_clock_divider = intel_hrawclk(dev) / 2;
408
409         if (IS_GEN6(dev))
410                 precharge = 3;
411         else
412                 precharge = 5;
413
414         /* Try to wait for any previous AUX channel activity */
415         for (try = 0; try < 3; try++) {
416                 status = I915_READ(ch_ctl);
417                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
418                         break;
419                 msleep(1);
420         }
421
422         if (try == 3) {
423                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
424                      I915_READ(ch_ctl));
425                 return -EBUSY;
426         }
427
428         /* Must try at least 3 times according to DP spec */
429         for (try = 0; try < 5; try++) {
430                 /* Load the send data into the aux channel data registers */
431                 for (i = 0; i < send_bytes; i += 4)
432                         I915_WRITE(ch_data + i,
433                                    pack_aux(send + i, send_bytes - i));
434
435                 /* Send the command and wait for it to complete */
436                 I915_WRITE(ch_ctl,
437                            DP_AUX_CH_CTL_SEND_BUSY |
438                            DP_AUX_CH_CTL_TIME_OUT_400us |
439                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
440                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
441                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
442                            DP_AUX_CH_CTL_DONE |
443                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
444                            DP_AUX_CH_CTL_RECEIVE_ERROR);
445                 for (;;) {
446                         status = I915_READ(ch_ctl);
447                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
448                                 break;
449                         udelay(100);
450                 }
451
452                 /* Clear done status and any errors */
453                 I915_WRITE(ch_ctl,
454                            status |
455                            DP_AUX_CH_CTL_DONE |
456                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
457                            DP_AUX_CH_CTL_RECEIVE_ERROR);
458
459                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
460                               DP_AUX_CH_CTL_RECEIVE_ERROR))
461                         continue;
462                 if (status & DP_AUX_CH_CTL_DONE)
463                         break;
464         }
465
466         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
467                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
468                 return -EBUSY;
469         }
470
471         /* Check for timeout or receive error.
472          * Timeouts occur when the sink is not connected
473          */
474         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
475                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
476                 return -EIO;
477         }
478
479         /* Timeouts occur when the device isn't connected, so they're
480          * "normal" -- don't fill the kernel log with these */
481         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
482                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
483                 return -ETIMEDOUT;
484         }
485
486         /* Unload any bytes sent back from the other side */
487         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
488                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
489         if (recv_bytes > recv_size)
490                 recv_bytes = recv_size;
491
492         for (i = 0; i < recv_bytes; i += 4)
493                 unpack_aux(I915_READ(ch_data + i),
494                            recv + i, recv_bytes - i);
495
496         return recv_bytes;
497 }
498
499 /* Write data to the aux channel in native mode */
500 static int
501 intel_dp_aux_native_write(struct intel_dp *intel_dp,
502                           uint16_t address, uint8_t *send, int send_bytes)
503 {
504         int ret;
505         uint8_t msg[20];
506         int msg_bytes;
507         uint8_t ack;
508
509         intel_dp_check_edp(intel_dp);
510         if (send_bytes > 16)
511                 return -1;
512         msg[0] = AUX_NATIVE_WRITE << 4;
513         msg[1] = address >> 8;
514         msg[2] = address & 0xff;
515         msg[3] = send_bytes - 1;
516         memcpy(&msg[4], send, send_bytes);
517         msg_bytes = send_bytes + 4;
518         for (;;) {
519                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
520                 if (ret < 0)
521                         return ret;
522                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
523                         break;
524                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
525                         udelay(100);
526                 else
527                         return -EIO;
528         }
529         return send_bytes;
530 }
531
532 /* Write a single byte to the aux channel in native mode */
533 static int
534 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
535                             uint16_t address, uint8_t byte)
536 {
537         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
538 }
539
540 /* read bytes from a native aux channel */
541 static int
542 intel_dp_aux_native_read(struct intel_dp *intel_dp,
543                          uint16_t address, uint8_t *recv, int recv_bytes)
544 {
545         uint8_t msg[4];
546         int msg_bytes;
547         uint8_t reply[20];
548         int reply_bytes;
549         uint8_t ack;
550         int ret;
551
552         intel_dp_check_edp(intel_dp);
553         msg[0] = AUX_NATIVE_READ << 4;
554         msg[1] = address >> 8;
555         msg[2] = address & 0xff;
556         msg[3] = recv_bytes - 1;
557
558         msg_bytes = 4;
559         reply_bytes = recv_bytes + 1;
560
561         for (;;) {
562                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
563                                       reply, reply_bytes);
564                 if (ret == 0)
565                         return -EPROTO;
566                 if (ret < 0)
567                         return ret;
568                 ack = reply[0];
569                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
570                         memcpy(recv, reply + 1, ret - 1);
571                         return ret - 1;
572                 }
573                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
574                         udelay(100);
575                 else
576                         return -EIO;
577         }
578 }
579
580 static int
581 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
582                     uint8_t write_byte, uint8_t *read_byte)
583 {
584         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
585         struct intel_dp *intel_dp = container_of(adapter,
586                                                 struct intel_dp,
587                                                 adapter);
588         uint16_t address = algo_data->address;
589         uint8_t msg[5];
590         uint8_t reply[2];
591         unsigned retry;
592         int msg_bytes;
593         int reply_bytes;
594         int ret;
595
596         intel_dp_check_edp(intel_dp);
597         /* Set up the command byte */
598         if (mode & MODE_I2C_READ)
599                 msg[0] = AUX_I2C_READ << 4;
600         else
601                 msg[0] = AUX_I2C_WRITE << 4;
602
603         if (!(mode & MODE_I2C_STOP))
604                 msg[0] |= AUX_I2C_MOT << 4;
605
606         msg[1] = address >> 8;
607         msg[2] = address;
608
609         switch (mode) {
610         case MODE_I2C_WRITE:
611                 msg[3] = 0;
612                 msg[4] = write_byte;
613                 msg_bytes = 5;
614                 reply_bytes = 1;
615                 break;
616         case MODE_I2C_READ:
617                 msg[3] = 0;
618                 msg_bytes = 4;
619                 reply_bytes = 2;
620                 break;
621         default:
622                 msg_bytes = 3;
623                 reply_bytes = 1;
624                 break;
625         }
626
627         for (retry = 0; retry < 5; retry++) {
628                 ret = intel_dp_aux_ch(intel_dp,
629                                       msg, msg_bytes,
630                                       reply, reply_bytes);
631                 if (ret < 0) {
632                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
633                         return ret;
634                 }
635
636                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
637                 case AUX_NATIVE_REPLY_ACK:
638                         /* I2C-over-AUX Reply field is only valid
639                          * when paired with AUX ACK.
640                          */
641                         break;
642                 case AUX_NATIVE_REPLY_NACK:
643                         DRM_DEBUG_KMS("aux_ch native nack\n");
644                         return -EREMOTEIO;
645                 case AUX_NATIVE_REPLY_DEFER:
646                         udelay(100);
647                         continue;
648                 default:
649                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
650                                   reply[0]);
651                         return -EREMOTEIO;
652                 }
653
654                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
655                 case AUX_I2C_REPLY_ACK:
656                         if (mode == MODE_I2C_READ) {
657                                 *read_byte = reply[1];
658                         }
659                         return reply_bytes - 1;
660                 case AUX_I2C_REPLY_NACK:
661                         DRM_DEBUG_KMS("aux_i2c nack\n");
662                         return -EREMOTEIO;
663                 case AUX_I2C_REPLY_DEFER:
664                         DRM_DEBUG_KMS("aux_i2c defer\n");
665                         udelay(100);
666                         break;
667                 default:
668                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
669                         return -EREMOTEIO;
670                 }
671         }
672
673         DRM_ERROR("too many retries, giving up\n");
674         return -EREMOTEIO;
675 }
676
677 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
678 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
679
680 static int
681 intel_dp_i2c_init(struct intel_dp *intel_dp,
682                   struct intel_connector *intel_connector, const char *name)
683 {
684         int     ret;
685
686         DRM_DEBUG_KMS("i2c_init %s\n", name);
687         intel_dp->algo.running = false;
688         intel_dp->algo.address = 0;
689         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
690
691         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
692         intel_dp->adapter.owner = THIS_MODULE;
693         intel_dp->adapter.class = I2C_CLASS_DDC;
694         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
695         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
696         intel_dp->adapter.algo_data = &intel_dp->algo;
697         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
698
699         ironlake_edp_panel_vdd_on(intel_dp);
700         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
701         ironlake_edp_panel_vdd_off(intel_dp, false);
702         return ret;
703 }
704
705 static bool
706 intel_dp_mode_fixup(struct drm_encoder *encoder,
707                     const struct drm_display_mode *mode,
708                     struct drm_display_mode *adjusted_mode)
709 {
710         struct drm_device *dev = encoder->dev;
711         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
712         int lane_count, clock;
713         int max_lane_count = intel_dp_max_lane_count(intel_dp);
714         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
715         int bpp, mode_rate;
716         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
717
718         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
719                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
720                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
721                                         mode, adjusted_mode);
722         }
723
724         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
725                 return false;
726
727         DRM_DEBUG_KMS("DP link computation with max lane count %i "
728                       "max bw %02x pixel clock %iKHz\n",
729                       max_lane_count, bws[max_clock], adjusted_mode->clock);
730
731         if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
732                 return false;
733
734         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
735         mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
736
737         for (clock = 0; clock <= max_clock; clock++) {
738                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
739                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
740
741                         if (mode_rate <= link_avail) {
742                                 intel_dp->link_bw = bws[clock];
743                                 intel_dp->lane_count = lane_count;
744                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
745                                 DRM_DEBUG_KMS("DP link bw %02x lane "
746                                                 "count %d clock %d bpp %d\n",
747                                        intel_dp->link_bw, intel_dp->lane_count,
748                                        adjusted_mode->clock, bpp);
749                                 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
750                                               mode_rate, link_avail);
751                                 return true;
752                         }
753                 }
754         }
755
756         return false;
757 }
758
759 struct intel_dp_m_n {
760         uint32_t        tu;
761         uint32_t        gmch_m;
762         uint32_t        gmch_n;
763         uint32_t        link_m;
764         uint32_t        link_n;
765 };
766
767 static void
768 intel_reduce_ratio(uint32_t *num, uint32_t *den)
769 {
770         while (*num > 0xffffff || *den > 0xffffff) {
771                 *num >>= 1;
772                 *den >>= 1;
773         }
774 }
775
776 static void
777 intel_dp_compute_m_n(int bpp,
778                      int nlanes,
779                      int pixel_clock,
780                      int link_clock,
781                      struct intel_dp_m_n *m_n)
782 {
783         m_n->tu = 64;
784         m_n->gmch_m = (pixel_clock * bpp) >> 3;
785         m_n->gmch_n = link_clock * nlanes;
786         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
787         m_n->link_m = pixel_clock;
788         m_n->link_n = link_clock;
789         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
790 }
791
792 void
793 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
794                  struct drm_display_mode *adjusted_mode)
795 {
796         struct drm_device *dev = crtc->dev;
797         struct intel_encoder *encoder;
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
800         int lane_count = 4;
801         struct intel_dp_m_n m_n;
802         int pipe = intel_crtc->pipe;
803
804         /*
805          * Find the lane count in the intel_encoder private
806          */
807         for_each_encoder_on_crtc(dev, crtc, encoder) {
808                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
809
810                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
811                     intel_dp->base.type == INTEL_OUTPUT_EDP)
812                 {
813                         lane_count = intel_dp->lane_count;
814                         break;
815                 }
816         }
817
818         /*
819          * Compute the GMCH and Link ratios. The '3' here is
820          * the number of bytes_per_pixel post-LUT, which we always
821          * set up for 8-bits of R/G/B, or 3 bytes total.
822          */
823         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
824                              mode->clock, adjusted_mode->clock, &m_n);
825
826         if (HAS_PCH_SPLIT(dev)) {
827                 I915_WRITE(TRANSDATA_M1(pipe),
828                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
829                            m_n.gmch_m);
830                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
831                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
832                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
833         } else {
834                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
835                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
836                            m_n.gmch_m);
837                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
838                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
839                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
840         }
841 }
842
843 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
844 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
845
846 static void
847 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
848                   struct drm_display_mode *adjusted_mode)
849 {
850         struct drm_device *dev = encoder->dev;
851         struct drm_i915_private *dev_priv = dev->dev_private;
852         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
853         struct drm_crtc *crtc = intel_dp->base.base.crtc;
854         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
855
856         /* Turn on the eDP PLL if needed */
857         if (is_edp(intel_dp)) {
858                 if (!is_pch_edp(intel_dp))
859                         ironlake_edp_pll_on(encoder);
860                 else
861                         ironlake_edp_pll_off(encoder);
862         }
863
864         /*
865          * There are four kinds of DP registers:
866          *
867          *      IBX PCH
868          *      SNB CPU
869          *      IVB CPU
870          *      CPT PCH
871          *
872          * IBX PCH and CPU are the same for almost everything,
873          * except that the CPU DP PLL is configured in this
874          * register
875          *
876          * CPT PCH is quite different, having many bits moved
877          * to the TRANS_DP_CTL register instead. That
878          * configuration happens (oddly) in ironlake_pch_enable
879          */
880
881         /* Preserve the BIOS-computed detected bit. This is
882          * supposed to be read-only.
883          */
884         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
885         intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
886
887         /* Handle DP bits in common between all three register formats */
888
889         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
890
891         switch (intel_dp->lane_count) {
892         case 1:
893                 intel_dp->DP |= DP_PORT_WIDTH_1;
894                 break;
895         case 2:
896                 intel_dp->DP |= DP_PORT_WIDTH_2;
897                 break;
898         case 4:
899                 intel_dp->DP |= DP_PORT_WIDTH_4;
900                 break;
901         }
902         if (intel_dp->has_audio) {
903                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
904                                  pipe_name(intel_crtc->pipe));
905                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
906                 intel_write_eld(encoder, adjusted_mode);
907         }
908         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
909         intel_dp->link_configuration[0] = intel_dp->link_bw;
910         intel_dp->link_configuration[1] = intel_dp->lane_count;
911         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
912         /*
913          * Check for DPCD version > 1.1 and enhanced framing support
914          */
915         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
916             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
917                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
918         }
919
920         /* Split out the IBX/CPU vs CPT settings */
921
922         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
923                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
924                         intel_dp->DP |= DP_SYNC_HS_HIGH;
925                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
926                         intel_dp->DP |= DP_SYNC_VS_HIGH;
927                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
928
929                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
930                         intel_dp->DP |= DP_ENHANCED_FRAMING;
931
932                 intel_dp->DP |= intel_crtc->pipe << 29;
933
934                 /* don't miss out required setting for eDP */
935                 intel_dp->DP |= DP_PLL_ENABLE;
936                 if (adjusted_mode->clock < 200000)
937                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
938                 else
939                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
940         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
941                 intel_dp->DP |= intel_dp->color_range;
942
943                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
944                         intel_dp->DP |= DP_SYNC_HS_HIGH;
945                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
946                         intel_dp->DP |= DP_SYNC_VS_HIGH;
947                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
948
949                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
950                         intel_dp->DP |= DP_ENHANCED_FRAMING;
951
952                 if (intel_crtc->pipe == 1)
953                         intel_dp->DP |= DP_PIPEB_SELECT;
954
955                 if (is_cpu_edp(intel_dp)) {
956                         /* don't miss out required setting for eDP */
957                         intel_dp->DP |= DP_PLL_ENABLE;
958                         if (adjusted_mode->clock < 200000)
959                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
960                         else
961                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
962                 }
963         } else {
964                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
965         }
966 }
967
968 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
969 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
970
971 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
972 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
973
974 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
975 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
976
977 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
978                                        u32 mask,
979                                        u32 value)
980 {
981         struct drm_device *dev = intel_dp->base.base.dev;
982         struct drm_i915_private *dev_priv = dev->dev_private;
983
984         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
985                       mask, value,
986                       I915_READ(PCH_PP_STATUS),
987                       I915_READ(PCH_PP_CONTROL));
988
989         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
990                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
991                           I915_READ(PCH_PP_STATUS),
992                           I915_READ(PCH_PP_CONTROL));
993         }
994 }
995
996 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
997 {
998         DRM_DEBUG_KMS("Wait for panel power on\n");
999         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1000 }
1001
1002 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1003 {
1004         DRM_DEBUG_KMS("Wait for panel power off time\n");
1005         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1006 }
1007
1008 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1009 {
1010         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1011         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1012 }
1013
1014
1015 /* Read the current pp_control value, unlocking the register if it
1016  * is locked
1017  */
1018
1019 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1020 {
1021         u32     control = I915_READ(PCH_PP_CONTROL);
1022
1023         control &= ~PANEL_UNLOCK_MASK;
1024         control |= PANEL_UNLOCK_REGS;
1025         return control;
1026 }
1027
1028 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1029 {
1030         struct drm_device *dev = intel_dp->base.base.dev;
1031         struct drm_i915_private *dev_priv = dev->dev_private;
1032         u32 pp;
1033
1034         if (!is_edp(intel_dp))
1035                 return;
1036         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1037
1038         WARN(intel_dp->want_panel_vdd,
1039              "eDP VDD already requested on\n");
1040
1041         intel_dp->want_panel_vdd = true;
1042
1043         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1044                 DRM_DEBUG_KMS("eDP VDD already on\n");
1045                 return;
1046         }
1047
1048         if (!ironlake_edp_have_panel_power(intel_dp))
1049                 ironlake_wait_panel_power_cycle(intel_dp);
1050
1051         pp = ironlake_get_pp_control(dev_priv);
1052         pp |= EDP_FORCE_VDD;
1053         I915_WRITE(PCH_PP_CONTROL, pp);
1054         POSTING_READ(PCH_PP_CONTROL);
1055         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1056                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1057
1058         /*
1059          * If the panel wasn't on, delay before accessing aux channel
1060          */
1061         if (!ironlake_edp_have_panel_power(intel_dp)) {
1062                 DRM_DEBUG_KMS("eDP was not running\n");
1063                 msleep(intel_dp->panel_power_up_delay);
1064         }
1065 }
1066
1067 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1068 {
1069         struct drm_device *dev = intel_dp->base.base.dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         u32 pp;
1072
1073         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1074                 pp = ironlake_get_pp_control(dev_priv);
1075                 pp &= ~EDP_FORCE_VDD;
1076                 I915_WRITE(PCH_PP_CONTROL, pp);
1077                 POSTING_READ(PCH_PP_CONTROL);
1078
1079                 /* Make sure sequencer is idle before allowing subsequent activity */
1080                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1081                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1082
1083                 msleep(intel_dp->panel_power_down_delay);
1084         }
1085 }
1086
1087 static void ironlake_panel_vdd_work(struct work_struct *__work)
1088 {
1089         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1090                                                  struct intel_dp, panel_vdd_work);
1091         struct drm_device *dev = intel_dp->base.base.dev;
1092
1093         mutex_lock(&dev->mode_config.mutex);
1094         ironlake_panel_vdd_off_sync(intel_dp);
1095         mutex_unlock(&dev->mode_config.mutex);
1096 }
1097
1098 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1099 {
1100         if (!is_edp(intel_dp))
1101                 return;
1102
1103         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1104         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1105
1106         intel_dp->want_panel_vdd = false;
1107
1108         if (sync) {
1109                 ironlake_panel_vdd_off_sync(intel_dp);
1110         } else {
1111                 /*
1112                  * Queue the timer to fire a long
1113                  * time from now (relative to the power down delay)
1114                  * to keep the panel power up across a sequence of operations
1115                  */
1116                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1117                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1118         }
1119 }
1120
1121 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1122 {
1123         struct drm_device *dev = intel_dp->base.base.dev;
1124         struct drm_i915_private *dev_priv = dev->dev_private;
1125         u32 pp;
1126
1127         if (!is_edp(intel_dp))
1128                 return;
1129
1130         DRM_DEBUG_KMS("Turn eDP power on\n");
1131
1132         if (ironlake_edp_have_panel_power(intel_dp)) {
1133                 DRM_DEBUG_KMS("eDP power already on\n");
1134                 return;
1135         }
1136
1137         ironlake_wait_panel_power_cycle(intel_dp);
1138
1139         pp = ironlake_get_pp_control(dev_priv);
1140         if (IS_GEN5(dev)) {
1141                 /* ILK workaround: disable reset around power sequence */
1142                 pp &= ~PANEL_POWER_RESET;
1143                 I915_WRITE(PCH_PP_CONTROL, pp);
1144                 POSTING_READ(PCH_PP_CONTROL);
1145         }
1146
1147         pp |= POWER_TARGET_ON;
1148         if (!IS_GEN5(dev))
1149                 pp |= PANEL_POWER_RESET;
1150
1151         I915_WRITE(PCH_PP_CONTROL, pp);
1152         POSTING_READ(PCH_PP_CONTROL);
1153
1154         ironlake_wait_panel_on(intel_dp);
1155
1156         if (IS_GEN5(dev)) {
1157                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1158                 I915_WRITE(PCH_PP_CONTROL, pp);
1159                 POSTING_READ(PCH_PP_CONTROL);
1160         }
1161 }
1162
1163 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1164 {
1165         struct drm_device *dev = intel_dp->base.base.dev;
1166         struct drm_i915_private *dev_priv = dev->dev_private;
1167         u32 pp;
1168
1169         if (!is_edp(intel_dp))
1170                 return;
1171
1172         DRM_DEBUG_KMS("Turn eDP power off\n");
1173
1174         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1175
1176         pp = ironlake_get_pp_control(dev_priv);
1177         /* We need to switch off panel power _and_ force vdd, for otherwise some
1178          * panels get very unhappy and cease to work. */
1179         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1180         I915_WRITE(PCH_PP_CONTROL, pp);
1181         POSTING_READ(PCH_PP_CONTROL);
1182
1183         intel_dp->want_panel_vdd = false;
1184
1185         ironlake_wait_panel_off(intel_dp);
1186 }
1187
1188 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1189 {
1190         struct drm_device *dev = intel_dp->base.base.dev;
1191         struct drm_i915_private *dev_priv = dev->dev_private;
1192         u32 pp;
1193
1194         if (!is_edp(intel_dp))
1195                 return;
1196
1197         DRM_DEBUG_KMS("\n");
1198         /*
1199          * If we enable the backlight right away following a panel power
1200          * on, we may see slight flicker as the panel syncs with the eDP
1201          * link.  So delay a bit to make sure the image is solid before
1202          * allowing it to appear.
1203          */
1204         msleep(intel_dp->backlight_on_delay);
1205         pp = ironlake_get_pp_control(dev_priv);
1206         pp |= EDP_BLC_ENABLE;
1207         I915_WRITE(PCH_PP_CONTROL, pp);
1208         POSTING_READ(PCH_PP_CONTROL);
1209 }
1210
1211 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1212 {
1213         struct drm_device *dev = intel_dp->base.base.dev;
1214         struct drm_i915_private *dev_priv = dev->dev_private;
1215         u32 pp;
1216
1217         if (!is_edp(intel_dp))
1218                 return;
1219
1220         DRM_DEBUG_KMS("\n");
1221         pp = ironlake_get_pp_control(dev_priv);
1222         pp &= ~EDP_BLC_ENABLE;
1223         I915_WRITE(PCH_PP_CONTROL, pp);
1224         POSTING_READ(PCH_PP_CONTROL);
1225         msleep(intel_dp->backlight_off_delay);
1226 }
1227
1228 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1229 {
1230         struct drm_device *dev = encoder->dev;
1231         struct drm_i915_private *dev_priv = dev->dev_private;
1232         u32 dpa_ctl;
1233
1234         DRM_DEBUG_KMS("\n");
1235         dpa_ctl = I915_READ(DP_A);
1236         dpa_ctl |= DP_PLL_ENABLE;
1237         I915_WRITE(DP_A, dpa_ctl);
1238         POSTING_READ(DP_A);
1239         udelay(200);
1240 }
1241
1242 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1243 {
1244         struct drm_device *dev = encoder->dev;
1245         struct drm_i915_private *dev_priv = dev->dev_private;
1246         u32 dpa_ctl;
1247
1248         dpa_ctl = I915_READ(DP_A);
1249         dpa_ctl &= ~DP_PLL_ENABLE;
1250         I915_WRITE(DP_A, dpa_ctl);
1251         POSTING_READ(DP_A);
1252         udelay(200);
1253 }
1254
1255 /* If the sink supports it, try to set the power state appropriately */
1256 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1257 {
1258         int ret, i;
1259
1260         /* Should have a valid DPCD by this point */
1261         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1262                 return;
1263
1264         if (mode != DRM_MODE_DPMS_ON) {
1265                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1266                                                   DP_SET_POWER_D3);
1267                 if (ret != 1)
1268                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1269         } else {
1270                 /*
1271                  * When turning on, we need to retry for 1ms to give the sink
1272                  * time to wake up.
1273                  */
1274                 for (i = 0; i < 3; i++) {
1275                         ret = intel_dp_aux_native_write_1(intel_dp,
1276                                                           DP_SET_POWER,
1277                                                           DP_SET_POWER_D0);
1278                         if (ret == 1)
1279                                 break;
1280                         msleep(1);
1281                 }
1282         }
1283 }
1284
1285 static void intel_dp_prepare(struct drm_encoder *encoder)
1286 {
1287         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1288
1289
1290         /* Make sure the panel is off before trying to change the mode. But also
1291          * ensure that we have vdd while we switch off the panel. */
1292         ironlake_edp_panel_vdd_on(intel_dp);
1293         ironlake_edp_backlight_off(intel_dp);
1294         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1295         ironlake_edp_panel_off(intel_dp);
1296         intel_dp_link_down(intel_dp);
1297 }
1298
1299 static void intel_dp_commit(struct drm_encoder *encoder)
1300 {
1301         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1302         struct drm_device *dev = encoder->dev;
1303         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1304
1305         ironlake_edp_panel_vdd_on(intel_dp);
1306         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1307         intel_dp_start_link_train(intel_dp);
1308         ironlake_edp_panel_on(intel_dp);
1309         ironlake_edp_panel_vdd_off(intel_dp, true);
1310         intel_dp_complete_link_train(intel_dp);
1311         ironlake_edp_backlight_on(intel_dp);
1312
1313         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1314
1315         if (HAS_PCH_CPT(dev))
1316                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1317 }
1318
1319 static void
1320 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1321 {
1322         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1323         struct drm_device *dev = encoder->dev;
1324         struct drm_i915_private *dev_priv = dev->dev_private;
1325         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1326
1327         if (mode != DRM_MODE_DPMS_ON) {
1328                 /* Switching the panel off requires vdd. */
1329                 ironlake_edp_panel_vdd_on(intel_dp);
1330                 ironlake_edp_backlight_off(intel_dp);
1331                 intel_dp_sink_dpms(intel_dp, mode);
1332                 ironlake_edp_panel_off(intel_dp);
1333                 intel_dp_link_down(intel_dp);
1334
1335                 if (is_cpu_edp(intel_dp))
1336                         ironlake_edp_pll_off(encoder);
1337         } else {
1338                 if (is_cpu_edp(intel_dp))
1339                         ironlake_edp_pll_on(encoder);
1340
1341                 ironlake_edp_panel_vdd_on(intel_dp);
1342                 intel_dp_sink_dpms(intel_dp, mode);
1343                 if (!(dp_reg & DP_PORT_EN)) {
1344                         intel_dp_start_link_train(intel_dp);
1345                         ironlake_edp_panel_on(intel_dp);
1346                         ironlake_edp_panel_vdd_off(intel_dp, true);
1347                         intel_dp_complete_link_train(intel_dp);
1348                 } else
1349                         ironlake_edp_panel_vdd_off(intel_dp, false);
1350                 ironlake_edp_backlight_on(intel_dp);
1351         }
1352         intel_dp->dpms_mode = mode;
1353 }
1354
1355 /*
1356  * Native read with retry for link status and receiver capability reads for
1357  * cases where the sink may still be asleep.
1358  */
1359 static bool
1360 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1361                                uint8_t *recv, int recv_bytes)
1362 {
1363         int ret, i;
1364
1365         /*
1366          * Sinks are *supposed* to come up within 1ms from an off state,
1367          * but we're also supposed to retry 3 times per the spec.
1368          */
1369         for (i = 0; i < 3; i++) {
1370                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1371                                                recv_bytes);
1372                 if (ret == recv_bytes)
1373                         return true;
1374                 msleep(1);
1375         }
1376
1377         return false;
1378 }
1379
1380 /*
1381  * Fetch AUX CH registers 0x202 - 0x207 which contain
1382  * link status information
1383  */
1384 static bool
1385 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1386 {
1387         return intel_dp_aux_native_read_retry(intel_dp,
1388                                               DP_LANE0_1_STATUS,
1389                                               link_status,
1390                                               DP_LINK_STATUS_SIZE);
1391 }
1392
1393 static uint8_t
1394 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1395                      int r)
1396 {
1397         return link_status[r - DP_LANE0_1_STATUS];
1398 }
1399
1400 static uint8_t
1401 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1402                                  int lane)
1403 {
1404         int         s = ((lane & 1) ?
1405                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1406                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1407         uint8_t l = adjust_request[lane>>1];
1408
1409         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1410 }
1411
1412 static uint8_t
1413 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1414                                       int lane)
1415 {
1416         int         s = ((lane & 1) ?
1417                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1418                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1419         uint8_t l = adjust_request[lane>>1];
1420
1421         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1422 }
1423
1424
1425 #if 0
1426 static char     *voltage_names[] = {
1427         "0.4V", "0.6V", "0.8V", "1.2V"
1428 };
1429 static char     *pre_emph_names[] = {
1430         "0dB", "3.5dB", "6dB", "9.5dB"
1431 };
1432 static char     *link_train_names[] = {
1433         "pattern 1", "pattern 2", "idle", "off"
1434 };
1435 #endif
1436
1437 /*
1438  * These are source-specific values; current Intel hardware supports
1439  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1440  */
1441
1442 static uint8_t
1443 intel_dp_voltage_max(struct intel_dp *intel_dp)
1444 {
1445         struct drm_device *dev = intel_dp->base.base.dev;
1446
1447         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1448                 return DP_TRAIN_VOLTAGE_SWING_800;
1449         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1450                 return DP_TRAIN_VOLTAGE_SWING_1200;
1451         else
1452                 return DP_TRAIN_VOLTAGE_SWING_800;
1453 }
1454
1455 static uint8_t
1456 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1457 {
1458         struct drm_device *dev = intel_dp->base.base.dev;
1459
1460         if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1461                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1462                 case DP_TRAIN_VOLTAGE_SWING_400:
1463                         return DP_TRAIN_PRE_EMPHASIS_6;
1464                 case DP_TRAIN_VOLTAGE_SWING_600:
1465                 case DP_TRAIN_VOLTAGE_SWING_800:
1466                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1467                 default:
1468                         return DP_TRAIN_PRE_EMPHASIS_0;
1469                 }
1470         } else {
1471                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1472                 case DP_TRAIN_VOLTAGE_SWING_400:
1473                         return DP_TRAIN_PRE_EMPHASIS_6;
1474                 case DP_TRAIN_VOLTAGE_SWING_600:
1475                         return DP_TRAIN_PRE_EMPHASIS_6;
1476                 case DP_TRAIN_VOLTAGE_SWING_800:
1477                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1478                 case DP_TRAIN_VOLTAGE_SWING_1200:
1479                 default:
1480                         return DP_TRAIN_PRE_EMPHASIS_0;
1481                 }
1482         }
1483 }
1484
1485 static void
1486 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1487 {
1488         uint8_t v = 0;
1489         uint8_t p = 0;
1490         int lane;
1491         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1492         uint8_t voltage_max;
1493         uint8_t preemph_max;
1494
1495         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1496                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1497                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1498
1499                 if (this_v > v)
1500                         v = this_v;
1501                 if (this_p > p)
1502                         p = this_p;
1503         }
1504
1505         voltage_max = intel_dp_voltage_max(intel_dp);
1506         if (v >= voltage_max)
1507                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1508
1509         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1510         if (p >= preemph_max)
1511                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1512
1513         for (lane = 0; lane < 4; lane++)
1514                 intel_dp->train_set[lane] = v | p;
1515 }
1516
1517 static uint32_t
1518 intel_dp_signal_levels(uint8_t train_set)
1519 {
1520         uint32_t        signal_levels = 0;
1521
1522         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1523         case DP_TRAIN_VOLTAGE_SWING_400:
1524         default:
1525                 signal_levels |= DP_VOLTAGE_0_4;
1526                 break;
1527         case DP_TRAIN_VOLTAGE_SWING_600:
1528                 signal_levels |= DP_VOLTAGE_0_6;
1529                 break;
1530         case DP_TRAIN_VOLTAGE_SWING_800:
1531                 signal_levels |= DP_VOLTAGE_0_8;
1532                 break;
1533         case DP_TRAIN_VOLTAGE_SWING_1200:
1534                 signal_levels |= DP_VOLTAGE_1_2;
1535                 break;
1536         }
1537         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1538         case DP_TRAIN_PRE_EMPHASIS_0:
1539         default:
1540                 signal_levels |= DP_PRE_EMPHASIS_0;
1541                 break;
1542         case DP_TRAIN_PRE_EMPHASIS_3_5:
1543                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1544                 break;
1545         case DP_TRAIN_PRE_EMPHASIS_6:
1546                 signal_levels |= DP_PRE_EMPHASIS_6;
1547                 break;
1548         case DP_TRAIN_PRE_EMPHASIS_9_5:
1549                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1550                 break;
1551         }
1552         return signal_levels;
1553 }
1554
1555 /* Gen6's DP voltage swing and pre-emphasis control */
1556 static uint32_t
1557 intel_gen6_edp_signal_levels(uint8_t train_set)
1558 {
1559         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1560                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1561         switch (signal_levels) {
1562         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1563         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1564                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1565         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1566                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1567         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1568         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1569                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1570         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1571         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1572                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1573         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1574         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1575                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1576         default:
1577                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1578                               "0x%x\n", signal_levels);
1579                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1580         }
1581 }
1582
1583 /* Gen7's DP voltage swing and pre-emphasis control */
1584 static uint32_t
1585 intel_gen7_edp_signal_levels(uint8_t train_set)
1586 {
1587         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1588                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1589         switch (signal_levels) {
1590         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1591                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1592         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1593                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1594         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1595                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1596
1597         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1598                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1599         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1600                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1601
1602         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1603                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1604         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1605                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1606
1607         default:
1608                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1609                               "0x%x\n", signal_levels);
1610                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1611         }
1612 }
1613
1614 static uint8_t
1615 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1616                       int lane)
1617 {
1618         int s = (lane & 1) * 4;
1619         uint8_t l = link_status[lane>>1];
1620
1621         return (l >> s) & 0xf;
1622 }
1623
1624 /* Check for clock recovery is done on all channels */
1625 static bool
1626 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1627 {
1628         int lane;
1629         uint8_t lane_status;
1630
1631         for (lane = 0; lane < lane_count; lane++) {
1632                 lane_status = intel_get_lane_status(link_status, lane);
1633                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1634                         return false;
1635         }
1636         return true;
1637 }
1638
1639 /* Check to see if channel eq is done on all channels */
1640 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1641                          DP_LANE_CHANNEL_EQ_DONE|\
1642                          DP_LANE_SYMBOL_LOCKED)
1643 static bool
1644 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1645 {
1646         uint8_t lane_align;
1647         uint8_t lane_status;
1648         int lane;
1649
1650         lane_align = intel_dp_link_status(link_status,
1651                                           DP_LANE_ALIGN_STATUS_UPDATED);
1652         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1653                 return false;
1654         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1655                 lane_status = intel_get_lane_status(link_status, lane);
1656                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1657                         return false;
1658         }
1659         return true;
1660 }
1661
1662 static bool
1663 intel_dp_set_link_train(struct intel_dp *intel_dp,
1664                         uint32_t dp_reg_value,
1665                         uint8_t dp_train_pat)
1666 {
1667         struct drm_device *dev = intel_dp->base.base.dev;
1668         struct drm_i915_private *dev_priv = dev->dev_private;
1669         int ret;
1670
1671         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1672         POSTING_READ(intel_dp->output_reg);
1673
1674         intel_dp_aux_native_write_1(intel_dp,
1675                                     DP_TRAINING_PATTERN_SET,
1676                                     dp_train_pat);
1677
1678         ret = intel_dp_aux_native_write(intel_dp,
1679                                         DP_TRAINING_LANE0_SET,
1680                                         intel_dp->train_set,
1681                                         intel_dp->lane_count);
1682         if (ret != intel_dp->lane_count)
1683                 return false;
1684
1685         return true;
1686 }
1687
1688 /* Enable corresponding port and start training pattern 1 */
1689 static void
1690 intel_dp_start_link_train(struct intel_dp *intel_dp)
1691 {
1692         struct drm_device *dev = intel_dp->base.base.dev;
1693         struct drm_i915_private *dev_priv = dev->dev_private;
1694         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1695         int i;
1696         uint8_t voltage;
1697         bool clock_recovery = false;
1698         int voltage_tries, loop_tries;
1699         u32 reg;
1700         uint32_t DP = intel_dp->DP;
1701
1702         /*
1703          * On CPT we have to enable the port in training pattern 1, which
1704          * will happen below in intel_dp_set_link_train.  Otherwise, enable
1705          * the port and wait for it to become active.
1706          */
1707         if (!HAS_PCH_CPT(dev)) {
1708                 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1709                 POSTING_READ(intel_dp->output_reg);
1710                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1711         }
1712
1713         /* Write the link configuration data */
1714         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1715                                   intel_dp->link_configuration,
1716                                   DP_LINK_CONFIGURATION_SIZE);
1717
1718         DP |= DP_PORT_EN;
1719
1720         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1721                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1722         else
1723                 DP &= ~DP_LINK_TRAIN_MASK;
1724         memset(intel_dp->train_set, 0, 4);
1725         voltage = 0xff;
1726         voltage_tries = 0;
1727         loop_tries = 0;
1728         clock_recovery = false;
1729         for (;;) {
1730                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1731                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1732                 uint32_t    signal_levels;
1733
1734
1735                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1736                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1737                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1738                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1739                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1740                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1741                 } else {
1742                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1743                         DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1744                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1745                 }
1746
1747                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1748                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1749                 else
1750                         reg = DP | DP_LINK_TRAIN_PAT_1;
1751
1752                 if (!intel_dp_set_link_train(intel_dp, reg,
1753                                              DP_TRAINING_PATTERN_1 |
1754                                              DP_LINK_SCRAMBLING_DISABLE))
1755                         break;
1756                 /* Set training pattern 1 */
1757
1758                 udelay(100);
1759                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1760                         DRM_ERROR("failed to get link status\n");
1761                         break;
1762                 }
1763
1764                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1765                         DRM_DEBUG_KMS("clock recovery OK\n");
1766                         clock_recovery = true;
1767                         break;
1768                 }
1769
1770                 /* Check to see if we've tried the max voltage */
1771                 for (i = 0; i < intel_dp->lane_count; i++)
1772                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1773                                 break;
1774                 if (i == intel_dp->lane_count && voltage_tries == 5) {
1775                         ++loop_tries;
1776                         if (loop_tries == 5) {
1777                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1778                                 break;
1779                         }
1780                         memset(intel_dp->train_set, 0, 4);
1781                         voltage_tries = 0;
1782                         continue;
1783                 }
1784
1785                 /* Check to see if we've tried the same voltage 5 times */
1786                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1787                         ++voltage_tries;
1788                         if (voltage_tries == 5) {
1789                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1790                                 break;
1791                         }
1792                 } else
1793                         voltage_tries = 0;
1794                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1795
1796                 /* Compute new intel_dp->train_set as requested by target */
1797                 intel_get_adjust_train(intel_dp, link_status);
1798         }
1799
1800         intel_dp->DP = DP;
1801 }
1802
1803 static void
1804 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1805 {
1806         struct drm_device *dev = intel_dp->base.base.dev;
1807         struct drm_i915_private *dev_priv = dev->dev_private;
1808         bool channel_eq = false;
1809         int tries, cr_tries;
1810         u32 reg;
1811         uint32_t DP = intel_dp->DP;
1812
1813         /* channel equalization */
1814         tries = 0;
1815         cr_tries = 0;
1816         channel_eq = false;
1817         for (;;) {
1818                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1819                 uint32_t    signal_levels;
1820                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1821
1822                 if (cr_tries > 5) {
1823                         DRM_ERROR("failed to train DP, aborting\n");
1824                         intel_dp_link_down(intel_dp);
1825                         break;
1826                 }
1827
1828                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1829                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1830                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1831                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1832                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1833                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1834                 } else {
1835                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1836                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1837                 }
1838
1839                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1840                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1841                 else
1842                         reg = DP | DP_LINK_TRAIN_PAT_2;
1843
1844                 /* channel eq pattern */
1845                 if (!intel_dp_set_link_train(intel_dp, reg,
1846                                              DP_TRAINING_PATTERN_2 |
1847                                              DP_LINK_SCRAMBLING_DISABLE))
1848                         break;
1849
1850                 udelay(400);
1851                 if (!intel_dp_get_link_status(intel_dp, link_status))
1852                         break;
1853
1854                 /* Make sure clock is still ok */
1855                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1856                         intel_dp_start_link_train(intel_dp);
1857                         cr_tries++;
1858                         continue;
1859                 }
1860
1861                 if (intel_channel_eq_ok(intel_dp, link_status)) {
1862                         channel_eq = true;
1863                         break;
1864                 }
1865
1866                 /* Try 5 times, then try clock recovery if that fails */
1867                 if (tries > 5) {
1868                         intel_dp_link_down(intel_dp);
1869                         intel_dp_start_link_train(intel_dp);
1870                         tries = 0;
1871                         cr_tries++;
1872                         continue;
1873                 }
1874
1875                 /* Compute new intel_dp->train_set as requested by target */
1876                 intel_get_adjust_train(intel_dp, link_status);
1877                 ++tries;
1878         }
1879
1880         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1881                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1882         else
1883                 reg = DP | DP_LINK_TRAIN_OFF;
1884
1885         I915_WRITE(intel_dp->output_reg, reg);
1886         POSTING_READ(intel_dp->output_reg);
1887         intel_dp_aux_native_write_1(intel_dp,
1888                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1889 }
1890
1891 static void
1892 intel_dp_link_down(struct intel_dp *intel_dp)
1893 {
1894         struct drm_device *dev = intel_dp->base.base.dev;
1895         struct drm_i915_private *dev_priv = dev->dev_private;
1896         uint32_t DP = intel_dp->DP;
1897
1898         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1899                 return;
1900
1901         DRM_DEBUG_KMS("\n");
1902
1903         if (is_edp(intel_dp)) {
1904                 DP &= ~DP_PLL_ENABLE;
1905                 I915_WRITE(intel_dp->output_reg, DP);
1906                 POSTING_READ(intel_dp->output_reg);
1907                 udelay(100);
1908         }
1909
1910         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1911                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1912                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1913         } else {
1914                 DP &= ~DP_LINK_TRAIN_MASK;
1915                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1916         }
1917         POSTING_READ(intel_dp->output_reg);
1918
1919         msleep(17);
1920
1921         if (is_edp(intel_dp)) {
1922                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1923                         DP |= DP_LINK_TRAIN_OFF_CPT;
1924                 else
1925                         DP |= DP_LINK_TRAIN_OFF;
1926         }
1927
1928         if (HAS_PCH_IBX(dev) &&
1929             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1930                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1931
1932                 /* Hardware workaround: leaving our transcoder select
1933                  * set to transcoder B while it's off will prevent the
1934                  * corresponding HDMI output on transcoder A.
1935                  *
1936                  * Combine this with another hardware workaround:
1937                  * transcoder select bit can only be cleared while the
1938                  * port is enabled.
1939                  */
1940                 DP &= ~DP_PIPEB_SELECT;
1941                 I915_WRITE(intel_dp->output_reg, DP);
1942
1943                 /* Changes to enable or select take place the vblank
1944                  * after being written.
1945                  */
1946                 if (crtc == NULL) {
1947                         /* We can arrive here never having been attached
1948                          * to a CRTC, for instance, due to inheriting
1949                          * random state from the BIOS.
1950                          *
1951                          * If the pipe is not running, play safe and
1952                          * wait for the clocks to stabilise before
1953                          * continuing.
1954                          */
1955                         POSTING_READ(intel_dp->output_reg);
1956                         msleep(50);
1957                 } else
1958                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1959         }
1960
1961         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1962         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1963         POSTING_READ(intel_dp->output_reg);
1964         msleep(intel_dp->panel_power_down_delay);
1965 }
1966
1967 static bool
1968 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1969 {
1970         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1971                                            sizeof(intel_dp->dpcd)) &&
1972             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1973                 return true;
1974         }
1975
1976         return false;
1977 }
1978
1979 static void
1980 intel_dp_probe_oui(struct intel_dp *intel_dp)
1981 {
1982         u8 buf[3];
1983
1984         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1985                 return;
1986
1987         ironlake_edp_panel_vdd_on(intel_dp);
1988
1989         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1990                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
1991                               buf[0], buf[1], buf[2]);
1992
1993         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1994                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
1995                               buf[0], buf[1], buf[2]);
1996
1997         ironlake_edp_panel_vdd_off(intel_dp, false);
1998 }
1999
2000 static bool
2001 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2002 {
2003         int ret;
2004
2005         ret = intel_dp_aux_native_read_retry(intel_dp,
2006                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2007                                              sink_irq_vector, 1);
2008         if (!ret)
2009                 return false;
2010
2011         return true;
2012 }
2013
2014 static void
2015 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2016 {
2017         /* NAK by default */
2018         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2019 }
2020
2021 /*
2022  * According to DP spec
2023  * 5.1.2:
2024  *  1. Read DPCD
2025  *  2. Configure link according to Receiver Capabilities
2026  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2027  *  4. Check link status on receipt of hot-plug interrupt
2028  */
2029
2030 static void
2031 intel_dp_check_link_status(struct intel_dp *intel_dp)
2032 {
2033         u8 sink_irq_vector;
2034         u8 link_status[DP_LINK_STATUS_SIZE];
2035
2036         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
2037                 return;
2038
2039         if (!intel_dp->base.base.crtc)
2040                 return;
2041
2042         /* Try to read receiver status if the link appears to be up */
2043         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2044                 intel_dp_link_down(intel_dp);
2045                 return;
2046         }
2047
2048         /* Now read the DPCD to see if it's actually running */
2049         if (!intel_dp_get_dpcd(intel_dp)) {
2050                 intel_dp_link_down(intel_dp);
2051                 return;
2052         }
2053
2054         /* Try to read the source of the interrupt */
2055         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2056             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2057                 /* Clear interrupt source */
2058                 intel_dp_aux_native_write_1(intel_dp,
2059                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2060                                             sink_irq_vector);
2061
2062                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2063                         intel_dp_handle_test_request(intel_dp);
2064                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2065                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2066         }
2067
2068         if (!intel_channel_eq_ok(intel_dp, link_status)) {
2069                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2070                               drm_get_encoder_name(&intel_dp->base.base));
2071                 intel_dp_start_link_train(intel_dp);
2072                 intel_dp_complete_link_train(intel_dp);
2073         }
2074 }
2075
2076 static enum drm_connector_status
2077 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2078 {
2079         if (intel_dp_get_dpcd(intel_dp))
2080                 return connector_status_connected;
2081         return connector_status_disconnected;
2082 }
2083
2084 static enum drm_connector_status
2085 ironlake_dp_detect(struct intel_dp *intel_dp)
2086 {
2087         enum drm_connector_status status;
2088
2089         /* Can't disconnect eDP, but you can close the lid... */
2090         if (is_edp(intel_dp)) {
2091                 status = intel_panel_detect(intel_dp->base.base.dev);
2092                 if (status == connector_status_unknown)
2093                         status = connector_status_connected;
2094                 return status;
2095         }
2096
2097         return intel_dp_detect_dpcd(intel_dp);
2098 }
2099
2100 static enum drm_connector_status
2101 g4x_dp_detect(struct intel_dp *intel_dp)
2102 {
2103         struct drm_device *dev = intel_dp->base.base.dev;
2104         struct drm_i915_private *dev_priv = dev->dev_private;
2105         uint32_t bit;
2106
2107         switch (intel_dp->output_reg) {
2108         case DP_B:
2109                 bit = DPB_HOTPLUG_LIVE_STATUS;
2110                 break;
2111         case DP_C:
2112                 bit = DPC_HOTPLUG_LIVE_STATUS;
2113                 break;
2114         case DP_D:
2115                 bit = DPD_HOTPLUG_LIVE_STATUS;
2116                 break;
2117         default:
2118                 return connector_status_unknown;
2119         }
2120
2121         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2122                 return connector_status_disconnected;
2123
2124         return intel_dp_detect_dpcd(intel_dp);
2125 }
2126
2127 static struct edid *
2128 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2129 {
2130         struct intel_dp *intel_dp = intel_attached_dp(connector);
2131         struct edid     *edid;
2132         int size;
2133
2134         if (is_edp(intel_dp)) {
2135                 if (!intel_dp->edid)
2136                         return NULL;
2137
2138                 size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2139                 edid = kmalloc(size, GFP_KERNEL);
2140                 if (!edid)
2141                         return NULL;
2142
2143                 memcpy(edid, intel_dp->edid, size);
2144                 return edid;
2145         }
2146
2147         edid = drm_get_edid(connector, adapter);
2148         return edid;
2149 }
2150
2151 static int
2152 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2153 {
2154         struct intel_dp *intel_dp = intel_attached_dp(connector);
2155         int     ret;
2156
2157         if (is_edp(intel_dp)) {
2158                 drm_mode_connector_update_edid_property(connector,
2159                                                         intel_dp->edid);
2160                 ret = drm_add_edid_modes(connector, intel_dp->edid);
2161                 drm_edid_to_eld(connector,
2162                                 intel_dp->edid);
2163                 connector->display_info.raw_edid = NULL;
2164                 return intel_dp->edid_mode_count;
2165         }
2166
2167         ret = intel_ddc_get_modes(connector, adapter);
2168         return ret;
2169 }
2170
2171
2172 /**
2173  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2174  *
2175  * \return true if DP port is connected.
2176  * \return false if DP port is disconnected.
2177  */
2178 static enum drm_connector_status
2179 intel_dp_detect(struct drm_connector *connector, bool force)
2180 {
2181         struct intel_dp *intel_dp = intel_attached_dp(connector);
2182         struct drm_device *dev = intel_dp->base.base.dev;
2183         enum drm_connector_status status;
2184         struct edid *edid = NULL;
2185
2186         intel_dp->has_audio = false;
2187
2188         if (HAS_PCH_SPLIT(dev))
2189                 status = ironlake_dp_detect(intel_dp);
2190         else
2191                 status = g4x_dp_detect(intel_dp);
2192
2193         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2194                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2195                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2196                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
2197
2198         if (status != connector_status_connected)
2199                 return status;
2200
2201         intel_dp_probe_oui(intel_dp);
2202
2203         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2204                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2205         } else {
2206                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2207                 if (edid) {
2208                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2209                         connector->display_info.raw_edid = NULL;
2210                         kfree(edid);
2211                 }
2212         }
2213
2214         return connector_status_connected;
2215 }
2216
2217 static int intel_dp_get_modes(struct drm_connector *connector)
2218 {
2219         struct intel_dp *intel_dp = intel_attached_dp(connector);
2220         struct drm_device *dev = intel_dp->base.base.dev;
2221         struct drm_i915_private *dev_priv = dev->dev_private;
2222         int ret;
2223
2224         /* We should parse the EDID data and find out if it has an audio sink
2225          */
2226
2227         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2228         if (ret) {
2229                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2230                         struct drm_display_mode *newmode;
2231                         list_for_each_entry(newmode, &connector->probed_modes,
2232                                             head) {
2233                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2234                                         intel_dp->panel_fixed_mode =
2235                                                 drm_mode_duplicate(dev, newmode);
2236                                         break;
2237                                 }
2238                         }
2239                 }
2240                 return ret;
2241         }
2242
2243         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2244         if (is_edp(intel_dp)) {
2245                 /* initialize panel mode from VBT if available for eDP */
2246                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2247                         intel_dp->panel_fixed_mode =
2248                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2249                         if (intel_dp->panel_fixed_mode) {
2250                                 intel_dp->panel_fixed_mode->type |=
2251                                         DRM_MODE_TYPE_PREFERRED;
2252                         }
2253                 }
2254                 if (intel_dp->panel_fixed_mode) {
2255                         struct drm_display_mode *mode;
2256                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2257                         drm_mode_probed_add(connector, mode);
2258                         return 1;
2259                 }
2260         }
2261         return 0;
2262 }
2263
2264 static bool
2265 intel_dp_detect_audio(struct drm_connector *connector)
2266 {
2267         struct intel_dp *intel_dp = intel_attached_dp(connector);
2268         struct edid *edid;
2269         bool has_audio = false;
2270
2271         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2272         if (edid) {
2273                 has_audio = drm_detect_monitor_audio(edid);
2274
2275                 connector->display_info.raw_edid = NULL;
2276                 kfree(edid);
2277         }
2278
2279         return has_audio;
2280 }
2281
2282 static int
2283 intel_dp_set_property(struct drm_connector *connector,
2284                       struct drm_property *property,
2285                       uint64_t val)
2286 {
2287         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2288         struct intel_dp *intel_dp = intel_attached_dp(connector);
2289         int ret;
2290
2291         ret = drm_connector_property_set_value(connector, property, val);
2292         if (ret)
2293                 return ret;
2294
2295         if (property == dev_priv->force_audio_property) {
2296                 int i = val;
2297                 bool has_audio;
2298
2299                 if (i == intel_dp->force_audio)
2300                         return 0;
2301
2302                 intel_dp->force_audio = i;
2303
2304                 if (i == HDMI_AUDIO_AUTO)
2305                         has_audio = intel_dp_detect_audio(connector);
2306                 else
2307                         has_audio = (i == HDMI_AUDIO_ON);
2308
2309                 if (has_audio == intel_dp->has_audio)
2310                         return 0;
2311
2312                 intel_dp->has_audio = has_audio;
2313                 goto done;
2314         }
2315
2316         if (property == dev_priv->broadcast_rgb_property) {
2317                 if (val == !!intel_dp->color_range)
2318                         return 0;
2319
2320                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2321                 goto done;
2322         }
2323
2324         return -EINVAL;
2325
2326 done:
2327         if (intel_dp->base.base.crtc) {
2328                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2329                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2330                                          crtc->x, crtc->y,
2331                                          crtc->fb);
2332         }
2333
2334         return 0;
2335 }
2336
2337 static void
2338 intel_dp_destroy(struct drm_connector *connector)
2339 {
2340         struct drm_device *dev = connector->dev;
2341
2342         if (intel_dpd_is_edp(dev))
2343                 intel_panel_destroy_backlight(dev);
2344
2345         drm_sysfs_connector_remove(connector);
2346         drm_connector_cleanup(connector);
2347         kfree(connector);
2348 }
2349
2350 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2351 {
2352         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2353
2354         i2c_del_adapter(&intel_dp->adapter);
2355         drm_encoder_cleanup(encoder);
2356         if (is_edp(intel_dp)) {
2357                 kfree(intel_dp->edid);
2358                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2359                 ironlake_panel_vdd_off_sync(intel_dp);
2360         }
2361         kfree(intel_dp);
2362 }
2363
2364 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2365         .dpms = intel_dp_dpms,
2366         .mode_fixup = intel_dp_mode_fixup,
2367         .prepare = intel_dp_prepare,
2368         .mode_set = intel_dp_mode_set,
2369         .commit = intel_dp_commit,
2370 };
2371
2372 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2373         .dpms = drm_helper_connector_dpms,
2374         .detect = intel_dp_detect,
2375         .fill_modes = drm_helper_probe_single_connector_modes,
2376         .set_property = intel_dp_set_property,
2377         .destroy = intel_dp_destroy,
2378 };
2379
2380 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2381         .get_modes = intel_dp_get_modes,
2382         .mode_valid = intel_dp_mode_valid,
2383         .best_encoder = intel_best_encoder,
2384 };
2385
2386 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2387         .destroy = intel_dp_encoder_destroy,
2388 };
2389
2390 static void
2391 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2392 {
2393         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2394
2395         intel_dp_check_link_status(intel_dp);
2396 }
2397
2398 /* Return which DP Port should be selected for Transcoder DP control */
2399 int
2400 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2401 {
2402         struct drm_device *dev = crtc->dev;
2403         struct intel_encoder *encoder;
2404
2405         for_each_encoder_on_crtc(dev, crtc, encoder) {
2406                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2407
2408                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2409                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2410                         return intel_dp->output_reg;
2411         }
2412
2413         return -1;
2414 }
2415
2416 /* check the VBT to see whether the eDP is on DP-D port */
2417 bool intel_dpd_is_edp(struct drm_device *dev)
2418 {
2419         struct drm_i915_private *dev_priv = dev->dev_private;
2420         struct child_device_config *p_child;
2421         int i;
2422
2423         if (!dev_priv->child_dev_num)
2424                 return false;
2425
2426         for (i = 0; i < dev_priv->child_dev_num; i++) {
2427                 p_child = dev_priv->child_dev + i;
2428
2429                 if (p_child->dvo_port == PORT_IDPD &&
2430                     p_child->device_type == DEVICE_TYPE_eDP)
2431                         return true;
2432         }
2433         return false;
2434 }
2435
2436 static void
2437 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2438 {
2439         intel_attach_force_audio_property(connector);
2440         intel_attach_broadcast_rgb_property(connector);
2441 }
2442
2443 void
2444 intel_dp_init(struct drm_device *dev, int output_reg)
2445 {
2446         struct drm_i915_private *dev_priv = dev->dev_private;
2447         struct drm_connector *connector;
2448         struct intel_dp *intel_dp;
2449         struct intel_encoder *intel_encoder;
2450         struct intel_connector *intel_connector;
2451         const char *name = NULL;
2452         int type;
2453
2454         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2455         if (!intel_dp)
2456                 return;
2457
2458         intel_dp->output_reg = output_reg;
2459         intel_dp->dpms_mode = -1;
2460
2461         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2462         if (!intel_connector) {
2463                 kfree(intel_dp);
2464                 return;
2465         }
2466         intel_encoder = &intel_dp->base;
2467
2468         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2469                 if (intel_dpd_is_edp(dev))
2470                         intel_dp->is_pch_edp = true;
2471
2472         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2473                 type = DRM_MODE_CONNECTOR_eDP;
2474                 intel_encoder->type = INTEL_OUTPUT_EDP;
2475         } else {
2476                 type = DRM_MODE_CONNECTOR_DisplayPort;
2477                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2478         }
2479
2480         connector = &intel_connector->base;
2481         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2482         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2483
2484         connector->polled = DRM_CONNECTOR_POLL_HPD;
2485
2486         if (output_reg == DP_B || output_reg == PCH_DP_B)
2487                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2488         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2489                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2490         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2491                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2492
2493         if (is_edp(intel_dp)) {
2494                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2495                 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2496                                   ironlake_panel_vdd_work);
2497         }
2498
2499         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2500
2501         connector->interlace_allowed = true;
2502         connector->doublescan_allowed = 0;
2503
2504         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2505                          DRM_MODE_ENCODER_TMDS);
2506         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2507
2508         intel_connector_attach_encoder(intel_connector, intel_encoder);
2509         drm_sysfs_connector_add(connector);
2510
2511         /* Set up the DDC bus. */
2512         switch (output_reg) {
2513                 case DP_A:
2514                         name = "DPDDC-A";
2515                         break;
2516                 case DP_B:
2517                 case PCH_DP_B:
2518                         dev_priv->hotplug_supported_mask |=
2519                                 DPB_HOTPLUG_INT_STATUS;
2520                         name = "DPDDC-B";
2521                         break;
2522                 case DP_C:
2523                 case PCH_DP_C:
2524                         dev_priv->hotplug_supported_mask |=
2525                                 DPC_HOTPLUG_INT_STATUS;
2526                         name = "DPDDC-C";
2527                         break;
2528                 case DP_D:
2529                 case PCH_DP_D:
2530                         dev_priv->hotplug_supported_mask |=
2531                                 DPD_HOTPLUG_INT_STATUS;
2532                         name = "DPDDC-D";
2533                         break;
2534         }
2535
2536         intel_dp_i2c_init(intel_dp, intel_connector, name);
2537
2538         /* Cache some DPCD data in the eDP case */
2539         if (is_edp(intel_dp)) {
2540                 bool ret;
2541                 struct edp_power_seq    cur, vbt;
2542                 u32 pp_on, pp_off, pp_div;
2543                 struct edid *edid;
2544
2545                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2546                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2547                 pp_div = I915_READ(PCH_PP_DIVISOR);
2548
2549                 if (!pp_on || !pp_off || !pp_div) {
2550                         DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2551                         intel_dp_encoder_destroy(&intel_dp->base.base);
2552                         intel_dp_destroy(&intel_connector->base);
2553                         return;
2554                 }
2555
2556                 /* Pull timing values out of registers */
2557                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2558                         PANEL_POWER_UP_DELAY_SHIFT;
2559
2560                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2561                         PANEL_LIGHT_ON_DELAY_SHIFT;
2562
2563                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2564                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2565
2566                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2567                         PANEL_POWER_DOWN_DELAY_SHIFT;
2568
2569                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2570                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2571
2572                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2573                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2574
2575                 vbt = dev_priv->edp.pps;
2576
2577                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2578                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2579
2580 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2581
2582                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2583                 intel_dp->backlight_on_delay = get_delay(t8);
2584                 intel_dp->backlight_off_delay = get_delay(t9);
2585                 intel_dp->panel_power_down_delay = get_delay(t10);
2586                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2587
2588                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2589                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2590                               intel_dp->panel_power_cycle_delay);
2591
2592                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2593                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2594
2595                 ironlake_edp_panel_vdd_on(intel_dp);
2596                 ret = intel_dp_get_dpcd(intel_dp);
2597                 ironlake_edp_panel_vdd_off(intel_dp, false);
2598
2599                 if (ret) {
2600                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2601                                 dev_priv->no_aux_handshake =
2602                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2603                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2604                 } else {
2605                         /* if this fails, presume the device is a ghost */
2606                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2607                         intel_dp_encoder_destroy(&intel_dp->base.base);
2608                         intel_dp_destroy(&intel_connector->base);
2609                         return;
2610                 }
2611
2612                 ironlake_edp_panel_vdd_on(intel_dp);
2613                 edid = drm_get_edid(connector, &intel_dp->adapter);
2614                 if (edid) {
2615                         drm_mode_connector_update_edid_property(connector,
2616                                                                 edid);
2617                         intel_dp->edid_mode_count =
2618                                 drm_add_edid_modes(connector, edid);
2619                         drm_edid_to_eld(connector, edid);
2620                         intel_dp->edid = edid;
2621                 }
2622                 ironlake_edp_panel_vdd_off(intel_dp, false);
2623         }
2624
2625         intel_encoder->hot_plug = intel_dp_hot_plug;
2626
2627         if (is_edp(intel_dp)) {
2628                 dev_priv->int_edp_connector = connector;
2629                 intel_panel_setup_backlight(dev);
2630         }
2631
2632         intel_dp_add_properties(intel_dp, connector);
2633
2634         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2635          * 0xd.  Failure to do so will result in spurious interrupts being
2636          * generated on the port when a cable is not attached.
2637          */
2638         if (IS_G4X(dev) && !IS_GM45(dev)) {
2639                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2640                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2641         }
2642 }