]> Pileus Git - ~andy/linux/blob - drivers/cpufreq/cpufreq.c
cpufreq: call cpufreq_driver->get() after calling ->init()
[~andy/linux] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *      Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *      Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 /**
34  * The "cpufreq driver" - the arch- or hardware-dependent low
35  * level driver of CPUFreq support, and its spinlock. This lock
36  * also protects the cpufreq_cpu_data array.
37  */
38 static struct cpufreq_driver *cpufreq_driver;
39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41 static DEFINE_RWLOCK(cpufreq_driver_lock);
42 static DEFINE_MUTEX(cpufreq_governor_lock);
43 static LIST_HEAD(cpufreq_policy_list);
44
45 #ifdef CONFIG_HOTPLUG_CPU
46 /* This one keeps track of the previously set governor of a removed CPU */
47 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
48 #endif
49
50 /*
51  * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
52  * all cpufreq/hotplug/workqueue/etc related lock issues.
53  *
54  * The rules for this semaphore:
55  * - Any routine that wants to read from the policy structure will
56  *   do a down_read on this semaphore.
57  * - Any routine that will write to the policy structure and/or may take away
58  *   the policy altogether (eg. CPU hotplug), will hold this lock in write
59  *   mode before doing so.
60  *
61  * Additional rules:
62  * - Governor routines that can be called in cpufreq hotplug path should not
63  *   take this sem as top level hotplug notifier handler takes this.
64  * - Lock should not be held across
65  *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
66  */
67 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
68
69 #define lock_policy_rwsem(mode, cpu)                                    \
70 static void lock_policy_rwsem_##mode(int cpu)                           \
71 {                                                                       \
72         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); \
73         BUG_ON(!policy);                                                \
74         down_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu));           \
75 }
76
77 lock_policy_rwsem(read, cpu);
78 lock_policy_rwsem(write, cpu);
79
80 #define unlock_policy_rwsem(mode, cpu)                                  \
81 static void unlock_policy_rwsem_##mode(int cpu)                         \
82 {                                                                       \
83         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); \
84         BUG_ON(!policy);                                                \
85         up_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu));             \
86 }
87
88 unlock_policy_rwsem(read, cpu);
89 unlock_policy_rwsem(write, cpu);
90
91 /*
92  * rwsem to guarantee that cpufreq driver module doesn't unload during critical
93  * sections
94  */
95 static DECLARE_RWSEM(cpufreq_rwsem);
96
97 /* internal prototypes */
98 static int __cpufreq_governor(struct cpufreq_policy *policy,
99                 unsigned int event);
100 static unsigned int __cpufreq_get(unsigned int cpu);
101 static void handle_update(struct work_struct *work);
102
103 /**
104  * Two notifier lists: the "policy" list is involved in the
105  * validation process for a new CPU frequency policy; the
106  * "transition" list for kernel code that needs to handle
107  * changes to devices when the CPU clock speed changes.
108  * The mutex locks both lists.
109  */
110 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
111 static struct srcu_notifier_head cpufreq_transition_notifier_list;
112
113 static bool init_cpufreq_transition_notifier_list_called;
114 static int __init init_cpufreq_transition_notifier_list(void)
115 {
116         srcu_init_notifier_head(&cpufreq_transition_notifier_list);
117         init_cpufreq_transition_notifier_list_called = true;
118         return 0;
119 }
120 pure_initcall(init_cpufreq_transition_notifier_list);
121
122 static int off __read_mostly;
123 static int cpufreq_disabled(void)
124 {
125         return off;
126 }
127 void disable_cpufreq(void)
128 {
129         off = 1;
130 }
131 static LIST_HEAD(cpufreq_governor_list);
132 static DEFINE_MUTEX(cpufreq_governor_mutex);
133
134 bool have_governor_per_policy(void)
135 {
136         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
137 }
138 EXPORT_SYMBOL_GPL(have_governor_per_policy);
139
140 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
141 {
142         if (have_governor_per_policy())
143                 return &policy->kobj;
144         else
145                 return cpufreq_global_kobject;
146 }
147 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
148
149 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
150 {
151         u64 idle_time;
152         u64 cur_wall_time;
153         u64 busy_time;
154
155         cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
156
157         busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
158         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
159         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
160         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
161         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
162         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
163
164         idle_time = cur_wall_time - busy_time;
165         if (wall)
166                 *wall = cputime_to_usecs(cur_wall_time);
167
168         return cputime_to_usecs(idle_time);
169 }
170
171 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
172 {
173         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
174
175         if (idle_time == -1ULL)
176                 return get_cpu_idle_time_jiffy(cpu, wall);
177         else if (!io_busy)
178                 idle_time += get_cpu_iowait_time_us(cpu, wall);
179
180         return idle_time;
181 }
182 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
183
184 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
185 {
186         struct cpufreq_policy *policy = NULL;
187         unsigned long flags;
188
189         if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
190                 return NULL;
191
192         if (!down_read_trylock(&cpufreq_rwsem))
193                 return NULL;
194
195         /* get the cpufreq driver */
196         read_lock_irqsave(&cpufreq_driver_lock, flags);
197
198         if (cpufreq_driver) {
199                 /* get the CPU */
200                 policy = per_cpu(cpufreq_cpu_data, cpu);
201                 if (policy)
202                         kobject_get(&policy->kobj);
203         }
204
205         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
206
207         if (!policy)
208                 up_read(&cpufreq_rwsem);
209
210         return policy;
211 }
212 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
213
214 void cpufreq_cpu_put(struct cpufreq_policy *policy)
215 {
216         if (cpufreq_disabled())
217                 return;
218
219         kobject_put(&policy->kobj);
220         up_read(&cpufreq_rwsem);
221 }
222 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
223
224 /*********************************************************************
225  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
226  *********************************************************************/
227
228 /**
229  * adjust_jiffies - adjust the system "loops_per_jiffy"
230  *
231  * This function alters the system "loops_per_jiffy" for the clock
232  * speed change. Note that loops_per_jiffy cannot be updated on SMP
233  * systems as each CPU might be scaled differently. So, use the arch
234  * per-CPU loops_per_jiffy value wherever possible.
235  */
236 #ifndef CONFIG_SMP
237 static unsigned long l_p_j_ref;
238 static unsigned int l_p_j_ref_freq;
239
240 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
241 {
242         if (ci->flags & CPUFREQ_CONST_LOOPS)
243                 return;
244
245         if (!l_p_j_ref_freq) {
246                 l_p_j_ref = loops_per_jiffy;
247                 l_p_j_ref_freq = ci->old;
248                 pr_debug("saving %lu as reference value for loops_per_jiffy; "
249                         "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
250         }
251         if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) ||
252             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
253                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
254                                                                 ci->new);
255                 pr_debug("scaling loops_per_jiffy to %lu "
256                         "for frequency %u kHz\n", loops_per_jiffy, ci->new);
257         }
258 }
259 #else
260 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
261 {
262         return;
263 }
264 #endif
265
266 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
267                 struct cpufreq_freqs *freqs, unsigned int state)
268 {
269         BUG_ON(irqs_disabled());
270
271         if (cpufreq_disabled())
272                 return;
273
274         freqs->flags = cpufreq_driver->flags;
275         pr_debug("notification %u of frequency transition to %u kHz\n",
276                 state, freqs->new);
277
278         switch (state) {
279
280         case CPUFREQ_PRECHANGE:
281                 /* detect if the driver reported a value as "old frequency"
282                  * which is not equal to what the cpufreq core thinks is
283                  * "old frequency".
284                  */
285                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
286                         if ((policy) && (policy->cpu == freqs->cpu) &&
287                             (policy->cur) && (policy->cur != freqs->old)) {
288                                 pr_debug("Warning: CPU frequency is"
289                                         " %u, cpufreq assumed %u kHz.\n",
290                                         freqs->old, policy->cur);
291                                 freqs->old = policy->cur;
292                         }
293                 }
294                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
295                                 CPUFREQ_PRECHANGE, freqs);
296                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
297                 break;
298
299         case CPUFREQ_POSTCHANGE:
300                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
301                 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
302                         (unsigned long)freqs->cpu);
303                 trace_cpu_frequency(freqs->new, freqs->cpu);
304                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
305                                 CPUFREQ_POSTCHANGE, freqs);
306                 if (likely(policy) && likely(policy->cpu == freqs->cpu))
307                         policy->cur = freqs->new;
308                 break;
309         }
310 }
311
312 /**
313  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
314  * on frequency transition.
315  *
316  * This function calls the transition notifiers and the "adjust_jiffies"
317  * function. It is called twice on all CPU frequency changes that have
318  * external effects.
319  */
320 void cpufreq_notify_transition(struct cpufreq_policy *policy,
321                 struct cpufreq_freqs *freqs, unsigned int state)
322 {
323         for_each_cpu(freqs->cpu, policy->cpus)
324                 __cpufreq_notify_transition(policy, freqs, state);
325 }
326 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
327
328
329 /*********************************************************************
330  *                          SYSFS INTERFACE                          *
331  *********************************************************************/
332
333 static struct cpufreq_governor *__find_governor(const char *str_governor)
334 {
335         struct cpufreq_governor *t;
336
337         list_for_each_entry(t, &cpufreq_governor_list, governor_list)
338                 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
339                         return t;
340
341         return NULL;
342 }
343
344 /**
345  * cpufreq_parse_governor - parse a governor string
346  */
347 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
348                                 struct cpufreq_governor **governor)
349 {
350         int err = -EINVAL;
351
352         if (!cpufreq_driver)
353                 goto out;
354
355         if (cpufreq_driver->setpolicy) {
356                 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
357                         *policy = CPUFREQ_POLICY_PERFORMANCE;
358                         err = 0;
359                 } else if (!strnicmp(str_governor, "powersave",
360                                                 CPUFREQ_NAME_LEN)) {
361                         *policy = CPUFREQ_POLICY_POWERSAVE;
362                         err = 0;
363                 }
364         } else if (cpufreq_driver->target) {
365                 struct cpufreq_governor *t;
366
367                 mutex_lock(&cpufreq_governor_mutex);
368
369                 t = __find_governor(str_governor);
370
371                 if (t == NULL) {
372                         int ret;
373
374                         mutex_unlock(&cpufreq_governor_mutex);
375                         ret = request_module("cpufreq_%s", str_governor);
376                         mutex_lock(&cpufreq_governor_mutex);
377
378                         if (ret == 0)
379                                 t = __find_governor(str_governor);
380                 }
381
382                 if (t != NULL) {
383                         *governor = t;
384                         err = 0;
385                 }
386
387                 mutex_unlock(&cpufreq_governor_mutex);
388         }
389 out:
390         return err;
391 }
392
393 /**
394  * cpufreq_per_cpu_attr_read() / show_##file_name() -
395  * print out cpufreq information
396  *
397  * Write out information from cpufreq_driver->policy[cpu]; object must be
398  * "unsigned int".
399  */
400
401 #define show_one(file_name, object)                     \
402 static ssize_t show_##file_name                         \
403 (struct cpufreq_policy *policy, char *buf)              \
404 {                                                       \
405         return sprintf(buf, "%u\n", policy->object);    \
406 }
407
408 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
409 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
410 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
411 show_one(scaling_min_freq, min);
412 show_one(scaling_max_freq, max);
413 show_one(scaling_cur_freq, cur);
414
415 static int cpufreq_set_policy(struct cpufreq_policy *policy,
416                                 struct cpufreq_policy *new_policy);
417
418 /**
419  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
420  */
421 #define store_one(file_name, object)                    \
422 static ssize_t store_##file_name                                        \
423 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
424 {                                                                       \
425         int ret;                                                        \
426         struct cpufreq_policy new_policy;                               \
427                                                                         \
428         ret = cpufreq_get_policy(&new_policy, policy->cpu);             \
429         if (ret)                                                        \
430                 return -EINVAL;                                         \
431                                                                         \
432         ret = sscanf(buf, "%u", &new_policy.object);                    \
433         if (ret != 1)                                                   \
434                 return -EINVAL;                                         \
435                                                                         \
436         ret = cpufreq_set_policy(policy, &new_policy);          \
437         policy->user_policy.object = policy->object;                    \
438                                                                         \
439         return ret ? ret : count;                                       \
440 }
441
442 store_one(scaling_min_freq, min);
443 store_one(scaling_max_freq, max);
444
445 /**
446  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
447  */
448 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
449                                         char *buf)
450 {
451         unsigned int cur_freq = __cpufreq_get(policy->cpu);
452         if (!cur_freq)
453                 return sprintf(buf, "<unknown>");
454         return sprintf(buf, "%u\n", cur_freq);
455 }
456
457 /**
458  * show_scaling_governor - show the current policy for the specified CPU
459  */
460 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
461 {
462         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
463                 return sprintf(buf, "powersave\n");
464         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
465                 return sprintf(buf, "performance\n");
466         else if (policy->governor)
467                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
468                                 policy->governor->name);
469         return -EINVAL;
470 }
471
472 /**
473  * store_scaling_governor - store policy for the specified CPU
474  */
475 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
476                                         const char *buf, size_t count)
477 {
478         int ret;
479         char    str_governor[16];
480         struct cpufreq_policy new_policy;
481
482         ret = cpufreq_get_policy(&new_policy, policy->cpu);
483         if (ret)
484                 return ret;
485
486         ret = sscanf(buf, "%15s", str_governor);
487         if (ret != 1)
488                 return -EINVAL;
489
490         if (cpufreq_parse_governor(str_governor, &new_policy.policy,
491                                                 &new_policy.governor))
492                 return -EINVAL;
493
494         ret = cpufreq_set_policy(policy, &new_policy);
495
496         policy->user_policy.policy = policy->policy;
497         policy->user_policy.governor = policy->governor;
498
499         if (ret)
500                 return ret;
501         else
502                 return count;
503 }
504
505 /**
506  * show_scaling_driver - show the cpufreq driver currently loaded
507  */
508 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
509 {
510         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
511 }
512
513 /**
514  * show_scaling_available_governors - show the available CPUfreq governors
515  */
516 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
517                                                 char *buf)
518 {
519         ssize_t i = 0;
520         struct cpufreq_governor *t;
521
522         if (!cpufreq_driver->target) {
523                 i += sprintf(buf, "performance powersave");
524                 goto out;
525         }
526
527         list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
528                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
529                     - (CPUFREQ_NAME_LEN + 2)))
530                         goto out;
531                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
532         }
533 out:
534         i += sprintf(&buf[i], "\n");
535         return i;
536 }
537
538 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
539 {
540         ssize_t i = 0;
541         unsigned int cpu;
542
543         for_each_cpu(cpu, mask) {
544                 if (i)
545                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
546                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
547                 if (i >= (PAGE_SIZE - 5))
548                         break;
549         }
550         i += sprintf(&buf[i], "\n");
551         return i;
552 }
553 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
554
555 /**
556  * show_related_cpus - show the CPUs affected by each transition even if
557  * hw coordination is in use
558  */
559 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
560 {
561         return cpufreq_show_cpus(policy->related_cpus, buf);
562 }
563
564 /**
565  * show_affected_cpus - show the CPUs affected by each transition
566  */
567 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
568 {
569         return cpufreq_show_cpus(policy->cpus, buf);
570 }
571
572 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
573                                         const char *buf, size_t count)
574 {
575         unsigned int freq = 0;
576         unsigned int ret;
577
578         if (!policy->governor || !policy->governor->store_setspeed)
579                 return -EINVAL;
580
581         ret = sscanf(buf, "%u", &freq);
582         if (ret != 1)
583                 return -EINVAL;
584
585         policy->governor->store_setspeed(policy, freq);
586
587         return count;
588 }
589
590 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
591 {
592         if (!policy->governor || !policy->governor->show_setspeed)
593                 return sprintf(buf, "<unsupported>\n");
594
595         return policy->governor->show_setspeed(policy, buf);
596 }
597
598 /**
599  * show_bios_limit - show the current cpufreq HW/BIOS limitation
600  */
601 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
602 {
603         unsigned int limit;
604         int ret;
605         if (cpufreq_driver->bios_limit) {
606                 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
607                 if (!ret)
608                         return sprintf(buf, "%u\n", limit);
609         }
610         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
611 }
612
613 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
614 cpufreq_freq_attr_ro(cpuinfo_min_freq);
615 cpufreq_freq_attr_ro(cpuinfo_max_freq);
616 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
617 cpufreq_freq_attr_ro(scaling_available_governors);
618 cpufreq_freq_attr_ro(scaling_driver);
619 cpufreq_freq_attr_ro(scaling_cur_freq);
620 cpufreq_freq_attr_ro(bios_limit);
621 cpufreq_freq_attr_ro(related_cpus);
622 cpufreq_freq_attr_ro(affected_cpus);
623 cpufreq_freq_attr_rw(scaling_min_freq);
624 cpufreq_freq_attr_rw(scaling_max_freq);
625 cpufreq_freq_attr_rw(scaling_governor);
626 cpufreq_freq_attr_rw(scaling_setspeed);
627
628 static struct attribute *default_attrs[] = {
629         &cpuinfo_min_freq.attr,
630         &cpuinfo_max_freq.attr,
631         &cpuinfo_transition_latency.attr,
632         &scaling_min_freq.attr,
633         &scaling_max_freq.attr,
634         &affected_cpus.attr,
635         &related_cpus.attr,
636         &scaling_governor.attr,
637         &scaling_driver.attr,
638         &scaling_available_governors.attr,
639         &scaling_setspeed.attr,
640         NULL
641 };
642
643 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
644 #define to_attr(a) container_of(a, struct freq_attr, attr)
645
646 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
647 {
648         struct cpufreq_policy *policy = to_policy(kobj);
649         struct freq_attr *fattr = to_attr(attr);
650         ssize_t ret;
651
652         if (!down_read_trylock(&cpufreq_rwsem))
653                 return -EINVAL;
654
655         lock_policy_rwsem_read(policy->cpu);
656
657         if (fattr->show)
658                 ret = fattr->show(policy, buf);
659         else
660                 ret = -EIO;
661
662         unlock_policy_rwsem_read(policy->cpu);
663         up_read(&cpufreq_rwsem);
664
665         return ret;
666 }
667
668 static ssize_t store(struct kobject *kobj, struct attribute *attr,
669                      const char *buf, size_t count)
670 {
671         struct cpufreq_policy *policy = to_policy(kobj);
672         struct freq_attr *fattr = to_attr(attr);
673         ssize_t ret = -EINVAL;
674
675         get_online_cpus();
676
677         if (!cpu_online(policy->cpu))
678                 goto unlock;
679
680         if (!down_read_trylock(&cpufreq_rwsem))
681                 goto unlock;
682
683         lock_policy_rwsem_write(policy->cpu);
684
685         if (fattr->store)
686                 ret = fattr->store(policy, buf, count);
687         else
688                 ret = -EIO;
689
690         unlock_policy_rwsem_write(policy->cpu);
691
692         up_read(&cpufreq_rwsem);
693 unlock:
694         put_online_cpus();
695
696         return ret;
697 }
698
699 static void cpufreq_sysfs_release(struct kobject *kobj)
700 {
701         struct cpufreq_policy *policy = to_policy(kobj);
702         pr_debug("last reference is dropped\n");
703         complete(&policy->kobj_unregister);
704 }
705
706 static const struct sysfs_ops sysfs_ops = {
707         .show   = show,
708         .store  = store,
709 };
710
711 static struct kobj_type ktype_cpufreq = {
712         .sysfs_ops      = &sysfs_ops,
713         .default_attrs  = default_attrs,
714         .release        = cpufreq_sysfs_release,
715 };
716
717 struct kobject *cpufreq_global_kobject;
718 EXPORT_SYMBOL(cpufreq_global_kobject);
719
720 static int cpufreq_global_kobject_usage;
721
722 int cpufreq_get_global_kobject(void)
723 {
724         if (!cpufreq_global_kobject_usage++)
725                 return kobject_add(cpufreq_global_kobject,
726                                 &cpu_subsys.dev_root->kobj, "%s", "cpufreq");
727
728         return 0;
729 }
730 EXPORT_SYMBOL(cpufreq_get_global_kobject);
731
732 void cpufreq_put_global_kobject(void)
733 {
734         if (!--cpufreq_global_kobject_usage)
735                 kobject_del(cpufreq_global_kobject);
736 }
737 EXPORT_SYMBOL(cpufreq_put_global_kobject);
738
739 int cpufreq_sysfs_create_file(const struct attribute *attr)
740 {
741         int ret = cpufreq_get_global_kobject();
742
743         if (!ret) {
744                 ret = sysfs_create_file(cpufreq_global_kobject, attr);
745                 if (ret)
746                         cpufreq_put_global_kobject();
747         }
748
749         return ret;
750 }
751 EXPORT_SYMBOL(cpufreq_sysfs_create_file);
752
753 void cpufreq_sysfs_remove_file(const struct attribute *attr)
754 {
755         sysfs_remove_file(cpufreq_global_kobject, attr);
756         cpufreq_put_global_kobject();
757 }
758 EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
759
760 /* symlink affected CPUs */
761 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
762 {
763         unsigned int j;
764         int ret = 0;
765
766         for_each_cpu(j, policy->cpus) {
767                 struct device *cpu_dev;
768
769                 if (j == policy->cpu)
770                         continue;
771
772                 pr_debug("Adding link for CPU: %u\n", j);
773                 cpu_dev = get_cpu_device(j);
774                 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
775                                         "cpufreq");
776                 if (ret)
777                         break;
778         }
779         return ret;
780 }
781
782 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
783                                      struct device *dev)
784 {
785         struct freq_attr **drv_attr;
786         int ret = 0;
787
788         /* prepare interface data */
789         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
790                                    &dev->kobj, "cpufreq");
791         if (ret)
792                 return ret;
793
794         /* set up files for this cpu device */
795         drv_attr = cpufreq_driver->attr;
796         while ((drv_attr) && (*drv_attr)) {
797                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
798                 if (ret)
799                         goto err_out_kobj_put;
800                 drv_attr++;
801         }
802         if (cpufreq_driver->get) {
803                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
804                 if (ret)
805                         goto err_out_kobj_put;
806         }
807         if (cpufreq_driver->target) {
808                 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
809                 if (ret)
810                         goto err_out_kobj_put;
811         }
812         if (cpufreq_driver->bios_limit) {
813                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
814                 if (ret)
815                         goto err_out_kobj_put;
816         }
817
818         ret = cpufreq_add_dev_symlink(policy);
819         if (ret)
820                 goto err_out_kobj_put;
821
822         return ret;
823
824 err_out_kobj_put:
825         kobject_put(&policy->kobj);
826         wait_for_completion(&policy->kobj_unregister);
827         return ret;
828 }
829
830 static void cpufreq_init_policy(struct cpufreq_policy *policy)
831 {
832         struct cpufreq_policy new_policy;
833         int ret = 0;
834
835         memcpy(&new_policy, policy, sizeof(*policy));
836         /* assure that the starting sequence is run in cpufreq_set_policy */
837         policy->governor = NULL;
838
839         /* set default policy */
840         ret = cpufreq_set_policy(policy, &new_policy);
841         policy->user_policy.policy = policy->policy;
842         policy->user_policy.governor = policy->governor;
843
844         if (ret) {
845                 pr_debug("setting policy failed\n");
846                 if (cpufreq_driver->exit)
847                         cpufreq_driver->exit(policy);
848         }
849 }
850
851 #ifdef CONFIG_HOTPLUG_CPU
852 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
853                                   unsigned int cpu, struct device *dev,
854                                   bool frozen)
855 {
856         int ret = 0, has_target = !!cpufreq_driver->target;
857         unsigned long flags;
858
859         if (has_target) {
860                 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
861                 if (ret) {
862                         pr_err("%s: Failed to stop governor\n", __func__);
863                         return ret;
864                 }
865         }
866
867         lock_policy_rwsem_write(policy->cpu);
868
869         write_lock_irqsave(&cpufreq_driver_lock, flags);
870
871         cpumask_set_cpu(cpu, policy->cpus);
872         per_cpu(cpufreq_cpu_data, cpu) = policy;
873         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
874
875         unlock_policy_rwsem_write(policy->cpu);
876
877         if (has_target) {
878                 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) ||
879                         (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) {
880                         pr_err("%s: Failed to start governor\n", __func__);
881                         return ret;
882                 }
883         }
884
885         /* Don't touch sysfs links during light-weight init */
886         if (!frozen)
887                 ret = sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
888
889         return ret;
890 }
891 #endif
892
893 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
894 {
895         struct cpufreq_policy *policy;
896         unsigned long flags;
897
898         read_lock_irqsave(&cpufreq_driver_lock, flags);
899
900         policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
901
902         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
903
904         return policy;
905 }
906
907 static struct cpufreq_policy *cpufreq_policy_alloc(void)
908 {
909         struct cpufreq_policy *policy;
910
911         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
912         if (!policy)
913                 return NULL;
914
915         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
916                 goto err_free_policy;
917
918         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
919                 goto err_free_cpumask;
920
921         INIT_LIST_HEAD(&policy->policy_list);
922         return policy;
923
924 err_free_cpumask:
925         free_cpumask_var(policy->cpus);
926 err_free_policy:
927         kfree(policy);
928
929         return NULL;
930 }
931
932 static void cpufreq_policy_free(struct cpufreq_policy *policy)
933 {
934         free_cpumask_var(policy->related_cpus);
935         free_cpumask_var(policy->cpus);
936         kfree(policy);
937 }
938
939 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
940 {
941         if (cpu == policy->cpu)
942                 return;
943
944         /*
945          * Take direct locks as lock_policy_rwsem_write wouldn't work here.
946          * Also lock for last cpu is enough here as contention will happen only
947          * after policy->cpu is changed and after it is changed, other threads
948          * will try to acquire lock for new cpu. And policy is already updated
949          * by then.
950          */
951         down_write(&per_cpu(cpu_policy_rwsem, policy->cpu));
952
953         policy->last_cpu = policy->cpu;
954         policy->cpu = cpu;
955
956         up_write(&per_cpu(cpu_policy_rwsem, policy->last_cpu));
957
958 #ifdef CONFIG_CPU_FREQ_TABLE
959         cpufreq_frequency_table_update_policy_cpu(policy);
960 #endif
961         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
962                         CPUFREQ_UPDATE_POLICY_CPU, policy);
963 }
964
965 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif,
966                              bool frozen)
967 {
968         unsigned int j, cpu = dev->id;
969         int ret = -ENOMEM;
970         struct cpufreq_policy *policy;
971         unsigned long flags;
972 #ifdef CONFIG_HOTPLUG_CPU
973         struct cpufreq_policy *tpolicy;
974         struct cpufreq_governor *gov;
975 #endif
976
977         if (cpu_is_offline(cpu))
978                 return 0;
979
980         pr_debug("adding CPU %u\n", cpu);
981
982 #ifdef CONFIG_SMP
983         /* check whether a different CPU already registered this
984          * CPU because it is in the same boat. */
985         policy = cpufreq_cpu_get(cpu);
986         if (unlikely(policy)) {
987                 cpufreq_cpu_put(policy);
988                 return 0;
989         }
990 #endif
991
992         if (!down_read_trylock(&cpufreq_rwsem))
993                 return 0;
994
995 #ifdef CONFIG_HOTPLUG_CPU
996         /* Check if this cpu was hot-unplugged earlier and has siblings */
997         read_lock_irqsave(&cpufreq_driver_lock, flags);
998         list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
999                 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1000                         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1001                         ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev, frozen);
1002                         up_read(&cpufreq_rwsem);
1003                         return ret;
1004                 }
1005         }
1006         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1007 #endif
1008
1009         if (frozen)
1010                 /* Restore the saved policy when doing light-weight init */
1011                 policy = cpufreq_policy_restore(cpu);
1012         else
1013                 policy = cpufreq_policy_alloc();
1014
1015         if (!policy)
1016                 goto nomem_out;
1017
1018
1019         /*
1020          * In the resume path, since we restore a saved policy, the assignment
1021          * to policy->cpu is like an update of the existing policy, rather than
1022          * the creation of a brand new one. So we need to perform this update
1023          * by invoking update_policy_cpu().
1024          */
1025         if (frozen && cpu != policy->cpu)
1026                 update_policy_cpu(policy, cpu);
1027         else
1028                 policy->cpu = cpu;
1029
1030         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
1031         cpumask_copy(policy->cpus, cpumask_of(cpu));
1032
1033         init_completion(&policy->kobj_unregister);
1034         INIT_WORK(&policy->update, handle_update);
1035
1036         /* call driver. From then on the cpufreq must be able
1037          * to accept all calls to ->verify and ->setpolicy for this CPU
1038          */
1039         ret = cpufreq_driver->init(policy);
1040         if (ret) {
1041                 pr_debug("initialization failed\n");
1042                 goto err_set_policy_cpu;
1043         }
1044
1045         if (cpufreq_driver->get) {
1046                 policy->cur = cpufreq_driver->get(policy->cpu);
1047                 if (!policy->cur) {
1048                         pr_err("%s: ->get() failed\n", __func__);
1049                         goto err_get_freq;
1050                 }
1051         }
1052
1053         /* related cpus should atleast have policy->cpus */
1054         cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1055
1056         /*
1057          * affected cpus must always be the one, which are online. We aren't
1058          * managing offline cpus here.
1059          */
1060         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1061
1062         policy->user_policy.min = policy->min;
1063         policy->user_policy.max = policy->max;
1064
1065         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1066                                      CPUFREQ_START, policy);
1067
1068 #ifdef CONFIG_HOTPLUG_CPU
1069         gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
1070         if (gov) {
1071                 policy->governor = gov;
1072                 pr_debug("Restoring governor %s for cpu %d\n",
1073                        policy->governor->name, cpu);
1074         }
1075 #endif
1076
1077         write_lock_irqsave(&cpufreq_driver_lock, flags);
1078         for_each_cpu(j, policy->cpus)
1079                 per_cpu(cpufreq_cpu_data, j) = policy;
1080         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1081
1082         if (!frozen) {
1083                 ret = cpufreq_add_dev_interface(policy, dev);
1084                 if (ret)
1085                         goto err_out_unregister;
1086         }
1087
1088         write_lock_irqsave(&cpufreq_driver_lock, flags);
1089         list_add(&policy->policy_list, &cpufreq_policy_list);
1090         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1091
1092         cpufreq_init_policy(policy);
1093
1094         kobject_uevent(&policy->kobj, KOBJ_ADD);
1095         up_read(&cpufreq_rwsem);
1096
1097         pr_debug("initialization complete\n");
1098
1099         return 0;
1100
1101 err_out_unregister:
1102         write_lock_irqsave(&cpufreq_driver_lock, flags);
1103         for_each_cpu(j, policy->cpus)
1104                 per_cpu(cpufreq_cpu_data, j) = NULL;
1105         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1106
1107 err_get_freq:
1108         if (cpufreq_driver->exit)
1109                 cpufreq_driver->exit(policy);
1110 err_set_policy_cpu:
1111         cpufreq_policy_free(policy);
1112 nomem_out:
1113         up_read(&cpufreq_rwsem);
1114
1115         return ret;
1116 }
1117
1118 /**
1119  * cpufreq_add_dev - add a CPU device
1120  *
1121  * Adds the cpufreq interface for a CPU device.
1122  *
1123  * The Oracle says: try running cpufreq registration/unregistration concurrently
1124  * with with cpu hotplugging and all hell will break loose. Tried to clean this
1125  * mess up, but more thorough testing is needed. - Mathieu
1126  */
1127 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1128 {
1129         return __cpufreq_add_dev(dev, sif, false);
1130 }
1131
1132 static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1133                                            unsigned int old_cpu, bool frozen)
1134 {
1135         struct device *cpu_dev;
1136         int ret;
1137
1138         /* first sibling now owns the new sysfs dir */
1139         cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1140
1141         /* Don't touch sysfs files during light-weight tear-down */
1142         if (frozen)
1143                 return cpu_dev->id;
1144
1145         sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1146         ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1147         if (ret) {
1148                 pr_err("%s: Failed to move kobj: %d", __func__, ret);
1149
1150                 lock_policy_rwsem_write(old_cpu);
1151                 cpumask_set_cpu(old_cpu, policy->cpus);
1152                 unlock_policy_rwsem_write(old_cpu);
1153
1154                 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1155                                         "cpufreq");
1156
1157                 return -EINVAL;
1158         }
1159
1160         return cpu_dev->id;
1161 }
1162
1163 static int __cpufreq_remove_dev_prepare(struct device *dev,
1164                                         struct subsys_interface *sif,
1165                                         bool frozen)
1166 {
1167         unsigned int cpu = dev->id, cpus;
1168         int new_cpu, ret;
1169         unsigned long flags;
1170         struct cpufreq_policy *policy;
1171
1172         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1173
1174         write_lock_irqsave(&cpufreq_driver_lock, flags);
1175
1176         policy = per_cpu(cpufreq_cpu_data, cpu);
1177
1178         /* Save the policy somewhere when doing a light-weight tear-down */
1179         if (frozen)
1180                 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1181
1182         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1183
1184         if (!policy) {
1185                 pr_debug("%s: No cpu_data found\n", __func__);
1186                 return -EINVAL;
1187         }
1188
1189         if (cpufreq_driver->target) {
1190                 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1191                 if (ret) {
1192                         pr_err("%s: Failed to stop governor\n", __func__);
1193                         return ret;
1194                 }
1195         }
1196
1197 #ifdef CONFIG_HOTPLUG_CPU
1198         if (!cpufreq_driver->setpolicy)
1199                 strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1200                         policy->governor->name, CPUFREQ_NAME_LEN);
1201 #endif
1202
1203         lock_policy_rwsem_read(cpu);
1204         cpus = cpumask_weight(policy->cpus);
1205         unlock_policy_rwsem_read(cpu);
1206
1207         if (cpu != policy->cpu) {
1208                 if (!frozen)
1209                         sysfs_remove_link(&dev->kobj, "cpufreq");
1210         } else if (cpus > 1) {
1211                 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu, frozen);
1212                 if (new_cpu >= 0) {
1213                         update_policy_cpu(policy, new_cpu);
1214
1215                         if (!frozen) {
1216                                 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1217                                                 __func__, new_cpu, cpu);
1218                         }
1219                 }
1220         }
1221
1222         return 0;
1223 }
1224
1225 static int __cpufreq_remove_dev_finish(struct device *dev,
1226                                        struct subsys_interface *sif,
1227                                        bool frozen)
1228 {
1229         unsigned int cpu = dev->id, cpus;
1230         int ret;
1231         unsigned long flags;
1232         struct cpufreq_policy *policy;
1233         struct kobject *kobj;
1234         struct completion *cmp;
1235
1236         read_lock_irqsave(&cpufreq_driver_lock, flags);
1237         policy = per_cpu(cpufreq_cpu_data, cpu);
1238         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1239
1240         if (!policy) {
1241                 pr_debug("%s: No cpu_data found\n", __func__);
1242                 return -EINVAL;
1243         }
1244
1245         lock_policy_rwsem_write(cpu);
1246         cpus = cpumask_weight(policy->cpus);
1247
1248         if (cpus > 1)
1249                 cpumask_clear_cpu(cpu, policy->cpus);
1250         unlock_policy_rwsem_write(cpu);
1251
1252         /* If cpu is last user of policy, free policy */
1253         if (cpus == 1) {
1254                 if (cpufreq_driver->target) {
1255                         ret = __cpufreq_governor(policy,
1256                                         CPUFREQ_GOV_POLICY_EXIT);
1257                         if (ret) {
1258                                 pr_err("%s: Failed to exit governor\n",
1259                                                 __func__);
1260                                 return ret;
1261                         }
1262                 }
1263
1264                 if (!frozen) {
1265                         lock_policy_rwsem_read(cpu);
1266                         kobj = &policy->kobj;
1267                         cmp = &policy->kobj_unregister;
1268                         unlock_policy_rwsem_read(cpu);
1269                         kobject_put(kobj);
1270
1271                         /*
1272                          * We need to make sure that the underlying kobj is
1273                          * actually not referenced anymore by anybody before we
1274                          * proceed with unloading.
1275                          */
1276                         pr_debug("waiting for dropping of refcount\n");
1277                         wait_for_completion(cmp);
1278                         pr_debug("wait complete\n");
1279                 }
1280
1281                 /*
1282                  * Perform the ->exit() even during light-weight tear-down,
1283                  * since this is a core component, and is essential for the
1284                  * subsequent light-weight ->init() to succeed.
1285                  */
1286                 if (cpufreq_driver->exit)
1287                         cpufreq_driver->exit(policy);
1288
1289                 /* Remove policy from list of active policies */
1290                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1291                 list_del(&policy->policy_list);
1292                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1293
1294                 if (!frozen)
1295                         cpufreq_policy_free(policy);
1296         } else {
1297                 if (cpufreq_driver->target) {
1298                         if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) ||
1299                                         (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) {
1300                                 pr_err("%s: Failed to start governor\n",
1301                                                 __func__);
1302                                 return ret;
1303                         }
1304                 }
1305         }
1306
1307         per_cpu(cpufreq_cpu_data, cpu) = NULL;
1308         return 0;
1309 }
1310
1311 /**
1312  * cpufreq_remove_dev - remove a CPU device
1313  *
1314  * Removes the cpufreq interface for a CPU device.
1315  */
1316 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1317 {
1318         unsigned int cpu = dev->id;
1319         int ret;
1320
1321         if (cpu_is_offline(cpu))
1322                 return 0;
1323
1324         ret = __cpufreq_remove_dev_prepare(dev, sif, false);
1325
1326         if (!ret)
1327                 ret = __cpufreq_remove_dev_finish(dev, sif, false);
1328
1329         return ret;
1330 }
1331
1332 static void handle_update(struct work_struct *work)
1333 {
1334         struct cpufreq_policy *policy =
1335                 container_of(work, struct cpufreq_policy, update);
1336         unsigned int cpu = policy->cpu;
1337         pr_debug("handle_update for cpu %u called\n", cpu);
1338         cpufreq_update_policy(cpu);
1339 }
1340
1341 /**
1342  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1343  *      in deep trouble.
1344  *      @cpu: cpu number
1345  *      @old_freq: CPU frequency the kernel thinks the CPU runs at
1346  *      @new_freq: CPU frequency the CPU actually runs at
1347  *
1348  *      We adjust to current frequency first, and need to clean up later.
1349  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1350  */
1351 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1352                                 unsigned int new_freq)
1353 {
1354         struct cpufreq_policy *policy;
1355         struct cpufreq_freqs freqs;
1356         unsigned long flags;
1357
1358         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1359                "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1360
1361         freqs.old = old_freq;
1362         freqs.new = new_freq;
1363
1364         read_lock_irqsave(&cpufreq_driver_lock, flags);
1365         policy = per_cpu(cpufreq_cpu_data, cpu);
1366         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1367
1368         cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
1369         cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
1370 }
1371
1372 /**
1373  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1374  * @cpu: CPU number
1375  *
1376  * This is the last known freq, without actually getting it from the driver.
1377  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1378  */
1379 unsigned int cpufreq_quick_get(unsigned int cpu)
1380 {
1381         struct cpufreq_policy *policy;
1382         unsigned int ret_freq = 0;
1383
1384         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1385                 return cpufreq_driver->get(cpu);
1386
1387         policy = cpufreq_cpu_get(cpu);
1388         if (policy) {
1389                 ret_freq = policy->cur;
1390                 cpufreq_cpu_put(policy);
1391         }
1392
1393         return ret_freq;
1394 }
1395 EXPORT_SYMBOL(cpufreq_quick_get);
1396
1397 /**
1398  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1399  * @cpu: CPU number
1400  *
1401  * Just return the max possible frequency for a given CPU.
1402  */
1403 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1404 {
1405         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1406         unsigned int ret_freq = 0;
1407
1408         if (policy) {
1409                 ret_freq = policy->max;
1410                 cpufreq_cpu_put(policy);
1411         }
1412
1413         return ret_freq;
1414 }
1415 EXPORT_SYMBOL(cpufreq_quick_get_max);
1416
1417 static unsigned int __cpufreq_get(unsigned int cpu)
1418 {
1419         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1420         unsigned int ret_freq = 0;
1421
1422         if (!cpufreq_driver->get)
1423                 return ret_freq;
1424
1425         ret_freq = cpufreq_driver->get(cpu);
1426
1427         if (ret_freq && policy->cur &&
1428                 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1429                 /* verify no discrepancy between actual and
1430                                         saved value exists */
1431                 if (unlikely(ret_freq != policy->cur)) {
1432                         cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1433                         schedule_work(&policy->update);
1434                 }
1435         }
1436
1437         return ret_freq;
1438 }
1439
1440 /**
1441  * cpufreq_get - get the current CPU frequency (in kHz)
1442  * @cpu: CPU number
1443  *
1444  * Get the CPU current (static) CPU frequency
1445  */
1446 unsigned int cpufreq_get(unsigned int cpu)
1447 {
1448         unsigned int ret_freq = 0;
1449
1450         if (cpufreq_disabled() || !cpufreq_driver)
1451                 return -ENOENT;
1452
1453         if (!down_read_trylock(&cpufreq_rwsem))
1454                 return 0;
1455
1456         lock_policy_rwsem_read(cpu);
1457
1458         ret_freq = __cpufreq_get(cpu);
1459
1460         unlock_policy_rwsem_read(cpu);
1461         up_read(&cpufreq_rwsem);
1462
1463         return ret_freq;
1464 }
1465 EXPORT_SYMBOL(cpufreq_get);
1466
1467 static struct subsys_interface cpufreq_interface = {
1468         .name           = "cpufreq",
1469         .subsys         = &cpu_subsys,
1470         .add_dev        = cpufreq_add_dev,
1471         .remove_dev     = cpufreq_remove_dev,
1472 };
1473
1474 /**
1475  * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1476  *
1477  * This function is only executed for the boot processor.  The other CPUs
1478  * have been put offline by means of CPU hotplug.
1479  */
1480 static int cpufreq_bp_suspend(void)
1481 {
1482         int ret = 0;
1483
1484         int cpu = smp_processor_id();
1485         struct cpufreq_policy *policy;
1486
1487         pr_debug("suspending cpu %u\n", cpu);
1488
1489         /* If there's no policy for the boot CPU, we have nothing to do. */
1490         policy = cpufreq_cpu_get(cpu);
1491         if (!policy)
1492                 return 0;
1493
1494         if (cpufreq_driver->suspend) {
1495                 ret = cpufreq_driver->suspend(policy);
1496                 if (ret)
1497                         printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1498                                         "step on CPU %u\n", policy->cpu);
1499         }
1500
1501         cpufreq_cpu_put(policy);
1502         return ret;
1503 }
1504
1505 /**
1506  * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1507  *
1508  *      1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1509  *      2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1510  *          restored. It will verify that the current freq is in sync with
1511  *          what we believe it to be. This is a bit later than when it
1512  *          should be, but nonethteless it's better than calling
1513  *          cpufreq_driver->get() here which might re-enable interrupts...
1514  *
1515  * This function is only executed for the boot CPU.  The other CPUs have not
1516  * been turned on yet.
1517  */
1518 static void cpufreq_bp_resume(void)
1519 {
1520         int ret = 0;
1521
1522         int cpu = smp_processor_id();
1523         struct cpufreq_policy *policy;
1524
1525         pr_debug("resuming cpu %u\n", cpu);
1526
1527         /* If there's no policy for the boot CPU, we have nothing to do. */
1528         policy = cpufreq_cpu_get(cpu);
1529         if (!policy)
1530                 return;
1531
1532         if (cpufreq_driver->resume) {
1533                 ret = cpufreq_driver->resume(policy);
1534                 if (ret) {
1535                         printk(KERN_ERR "cpufreq: resume failed in ->resume "
1536                                         "step on CPU %u\n", policy->cpu);
1537                         goto fail;
1538                 }
1539         }
1540
1541         schedule_work(&policy->update);
1542
1543 fail:
1544         cpufreq_cpu_put(policy);
1545 }
1546
1547 static struct syscore_ops cpufreq_syscore_ops = {
1548         .suspend        = cpufreq_bp_suspend,
1549         .resume         = cpufreq_bp_resume,
1550 };
1551
1552 /**
1553  *      cpufreq_get_current_driver - return current driver's name
1554  *
1555  *      Return the name string of the currently loaded cpufreq driver
1556  *      or NULL, if none.
1557  */
1558 const char *cpufreq_get_current_driver(void)
1559 {
1560         if (cpufreq_driver)
1561                 return cpufreq_driver->name;
1562
1563         return NULL;
1564 }
1565 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1566
1567 /*********************************************************************
1568  *                     NOTIFIER LISTS INTERFACE                      *
1569  *********************************************************************/
1570
1571 /**
1572  *      cpufreq_register_notifier - register a driver with cpufreq
1573  *      @nb: notifier function to register
1574  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1575  *
1576  *      Add a driver to one of two lists: either a list of drivers that
1577  *      are notified about clock rate changes (once before and once after
1578  *      the transition), or a list of drivers that are notified about
1579  *      changes in cpufreq policy.
1580  *
1581  *      This function may sleep, and has the same return conditions as
1582  *      blocking_notifier_chain_register.
1583  */
1584 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1585 {
1586         int ret;
1587
1588         if (cpufreq_disabled())
1589                 return -EINVAL;
1590
1591         WARN_ON(!init_cpufreq_transition_notifier_list_called);
1592
1593         switch (list) {
1594         case CPUFREQ_TRANSITION_NOTIFIER:
1595                 ret = srcu_notifier_chain_register(
1596                                 &cpufreq_transition_notifier_list, nb);
1597                 break;
1598         case CPUFREQ_POLICY_NOTIFIER:
1599                 ret = blocking_notifier_chain_register(
1600                                 &cpufreq_policy_notifier_list, nb);
1601                 break;
1602         default:
1603                 ret = -EINVAL;
1604         }
1605
1606         return ret;
1607 }
1608 EXPORT_SYMBOL(cpufreq_register_notifier);
1609
1610 /**
1611  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1612  *      @nb: notifier block to be unregistered
1613  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1614  *
1615  *      Remove a driver from the CPU frequency notifier list.
1616  *
1617  *      This function may sleep, and has the same return conditions as
1618  *      blocking_notifier_chain_unregister.
1619  */
1620 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1621 {
1622         int ret;
1623
1624         if (cpufreq_disabled())
1625                 return -EINVAL;
1626
1627         switch (list) {
1628         case CPUFREQ_TRANSITION_NOTIFIER:
1629                 ret = srcu_notifier_chain_unregister(
1630                                 &cpufreq_transition_notifier_list, nb);
1631                 break;
1632         case CPUFREQ_POLICY_NOTIFIER:
1633                 ret = blocking_notifier_chain_unregister(
1634                                 &cpufreq_policy_notifier_list, nb);
1635                 break;
1636         default:
1637                 ret = -EINVAL;
1638         }
1639
1640         return ret;
1641 }
1642 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1643
1644
1645 /*********************************************************************
1646  *                              GOVERNORS                            *
1647  *********************************************************************/
1648
1649 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1650                             unsigned int target_freq,
1651                             unsigned int relation)
1652 {
1653         int retval = -EINVAL;
1654         unsigned int old_target_freq = target_freq;
1655
1656         if (cpufreq_disabled())
1657                 return -ENODEV;
1658
1659         /* Make sure that target_freq is within supported range */
1660         if (target_freq > policy->max)
1661                 target_freq = policy->max;
1662         if (target_freq < policy->min)
1663                 target_freq = policy->min;
1664
1665         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1666                         policy->cpu, target_freq, relation, old_target_freq);
1667
1668         if (target_freq == policy->cur)
1669                 return 0;
1670
1671         if (cpufreq_driver->target)
1672                 retval = cpufreq_driver->target(policy, target_freq, relation);
1673
1674         return retval;
1675 }
1676 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1677
1678 int cpufreq_driver_target(struct cpufreq_policy *policy,
1679                           unsigned int target_freq,
1680                           unsigned int relation)
1681 {
1682         int ret = -EINVAL;
1683
1684         lock_policy_rwsem_write(policy->cpu);
1685
1686         ret = __cpufreq_driver_target(policy, target_freq, relation);
1687
1688         unlock_policy_rwsem_write(policy->cpu);
1689
1690         return ret;
1691 }
1692 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1693
1694 /*
1695  * when "event" is CPUFREQ_GOV_LIMITS
1696  */
1697
1698 static int __cpufreq_governor(struct cpufreq_policy *policy,
1699                                         unsigned int event)
1700 {
1701         int ret;
1702
1703         /* Only must be defined when default governor is known to have latency
1704            restrictions, like e.g. conservative or ondemand.
1705            That this is the case is already ensured in Kconfig
1706         */
1707 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1708         struct cpufreq_governor *gov = &cpufreq_gov_performance;
1709 #else
1710         struct cpufreq_governor *gov = NULL;
1711 #endif
1712
1713         if (policy->governor->max_transition_latency &&
1714             policy->cpuinfo.transition_latency >
1715             policy->governor->max_transition_latency) {
1716                 if (!gov)
1717                         return -EINVAL;
1718                 else {
1719                         printk(KERN_WARNING "%s governor failed, too long"
1720                                " transition latency of HW, fallback"
1721                                " to %s governor\n",
1722                                policy->governor->name,
1723                                gov->name);
1724                         policy->governor = gov;
1725                 }
1726         }
1727
1728         if (event == CPUFREQ_GOV_POLICY_INIT)
1729                 if (!try_module_get(policy->governor->owner))
1730                         return -EINVAL;
1731
1732         pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1733                                                 policy->cpu, event);
1734
1735         mutex_lock(&cpufreq_governor_lock);
1736         if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1737             || (!policy->governor_enabled
1738             && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1739                 mutex_unlock(&cpufreq_governor_lock);
1740                 return -EBUSY;
1741         }
1742
1743         if (event == CPUFREQ_GOV_STOP)
1744                 policy->governor_enabled = false;
1745         else if (event == CPUFREQ_GOV_START)
1746                 policy->governor_enabled = true;
1747
1748         mutex_unlock(&cpufreq_governor_lock);
1749
1750         ret = policy->governor->governor(policy, event);
1751
1752         if (!ret) {
1753                 if (event == CPUFREQ_GOV_POLICY_INIT)
1754                         policy->governor->initialized++;
1755                 else if (event == CPUFREQ_GOV_POLICY_EXIT)
1756                         policy->governor->initialized--;
1757         } else {
1758                 /* Restore original values */
1759                 mutex_lock(&cpufreq_governor_lock);
1760                 if (event == CPUFREQ_GOV_STOP)
1761                         policy->governor_enabled = true;
1762                 else if (event == CPUFREQ_GOV_START)
1763                         policy->governor_enabled = false;
1764                 mutex_unlock(&cpufreq_governor_lock);
1765         }
1766
1767         if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1768                         ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1769                 module_put(policy->governor->owner);
1770
1771         return ret;
1772 }
1773
1774 int cpufreq_register_governor(struct cpufreq_governor *governor)
1775 {
1776         int err;
1777
1778         if (!governor)
1779                 return -EINVAL;
1780
1781         if (cpufreq_disabled())
1782                 return -ENODEV;
1783
1784         mutex_lock(&cpufreq_governor_mutex);
1785
1786         governor->initialized = 0;
1787         err = -EBUSY;
1788         if (__find_governor(governor->name) == NULL) {
1789                 err = 0;
1790                 list_add(&governor->governor_list, &cpufreq_governor_list);
1791         }
1792
1793         mutex_unlock(&cpufreq_governor_mutex);
1794         return err;
1795 }
1796 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1797
1798 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1799 {
1800 #ifdef CONFIG_HOTPLUG_CPU
1801         int cpu;
1802 #endif
1803
1804         if (!governor)
1805                 return;
1806
1807         if (cpufreq_disabled())
1808                 return;
1809
1810 #ifdef CONFIG_HOTPLUG_CPU
1811         for_each_present_cpu(cpu) {
1812                 if (cpu_online(cpu))
1813                         continue;
1814                 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1815                         strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1816         }
1817 #endif
1818
1819         mutex_lock(&cpufreq_governor_mutex);
1820         list_del(&governor->governor_list);
1821         mutex_unlock(&cpufreq_governor_mutex);
1822         return;
1823 }
1824 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1825
1826
1827 /*********************************************************************
1828  *                          POLICY INTERFACE                         *
1829  *********************************************************************/
1830
1831 /**
1832  * cpufreq_get_policy - get the current cpufreq_policy
1833  * @policy: struct cpufreq_policy into which the current cpufreq_policy
1834  *      is written
1835  *
1836  * Reads the current cpufreq policy.
1837  */
1838 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1839 {
1840         struct cpufreq_policy *cpu_policy;
1841         if (!policy)
1842                 return -EINVAL;
1843
1844         cpu_policy = cpufreq_cpu_get(cpu);
1845         if (!cpu_policy)
1846                 return -EINVAL;
1847
1848         memcpy(policy, cpu_policy, sizeof(*policy));
1849
1850         cpufreq_cpu_put(cpu_policy);
1851         return 0;
1852 }
1853 EXPORT_SYMBOL(cpufreq_get_policy);
1854
1855 /*
1856  * policy : current policy.
1857  * new_policy: policy to be set.
1858  */
1859 static int cpufreq_set_policy(struct cpufreq_policy *policy,
1860                                 struct cpufreq_policy *new_policy)
1861 {
1862         int ret = 0, failed = 1;
1863
1864         pr_debug("setting new policy for CPU %u: %u - %u kHz\n", new_policy->cpu,
1865                 new_policy->min, new_policy->max);
1866
1867         memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
1868
1869         if (new_policy->min > policy->max || new_policy->max < policy->min) {
1870                 ret = -EINVAL;
1871                 goto error_out;
1872         }
1873
1874         /* verify the cpu speed can be set within this limit */
1875         ret = cpufreq_driver->verify(new_policy);
1876         if (ret)
1877                 goto error_out;
1878
1879         /* adjust if necessary - all reasons */
1880         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1881                         CPUFREQ_ADJUST, new_policy);
1882
1883         /* adjust if necessary - hardware incompatibility*/
1884         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1885                         CPUFREQ_INCOMPATIBLE, new_policy);
1886
1887         /*
1888          * verify the cpu speed can be set within this limit, which might be
1889          * different to the first one
1890          */
1891         ret = cpufreq_driver->verify(new_policy);
1892         if (ret)
1893                 goto error_out;
1894
1895         /* notification of the new policy */
1896         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1897                         CPUFREQ_NOTIFY, new_policy);
1898
1899         policy->min = new_policy->min;
1900         policy->max = new_policy->max;
1901
1902         pr_debug("new min and max freqs are %u - %u kHz\n",
1903                                         policy->min, policy->max);
1904
1905         if (cpufreq_driver->setpolicy) {
1906                 policy->policy = new_policy->policy;
1907                 pr_debug("setting range\n");
1908                 ret = cpufreq_driver->setpolicy(new_policy);
1909         } else {
1910                 if (new_policy->governor != policy->governor) {
1911                         /* save old, working values */
1912                         struct cpufreq_governor *old_gov = policy->governor;
1913
1914                         pr_debug("governor switch\n");
1915
1916                         /* end old governor */
1917                         if (policy->governor) {
1918                                 __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1919                                 unlock_policy_rwsem_write(new_policy->cpu);
1920                                 __cpufreq_governor(policy,
1921                                                 CPUFREQ_GOV_POLICY_EXIT);
1922                                 lock_policy_rwsem_write(new_policy->cpu);
1923                         }
1924
1925                         /* start new governor */
1926                         policy->governor = new_policy->governor;
1927                         if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
1928                                 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) {
1929                                         failed = 0;
1930                                 } else {
1931                                         unlock_policy_rwsem_write(new_policy->cpu);
1932                                         __cpufreq_governor(policy,
1933                                                         CPUFREQ_GOV_POLICY_EXIT);
1934                                         lock_policy_rwsem_write(new_policy->cpu);
1935                                 }
1936                         }
1937
1938                         if (failed) {
1939                                 /* new governor failed, so re-start old one */
1940                                 pr_debug("starting governor %s failed\n",
1941                                                         policy->governor->name);
1942                                 if (old_gov) {
1943                                         policy->governor = old_gov;
1944                                         __cpufreq_governor(policy,
1945                                                         CPUFREQ_GOV_POLICY_INIT);
1946                                         __cpufreq_governor(policy,
1947                                                            CPUFREQ_GOV_START);
1948                                 }
1949                                 ret = -EINVAL;
1950                                 goto error_out;
1951                         }
1952                         /* might be a policy change, too, so fall through */
1953                 }
1954                 pr_debug("governor: change or update limits\n");
1955                 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1956         }
1957
1958 error_out:
1959         return ret;
1960 }
1961
1962 /**
1963  *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
1964  *      @cpu: CPU which shall be re-evaluated
1965  *
1966  *      Useful for policy notifiers which have different necessities
1967  *      at different times.
1968  */
1969 int cpufreq_update_policy(unsigned int cpu)
1970 {
1971         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1972         struct cpufreq_policy new_policy;
1973         int ret;
1974
1975         if (!policy) {
1976                 ret = -ENODEV;
1977                 goto no_policy;
1978         }
1979
1980         lock_policy_rwsem_write(cpu);
1981
1982         pr_debug("updating policy for CPU %u\n", cpu);
1983         memcpy(&new_policy, policy, sizeof(*policy));
1984         new_policy.min = policy->user_policy.min;
1985         new_policy.max = policy->user_policy.max;
1986         new_policy.policy = policy->user_policy.policy;
1987         new_policy.governor = policy->user_policy.governor;
1988
1989         /*
1990          * BIOS might change freq behind our back
1991          * -> ask driver for current freq and notify governors about a change
1992          */
1993         if (cpufreq_driver->get) {
1994                 new_policy.cur = cpufreq_driver->get(cpu);
1995                 if (!policy->cur) {
1996                         pr_debug("Driver did not initialize current freq");
1997                         policy->cur = new_policy.cur;
1998                 } else {
1999                         if (policy->cur != new_policy.cur && cpufreq_driver->target)
2000                                 cpufreq_out_of_sync(cpu, policy->cur,
2001                                                                 new_policy.cur);
2002                 }
2003         }
2004
2005         ret = cpufreq_set_policy(policy, &new_policy);
2006
2007         unlock_policy_rwsem_write(cpu);
2008
2009         cpufreq_cpu_put(policy);
2010 no_policy:
2011         return ret;
2012 }
2013 EXPORT_SYMBOL(cpufreq_update_policy);
2014
2015 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2016                                         unsigned long action, void *hcpu)
2017 {
2018         unsigned int cpu = (unsigned long)hcpu;
2019         struct device *dev;
2020         bool frozen = false;
2021
2022         dev = get_cpu_device(cpu);
2023         if (dev) {
2024
2025                 if (action & CPU_TASKS_FROZEN)
2026                         frozen = true;
2027
2028                 switch (action & ~CPU_TASKS_FROZEN) {
2029                 case CPU_ONLINE:
2030                         __cpufreq_add_dev(dev, NULL, frozen);
2031                         cpufreq_update_policy(cpu);
2032                         break;
2033
2034                 case CPU_DOWN_PREPARE:
2035                         __cpufreq_remove_dev_prepare(dev, NULL, frozen);
2036                         break;
2037
2038                 case CPU_POST_DEAD:
2039                         __cpufreq_remove_dev_finish(dev, NULL, frozen);
2040                         break;
2041
2042                 case CPU_DOWN_FAILED:
2043                         __cpufreq_add_dev(dev, NULL, frozen);
2044                         break;
2045                 }
2046         }
2047         return NOTIFY_OK;
2048 }
2049
2050 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2051         .notifier_call = cpufreq_cpu_callback,
2052 };
2053
2054 /*********************************************************************
2055  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2056  *********************************************************************/
2057
2058 /**
2059  * cpufreq_register_driver - register a CPU Frequency driver
2060  * @driver_data: A struct cpufreq_driver containing the values#
2061  * submitted by the CPU Frequency driver.
2062  *
2063  * Registers a CPU Frequency driver to this core code. This code
2064  * returns zero on success, -EBUSY when another driver got here first
2065  * (and isn't unregistered in the meantime).
2066  *
2067  */
2068 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2069 {
2070         unsigned long flags;
2071         int ret;
2072
2073         if (cpufreq_disabled())
2074                 return -ENODEV;
2075
2076         if (!driver_data || !driver_data->verify || !driver_data->init ||
2077             ((!driver_data->setpolicy) && (!driver_data->target)))
2078                 return -EINVAL;
2079
2080         pr_debug("trying to register driver %s\n", driver_data->name);
2081
2082         if (driver_data->setpolicy)
2083                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2084
2085         write_lock_irqsave(&cpufreq_driver_lock, flags);
2086         if (cpufreq_driver) {
2087                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2088                 return -EEXIST;
2089         }
2090         cpufreq_driver = driver_data;
2091         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2092
2093         ret = subsys_interface_register(&cpufreq_interface);
2094         if (ret)
2095                 goto err_null_driver;
2096
2097         if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2098                 int i;
2099                 ret = -ENODEV;
2100
2101                 /* check for at least one working CPU */
2102                 for (i = 0; i < nr_cpu_ids; i++)
2103                         if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2104                                 ret = 0;
2105                                 break;
2106                         }
2107
2108                 /* if all ->init() calls failed, unregister */
2109                 if (ret) {
2110                         pr_debug("no CPU initialized for driver %s\n",
2111                                                         driver_data->name);
2112                         goto err_if_unreg;
2113                 }
2114         }
2115
2116         register_hotcpu_notifier(&cpufreq_cpu_notifier);
2117         pr_debug("driver %s up and running\n", driver_data->name);
2118
2119         return 0;
2120 err_if_unreg:
2121         subsys_interface_unregister(&cpufreq_interface);
2122 err_null_driver:
2123         write_lock_irqsave(&cpufreq_driver_lock, flags);
2124         cpufreq_driver = NULL;
2125         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2126         return ret;
2127 }
2128 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2129
2130 /**
2131  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2132  *
2133  * Unregister the current CPUFreq driver. Only call this if you have
2134  * the right to do so, i.e. if you have succeeded in initialising before!
2135  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2136  * currently not initialised.
2137  */
2138 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2139 {
2140         unsigned long flags;
2141
2142         if (!cpufreq_driver || (driver != cpufreq_driver))
2143                 return -EINVAL;
2144
2145         pr_debug("unregistering driver %s\n", driver->name);
2146
2147         subsys_interface_unregister(&cpufreq_interface);
2148         unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2149
2150         down_write(&cpufreq_rwsem);
2151         write_lock_irqsave(&cpufreq_driver_lock, flags);
2152
2153         cpufreq_driver = NULL;
2154
2155         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2156         up_write(&cpufreq_rwsem);
2157
2158         return 0;
2159 }
2160 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2161
2162 static int __init cpufreq_core_init(void)
2163 {
2164         int cpu;
2165
2166         if (cpufreq_disabled())
2167                 return -ENODEV;
2168
2169         for_each_possible_cpu(cpu)
2170                 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
2171
2172         cpufreq_global_kobject = kobject_create();
2173         BUG_ON(!cpufreq_global_kobject);
2174         register_syscore_ops(&cpufreq_syscore_ops);
2175
2176         return 0;
2177 }
2178 core_initcall(cpufreq_core_init);