]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
Merge remote-tracking branch 'scott/next' into next
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544         set_device_ro(bdev, rbd_dev->mapping.read_only);
545
546         return 0;
547 }
548
549 static void rbd_release(struct gendisk *disk, fmode_t mode)
550 {
551         struct rbd_device *rbd_dev = disk->private_data;
552         unsigned long open_count_before;
553
554         spin_lock_irq(&rbd_dev->lock);
555         open_count_before = rbd_dev->open_count--;
556         spin_unlock_irq(&rbd_dev->lock);
557         rbd_assert(open_count_before > 0);
558
559         put_device(&rbd_dev->dev);
560 }
561
562 static const struct block_device_operations rbd_bd_ops = {
563         .owner                  = THIS_MODULE,
564         .open                   = rbd_open,
565         .release                = rbd_release,
566 };
567
568 /*
569  * Initialize an rbd client instance.  Success or not, this function
570  * consumes ceph_opts.  Caller holds client_mutex.
571  */
572 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
573 {
574         struct rbd_client *rbdc;
575         int ret = -ENOMEM;
576
577         dout("%s:\n", __func__);
578         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
579         if (!rbdc)
580                 goto out_opt;
581
582         kref_init(&rbdc->kref);
583         INIT_LIST_HEAD(&rbdc->node);
584
585         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
586         if (IS_ERR(rbdc->client))
587                 goto out_rbdc;
588         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
589
590         ret = ceph_open_session(rbdc->client);
591         if (ret < 0)
592                 goto out_client;
593
594         spin_lock(&rbd_client_list_lock);
595         list_add_tail(&rbdc->node, &rbd_client_list);
596         spin_unlock(&rbd_client_list_lock);
597
598         dout("%s: rbdc %p\n", __func__, rbdc);
599
600         return rbdc;
601 out_client:
602         ceph_destroy_client(rbdc->client);
603 out_rbdc:
604         kfree(rbdc);
605 out_opt:
606         if (ceph_opts)
607                 ceph_destroy_options(ceph_opts);
608         dout("%s: error %d\n", __func__, ret);
609
610         return ERR_PTR(ret);
611 }
612
613 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
614 {
615         kref_get(&rbdc->kref);
616
617         return rbdc;
618 }
619
620 /*
621  * Find a ceph client with specific addr and configuration.  If
622  * found, bump its reference count.
623  */
624 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
625 {
626         struct rbd_client *client_node;
627         bool found = false;
628
629         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
630                 return NULL;
631
632         spin_lock(&rbd_client_list_lock);
633         list_for_each_entry(client_node, &rbd_client_list, node) {
634                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
635                         __rbd_get_client(client_node);
636
637                         found = true;
638                         break;
639                 }
640         }
641         spin_unlock(&rbd_client_list_lock);
642
643         return found ? client_node : NULL;
644 }
645
646 /*
647  * mount options
648  */
649 enum {
650         Opt_last_int,
651         /* int args above */
652         Opt_last_string,
653         /* string args above */
654         Opt_read_only,
655         Opt_read_write,
656         /* Boolean args above */
657         Opt_last_bool,
658 };
659
660 static match_table_t rbd_opts_tokens = {
661         /* int args above */
662         /* string args above */
663         {Opt_read_only, "read_only"},
664         {Opt_read_only, "ro"},          /* Alternate spelling */
665         {Opt_read_write, "read_write"},
666         {Opt_read_write, "rw"},         /* Alternate spelling */
667         /* Boolean args above */
668         {-1, NULL}
669 };
670
671 struct rbd_options {
672         bool    read_only;
673 };
674
675 #define RBD_READ_ONLY_DEFAULT   false
676
677 static int parse_rbd_opts_token(char *c, void *private)
678 {
679         struct rbd_options *rbd_opts = private;
680         substring_t argstr[MAX_OPT_ARGS];
681         int token, intval, ret;
682
683         token = match_token(c, rbd_opts_tokens, argstr);
684         if (token < 0)
685                 return -EINVAL;
686
687         if (token < Opt_last_int) {
688                 ret = match_int(&argstr[0], &intval);
689                 if (ret < 0) {
690                         pr_err("bad mount option arg (not int) "
691                                "at '%s'\n", c);
692                         return ret;
693                 }
694                 dout("got int token %d val %d\n", token, intval);
695         } else if (token > Opt_last_int && token < Opt_last_string) {
696                 dout("got string token %d val %s\n", token,
697                      argstr[0].from);
698         } else if (token > Opt_last_string && token < Opt_last_bool) {
699                 dout("got Boolean token %d\n", token);
700         } else {
701                 dout("got token %d\n", token);
702         }
703
704         switch (token) {
705         case Opt_read_only:
706                 rbd_opts->read_only = true;
707                 break;
708         case Opt_read_write:
709                 rbd_opts->read_only = false;
710                 break;
711         default:
712                 rbd_assert(false);
713                 break;
714         }
715         return 0;
716 }
717
718 /*
719  * Get a ceph client with specific addr and configuration, if one does
720  * not exist create it.  Either way, ceph_opts is consumed by this
721  * function.
722  */
723 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
724 {
725         struct rbd_client *rbdc;
726
727         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
728         rbdc = rbd_client_find(ceph_opts);
729         if (rbdc)       /* using an existing client */
730                 ceph_destroy_options(ceph_opts);
731         else
732                 rbdc = rbd_client_create(ceph_opts);
733         mutex_unlock(&client_mutex);
734
735         return rbdc;
736 }
737
738 /*
739  * Destroy ceph client
740  *
741  * Caller must hold rbd_client_list_lock.
742  */
743 static void rbd_client_release(struct kref *kref)
744 {
745         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
746
747         dout("%s: rbdc %p\n", __func__, rbdc);
748         spin_lock(&rbd_client_list_lock);
749         list_del(&rbdc->node);
750         spin_unlock(&rbd_client_list_lock);
751
752         ceph_destroy_client(rbdc->client);
753         kfree(rbdc);
754 }
755
756 /*
757  * Drop reference to ceph client node. If it's not referenced anymore, release
758  * it.
759  */
760 static void rbd_put_client(struct rbd_client *rbdc)
761 {
762         if (rbdc)
763                 kref_put(&rbdc->kref, rbd_client_release);
764 }
765
766 static bool rbd_image_format_valid(u32 image_format)
767 {
768         return image_format == 1 || image_format == 2;
769 }
770
771 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
772 {
773         size_t size;
774         u32 snap_count;
775
776         /* The header has to start with the magic rbd header text */
777         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
778                 return false;
779
780         /* The bio layer requires at least sector-sized I/O */
781
782         if (ondisk->options.order < SECTOR_SHIFT)
783                 return false;
784
785         /* If we use u64 in a few spots we may be able to loosen this */
786
787         if (ondisk->options.order > 8 * sizeof (int) - 1)
788                 return false;
789
790         /*
791          * The size of a snapshot header has to fit in a size_t, and
792          * that limits the number of snapshots.
793          */
794         snap_count = le32_to_cpu(ondisk->snap_count);
795         size = SIZE_MAX - sizeof (struct ceph_snap_context);
796         if (snap_count > size / sizeof (__le64))
797                 return false;
798
799         /*
800          * Not only that, but the size of the entire the snapshot
801          * header must also be representable in a size_t.
802          */
803         size -= snap_count * sizeof (__le64);
804         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
805                 return false;
806
807         return true;
808 }
809
810 /*
811  * Fill an rbd image header with information from the given format 1
812  * on-disk header.
813  */
814 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
815                                  struct rbd_image_header_ondisk *ondisk)
816 {
817         struct rbd_image_header *header = &rbd_dev->header;
818         bool first_time = header->object_prefix == NULL;
819         struct ceph_snap_context *snapc;
820         char *object_prefix = NULL;
821         char *snap_names = NULL;
822         u64 *snap_sizes = NULL;
823         u32 snap_count;
824         size_t size;
825         int ret = -ENOMEM;
826         u32 i;
827
828         /* Allocate this now to avoid having to handle failure below */
829
830         if (first_time) {
831                 size_t len;
832
833                 len = strnlen(ondisk->object_prefix,
834                                 sizeof (ondisk->object_prefix));
835                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
836                 if (!object_prefix)
837                         return -ENOMEM;
838                 memcpy(object_prefix, ondisk->object_prefix, len);
839                 object_prefix[len] = '\0';
840         }
841
842         /* Allocate the snapshot context and fill it in */
843
844         snap_count = le32_to_cpu(ondisk->snap_count);
845         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
846         if (!snapc)
847                 goto out_err;
848         snapc->seq = le64_to_cpu(ondisk->snap_seq);
849         if (snap_count) {
850                 struct rbd_image_snap_ondisk *snaps;
851                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
852
853                 /* We'll keep a copy of the snapshot names... */
854
855                 if (snap_names_len > (u64)SIZE_MAX)
856                         goto out_2big;
857                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
858                 if (!snap_names)
859                         goto out_err;
860
861                 /* ...as well as the array of their sizes. */
862
863                 size = snap_count * sizeof (*header->snap_sizes);
864                 snap_sizes = kmalloc(size, GFP_KERNEL);
865                 if (!snap_sizes)
866                         goto out_err;
867
868                 /*
869                  * Copy the names, and fill in each snapshot's id
870                  * and size.
871                  *
872                  * Note that rbd_dev_v1_header_info() guarantees the
873                  * ondisk buffer we're working with has
874                  * snap_names_len bytes beyond the end of the
875                  * snapshot id array, this memcpy() is safe.
876                  */
877                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
878                 snaps = ondisk->snaps;
879                 for (i = 0; i < snap_count; i++) {
880                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
881                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
882                 }
883         }
884
885         /* We won't fail any more, fill in the header */
886
887         if (first_time) {
888                 header->object_prefix = object_prefix;
889                 header->obj_order = ondisk->options.order;
890                 header->crypt_type = ondisk->options.crypt_type;
891                 header->comp_type = ondisk->options.comp_type;
892                 /* The rest aren't used for format 1 images */
893                 header->stripe_unit = 0;
894                 header->stripe_count = 0;
895                 header->features = 0;
896         } else {
897                 ceph_put_snap_context(header->snapc);
898                 kfree(header->snap_names);
899                 kfree(header->snap_sizes);
900         }
901
902         /* The remaining fields always get updated (when we refresh) */
903
904         header->image_size = le64_to_cpu(ondisk->image_size);
905         header->snapc = snapc;
906         header->snap_names = snap_names;
907         header->snap_sizes = snap_sizes;
908
909         /* Make sure mapping size is consistent with header info */
910
911         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
912                 if (rbd_dev->mapping.size != header->image_size)
913                         rbd_dev->mapping.size = header->image_size;
914
915         return 0;
916 out_2big:
917         ret = -EIO;
918 out_err:
919         kfree(snap_sizes);
920         kfree(snap_names);
921         ceph_put_snap_context(snapc);
922         kfree(object_prefix);
923
924         return ret;
925 }
926
927 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
928 {
929         const char *snap_name;
930
931         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
932
933         /* Skip over names until we find the one we are looking for */
934
935         snap_name = rbd_dev->header.snap_names;
936         while (which--)
937                 snap_name += strlen(snap_name) + 1;
938
939         return kstrdup(snap_name, GFP_KERNEL);
940 }
941
942 /*
943  * Snapshot id comparison function for use with qsort()/bsearch().
944  * Note that result is for snapshots in *descending* order.
945  */
946 static int snapid_compare_reverse(const void *s1, const void *s2)
947 {
948         u64 snap_id1 = *(u64 *)s1;
949         u64 snap_id2 = *(u64 *)s2;
950
951         if (snap_id1 < snap_id2)
952                 return 1;
953         return snap_id1 == snap_id2 ? 0 : -1;
954 }
955
956 /*
957  * Search a snapshot context to see if the given snapshot id is
958  * present.
959  *
960  * Returns the position of the snapshot id in the array if it's found,
961  * or BAD_SNAP_INDEX otherwise.
962  *
963  * Note: The snapshot array is in kept sorted (by the osd) in
964  * reverse order, highest snapshot id first.
965  */
966 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
967 {
968         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
969         u64 *found;
970
971         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
972                                 sizeof (snap_id), snapid_compare_reverse);
973
974         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
975 }
976
977 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
978                                         u64 snap_id)
979 {
980         u32 which;
981         const char *snap_name;
982
983         which = rbd_dev_snap_index(rbd_dev, snap_id);
984         if (which == BAD_SNAP_INDEX)
985                 return ERR_PTR(-ENOENT);
986
987         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
988         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
989 }
990
991 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
992 {
993         if (snap_id == CEPH_NOSNAP)
994                 return RBD_SNAP_HEAD_NAME;
995
996         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
997         if (rbd_dev->image_format == 1)
998                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
999
1000         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1001 }
1002
1003 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1004                                 u64 *snap_size)
1005 {
1006         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1007         if (snap_id == CEPH_NOSNAP) {
1008                 *snap_size = rbd_dev->header.image_size;
1009         } else if (rbd_dev->image_format == 1) {
1010                 u32 which;
1011
1012                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1013                 if (which == BAD_SNAP_INDEX)
1014                         return -ENOENT;
1015
1016                 *snap_size = rbd_dev->header.snap_sizes[which];
1017         } else {
1018                 u64 size = 0;
1019                 int ret;
1020
1021                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1022                 if (ret)
1023                         return ret;
1024
1025                 *snap_size = size;
1026         }
1027         return 0;
1028 }
1029
1030 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1031                         u64 *snap_features)
1032 {
1033         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1034         if (snap_id == CEPH_NOSNAP) {
1035                 *snap_features = rbd_dev->header.features;
1036         } else if (rbd_dev->image_format == 1) {
1037                 *snap_features = 0;     /* No features for format 1 */
1038         } else {
1039                 u64 features = 0;
1040                 int ret;
1041
1042                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1043                 if (ret)
1044                         return ret;
1045
1046                 *snap_features = features;
1047         }
1048         return 0;
1049 }
1050
1051 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1052 {
1053         u64 snap_id = rbd_dev->spec->snap_id;
1054         u64 size = 0;
1055         u64 features = 0;
1056         int ret;
1057
1058         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1059         if (ret)
1060                 return ret;
1061         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1062         if (ret)
1063                 return ret;
1064
1065         rbd_dev->mapping.size = size;
1066         rbd_dev->mapping.features = features;
1067
1068         return 0;
1069 }
1070
1071 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1072 {
1073         rbd_dev->mapping.size = 0;
1074         rbd_dev->mapping.features = 0;
1075 }
1076
1077 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1078 {
1079         char *name;
1080         u64 segment;
1081         int ret;
1082         char *name_format;
1083
1084         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1085         if (!name)
1086                 return NULL;
1087         segment = offset >> rbd_dev->header.obj_order;
1088         name_format = "%s.%012llx";
1089         if (rbd_dev->image_format == 2)
1090                 name_format = "%s.%016llx";
1091         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1092                         rbd_dev->header.object_prefix, segment);
1093         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1094                 pr_err("error formatting segment name for #%llu (%d)\n",
1095                         segment, ret);
1096                 kfree(name);
1097                 name = NULL;
1098         }
1099
1100         return name;
1101 }
1102
1103 static void rbd_segment_name_free(const char *name)
1104 {
1105         /* The explicit cast here is needed to drop the const qualifier */
1106
1107         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1108 }
1109
1110 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1111 {
1112         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1113
1114         return offset & (segment_size - 1);
1115 }
1116
1117 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1118                                 u64 offset, u64 length)
1119 {
1120         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1121
1122         offset &= segment_size - 1;
1123
1124         rbd_assert(length <= U64_MAX - offset);
1125         if (offset + length > segment_size)
1126                 length = segment_size - offset;
1127
1128         return length;
1129 }
1130
1131 /*
1132  * returns the size of an object in the image
1133  */
1134 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1135 {
1136         return 1 << header->obj_order;
1137 }
1138
1139 /*
1140  * bio helpers
1141  */
1142
1143 static void bio_chain_put(struct bio *chain)
1144 {
1145         struct bio *tmp;
1146
1147         while (chain) {
1148                 tmp = chain;
1149                 chain = chain->bi_next;
1150                 bio_put(tmp);
1151         }
1152 }
1153
1154 /*
1155  * zeros a bio chain, starting at specific offset
1156  */
1157 static void zero_bio_chain(struct bio *chain, int start_ofs)
1158 {
1159         struct bio_vec *bv;
1160         unsigned long flags;
1161         void *buf;
1162         int i;
1163         int pos = 0;
1164
1165         while (chain) {
1166                 bio_for_each_segment(bv, chain, i) {
1167                         if (pos + bv->bv_len > start_ofs) {
1168                                 int remainder = max(start_ofs - pos, 0);
1169                                 buf = bvec_kmap_irq(bv, &flags);
1170                                 memset(buf + remainder, 0,
1171                                        bv->bv_len - remainder);
1172                                 flush_dcache_page(bv->bv_page);
1173                                 bvec_kunmap_irq(buf, &flags);
1174                         }
1175                         pos += bv->bv_len;
1176                 }
1177
1178                 chain = chain->bi_next;
1179         }
1180 }
1181
1182 /*
1183  * similar to zero_bio_chain(), zeros data defined by a page array,
1184  * starting at the given byte offset from the start of the array and
1185  * continuing up to the given end offset.  The pages array is
1186  * assumed to be big enough to hold all bytes up to the end.
1187  */
1188 static void zero_pages(struct page **pages, u64 offset, u64 end)
1189 {
1190         struct page **page = &pages[offset >> PAGE_SHIFT];
1191
1192         rbd_assert(end > offset);
1193         rbd_assert(end - offset <= (u64)SIZE_MAX);
1194         while (offset < end) {
1195                 size_t page_offset;
1196                 size_t length;
1197                 unsigned long flags;
1198                 void *kaddr;
1199
1200                 page_offset = offset & ~PAGE_MASK;
1201                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1202                 local_irq_save(flags);
1203                 kaddr = kmap_atomic(*page);
1204                 memset(kaddr + page_offset, 0, length);
1205                 flush_dcache_page(*page);
1206                 kunmap_atomic(kaddr);
1207                 local_irq_restore(flags);
1208
1209                 offset += length;
1210                 page++;
1211         }
1212 }
1213
1214 /*
1215  * Clone a portion of a bio, starting at the given byte offset
1216  * and continuing for the number of bytes indicated.
1217  */
1218 static struct bio *bio_clone_range(struct bio *bio_src,
1219                                         unsigned int offset,
1220                                         unsigned int len,
1221                                         gfp_t gfpmask)
1222 {
1223         struct bio_vec *bv;
1224         unsigned int resid;
1225         unsigned short idx;
1226         unsigned int voff;
1227         unsigned short end_idx;
1228         unsigned short vcnt;
1229         struct bio *bio;
1230
1231         /* Handle the easy case for the caller */
1232
1233         if (!offset && len == bio_src->bi_size)
1234                 return bio_clone(bio_src, gfpmask);
1235
1236         if (WARN_ON_ONCE(!len))
1237                 return NULL;
1238         if (WARN_ON_ONCE(len > bio_src->bi_size))
1239                 return NULL;
1240         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1241                 return NULL;
1242
1243         /* Find first affected segment... */
1244
1245         resid = offset;
1246         bio_for_each_segment(bv, bio_src, idx) {
1247                 if (resid < bv->bv_len)
1248                         break;
1249                 resid -= bv->bv_len;
1250         }
1251         voff = resid;
1252
1253         /* ...and the last affected segment */
1254
1255         resid += len;
1256         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1257                 if (resid <= bv->bv_len)
1258                         break;
1259                 resid -= bv->bv_len;
1260         }
1261         vcnt = end_idx - idx + 1;
1262
1263         /* Build the clone */
1264
1265         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1266         if (!bio)
1267                 return NULL;    /* ENOMEM */
1268
1269         bio->bi_bdev = bio_src->bi_bdev;
1270         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1271         bio->bi_rw = bio_src->bi_rw;
1272         bio->bi_flags |= 1 << BIO_CLONED;
1273
1274         /*
1275          * Copy over our part of the bio_vec, then update the first
1276          * and last (or only) entries.
1277          */
1278         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1279                         vcnt * sizeof (struct bio_vec));
1280         bio->bi_io_vec[0].bv_offset += voff;
1281         if (vcnt > 1) {
1282                 bio->bi_io_vec[0].bv_len -= voff;
1283                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1284         } else {
1285                 bio->bi_io_vec[0].bv_len = len;
1286         }
1287
1288         bio->bi_vcnt = vcnt;
1289         bio->bi_size = len;
1290         bio->bi_idx = 0;
1291
1292         return bio;
1293 }
1294
1295 /*
1296  * Clone a portion of a bio chain, starting at the given byte offset
1297  * into the first bio in the source chain and continuing for the
1298  * number of bytes indicated.  The result is another bio chain of
1299  * exactly the given length, or a null pointer on error.
1300  *
1301  * The bio_src and offset parameters are both in-out.  On entry they
1302  * refer to the first source bio and the offset into that bio where
1303  * the start of data to be cloned is located.
1304  *
1305  * On return, bio_src is updated to refer to the bio in the source
1306  * chain that contains first un-cloned byte, and *offset will
1307  * contain the offset of that byte within that bio.
1308  */
1309 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1310                                         unsigned int *offset,
1311                                         unsigned int len,
1312                                         gfp_t gfpmask)
1313 {
1314         struct bio *bi = *bio_src;
1315         unsigned int off = *offset;
1316         struct bio *chain = NULL;
1317         struct bio **end;
1318
1319         /* Build up a chain of clone bios up to the limit */
1320
1321         if (!bi || off >= bi->bi_size || !len)
1322                 return NULL;            /* Nothing to clone */
1323
1324         end = &chain;
1325         while (len) {
1326                 unsigned int bi_size;
1327                 struct bio *bio;
1328
1329                 if (!bi) {
1330                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1331                         goto out_err;   /* EINVAL; ran out of bio's */
1332                 }
1333                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1334                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1335                 if (!bio)
1336                         goto out_err;   /* ENOMEM */
1337
1338                 *end = bio;
1339                 end = &bio->bi_next;
1340
1341                 off += bi_size;
1342                 if (off == bi->bi_size) {
1343                         bi = bi->bi_next;
1344                         off = 0;
1345                 }
1346                 len -= bi_size;
1347         }
1348         *bio_src = bi;
1349         *offset = off;
1350
1351         return chain;
1352 out_err:
1353         bio_chain_put(chain);
1354
1355         return NULL;
1356 }
1357
1358 /*
1359  * The default/initial value for all object request flags is 0.  For
1360  * each flag, once its value is set to 1 it is never reset to 0
1361  * again.
1362  */
1363 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1364 {
1365         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1366                 struct rbd_device *rbd_dev;
1367
1368                 rbd_dev = obj_request->img_request->rbd_dev;
1369                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1370                         obj_request);
1371         }
1372 }
1373
1374 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1375 {
1376         smp_mb();
1377         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1378 }
1379
1380 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1381 {
1382         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1383                 struct rbd_device *rbd_dev = NULL;
1384
1385                 if (obj_request_img_data_test(obj_request))
1386                         rbd_dev = obj_request->img_request->rbd_dev;
1387                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1388                         obj_request);
1389         }
1390 }
1391
1392 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1393 {
1394         smp_mb();
1395         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1396 }
1397
1398 /*
1399  * This sets the KNOWN flag after (possibly) setting the EXISTS
1400  * flag.  The latter is set based on the "exists" value provided.
1401  *
1402  * Note that for our purposes once an object exists it never goes
1403  * away again.  It's possible that the response from two existence
1404  * checks are separated by the creation of the target object, and
1405  * the first ("doesn't exist") response arrives *after* the second
1406  * ("does exist").  In that case we ignore the second one.
1407  */
1408 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1409                                 bool exists)
1410 {
1411         if (exists)
1412                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1413         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1414         smp_mb();
1415 }
1416
1417 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1418 {
1419         smp_mb();
1420         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1421 }
1422
1423 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1424 {
1425         smp_mb();
1426         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1427 }
1428
1429 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1430 {
1431         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1432                 atomic_read(&obj_request->kref.refcount));
1433         kref_get(&obj_request->kref);
1434 }
1435
1436 static void rbd_obj_request_destroy(struct kref *kref);
1437 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1438 {
1439         rbd_assert(obj_request != NULL);
1440         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1441                 atomic_read(&obj_request->kref.refcount));
1442         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1443 }
1444
1445 static bool img_request_child_test(struct rbd_img_request *img_request);
1446 static void rbd_parent_request_destroy(struct kref *kref);
1447 static void rbd_img_request_destroy(struct kref *kref);
1448 static void rbd_img_request_put(struct rbd_img_request *img_request)
1449 {
1450         rbd_assert(img_request != NULL);
1451         dout("%s: img %p (was %d)\n", __func__, img_request,
1452                 atomic_read(&img_request->kref.refcount));
1453         if (img_request_child_test(img_request))
1454                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1455         else
1456                 kref_put(&img_request->kref, rbd_img_request_destroy);
1457 }
1458
1459 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1460                                         struct rbd_obj_request *obj_request)
1461 {
1462         rbd_assert(obj_request->img_request == NULL);
1463
1464         /* Image request now owns object's original reference */
1465         obj_request->img_request = img_request;
1466         obj_request->which = img_request->obj_request_count;
1467         rbd_assert(!obj_request_img_data_test(obj_request));
1468         obj_request_img_data_set(obj_request);
1469         rbd_assert(obj_request->which != BAD_WHICH);
1470         img_request->obj_request_count++;
1471         list_add_tail(&obj_request->links, &img_request->obj_requests);
1472         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1473                 obj_request->which);
1474 }
1475
1476 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1477                                         struct rbd_obj_request *obj_request)
1478 {
1479         rbd_assert(obj_request->which != BAD_WHICH);
1480
1481         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1482                 obj_request->which);
1483         list_del(&obj_request->links);
1484         rbd_assert(img_request->obj_request_count > 0);
1485         img_request->obj_request_count--;
1486         rbd_assert(obj_request->which == img_request->obj_request_count);
1487         obj_request->which = BAD_WHICH;
1488         rbd_assert(obj_request_img_data_test(obj_request));
1489         rbd_assert(obj_request->img_request == img_request);
1490         obj_request->img_request = NULL;
1491         obj_request->callback = NULL;
1492         rbd_obj_request_put(obj_request);
1493 }
1494
1495 static bool obj_request_type_valid(enum obj_request_type type)
1496 {
1497         switch (type) {
1498         case OBJ_REQUEST_NODATA:
1499         case OBJ_REQUEST_BIO:
1500         case OBJ_REQUEST_PAGES:
1501                 return true;
1502         default:
1503                 return false;
1504         }
1505 }
1506
1507 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1508                                 struct rbd_obj_request *obj_request)
1509 {
1510         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1511
1512         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1513 }
1514
1515 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1516 {
1517
1518         dout("%s: img %p\n", __func__, img_request);
1519
1520         /*
1521          * If no error occurred, compute the aggregate transfer
1522          * count for the image request.  We could instead use
1523          * atomic64_cmpxchg() to update it as each object request
1524          * completes; not clear which way is better off hand.
1525          */
1526         if (!img_request->result) {
1527                 struct rbd_obj_request *obj_request;
1528                 u64 xferred = 0;
1529
1530                 for_each_obj_request(img_request, obj_request)
1531                         xferred += obj_request->xferred;
1532                 img_request->xferred = xferred;
1533         }
1534
1535         if (img_request->callback)
1536                 img_request->callback(img_request);
1537         else
1538                 rbd_img_request_put(img_request);
1539 }
1540
1541 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1542
1543 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1544 {
1545         dout("%s: obj %p\n", __func__, obj_request);
1546
1547         return wait_for_completion_interruptible(&obj_request->completion);
1548 }
1549
1550 /*
1551  * The default/initial value for all image request flags is 0.  Each
1552  * is conditionally set to 1 at image request initialization time
1553  * and currently never change thereafter.
1554  */
1555 static void img_request_write_set(struct rbd_img_request *img_request)
1556 {
1557         set_bit(IMG_REQ_WRITE, &img_request->flags);
1558         smp_mb();
1559 }
1560
1561 static bool img_request_write_test(struct rbd_img_request *img_request)
1562 {
1563         smp_mb();
1564         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1565 }
1566
1567 static void img_request_child_set(struct rbd_img_request *img_request)
1568 {
1569         set_bit(IMG_REQ_CHILD, &img_request->flags);
1570         smp_mb();
1571 }
1572
1573 static void img_request_child_clear(struct rbd_img_request *img_request)
1574 {
1575         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1576         smp_mb();
1577 }
1578
1579 static bool img_request_child_test(struct rbd_img_request *img_request)
1580 {
1581         smp_mb();
1582         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1583 }
1584
1585 static void img_request_layered_set(struct rbd_img_request *img_request)
1586 {
1587         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1588         smp_mb();
1589 }
1590
1591 static void img_request_layered_clear(struct rbd_img_request *img_request)
1592 {
1593         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1594         smp_mb();
1595 }
1596
1597 static bool img_request_layered_test(struct rbd_img_request *img_request)
1598 {
1599         smp_mb();
1600         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1601 }
1602
1603 static void
1604 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1605 {
1606         u64 xferred = obj_request->xferred;
1607         u64 length = obj_request->length;
1608
1609         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1610                 obj_request, obj_request->img_request, obj_request->result,
1611                 xferred, length);
1612         /*
1613          * ENOENT means a hole in the image.  We zero-fill the entire
1614          * length of the request.  A short read also implies zero-fill
1615          * to the end of the request.  An error requires the whole
1616          * length of the request to be reported finished with an error
1617          * to the block layer.  In each case we update the xferred
1618          * count to indicate the whole request was satisfied.
1619          */
1620         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1621         if (obj_request->result == -ENOENT) {
1622                 if (obj_request->type == OBJ_REQUEST_BIO)
1623                         zero_bio_chain(obj_request->bio_list, 0);
1624                 else
1625                         zero_pages(obj_request->pages, 0, length);
1626                 obj_request->result = 0;
1627         } else if (xferred < length && !obj_request->result) {
1628                 if (obj_request->type == OBJ_REQUEST_BIO)
1629                         zero_bio_chain(obj_request->bio_list, xferred);
1630                 else
1631                         zero_pages(obj_request->pages, xferred, length);
1632         }
1633         obj_request->xferred = length;
1634         obj_request_done_set(obj_request);
1635 }
1636
1637 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1638 {
1639         dout("%s: obj %p cb %p\n", __func__, obj_request,
1640                 obj_request->callback);
1641         if (obj_request->callback)
1642                 obj_request->callback(obj_request);
1643         else
1644                 complete_all(&obj_request->completion);
1645 }
1646
1647 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1648 {
1649         dout("%s: obj %p\n", __func__, obj_request);
1650         obj_request_done_set(obj_request);
1651 }
1652
1653 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1654 {
1655         struct rbd_img_request *img_request = NULL;
1656         struct rbd_device *rbd_dev = NULL;
1657         bool layered = false;
1658
1659         if (obj_request_img_data_test(obj_request)) {
1660                 img_request = obj_request->img_request;
1661                 layered = img_request && img_request_layered_test(img_request);
1662                 rbd_dev = img_request->rbd_dev;
1663         }
1664
1665         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1666                 obj_request, img_request, obj_request->result,
1667                 obj_request->xferred, obj_request->length);
1668         if (layered && obj_request->result == -ENOENT &&
1669                         obj_request->img_offset < rbd_dev->parent_overlap)
1670                 rbd_img_parent_read(obj_request);
1671         else if (img_request)
1672                 rbd_img_obj_request_read_callback(obj_request);
1673         else
1674                 obj_request_done_set(obj_request);
1675 }
1676
1677 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1678 {
1679         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1680                 obj_request->result, obj_request->length);
1681         /*
1682          * There is no such thing as a successful short write.  Set
1683          * it to our originally-requested length.
1684          */
1685         obj_request->xferred = obj_request->length;
1686         obj_request_done_set(obj_request);
1687 }
1688
1689 /*
1690  * For a simple stat call there's nothing to do.  We'll do more if
1691  * this is part of a write sequence for a layered image.
1692  */
1693 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1694 {
1695         dout("%s: obj %p\n", __func__, obj_request);
1696         obj_request_done_set(obj_request);
1697 }
1698
1699 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1700                                 struct ceph_msg *msg)
1701 {
1702         struct rbd_obj_request *obj_request = osd_req->r_priv;
1703         u16 opcode;
1704
1705         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1706         rbd_assert(osd_req == obj_request->osd_req);
1707         if (obj_request_img_data_test(obj_request)) {
1708                 rbd_assert(obj_request->img_request);
1709                 rbd_assert(obj_request->which != BAD_WHICH);
1710         } else {
1711                 rbd_assert(obj_request->which == BAD_WHICH);
1712         }
1713
1714         if (osd_req->r_result < 0)
1715                 obj_request->result = osd_req->r_result;
1716
1717         BUG_ON(osd_req->r_num_ops > 2);
1718
1719         /*
1720          * We support a 64-bit length, but ultimately it has to be
1721          * passed to blk_end_request(), which takes an unsigned int.
1722          */
1723         obj_request->xferred = osd_req->r_reply_op_len[0];
1724         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1725         opcode = osd_req->r_ops[0].op;
1726         switch (opcode) {
1727         case CEPH_OSD_OP_READ:
1728                 rbd_osd_read_callback(obj_request);
1729                 break;
1730         case CEPH_OSD_OP_WRITE:
1731                 rbd_osd_write_callback(obj_request);
1732                 break;
1733         case CEPH_OSD_OP_STAT:
1734                 rbd_osd_stat_callback(obj_request);
1735                 break;
1736         case CEPH_OSD_OP_CALL:
1737         case CEPH_OSD_OP_NOTIFY_ACK:
1738         case CEPH_OSD_OP_WATCH:
1739                 rbd_osd_trivial_callback(obj_request);
1740                 break;
1741         default:
1742                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1743                         obj_request->object_name, (unsigned short) opcode);
1744                 break;
1745         }
1746
1747         if (obj_request_done_test(obj_request))
1748                 rbd_obj_request_complete(obj_request);
1749 }
1750
1751 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1752 {
1753         struct rbd_img_request *img_request = obj_request->img_request;
1754         struct ceph_osd_request *osd_req = obj_request->osd_req;
1755         u64 snap_id;
1756
1757         rbd_assert(osd_req != NULL);
1758
1759         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1760         ceph_osdc_build_request(osd_req, obj_request->offset,
1761                         NULL, snap_id, NULL);
1762 }
1763
1764 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1765 {
1766         struct rbd_img_request *img_request = obj_request->img_request;
1767         struct ceph_osd_request *osd_req = obj_request->osd_req;
1768         struct ceph_snap_context *snapc;
1769         struct timespec mtime = CURRENT_TIME;
1770
1771         rbd_assert(osd_req != NULL);
1772
1773         snapc = img_request ? img_request->snapc : NULL;
1774         ceph_osdc_build_request(osd_req, obj_request->offset,
1775                         snapc, CEPH_NOSNAP, &mtime);
1776 }
1777
1778 static struct ceph_osd_request *rbd_osd_req_create(
1779                                         struct rbd_device *rbd_dev,
1780                                         bool write_request,
1781                                         struct rbd_obj_request *obj_request)
1782 {
1783         struct ceph_snap_context *snapc = NULL;
1784         struct ceph_osd_client *osdc;
1785         struct ceph_osd_request *osd_req;
1786
1787         if (obj_request_img_data_test(obj_request)) {
1788                 struct rbd_img_request *img_request = obj_request->img_request;
1789
1790                 rbd_assert(write_request ==
1791                                 img_request_write_test(img_request));
1792                 if (write_request)
1793                         snapc = img_request->snapc;
1794         }
1795
1796         /* Allocate and initialize the request, for the single op */
1797
1798         osdc = &rbd_dev->rbd_client->client->osdc;
1799         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1800         if (!osd_req)
1801                 return NULL;    /* ENOMEM */
1802
1803         if (write_request)
1804                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1805         else
1806                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1807
1808         osd_req->r_callback = rbd_osd_req_callback;
1809         osd_req->r_priv = obj_request;
1810
1811         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1812         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1813
1814         return osd_req;
1815 }
1816
1817 /*
1818  * Create a copyup osd request based on the information in the
1819  * object request supplied.  A copyup request has two osd ops,
1820  * a copyup method call, and a "normal" write request.
1821  */
1822 static struct ceph_osd_request *
1823 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1824 {
1825         struct rbd_img_request *img_request;
1826         struct ceph_snap_context *snapc;
1827         struct rbd_device *rbd_dev;
1828         struct ceph_osd_client *osdc;
1829         struct ceph_osd_request *osd_req;
1830
1831         rbd_assert(obj_request_img_data_test(obj_request));
1832         img_request = obj_request->img_request;
1833         rbd_assert(img_request);
1834         rbd_assert(img_request_write_test(img_request));
1835
1836         /* Allocate and initialize the request, for the two ops */
1837
1838         snapc = img_request->snapc;
1839         rbd_dev = img_request->rbd_dev;
1840         osdc = &rbd_dev->rbd_client->client->osdc;
1841         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1842         if (!osd_req)
1843                 return NULL;    /* ENOMEM */
1844
1845         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1846         osd_req->r_callback = rbd_osd_req_callback;
1847         osd_req->r_priv = obj_request;
1848
1849         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1850         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1851
1852         return osd_req;
1853 }
1854
1855
1856 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1857 {
1858         ceph_osdc_put_request(osd_req);
1859 }
1860
1861 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1862
1863 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1864                                                 u64 offset, u64 length,
1865                                                 enum obj_request_type type)
1866 {
1867         struct rbd_obj_request *obj_request;
1868         size_t size;
1869         char *name;
1870
1871         rbd_assert(obj_request_type_valid(type));
1872
1873         size = strlen(object_name) + 1;
1874         name = kmalloc(size, GFP_KERNEL);
1875         if (!name)
1876                 return NULL;
1877
1878         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1879         if (!obj_request) {
1880                 kfree(name);
1881                 return NULL;
1882         }
1883
1884         obj_request->object_name = memcpy(name, object_name, size);
1885         obj_request->offset = offset;
1886         obj_request->length = length;
1887         obj_request->flags = 0;
1888         obj_request->which = BAD_WHICH;
1889         obj_request->type = type;
1890         INIT_LIST_HEAD(&obj_request->links);
1891         init_completion(&obj_request->completion);
1892         kref_init(&obj_request->kref);
1893
1894         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1895                 offset, length, (int)type, obj_request);
1896
1897         return obj_request;
1898 }
1899
1900 static void rbd_obj_request_destroy(struct kref *kref)
1901 {
1902         struct rbd_obj_request *obj_request;
1903
1904         obj_request = container_of(kref, struct rbd_obj_request, kref);
1905
1906         dout("%s: obj %p\n", __func__, obj_request);
1907
1908         rbd_assert(obj_request->img_request == NULL);
1909         rbd_assert(obj_request->which == BAD_WHICH);
1910
1911         if (obj_request->osd_req)
1912                 rbd_osd_req_destroy(obj_request->osd_req);
1913
1914         rbd_assert(obj_request_type_valid(obj_request->type));
1915         switch (obj_request->type) {
1916         case OBJ_REQUEST_NODATA:
1917                 break;          /* Nothing to do */
1918         case OBJ_REQUEST_BIO:
1919                 if (obj_request->bio_list)
1920                         bio_chain_put(obj_request->bio_list);
1921                 break;
1922         case OBJ_REQUEST_PAGES:
1923                 if (obj_request->pages)
1924                         ceph_release_page_vector(obj_request->pages,
1925                                                 obj_request->page_count);
1926                 break;
1927         }
1928
1929         kfree(obj_request->object_name);
1930         obj_request->object_name = NULL;
1931         kmem_cache_free(rbd_obj_request_cache, obj_request);
1932 }
1933
1934 /* It's OK to call this for a device with no parent */
1935
1936 static void rbd_spec_put(struct rbd_spec *spec);
1937 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1938 {
1939         rbd_dev_remove_parent(rbd_dev);
1940         rbd_spec_put(rbd_dev->parent_spec);
1941         rbd_dev->parent_spec = NULL;
1942         rbd_dev->parent_overlap = 0;
1943 }
1944
1945 /*
1946  * Parent image reference counting is used to determine when an
1947  * image's parent fields can be safely torn down--after there are no
1948  * more in-flight requests to the parent image.  When the last
1949  * reference is dropped, cleaning them up is safe.
1950  */
1951 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1952 {
1953         int counter;
1954
1955         if (!rbd_dev->parent_spec)
1956                 return;
1957
1958         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1959         if (counter > 0)
1960                 return;
1961
1962         /* Last reference; clean up parent data structures */
1963
1964         if (!counter)
1965                 rbd_dev_unparent(rbd_dev);
1966         else
1967                 rbd_warn(rbd_dev, "parent reference underflow\n");
1968 }
1969
1970 /*
1971  * If an image has a non-zero parent overlap, get a reference to its
1972  * parent.
1973  *
1974  * We must get the reference before checking for the overlap to
1975  * coordinate properly with zeroing the parent overlap in
1976  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1977  * drop it again if there is no overlap.
1978  *
1979  * Returns true if the rbd device has a parent with a non-zero
1980  * overlap and a reference for it was successfully taken, or
1981  * false otherwise.
1982  */
1983 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1984 {
1985         int counter;
1986
1987         if (!rbd_dev->parent_spec)
1988                 return false;
1989
1990         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1991         if (counter > 0 && rbd_dev->parent_overlap)
1992                 return true;
1993
1994         /* Image was flattened, but parent is not yet torn down */
1995
1996         if (counter < 0)
1997                 rbd_warn(rbd_dev, "parent reference overflow\n");
1998
1999         return false;
2000 }
2001
2002 /*
2003  * Caller is responsible for filling in the list of object requests
2004  * that comprises the image request, and the Linux request pointer
2005  * (if there is one).
2006  */
2007 static struct rbd_img_request *rbd_img_request_create(
2008                                         struct rbd_device *rbd_dev,
2009                                         u64 offset, u64 length,
2010                                         bool write_request)
2011 {
2012         struct rbd_img_request *img_request;
2013
2014         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
2015         if (!img_request)
2016                 return NULL;
2017
2018         if (write_request) {
2019                 down_read(&rbd_dev->header_rwsem);
2020                 ceph_get_snap_context(rbd_dev->header.snapc);
2021                 up_read(&rbd_dev->header_rwsem);
2022         }
2023
2024         img_request->rq = NULL;
2025         img_request->rbd_dev = rbd_dev;
2026         img_request->offset = offset;
2027         img_request->length = length;
2028         img_request->flags = 0;
2029         if (write_request) {
2030                 img_request_write_set(img_request);
2031                 img_request->snapc = rbd_dev->header.snapc;
2032         } else {
2033                 img_request->snap_id = rbd_dev->spec->snap_id;
2034         }
2035         if (rbd_dev_parent_get(rbd_dev))
2036                 img_request_layered_set(img_request);
2037         spin_lock_init(&img_request->completion_lock);
2038         img_request->next_completion = 0;
2039         img_request->callback = NULL;
2040         img_request->result = 0;
2041         img_request->obj_request_count = 0;
2042         INIT_LIST_HEAD(&img_request->obj_requests);
2043         kref_init(&img_request->kref);
2044
2045         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2046                 write_request ? "write" : "read", offset, length,
2047                 img_request);
2048
2049         return img_request;
2050 }
2051
2052 static void rbd_img_request_destroy(struct kref *kref)
2053 {
2054         struct rbd_img_request *img_request;
2055         struct rbd_obj_request *obj_request;
2056         struct rbd_obj_request *next_obj_request;
2057
2058         img_request = container_of(kref, struct rbd_img_request, kref);
2059
2060         dout("%s: img %p\n", __func__, img_request);
2061
2062         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2063                 rbd_img_obj_request_del(img_request, obj_request);
2064         rbd_assert(img_request->obj_request_count == 0);
2065
2066         if (img_request_layered_test(img_request)) {
2067                 img_request_layered_clear(img_request);
2068                 rbd_dev_parent_put(img_request->rbd_dev);
2069         }
2070
2071         if (img_request_write_test(img_request))
2072                 ceph_put_snap_context(img_request->snapc);
2073
2074         kmem_cache_free(rbd_img_request_cache, img_request);
2075 }
2076
2077 static struct rbd_img_request *rbd_parent_request_create(
2078                                         struct rbd_obj_request *obj_request,
2079                                         u64 img_offset, u64 length)
2080 {
2081         struct rbd_img_request *parent_request;
2082         struct rbd_device *rbd_dev;
2083
2084         rbd_assert(obj_request->img_request);
2085         rbd_dev = obj_request->img_request->rbd_dev;
2086
2087         parent_request = rbd_img_request_create(rbd_dev->parent,
2088                                                 img_offset, length, false);
2089         if (!parent_request)
2090                 return NULL;
2091
2092         img_request_child_set(parent_request);
2093         rbd_obj_request_get(obj_request);
2094         parent_request->obj_request = obj_request;
2095
2096         return parent_request;
2097 }
2098
2099 static void rbd_parent_request_destroy(struct kref *kref)
2100 {
2101         struct rbd_img_request *parent_request;
2102         struct rbd_obj_request *orig_request;
2103
2104         parent_request = container_of(kref, struct rbd_img_request, kref);
2105         orig_request = parent_request->obj_request;
2106
2107         parent_request->obj_request = NULL;
2108         rbd_obj_request_put(orig_request);
2109         img_request_child_clear(parent_request);
2110
2111         rbd_img_request_destroy(kref);
2112 }
2113
2114 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2115 {
2116         struct rbd_img_request *img_request;
2117         unsigned int xferred;
2118         int result;
2119         bool more;
2120
2121         rbd_assert(obj_request_img_data_test(obj_request));
2122         img_request = obj_request->img_request;
2123
2124         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2125         xferred = (unsigned int)obj_request->xferred;
2126         result = obj_request->result;
2127         if (result) {
2128                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2129
2130                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2131                         img_request_write_test(img_request) ? "write" : "read",
2132                         obj_request->length, obj_request->img_offset,
2133                         obj_request->offset);
2134                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2135                         result, xferred);
2136                 if (!img_request->result)
2137                         img_request->result = result;
2138         }
2139
2140         /* Image object requests don't own their page array */
2141
2142         if (obj_request->type == OBJ_REQUEST_PAGES) {
2143                 obj_request->pages = NULL;
2144                 obj_request->page_count = 0;
2145         }
2146
2147         if (img_request_child_test(img_request)) {
2148                 rbd_assert(img_request->obj_request != NULL);
2149                 more = obj_request->which < img_request->obj_request_count - 1;
2150         } else {
2151                 rbd_assert(img_request->rq != NULL);
2152                 more = blk_end_request(img_request->rq, result, xferred);
2153         }
2154
2155         return more;
2156 }
2157
2158 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2159 {
2160         struct rbd_img_request *img_request;
2161         u32 which = obj_request->which;
2162         bool more = true;
2163
2164         rbd_assert(obj_request_img_data_test(obj_request));
2165         img_request = obj_request->img_request;
2166
2167         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2168         rbd_assert(img_request != NULL);
2169         rbd_assert(img_request->obj_request_count > 0);
2170         rbd_assert(which != BAD_WHICH);
2171         rbd_assert(which < img_request->obj_request_count);
2172         rbd_assert(which >= img_request->next_completion);
2173
2174         spin_lock_irq(&img_request->completion_lock);
2175         if (which != img_request->next_completion)
2176                 goto out;
2177
2178         for_each_obj_request_from(img_request, obj_request) {
2179                 rbd_assert(more);
2180                 rbd_assert(which < img_request->obj_request_count);
2181
2182                 if (!obj_request_done_test(obj_request))
2183                         break;
2184                 more = rbd_img_obj_end_request(obj_request);
2185                 which++;
2186         }
2187
2188         rbd_assert(more ^ (which == img_request->obj_request_count));
2189         img_request->next_completion = which;
2190 out:
2191         spin_unlock_irq(&img_request->completion_lock);
2192
2193         if (!more)
2194                 rbd_img_request_complete(img_request);
2195 }
2196
2197 /*
2198  * Split up an image request into one or more object requests, each
2199  * to a different object.  The "type" parameter indicates whether
2200  * "data_desc" is the pointer to the head of a list of bio
2201  * structures, or the base of a page array.  In either case this
2202  * function assumes data_desc describes memory sufficient to hold
2203  * all data described by the image request.
2204  */
2205 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2206                                         enum obj_request_type type,
2207                                         void *data_desc)
2208 {
2209         struct rbd_device *rbd_dev = img_request->rbd_dev;
2210         struct rbd_obj_request *obj_request = NULL;
2211         struct rbd_obj_request *next_obj_request;
2212         bool write_request = img_request_write_test(img_request);
2213         struct bio *bio_list = NULL;
2214         unsigned int bio_offset = 0;
2215         struct page **pages = NULL;
2216         u64 img_offset;
2217         u64 resid;
2218         u16 opcode;
2219
2220         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2221                 (int)type, data_desc);
2222
2223         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2224         img_offset = img_request->offset;
2225         resid = img_request->length;
2226         rbd_assert(resid > 0);
2227
2228         if (type == OBJ_REQUEST_BIO) {
2229                 bio_list = data_desc;
2230                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2231         } else {
2232                 rbd_assert(type == OBJ_REQUEST_PAGES);
2233                 pages = data_desc;
2234         }
2235
2236         while (resid) {
2237                 struct ceph_osd_request *osd_req;
2238                 const char *object_name;
2239                 u64 offset;
2240                 u64 length;
2241
2242                 object_name = rbd_segment_name(rbd_dev, img_offset);
2243                 if (!object_name)
2244                         goto out_unwind;
2245                 offset = rbd_segment_offset(rbd_dev, img_offset);
2246                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2247                 obj_request = rbd_obj_request_create(object_name,
2248                                                 offset, length, type);
2249                 /* object request has its own copy of the object name */
2250                 rbd_segment_name_free(object_name);
2251                 if (!obj_request)
2252                         goto out_unwind;
2253                 /*
2254                  * set obj_request->img_request before creating the
2255                  * osd_request so that it gets the right snapc
2256                  */
2257                 rbd_img_obj_request_add(img_request, obj_request);
2258
2259                 if (type == OBJ_REQUEST_BIO) {
2260                         unsigned int clone_size;
2261
2262                         rbd_assert(length <= (u64)UINT_MAX);
2263                         clone_size = (unsigned int)length;
2264                         obj_request->bio_list =
2265                                         bio_chain_clone_range(&bio_list,
2266                                                                 &bio_offset,
2267                                                                 clone_size,
2268                                                                 GFP_ATOMIC);
2269                         if (!obj_request->bio_list)
2270                                 goto out_partial;
2271                 } else {
2272                         unsigned int page_count;
2273
2274                         obj_request->pages = pages;
2275                         page_count = (u32)calc_pages_for(offset, length);
2276                         obj_request->page_count = page_count;
2277                         if ((offset + length) & ~PAGE_MASK)
2278                                 page_count--;   /* more on last page */
2279                         pages += page_count;
2280                 }
2281
2282                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2283                                                 obj_request);
2284                 if (!osd_req)
2285                         goto out_partial;
2286                 obj_request->osd_req = osd_req;
2287                 obj_request->callback = rbd_img_obj_callback;
2288
2289                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2290                                                 0, 0);
2291                 if (type == OBJ_REQUEST_BIO)
2292                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2293                                         obj_request->bio_list, length);
2294                 else
2295                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2296                                         obj_request->pages, length,
2297                                         offset & ~PAGE_MASK, false, false);
2298
2299                 if (write_request)
2300                         rbd_osd_req_format_write(obj_request);
2301                 else
2302                         rbd_osd_req_format_read(obj_request);
2303
2304                 obj_request->img_offset = img_offset;
2305
2306                 img_offset += length;
2307                 resid -= length;
2308         }
2309
2310         return 0;
2311
2312 out_partial:
2313         rbd_obj_request_put(obj_request);
2314 out_unwind:
2315         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2316                 rbd_obj_request_put(obj_request);
2317
2318         return -ENOMEM;
2319 }
2320
2321 static void
2322 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2323 {
2324         struct rbd_img_request *img_request;
2325         struct rbd_device *rbd_dev;
2326         struct page **pages;
2327         u32 page_count;
2328
2329         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2330         rbd_assert(obj_request_img_data_test(obj_request));
2331         img_request = obj_request->img_request;
2332         rbd_assert(img_request);
2333
2334         rbd_dev = img_request->rbd_dev;
2335         rbd_assert(rbd_dev);
2336
2337         pages = obj_request->copyup_pages;
2338         rbd_assert(pages != NULL);
2339         obj_request->copyup_pages = NULL;
2340         page_count = obj_request->copyup_page_count;
2341         rbd_assert(page_count);
2342         obj_request->copyup_page_count = 0;
2343         ceph_release_page_vector(pages, page_count);
2344
2345         /*
2346          * We want the transfer count to reflect the size of the
2347          * original write request.  There is no such thing as a
2348          * successful short write, so if the request was successful
2349          * we can just set it to the originally-requested length.
2350          */
2351         if (!obj_request->result)
2352                 obj_request->xferred = obj_request->length;
2353
2354         /* Finish up with the normal image object callback */
2355
2356         rbd_img_obj_callback(obj_request);
2357 }
2358
2359 static void
2360 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2361 {
2362         struct rbd_obj_request *orig_request;
2363         struct ceph_osd_request *osd_req;
2364         struct ceph_osd_client *osdc;
2365         struct rbd_device *rbd_dev;
2366         struct page **pages;
2367         u32 page_count;
2368         int img_result;
2369         u64 parent_length;
2370         u64 offset;
2371         u64 length;
2372
2373         rbd_assert(img_request_child_test(img_request));
2374
2375         /* First get what we need from the image request */
2376
2377         pages = img_request->copyup_pages;
2378         rbd_assert(pages != NULL);
2379         img_request->copyup_pages = NULL;
2380         page_count = img_request->copyup_page_count;
2381         rbd_assert(page_count);
2382         img_request->copyup_page_count = 0;
2383
2384         orig_request = img_request->obj_request;
2385         rbd_assert(orig_request != NULL);
2386         rbd_assert(obj_request_type_valid(orig_request->type));
2387         img_result = img_request->result;
2388         parent_length = img_request->length;
2389         rbd_assert(parent_length == img_request->xferred);
2390         rbd_img_request_put(img_request);
2391
2392         rbd_assert(orig_request->img_request);
2393         rbd_dev = orig_request->img_request->rbd_dev;
2394         rbd_assert(rbd_dev);
2395
2396         /*
2397          * If the overlap has become 0 (most likely because the
2398          * image has been flattened) we need to free the pages
2399          * and re-submit the original write request.
2400          */
2401         if (!rbd_dev->parent_overlap) {
2402                 struct ceph_osd_client *osdc;
2403
2404                 ceph_release_page_vector(pages, page_count);
2405                 osdc = &rbd_dev->rbd_client->client->osdc;
2406                 img_result = rbd_obj_request_submit(osdc, orig_request);
2407                 if (!img_result)
2408                         return;
2409         }
2410
2411         if (img_result)
2412                 goto out_err;
2413
2414         /*
2415          * The original osd request is of no use to use any more.
2416          * We need a new one that can hold the two ops in a copyup
2417          * request.  Allocate the new copyup osd request for the
2418          * original request, and release the old one.
2419          */
2420         img_result = -ENOMEM;
2421         osd_req = rbd_osd_req_create_copyup(orig_request);
2422         if (!osd_req)
2423                 goto out_err;
2424         rbd_osd_req_destroy(orig_request->osd_req);
2425         orig_request->osd_req = osd_req;
2426         orig_request->copyup_pages = pages;
2427         orig_request->copyup_page_count = page_count;
2428
2429         /* Initialize the copyup op */
2430
2431         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2432         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2433                                                 false, false);
2434
2435         /* Then the original write request op */
2436
2437         offset = orig_request->offset;
2438         length = orig_request->length;
2439         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2440                                         offset, length, 0, 0);
2441         if (orig_request->type == OBJ_REQUEST_BIO)
2442                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2443                                         orig_request->bio_list, length);
2444         else
2445                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2446                                         orig_request->pages, length,
2447                                         offset & ~PAGE_MASK, false, false);
2448
2449         rbd_osd_req_format_write(orig_request);
2450
2451         /* All set, send it off. */
2452
2453         orig_request->callback = rbd_img_obj_copyup_callback;
2454         osdc = &rbd_dev->rbd_client->client->osdc;
2455         img_result = rbd_obj_request_submit(osdc, orig_request);
2456         if (!img_result)
2457                 return;
2458 out_err:
2459         /* Record the error code and complete the request */
2460
2461         orig_request->result = img_result;
2462         orig_request->xferred = 0;
2463         obj_request_done_set(orig_request);
2464         rbd_obj_request_complete(orig_request);
2465 }
2466
2467 /*
2468  * Read from the parent image the range of data that covers the
2469  * entire target of the given object request.  This is used for
2470  * satisfying a layered image write request when the target of an
2471  * object request from the image request does not exist.
2472  *
2473  * A page array big enough to hold the returned data is allocated
2474  * and supplied to rbd_img_request_fill() as the "data descriptor."
2475  * When the read completes, this page array will be transferred to
2476  * the original object request for the copyup operation.
2477  *
2478  * If an error occurs, record it as the result of the original
2479  * object request and mark it done so it gets completed.
2480  */
2481 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2482 {
2483         struct rbd_img_request *img_request = NULL;
2484         struct rbd_img_request *parent_request = NULL;
2485         struct rbd_device *rbd_dev;
2486         u64 img_offset;
2487         u64 length;
2488         struct page **pages = NULL;
2489         u32 page_count;
2490         int result;
2491
2492         rbd_assert(obj_request_img_data_test(obj_request));
2493         rbd_assert(obj_request_type_valid(obj_request->type));
2494
2495         img_request = obj_request->img_request;
2496         rbd_assert(img_request != NULL);
2497         rbd_dev = img_request->rbd_dev;
2498         rbd_assert(rbd_dev->parent != NULL);
2499
2500         /*
2501          * Determine the byte range covered by the object in the
2502          * child image to which the original request was to be sent.
2503          */
2504         img_offset = obj_request->img_offset - obj_request->offset;
2505         length = (u64)1 << rbd_dev->header.obj_order;
2506
2507         /*
2508          * There is no defined parent data beyond the parent
2509          * overlap, so limit what we read at that boundary if
2510          * necessary.
2511          */
2512         if (img_offset + length > rbd_dev->parent_overlap) {
2513                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2514                 length = rbd_dev->parent_overlap - img_offset;
2515         }
2516
2517         /*
2518          * Allocate a page array big enough to receive the data read
2519          * from the parent.
2520          */
2521         page_count = (u32)calc_pages_for(0, length);
2522         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2523         if (IS_ERR(pages)) {
2524                 result = PTR_ERR(pages);
2525                 pages = NULL;
2526                 goto out_err;
2527         }
2528
2529         result = -ENOMEM;
2530         parent_request = rbd_parent_request_create(obj_request,
2531                                                 img_offset, length);
2532         if (!parent_request)
2533                 goto out_err;
2534
2535         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2536         if (result)
2537                 goto out_err;
2538         parent_request->copyup_pages = pages;
2539         parent_request->copyup_page_count = page_count;
2540
2541         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2542         result = rbd_img_request_submit(parent_request);
2543         if (!result)
2544                 return 0;
2545
2546         parent_request->copyup_pages = NULL;
2547         parent_request->copyup_page_count = 0;
2548         parent_request->obj_request = NULL;
2549         rbd_obj_request_put(obj_request);
2550 out_err:
2551         if (pages)
2552                 ceph_release_page_vector(pages, page_count);
2553         if (parent_request)
2554                 rbd_img_request_put(parent_request);
2555         obj_request->result = result;
2556         obj_request->xferred = 0;
2557         obj_request_done_set(obj_request);
2558
2559         return result;
2560 }
2561
2562 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2563 {
2564         struct rbd_obj_request *orig_request;
2565         struct rbd_device *rbd_dev;
2566         int result;
2567
2568         rbd_assert(!obj_request_img_data_test(obj_request));
2569
2570         /*
2571          * All we need from the object request is the original
2572          * request and the result of the STAT op.  Grab those, then
2573          * we're done with the request.
2574          */
2575         orig_request = obj_request->obj_request;
2576         obj_request->obj_request = NULL;
2577         rbd_obj_request_put(orig_request);
2578         rbd_assert(orig_request);
2579         rbd_assert(orig_request->img_request);
2580
2581         result = obj_request->result;
2582         obj_request->result = 0;
2583
2584         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2585                 obj_request, orig_request, result,
2586                 obj_request->xferred, obj_request->length);
2587         rbd_obj_request_put(obj_request);
2588
2589         /*
2590          * If the overlap has become 0 (most likely because the
2591          * image has been flattened) we need to free the pages
2592          * and re-submit the original write request.
2593          */
2594         rbd_dev = orig_request->img_request->rbd_dev;
2595         if (!rbd_dev->parent_overlap) {
2596                 struct ceph_osd_client *osdc;
2597
2598                 osdc = &rbd_dev->rbd_client->client->osdc;
2599                 result = rbd_obj_request_submit(osdc, orig_request);
2600                 if (!result)
2601                         return;
2602         }
2603
2604         /*
2605          * Our only purpose here is to determine whether the object
2606          * exists, and we don't want to treat the non-existence as
2607          * an error.  If something else comes back, transfer the
2608          * error to the original request and complete it now.
2609          */
2610         if (!result) {
2611                 obj_request_existence_set(orig_request, true);
2612         } else if (result == -ENOENT) {
2613                 obj_request_existence_set(orig_request, false);
2614         } else if (result) {
2615                 orig_request->result = result;
2616                 goto out;
2617         }
2618
2619         /*
2620          * Resubmit the original request now that we have recorded
2621          * whether the target object exists.
2622          */
2623         orig_request->result = rbd_img_obj_request_submit(orig_request);
2624 out:
2625         if (orig_request->result)
2626                 rbd_obj_request_complete(orig_request);
2627 }
2628
2629 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2630 {
2631         struct rbd_obj_request *stat_request;
2632         struct rbd_device *rbd_dev;
2633         struct ceph_osd_client *osdc;
2634         struct page **pages = NULL;
2635         u32 page_count;
2636         size_t size;
2637         int ret;
2638
2639         /*
2640          * The response data for a STAT call consists of:
2641          *     le64 length;
2642          *     struct {
2643          *         le32 tv_sec;
2644          *         le32 tv_nsec;
2645          *     } mtime;
2646          */
2647         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2648         page_count = (u32)calc_pages_for(0, size);
2649         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2650         if (IS_ERR(pages))
2651                 return PTR_ERR(pages);
2652
2653         ret = -ENOMEM;
2654         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2655                                                         OBJ_REQUEST_PAGES);
2656         if (!stat_request)
2657                 goto out;
2658
2659         rbd_obj_request_get(obj_request);
2660         stat_request->obj_request = obj_request;
2661         stat_request->pages = pages;
2662         stat_request->page_count = page_count;
2663
2664         rbd_assert(obj_request->img_request);
2665         rbd_dev = obj_request->img_request->rbd_dev;
2666         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2667                                                 stat_request);
2668         if (!stat_request->osd_req)
2669                 goto out;
2670         stat_request->callback = rbd_img_obj_exists_callback;
2671
2672         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2673         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2674                                         false, false);
2675         rbd_osd_req_format_read(stat_request);
2676
2677         osdc = &rbd_dev->rbd_client->client->osdc;
2678         ret = rbd_obj_request_submit(osdc, stat_request);
2679 out:
2680         if (ret)
2681                 rbd_obj_request_put(obj_request);
2682
2683         return ret;
2684 }
2685
2686 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2687 {
2688         struct rbd_img_request *img_request;
2689         struct rbd_device *rbd_dev;
2690         bool known;
2691
2692         rbd_assert(obj_request_img_data_test(obj_request));
2693
2694         img_request = obj_request->img_request;
2695         rbd_assert(img_request);
2696         rbd_dev = img_request->rbd_dev;
2697
2698         /*
2699          * Only writes to layered images need special handling.
2700          * Reads and non-layered writes are simple object requests.
2701          * Layered writes that start beyond the end of the overlap
2702          * with the parent have no parent data, so they too are
2703          * simple object requests.  Finally, if the target object is
2704          * known to already exist, its parent data has already been
2705          * copied, so a write to the object can also be handled as a
2706          * simple object request.
2707          */
2708         if (!img_request_write_test(img_request) ||
2709                 !img_request_layered_test(img_request) ||
2710                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2711                 ((known = obj_request_known_test(obj_request)) &&
2712                         obj_request_exists_test(obj_request))) {
2713
2714                 struct rbd_device *rbd_dev;
2715                 struct ceph_osd_client *osdc;
2716
2717                 rbd_dev = obj_request->img_request->rbd_dev;
2718                 osdc = &rbd_dev->rbd_client->client->osdc;
2719
2720                 return rbd_obj_request_submit(osdc, obj_request);
2721         }
2722
2723         /*
2724          * It's a layered write.  The target object might exist but
2725          * we may not know that yet.  If we know it doesn't exist,
2726          * start by reading the data for the full target object from
2727          * the parent so we can use it for a copyup to the target.
2728          */
2729         if (known)
2730                 return rbd_img_obj_parent_read_full(obj_request);
2731
2732         /* We don't know whether the target exists.  Go find out. */
2733
2734         return rbd_img_obj_exists_submit(obj_request);
2735 }
2736
2737 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2738 {
2739         struct rbd_obj_request *obj_request;
2740         struct rbd_obj_request *next_obj_request;
2741
2742         dout("%s: img %p\n", __func__, img_request);
2743         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2744                 int ret;
2745
2746                 ret = rbd_img_obj_request_submit(obj_request);
2747                 if (ret)
2748                         return ret;
2749         }
2750
2751         return 0;
2752 }
2753
2754 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2755 {
2756         struct rbd_obj_request *obj_request;
2757         struct rbd_device *rbd_dev;
2758         u64 obj_end;
2759         u64 img_xferred;
2760         int img_result;
2761
2762         rbd_assert(img_request_child_test(img_request));
2763
2764         /* First get what we need from the image request and release it */
2765
2766         obj_request = img_request->obj_request;
2767         img_xferred = img_request->xferred;
2768         img_result = img_request->result;
2769         rbd_img_request_put(img_request);
2770
2771         /*
2772          * If the overlap has become 0 (most likely because the
2773          * image has been flattened) we need to re-submit the
2774          * original request.
2775          */
2776         rbd_assert(obj_request);
2777         rbd_assert(obj_request->img_request);
2778         rbd_dev = obj_request->img_request->rbd_dev;
2779         if (!rbd_dev->parent_overlap) {
2780                 struct ceph_osd_client *osdc;
2781
2782                 osdc = &rbd_dev->rbd_client->client->osdc;
2783                 img_result = rbd_obj_request_submit(osdc, obj_request);
2784                 if (!img_result)
2785                         return;
2786         }
2787
2788         obj_request->result = img_result;
2789         if (obj_request->result)
2790                 goto out;
2791
2792         /*
2793          * We need to zero anything beyond the parent overlap
2794          * boundary.  Since rbd_img_obj_request_read_callback()
2795          * will zero anything beyond the end of a short read, an
2796          * easy way to do this is to pretend the data from the
2797          * parent came up short--ending at the overlap boundary.
2798          */
2799         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2800         obj_end = obj_request->img_offset + obj_request->length;
2801         if (obj_end > rbd_dev->parent_overlap) {
2802                 u64 xferred = 0;
2803
2804                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2805                         xferred = rbd_dev->parent_overlap -
2806                                         obj_request->img_offset;
2807
2808                 obj_request->xferred = min(img_xferred, xferred);
2809         } else {
2810                 obj_request->xferred = img_xferred;
2811         }
2812 out:
2813         rbd_img_obj_request_read_callback(obj_request);
2814         rbd_obj_request_complete(obj_request);
2815 }
2816
2817 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2818 {
2819         struct rbd_img_request *img_request;
2820         int result;
2821
2822         rbd_assert(obj_request_img_data_test(obj_request));
2823         rbd_assert(obj_request->img_request != NULL);
2824         rbd_assert(obj_request->result == (s32) -ENOENT);
2825         rbd_assert(obj_request_type_valid(obj_request->type));
2826
2827         /* rbd_read_finish(obj_request, obj_request->length); */
2828         img_request = rbd_parent_request_create(obj_request,
2829                                                 obj_request->img_offset,
2830                                                 obj_request->length);
2831         result = -ENOMEM;
2832         if (!img_request)
2833                 goto out_err;
2834
2835         if (obj_request->type == OBJ_REQUEST_BIO)
2836                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2837                                                 obj_request->bio_list);
2838         else
2839                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2840                                                 obj_request->pages);
2841         if (result)
2842                 goto out_err;
2843
2844         img_request->callback = rbd_img_parent_read_callback;
2845         result = rbd_img_request_submit(img_request);
2846         if (result)
2847                 goto out_err;
2848
2849         return;
2850 out_err:
2851         if (img_request)
2852                 rbd_img_request_put(img_request);
2853         obj_request->result = result;
2854         obj_request->xferred = 0;
2855         obj_request_done_set(obj_request);
2856 }
2857
2858 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2859 {
2860         struct rbd_obj_request *obj_request;
2861         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2862         int ret;
2863
2864         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2865                                                         OBJ_REQUEST_NODATA);
2866         if (!obj_request)
2867                 return -ENOMEM;
2868
2869         ret = -ENOMEM;
2870         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2871         if (!obj_request->osd_req)
2872                 goto out;
2873
2874         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2875                                         notify_id, 0, 0);
2876         rbd_osd_req_format_read(obj_request);
2877
2878         ret = rbd_obj_request_submit(osdc, obj_request);
2879         if (ret)
2880                 goto out;
2881         ret = rbd_obj_request_wait(obj_request);
2882 out:
2883         rbd_obj_request_put(obj_request);
2884
2885         return ret;
2886 }
2887
2888 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2889 {
2890         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2891         int ret;
2892
2893         if (!rbd_dev)
2894                 return;
2895
2896         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2897                 rbd_dev->header_name, (unsigned long long)notify_id,
2898                 (unsigned int)opcode);
2899         ret = rbd_dev_refresh(rbd_dev);
2900         if (ret)
2901                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2902
2903         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2904 }
2905
2906 /*
2907  * Request sync osd watch/unwatch.  The value of "start" determines
2908  * whether a watch request is being initiated or torn down.
2909  */
2910 static int __rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2911 {
2912         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2913         struct rbd_obj_request *obj_request;
2914         int ret;
2915
2916         rbd_assert(start ^ !!rbd_dev->watch_event);
2917         rbd_assert(start ^ !!rbd_dev->watch_request);
2918
2919         if (start) {
2920                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2921                                                 &rbd_dev->watch_event);
2922                 if (ret < 0)
2923                         return ret;
2924                 rbd_assert(rbd_dev->watch_event != NULL);
2925         }
2926
2927         ret = -ENOMEM;
2928         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2929                                                         OBJ_REQUEST_NODATA);
2930         if (!obj_request)
2931                 goto out_cancel;
2932
2933         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2934         if (!obj_request->osd_req)
2935                 goto out_cancel;
2936
2937         if (start)
2938                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2939         else
2940                 ceph_osdc_unregister_linger_request(osdc,
2941                                         rbd_dev->watch_request->osd_req);
2942
2943         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2944                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2945         rbd_osd_req_format_write(obj_request);
2946
2947         ret = rbd_obj_request_submit(osdc, obj_request);
2948         if (ret)
2949                 goto out_cancel;
2950         ret = rbd_obj_request_wait(obj_request);
2951         if (ret)
2952                 goto out_cancel;
2953         ret = obj_request->result;
2954         if (ret)
2955                 goto out_cancel;
2956
2957         /*
2958          * A watch request is set to linger, so the underlying osd
2959          * request won't go away until we unregister it.  We retain
2960          * a pointer to the object request during that time (in
2961          * rbd_dev->watch_request), so we'll keep a reference to
2962          * it.  We'll drop that reference (below) after we've
2963          * unregistered it.
2964          */
2965         if (start) {
2966                 rbd_dev->watch_request = obj_request;
2967
2968                 return 0;
2969         }
2970
2971         /* We have successfully torn down the watch request */
2972
2973         rbd_obj_request_put(rbd_dev->watch_request);
2974         rbd_dev->watch_request = NULL;
2975 out_cancel:
2976         /* Cancel the event if we're tearing down, or on error */
2977         ceph_osdc_cancel_event(rbd_dev->watch_event);
2978         rbd_dev->watch_event = NULL;
2979         if (obj_request)
2980                 rbd_obj_request_put(obj_request);
2981
2982         return ret;
2983 }
2984
2985 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2986 {
2987         return __rbd_dev_header_watch_sync(rbd_dev, true);
2988 }
2989
2990 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
2991 {
2992         int ret;
2993
2994         ret = __rbd_dev_header_watch_sync(rbd_dev, false);
2995         if (ret) {
2996                 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
2997                          ret);
2998         }
2999 }
3000
3001 /*
3002  * Synchronous osd object method call.  Returns the number of bytes
3003  * returned in the outbound buffer, or a negative error code.
3004  */
3005 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3006                              const char *object_name,
3007                              const char *class_name,
3008                              const char *method_name,
3009                              const void *outbound,
3010                              size_t outbound_size,
3011                              void *inbound,
3012                              size_t inbound_size)
3013 {
3014         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3015         struct rbd_obj_request *obj_request;
3016         struct page **pages;
3017         u32 page_count;
3018         int ret;
3019
3020         /*
3021          * Method calls are ultimately read operations.  The result
3022          * should placed into the inbound buffer provided.  They
3023          * also supply outbound data--parameters for the object
3024          * method.  Currently if this is present it will be a
3025          * snapshot id.
3026          */
3027         page_count = (u32)calc_pages_for(0, inbound_size);
3028         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3029         if (IS_ERR(pages))
3030                 return PTR_ERR(pages);
3031
3032         ret = -ENOMEM;
3033         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3034                                                         OBJ_REQUEST_PAGES);
3035         if (!obj_request)
3036                 goto out;
3037
3038         obj_request->pages = pages;
3039         obj_request->page_count = page_count;
3040
3041         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3042         if (!obj_request->osd_req)
3043                 goto out;
3044
3045         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3046                                         class_name, method_name);
3047         if (outbound_size) {
3048                 struct ceph_pagelist *pagelist;
3049
3050                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3051                 if (!pagelist)
3052                         goto out;
3053
3054                 ceph_pagelist_init(pagelist);
3055                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3056                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3057                                                 pagelist);
3058         }
3059         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3060                                         obj_request->pages, inbound_size,
3061                                         0, false, false);
3062         rbd_osd_req_format_read(obj_request);
3063
3064         ret = rbd_obj_request_submit(osdc, obj_request);
3065         if (ret)
3066                 goto out;
3067         ret = rbd_obj_request_wait(obj_request);
3068         if (ret)
3069                 goto out;
3070
3071         ret = obj_request->result;
3072         if (ret < 0)
3073                 goto out;
3074
3075         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3076         ret = (int)obj_request->xferred;
3077         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3078 out:
3079         if (obj_request)
3080                 rbd_obj_request_put(obj_request);
3081         else
3082                 ceph_release_page_vector(pages, page_count);
3083
3084         return ret;
3085 }
3086
3087 static void rbd_request_fn(struct request_queue *q)
3088                 __releases(q->queue_lock) __acquires(q->queue_lock)
3089 {
3090         struct rbd_device *rbd_dev = q->queuedata;
3091         bool read_only = rbd_dev->mapping.read_only;
3092         struct request *rq;
3093         int result;
3094
3095         while ((rq = blk_fetch_request(q))) {
3096                 bool write_request = rq_data_dir(rq) == WRITE;
3097                 struct rbd_img_request *img_request;
3098                 u64 offset;
3099                 u64 length;
3100
3101                 /* Ignore any non-FS requests that filter through. */
3102
3103                 if (rq->cmd_type != REQ_TYPE_FS) {
3104                         dout("%s: non-fs request type %d\n", __func__,
3105                                 (int) rq->cmd_type);
3106                         __blk_end_request_all(rq, 0);
3107                         continue;
3108                 }
3109
3110                 /* Ignore/skip any zero-length requests */
3111
3112                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3113                 length = (u64) blk_rq_bytes(rq);
3114
3115                 if (!length) {
3116                         dout("%s: zero-length request\n", __func__);
3117                         __blk_end_request_all(rq, 0);
3118                         continue;
3119                 }
3120
3121                 spin_unlock_irq(q->queue_lock);
3122
3123                 /* Disallow writes to a read-only device */
3124
3125                 if (write_request) {
3126                         result = -EROFS;
3127                         if (read_only)
3128                                 goto end_request;
3129                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3130                 }
3131
3132                 /*
3133                  * Quit early if the mapped snapshot no longer
3134                  * exists.  It's still possible the snapshot will
3135                  * have disappeared by the time our request arrives
3136                  * at the osd, but there's no sense in sending it if
3137                  * we already know.
3138                  */
3139                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3140                         dout("request for non-existent snapshot");
3141                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3142                         result = -ENXIO;
3143                         goto end_request;
3144                 }
3145
3146                 result = -EINVAL;
3147                 if (offset && length > U64_MAX - offset + 1) {
3148                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3149                                 offset, length);
3150                         goto end_request;       /* Shouldn't happen */
3151                 }
3152
3153                 result = -EIO;
3154                 if (offset + length > rbd_dev->mapping.size) {
3155                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3156                                 offset, length, rbd_dev->mapping.size);
3157                         goto end_request;
3158                 }
3159
3160                 result = -ENOMEM;
3161                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3162                                                         write_request);
3163                 if (!img_request)
3164                         goto end_request;
3165
3166                 img_request->rq = rq;
3167
3168                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3169                                                 rq->bio);
3170                 if (!result)
3171                         result = rbd_img_request_submit(img_request);
3172                 if (result)
3173                         rbd_img_request_put(img_request);
3174 end_request:
3175                 spin_lock_irq(q->queue_lock);
3176                 if (result < 0) {
3177                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3178                                 write_request ? "write" : "read",
3179                                 length, offset, result);
3180
3181                         __blk_end_request_all(rq, result);
3182                 }
3183         }
3184 }
3185
3186 /*
3187  * a queue callback. Makes sure that we don't create a bio that spans across
3188  * multiple osd objects. One exception would be with a single page bios,
3189  * which we handle later at bio_chain_clone_range()
3190  */
3191 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3192                           struct bio_vec *bvec)
3193 {
3194         struct rbd_device *rbd_dev = q->queuedata;
3195         sector_t sector_offset;
3196         sector_t sectors_per_obj;
3197         sector_t obj_sector_offset;
3198         int ret;
3199
3200         /*
3201          * Find how far into its rbd object the partition-relative
3202          * bio start sector is to offset relative to the enclosing
3203          * device.
3204          */
3205         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3206         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3207         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3208
3209         /*
3210          * Compute the number of bytes from that offset to the end
3211          * of the object.  Account for what's already used by the bio.
3212          */
3213         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3214         if (ret > bmd->bi_size)
3215                 ret -= bmd->bi_size;
3216         else
3217                 ret = 0;
3218
3219         /*
3220          * Don't send back more than was asked for.  And if the bio
3221          * was empty, let the whole thing through because:  "Note
3222          * that a block device *must* allow a single page to be
3223          * added to an empty bio."
3224          */
3225         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3226         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3227                 ret = (int) bvec->bv_len;
3228
3229         return ret;
3230 }
3231
3232 static void rbd_free_disk(struct rbd_device *rbd_dev)
3233 {
3234         struct gendisk *disk = rbd_dev->disk;
3235
3236         if (!disk)
3237                 return;
3238
3239         rbd_dev->disk = NULL;
3240         if (disk->flags & GENHD_FL_UP) {
3241                 del_gendisk(disk);
3242                 if (disk->queue)
3243                         blk_cleanup_queue(disk->queue);
3244         }
3245         put_disk(disk);
3246 }
3247
3248 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3249                                 const char *object_name,
3250                                 u64 offset, u64 length, void *buf)
3251
3252 {
3253         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3254         struct rbd_obj_request *obj_request;
3255         struct page **pages = NULL;
3256         u32 page_count;
3257         size_t size;
3258         int ret;
3259
3260         page_count = (u32) calc_pages_for(offset, length);
3261         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3262         if (IS_ERR(pages))
3263                 ret = PTR_ERR(pages);
3264
3265         ret = -ENOMEM;
3266         obj_request = rbd_obj_request_create(object_name, offset, length,
3267                                                         OBJ_REQUEST_PAGES);
3268         if (!obj_request)
3269                 goto out;
3270
3271         obj_request->pages = pages;
3272         obj_request->page_count = page_count;
3273
3274         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3275         if (!obj_request->osd_req)
3276                 goto out;
3277
3278         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3279                                         offset, length, 0, 0);
3280         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3281                                         obj_request->pages,
3282                                         obj_request->length,
3283                                         obj_request->offset & ~PAGE_MASK,
3284                                         false, false);
3285         rbd_osd_req_format_read(obj_request);
3286
3287         ret = rbd_obj_request_submit(osdc, obj_request);
3288         if (ret)
3289                 goto out;
3290         ret = rbd_obj_request_wait(obj_request);
3291         if (ret)
3292                 goto out;
3293
3294         ret = obj_request->result;
3295         if (ret < 0)
3296                 goto out;
3297
3298         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3299         size = (size_t) obj_request->xferred;
3300         ceph_copy_from_page_vector(pages, buf, 0, size);
3301         rbd_assert(size <= (size_t)INT_MAX);
3302         ret = (int)size;
3303 out:
3304         if (obj_request)
3305                 rbd_obj_request_put(obj_request);
3306         else
3307                 ceph_release_page_vector(pages, page_count);
3308
3309         return ret;
3310 }
3311
3312 /*
3313  * Read the complete header for the given rbd device.  On successful
3314  * return, the rbd_dev->header field will contain up-to-date
3315  * information about the image.
3316  */
3317 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3318 {
3319         struct rbd_image_header_ondisk *ondisk = NULL;
3320         u32 snap_count = 0;
3321         u64 names_size = 0;
3322         u32 want_count;
3323         int ret;
3324
3325         /*
3326          * The complete header will include an array of its 64-bit
3327          * snapshot ids, followed by the names of those snapshots as
3328          * a contiguous block of NUL-terminated strings.  Note that
3329          * the number of snapshots could change by the time we read
3330          * it in, in which case we re-read it.
3331          */
3332         do {
3333                 size_t size;
3334
3335                 kfree(ondisk);
3336
3337                 size = sizeof (*ondisk);
3338                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3339                 size += names_size;
3340                 ondisk = kmalloc(size, GFP_KERNEL);
3341                 if (!ondisk)
3342                         return -ENOMEM;
3343
3344                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3345                                        0, size, ondisk);
3346                 if (ret < 0)
3347                         goto out;
3348                 if ((size_t)ret < size) {
3349                         ret = -ENXIO;
3350                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3351                                 size, ret);
3352                         goto out;
3353                 }
3354                 if (!rbd_dev_ondisk_valid(ondisk)) {
3355                         ret = -ENXIO;
3356                         rbd_warn(rbd_dev, "invalid header");
3357                         goto out;
3358                 }
3359
3360                 names_size = le64_to_cpu(ondisk->snap_names_len);
3361                 want_count = snap_count;
3362                 snap_count = le32_to_cpu(ondisk->snap_count);
3363         } while (snap_count != want_count);
3364
3365         ret = rbd_header_from_disk(rbd_dev, ondisk);
3366 out:
3367         kfree(ondisk);
3368
3369         return ret;
3370 }
3371
3372 /*
3373  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3374  * has disappeared from the (just updated) snapshot context.
3375  */
3376 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3377 {
3378         u64 snap_id;
3379
3380         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3381                 return;
3382
3383         snap_id = rbd_dev->spec->snap_id;
3384         if (snap_id == CEPH_NOSNAP)
3385                 return;
3386
3387         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3388                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3389 }
3390
3391 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3392 {
3393         sector_t size;
3394         bool removing;
3395
3396         /*
3397          * Don't hold the lock while doing disk operations,
3398          * or lock ordering will conflict with the bdev mutex via:
3399          * rbd_add() -> blkdev_get() -> rbd_open()
3400          */
3401         spin_lock_irq(&rbd_dev->lock);
3402         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3403         spin_unlock_irq(&rbd_dev->lock);
3404         /*
3405          * If the device is being removed, rbd_dev->disk has
3406          * been destroyed, so don't try to update its size
3407          */
3408         if (!removing) {
3409                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3410                 dout("setting size to %llu sectors", (unsigned long long)size);
3411                 set_capacity(rbd_dev->disk, size);
3412                 revalidate_disk(rbd_dev->disk);
3413         }
3414 }
3415
3416 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3417 {
3418         u64 mapping_size;
3419         int ret;
3420
3421         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3422         down_write(&rbd_dev->header_rwsem);
3423         mapping_size = rbd_dev->mapping.size;
3424         if (rbd_dev->image_format == 1)
3425                 ret = rbd_dev_v1_header_info(rbd_dev);
3426         else
3427                 ret = rbd_dev_v2_header_info(rbd_dev);
3428
3429         /* If it's a mapped snapshot, validate its EXISTS flag */
3430
3431         rbd_exists_validate(rbd_dev);
3432         up_write(&rbd_dev->header_rwsem);
3433
3434         if (mapping_size != rbd_dev->mapping.size) {
3435                 rbd_dev_update_size(rbd_dev);
3436         }
3437
3438         return ret;
3439 }
3440
3441 static int rbd_init_disk(struct rbd_device *rbd_dev)
3442 {
3443         struct gendisk *disk;
3444         struct request_queue *q;
3445         u64 segment_size;
3446
3447         /* create gendisk info */
3448         disk = alloc_disk(single_major ?
3449                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3450                           RBD_MINORS_PER_MAJOR);
3451         if (!disk)
3452                 return -ENOMEM;
3453
3454         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3455                  rbd_dev->dev_id);
3456         disk->major = rbd_dev->major;
3457         disk->first_minor = rbd_dev->minor;
3458         if (single_major)
3459                 disk->flags |= GENHD_FL_EXT_DEVT;
3460         disk->fops = &rbd_bd_ops;
3461         disk->private_data = rbd_dev;
3462
3463         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3464         if (!q)
3465                 goto out_disk;
3466
3467         /* We use the default size, but let's be explicit about it. */
3468         blk_queue_physical_block_size(q, SECTOR_SIZE);
3469
3470         /* set io sizes to object size */
3471         segment_size = rbd_obj_bytes(&rbd_dev->header);
3472         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3473         blk_queue_max_segment_size(q, segment_size);
3474         blk_queue_io_min(q, segment_size);
3475         blk_queue_io_opt(q, segment_size);
3476
3477         blk_queue_merge_bvec(q, rbd_merge_bvec);
3478         disk->queue = q;
3479
3480         q->queuedata = rbd_dev;
3481
3482         rbd_dev->disk = disk;
3483
3484         return 0;
3485 out_disk:
3486         put_disk(disk);
3487
3488         return -ENOMEM;
3489 }
3490
3491 /*
3492   sysfs
3493 */
3494
3495 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3496 {
3497         return container_of(dev, struct rbd_device, dev);
3498 }
3499
3500 static ssize_t rbd_size_show(struct device *dev,
3501                              struct device_attribute *attr, char *buf)
3502 {
3503         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3504
3505         return sprintf(buf, "%llu\n",
3506                 (unsigned long long)rbd_dev->mapping.size);
3507 }
3508
3509 /*
3510  * Note this shows the features for whatever's mapped, which is not
3511  * necessarily the base image.
3512  */
3513 static ssize_t rbd_features_show(struct device *dev,
3514                              struct device_attribute *attr, char *buf)
3515 {
3516         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3517
3518         return sprintf(buf, "0x%016llx\n",
3519                         (unsigned long long)rbd_dev->mapping.features);
3520 }
3521
3522 static ssize_t rbd_major_show(struct device *dev,
3523                               struct device_attribute *attr, char *buf)
3524 {
3525         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3526
3527         if (rbd_dev->major)
3528                 return sprintf(buf, "%d\n", rbd_dev->major);
3529
3530         return sprintf(buf, "(none)\n");
3531 }
3532
3533 static ssize_t rbd_minor_show(struct device *dev,
3534                               struct device_attribute *attr, char *buf)
3535 {
3536         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3537
3538         return sprintf(buf, "%d\n", rbd_dev->minor);
3539 }
3540
3541 static ssize_t rbd_client_id_show(struct device *dev,
3542                                   struct device_attribute *attr, char *buf)
3543 {
3544         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3545
3546         return sprintf(buf, "client%lld\n",
3547                         ceph_client_id(rbd_dev->rbd_client->client));
3548 }
3549
3550 static ssize_t rbd_pool_show(struct device *dev,
3551                              struct device_attribute *attr, char *buf)
3552 {
3553         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3554
3555         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3556 }
3557
3558 static ssize_t rbd_pool_id_show(struct device *dev,
3559                              struct device_attribute *attr, char *buf)
3560 {
3561         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3562
3563         return sprintf(buf, "%llu\n",
3564                         (unsigned long long) rbd_dev->spec->pool_id);
3565 }
3566
3567 static ssize_t rbd_name_show(struct device *dev,
3568                              struct device_attribute *attr, char *buf)
3569 {
3570         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3571
3572         if (rbd_dev->spec->image_name)
3573                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3574
3575         return sprintf(buf, "(unknown)\n");
3576 }
3577
3578 static ssize_t rbd_image_id_show(struct device *dev,
3579                              struct device_attribute *attr, char *buf)
3580 {
3581         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3582
3583         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3584 }
3585
3586 /*
3587  * Shows the name of the currently-mapped snapshot (or
3588  * RBD_SNAP_HEAD_NAME for the base image).
3589  */
3590 static ssize_t rbd_snap_show(struct device *dev,
3591                              struct device_attribute *attr,
3592                              char *buf)
3593 {
3594         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3595
3596         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3597 }
3598
3599 /*
3600  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3601  * for the parent image.  If there is no parent, simply shows
3602  * "(no parent image)".
3603  */
3604 static ssize_t rbd_parent_show(struct device *dev,
3605                              struct device_attribute *attr,
3606                              char *buf)
3607 {
3608         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3609         struct rbd_spec *spec = rbd_dev->parent_spec;
3610         int count;
3611         char *bufp = buf;
3612
3613         if (!spec)
3614                 return sprintf(buf, "(no parent image)\n");
3615
3616         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3617                         (unsigned long long) spec->pool_id, spec->pool_name);
3618         if (count < 0)
3619                 return count;
3620         bufp += count;
3621
3622         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3623                         spec->image_name ? spec->image_name : "(unknown)");
3624         if (count < 0)
3625                 return count;
3626         bufp += count;
3627
3628         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3629                         (unsigned long long) spec->snap_id, spec->snap_name);
3630         if (count < 0)
3631                 return count;
3632         bufp += count;
3633
3634         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3635         if (count < 0)
3636                 return count;
3637         bufp += count;
3638
3639         return (ssize_t) (bufp - buf);
3640 }
3641
3642 static ssize_t rbd_image_refresh(struct device *dev,
3643                                  struct device_attribute *attr,
3644                                  const char *buf,
3645                                  size_t size)
3646 {
3647         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3648         int ret;
3649
3650         ret = rbd_dev_refresh(rbd_dev);
3651         if (ret)
3652                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3653
3654         return ret < 0 ? ret : size;
3655 }
3656
3657 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3658 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3659 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3660 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3661 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3662 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3663 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3664 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3665 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3666 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3667 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3668 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3669
3670 static struct attribute *rbd_attrs[] = {
3671         &dev_attr_size.attr,
3672         &dev_attr_features.attr,
3673         &dev_attr_major.attr,
3674         &dev_attr_minor.attr,
3675         &dev_attr_client_id.attr,
3676         &dev_attr_pool.attr,
3677         &dev_attr_pool_id.attr,
3678         &dev_attr_name.attr,
3679         &dev_attr_image_id.attr,
3680         &dev_attr_current_snap.attr,
3681         &dev_attr_parent.attr,
3682         &dev_attr_refresh.attr,
3683         NULL
3684 };
3685
3686 static struct attribute_group rbd_attr_group = {
3687         .attrs = rbd_attrs,
3688 };
3689
3690 static const struct attribute_group *rbd_attr_groups[] = {
3691         &rbd_attr_group,
3692         NULL
3693 };
3694
3695 static void rbd_sysfs_dev_release(struct device *dev)
3696 {
3697 }
3698
3699 static struct device_type rbd_device_type = {
3700         .name           = "rbd",
3701         .groups         = rbd_attr_groups,
3702         .release        = rbd_sysfs_dev_release,
3703 };
3704
3705 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3706 {
3707         kref_get(&spec->kref);
3708
3709         return spec;
3710 }
3711
3712 static void rbd_spec_free(struct kref *kref);
3713 static void rbd_spec_put(struct rbd_spec *spec)
3714 {
3715         if (spec)
3716                 kref_put(&spec->kref, rbd_spec_free);
3717 }
3718
3719 static struct rbd_spec *rbd_spec_alloc(void)
3720 {
3721         struct rbd_spec *spec;
3722
3723         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3724         if (!spec)
3725                 return NULL;
3726         kref_init(&spec->kref);
3727
3728         return spec;
3729 }
3730
3731 static void rbd_spec_free(struct kref *kref)
3732 {
3733         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3734
3735         kfree(spec->pool_name);
3736         kfree(spec->image_id);
3737         kfree(spec->image_name);
3738         kfree(spec->snap_name);
3739         kfree(spec);
3740 }
3741
3742 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3743                                 struct rbd_spec *spec)
3744 {
3745         struct rbd_device *rbd_dev;
3746
3747         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3748         if (!rbd_dev)
3749                 return NULL;
3750
3751         spin_lock_init(&rbd_dev->lock);
3752         rbd_dev->flags = 0;
3753         atomic_set(&rbd_dev->parent_ref, 0);
3754         INIT_LIST_HEAD(&rbd_dev->node);
3755         init_rwsem(&rbd_dev->header_rwsem);
3756
3757         rbd_dev->spec = spec;
3758         rbd_dev->rbd_client = rbdc;
3759
3760         /* Initialize the layout used for all rbd requests */
3761
3762         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3763         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3764         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3765         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3766
3767         return rbd_dev;
3768 }
3769
3770 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3771 {
3772         rbd_put_client(rbd_dev->rbd_client);
3773         rbd_spec_put(rbd_dev->spec);
3774         kfree(rbd_dev);
3775 }
3776
3777 /*
3778  * Get the size and object order for an image snapshot, or if
3779  * snap_id is CEPH_NOSNAP, gets this information for the base
3780  * image.
3781  */
3782 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3783                                 u8 *order, u64 *snap_size)
3784 {
3785         __le64 snapid = cpu_to_le64(snap_id);
3786         int ret;
3787         struct {
3788                 u8 order;
3789                 __le64 size;
3790         } __attribute__ ((packed)) size_buf = { 0 };
3791
3792         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3793                                 "rbd", "get_size",
3794                                 &snapid, sizeof (snapid),
3795                                 &size_buf, sizeof (size_buf));
3796         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3797         if (ret < 0)
3798                 return ret;
3799         if (ret < sizeof (size_buf))
3800                 return -ERANGE;
3801
3802         if (order) {
3803                 *order = size_buf.order;
3804                 dout("  order %u", (unsigned int)*order);
3805         }
3806         *snap_size = le64_to_cpu(size_buf.size);
3807
3808         dout("  snap_id 0x%016llx snap_size = %llu\n",
3809                 (unsigned long long)snap_id,
3810                 (unsigned long long)*snap_size);
3811
3812         return 0;
3813 }
3814
3815 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3816 {
3817         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3818                                         &rbd_dev->header.obj_order,
3819                                         &rbd_dev->header.image_size);
3820 }
3821
3822 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3823 {
3824         void *reply_buf;
3825         int ret;
3826         void *p;
3827
3828         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3829         if (!reply_buf)
3830                 return -ENOMEM;
3831
3832         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3833                                 "rbd", "get_object_prefix", NULL, 0,
3834                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3835         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3836         if (ret < 0)
3837                 goto out;
3838
3839         p = reply_buf;
3840         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3841                                                 p + ret, NULL, GFP_NOIO);
3842         ret = 0;
3843
3844         if (IS_ERR(rbd_dev->header.object_prefix)) {
3845                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3846                 rbd_dev->header.object_prefix = NULL;
3847         } else {
3848                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3849         }
3850 out:
3851         kfree(reply_buf);
3852
3853         return ret;
3854 }
3855
3856 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3857                 u64 *snap_features)
3858 {
3859         __le64 snapid = cpu_to_le64(snap_id);
3860         struct {
3861                 __le64 features;
3862                 __le64 incompat;
3863         } __attribute__ ((packed)) features_buf = { 0 };
3864         u64 incompat;
3865         int ret;
3866
3867         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3868                                 "rbd", "get_features",
3869                                 &snapid, sizeof (snapid),
3870                                 &features_buf, sizeof (features_buf));
3871         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3872         if (ret < 0)
3873                 return ret;
3874         if (ret < sizeof (features_buf))
3875                 return -ERANGE;
3876
3877         incompat = le64_to_cpu(features_buf.incompat);
3878         if (incompat & ~RBD_FEATURES_SUPPORTED)
3879                 return -ENXIO;
3880
3881         *snap_features = le64_to_cpu(features_buf.features);
3882
3883         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3884                 (unsigned long long)snap_id,
3885                 (unsigned long long)*snap_features,
3886                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3887
3888         return 0;
3889 }
3890
3891 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3892 {
3893         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3894                                                 &rbd_dev->header.features);
3895 }
3896
3897 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3898 {
3899         struct rbd_spec *parent_spec;
3900         size_t size;
3901         void *reply_buf = NULL;
3902         __le64 snapid;
3903         void *p;
3904         void *end;
3905         u64 pool_id;
3906         char *image_id;
3907         u64 snap_id;
3908         u64 overlap;
3909         int ret;
3910
3911         parent_spec = rbd_spec_alloc();
3912         if (!parent_spec)
3913                 return -ENOMEM;
3914
3915         size = sizeof (__le64) +                                /* pool_id */
3916                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3917                 sizeof (__le64) +                               /* snap_id */
3918                 sizeof (__le64);                                /* overlap */
3919         reply_buf = kmalloc(size, GFP_KERNEL);
3920         if (!reply_buf) {
3921                 ret = -ENOMEM;
3922                 goto out_err;
3923         }
3924
3925         snapid = cpu_to_le64(CEPH_NOSNAP);
3926         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3927                                 "rbd", "get_parent",
3928                                 &snapid, sizeof (snapid),
3929                                 reply_buf, size);
3930         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3931         if (ret < 0)
3932                 goto out_err;
3933
3934         p = reply_buf;
3935         end = reply_buf + ret;
3936         ret = -ERANGE;
3937         ceph_decode_64_safe(&p, end, pool_id, out_err);
3938         if (pool_id == CEPH_NOPOOL) {
3939                 /*
3940                  * Either the parent never existed, or we have
3941                  * record of it but the image got flattened so it no
3942                  * longer has a parent.  When the parent of a
3943                  * layered image disappears we immediately set the
3944                  * overlap to 0.  The effect of this is that all new
3945                  * requests will be treated as if the image had no
3946                  * parent.
3947                  */
3948                 if (rbd_dev->parent_overlap) {
3949                         rbd_dev->parent_overlap = 0;
3950                         smp_mb();
3951                         rbd_dev_parent_put(rbd_dev);
3952                         pr_info("%s: clone image has been flattened\n",
3953                                 rbd_dev->disk->disk_name);
3954                 }
3955
3956                 goto out;       /* No parent?  No problem. */
3957         }
3958
3959         /* The ceph file layout needs to fit pool id in 32 bits */
3960
3961         ret = -EIO;
3962         if (pool_id > (u64)U32_MAX) {
3963                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3964                         (unsigned long long)pool_id, U32_MAX);
3965                 goto out_err;
3966         }
3967
3968         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3969         if (IS_ERR(image_id)) {
3970                 ret = PTR_ERR(image_id);
3971                 goto out_err;
3972         }
3973         ceph_decode_64_safe(&p, end, snap_id, out_err);
3974         ceph_decode_64_safe(&p, end, overlap, out_err);
3975
3976         /*
3977          * The parent won't change (except when the clone is
3978          * flattened, already handled that).  So we only need to
3979          * record the parent spec we have not already done so.
3980          */
3981         if (!rbd_dev->parent_spec) {
3982                 parent_spec->pool_id = pool_id;
3983                 parent_spec->image_id = image_id;
3984                 parent_spec->snap_id = snap_id;
3985                 rbd_dev->parent_spec = parent_spec;
3986                 parent_spec = NULL;     /* rbd_dev now owns this */
3987         }
3988
3989         /*
3990          * We always update the parent overlap.  If it's zero we
3991          * treat it specially.
3992          */
3993         rbd_dev->parent_overlap = overlap;
3994         smp_mb();
3995         if (!overlap) {
3996
3997                 /* A null parent_spec indicates it's the initial probe */
3998
3999                 if (parent_spec) {
4000                         /*
4001                          * The overlap has become zero, so the clone
4002                          * must have been resized down to 0 at some
4003                          * point.  Treat this the same as a flatten.
4004                          */
4005                         rbd_dev_parent_put(rbd_dev);
4006                         pr_info("%s: clone image now standalone\n",
4007                                 rbd_dev->disk->disk_name);
4008                 } else {
4009                         /*
4010                          * For the initial probe, if we find the
4011                          * overlap is zero we just pretend there was
4012                          * no parent image.
4013                          */
4014                         rbd_warn(rbd_dev, "ignoring parent of "
4015                                                 "clone with overlap 0\n");
4016                 }
4017         }
4018 out:
4019         ret = 0;
4020 out_err:
4021         kfree(reply_buf);
4022         rbd_spec_put(parent_spec);
4023
4024         return ret;
4025 }
4026
4027 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4028 {
4029         struct {
4030                 __le64 stripe_unit;
4031                 __le64 stripe_count;
4032         } __attribute__ ((packed)) striping_info_buf = { 0 };
4033         size_t size = sizeof (striping_info_buf);
4034         void *p;
4035         u64 obj_size;
4036         u64 stripe_unit;
4037         u64 stripe_count;
4038         int ret;
4039
4040         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4041                                 "rbd", "get_stripe_unit_count", NULL, 0,
4042                                 (char *)&striping_info_buf, size);
4043         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4044         if (ret < 0)
4045                 return ret;
4046         if (ret < size)
4047                 return -ERANGE;
4048
4049         /*
4050          * We don't actually support the "fancy striping" feature
4051          * (STRIPINGV2) yet, but if the striping sizes are the
4052          * defaults the behavior is the same as before.  So find
4053          * out, and only fail if the image has non-default values.
4054          */
4055         ret = -EINVAL;
4056         obj_size = (u64)1 << rbd_dev->header.obj_order;
4057         p = &striping_info_buf;
4058         stripe_unit = ceph_decode_64(&p);
4059         if (stripe_unit != obj_size) {
4060                 rbd_warn(rbd_dev, "unsupported stripe unit "
4061                                 "(got %llu want %llu)",
4062                                 stripe_unit, obj_size);
4063                 return -EINVAL;
4064         }
4065         stripe_count = ceph_decode_64(&p);
4066         if (stripe_count != 1) {
4067                 rbd_warn(rbd_dev, "unsupported stripe count "
4068                                 "(got %llu want 1)", stripe_count);
4069                 return -EINVAL;
4070         }
4071         rbd_dev->header.stripe_unit = stripe_unit;
4072         rbd_dev->header.stripe_count = stripe_count;
4073
4074         return 0;
4075 }
4076
4077 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4078 {
4079         size_t image_id_size;
4080         char *image_id;
4081         void *p;
4082         void *end;
4083         size_t size;
4084         void *reply_buf = NULL;
4085         size_t len = 0;
4086         char *image_name = NULL;
4087         int ret;
4088
4089         rbd_assert(!rbd_dev->spec->image_name);
4090
4091         len = strlen(rbd_dev->spec->image_id);
4092         image_id_size = sizeof (__le32) + len;
4093         image_id = kmalloc(image_id_size, GFP_KERNEL);
4094         if (!image_id)
4095                 return NULL;
4096
4097         p = image_id;
4098         end = image_id + image_id_size;
4099         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4100
4101         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4102         reply_buf = kmalloc(size, GFP_KERNEL);
4103         if (!reply_buf)
4104                 goto out;
4105
4106         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4107                                 "rbd", "dir_get_name",
4108                                 image_id, image_id_size,
4109                                 reply_buf, size);
4110         if (ret < 0)
4111                 goto out;
4112         p = reply_buf;
4113         end = reply_buf + ret;
4114
4115         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4116         if (IS_ERR(image_name))
4117                 image_name = NULL;
4118         else
4119                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4120 out:
4121         kfree(reply_buf);
4122         kfree(image_id);
4123
4124         return image_name;
4125 }
4126
4127 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4128 {
4129         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4130         const char *snap_name;
4131         u32 which = 0;
4132
4133         /* Skip over names until we find the one we are looking for */
4134
4135         snap_name = rbd_dev->header.snap_names;
4136         while (which < snapc->num_snaps) {
4137                 if (!strcmp(name, snap_name))
4138                         return snapc->snaps[which];
4139                 snap_name += strlen(snap_name) + 1;
4140                 which++;
4141         }
4142         return CEPH_NOSNAP;
4143 }
4144
4145 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4146 {
4147         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4148         u32 which;
4149         bool found = false;
4150         u64 snap_id;
4151
4152         for (which = 0; !found && which < snapc->num_snaps; which++) {
4153                 const char *snap_name;
4154
4155                 snap_id = snapc->snaps[which];
4156                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4157                 if (IS_ERR(snap_name)) {
4158                         /* ignore no-longer existing snapshots */
4159                         if (PTR_ERR(snap_name) == -ENOENT)
4160                                 continue;
4161                         else
4162                                 break;
4163                 }
4164                 found = !strcmp(name, snap_name);
4165                 kfree(snap_name);
4166         }
4167         return found ? snap_id : CEPH_NOSNAP;
4168 }
4169
4170 /*
4171  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4172  * no snapshot by that name is found, or if an error occurs.
4173  */
4174 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4175 {
4176         if (rbd_dev->image_format == 1)
4177                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4178
4179         return rbd_v2_snap_id_by_name(rbd_dev, name);
4180 }
4181
4182 /*
4183  * When an rbd image has a parent image, it is identified by the
4184  * pool, image, and snapshot ids (not names).  This function fills
4185  * in the names for those ids.  (It's OK if we can't figure out the
4186  * name for an image id, but the pool and snapshot ids should always
4187  * exist and have names.)  All names in an rbd spec are dynamically
4188  * allocated.
4189  *
4190  * When an image being mapped (not a parent) is probed, we have the
4191  * pool name and pool id, image name and image id, and the snapshot
4192  * name.  The only thing we're missing is the snapshot id.
4193  */
4194 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4195 {
4196         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4197         struct rbd_spec *spec = rbd_dev->spec;
4198         const char *pool_name;
4199         const char *image_name;
4200         const char *snap_name;
4201         int ret;
4202
4203         /*
4204          * An image being mapped will have the pool name (etc.), but
4205          * we need to look up the snapshot id.
4206          */
4207         if (spec->pool_name) {
4208                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4209                         u64 snap_id;
4210
4211                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4212                         if (snap_id == CEPH_NOSNAP)
4213                                 return -ENOENT;
4214                         spec->snap_id = snap_id;
4215                 } else {
4216                         spec->snap_id = CEPH_NOSNAP;
4217                 }
4218
4219                 return 0;
4220         }
4221
4222         /* Get the pool name; we have to make our own copy of this */
4223
4224         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4225         if (!pool_name) {
4226                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4227                 return -EIO;
4228         }
4229         pool_name = kstrdup(pool_name, GFP_KERNEL);
4230         if (!pool_name)
4231                 return -ENOMEM;
4232
4233         /* Fetch the image name; tolerate failure here */
4234
4235         image_name = rbd_dev_image_name(rbd_dev);
4236         if (!image_name)
4237                 rbd_warn(rbd_dev, "unable to get image name");
4238
4239         /* Look up the snapshot name, and make a copy */
4240
4241         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4242         if (IS_ERR(snap_name)) {
4243                 ret = PTR_ERR(snap_name);
4244                 goto out_err;
4245         }
4246
4247         spec->pool_name = pool_name;
4248         spec->image_name = image_name;
4249         spec->snap_name = snap_name;
4250
4251         return 0;
4252 out_err:
4253         kfree(image_name);
4254         kfree(pool_name);
4255
4256         return ret;
4257 }
4258
4259 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4260 {
4261         size_t size;
4262         int ret;
4263         void *reply_buf;
4264         void *p;
4265         void *end;
4266         u64 seq;
4267         u32 snap_count;
4268         struct ceph_snap_context *snapc;
4269         u32 i;
4270
4271         /*
4272          * We'll need room for the seq value (maximum snapshot id),
4273          * snapshot count, and array of that many snapshot ids.
4274          * For now we have a fixed upper limit on the number we're
4275          * prepared to receive.
4276          */
4277         size = sizeof (__le64) + sizeof (__le32) +
4278                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4279         reply_buf = kzalloc(size, GFP_KERNEL);
4280         if (!reply_buf)
4281                 return -ENOMEM;
4282
4283         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4284                                 "rbd", "get_snapcontext", NULL, 0,
4285                                 reply_buf, size);
4286         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4287         if (ret < 0)
4288                 goto out;
4289
4290         p = reply_buf;
4291         end = reply_buf + ret;
4292         ret = -ERANGE;
4293         ceph_decode_64_safe(&p, end, seq, out);
4294         ceph_decode_32_safe(&p, end, snap_count, out);
4295
4296         /*
4297          * Make sure the reported number of snapshot ids wouldn't go
4298          * beyond the end of our buffer.  But before checking that,
4299          * make sure the computed size of the snapshot context we
4300          * allocate is representable in a size_t.
4301          */
4302         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4303                                  / sizeof (u64)) {
4304                 ret = -EINVAL;
4305                 goto out;
4306         }
4307         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4308                 goto out;
4309         ret = 0;
4310
4311         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4312         if (!snapc) {
4313                 ret = -ENOMEM;
4314                 goto out;
4315         }
4316         snapc->seq = seq;
4317         for (i = 0; i < snap_count; i++)
4318                 snapc->snaps[i] = ceph_decode_64(&p);
4319
4320         ceph_put_snap_context(rbd_dev->header.snapc);
4321         rbd_dev->header.snapc = snapc;
4322
4323         dout("  snap context seq = %llu, snap_count = %u\n",
4324                 (unsigned long long)seq, (unsigned int)snap_count);
4325 out:
4326         kfree(reply_buf);
4327
4328         return ret;
4329 }
4330
4331 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4332                                         u64 snap_id)
4333 {
4334         size_t size;
4335         void *reply_buf;
4336         __le64 snapid;
4337         int ret;
4338         void *p;
4339         void *end;
4340         char *snap_name;
4341
4342         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4343         reply_buf = kmalloc(size, GFP_KERNEL);
4344         if (!reply_buf)
4345                 return ERR_PTR(-ENOMEM);
4346
4347         snapid = cpu_to_le64(snap_id);
4348         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4349                                 "rbd", "get_snapshot_name",
4350                                 &snapid, sizeof (snapid),
4351                                 reply_buf, size);
4352         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4353         if (ret < 0) {
4354                 snap_name = ERR_PTR(ret);
4355                 goto out;
4356         }
4357
4358         p = reply_buf;
4359         end = reply_buf + ret;
4360         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4361         if (IS_ERR(snap_name))
4362                 goto out;
4363
4364         dout("  snap_id 0x%016llx snap_name = %s\n",
4365                 (unsigned long long)snap_id, snap_name);
4366 out:
4367         kfree(reply_buf);
4368
4369         return snap_name;
4370 }
4371
4372 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4373 {
4374         bool first_time = rbd_dev->header.object_prefix == NULL;
4375         int ret;
4376
4377         ret = rbd_dev_v2_image_size(rbd_dev);
4378         if (ret)
4379                 return ret;
4380
4381         if (first_time) {
4382                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4383                 if (ret)
4384                         return ret;
4385         }
4386
4387         /*
4388          * If the image supports layering, get the parent info.  We
4389          * need to probe the first time regardless.  Thereafter we
4390          * only need to if there's a parent, to see if it has
4391          * disappeared due to the mapped image getting flattened.
4392          */
4393         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4394                         (first_time || rbd_dev->parent_spec)) {
4395                 bool warn;
4396
4397                 ret = rbd_dev_v2_parent_info(rbd_dev);
4398                 if (ret)
4399                         return ret;
4400
4401                 /*
4402                  * Print a warning if this is the initial probe and
4403                  * the image has a parent.  Don't print it if the
4404                  * image now being probed is itself a parent.  We
4405                  * can tell at this point because we won't know its
4406                  * pool name yet (just its pool id).
4407                  */
4408                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4409                 if (first_time && warn)
4410                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4411                                         "is EXPERIMENTAL!");
4412         }
4413
4414         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4415                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4416                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4417
4418         ret = rbd_dev_v2_snap_context(rbd_dev);
4419         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4420
4421         return ret;
4422 }
4423
4424 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4425 {
4426         struct device *dev;
4427         int ret;
4428
4429         dev = &rbd_dev->dev;
4430         dev->bus = &rbd_bus_type;
4431         dev->type = &rbd_device_type;
4432         dev->parent = &rbd_root_dev;
4433         dev->release = rbd_dev_device_release;
4434         dev_set_name(dev, "%d", rbd_dev->dev_id);
4435         ret = device_register(dev);
4436
4437         return ret;
4438 }
4439
4440 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4441 {
4442         device_unregister(&rbd_dev->dev);
4443 }
4444
4445 /*
4446  * Get a unique rbd identifier for the given new rbd_dev, and add
4447  * the rbd_dev to the global list.
4448  */
4449 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4450 {
4451         int new_dev_id;
4452
4453         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4454                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4455                                     GFP_KERNEL);
4456         if (new_dev_id < 0)
4457                 return new_dev_id;
4458
4459         rbd_dev->dev_id = new_dev_id;
4460
4461         spin_lock(&rbd_dev_list_lock);
4462         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4463         spin_unlock(&rbd_dev_list_lock);
4464
4465         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4466
4467         return 0;
4468 }
4469
4470 /*
4471  * Remove an rbd_dev from the global list, and record that its
4472  * identifier is no longer in use.
4473  */
4474 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4475 {
4476         spin_lock(&rbd_dev_list_lock);
4477         list_del_init(&rbd_dev->node);
4478         spin_unlock(&rbd_dev_list_lock);
4479
4480         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4481
4482         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4483 }
4484
4485 /*
4486  * Skips over white space at *buf, and updates *buf to point to the
4487  * first found non-space character (if any). Returns the length of
4488  * the token (string of non-white space characters) found.  Note
4489  * that *buf must be terminated with '\0'.
4490  */
4491 static inline size_t next_token(const char **buf)
4492 {
4493         /*
4494         * These are the characters that produce nonzero for
4495         * isspace() in the "C" and "POSIX" locales.
4496         */
4497         const char *spaces = " \f\n\r\t\v";
4498
4499         *buf += strspn(*buf, spaces);   /* Find start of token */
4500
4501         return strcspn(*buf, spaces);   /* Return token length */
4502 }
4503
4504 /*
4505  * Finds the next token in *buf, and if the provided token buffer is
4506  * big enough, copies the found token into it.  The result, if
4507  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4508  * must be terminated with '\0' on entry.
4509  *
4510  * Returns the length of the token found (not including the '\0').
4511  * Return value will be 0 if no token is found, and it will be >=
4512  * token_size if the token would not fit.
4513  *
4514  * The *buf pointer will be updated to point beyond the end of the
4515  * found token.  Note that this occurs even if the token buffer is
4516  * too small to hold it.
4517  */
4518 static inline size_t copy_token(const char **buf,
4519                                 char *token,
4520                                 size_t token_size)
4521 {
4522         size_t len;
4523
4524         len = next_token(buf);
4525         if (len < token_size) {
4526                 memcpy(token, *buf, len);
4527                 *(token + len) = '\0';
4528         }
4529         *buf += len;
4530
4531         return len;
4532 }
4533
4534 /*
4535  * Finds the next token in *buf, dynamically allocates a buffer big
4536  * enough to hold a copy of it, and copies the token into the new
4537  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4538  * that a duplicate buffer is created even for a zero-length token.
4539  *
4540  * Returns a pointer to the newly-allocated duplicate, or a null
4541  * pointer if memory for the duplicate was not available.  If
4542  * the lenp argument is a non-null pointer, the length of the token
4543  * (not including the '\0') is returned in *lenp.
4544  *
4545  * If successful, the *buf pointer will be updated to point beyond
4546  * the end of the found token.
4547  *
4548  * Note: uses GFP_KERNEL for allocation.
4549  */
4550 static inline char *dup_token(const char **buf, size_t *lenp)
4551 {
4552         char *dup;
4553         size_t len;
4554
4555         len = next_token(buf);
4556         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4557         if (!dup)
4558                 return NULL;
4559         *(dup + len) = '\0';
4560         *buf += len;
4561
4562         if (lenp)
4563                 *lenp = len;
4564
4565         return dup;
4566 }
4567
4568 /*
4569  * Parse the options provided for an "rbd add" (i.e., rbd image
4570  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4571  * and the data written is passed here via a NUL-terminated buffer.
4572  * Returns 0 if successful or an error code otherwise.
4573  *
4574  * The information extracted from these options is recorded in
4575  * the other parameters which return dynamically-allocated
4576  * structures:
4577  *  ceph_opts
4578  *      The address of a pointer that will refer to a ceph options
4579  *      structure.  Caller must release the returned pointer using
4580  *      ceph_destroy_options() when it is no longer needed.
4581  *  rbd_opts
4582  *      Address of an rbd options pointer.  Fully initialized by
4583  *      this function; caller must release with kfree().
4584  *  spec
4585  *      Address of an rbd image specification pointer.  Fully
4586  *      initialized by this function based on parsed options.
4587  *      Caller must release with rbd_spec_put().
4588  *
4589  * The options passed take this form:
4590  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4591  * where:
4592  *  <mon_addrs>
4593  *      A comma-separated list of one or more monitor addresses.
4594  *      A monitor address is an ip address, optionally followed
4595  *      by a port number (separated by a colon).
4596  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4597  *  <options>
4598  *      A comma-separated list of ceph and/or rbd options.
4599  *  <pool_name>
4600  *      The name of the rados pool containing the rbd image.
4601  *  <image_name>
4602  *      The name of the image in that pool to map.
4603  *  <snap_id>
4604  *      An optional snapshot id.  If provided, the mapping will
4605  *      present data from the image at the time that snapshot was
4606  *      created.  The image head is used if no snapshot id is
4607  *      provided.  Snapshot mappings are always read-only.
4608  */
4609 static int rbd_add_parse_args(const char *buf,
4610                                 struct ceph_options **ceph_opts,
4611                                 struct rbd_options **opts,
4612                                 struct rbd_spec **rbd_spec)
4613 {
4614         size_t len;
4615         char *options;
4616         const char *mon_addrs;
4617         char *snap_name;
4618         size_t mon_addrs_size;
4619         struct rbd_spec *spec = NULL;
4620         struct rbd_options *rbd_opts = NULL;
4621         struct ceph_options *copts;
4622         int ret;
4623
4624         /* The first four tokens are required */
4625
4626         len = next_token(&buf);
4627         if (!len) {
4628                 rbd_warn(NULL, "no monitor address(es) provided");
4629                 return -EINVAL;
4630         }
4631         mon_addrs = buf;
4632         mon_addrs_size = len + 1;
4633         buf += len;
4634
4635         ret = -EINVAL;
4636         options = dup_token(&buf, NULL);
4637         if (!options)
4638                 return -ENOMEM;
4639         if (!*options) {
4640                 rbd_warn(NULL, "no options provided");
4641                 goto out_err;
4642         }
4643
4644         spec = rbd_spec_alloc();
4645         if (!spec)
4646                 goto out_mem;
4647
4648         spec->pool_name = dup_token(&buf, NULL);
4649         if (!spec->pool_name)
4650                 goto out_mem;
4651         if (!*spec->pool_name) {
4652                 rbd_warn(NULL, "no pool name provided");
4653                 goto out_err;
4654         }
4655
4656         spec->image_name = dup_token(&buf, NULL);
4657         if (!spec->image_name)
4658                 goto out_mem;
4659         if (!*spec->image_name) {
4660                 rbd_warn(NULL, "no image name provided");
4661                 goto out_err;
4662         }
4663
4664         /*
4665          * Snapshot name is optional; default is to use "-"
4666          * (indicating the head/no snapshot).
4667          */
4668         len = next_token(&buf);
4669         if (!len) {
4670                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4671                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4672         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4673                 ret = -ENAMETOOLONG;
4674                 goto out_err;
4675         }
4676         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4677         if (!snap_name)
4678                 goto out_mem;
4679         *(snap_name + len) = '\0';
4680         spec->snap_name = snap_name;
4681
4682         /* Initialize all rbd options to the defaults */
4683
4684         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4685         if (!rbd_opts)
4686                 goto out_mem;
4687
4688         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4689
4690         copts = ceph_parse_options(options, mon_addrs,
4691                                         mon_addrs + mon_addrs_size - 1,
4692                                         parse_rbd_opts_token, rbd_opts);
4693         if (IS_ERR(copts)) {
4694                 ret = PTR_ERR(copts);
4695                 goto out_err;
4696         }
4697         kfree(options);
4698
4699         *ceph_opts = copts;
4700         *opts = rbd_opts;
4701         *rbd_spec = spec;
4702
4703         return 0;
4704 out_mem:
4705         ret = -ENOMEM;
4706 out_err:
4707         kfree(rbd_opts);
4708         rbd_spec_put(spec);
4709         kfree(options);
4710
4711         return ret;
4712 }
4713
4714 /*
4715  * An rbd format 2 image has a unique identifier, distinct from the
4716  * name given to it by the user.  Internally, that identifier is
4717  * what's used to specify the names of objects related to the image.
4718  *
4719  * A special "rbd id" object is used to map an rbd image name to its
4720  * id.  If that object doesn't exist, then there is no v2 rbd image
4721  * with the supplied name.
4722  *
4723  * This function will record the given rbd_dev's image_id field if
4724  * it can be determined, and in that case will return 0.  If any
4725  * errors occur a negative errno will be returned and the rbd_dev's
4726  * image_id field will be unchanged (and should be NULL).
4727  */
4728 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4729 {
4730         int ret;
4731         size_t size;
4732         char *object_name;
4733         void *response;
4734         char *image_id;
4735
4736         /*
4737          * When probing a parent image, the image id is already
4738          * known (and the image name likely is not).  There's no
4739          * need to fetch the image id again in this case.  We
4740          * do still need to set the image format though.
4741          */
4742         if (rbd_dev->spec->image_id) {
4743                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4744
4745                 return 0;
4746         }
4747
4748         /*
4749          * First, see if the format 2 image id file exists, and if
4750          * so, get the image's persistent id from it.
4751          */
4752         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4753         object_name = kmalloc(size, GFP_NOIO);
4754         if (!object_name)
4755                 return -ENOMEM;
4756         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4757         dout("rbd id object name is %s\n", object_name);
4758
4759         /* Response will be an encoded string, which includes a length */
4760
4761         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4762         response = kzalloc(size, GFP_NOIO);
4763         if (!response) {
4764                 ret = -ENOMEM;
4765                 goto out;
4766         }
4767
4768         /* If it doesn't exist we'll assume it's a format 1 image */
4769
4770         ret = rbd_obj_method_sync(rbd_dev, object_name,
4771                                 "rbd", "get_id", NULL, 0,
4772                                 response, RBD_IMAGE_ID_LEN_MAX);
4773         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4774         if (ret == -ENOENT) {
4775                 image_id = kstrdup("", GFP_KERNEL);
4776                 ret = image_id ? 0 : -ENOMEM;
4777                 if (!ret)
4778                         rbd_dev->image_format = 1;
4779         } else if (ret > sizeof (__le32)) {
4780                 void *p = response;
4781
4782                 image_id = ceph_extract_encoded_string(&p, p + ret,
4783                                                 NULL, GFP_NOIO);
4784                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4785                 if (!ret)
4786                         rbd_dev->image_format = 2;
4787         } else {
4788                 ret = -EINVAL;
4789         }
4790
4791         if (!ret) {
4792                 rbd_dev->spec->image_id = image_id;
4793                 dout("image_id is %s\n", image_id);
4794         }
4795 out:
4796         kfree(response);
4797         kfree(object_name);
4798
4799         return ret;
4800 }
4801
4802 /*
4803  * Undo whatever state changes are made by v1 or v2 header info
4804  * call.
4805  */
4806 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4807 {
4808         struct rbd_image_header *header;
4809
4810         /* Drop parent reference unless it's already been done (or none) */
4811
4812         if (rbd_dev->parent_overlap)
4813                 rbd_dev_parent_put(rbd_dev);
4814
4815         /* Free dynamic fields from the header, then zero it out */
4816
4817         header = &rbd_dev->header;
4818         ceph_put_snap_context(header->snapc);
4819         kfree(header->snap_sizes);
4820         kfree(header->snap_names);
4821         kfree(header->object_prefix);
4822         memset(header, 0, sizeof (*header));
4823 }
4824
4825 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4826 {
4827         int ret;
4828
4829         ret = rbd_dev_v2_object_prefix(rbd_dev);
4830         if (ret)
4831                 goto out_err;
4832
4833         /*
4834          * Get the and check features for the image.  Currently the
4835          * features are assumed to never change.
4836          */
4837         ret = rbd_dev_v2_features(rbd_dev);
4838         if (ret)
4839                 goto out_err;
4840
4841         /* If the image supports fancy striping, get its parameters */
4842
4843         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4844                 ret = rbd_dev_v2_striping_info(rbd_dev);
4845                 if (ret < 0)
4846                         goto out_err;
4847         }
4848         /* No support for crypto and compression type format 2 images */
4849
4850         return 0;
4851 out_err:
4852         rbd_dev->header.features = 0;
4853         kfree(rbd_dev->header.object_prefix);
4854         rbd_dev->header.object_prefix = NULL;
4855
4856         return ret;
4857 }
4858
4859 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4860 {
4861         struct rbd_device *parent = NULL;
4862         struct rbd_spec *parent_spec;
4863         struct rbd_client *rbdc;
4864         int ret;
4865
4866         if (!rbd_dev->parent_spec)
4867                 return 0;
4868         /*
4869          * We need to pass a reference to the client and the parent
4870          * spec when creating the parent rbd_dev.  Images related by
4871          * parent/child relationships always share both.
4872          */
4873         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4874         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4875
4876         ret = -ENOMEM;
4877         parent = rbd_dev_create(rbdc, parent_spec);
4878         if (!parent)
4879                 goto out_err;
4880
4881         ret = rbd_dev_image_probe(parent, false);
4882         if (ret < 0)
4883                 goto out_err;
4884         rbd_dev->parent = parent;
4885         atomic_set(&rbd_dev->parent_ref, 1);
4886
4887         return 0;
4888 out_err:
4889         if (parent) {
4890                 rbd_dev_unparent(rbd_dev);
4891                 kfree(rbd_dev->header_name);
4892                 rbd_dev_destroy(parent);
4893         } else {
4894                 rbd_put_client(rbdc);
4895                 rbd_spec_put(parent_spec);
4896         }
4897
4898         return ret;
4899 }
4900
4901 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4902 {
4903         int ret;
4904
4905         /* Get an id and fill in device name. */
4906
4907         ret = rbd_dev_id_get(rbd_dev);
4908         if (ret)
4909                 return ret;
4910
4911         BUILD_BUG_ON(DEV_NAME_LEN
4912                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4913         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4914
4915         /* Record our major and minor device numbers. */
4916
4917         if (!single_major) {
4918                 ret = register_blkdev(0, rbd_dev->name);
4919                 if (ret < 0)
4920                         goto err_out_id;
4921
4922                 rbd_dev->major = ret;
4923                 rbd_dev->minor = 0;
4924         } else {
4925                 rbd_dev->major = rbd_major;
4926                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
4927         }
4928
4929         /* Set up the blkdev mapping. */
4930
4931         ret = rbd_init_disk(rbd_dev);
4932         if (ret)
4933                 goto err_out_blkdev;
4934
4935         ret = rbd_dev_mapping_set(rbd_dev);
4936         if (ret)
4937                 goto err_out_disk;
4938         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4939
4940         ret = rbd_bus_add_dev(rbd_dev);
4941         if (ret)
4942                 goto err_out_mapping;
4943
4944         /* Everything's ready.  Announce the disk to the world. */
4945
4946         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4947         add_disk(rbd_dev->disk);
4948
4949         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4950                 (unsigned long long) rbd_dev->mapping.size);
4951
4952         return ret;
4953
4954 err_out_mapping:
4955         rbd_dev_mapping_clear(rbd_dev);
4956 err_out_disk:
4957         rbd_free_disk(rbd_dev);
4958 err_out_blkdev:
4959         if (!single_major)
4960                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4961 err_out_id:
4962         rbd_dev_id_put(rbd_dev);
4963         rbd_dev_mapping_clear(rbd_dev);
4964
4965         return ret;
4966 }
4967
4968 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4969 {
4970         struct rbd_spec *spec = rbd_dev->spec;
4971         size_t size;
4972
4973         /* Record the header object name for this rbd image. */
4974
4975         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4976
4977         if (rbd_dev->image_format == 1)
4978                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4979         else
4980                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4981
4982         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4983         if (!rbd_dev->header_name)
4984                 return -ENOMEM;
4985
4986         if (rbd_dev->image_format == 1)
4987                 sprintf(rbd_dev->header_name, "%s%s",
4988                         spec->image_name, RBD_SUFFIX);
4989         else
4990                 sprintf(rbd_dev->header_name, "%s%s",
4991                         RBD_HEADER_PREFIX, spec->image_id);
4992         return 0;
4993 }
4994
4995 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4996 {
4997         rbd_dev_unprobe(rbd_dev);
4998         kfree(rbd_dev->header_name);
4999         rbd_dev->header_name = NULL;
5000         rbd_dev->image_format = 0;
5001         kfree(rbd_dev->spec->image_id);
5002         rbd_dev->spec->image_id = NULL;
5003
5004         rbd_dev_destroy(rbd_dev);
5005 }
5006
5007 /*
5008  * Probe for the existence of the header object for the given rbd
5009  * device.  If this image is the one being mapped (i.e., not a
5010  * parent), initiate a watch on its header object before using that
5011  * object to get detailed information about the rbd image.
5012  */
5013 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5014 {
5015         int ret;
5016
5017         /*
5018          * Get the id from the image id object.  Unless there's an
5019          * error, rbd_dev->spec->image_id will be filled in with
5020          * a dynamically-allocated string, and rbd_dev->image_format
5021          * will be set to either 1 or 2.
5022          */
5023         ret = rbd_dev_image_id(rbd_dev);
5024         if (ret)
5025                 return ret;
5026         rbd_assert(rbd_dev->spec->image_id);
5027         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5028
5029         ret = rbd_dev_header_name(rbd_dev);
5030         if (ret)
5031                 goto err_out_format;
5032
5033         if (mapping) {
5034                 ret = rbd_dev_header_watch_sync(rbd_dev);
5035                 if (ret)
5036                         goto out_header_name;
5037         }
5038
5039         if (rbd_dev->image_format == 1)
5040                 ret = rbd_dev_v1_header_info(rbd_dev);
5041         else
5042                 ret = rbd_dev_v2_header_info(rbd_dev);
5043         if (ret)
5044                 goto err_out_watch;
5045
5046         ret = rbd_dev_spec_update(rbd_dev);
5047         if (ret)
5048                 goto err_out_probe;
5049
5050         ret = rbd_dev_probe_parent(rbd_dev);
5051         if (ret)
5052                 goto err_out_probe;
5053
5054         dout("discovered format %u image, header name is %s\n",
5055                 rbd_dev->image_format, rbd_dev->header_name);
5056
5057         return 0;
5058 err_out_probe:
5059         rbd_dev_unprobe(rbd_dev);
5060 err_out_watch:
5061         if (mapping)
5062                 rbd_dev_header_unwatch_sync(rbd_dev);
5063 out_header_name:
5064         kfree(rbd_dev->header_name);
5065         rbd_dev->header_name = NULL;
5066 err_out_format:
5067         rbd_dev->image_format = 0;
5068         kfree(rbd_dev->spec->image_id);
5069         rbd_dev->spec->image_id = NULL;
5070
5071         dout("probe failed, returning %d\n", ret);
5072
5073         return ret;
5074 }
5075
5076 static ssize_t do_rbd_add(struct bus_type *bus,
5077                           const char *buf,
5078                           size_t count)
5079 {
5080         struct rbd_device *rbd_dev = NULL;
5081         struct ceph_options *ceph_opts = NULL;
5082         struct rbd_options *rbd_opts = NULL;
5083         struct rbd_spec *spec = NULL;
5084         struct rbd_client *rbdc;
5085         struct ceph_osd_client *osdc;
5086         bool read_only;
5087         int rc = -ENOMEM;
5088
5089         if (!try_module_get(THIS_MODULE))
5090                 return -ENODEV;
5091
5092         /* parse add command */
5093         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5094         if (rc < 0)
5095                 goto err_out_module;
5096         read_only = rbd_opts->read_only;
5097         kfree(rbd_opts);
5098         rbd_opts = NULL;        /* done with this */
5099
5100         rbdc = rbd_get_client(ceph_opts);
5101         if (IS_ERR(rbdc)) {
5102                 rc = PTR_ERR(rbdc);
5103                 goto err_out_args;
5104         }
5105
5106         /* pick the pool */
5107         osdc = &rbdc->client->osdc;
5108         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5109         if (rc < 0)
5110                 goto err_out_client;
5111         spec->pool_id = (u64)rc;
5112
5113         /* The ceph file layout needs to fit pool id in 32 bits */
5114
5115         if (spec->pool_id > (u64)U32_MAX) {
5116                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5117                                 (unsigned long long)spec->pool_id, U32_MAX);
5118                 rc = -EIO;
5119                 goto err_out_client;
5120         }
5121
5122         rbd_dev = rbd_dev_create(rbdc, spec);
5123         if (!rbd_dev)
5124                 goto err_out_client;
5125         rbdc = NULL;            /* rbd_dev now owns this */
5126         spec = NULL;            /* rbd_dev now owns this */
5127
5128         rc = rbd_dev_image_probe(rbd_dev, true);
5129         if (rc < 0)
5130                 goto err_out_rbd_dev;
5131
5132         /* If we are mapping a snapshot it must be marked read-only */
5133
5134         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5135                 read_only = true;
5136         rbd_dev->mapping.read_only = read_only;
5137
5138         rc = rbd_dev_device_setup(rbd_dev);
5139         if (rc) {
5140                 /*
5141                  * rbd_dev_header_unwatch_sync() can't be moved into
5142                  * rbd_dev_image_release() without refactoring, see
5143                  * commit 1f3ef78861ac.
5144                  */
5145                 rbd_dev_header_unwatch_sync(rbd_dev);
5146                 rbd_dev_image_release(rbd_dev);
5147                 goto err_out_module;
5148         }
5149
5150         return count;
5151
5152 err_out_rbd_dev:
5153         rbd_dev_destroy(rbd_dev);
5154 err_out_client:
5155         rbd_put_client(rbdc);
5156 err_out_args:
5157         rbd_spec_put(spec);
5158 err_out_module:
5159         module_put(THIS_MODULE);
5160
5161         dout("Error adding device %s\n", buf);
5162
5163         return (ssize_t)rc;
5164 }
5165
5166 static ssize_t rbd_add(struct bus_type *bus,
5167                        const char *buf,
5168                        size_t count)
5169 {
5170         if (single_major)
5171                 return -EINVAL;
5172
5173         return do_rbd_add(bus, buf, count);
5174 }
5175
5176 static ssize_t rbd_add_single_major(struct bus_type *bus,
5177                                     const char *buf,
5178                                     size_t count)
5179 {
5180         return do_rbd_add(bus, buf, count);
5181 }
5182
5183 static void rbd_dev_device_release(struct device *dev)
5184 {
5185         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5186
5187         rbd_free_disk(rbd_dev);
5188         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5189         rbd_dev_mapping_clear(rbd_dev);
5190         if (!single_major)
5191                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5192         rbd_dev_id_put(rbd_dev);
5193         rbd_dev_mapping_clear(rbd_dev);
5194 }
5195
5196 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5197 {
5198         while (rbd_dev->parent) {
5199                 struct rbd_device *first = rbd_dev;
5200                 struct rbd_device *second = first->parent;
5201                 struct rbd_device *third;
5202
5203                 /*
5204                  * Follow to the parent with no grandparent and
5205                  * remove it.
5206                  */
5207                 while (second && (third = second->parent)) {
5208                         first = second;
5209                         second = third;
5210                 }
5211                 rbd_assert(second);
5212                 rbd_dev_image_release(second);
5213                 first->parent = NULL;
5214                 first->parent_overlap = 0;
5215
5216                 rbd_assert(first->parent_spec);
5217                 rbd_spec_put(first->parent_spec);
5218                 first->parent_spec = NULL;
5219         }
5220 }
5221
5222 static ssize_t do_rbd_remove(struct bus_type *bus,
5223                              const char *buf,
5224                              size_t count)
5225 {
5226         struct rbd_device *rbd_dev = NULL;
5227         struct list_head *tmp;
5228         int dev_id;
5229         unsigned long ul;
5230         bool already = false;
5231         int ret;
5232
5233         ret = kstrtoul(buf, 10, &ul);
5234         if (ret)
5235                 return ret;
5236
5237         /* convert to int; abort if we lost anything in the conversion */
5238         dev_id = (int)ul;
5239         if (dev_id != ul)
5240                 return -EINVAL;
5241
5242         ret = -ENOENT;
5243         spin_lock(&rbd_dev_list_lock);
5244         list_for_each(tmp, &rbd_dev_list) {
5245                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5246                 if (rbd_dev->dev_id == dev_id) {
5247                         ret = 0;
5248                         break;
5249                 }
5250         }
5251         if (!ret) {
5252                 spin_lock_irq(&rbd_dev->lock);
5253                 if (rbd_dev->open_count)
5254                         ret = -EBUSY;
5255                 else
5256                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5257                                                         &rbd_dev->flags);
5258                 spin_unlock_irq(&rbd_dev->lock);
5259         }
5260         spin_unlock(&rbd_dev_list_lock);
5261         if (ret < 0 || already)
5262                 return ret;
5263
5264         rbd_dev_header_unwatch_sync(rbd_dev);
5265         /*
5266          * flush remaining watch callbacks - these must be complete
5267          * before the osd_client is shutdown
5268          */
5269         dout("%s: flushing notifies", __func__);
5270         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5271
5272         /*
5273          * Don't free anything from rbd_dev->disk until after all
5274          * notifies are completely processed. Otherwise
5275          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5276          * in a potential use after free of rbd_dev->disk or rbd_dev.
5277          */
5278         rbd_bus_del_dev(rbd_dev);
5279         rbd_dev_image_release(rbd_dev);
5280         module_put(THIS_MODULE);
5281
5282         return count;
5283 }
5284
5285 static ssize_t rbd_remove(struct bus_type *bus,
5286                           const char *buf,
5287                           size_t count)
5288 {
5289         if (single_major)
5290                 return -EINVAL;
5291
5292         return do_rbd_remove(bus, buf, count);
5293 }
5294
5295 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5296                                        const char *buf,
5297                                        size_t count)
5298 {
5299         return do_rbd_remove(bus, buf, count);
5300 }
5301
5302 /*
5303  * create control files in sysfs
5304  * /sys/bus/rbd/...
5305  */
5306 static int rbd_sysfs_init(void)
5307 {
5308         int ret;
5309
5310         ret = device_register(&rbd_root_dev);
5311         if (ret < 0)
5312                 return ret;
5313
5314         ret = bus_register(&rbd_bus_type);
5315         if (ret < 0)
5316                 device_unregister(&rbd_root_dev);
5317
5318         return ret;
5319 }
5320
5321 static void rbd_sysfs_cleanup(void)
5322 {
5323         bus_unregister(&rbd_bus_type);
5324         device_unregister(&rbd_root_dev);
5325 }
5326
5327 static int rbd_slab_init(void)
5328 {
5329         rbd_assert(!rbd_img_request_cache);
5330         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5331                                         sizeof (struct rbd_img_request),
5332                                         __alignof__(struct rbd_img_request),
5333                                         0, NULL);
5334         if (!rbd_img_request_cache)
5335                 return -ENOMEM;
5336
5337         rbd_assert(!rbd_obj_request_cache);
5338         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5339                                         sizeof (struct rbd_obj_request),
5340                                         __alignof__(struct rbd_obj_request),
5341                                         0, NULL);
5342         if (!rbd_obj_request_cache)
5343                 goto out_err;
5344
5345         rbd_assert(!rbd_segment_name_cache);
5346         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5347                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5348         if (rbd_segment_name_cache)
5349                 return 0;
5350 out_err:
5351         if (rbd_obj_request_cache) {
5352                 kmem_cache_destroy(rbd_obj_request_cache);
5353                 rbd_obj_request_cache = NULL;
5354         }
5355
5356         kmem_cache_destroy(rbd_img_request_cache);
5357         rbd_img_request_cache = NULL;
5358
5359         return -ENOMEM;
5360 }
5361
5362 static void rbd_slab_exit(void)
5363 {
5364         rbd_assert(rbd_segment_name_cache);
5365         kmem_cache_destroy(rbd_segment_name_cache);
5366         rbd_segment_name_cache = NULL;
5367
5368         rbd_assert(rbd_obj_request_cache);
5369         kmem_cache_destroy(rbd_obj_request_cache);
5370         rbd_obj_request_cache = NULL;
5371
5372         rbd_assert(rbd_img_request_cache);
5373         kmem_cache_destroy(rbd_img_request_cache);
5374         rbd_img_request_cache = NULL;
5375 }
5376
5377 static int __init rbd_init(void)
5378 {
5379         int rc;
5380
5381         if (!libceph_compatible(NULL)) {
5382                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5383                 return -EINVAL;
5384         }
5385
5386         rc = rbd_slab_init();
5387         if (rc)
5388                 return rc;
5389
5390         if (single_major) {
5391                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5392                 if (rbd_major < 0) {
5393                         rc = rbd_major;
5394                         goto err_out_slab;
5395                 }
5396         }
5397
5398         rc = rbd_sysfs_init();
5399         if (rc)
5400                 goto err_out_blkdev;
5401
5402         if (single_major)
5403                 pr_info("loaded (major %d)\n", rbd_major);
5404         else
5405                 pr_info("loaded\n");
5406
5407         return 0;
5408
5409 err_out_blkdev:
5410         if (single_major)
5411                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5412 err_out_slab:
5413         rbd_slab_exit();
5414         return rc;
5415 }
5416
5417 static void __exit rbd_exit(void)
5418 {
5419         rbd_sysfs_cleanup();
5420         if (single_major)
5421                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5422         rbd_slab_exit();
5423 }
5424
5425 module_init(rbd_init);
5426 module_exit(rbd_exit);
5427
5428 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5429 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5430 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5431 /* following authorship retained from original osdblk.c */
5432 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5433
5434 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5435 MODULE_LICENSE("GPL");