]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
d735eb13847d7bf3c34d4f9aef19086b6538f8e5
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401         __ATTR(add, S_IWUSR, NULL, rbd_add),
402         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403         __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407         .name           = "rbd",
408         .bus_attrs      = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416         .init_name =    "rbd",
417         .release =      rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423         struct va_format vaf;
424         va_list args;
425
426         va_start(args, fmt);
427         vaf.fmt = fmt;
428         vaf.va = &args;
429
430         if (!rbd_dev)
431                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432         else if (rbd_dev->disk)
433                 printk(KERN_WARNING "%s: %s: %pV\n",
434                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435         else if (rbd_dev->spec && rbd_dev->spec->image_name)
436                 printk(KERN_WARNING "%s: image %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_id)
439                 printk(KERN_WARNING "%s: id %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441         else    /* punt */
442                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443                         RBD_DRV_NAME, rbd_dev, &vaf);
444         va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)                                                \
449                 if (unlikely(!(expr))) {                                \
450                         printk(KERN_ERR "\nAssertion failure in %s() "  \
451                                                 "at line %d:\n\n"       \
452                                         "\trbd_assert(%s);\n\n",        \
453                                         __func__, __LINE__, #expr);     \
454                         BUG();                                          \
455                 }
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)      ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468                                         u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470                                 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472                 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478         bool removing = false;
479
480         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481                 return -EROFS;
482
483         spin_lock_irq(&rbd_dev->lock);
484         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485                 removing = true;
486         else
487                 rbd_dev->open_count++;
488         spin_unlock_irq(&rbd_dev->lock);
489         if (removing)
490                 return -ENOENT;
491
492         (void) get_device(&rbd_dev->dev);
493         set_device_ro(bdev, rbd_dev->mapping.read_only);
494
495         return 0;
496 }
497
498 static void rbd_release(struct gendisk *disk, fmode_t mode)
499 {
500         struct rbd_device *rbd_dev = disk->private_data;
501         unsigned long open_count_before;
502
503         spin_lock_irq(&rbd_dev->lock);
504         open_count_before = rbd_dev->open_count--;
505         spin_unlock_irq(&rbd_dev->lock);
506         rbd_assert(open_count_before > 0);
507
508         put_device(&rbd_dev->dev);
509 }
510
511 static const struct block_device_operations rbd_bd_ops = {
512         .owner                  = THIS_MODULE,
513         .open                   = rbd_open,
514         .release                = rbd_release,
515 };
516
517 /*
518  * Initialize an rbd client instance.  Success or not, this function
519  * consumes ceph_opts.  Caller holds ctl_mutex.
520  */
521 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
522 {
523         struct rbd_client *rbdc;
524         int ret = -ENOMEM;
525
526         dout("%s:\n", __func__);
527         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
528         if (!rbdc)
529                 goto out_opt;
530
531         kref_init(&rbdc->kref);
532         INIT_LIST_HEAD(&rbdc->node);
533
534         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
535         if (IS_ERR(rbdc->client))
536                 goto out_rbdc;
537         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
538
539         ret = ceph_open_session(rbdc->client);
540         if (ret < 0)
541                 goto out_client;
542
543         spin_lock(&rbd_client_list_lock);
544         list_add_tail(&rbdc->node, &rbd_client_list);
545         spin_unlock(&rbd_client_list_lock);
546
547         dout("%s: rbdc %p\n", __func__, rbdc);
548
549         return rbdc;
550 out_client:
551         ceph_destroy_client(rbdc->client);
552 out_rbdc:
553         kfree(rbdc);
554 out_opt:
555         if (ceph_opts)
556                 ceph_destroy_options(ceph_opts);
557         dout("%s: error %d\n", __func__, ret);
558
559         return ERR_PTR(ret);
560 }
561
562 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
563 {
564         kref_get(&rbdc->kref);
565
566         return rbdc;
567 }
568
569 /*
570  * Find a ceph client with specific addr and configuration.  If
571  * found, bump its reference count.
572  */
573 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
574 {
575         struct rbd_client *client_node;
576         bool found = false;
577
578         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
579                 return NULL;
580
581         spin_lock(&rbd_client_list_lock);
582         list_for_each_entry(client_node, &rbd_client_list, node) {
583                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
584                         __rbd_get_client(client_node);
585
586                         found = true;
587                         break;
588                 }
589         }
590         spin_unlock(&rbd_client_list_lock);
591
592         return found ? client_node : NULL;
593 }
594
595 /*
596  * mount options
597  */
598 enum {
599         Opt_last_int,
600         /* int args above */
601         Opt_last_string,
602         /* string args above */
603         Opt_read_only,
604         Opt_read_write,
605         /* Boolean args above */
606         Opt_last_bool,
607 };
608
609 static match_table_t rbd_opts_tokens = {
610         /* int args above */
611         /* string args above */
612         {Opt_read_only, "read_only"},
613         {Opt_read_only, "ro"},          /* Alternate spelling */
614         {Opt_read_write, "read_write"},
615         {Opt_read_write, "rw"},         /* Alternate spelling */
616         /* Boolean args above */
617         {-1, NULL}
618 };
619
620 struct rbd_options {
621         bool    read_only;
622 };
623
624 #define RBD_READ_ONLY_DEFAULT   false
625
626 static int parse_rbd_opts_token(char *c, void *private)
627 {
628         struct rbd_options *rbd_opts = private;
629         substring_t argstr[MAX_OPT_ARGS];
630         int token, intval, ret;
631
632         token = match_token(c, rbd_opts_tokens, argstr);
633         if (token < 0)
634                 return -EINVAL;
635
636         if (token < Opt_last_int) {
637                 ret = match_int(&argstr[0], &intval);
638                 if (ret < 0) {
639                         pr_err("bad mount option arg (not int) "
640                                "at '%s'\n", c);
641                         return ret;
642                 }
643                 dout("got int token %d val %d\n", token, intval);
644         } else if (token > Opt_last_int && token < Opt_last_string) {
645                 dout("got string token %d val %s\n", token,
646                      argstr[0].from);
647         } else if (token > Opt_last_string && token < Opt_last_bool) {
648                 dout("got Boolean token %d\n", token);
649         } else {
650                 dout("got token %d\n", token);
651         }
652
653         switch (token) {
654         case Opt_read_only:
655                 rbd_opts->read_only = true;
656                 break;
657         case Opt_read_write:
658                 rbd_opts->read_only = false;
659                 break;
660         default:
661                 rbd_assert(false);
662                 break;
663         }
664         return 0;
665 }
666
667 /*
668  * Get a ceph client with specific addr and configuration, if one does
669  * not exist create it.  Either way, ceph_opts is consumed by this
670  * function.
671  */
672 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
673 {
674         struct rbd_client *rbdc;
675
676         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
677         rbdc = rbd_client_find(ceph_opts);
678         if (rbdc)       /* using an existing client */
679                 ceph_destroy_options(ceph_opts);
680         else
681                 rbdc = rbd_client_create(ceph_opts);
682         mutex_unlock(&ctl_mutex);
683
684         return rbdc;
685 }
686
687 /*
688  * Destroy ceph client
689  *
690  * Caller must hold rbd_client_list_lock.
691  */
692 static void rbd_client_release(struct kref *kref)
693 {
694         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
695
696         dout("%s: rbdc %p\n", __func__, rbdc);
697         spin_lock(&rbd_client_list_lock);
698         list_del(&rbdc->node);
699         spin_unlock(&rbd_client_list_lock);
700
701         ceph_destroy_client(rbdc->client);
702         kfree(rbdc);
703 }
704
705 /*
706  * Drop reference to ceph client node. If it's not referenced anymore, release
707  * it.
708  */
709 static void rbd_put_client(struct rbd_client *rbdc)
710 {
711         if (rbdc)
712                 kref_put(&rbdc->kref, rbd_client_release);
713 }
714
715 static bool rbd_image_format_valid(u32 image_format)
716 {
717         return image_format == 1 || image_format == 2;
718 }
719
720 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
721 {
722         size_t size;
723         u32 snap_count;
724
725         /* The header has to start with the magic rbd header text */
726         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
727                 return false;
728
729         /* The bio layer requires at least sector-sized I/O */
730
731         if (ondisk->options.order < SECTOR_SHIFT)
732                 return false;
733
734         /* If we use u64 in a few spots we may be able to loosen this */
735
736         if (ondisk->options.order > 8 * sizeof (int) - 1)
737                 return false;
738
739         /*
740          * The size of a snapshot header has to fit in a size_t, and
741          * that limits the number of snapshots.
742          */
743         snap_count = le32_to_cpu(ondisk->snap_count);
744         size = SIZE_MAX - sizeof (struct ceph_snap_context);
745         if (snap_count > size / sizeof (__le64))
746                 return false;
747
748         /*
749          * Not only that, but the size of the entire the snapshot
750          * header must also be representable in a size_t.
751          */
752         size -= snap_count * sizeof (__le64);
753         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
754                 return false;
755
756         return true;
757 }
758
759 /*
760  * Fill an rbd image header with information from the given format 1
761  * on-disk header.
762  */
763 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
764                                  struct rbd_image_header_ondisk *ondisk)
765 {
766         struct rbd_image_header *header = &rbd_dev->header;
767         bool first_time = header->object_prefix == NULL;
768         struct ceph_snap_context *snapc;
769         char *object_prefix = NULL;
770         char *snap_names = NULL;
771         u64 *snap_sizes = NULL;
772         u32 snap_count;
773         size_t size;
774         int ret = -ENOMEM;
775         u32 i;
776
777         /* Allocate this now to avoid having to handle failure below */
778
779         if (first_time) {
780                 size_t len;
781
782                 len = strnlen(ondisk->object_prefix,
783                                 sizeof (ondisk->object_prefix));
784                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
785                 if (!object_prefix)
786                         return -ENOMEM;
787                 memcpy(object_prefix, ondisk->object_prefix, len);
788                 object_prefix[len] = '\0';
789         }
790
791         /* Allocate the snapshot context and fill it in */
792
793         snap_count = le32_to_cpu(ondisk->snap_count);
794         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
795         if (!snapc)
796                 goto out_err;
797         snapc->seq = le64_to_cpu(ondisk->snap_seq);
798         if (snap_count) {
799                 struct rbd_image_snap_ondisk *snaps;
800                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
801
802                 /* We'll keep a copy of the snapshot names... */
803
804                 if (snap_names_len > (u64)SIZE_MAX)
805                         goto out_2big;
806                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
807                 if (!snap_names)
808                         goto out_err;
809
810                 /* ...as well as the array of their sizes. */
811
812                 size = snap_count * sizeof (*header->snap_sizes);
813                 snap_sizes = kmalloc(size, GFP_KERNEL);
814                 if (!snap_sizes)
815                         goto out_err;
816
817                 /*
818                  * Copy the names, and fill in each snapshot's id
819                  * and size.
820                  *
821                  * Note that rbd_dev_v1_header_info() guarantees the
822                  * ondisk buffer we're working with has
823                  * snap_names_len bytes beyond the end of the
824                  * snapshot id array, this memcpy() is safe.
825                  */
826                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
827                 snaps = ondisk->snaps;
828                 for (i = 0; i < snap_count; i++) {
829                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
830                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
831                 }
832         }
833
834         /* We won't fail any more, fill in the header */
835
836         down_write(&rbd_dev->header_rwsem);
837         if (first_time) {
838                 header->object_prefix = object_prefix;
839                 header->obj_order = ondisk->options.order;
840                 header->crypt_type = ondisk->options.crypt_type;
841                 header->comp_type = ondisk->options.comp_type;
842                 /* The rest aren't used for format 1 images */
843                 header->stripe_unit = 0;
844                 header->stripe_count = 0;
845                 header->features = 0;
846         } else {
847                 ceph_put_snap_context(header->snapc);
848                 kfree(header->snap_names);
849                 kfree(header->snap_sizes);
850         }
851
852         /* The remaining fields always get updated (when we refresh) */
853
854         header->image_size = le64_to_cpu(ondisk->image_size);
855         header->snapc = snapc;
856         header->snap_names = snap_names;
857         header->snap_sizes = snap_sizes;
858
859         /* Make sure mapping size is consistent with header info */
860
861         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
862                 if (rbd_dev->mapping.size != header->image_size)
863                         rbd_dev->mapping.size = header->image_size;
864
865         up_write(&rbd_dev->header_rwsem);
866
867         return 0;
868 out_2big:
869         ret = -EIO;
870 out_err:
871         kfree(snap_sizes);
872         kfree(snap_names);
873         ceph_put_snap_context(snapc);
874         kfree(object_prefix);
875
876         return ret;
877 }
878
879 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
880 {
881         const char *snap_name;
882
883         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
884
885         /* Skip over names until we find the one we are looking for */
886
887         snap_name = rbd_dev->header.snap_names;
888         while (which--)
889                 snap_name += strlen(snap_name) + 1;
890
891         return kstrdup(snap_name, GFP_KERNEL);
892 }
893
894 /*
895  * Snapshot id comparison function for use with qsort()/bsearch().
896  * Note that result is for snapshots in *descending* order.
897  */
898 static int snapid_compare_reverse(const void *s1, const void *s2)
899 {
900         u64 snap_id1 = *(u64 *)s1;
901         u64 snap_id2 = *(u64 *)s2;
902
903         if (snap_id1 < snap_id2)
904                 return 1;
905         return snap_id1 == snap_id2 ? 0 : -1;
906 }
907
908 /*
909  * Search a snapshot context to see if the given snapshot id is
910  * present.
911  *
912  * Returns the position of the snapshot id in the array if it's found,
913  * or BAD_SNAP_INDEX otherwise.
914  *
915  * Note: The snapshot array is in kept sorted (by the osd) in
916  * reverse order, highest snapshot id first.
917  */
918 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
919 {
920         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
921         u64 *found;
922
923         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
924                                 sizeof (snap_id), snapid_compare_reverse);
925
926         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
927 }
928
929 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
930                                         u64 snap_id)
931 {
932         u32 which;
933
934         which = rbd_dev_snap_index(rbd_dev, snap_id);
935         if (which == BAD_SNAP_INDEX)
936                 return NULL;
937
938         return _rbd_dev_v1_snap_name(rbd_dev, which);
939 }
940
941 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
942 {
943         if (snap_id == CEPH_NOSNAP)
944                 return RBD_SNAP_HEAD_NAME;
945
946         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
947         if (rbd_dev->image_format == 1)
948                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
949
950         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
951 }
952
953 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
954                                 u64 *snap_size)
955 {
956         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
957         if (snap_id == CEPH_NOSNAP) {
958                 *snap_size = rbd_dev->header.image_size;
959         } else if (rbd_dev->image_format == 1) {
960                 u32 which;
961
962                 which = rbd_dev_snap_index(rbd_dev, snap_id);
963                 if (which == BAD_SNAP_INDEX)
964                         return -ENOENT;
965
966                 *snap_size = rbd_dev->header.snap_sizes[which];
967         } else {
968                 u64 size = 0;
969                 int ret;
970
971                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
972                 if (ret)
973                         return ret;
974
975                 *snap_size = size;
976         }
977         return 0;
978 }
979
980 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
981                         u64 *snap_features)
982 {
983         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
984         if (snap_id == CEPH_NOSNAP) {
985                 *snap_features = rbd_dev->header.features;
986         } else if (rbd_dev->image_format == 1) {
987                 *snap_features = 0;     /* No features for format 1 */
988         } else {
989                 u64 features = 0;
990                 int ret;
991
992                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
993                 if (ret)
994                         return ret;
995
996                 *snap_features = features;
997         }
998         return 0;
999 }
1000
1001 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1002 {
1003         u64 snap_id = rbd_dev->spec->snap_id;
1004         u64 size = 0;
1005         u64 features = 0;
1006         int ret;
1007
1008         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1009         if (ret)
1010                 return ret;
1011         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1012         if (ret)
1013                 return ret;
1014
1015         rbd_dev->mapping.size = size;
1016         rbd_dev->mapping.features = features;
1017
1018         return 0;
1019 }
1020
1021 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1022 {
1023         rbd_dev->mapping.size = 0;
1024         rbd_dev->mapping.features = 0;
1025 }
1026
1027 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1028 {
1029         char *name;
1030         u64 segment;
1031         int ret;
1032         char *name_format;
1033
1034         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1035         if (!name)
1036                 return NULL;
1037         segment = offset >> rbd_dev->header.obj_order;
1038         name_format = "%s.%012llx";
1039         if (rbd_dev->image_format == 2)
1040                 name_format = "%s.%016llx";
1041         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1042                         rbd_dev->header.object_prefix, segment);
1043         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1044                 pr_err("error formatting segment name for #%llu (%d)\n",
1045                         segment, ret);
1046                 kfree(name);
1047                 name = NULL;
1048         }
1049
1050         return name;
1051 }
1052
1053 static void rbd_segment_name_free(const char *name)
1054 {
1055         /* The explicit cast here is needed to drop the const qualifier */
1056
1057         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1058 }
1059
1060 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1061 {
1062         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1063
1064         return offset & (segment_size - 1);
1065 }
1066
1067 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1068                                 u64 offset, u64 length)
1069 {
1070         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1071
1072         offset &= segment_size - 1;
1073
1074         rbd_assert(length <= U64_MAX - offset);
1075         if (offset + length > segment_size)
1076                 length = segment_size - offset;
1077
1078         return length;
1079 }
1080
1081 /*
1082  * returns the size of an object in the image
1083  */
1084 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1085 {
1086         return 1 << header->obj_order;
1087 }
1088
1089 /*
1090  * bio helpers
1091  */
1092
1093 static void bio_chain_put(struct bio *chain)
1094 {
1095         struct bio *tmp;
1096
1097         while (chain) {
1098                 tmp = chain;
1099                 chain = chain->bi_next;
1100                 bio_put(tmp);
1101         }
1102 }
1103
1104 /*
1105  * zeros a bio chain, starting at specific offset
1106  */
1107 static void zero_bio_chain(struct bio *chain, int start_ofs)
1108 {
1109         struct bio_vec *bv;
1110         unsigned long flags;
1111         void *buf;
1112         int i;
1113         int pos = 0;
1114
1115         while (chain) {
1116                 bio_for_each_segment(bv, chain, i) {
1117                         if (pos + bv->bv_len > start_ofs) {
1118                                 int remainder = max(start_ofs - pos, 0);
1119                                 buf = bvec_kmap_irq(bv, &flags);
1120                                 memset(buf + remainder, 0,
1121                                        bv->bv_len - remainder);
1122                                 flush_dcache_page(bv->bv_page);
1123                                 bvec_kunmap_irq(buf, &flags);
1124                         }
1125                         pos += bv->bv_len;
1126                 }
1127
1128                 chain = chain->bi_next;
1129         }
1130 }
1131
1132 /*
1133  * similar to zero_bio_chain(), zeros data defined by a page array,
1134  * starting at the given byte offset from the start of the array and
1135  * continuing up to the given end offset.  The pages array is
1136  * assumed to be big enough to hold all bytes up to the end.
1137  */
1138 static void zero_pages(struct page **pages, u64 offset, u64 end)
1139 {
1140         struct page **page = &pages[offset >> PAGE_SHIFT];
1141
1142         rbd_assert(end > offset);
1143         rbd_assert(end - offset <= (u64)SIZE_MAX);
1144         while (offset < end) {
1145                 size_t page_offset;
1146                 size_t length;
1147                 unsigned long flags;
1148                 void *kaddr;
1149
1150                 page_offset = offset & ~PAGE_MASK;
1151                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1152                 local_irq_save(flags);
1153                 kaddr = kmap_atomic(*page);
1154                 memset(kaddr + page_offset, 0, length);
1155                 flush_dcache_page(*page);
1156                 kunmap_atomic(kaddr);
1157                 local_irq_restore(flags);
1158
1159                 offset += length;
1160                 page++;
1161         }
1162 }
1163
1164 /*
1165  * Clone a portion of a bio, starting at the given byte offset
1166  * and continuing for the number of bytes indicated.
1167  */
1168 static struct bio *bio_clone_range(struct bio *bio_src,
1169                                         unsigned int offset,
1170                                         unsigned int len,
1171                                         gfp_t gfpmask)
1172 {
1173         struct bio_vec *bv;
1174         unsigned int resid;
1175         unsigned short idx;
1176         unsigned int voff;
1177         unsigned short end_idx;
1178         unsigned short vcnt;
1179         struct bio *bio;
1180
1181         /* Handle the easy case for the caller */
1182
1183         if (!offset && len == bio_src->bi_size)
1184                 return bio_clone(bio_src, gfpmask);
1185
1186         if (WARN_ON_ONCE(!len))
1187                 return NULL;
1188         if (WARN_ON_ONCE(len > bio_src->bi_size))
1189                 return NULL;
1190         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1191                 return NULL;
1192
1193         /* Find first affected segment... */
1194
1195         resid = offset;
1196         bio_for_each_segment(bv, bio_src, idx) {
1197                 if (resid < bv->bv_len)
1198                         break;
1199                 resid -= bv->bv_len;
1200         }
1201         voff = resid;
1202
1203         /* ...and the last affected segment */
1204
1205         resid += len;
1206         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1207                 if (resid <= bv->bv_len)
1208                         break;
1209                 resid -= bv->bv_len;
1210         }
1211         vcnt = end_idx - idx + 1;
1212
1213         /* Build the clone */
1214
1215         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1216         if (!bio)
1217                 return NULL;    /* ENOMEM */
1218
1219         bio->bi_bdev = bio_src->bi_bdev;
1220         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1221         bio->bi_rw = bio_src->bi_rw;
1222         bio->bi_flags |= 1 << BIO_CLONED;
1223
1224         /*
1225          * Copy over our part of the bio_vec, then update the first
1226          * and last (or only) entries.
1227          */
1228         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1229                         vcnt * sizeof (struct bio_vec));
1230         bio->bi_io_vec[0].bv_offset += voff;
1231         if (vcnt > 1) {
1232                 bio->bi_io_vec[0].bv_len -= voff;
1233                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1234         } else {
1235                 bio->bi_io_vec[0].bv_len = len;
1236         }
1237
1238         bio->bi_vcnt = vcnt;
1239         bio->bi_size = len;
1240         bio->bi_idx = 0;
1241
1242         return bio;
1243 }
1244
1245 /*
1246  * Clone a portion of a bio chain, starting at the given byte offset
1247  * into the first bio in the source chain and continuing for the
1248  * number of bytes indicated.  The result is another bio chain of
1249  * exactly the given length, or a null pointer on error.
1250  *
1251  * The bio_src and offset parameters are both in-out.  On entry they
1252  * refer to the first source bio and the offset into that bio where
1253  * the start of data to be cloned is located.
1254  *
1255  * On return, bio_src is updated to refer to the bio in the source
1256  * chain that contains first un-cloned byte, and *offset will
1257  * contain the offset of that byte within that bio.
1258  */
1259 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1260                                         unsigned int *offset,
1261                                         unsigned int len,
1262                                         gfp_t gfpmask)
1263 {
1264         struct bio *bi = *bio_src;
1265         unsigned int off = *offset;
1266         struct bio *chain = NULL;
1267         struct bio **end;
1268
1269         /* Build up a chain of clone bios up to the limit */
1270
1271         if (!bi || off >= bi->bi_size || !len)
1272                 return NULL;            /* Nothing to clone */
1273
1274         end = &chain;
1275         while (len) {
1276                 unsigned int bi_size;
1277                 struct bio *bio;
1278
1279                 if (!bi) {
1280                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1281                         goto out_err;   /* EINVAL; ran out of bio's */
1282                 }
1283                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1284                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1285                 if (!bio)
1286                         goto out_err;   /* ENOMEM */
1287
1288                 *end = bio;
1289                 end = &bio->bi_next;
1290
1291                 off += bi_size;
1292                 if (off == bi->bi_size) {
1293                         bi = bi->bi_next;
1294                         off = 0;
1295                 }
1296                 len -= bi_size;
1297         }
1298         *bio_src = bi;
1299         *offset = off;
1300
1301         return chain;
1302 out_err:
1303         bio_chain_put(chain);
1304
1305         return NULL;
1306 }
1307
1308 /*
1309  * The default/initial value for all object request flags is 0.  For
1310  * each flag, once its value is set to 1 it is never reset to 0
1311  * again.
1312  */
1313 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1314 {
1315         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1316                 struct rbd_device *rbd_dev;
1317
1318                 rbd_dev = obj_request->img_request->rbd_dev;
1319                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1320                         obj_request);
1321         }
1322 }
1323
1324 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1325 {
1326         smp_mb();
1327         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1328 }
1329
1330 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1331 {
1332         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1333                 struct rbd_device *rbd_dev = NULL;
1334
1335                 if (obj_request_img_data_test(obj_request))
1336                         rbd_dev = obj_request->img_request->rbd_dev;
1337                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1338                         obj_request);
1339         }
1340 }
1341
1342 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1343 {
1344         smp_mb();
1345         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1346 }
1347
1348 /*
1349  * This sets the KNOWN flag after (possibly) setting the EXISTS
1350  * flag.  The latter is set based on the "exists" value provided.
1351  *
1352  * Note that for our purposes once an object exists it never goes
1353  * away again.  It's possible that the response from two existence
1354  * checks are separated by the creation of the target object, and
1355  * the first ("doesn't exist") response arrives *after* the second
1356  * ("does exist").  In that case we ignore the second one.
1357  */
1358 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1359                                 bool exists)
1360 {
1361         if (exists)
1362                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1363         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1364         smp_mb();
1365 }
1366
1367 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1368 {
1369         smp_mb();
1370         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1371 }
1372
1373 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1374 {
1375         smp_mb();
1376         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1377 }
1378
1379 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1380 {
1381         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1382                 atomic_read(&obj_request->kref.refcount));
1383         kref_get(&obj_request->kref);
1384 }
1385
1386 static void rbd_obj_request_destroy(struct kref *kref);
1387 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1388 {
1389         rbd_assert(obj_request != NULL);
1390         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1391                 atomic_read(&obj_request->kref.refcount));
1392         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1393 }
1394
1395 static bool img_request_child_test(struct rbd_img_request *img_request);
1396 static void rbd_parent_request_destroy(struct kref *kref);
1397 static void rbd_img_request_destroy(struct kref *kref);
1398 static void rbd_img_request_put(struct rbd_img_request *img_request)
1399 {
1400         rbd_assert(img_request != NULL);
1401         dout("%s: img %p (was %d)\n", __func__, img_request,
1402                 atomic_read(&img_request->kref.refcount));
1403         if (img_request_child_test(img_request))
1404                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1405         else
1406                 kref_put(&img_request->kref, rbd_img_request_destroy);
1407 }
1408
1409 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1410                                         struct rbd_obj_request *obj_request)
1411 {
1412         rbd_assert(obj_request->img_request == NULL);
1413
1414         /* Image request now owns object's original reference */
1415         obj_request->img_request = img_request;
1416         obj_request->which = img_request->obj_request_count;
1417         rbd_assert(!obj_request_img_data_test(obj_request));
1418         obj_request_img_data_set(obj_request);
1419         rbd_assert(obj_request->which != BAD_WHICH);
1420         img_request->obj_request_count++;
1421         list_add_tail(&obj_request->links, &img_request->obj_requests);
1422         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1423                 obj_request->which);
1424 }
1425
1426 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1427                                         struct rbd_obj_request *obj_request)
1428 {
1429         rbd_assert(obj_request->which != BAD_WHICH);
1430
1431         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1432                 obj_request->which);
1433         list_del(&obj_request->links);
1434         rbd_assert(img_request->obj_request_count > 0);
1435         img_request->obj_request_count--;
1436         rbd_assert(obj_request->which == img_request->obj_request_count);
1437         obj_request->which = BAD_WHICH;
1438         rbd_assert(obj_request_img_data_test(obj_request));
1439         rbd_assert(obj_request->img_request == img_request);
1440         obj_request->img_request = NULL;
1441         obj_request->callback = NULL;
1442         rbd_obj_request_put(obj_request);
1443 }
1444
1445 static bool obj_request_type_valid(enum obj_request_type type)
1446 {
1447         switch (type) {
1448         case OBJ_REQUEST_NODATA:
1449         case OBJ_REQUEST_BIO:
1450         case OBJ_REQUEST_PAGES:
1451                 return true;
1452         default:
1453                 return false;
1454         }
1455 }
1456
1457 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1458                                 struct rbd_obj_request *obj_request)
1459 {
1460         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1461
1462         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1463 }
1464
1465 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1466 {
1467
1468         dout("%s: img %p\n", __func__, img_request);
1469
1470         /*
1471          * If no error occurred, compute the aggregate transfer
1472          * count for the image request.  We could instead use
1473          * atomic64_cmpxchg() to update it as each object request
1474          * completes; not clear which way is better off hand.
1475          */
1476         if (!img_request->result) {
1477                 struct rbd_obj_request *obj_request;
1478                 u64 xferred = 0;
1479
1480                 for_each_obj_request(img_request, obj_request)
1481                         xferred += obj_request->xferred;
1482                 img_request->xferred = xferred;
1483         }
1484
1485         if (img_request->callback)
1486                 img_request->callback(img_request);
1487         else
1488                 rbd_img_request_put(img_request);
1489 }
1490
1491 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1492
1493 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1494 {
1495         dout("%s: obj %p\n", __func__, obj_request);
1496
1497         return wait_for_completion_interruptible(&obj_request->completion);
1498 }
1499
1500 /*
1501  * The default/initial value for all image request flags is 0.  Each
1502  * is conditionally set to 1 at image request initialization time
1503  * and currently never change thereafter.
1504  */
1505 static void img_request_write_set(struct rbd_img_request *img_request)
1506 {
1507         set_bit(IMG_REQ_WRITE, &img_request->flags);
1508         smp_mb();
1509 }
1510
1511 static bool img_request_write_test(struct rbd_img_request *img_request)
1512 {
1513         smp_mb();
1514         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1515 }
1516
1517 static void img_request_child_set(struct rbd_img_request *img_request)
1518 {
1519         set_bit(IMG_REQ_CHILD, &img_request->flags);
1520         smp_mb();
1521 }
1522
1523 static void img_request_child_clear(struct rbd_img_request *img_request)
1524 {
1525         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1526         smp_mb();
1527 }
1528
1529 static bool img_request_child_test(struct rbd_img_request *img_request)
1530 {
1531         smp_mb();
1532         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1533 }
1534
1535 static void img_request_layered_set(struct rbd_img_request *img_request)
1536 {
1537         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1538         smp_mb();
1539 }
1540
1541 static void img_request_layered_clear(struct rbd_img_request *img_request)
1542 {
1543         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1544         smp_mb();
1545 }
1546
1547 static bool img_request_layered_test(struct rbd_img_request *img_request)
1548 {
1549         smp_mb();
1550         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1551 }
1552
1553 static void
1554 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1555 {
1556         u64 xferred = obj_request->xferred;
1557         u64 length = obj_request->length;
1558
1559         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1560                 obj_request, obj_request->img_request, obj_request->result,
1561                 xferred, length);
1562         /*
1563          * ENOENT means a hole in the image.  We zero-fill the
1564          * entire length of the request.  A short read also implies
1565          * zero-fill to the end of the request.  Either way we
1566          * update the xferred count to indicate the whole request
1567          * was satisfied.
1568          */
1569         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1570         if (obj_request->result == -ENOENT) {
1571                 if (obj_request->type == OBJ_REQUEST_BIO)
1572                         zero_bio_chain(obj_request->bio_list, 0);
1573                 else
1574                         zero_pages(obj_request->pages, 0, length);
1575                 obj_request->result = 0;
1576                 obj_request->xferred = length;
1577         } else if (xferred < length && !obj_request->result) {
1578                 if (obj_request->type == OBJ_REQUEST_BIO)
1579                         zero_bio_chain(obj_request->bio_list, xferred);
1580                 else
1581                         zero_pages(obj_request->pages, xferred, length);
1582                 obj_request->xferred = length;
1583         }
1584         obj_request_done_set(obj_request);
1585 }
1586
1587 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1588 {
1589         dout("%s: obj %p cb %p\n", __func__, obj_request,
1590                 obj_request->callback);
1591         if (obj_request->callback)
1592                 obj_request->callback(obj_request);
1593         else
1594                 complete_all(&obj_request->completion);
1595 }
1596
1597 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1598 {
1599         dout("%s: obj %p\n", __func__, obj_request);
1600         obj_request_done_set(obj_request);
1601 }
1602
1603 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1604 {
1605         struct rbd_img_request *img_request = NULL;
1606         struct rbd_device *rbd_dev = NULL;
1607         bool layered = false;
1608
1609         if (obj_request_img_data_test(obj_request)) {
1610                 img_request = obj_request->img_request;
1611                 layered = img_request && img_request_layered_test(img_request);
1612                 rbd_dev = img_request->rbd_dev;
1613         }
1614
1615         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1616                 obj_request, img_request, obj_request->result,
1617                 obj_request->xferred, obj_request->length);
1618         if (layered && obj_request->result == -ENOENT &&
1619                         obj_request->img_offset < rbd_dev->parent_overlap)
1620                 rbd_img_parent_read(obj_request);
1621         else if (img_request)
1622                 rbd_img_obj_request_read_callback(obj_request);
1623         else
1624                 obj_request_done_set(obj_request);
1625 }
1626
1627 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1628 {
1629         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1630                 obj_request->result, obj_request->length);
1631         /*
1632          * There is no such thing as a successful short write.  Set
1633          * it to our originally-requested length.
1634          */
1635         obj_request->xferred = obj_request->length;
1636         obj_request_done_set(obj_request);
1637 }
1638
1639 /*
1640  * For a simple stat call there's nothing to do.  We'll do more if
1641  * this is part of a write sequence for a layered image.
1642  */
1643 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1644 {
1645         dout("%s: obj %p\n", __func__, obj_request);
1646         obj_request_done_set(obj_request);
1647 }
1648
1649 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1650                                 struct ceph_msg *msg)
1651 {
1652         struct rbd_obj_request *obj_request = osd_req->r_priv;
1653         u16 opcode;
1654
1655         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1656         rbd_assert(osd_req == obj_request->osd_req);
1657         if (obj_request_img_data_test(obj_request)) {
1658                 rbd_assert(obj_request->img_request);
1659                 rbd_assert(obj_request->which != BAD_WHICH);
1660         } else {
1661                 rbd_assert(obj_request->which == BAD_WHICH);
1662         }
1663
1664         if (osd_req->r_result < 0)
1665                 obj_request->result = osd_req->r_result;
1666
1667         BUG_ON(osd_req->r_num_ops > 2);
1668
1669         /*
1670          * We support a 64-bit length, but ultimately it has to be
1671          * passed to blk_end_request(), which takes an unsigned int.
1672          */
1673         obj_request->xferred = osd_req->r_reply_op_len[0];
1674         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1675         opcode = osd_req->r_ops[0].op;
1676         switch (opcode) {
1677         case CEPH_OSD_OP_READ:
1678                 rbd_osd_read_callback(obj_request);
1679                 break;
1680         case CEPH_OSD_OP_WRITE:
1681                 rbd_osd_write_callback(obj_request);
1682                 break;
1683         case CEPH_OSD_OP_STAT:
1684                 rbd_osd_stat_callback(obj_request);
1685                 break;
1686         case CEPH_OSD_OP_CALL:
1687         case CEPH_OSD_OP_NOTIFY_ACK:
1688         case CEPH_OSD_OP_WATCH:
1689                 rbd_osd_trivial_callback(obj_request);
1690                 break;
1691         default:
1692                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1693                         obj_request->object_name, (unsigned short) opcode);
1694                 break;
1695         }
1696
1697         if (obj_request_done_test(obj_request))
1698                 rbd_obj_request_complete(obj_request);
1699 }
1700
1701 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1702 {
1703         struct rbd_img_request *img_request = obj_request->img_request;
1704         struct ceph_osd_request *osd_req = obj_request->osd_req;
1705         u64 snap_id;
1706
1707         rbd_assert(osd_req != NULL);
1708
1709         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1710         ceph_osdc_build_request(osd_req, obj_request->offset,
1711                         NULL, snap_id, NULL);
1712 }
1713
1714 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1715 {
1716         struct rbd_img_request *img_request = obj_request->img_request;
1717         struct ceph_osd_request *osd_req = obj_request->osd_req;
1718         struct ceph_snap_context *snapc;
1719         struct timespec mtime = CURRENT_TIME;
1720
1721         rbd_assert(osd_req != NULL);
1722
1723         snapc = img_request ? img_request->snapc : NULL;
1724         ceph_osdc_build_request(osd_req, obj_request->offset,
1725                         snapc, CEPH_NOSNAP, &mtime);
1726 }
1727
1728 static struct ceph_osd_request *rbd_osd_req_create(
1729                                         struct rbd_device *rbd_dev,
1730                                         bool write_request,
1731                                         struct rbd_obj_request *obj_request)
1732 {
1733         struct ceph_snap_context *snapc = NULL;
1734         struct ceph_osd_client *osdc;
1735         struct ceph_osd_request *osd_req;
1736
1737         if (obj_request_img_data_test(obj_request)) {
1738                 struct rbd_img_request *img_request = obj_request->img_request;
1739
1740                 rbd_assert(write_request ==
1741                                 img_request_write_test(img_request));
1742                 if (write_request)
1743                         snapc = img_request->snapc;
1744         }
1745
1746         /* Allocate and initialize the request, for the single op */
1747
1748         osdc = &rbd_dev->rbd_client->client->osdc;
1749         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1750         if (!osd_req)
1751                 return NULL;    /* ENOMEM */
1752
1753         if (write_request)
1754                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1755         else
1756                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1757
1758         osd_req->r_callback = rbd_osd_req_callback;
1759         osd_req->r_priv = obj_request;
1760
1761         osd_req->r_oid_len = strlen(obj_request->object_name);
1762         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1763         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1764
1765         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1766
1767         return osd_req;
1768 }
1769
1770 /*
1771  * Create a copyup osd request based on the information in the
1772  * object request supplied.  A copyup request has two osd ops,
1773  * a copyup method call, and a "normal" write request.
1774  */
1775 static struct ceph_osd_request *
1776 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1777 {
1778         struct rbd_img_request *img_request;
1779         struct ceph_snap_context *snapc;
1780         struct rbd_device *rbd_dev;
1781         struct ceph_osd_client *osdc;
1782         struct ceph_osd_request *osd_req;
1783
1784         rbd_assert(obj_request_img_data_test(obj_request));
1785         img_request = obj_request->img_request;
1786         rbd_assert(img_request);
1787         rbd_assert(img_request_write_test(img_request));
1788
1789         /* Allocate and initialize the request, for the two ops */
1790
1791         snapc = img_request->snapc;
1792         rbd_dev = img_request->rbd_dev;
1793         osdc = &rbd_dev->rbd_client->client->osdc;
1794         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1795         if (!osd_req)
1796                 return NULL;    /* ENOMEM */
1797
1798         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1799         osd_req->r_callback = rbd_osd_req_callback;
1800         osd_req->r_priv = obj_request;
1801
1802         osd_req->r_oid_len = strlen(obj_request->object_name);
1803         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1804         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1805
1806         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1807
1808         return osd_req;
1809 }
1810
1811
1812 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1813 {
1814         ceph_osdc_put_request(osd_req);
1815 }
1816
1817 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1818
1819 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1820                                                 u64 offset, u64 length,
1821                                                 enum obj_request_type type)
1822 {
1823         struct rbd_obj_request *obj_request;
1824         size_t size;
1825         char *name;
1826
1827         rbd_assert(obj_request_type_valid(type));
1828
1829         size = strlen(object_name) + 1;
1830         name = kmalloc(size, GFP_KERNEL);
1831         if (!name)
1832                 return NULL;
1833
1834         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1835         if (!obj_request) {
1836                 kfree(name);
1837                 return NULL;
1838         }
1839
1840         obj_request->object_name = memcpy(name, object_name, size);
1841         obj_request->offset = offset;
1842         obj_request->length = length;
1843         obj_request->flags = 0;
1844         obj_request->which = BAD_WHICH;
1845         obj_request->type = type;
1846         INIT_LIST_HEAD(&obj_request->links);
1847         init_completion(&obj_request->completion);
1848         kref_init(&obj_request->kref);
1849
1850         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1851                 offset, length, (int)type, obj_request);
1852
1853         return obj_request;
1854 }
1855
1856 static void rbd_obj_request_destroy(struct kref *kref)
1857 {
1858         struct rbd_obj_request *obj_request;
1859
1860         obj_request = container_of(kref, struct rbd_obj_request, kref);
1861
1862         dout("%s: obj %p\n", __func__, obj_request);
1863
1864         rbd_assert(obj_request->img_request == NULL);
1865         rbd_assert(obj_request->which == BAD_WHICH);
1866
1867         if (obj_request->osd_req)
1868                 rbd_osd_req_destroy(obj_request->osd_req);
1869
1870         rbd_assert(obj_request_type_valid(obj_request->type));
1871         switch (obj_request->type) {
1872         case OBJ_REQUEST_NODATA:
1873                 break;          /* Nothing to do */
1874         case OBJ_REQUEST_BIO:
1875                 if (obj_request->bio_list)
1876                         bio_chain_put(obj_request->bio_list);
1877                 break;
1878         case OBJ_REQUEST_PAGES:
1879                 if (obj_request->pages)
1880                         ceph_release_page_vector(obj_request->pages,
1881                                                 obj_request->page_count);
1882                 break;
1883         }
1884
1885         kfree(obj_request->object_name);
1886         obj_request->object_name = NULL;
1887         kmem_cache_free(rbd_obj_request_cache, obj_request);
1888 }
1889
1890 /* It's OK to call this for a device with no parent */
1891
1892 static void rbd_spec_put(struct rbd_spec *spec);
1893 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1894 {
1895         rbd_dev_remove_parent(rbd_dev);
1896         rbd_spec_put(rbd_dev->parent_spec);
1897         rbd_dev->parent_spec = NULL;
1898         rbd_dev->parent_overlap = 0;
1899 }
1900
1901 /*
1902  * Parent image reference counting is used to determine when an
1903  * image's parent fields can be safely torn down--after there are no
1904  * more in-flight requests to the parent image.  When the last
1905  * reference is dropped, cleaning them up is safe.
1906  */
1907 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1908 {
1909         int counter;
1910
1911         if (!rbd_dev->parent_spec)
1912                 return;
1913
1914         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1915         if (counter > 0)
1916                 return;
1917
1918         /* Last reference; clean up parent data structures */
1919
1920         if (!counter)
1921                 rbd_dev_unparent(rbd_dev);
1922         else
1923                 rbd_warn(rbd_dev, "parent reference underflow\n");
1924 }
1925
1926 /*
1927  * If an image has a non-zero parent overlap, get a reference to its
1928  * parent.
1929  *
1930  * We must get the reference before checking for the overlap to
1931  * coordinate properly with zeroing the parent overlap in
1932  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1933  * drop it again if there is no overlap.
1934  *
1935  * Returns true if the rbd device has a parent with a non-zero
1936  * overlap and a reference for it was successfully taken, or
1937  * false otherwise.
1938  */
1939 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1940 {
1941         int counter;
1942
1943         if (!rbd_dev->parent_spec)
1944                 return false;
1945
1946         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1947         if (counter > 0 && rbd_dev->parent_overlap)
1948                 return true;
1949
1950         /* Image was flattened, but parent is not yet torn down */
1951
1952         if (counter < 0)
1953                 rbd_warn(rbd_dev, "parent reference overflow\n");
1954
1955         return false;
1956 }
1957
1958 /*
1959  * Caller is responsible for filling in the list of object requests
1960  * that comprises the image request, and the Linux request pointer
1961  * (if there is one).
1962  */
1963 static struct rbd_img_request *rbd_img_request_create(
1964                                         struct rbd_device *rbd_dev,
1965                                         u64 offset, u64 length,
1966                                         bool write_request)
1967 {
1968         struct rbd_img_request *img_request;
1969
1970         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1971         if (!img_request)
1972                 return NULL;
1973
1974         if (write_request) {
1975                 down_read(&rbd_dev->header_rwsem);
1976                 ceph_get_snap_context(rbd_dev->header.snapc);
1977                 up_read(&rbd_dev->header_rwsem);
1978         }
1979
1980         img_request->rq = NULL;
1981         img_request->rbd_dev = rbd_dev;
1982         img_request->offset = offset;
1983         img_request->length = length;
1984         img_request->flags = 0;
1985         if (write_request) {
1986                 img_request_write_set(img_request);
1987                 img_request->snapc = rbd_dev->header.snapc;
1988         } else {
1989                 img_request->snap_id = rbd_dev->spec->snap_id;
1990         }
1991         if (rbd_dev_parent_get(rbd_dev))
1992                 img_request_layered_set(img_request);
1993         spin_lock_init(&img_request->completion_lock);
1994         img_request->next_completion = 0;
1995         img_request->callback = NULL;
1996         img_request->result = 0;
1997         img_request->obj_request_count = 0;
1998         INIT_LIST_HEAD(&img_request->obj_requests);
1999         kref_init(&img_request->kref);
2000
2001         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2002                 write_request ? "write" : "read", offset, length,
2003                 img_request);
2004
2005         return img_request;
2006 }
2007
2008 static void rbd_img_request_destroy(struct kref *kref)
2009 {
2010         struct rbd_img_request *img_request;
2011         struct rbd_obj_request *obj_request;
2012         struct rbd_obj_request *next_obj_request;
2013
2014         img_request = container_of(kref, struct rbd_img_request, kref);
2015
2016         dout("%s: img %p\n", __func__, img_request);
2017
2018         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2019                 rbd_img_obj_request_del(img_request, obj_request);
2020         rbd_assert(img_request->obj_request_count == 0);
2021
2022         if (img_request_layered_test(img_request)) {
2023                 img_request_layered_clear(img_request);
2024                 rbd_dev_parent_put(img_request->rbd_dev);
2025         }
2026
2027         if (img_request_write_test(img_request))
2028                 ceph_put_snap_context(img_request->snapc);
2029
2030         kmem_cache_free(rbd_img_request_cache, img_request);
2031 }
2032
2033 static struct rbd_img_request *rbd_parent_request_create(
2034                                         struct rbd_obj_request *obj_request,
2035                                         u64 img_offset, u64 length)
2036 {
2037         struct rbd_img_request *parent_request;
2038         struct rbd_device *rbd_dev;
2039
2040         rbd_assert(obj_request->img_request);
2041         rbd_dev = obj_request->img_request->rbd_dev;
2042
2043         parent_request = rbd_img_request_create(rbd_dev->parent,
2044                                                 img_offset, length, false);
2045         if (!parent_request)
2046                 return NULL;
2047
2048         img_request_child_set(parent_request);
2049         rbd_obj_request_get(obj_request);
2050         parent_request->obj_request = obj_request;
2051
2052         return parent_request;
2053 }
2054
2055 static void rbd_parent_request_destroy(struct kref *kref)
2056 {
2057         struct rbd_img_request *parent_request;
2058         struct rbd_obj_request *orig_request;
2059
2060         parent_request = container_of(kref, struct rbd_img_request, kref);
2061         orig_request = parent_request->obj_request;
2062
2063         parent_request->obj_request = NULL;
2064         rbd_obj_request_put(orig_request);
2065         img_request_child_clear(parent_request);
2066
2067         rbd_img_request_destroy(kref);
2068 }
2069
2070 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2071 {
2072         struct rbd_img_request *img_request;
2073         unsigned int xferred;
2074         int result;
2075         bool more;
2076
2077         rbd_assert(obj_request_img_data_test(obj_request));
2078         img_request = obj_request->img_request;
2079
2080         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2081         xferred = (unsigned int)obj_request->xferred;
2082         result = obj_request->result;
2083         if (result) {
2084                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2085
2086                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2087                         img_request_write_test(img_request) ? "write" : "read",
2088                         obj_request->length, obj_request->img_offset,
2089                         obj_request->offset);
2090                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2091                         result, xferred);
2092                 if (!img_request->result)
2093                         img_request->result = result;
2094         }
2095
2096         /* Image object requests don't own their page array */
2097
2098         if (obj_request->type == OBJ_REQUEST_PAGES) {
2099                 obj_request->pages = NULL;
2100                 obj_request->page_count = 0;
2101         }
2102
2103         if (img_request_child_test(img_request)) {
2104                 rbd_assert(img_request->obj_request != NULL);
2105                 more = obj_request->which < img_request->obj_request_count - 1;
2106         } else {
2107                 rbd_assert(img_request->rq != NULL);
2108                 more = blk_end_request(img_request->rq, result, xferred);
2109         }
2110
2111         return more;
2112 }
2113
2114 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2115 {
2116         struct rbd_img_request *img_request;
2117         u32 which = obj_request->which;
2118         bool more = true;
2119
2120         rbd_assert(obj_request_img_data_test(obj_request));
2121         img_request = obj_request->img_request;
2122
2123         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2124         rbd_assert(img_request != NULL);
2125         rbd_assert(img_request->obj_request_count > 0);
2126         rbd_assert(which != BAD_WHICH);
2127         rbd_assert(which < img_request->obj_request_count);
2128         rbd_assert(which >= img_request->next_completion);
2129
2130         spin_lock_irq(&img_request->completion_lock);
2131         if (which != img_request->next_completion)
2132                 goto out;
2133
2134         for_each_obj_request_from(img_request, obj_request) {
2135                 rbd_assert(more);
2136                 rbd_assert(which < img_request->obj_request_count);
2137
2138                 if (!obj_request_done_test(obj_request))
2139                         break;
2140                 more = rbd_img_obj_end_request(obj_request);
2141                 which++;
2142         }
2143
2144         rbd_assert(more ^ (which == img_request->obj_request_count));
2145         img_request->next_completion = which;
2146 out:
2147         spin_unlock_irq(&img_request->completion_lock);
2148
2149         if (!more)
2150                 rbd_img_request_complete(img_request);
2151 }
2152
2153 /*
2154  * Split up an image request into one or more object requests, each
2155  * to a different object.  The "type" parameter indicates whether
2156  * "data_desc" is the pointer to the head of a list of bio
2157  * structures, or the base of a page array.  In either case this
2158  * function assumes data_desc describes memory sufficient to hold
2159  * all data described by the image request.
2160  */
2161 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2162                                         enum obj_request_type type,
2163                                         void *data_desc)
2164 {
2165         struct rbd_device *rbd_dev = img_request->rbd_dev;
2166         struct rbd_obj_request *obj_request = NULL;
2167         struct rbd_obj_request *next_obj_request;
2168         bool write_request = img_request_write_test(img_request);
2169         struct bio *bio_list;
2170         unsigned int bio_offset = 0;
2171         struct page **pages;
2172         u64 img_offset;
2173         u64 resid;
2174         u16 opcode;
2175
2176         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2177                 (int)type, data_desc);
2178
2179         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2180         img_offset = img_request->offset;
2181         resid = img_request->length;
2182         rbd_assert(resid > 0);
2183
2184         if (type == OBJ_REQUEST_BIO) {
2185                 bio_list = data_desc;
2186                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2187         } else {
2188                 rbd_assert(type == OBJ_REQUEST_PAGES);
2189                 pages = data_desc;
2190         }
2191
2192         while (resid) {
2193                 struct ceph_osd_request *osd_req;
2194                 const char *object_name;
2195                 u64 offset;
2196                 u64 length;
2197
2198                 object_name = rbd_segment_name(rbd_dev, img_offset);
2199                 if (!object_name)
2200                         goto out_unwind;
2201                 offset = rbd_segment_offset(rbd_dev, img_offset);
2202                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2203                 obj_request = rbd_obj_request_create(object_name,
2204                                                 offset, length, type);
2205                 /* object request has its own copy of the object name */
2206                 rbd_segment_name_free(object_name);
2207                 if (!obj_request)
2208                         goto out_unwind;
2209
2210                 if (type == OBJ_REQUEST_BIO) {
2211                         unsigned int clone_size;
2212
2213                         rbd_assert(length <= (u64)UINT_MAX);
2214                         clone_size = (unsigned int)length;
2215                         obj_request->bio_list =
2216                                         bio_chain_clone_range(&bio_list,
2217                                                                 &bio_offset,
2218                                                                 clone_size,
2219                                                                 GFP_ATOMIC);
2220                         if (!obj_request->bio_list)
2221                                 goto out_partial;
2222                 } else {
2223                         unsigned int page_count;
2224
2225                         obj_request->pages = pages;
2226                         page_count = (u32)calc_pages_for(offset, length);
2227                         obj_request->page_count = page_count;
2228                         if ((offset + length) & ~PAGE_MASK)
2229                                 page_count--;   /* more on last page */
2230                         pages += page_count;
2231                 }
2232
2233                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2234                                                 obj_request);
2235                 if (!osd_req)
2236                         goto out_partial;
2237                 obj_request->osd_req = osd_req;
2238                 obj_request->callback = rbd_img_obj_callback;
2239
2240                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2241                                                 0, 0);
2242                 if (type == OBJ_REQUEST_BIO)
2243                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2244                                         obj_request->bio_list, length);
2245                 else
2246                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2247                                         obj_request->pages, length,
2248                                         offset & ~PAGE_MASK, false, false);
2249
2250                 /*
2251                  * set obj_request->img_request before formatting
2252                  * the osd_request so that it gets the right snapc
2253                  */
2254                 rbd_img_obj_request_add(img_request, obj_request);
2255                 if (write_request)
2256                         rbd_osd_req_format_write(obj_request);
2257                 else
2258                         rbd_osd_req_format_read(obj_request);
2259
2260                 obj_request->img_offset = img_offset;
2261
2262                 img_offset += length;
2263                 resid -= length;
2264         }
2265
2266         return 0;
2267
2268 out_partial:
2269         rbd_obj_request_put(obj_request);
2270 out_unwind:
2271         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2272                 rbd_obj_request_put(obj_request);
2273
2274         return -ENOMEM;
2275 }
2276
2277 static void
2278 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2279 {
2280         struct rbd_img_request *img_request;
2281         struct rbd_device *rbd_dev;
2282         struct page **pages;
2283         u32 page_count;
2284
2285         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2286         rbd_assert(obj_request_img_data_test(obj_request));
2287         img_request = obj_request->img_request;
2288         rbd_assert(img_request);
2289
2290         rbd_dev = img_request->rbd_dev;
2291         rbd_assert(rbd_dev);
2292
2293         pages = obj_request->copyup_pages;
2294         rbd_assert(pages != NULL);
2295         obj_request->copyup_pages = NULL;
2296         page_count = obj_request->copyup_page_count;
2297         rbd_assert(page_count);
2298         obj_request->copyup_page_count = 0;
2299         ceph_release_page_vector(pages, page_count);
2300
2301         /*
2302          * We want the transfer count to reflect the size of the
2303          * original write request.  There is no such thing as a
2304          * successful short write, so if the request was successful
2305          * we can just set it to the originally-requested length.
2306          */
2307         if (!obj_request->result)
2308                 obj_request->xferred = obj_request->length;
2309
2310         /* Finish up with the normal image object callback */
2311
2312         rbd_img_obj_callback(obj_request);
2313 }
2314
2315 static void
2316 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2317 {
2318         struct rbd_obj_request *orig_request;
2319         struct ceph_osd_request *osd_req;
2320         struct ceph_osd_client *osdc;
2321         struct rbd_device *rbd_dev;
2322         struct page **pages;
2323         u32 page_count;
2324         int img_result;
2325         u64 parent_length;
2326         u64 offset;
2327         u64 length;
2328
2329         rbd_assert(img_request_child_test(img_request));
2330
2331         /* First get what we need from the image request */
2332
2333         pages = img_request->copyup_pages;
2334         rbd_assert(pages != NULL);
2335         img_request->copyup_pages = NULL;
2336         page_count = img_request->copyup_page_count;
2337         rbd_assert(page_count);
2338         img_request->copyup_page_count = 0;
2339
2340         orig_request = img_request->obj_request;
2341         rbd_assert(orig_request != NULL);
2342         rbd_assert(obj_request_type_valid(orig_request->type));
2343         img_result = img_request->result;
2344         parent_length = img_request->length;
2345         rbd_assert(parent_length == img_request->xferred);
2346         rbd_img_request_put(img_request);
2347
2348         rbd_assert(orig_request->img_request);
2349         rbd_dev = orig_request->img_request->rbd_dev;
2350         rbd_assert(rbd_dev);
2351
2352         /*
2353          * If the overlap has become 0 (most likely because the
2354          * image has been flattened) we need to free the pages
2355          * and re-submit the original write request.
2356          */
2357         if (!rbd_dev->parent_overlap) {
2358                 struct ceph_osd_client *osdc;
2359
2360                 ceph_release_page_vector(pages, page_count);
2361                 osdc = &rbd_dev->rbd_client->client->osdc;
2362                 img_result = rbd_obj_request_submit(osdc, orig_request);
2363                 if (!img_result)
2364                         return;
2365         }
2366
2367         if (img_result)
2368                 goto out_err;
2369
2370         /*
2371          * The original osd request is of no use to use any more.
2372          * We need a new one that can hold the two ops in a copyup
2373          * request.  Allocate the new copyup osd request for the
2374          * original request, and release the old one.
2375          */
2376         img_result = -ENOMEM;
2377         osd_req = rbd_osd_req_create_copyup(orig_request);
2378         if (!osd_req)
2379                 goto out_err;
2380         rbd_osd_req_destroy(orig_request->osd_req);
2381         orig_request->osd_req = osd_req;
2382         orig_request->copyup_pages = pages;
2383         orig_request->copyup_page_count = page_count;
2384
2385         /* Initialize the copyup op */
2386
2387         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2388         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2389                                                 false, false);
2390
2391         /* Then the original write request op */
2392
2393         offset = orig_request->offset;
2394         length = orig_request->length;
2395         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2396                                         offset, length, 0, 0);
2397         if (orig_request->type == OBJ_REQUEST_BIO)
2398                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2399                                         orig_request->bio_list, length);
2400         else
2401                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2402                                         orig_request->pages, length,
2403                                         offset & ~PAGE_MASK, false, false);
2404
2405         rbd_osd_req_format_write(orig_request);
2406
2407         /* All set, send it off. */
2408
2409         orig_request->callback = rbd_img_obj_copyup_callback;
2410         osdc = &rbd_dev->rbd_client->client->osdc;
2411         img_result = rbd_obj_request_submit(osdc, orig_request);
2412         if (!img_result)
2413                 return;
2414 out_err:
2415         /* Record the error code and complete the request */
2416
2417         orig_request->result = img_result;
2418         orig_request->xferred = 0;
2419         obj_request_done_set(orig_request);
2420         rbd_obj_request_complete(orig_request);
2421 }
2422
2423 /*
2424  * Read from the parent image the range of data that covers the
2425  * entire target of the given object request.  This is used for
2426  * satisfying a layered image write request when the target of an
2427  * object request from the image request does not exist.
2428  *
2429  * A page array big enough to hold the returned data is allocated
2430  * and supplied to rbd_img_request_fill() as the "data descriptor."
2431  * When the read completes, this page array will be transferred to
2432  * the original object request for the copyup operation.
2433  *
2434  * If an error occurs, record it as the result of the original
2435  * object request and mark it done so it gets completed.
2436  */
2437 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2438 {
2439         struct rbd_img_request *img_request = NULL;
2440         struct rbd_img_request *parent_request = NULL;
2441         struct rbd_device *rbd_dev;
2442         u64 img_offset;
2443         u64 length;
2444         struct page **pages = NULL;
2445         u32 page_count;
2446         int result;
2447
2448         rbd_assert(obj_request_img_data_test(obj_request));
2449         rbd_assert(obj_request_type_valid(obj_request->type));
2450
2451         img_request = obj_request->img_request;
2452         rbd_assert(img_request != NULL);
2453         rbd_dev = img_request->rbd_dev;
2454         rbd_assert(rbd_dev->parent != NULL);
2455
2456         /*
2457          * Determine the byte range covered by the object in the
2458          * child image to which the original request was to be sent.
2459          */
2460         img_offset = obj_request->img_offset - obj_request->offset;
2461         length = (u64)1 << rbd_dev->header.obj_order;
2462
2463         /*
2464          * There is no defined parent data beyond the parent
2465          * overlap, so limit what we read at that boundary if
2466          * necessary.
2467          */
2468         if (img_offset + length > rbd_dev->parent_overlap) {
2469                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2470                 length = rbd_dev->parent_overlap - img_offset;
2471         }
2472
2473         /*
2474          * Allocate a page array big enough to receive the data read
2475          * from the parent.
2476          */
2477         page_count = (u32)calc_pages_for(0, length);
2478         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2479         if (IS_ERR(pages)) {
2480                 result = PTR_ERR(pages);
2481                 pages = NULL;
2482                 goto out_err;
2483         }
2484
2485         result = -ENOMEM;
2486         parent_request = rbd_parent_request_create(obj_request,
2487                                                 img_offset, length);
2488         if (!parent_request)
2489                 goto out_err;
2490
2491         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2492         if (result)
2493                 goto out_err;
2494         parent_request->copyup_pages = pages;
2495         parent_request->copyup_page_count = page_count;
2496
2497         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2498         result = rbd_img_request_submit(parent_request);
2499         if (!result)
2500                 return 0;
2501
2502         parent_request->copyup_pages = NULL;
2503         parent_request->copyup_page_count = 0;
2504         parent_request->obj_request = NULL;
2505         rbd_obj_request_put(obj_request);
2506 out_err:
2507         if (pages)
2508                 ceph_release_page_vector(pages, page_count);
2509         if (parent_request)
2510                 rbd_img_request_put(parent_request);
2511         obj_request->result = result;
2512         obj_request->xferred = 0;
2513         obj_request_done_set(obj_request);
2514
2515         return result;
2516 }
2517
2518 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2519 {
2520         struct rbd_obj_request *orig_request;
2521         struct rbd_device *rbd_dev;
2522         int result;
2523
2524         rbd_assert(!obj_request_img_data_test(obj_request));
2525
2526         /*
2527          * All we need from the object request is the original
2528          * request and the result of the STAT op.  Grab those, then
2529          * we're done with the request.
2530          */
2531         orig_request = obj_request->obj_request;
2532         obj_request->obj_request = NULL;
2533         rbd_obj_request_put(orig_request);
2534         rbd_assert(orig_request);
2535         rbd_assert(orig_request->img_request);
2536
2537         result = obj_request->result;
2538         obj_request->result = 0;
2539
2540         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2541                 obj_request, orig_request, result,
2542                 obj_request->xferred, obj_request->length);
2543         rbd_obj_request_put(obj_request);
2544
2545         /*
2546          * If the overlap has become 0 (most likely because the
2547          * image has been flattened) we need to free the pages
2548          * and re-submit the original write request.
2549          */
2550         rbd_dev = orig_request->img_request->rbd_dev;
2551         if (!rbd_dev->parent_overlap) {
2552                 struct ceph_osd_client *osdc;
2553
2554                 osdc = &rbd_dev->rbd_client->client->osdc;
2555                 result = rbd_obj_request_submit(osdc, orig_request);
2556                 if (!result)
2557                         return;
2558         }
2559
2560         /*
2561          * Our only purpose here is to determine whether the object
2562          * exists, and we don't want to treat the non-existence as
2563          * an error.  If something else comes back, transfer the
2564          * error to the original request and complete it now.
2565          */
2566         if (!result) {
2567                 obj_request_existence_set(orig_request, true);
2568         } else if (result == -ENOENT) {
2569                 obj_request_existence_set(orig_request, false);
2570         } else if (result) {
2571                 orig_request->result = result;
2572                 goto out;
2573         }
2574
2575         /*
2576          * Resubmit the original request now that we have recorded
2577          * whether the target object exists.
2578          */
2579         orig_request->result = rbd_img_obj_request_submit(orig_request);
2580 out:
2581         if (orig_request->result)
2582                 rbd_obj_request_complete(orig_request);
2583 }
2584
2585 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2586 {
2587         struct rbd_obj_request *stat_request;
2588         struct rbd_device *rbd_dev;
2589         struct ceph_osd_client *osdc;
2590         struct page **pages = NULL;
2591         u32 page_count;
2592         size_t size;
2593         int ret;
2594
2595         /*
2596          * The response data for a STAT call consists of:
2597          *     le64 length;
2598          *     struct {
2599          *         le32 tv_sec;
2600          *         le32 tv_nsec;
2601          *     } mtime;
2602          */
2603         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2604         page_count = (u32)calc_pages_for(0, size);
2605         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2606         if (IS_ERR(pages))
2607                 return PTR_ERR(pages);
2608
2609         ret = -ENOMEM;
2610         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2611                                                         OBJ_REQUEST_PAGES);
2612         if (!stat_request)
2613                 goto out;
2614
2615         rbd_obj_request_get(obj_request);
2616         stat_request->obj_request = obj_request;
2617         stat_request->pages = pages;
2618         stat_request->page_count = page_count;
2619
2620         rbd_assert(obj_request->img_request);
2621         rbd_dev = obj_request->img_request->rbd_dev;
2622         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2623                                                 stat_request);
2624         if (!stat_request->osd_req)
2625                 goto out;
2626         stat_request->callback = rbd_img_obj_exists_callback;
2627
2628         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2629         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2630                                         false, false);
2631         rbd_osd_req_format_read(stat_request);
2632
2633         osdc = &rbd_dev->rbd_client->client->osdc;
2634         ret = rbd_obj_request_submit(osdc, stat_request);
2635 out:
2636         if (ret)
2637                 rbd_obj_request_put(obj_request);
2638
2639         return ret;
2640 }
2641
2642 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2643 {
2644         struct rbd_img_request *img_request;
2645         struct rbd_device *rbd_dev;
2646         bool known;
2647
2648         rbd_assert(obj_request_img_data_test(obj_request));
2649
2650         img_request = obj_request->img_request;
2651         rbd_assert(img_request);
2652         rbd_dev = img_request->rbd_dev;
2653
2654         /*
2655          * Only writes to layered images need special handling.
2656          * Reads and non-layered writes are simple object requests.
2657          * Layered writes that start beyond the end of the overlap
2658          * with the parent have no parent data, so they too are
2659          * simple object requests.  Finally, if the target object is
2660          * known to already exist, its parent data has already been
2661          * copied, so a write to the object can also be handled as a
2662          * simple object request.
2663          */
2664         if (!img_request_write_test(img_request) ||
2665                 !img_request_layered_test(img_request) ||
2666                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2667                 ((known = obj_request_known_test(obj_request)) &&
2668                         obj_request_exists_test(obj_request))) {
2669
2670                 struct rbd_device *rbd_dev;
2671                 struct ceph_osd_client *osdc;
2672
2673                 rbd_dev = obj_request->img_request->rbd_dev;
2674                 osdc = &rbd_dev->rbd_client->client->osdc;
2675
2676                 return rbd_obj_request_submit(osdc, obj_request);
2677         }
2678
2679         /*
2680          * It's a layered write.  The target object might exist but
2681          * we may not know that yet.  If we know it doesn't exist,
2682          * start by reading the data for the full target object from
2683          * the parent so we can use it for a copyup to the target.
2684          */
2685         if (known)
2686                 return rbd_img_obj_parent_read_full(obj_request);
2687
2688         /* We don't know whether the target exists.  Go find out. */
2689
2690         return rbd_img_obj_exists_submit(obj_request);
2691 }
2692
2693 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2694 {
2695         struct rbd_obj_request *obj_request;
2696         struct rbd_obj_request *next_obj_request;
2697
2698         dout("%s: img %p\n", __func__, img_request);
2699         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2700                 int ret;
2701
2702                 ret = rbd_img_obj_request_submit(obj_request);
2703                 if (ret)
2704                         return ret;
2705         }
2706
2707         return 0;
2708 }
2709
2710 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2711 {
2712         struct rbd_obj_request *obj_request;
2713         struct rbd_device *rbd_dev;
2714         u64 obj_end;
2715         u64 img_xferred;
2716         int img_result;
2717
2718         rbd_assert(img_request_child_test(img_request));
2719
2720         /* First get what we need from the image request and release it */
2721
2722         obj_request = img_request->obj_request;
2723         img_xferred = img_request->xferred;
2724         img_result = img_request->result;
2725         rbd_img_request_put(img_request);
2726
2727         /*
2728          * If the overlap has become 0 (most likely because the
2729          * image has been flattened) we need to re-submit the
2730          * original request.
2731          */
2732         rbd_assert(obj_request);
2733         rbd_assert(obj_request->img_request);
2734         rbd_dev = obj_request->img_request->rbd_dev;
2735         if (!rbd_dev->parent_overlap) {
2736                 struct ceph_osd_client *osdc;
2737
2738                 osdc = &rbd_dev->rbd_client->client->osdc;
2739                 img_result = rbd_obj_request_submit(osdc, obj_request);
2740                 if (!img_result)
2741                         return;
2742         }
2743
2744         obj_request->result = img_result;
2745         if (obj_request->result)
2746                 goto out;
2747
2748         /*
2749          * We need to zero anything beyond the parent overlap
2750          * boundary.  Since rbd_img_obj_request_read_callback()
2751          * will zero anything beyond the end of a short read, an
2752          * easy way to do this is to pretend the data from the
2753          * parent came up short--ending at the overlap boundary.
2754          */
2755         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2756         obj_end = obj_request->img_offset + obj_request->length;
2757         if (obj_end > rbd_dev->parent_overlap) {
2758                 u64 xferred = 0;
2759
2760                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2761                         xferred = rbd_dev->parent_overlap -
2762                                         obj_request->img_offset;
2763
2764                 obj_request->xferred = min(img_xferred, xferred);
2765         } else {
2766                 obj_request->xferred = img_xferred;
2767         }
2768 out:
2769         rbd_img_obj_request_read_callback(obj_request);
2770         rbd_obj_request_complete(obj_request);
2771 }
2772
2773 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2774 {
2775         struct rbd_img_request *img_request;
2776         int result;
2777
2778         rbd_assert(obj_request_img_data_test(obj_request));
2779         rbd_assert(obj_request->img_request != NULL);
2780         rbd_assert(obj_request->result == (s32) -ENOENT);
2781         rbd_assert(obj_request_type_valid(obj_request->type));
2782
2783         /* rbd_read_finish(obj_request, obj_request->length); */
2784         img_request = rbd_parent_request_create(obj_request,
2785                                                 obj_request->img_offset,
2786                                                 obj_request->length);
2787         result = -ENOMEM;
2788         if (!img_request)
2789                 goto out_err;
2790
2791         if (obj_request->type == OBJ_REQUEST_BIO)
2792                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2793                                                 obj_request->bio_list);
2794         else
2795                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2796                                                 obj_request->pages);
2797         if (result)
2798                 goto out_err;
2799
2800         img_request->callback = rbd_img_parent_read_callback;
2801         result = rbd_img_request_submit(img_request);
2802         if (result)
2803                 goto out_err;
2804
2805         return;
2806 out_err:
2807         if (img_request)
2808                 rbd_img_request_put(img_request);
2809         obj_request->result = result;
2810         obj_request->xferred = 0;
2811         obj_request_done_set(obj_request);
2812 }
2813
2814 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2815 {
2816         struct rbd_obj_request *obj_request;
2817         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2818         int ret;
2819
2820         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2821                                                         OBJ_REQUEST_NODATA);
2822         if (!obj_request)
2823                 return -ENOMEM;
2824
2825         ret = -ENOMEM;
2826         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2827         if (!obj_request->osd_req)
2828                 goto out;
2829         obj_request->callback = rbd_obj_request_put;
2830
2831         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2832                                         notify_id, 0, 0);
2833         rbd_osd_req_format_read(obj_request);
2834
2835         ret = rbd_obj_request_submit(osdc, obj_request);
2836 out:
2837         if (ret)
2838                 rbd_obj_request_put(obj_request);
2839
2840         return ret;
2841 }
2842
2843 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2844 {
2845         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2846         int ret;
2847
2848         if (!rbd_dev)
2849                 return;
2850
2851         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2852                 rbd_dev->header_name, (unsigned long long)notify_id,
2853                 (unsigned int)opcode);
2854         ret = rbd_dev_refresh(rbd_dev);
2855         if (ret)
2856                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2857
2858         rbd_obj_notify_ack(rbd_dev, notify_id);
2859 }
2860
2861 /*
2862  * Request sync osd watch/unwatch.  The value of "start" determines
2863  * whether a watch request is being initiated or torn down.
2864  */
2865 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2866 {
2867         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2868         struct rbd_obj_request *obj_request;
2869         int ret;
2870
2871         rbd_assert(start ^ !!rbd_dev->watch_event);
2872         rbd_assert(start ^ !!rbd_dev->watch_request);
2873
2874         if (start) {
2875                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2876                                                 &rbd_dev->watch_event);
2877                 if (ret < 0)
2878                         return ret;
2879                 rbd_assert(rbd_dev->watch_event != NULL);
2880         }
2881
2882         ret = -ENOMEM;
2883         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2884                                                         OBJ_REQUEST_NODATA);
2885         if (!obj_request)
2886                 goto out_cancel;
2887
2888         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2889         if (!obj_request->osd_req)
2890                 goto out_cancel;
2891
2892         if (start)
2893                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2894         else
2895                 ceph_osdc_unregister_linger_request(osdc,
2896                                         rbd_dev->watch_request->osd_req);
2897
2898         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2899                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2900         rbd_osd_req_format_write(obj_request);
2901
2902         ret = rbd_obj_request_submit(osdc, obj_request);
2903         if (ret)
2904                 goto out_cancel;
2905         ret = rbd_obj_request_wait(obj_request);
2906         if (ret)
2907                 goto out_cancel;
2908         ret = obj_request->result;
2909         if (ret)
2910                 goto out_cancel;
2911
2912         /*
2913          * A watch request is set to linger, so the underlying osd
2914          * request won't go away until we unregister it.  We retain
2915          * a pointer to the object request during that time (in
2916          * rbd_dev->watch_request), so we'll keep a reference to
2917          * it.  We'll drop that reference (below) after we've
2918          * unregistered it.
2919          */
2920         if (start) {
2921                 rbd_dev->watch_request = obj_request;
2922
2923                 return 0;
2924         }
2925
2926         /* We have successfully torn down the watch request */
2927
2928         rbd_obj_request_put(rbd_dev->watch_request);
2929         rbd_dev->watch_request = NULL;
2930 out_cancel:
2931         /* Cancel the event if we're tearing down, or on error */
2932         ceph_osdc_cancel_event(rbd_dev->watch_event);
2933         rbd_dev->watch_event = NULL;
2934         if (obj_request)
2935                 rbd_obj_request_put(obj_request);
2936
2937         return ret;
2938 }
2939
2940 /*
2941  * Synchronous osd object method call.  Returns the number of bytes
2942  * returned in the outbound buffer, or a negative error code.
2943  */
2944 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2945                              const char *object_name,
2946                              const char *class_name,
2947                              const char *method_name,
2948                              const void *outbound,
2949                              size_t outbound_size,
2950                              void *inbound,
2951                              size_t inbound_size)
2952 {
2953         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2954         struct rbd_obj_request *obj_request;
2955         struct page **pages;
2956         u32 page_count;
2957         int ret;
2958
2959         /*
2960          * Method calls are ultimately read operations.  The result
2961          * should placed into the inbound buffer provided.  They
2962          * also supply outbound data--parameters for the object
2963          * method.  Currently if this is present it will be a
2964          * snapshot id.
2965          */
2966         page_count = (u32)calc_pages_for(0, inbound_size);
2967         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2968         if (IS_ERR(pages))
2969                 return PTR_ERR(pages);
2970
2971         ret = -ENOMEM;
2972         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2973                                                         OBJ_REQUEST_PAGES);
2974         if (!obj_request)
2975                 goto out;
2976
2977         obj_request->pages = pages;
2978         obj_request->page_count = page_count;
2979
2980         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2981         if (!obj_request->osd_req)
2982                 goto out;
2983
2984         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2985                                         class_name, method_name);
2986         if (outbound_size) {
2987                 struct ceph_pagelist *pagelist;
2988
2989                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2990                 if (!pagelist)
2991                         goto out;
2992
2993                 ceph_pagelist_init(pagelist);
2994                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2995                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2996                                                 pagelist);
2997         }
2998         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2999                                         obj_request->pages, inbound_size,
3000                                         0, false, false);
3001         rbd_osd_req_format_read(obj_request);
3002
3003         ret = rbd_obj_request_submit(osdc, obj_request);
3004         if (ret)
3005                 goto out;
3006         ret = rbd_obj_request_wait(obj_request);
3007         if (ret)
3008                 goto out;
3009
3010         ret = obj_request->result;
3011         if (ret < 0)
3012                 goto out;
3013
3014         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3015         ret = (int)obj_request->xferred;
3016         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3017 out:
3018         if (obj_request)
3019                 rbd_obj_request_put(obj_request);
3020         else
3021                 ceph_release_page_vector(pages, page_count);
3022
3023         return ret;
3024 }
3025
3026 static void rbd_request_fn(struct request_queue *q)
3027                 __releases(q->queue_lock) __acquires(q->queue_lock)
3028 {
3029         struct rbd_device *rbd_dev = q->queuedata;
3030         bool read_only = rbd_dev->mapping.read_only;
3031         struct request *rq;
3032         int result;
3033
3034         while ((rq = blk_fetch_request(q))) {
3035                 bool write_request = rq_data_dir(rq) == WRITE;
3036                 struct rbd_img_request *img_request;
3037                 u64 offset;
3038                 u64 length;
3039
3040                 /* Ignore any non-FS requests that filter through. */
3041
3042                 if (rq->cmd_type != REQ_TYPE_FS) {
3043                         dout("%s: non-fs request type %d\n", __func__,
3044                                 (int) rq->cmd_type);
3045                         __blk_end_request_all(rq, 0);
3046                         continue;
3047                 }
3048
3049                 /* Ignore/skip any zero-length requests */
3050
3051                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3052                 length = (u64) blk_rq_bytes(rq);
3053
3054                 if (!length) {
3055                         dout("%s: zero-length request\n", __func__);
3056                         __blk_end_request_all(rq, 0);
3057                         continue;
3058                 }
3059
3060                 spin_unlock_irq(q->queue_lock);
3061
3062                 /* Disallow writes to a read-only device */
3063
3064                 if (write_request) {
3065                         result = -EROFS;
3066                         if (read_only)
3067                                 goto end_request;
3068                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3069                 }
3070
3071                 /*
3072                  * Quit early if the mapped snapshot no longer
3073                  * exists.  It's still possible the snapshot will
3074                  * have disappeared by the time our request arrives
3075                  * at the osd, but there's no sense in sending it if
3076                  * we already know.
3077                  */
3078                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3079                         dout("request for non-existent snapshot");
3080                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3081                         result = -ENXIO;
3082                         goto end_request;
3083                 }
3084
3085                 result = -EINVAL;
3086                 if (offset && length > U64_MAX - offset + 1) {
3087                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3088                                 offset, length);
3089                         goto end_request;       /* Shouldn't happen */
3090                 }
3091
3092                 result = -EIO;
3093                 if (offset + length > rbd_dev->mapping.size) {
3094                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3095                                 offset, length, rbd_dev->mapping.size);
3096                         goto end_request;
3097                 }
3098
3099                 result = -ENOMEM;
3100                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3101                                                         write_request);
3102                 if (!img_request)
3103                         goto end_request;
3104
3105                 img_request->rq = rq;
3106
3107                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3108                                                 rq->bio);
3109                 if (!result)
3110                         result = rbd_img_request_submit(img_request);
3111                 if (result)
3112                         rbd_img_request_put(img_request);
3113 end_request:
3114                 spin_lock_irq(q->queue_lock);
3115                 if (result < 0) {
3116                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3117                                 write_request ? "write" : "read",
3118                                 length, offset, result);
3119
3120                         __blk_end_request_all(rq, result);
3121                 }
3122         }
3123 }
3124
3125 /*
3126  * a queue callback. Makes sure that we don't create a bio that spans across
3127  * multiple osd objects. One exception would be with a single page bios,
3128  * which we handle later at bio_chain_clone_range()
3129  */
3130 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3131                           struct bio_vec *bvec)
3132 {
3133         struct rbd_device *rbd_dev = q->queuedata;
3134         sector_t sector_offset;
3135         sector_t sectors_per_obj;
3136         sector_t obj_sector_offset;
3137         int ret;
3138
3139         /*
3140          * Find how far into its rbd object the partition-relative
3141          * bio start sector is to offset relative to the enclosing
3142          * device.
3143          */
3144         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3145         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3146         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3147
3148         /*
3149          * Compute the number of bytes from that offset to the end
3150          * of the object.  Account for what's already used by the bio.
3151          */
3152         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3153         if (ret > bmd->bi_size)
3154                 ret -= bmd->bi_size;
3155         else
3156                 ret = 0;
3157
3158         /*
3159          * Don't send back more than was asked for.  And if the bio
3160          * was empty, let the whole thing through because:  "Note
3161          * that a block device *must* allow a single page to be
3162          * added to an empty bio."
3163          */
3164         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3165         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3166                 ret = (int) bvec->bv_len;
3167
3168         return ret;
3169 }
3170
3171 static void rbd_free_disk(struct rbd_device *rbd_dev)
3172 {
3173         struct gendisk *disk = rbd_dev->disk;
3174
3175         if (!disk)
3176                 return;
3177
3178         rbd_dev->disk = NULL;
3179         if (disk->flags & GENHD_FL_UP) {
3180                 del_gendisk(disk);
3181                 if (disk->queue)
3182                         blk_cleanup_queue(disk->queue);
3183         }
3184         put_disk(disk);
3185 }
3186
3187 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3188                                 const char *object_name,
3189                                 u64 offset, u64 length, void *buf)
3190
3191 {
3192         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3193         struct rbd_obj_request *obj_request;
3194         struct page **pages = NULL;
3195         u32 page_count;
3196         size_t size;
3197         int ret;
3198
3199         page_count = (u32) calc_pages_for(offset, length);
3200         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3201         if (IS_ERR(pages))
3202                 ret = PTR_ERR(pages);
3203
3204         ret = -ENOMEM;
3205         obj_request = rbd_obj_request_create(object_name, offset, length,
3206                                                         OBJ_REQUEST_PAGES);
3207         if (!obj_request)
3208                 goto out;
3209
3210         obj_request->pages = pages;
3211         obj_request->page_count = page_count;
3212
3213         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3214         if (!obj_request->osd_req)
3215                 goto out;
3216
3217         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3218                                         offset, length, 0, 0);
3219         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3220                                         obj_request->pages,
3221                                         obj_request->length,
3222                                         obj_request->offset & ~PAGE_MASK,
3223                                         false, false);
3224         rbd_osd_req_format_read(obj_request);
3225
3226         ret = rbd_obj_request_submit(osdc, obj_request);
3227         if (ret)
3228                 goto out;
3229         ret = rbd_obj_request_wait(obj_request);
3230         if (ret)
3231                 goto out;
3232
3233         ret = obj_request->result;
3234         if (ret < 0)
3235                 goto out;
3236
3237         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3238         size = (size_t) obj_request->xferred;
3239         ceph_copy_from_page_vector(pages, buf, 0, size);
3240         rbd_assert(size <= (size_t)INT_MAX);
3241         ret = (int)size;
3242 out:
3243         if (obj_request)
3244                 rbd_obj_request_put(obj_request);
3245         else
3246                 ceph_release_page_vector(pages, page_count);
3247
3248         return ret;
3249 }
3250
3251 /*
3252  * Read the complete header for the given rbd device.  On successful
3253  * return, the rbd_dev->header field will contain up-to-date
3254  * information about the image.
3255  */
3256 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3257 {
3258         struct rbd_image_header_ondisk *ondisk = NULL;
3259         u32 snap_count = 0;
3260         u64 names_size = 0;
3261         u32 want_count;
3262         int ret;
3263
3264         /*
3265          * The complete header will include an array of its 64-bit
3266          * snapshot ids, followed by the names of those snapshots as
3267          * a contiguous block of NUL-terminated strings.  Note that
3268          * the number of snapshots could change by the time we read
3269          * it in, in which case we re-read it.
3270          */
3271         do {
3272                 size_t size;
3273
3274                 kfree(ondisk);
3275
3276                 size = sizeof (*ondisk);
3277                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3278                 size += names_size;
3279                 ondisk = kmalloc(size, GFP_KERNEL);
3280                 if (!ondisk)
3281                         return -ENOMEM;
3282
3283                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3284                                        0, size, ondisk);
3285                 if (ret < 0)
3286                         goto out;
3287                 if ((size_t)ret < size) {
3288                         ret = -ENXIO;
3289                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3290                                 size, ret);
3291                         goto out;
3292                 }
3293                 if (!rbd_dev_ondisk_valid(ondisk)) {
3294                         ret = -ENXIO;
3295                         rbd_warn(rbd_dev, "invalid header");
3296                         goto out;
3297                 }
3298
3299                 names_size = le64_to_cpu(ondisk->snap_names_len);
3300                 want_count = snap_count;
3301                 snap_count = le32_to_cpu(ondisk->snap_count);
3302         } while (snap_count != want_count);
3303
3304         ret = rbd_header_from_disk(rbd_dev, ondisk);
3305 out:
3306         kfree(ondisk);
3307
3308         return ret;
3309 }
3310
3311 /*
3312  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3313  * has disappeared from the (just updated) snapshot context.
3314  */
3315 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3316 {
3317         u64 snap_id;
3318
3319         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3320                 return;
3321
3322         snap_id = rbd_dev->spec->snap_id;
3323         if (snap_id == CEPH_NOSNAP)
3324                 return;
3325
3326         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3327                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3328 }
3329
3330 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3331 {
3332         u64 mapping_size;
3333         int ret;
3334
3335         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3336         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3337         mapping_size = rbd_dev->mapping.size;
3338         if (rbd_dev->image_format == 1)
3339                 ret = rbd_dev_v1_header_info(rbd_dev);
3340         else
3341                 ret = rbd_dev_v2_header_info(rbd_dev);
3342
3343         /* If it's a mapped snapshot, validate its EXISTS flag */
3344
3345         rbd_exists_validate(rbd_dev);
3346         mutex_unlock(&ctl_mutex);
3347         if (mapping_size != rbd_dev->mapping.size) {
3348                 sector_t size;
3349
3350                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3351                 dout("setting size to %llu sectors", (unsigned long long)size);
3352                 set_capacity(rbd_dev->disk, size);
3353                 revalidate_disk(rbd_dev->disk);
3354         }
3355
3356         return ret;
3357 }
3358
3359 static int rbd_init_disk(struct rbd_device *rbd_dev)
3360 {
3361         struct gendisk *disk;
3362         struct request_queue *q;
3363         u64 segment_size;
3364
3365         /* create gendisk info */
3366         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3367         if (!disk)
3368                 return -ENOMEM;
3369
3370         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3371                  rbd_dev->dev_id);
3372         disk->major = rbd_dev->major;
3373         disk->first_minor = 0;
3374         disk->fops = &rbd_bd_ops;
3375         disk->private_data = rbd_dev;
3376
3377         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3378         if (!q)
3379                 goto out_disk;
3380
3381         /* We use the default size, but let's be explicit about it. */
3382         blk_queue_physical_block_size(q, SECTOR_SIZE);
3383
3384         /* set io sizes to object size */
3385         segment_size = rbd_obj_bytes(&rbd_dev->header);
3386         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3387         blk_queue_max_segment_size(q, segment_size);
3388         blk_queue_io_min(q, segment_size);
3389         blk_queue_io_opt(q, segment_size);
3390
3391         blk_queue_merge_bvec(q, rbd_merge_bvec);
3392         disk->queue = q;
3393
3394         q->queuedata = rbd_dev;
3395
3396         rbd_dev->disk = disk;
3397
3398         return 0;
3399 out_disk:
3400         put_disk(disk);
3401
3402         return -ENOMEM;
3403 }
3404
3405 /*
3406   sysfs
3407 */
3408
3409 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3410 {
3411         return container_of(dev, struct rbd_device, dev);
3412 }
3413
3414 static ssize_t rbd_size_show(struct device *dev,
3415                              struct device_attribute *attr, char *buf)
3416 {
3417         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3418
3419         return sprintf(buf, "%llu\n",
3420                 (unsigned long long)rbd_dev->mapping.size);
3421 }
3422
3423 /*
3424  * Note this shows the features for whatever's mapped, which is not
3425  * necessarily the base image.
3426  */
3427 static ssize_t rbd_features_show(struct device *dev,
3428                              struct device_attribute *attr, char *buf)
3429 {
3430         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3431
3432         return sprintf(buf, "0x%016llx\n",
3433                         (unsigned long long)rbd_dev->mapping.features);
3434 }
3435
3436 static ssize_t rbd_major_show(struct device *dev,
3437                               struct device_attribute *attr, char *buf)
3438 {
3439         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3440
3441         if (rbd_dev->major)
3442                 return sprintf(buf, "%d\n", rbd_dev->major);
3443
3444         return sprintf(buf, "(none)\n");
3445
3446 }
3447
3448 static ssize_t rbd_client_id_show(struct device *dev,
3449                                   struct device_attribute *attr, char *buf)
3450 {
3451         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3452
3453         return sprintf(buf, "client%lld\n",
3454                         ceph_client_id(rbd_dev->rbd_client->client));
3455 }
3456
3457 static ssize_t rbd_pool_show(struct device *dev,
3458                              struct device_attribute *attr, char *buf)
3459 {
3460         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3461
3462         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3463 }
3464
3465 static ssize_t rbd_pool_id_show(struct device *dev,
3466                              struct device_attribute *attr, char *buf)
3467 {
3468         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3469
3470         return sprintf(buf, "%llu\n",
3471                         (unsigned long long) rbd_dev->spec->pool_id);
3472 }
3473
3474 static ssize_t rbd_name_show(struct device *dev,
3475                              struct device_attribute *attr, char *buf)
3476 {
3477         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3478
3479         if (rbd_dev->spec->image_name)
3480                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3481
3482         return sprintf(buf, "(unknown)\n");
3483 }
3484
3485 static ssize_t rbd_image_id_show(struct device *dev,
3486                              struct device_attribute *attr, char *buf)
3487 {
3488         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3489
3490         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3491 }
3492
3493 /*
3494  * Shows the name of the currently-mapped snapshot (or
3495  * RBD_SNAP_HEAD_NAME for the base image).
3496  */
3497 static ssize_t rbd_snap_show(struct device *dev,
3498                              struct device_attribute *attr,
3499                              char *buf)
3500 {
3501         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3502
3503         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3504 }
3505
3506 /*
3507  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3508  * for the parent image.  If there is no parent, simply shows
3509  * "(no parent image)".
3510  */
3511 static ssize_t rbd_parent_show(struct device *dev,
3512                              struct device_attribute *attr,
3513                              char *buf)
3514 {
3515         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3516         struct rbd_spec *spec = rbd_dev->parent_spec;
3517         int count;
3518         char *bufp = buf;
3519
3520         if (!spec)
3521                 return sprintf(buf, "(no parent image)\n");
3522
3523         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3524                         (unsigned long long) spec->pool_id, spec->pool_name);
3525         if (count < 0)
3526                 return count;
3527         bufp += count;
3528
3529         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3530                         spec->image_name ? spec->image_name : "(unknown)");
3531         if (count < 0)
3532                 return count;
3533         bufp += count;
3534
3535         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3536                         (unsigned long long) spec->snap_id, spec->snap_name);
3537         if (count < 0)
3538                 return count;
3539         bufp += count;
3540
3541         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3542         if (count < 0)
3543                 return count;
3544         bufp += count;
3545
3546         return (ssize_t) (bufp - buf);
3547 }
3548
3549 static ssize_t rbd_image_refresh(struct device *dev,
3550                                  struct device_attribute *attr,
3551                                  const char *buf,
3552                                  size_t size)
3553 {
3554         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3555         int ret;
3556
3557         ret = rbd_dev_refresh(rbd_dev);
3558         if (ret)
3559                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3560
3561         return ret < 0 ? ret : size;
3562 }
3563
3564 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3565 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3566 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3567 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3568 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3569 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3570 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3571 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3572 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3573 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3574 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3575
3576 static struct attribute *rbd_attrs[] = {
3577         &dev_attr_size.attr,
3578         &dev_attr_features.attr,
3579         &dev_attr_major.attr,
3580         &dev_attr_client_id.attr,
3581         &dev_attr_pool.attr,
3582         &dev_attr_pool_id.attr,
3583         &dev_attr_name.attr,
3584         &dev_attr_image_id.attr,
3585         &dev_attr_current_snap.attr,
3586         &dev_attr_parent.attr,
3587         &dev_attr_refresh.attr,
3588         NULL
3589 };
3590
3591 static struct attribute_group rbd_attr_group = {
3592         .attrs = rbd_attrs,
3593 };
3594
3595 static const struct attribute_group *rbd_attr_groups[] = {
3596         &rbd_attr_group,
3597         NULL
3598 };
3599
3600 static void rbd_sysfs_dev_release(struct device *dev)
3601 {
3602 }
3603
3604 static struct device_type rbd_device_type = {
3605         .name           = "rbd",
3606         .groups         = rbd_attr_groups,
3607         .release        = rbd_sysfs_dev_release,
3608 };
3609
3610 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3611 {
3612         kref_get(&spec->kref);
3613
3614         return spec;
3615 }
3616
3617 static void rbd_spec_free(struct kref *kref);
3618 static void rbd_spec_put(struct rbd_spec *spec)
3619 {
3620         if (spec)
3621                 kref_put(&spec->kref, rbd_spec_free);
3622 }
3623
3624 static struct rbd_spec *rbd_spec_alloc(void)
3625 {
3626         struct rbd_spec *spec;
3627
3628         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3629         if (!spec)
3630                 return NULL;
3631         kref_init(&spec->kref);
3632
3633         return spec;
3634 }
3635
3636 static void rbd_spec_free(struct kref *kref)
3637 {
3638         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3639
3640         kfree(spec->pool_name);
3641         kfree(spec->image_id);
3642         kfree(spec->image_name);
3643         kfree(spec->snap_name);
3644         kfree(spec);
3645 }
3646
3647 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3648                                 struct rbd_spec *spec)
3649 {
3650         struct rbd_device *rbd_dev;
3651
3652         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3653         if (!rbd_dev)
3654                 return NULL;
3655
3656         spin_lock_init(&rbd_dev->lock);
3657         rbd_dev->flags = 0;
3658         atomic_set(&rbd_dev->parent_ref, 0);
3659         INIT_LIST_HEAD(&rbd_dev->node);
3660         init_rwsem(&rbd_dev->header_rwsem);
3661
3662         rbd_dev->spec = spec;
3663         rbd_dev->rbd_client = rbdc;
3664
3665         /* Initialize the layout used for all rbd requests */
3666
3667         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3668         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3669         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3670         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3671
3672         return rbd_dev;
3673 }
3674
3675 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3676 {
3677         rbd_put_client(rbd_dev->rbd_client);
3678         rbd_spec_put(rbd_dev->spec);
3679         kfree(rbd_dev);
3680 }
3681
3682 /*
3683  * Get the size and object order for an image snapshot, or if
3684  * snap_id is CEPH_NOSNAP, gets this information for the base
3685  * image.
3686  */
3687 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3688                                 u8 *order, u64 *snap_size)
3689 {
3690         __le64 snapid = cpu_to_le64(snap_id);
3691         int ret;
3692         struct {
3693                 u8 order;
3694                 __le64 size;
3695         } __attribute__ ((packed)) size_buf = { 0 };
3696
3697         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3698                                 "rbd", "get_size",
3699                                 &snapid, sizeof (snapid),
3700                                 &size_buf, sizeof (size_buf));
3701         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3702         if (ret < 0)
3703                 return ret;
3704         if (ret < sizeof (size_buf))
3705                 return -ERANGE;
3706
3707         if (order)
3708                 *order = size_buf.order;
3709         *snap_size = le64_to_cpu(size_buf.size);
3710
3711         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3712                 (unsigned long long)snap_id, (unsigned int)*order,
3713                 (unsigned long long)*snap_size);
3714
3715         return 0;
3716 }
3717
3718 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3719 {
3720         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3721                                         &rbd_dev->header.obj_order,
3722                                         &rbd_dev->header.image_size);
3723 }
3724
3725 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3726 {
3727         void *reply_buf;
3728         int ret;
3729         void *p;
3730
3731         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3732         if (!reply_buf)
3733                 return -ENOMEM;
3734
3735         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3736                                 "rbd", "get_object_prefix", NULL, 0,
3737                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3738         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3739         if (ret < 0)
3740                 goto out;
3741
3742         p = reply_buf;
3743         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3744                                                 p + ret, NULL, GFP_NOIO);
3745         ret = 0;
3746
3747         if (IS_ERR(rbd_dev->header.object_prefix)) {
3748                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3749                 rbd_dev->header.object_prefix = NULL;
3750         } else {
3751                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3752         }
3753 out:
3754         kfree(reply_buf);
3755
3756         return ret;
3757 }
3758
3759 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3760                 u64 *snap_features)
3761 {
3762         __le64 snapid = cpu_to_le64(snap_id);
3763         struct {
3764                 __le64 features;
3765                 __le64 incompat;
3766         } __attribute__ ((packed)) features_buf = { 0 };
3767         u64 incompat;
3768         int ret;
3769
3770         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3771                                 "rbd", "get_features",
3772                                 &snapid, sizeof (snapid),
3773                                 &features_buf, sizeof (features_buf));
3774         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3775         if (ret < 0)
3776                 return ret;
3777         if (ret < sizeof (features_buf))
3778                 return -ERANGE;
3779
3780         incompat = le64_to_cpu(features_buf.incompat);
3781         if (incompat & ~RBD_FEATURES_SUPPORTED)
3782                 return -ENXIO;
3783
3784         *snap_features = le64_to_cpu(features_buf.features);
3785
3786         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3787                 (unsigned long long)snap_id,
3788                 (unsigned long long)*snap_features,
3789                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3790
3791         return 0;
3792 }
3793
3794 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3795 {
3796         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3797                                                 &rbd_dev->header.features);
3798 }
3799
3800 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3801 {
3802         struct rbd_spec *parent_spec;
3803         size_t size;
3804         void *reply_buf = NULL;
3805         __le64 snapid;
3806         void *p;
3807         void *end;
3808         u64 pool_id;
3809         char *image_id;
3810         u64 snap_id;
3811         u64 overlap;
3812         int ret;
3813
3814         parent_spec = rbd_spec_alloc();
3815         if (!parent_spec)
3816                 return -ENOMEM;
3817
3818         size = sizeof (__le64) +                                /* pool_id */
3819                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3820                 sizeof (__le64) +                               /* snap_id */
3821                 sizeof (__le64);                                /* overlap */
3822         reply_buf = kmalloc(size, GFP_KERNEL);
3823         if (!reply_buf) {
3824                 ret = -ENOMEM;
3825                 goto out_err;
3826         }
3827
3828         snapid = cpu_to_le64(CEPH_NOSNAP);
3829         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3830                                 "rbd", "get_parent",
3831                                 &snapid, sizeof (snapid),
3832                                 reply_buf, size);
3833         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3834         if (ret < 0)
3835                 goto out_err;
3836
3837         p = reply_buf;
3838         end = reply_buf + ret;
3839         ret = -ERANGE;
3840         ceph_decode_64_safe(&p, end, pool_id, out_err);
3841         if (pool_id == CEPH_NOPOOL) {
3842                 /*
3843                  * Either the parent never existed, or we have
3844                  * record of it but the image got flattened so it no
3845                  * longer has a parent.  When the parent of a
3846                  * layered image disappears we immediately set the
3847                  * overlap to 0.  The effect of this is that all new
3848                  * requests will be treated as if the image had no
3849                  * parent.
3850                  */
3851                 if (rbd_dev->parent_overlap) {
3852                         rbd_dev->parent_overlap = 0;
3853                         smp_mb();
3854                         rbd_dev_parent_put(rbd_dev);
3855                         pr_info("%s: clone image has been flattened\n",
3856                                 rbd_dev->disk->disk_name);
3857                 }
3858
3859                 goto out;       /* No parent?  No problem. */
3860         }
3861
3862         /* The ceph file layout needs to fit pool id in 32 bits */
3863
3864         ret = -EIO;
3865         if (pool_id > (u64)U32_MAX) {
3866                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3867                         (unsigned long long)pool_id, U32_MAX);
3868                 goto out_err;
3869         }
3870
3871         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3872         if (IS_ERR(image_id)) {
3873                 ret = PTR_ERR(image_id);
3874                 goto out_err;
3875         }
3876         ceph_decode_64_safe(&p, end, snap_id, out_err);
3877         ceph_decode_64_safe(&p, end, overlap, out_err);
3878
3879         /*
3880          * The parent won't change (except when the clone is
3881          * flattened, already handled that).  So we only need to
3882          * record the parent spec we have not already done so.
3883          */
3884         if (!rbd_dev->parent_spec) {
3885                 parent_spec->pool_id = pool_id;
3886                 parent_spec->image_id = image_id;
3887                 parent_spec->snap_id = snap_id;
3888                 rbd_dev->parent_spec = parent_spec;
3889                 parent_spec = NULL;     /* rbd_dev now owns this */
3890         }
3891
3892         /*
3893          * We always update the parent overlap.  If it's zero we
3894          * treat it specially.
3895          */
3896         rbd_dev->parent_overlap = overlap;
3897         smp_mb();
3898         if (!overlap) {
3899
3900                 /* A null parent_spec indicates it's the initial probe */
3901
3902                 if (parent_spec) {
3903                         /*
3904                          * The overlap has become zero, so the clone
3905                          * must have been resized down to 0 at some
3906                          * point.  Treat this the same as a flatten.
3907                          */
3908                         rbd_dev_parent_put(rbd_dev);
3909                         pr_info("%s: clone image now standalone\n",
3910                                 rbd_dev->disk->disk_name);
3911                 } else {
3912                         /*
3913                          * For the initial probe, if we find the
3914                          * overlap is zero we just pretend there was
3915                          * no parent image.
3916                          */
3917                         rbd_warn(rbd_dev, "ignoring parent of "
3918                                                 "clone with overlap 0\n");
3919                 }
3920         }
3921 out:
3922         ret = 0;
3923 out_err:
3924         kfree(reply_buf);
3925         rbd_spec_put(parent_spec);
3926
3927         return ret;
3928 }
3929
3930 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3931 {
3932         struct {
3933                 __le64 stripe_unit;
3934                 __le64 stripe_count;
3935         } __attribute__ ((packed)) striping_info_buf = { 0 };
3936         size_t size = sizeof (striping_info_buf);
3937         void *p;
3938         u64 obj_size;
3939         u64 stripe_unit;
3940         u64 stripe_count;
3941         int ret;
3942
3943         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3944                                 "rbd", "get_stripe_unit_count", NULL, 0,
3945                                 (char *)&striping_info_buf, size);
3946         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3947         if (ret < 0)
3948                 return ret;
3949         if (ret < size)
3950                 return -ERANGE;
3951
3952         /*
3953          * We don't actually support the "fancy striping" feature
3954          * (STRIPINGV2) yet, but if the striping sizes are the
3955          * defaults the behavior is the same as before.  So find
3956          * out, and only fail if the image has non-default values.
3957          */
3958         ret = -EINVAL;
3959         obj_size = (u64)1 << rbd_dev->header.obj_order;
3960         p = &striping_info_buf;
3961         stripe_unit = ceph_decode_64(&p);
3962         if (stripe_unit != obj_size) {
3963                 rbd_warn(rbd_dev, "unsupported stripe unit "
3964                                 "(got %llu want %llu)",
3965                                 stripe_unit, obj_size);
3966                 return -EINVAL;
3967         }
3968         stripe_count = ceph_decode_64(&p);
3969         if (stripe_count != 1) {
3970                 rbd_warn(rbd_dev, "unsupported stripe count "
3971                                 "(got %llu want 1)", stripe_count);
3972                 return -EINVAL;
3973         }
3974         rbd_dev->header.stripe_unit = stripe_unit;
3975         rbd_dev->header.stripe_count = stripe_count;
3976
3977         return 0;
3978 }
3979
3980 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3981 {
3982         size_t image_id_size;
3983         char *image_id;
3984         void *p;
3985         void *end;
3986         size_t size;
3987         void *reply_buf = NULL;
3988         size_t len = 0;
3989         char *image_name = NULL;
3990         int ret;
3991
3992         rbd_assert(!rbd_dev->spec->image_name);
3993
3994         len = strlen(rbd_dev->spec->image_id);
3995         image_id_size = sizeof (__le32) + len;
3996         image_id = kmalloc(image_id_size, GFP_KERNEL);
3997         if (!image_id)
3998                 return NULL;
3999
4000         p = image_id;
4001         end = image_id + image_id_size;
4002         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4003
4004         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4005         reply_buf = kmalloc(size, GFP_KERNEL);
4006         if (!reply_buf)
4007                 goto out;
4008
4009         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4010                                 "rbd", "dir_get_name",
4011                                 image_id, image_id_size,
4012                                 reply_buf, size);
4013         if (ret < 0)
4014                 goto out;
4015         p = reply_buf;
4016         end = reply_buf + ret;
4017
4018         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4019         if (IS_ERR(image_name))
4020                 image_name = NULL;
4021         else
4022                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4023 out:
4024         kfree(reply_buf);
4025         kfree(image_id);
4026
4027         return image_name;
4028 }
4029
4030 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4031 {
4032         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4033         const char *snap_name;
4034         u32 which = 0;
4035
4036         /* Skip over names until we find the one we are looking for */
4037
4038         snap_name = rbd_dev->header.snap_names;
4039         while (which < snapc->num_snaps) {
4040                 if (!strcmp(name, snap_name))
4041                         return snapc->snaps[which];
4042                 snap_name += strlen(snap_name) + 1;
4043                 which++;
4044         }
4045         return CEPH_NOSNAP;
4046 }
4047
4048 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4049 {
4050         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4051         u32 which;
4052         bool found = false;
4053         u64 snap_id;
4054
4055         for (which = 0; !found && which < snapc->num_snaps; which++) {
4056                 const char *snap_name;
4057
4058                 snap_id = snapc->snaps[which];
4059                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4060                 if (IS_ERR(snap_name))
4061                         break;
4062                 found = !strcmp(name, snap_name);
4063                 kfree(snap_name);
4064         }
4065         return found ? snap_id : CEPH_NOSNAP;
4066 }
4067
4068 /*
4069  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4070  * no snapshot by that name is found, or if an error occurs.
4071  */
4072 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4073 {
4074         if (rbd_dev->image_format == 1)
4075                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4076
4077         return rbd_v2_snap_id_by_name(rbd_dev, name);
4078 }
4079
4080 /*
4081  * When an rbd image has a parent image, it is identified by the
4082  * pool, image, and snapshot ids (not names).  This function fills
4083  * in the names for those ids.  (It's OK if we can't figure out the
4084  * name for an image id, but the pool and snapshot ids should always
4085  * exist and have names.)  All names in an rbd spec are dynamically
4086  * allocated.
4087  *
4088  * When an image being mapped (not a parent) is probed, we have the
4089  * pool name and pool id, image name and image id, and the snapshot
4090  * name.  The only thing we're missing is the snapshot id.
4091  */
4092 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4093 {
4094         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4095         struct rbd_spec *spec = rbd_dev->spec;
4096         const char *pool_name;
4097         const char *image_name;
4098         const char *snap_name;
4099         int ret;
4100
4101         /*
4102          * An image being mapped will have the pool name (etc.), but
4103          * we need to look up the snapshot id.
4104          */
4105         if (spec->pool_name) {
4106                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4107                         u64 snap_id;
4108
4109                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4110                         if (snap_id == CEPH_NOSNAP)
4111                                 return -ENOENT;
4112                         spec->snap_id = snap_id;
4113                 } else {
4114                         spec->snap_id = CEPH_NOSNAP;
4115                 }
4116
4117                 return 0;
4118         }
4119
4120         /* Get the pool name; we have to make our own copy of this */
4121
4122         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4123         if (!pool_name) {
4124                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4125                 return -EIO;
4126         }
4127         pool_name = kstrdup(pool_name, GFP_KERNEL);
4128         if (!pool_name)
4129                 return -ENOMEM;
4130
4131         /* Fetch the image name; tolerate failure here */
4132
4133         image_name = rbd_dev_image_name(rbd_dev);
4134         if (!image_name)
4135                 rbd_warn(rbd_dev, "unable to get image name");
4136
4137         /* Look up the snapshot name, and make a copy */
4138
4139         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4140         if (!snap_name) {
4141                 ret = -ENOMEM;
4142                 goto out_err;
4143         }
4144
4145         spec->pool_name = pool_name;
4146         spec->image_name = image_name;
4147         spec->snap_name = snap_name;
4148
4149         return 0;
4150 out_err:
4151         kfree(image_name);
4152         kfree(pool_name);
4153
4154         return ret;
4155 }
4156
4157 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4158 {
4159         size_t size;
4160         int ret;
4161         void *reply_buf;
4162         void *p;
4163         void *end;
4164         u64 seq;
4165         u32 snap_count;
4166         struct ceph_snap_context *snapc;
4167         u32 i;
4168
4169         /*
4170          * We'll need room for the seq value (maximum snapshot id),
4171          * snapshot count, and array of that many snapshot ids.
4172          * For now we have a fixed upper limit on the number we're
4173          * prepared to receive.
4174          */
4175         size = sizeof (__le64) + sizeof (__le32) +
4176                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4177         reply_buf = kzalloc(size, GFP_KERNEL);
4178         if (!reply_buf)
4179                 return -ENOMEM;
4180
4181         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4182                                 "rbd", "get_snapcontext", NULL, 0,
4183                                 reply_buf, size);
4184         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4185         if (ret < 0)
4186                 goto out;
4187
4188         p = reply_buf;
4189         end = reply_buf + ret;
4190         ret = -ERANGE;
4191         ceph_decode_64_safe(&p, end, seq, out);
4192         ceph_decode_32_safe(&p, end, snap_count, out);
4193
4194         /*
4195          * Make sure the reported number of snapshot ids wouldn't go
4196          * beyond the end of our buffer.  But before checking that,
4197          * make sure the computed size of the snapshot context we
4198          * allocate is representable in a size_t.
4199          */
4200         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4201                                  / sizeof (u64)) {
4202                 ret = -EINVAL;
4203                 goto out;
4204         }
4205         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4206                 goto out;
4207         ret = 0;
4208
4209         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4210         if (!snapc) {
4211                 ret = -ENOMEM;
4212                 goto out;
4213         }
4214         snapc->seq = seq;
4215         for (i = 0; i < snap_count; i++)
4216                 snapc->snaps[i] = ceph_decode_64(&p);
4217
4218         ceph_put_snap_context(rbd_dev->header.snapc);
4219         rbd_dev->header.snapc = snapc;
4220
4221         dout("  snap context seq = %llu, snap_count = %u\n",
4222                 (unsigned long long)seq, (unsigned int)snap_count);
4223 out:
4224         kfree(reply_buf);
4225
4226         return ret;
4227 }
4228
4229 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4230                                         u64 snap_id)
4231 {
4232         size_t size;
4233         void *reply_buf;
4234         __le64 snapid;
4235         int ret;
4236         void *p;
4237         void *end;
4238         char *snap_name;
4239
4240         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4241         reply_buf = kmalloc(size, GFP_KERNEL);
4242         if (!reply_buf)
4243                 return ERR_PTR(-ENOMEM);
4244
4245         snapid = cpu_to_le64(snap_id);
4246         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4247                                 "rbd", "get_snapshot_name",
4248                                 &snapid, sizeof (snapid),
4249                                 reply_buf, size);
4250         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4251         if (ret < 0) {
4252                 snap_name = ERR_PTR(ret);
4253                 goto out;
4254         }
4255
4256         p = reply_buf;
4257         end = reply_buf + ret;
4258         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4259         if (IS_ERR(snap_name))
4260                 goto out;
4261
4262         dout("  snap_id 0x%016llx snap_name = %s\n",
4263                 (unsigned long long)snap_id, snap_name);
4264 out:
4265         kfree(reply_buf);
4266
4267         return snap_name;
4268 }
4269
4270 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4271 {
4272         bool first_time = rbd_dev->header.object_prefix == NULL;
4273         int ret;
4274
4275         down_write(&rbd_dev->header_rwsem);
4276
4277         ret = rbd_dev_v2_image_size(rbd_dev);
4278         if (ret)
4279                 goto out;
4280
4281         if (first_time) {
4282                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4283                 if (ret)
4284                         goto out;
4285         }
4286
4287         /*
4288          * If the image supports layering, get the parent info.  We
4289          * need to probe the first time regardless.  Thereafter we
4290          * only need to if there's a parent, to see if it has
4291          * disappeared due to the mapped image getting flattened.
4292          */
4293         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4294                         (first_time || rbd_dev->parent_spec)) {
4295                 bool warn;
4296
4297                 ret = rbd_dev_v2_parent_info(rbd_dev);
4298                 if (ret)
4299                         goto out;
4300
4301                 /*
4302                  * Print a warning if this is the initial probe and
4303                  * the image has a parent.  Don't print it if the
4304                  * image now being probed is itself a parent.  We
4305                  * can tell at this point because we won't know its
4306                  * pool name yet (just its pool id).
4307                  */
4308                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4309                 if (first_time && warn)
4310                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4311                                         "is EXPERIMENTAL!");
4312         }
4313
4314         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4315                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4316                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4317
4318         ret = rbd_dev_v2_snap_context(rbd_dev);
4319         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4320 out:
4321         up_write(&rbd_dev->header_rwsem);
4322
4323         return ret;
4324 }
4325
4326 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4327 {
4328         struct device *dev;
4329         int ret;
4330
4331         dev = &rbd_dev->dev;
4332         dev->bus = &rbd_bus_type;
4333         dev->type = &rbd_device_type;
4334         dev->parent = &rbd_root_dev;
4335         dev->release = rbd_dev_device_release;
4336         dev_set_name(dev, "%d", rbd_dev->dev_id);
4337         ret = device_register(dev);
4338
4339         return ret;
4340 }
4341
4342 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4343 {
4344         device_unregister(&rbd_dev->dev);
4345 }
4346
4347 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4348
4349 /*
4350  * Get a unique rbd identifier for the given new rbd_dev, and add
4351  * the rbd_dev to the global list.  The minimum rbd id is 1.
4352  */
4353 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4354 {
4355         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4356
4357         spin_lock(&rbd_dev_list_lock);
4358         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4359         spin_unlock(&rbd_dev_list_lock);
4360         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4361                 (unsigned long long) rbd_dev->dev_id);
4362 }
4363
4364 /*
4365  * Remove an rbd_dev from the global list, and record that its
4366  * identifier is no longer in use.
4367  */
4368 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4369 {
4370         struct list_head *tmp;
4371         int rbd_id = rbd_dev->dev_id;
4372         int max_id;
4373
4374         rbd_assert(rbd_id > 0);
4375
4376         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4377                 (unsigned long long) rbd_dev->dev_id);
4378         spin_lock(&rbd_dev_list_lock);
4379         list_del_init(&rbd_dev->node);
4380
4381         /*
4382          * If the id being "put" is not the current maximum, there
4383          * is nothing special we need to do.
4384          */
4385         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4386                 spin_unlock(&rbd_dev_list_lock);
4387                 return;
4388         }
4389
4390         /*
4391          * We need to update the current maximum id.  Search the
4392          * list to find out what it is.  We're more likely to find
4393          * the maximum at the end, so search the list backward.
4394          */
4395         max_id = 0;
4396         list_for_each_prev(tmp, &rbd_dev_list) {
4397                 struct rbd_device *rbd_dev;
4398
4399                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4400                 if (rbd_dev->dev_id > max_id)
4401                         max_id = rbd_dev->dev_id;
4402         }
4403         spin_unlock(&rbd_dev_list_lock);
4404
4405         /*
4406          * The max id could have been updated by rbd_dev_id_get(), in
4407          * which case it now accurately reflects the new maximum.
4408          * Be careful not to overwrite the maximum value in that
4409          * case.
4410          */
4411         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4412         dout("  max dev id has been reset\n");
4413 }
4414
4415 /*
4416  * Skips over white space at *buf, and updates *buf to point to the
4417  * first found non-space character (if any). Returns the length of
4418  * the token (string of non-white space characters) found.  Note
4419  * that *buf must be terminated with '\0'.
4420  */
4421 static inline size_t next_token(const char **buf)
4422 {
4423         /*
4424         * These are the characters that produce nonzero for
4425         * isspace() in the "C" and "POSIX" locales.
4426         */
4427         const char *spaces = " \f\n\r\t\v";
4428
4429         *buf += strspn(*buf, spaces);   /* Find start of token */
4430
4431         return strcspn(*buf, spaces);   /* Return token length */
4432 }
4433
4434 /*
4435  * Finds the next token in *buf, and if the provided token buffer is
4436  * big enough, copies the found token into it.  The result, if
4437  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4438  * must be terminated with '\0' on entry.
4439  *
4440  * Returns the length of the token found (not including the '\0').
4441  * Return value will be 0 if no token is found, and it will be >=
4442  * token_size if the token would not fit.
4443  *
4444  * The *buf pointer will be updated to point beyond the end of the
4445  * found token.  Note that this occurs even if the token buffer is
4446  * too small to hold it.
4447  */
4448 static inline size_t copy_token(const char **buf,
4449                                 char *token,
4450                                 size_t token_size)
4451 {
4452         size_t len;
4453
4454         len = next_token(buf);
4455         if (len < token_size) {
4456                 memcpy(token, *buf, len);
4457                 *(token + len) = '\0';
4458         }
4459         *buf += len;
4460
4461         return len;
4462 }
4463
4464 /*
4465  * Finds the next token in *buf, dynamically allocates a buffer big
4466  * enough to hold a copy of it, and copies the token into the new
4467  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4468  * that a duplicate buffer is created even for a zero-length token.
4469  *
4470  * Returns a pointer to the newly-allocated duplicate, or a null
4471  * pointer if memory for the duplicate was not available.  If
4472  * the lenp argument is a non-null pointer, the length of the token
4473  * (not including the '\0') is returned in *lenp.
4474  *
4475  * If successful, the *buf pointer will be updated to point beyond
4476  * the end of the found token.
4477  *
4478  * Note: uses GFP_KERNEL for allocation.
4479  */
4480 static inline char *dup_token(const char **buf, size_t *lenp)
4481 {
4482         char *dup;
4483         size_t len;
4484
4485         len = next_token(buf);
4486         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4487         if (!dup)
4488                 return NULL;
4489         *(dup + len) = '\0';
4490         *buf += len;
4491
4492         if (lenp)
4493                 *lenp = len;
4494
4495         return dup;
4496 }
4497
4498 /*
4499  * Parse the options provided for an "rbd add" (i.e., rbd image
4500  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4501  * and the data written is passed here via a NUL-terminated buffer.
4502  * Returns 0 if successful or an error code otherwise.
4503  *
4504  * The information extracted from these options is recorded in
4505  * the other parameters which return dynamically-allocated
4506  * structures:
4507  *  ceph_opts
4508  *      The address of a pointer that will refer to a ceph options
4509  *      structure.  Caller must release the returned pointer using
4510  *      ceph_destroy_options() when it is no longer needed.
4511  *  rbd_opts
4512  *      Address of an rbd options pointer.  Fully initialized by
4513  *      this function; caller must release with kfree().
4514  *  spec
4515  *      Address of an rbd image specification pointer.  Fully
4516  *      initialized by this function based on parsed options.
4517  *      Caller must release with rbd_spec_put().
4518  *
4519  * The options passed take this form:
4520  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4521  * where:
4522  *  <mon_addrs>
4523  *      A comma-separated list of one or more monitor addresses.
4524  *      A monitor address is an ip address, optionally followed
4525  *      by a port number (separated by a colon).
4526  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4527  *  <options>
4528  *      A comma-separated list of ceph and/or rbd options.
4529  *  <pool_name>
4530  *      The name of the rados pool containing the rbd image.
4531  *  <image_name>
4532  *      The name of the image in that pool to map.
4533  *  <snap_id>
4534  *      An optional snapshot id.  If provided, the mapping will
4535  *      present data from the image at the time that snapshot was
4536  *      created.  The image head is used if no snapshot id is
4537  *      provided.  Snapshot mappings are always read-only.
4538  */
4539 static int rbd_add_parse_args(const char *buf,
4540                                 struct ceph_options **ceph_opts,
4541                                 struct rbd_options **opts,
4542                                 struct rbd_spec **rbd_spec)
4543 {
4544         size_t len;
4545         char *options;
4546         const char *mon_addrs;
4547         char *snap_name;
4548         size_t mon_addrs_size;
4549         struct rbd_spec *spec = NULL;
4550         struct rbd_options *rbd_opts = NULL;
4551         struct ceph_options *copts;
4552         int ret;
4553
4554         /* The first four tokens are required */
4555
4556         len = next_token(&buf);
4557         if (!len) {
4558                 rbd_warn(NULL, "no monitor address(es) provided");
4559                 return -EINVAL;
4560         }
4561         mon_addrs = buf;
4562         mon_addrs_size = len + 1;
4563         buf += len;
4564
4565         ret = -EINVAL;
4566         options = dup_token(&buf, NULL);
4567         if (!options)
4568                 return -ENOMEM;
4569         if (!*options) {
4570                 rbd_warn(NULL, "no options provided");
4571                 goto out_err;
4572         }
4573
4574         spec = rbd_spec_alloc();
4575         if (!spec)
4576                 goto out_mem;
4577
4578         spec->pool_name = dup_token(&buf, NULL);
4579         if (!spec->pool_name)
4580                 goto out_mem;
4581         if (!*spec->pool_name) {
4582                 rbd_warn(NULL, "no pool name provided");
4583                 goto out_err;
4584         }
4585
4586         spec->image_name = dup_token(&buf, NULL);
4587         if (!spec->image_name)
4588                 goto out_mem;
4589         if (!*spec->image_name) {
4590                 rbd_warn(NULL, "no image name provided");
4591                 goto out_err;
4592         }
4593
4594         /*
4595          * Snapshot name is optional; default is to use "-"
4596          * (indicating the head/no snapshot).
4597          */
4598         len = next_token(&buf);
4599         if (!len) {
4600                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4601                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4602         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4603                 ret = -ENAMETOOLONG;
4604                 goto out_err;
4605         }
4606         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4607         if (!snap_name)
4608                 goto out_mem;
4609         *(snap_name + len) = '\0';
4610         spec->snap_name = snap_name;
4611
4612         /* Initialize all rbd options to the defaults */
4613
4614         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4615         if (!rbd_opts)
4616                 goto out_mem;
4617
4618         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4619
4620         copts = ceph_parse_options(options, mon_addrs,
4621                                         mon_addrs + mon_addrs_size - 1,
4622                                         parse_rbd_opts_token, rbd_opts);
4623         if (IS_ERR(copts)) {
4624                 ret = PTR_ERR(copts);
4625                 goto out_err;
4626         }
4627         kfree(options);
4628
4629         *ceph_opts = copts;
4630         *opts = rbd_opts;
4631         *rbd_spec = spec;
4632
4633         return 0;
4634 out_mem:
4635         ret = -ENOMEM;
4636 out_err:
4637         kfree(rbd_opts);
4638         rbd_spec_put(spec);
4639         kfree(options);
4640
4641         return ret;
4642 }
4643
4644 /*
4645  * An rbd format 2 image has a unique identifier, distinct from the
4646  * name given to it by the user.  Internally, that identifier is
4647  * what's used to specify the names of objects related to the image.
4648  *
4649  * A special "rbd id" object is used to map an rbd image name to its
4650  * id.  If that object doesn't exist, then there is no v2 rbd image
4651  * with the supplied name.
4652  *
4653  * This function will record the given rbd_dev's image_id field if
4654  * it can be determined, and in that case will return 0.  If any
4655  * errors occur a negative errno will be returned and the rbd_dev's
4656  * image_id field will be unchanged (and should be NULL).
4657  */
4658 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4659 {
4660         int ret;
4661         size_t size;
4662         char *object_name;
4663         void *response;
4664         char *image_id;
4665
4666         /*
4667          * When probing a parent image, the image id is already
4668          * known (and the image name likely is not).  There's no
4669          * need to fetch the image id again in this case.  We
4670          * do still need to set the image format though.
4671          */
4672         if (rbd_dev->spec->image_id) {
4673                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4674
4675                 return 0;
4676         }
4677
4678         /*
4679          * First, see if the format 2 image id file exists, and if
4680          * so, get the image's persistent id from it.
4681          */
4682         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4683         object_name = kmalloc(size, GFP_NOIO);
4684         if (!object_name)
4685                 return -ENOMEM;
4686         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4687         dout("rbd id object name is %s\n", object_name);
4688
4689         /* Response will be an encoded string, which includes a length */
4690
4691         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4692         response = kzalloc(size, GFP_NOIO);
4693         if (!response) {
4694                 ret = -ENOMEM;
4695                 goto out;
4696         }
4697
4698         /* If it doesn't exist we'll assume it's a format 1 image */
4699
4700         ret = rbd_obj_method_sync(rbd_dev, object_name,
4701                                 "rbd", "get_id", NULL, 0,
4702                                 response, RBD_IMAGE_ID_LEN_MAX);
4703         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4704         if (ret == -ENOENT) {
4705                 image_id = kstrdup("", GFP_KERNEL);
4706                 ret = image_id ? 0 : -ENOMEM;
4707                 if (!ret)
4708                         rbd_dev->image_format = 1;
4709         } else if (ret > sizeof (__le32)) {
4710                 void *p = response;
4711
4712                 image_id = ceph_extract_encoded_string(&p, p + ret,
4713                                                 NULL, GFP_NOIO);
4714                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4715                 if (!ret)
4716                         rbd_dev->image_format = 2;
4717         } else {
4718                 ret = -EINVAL;
4719         }
4720
4721         if (!ret) {
4722                 rbd_dev->spec->image_id = image_id;
4723                 dout("image_id is %s\n", image_id);
4724         }
4725 out:
4726         kfree(response);
4727         kfree(object_name);
4728
4729         return ret;
4730 }
4731
4732 /*
4733  * Undo whatever state changes are made by v1 or v2 header info
4734  * call.
4735  */
4736 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4737 {
4738         struct rbd_image_header *header;
4739
4740         /* Drop parent reference unless it's already been done (or none) */
4741
4742         if (rbd_dev->parent_overlap)
4743                 rbd_dev_parent_put(rbd_dev);
4744
4745         /* Free dynamic fields from the header, then zero it out */
4746
4747         header = &rbd_dev->header;
4748         ceph_put_snap_context(header->snapc);
4749         kfree(header->snap_sizes);
4750         kfree(header->snap_names);
4751         kfree(header->object_prefix);
4752         memset(header, 0, sizeof (*header));
4753 }
4754
4755 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4756 {
4757         int ret;
4758
4759         ret = rbd_dev_v2_object_prefix(rbd_dev);
4760         if (ret)
4761                 goto out_err;
4762
4763         /*
4764          * Get the and check features for the image.  Currently the
4765          * features are assumed to never change.
4766          */
4767         ret = rbd_dev_v2_features(rbd_dev);
4768         if (ret)
4769                 goto out_err;
4770
4771         /* If the image supports fancy striping, get its parameters */
4772
4773         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4774                 ret = rbd_dev_v2_striping_info(rbd_dev);
4775                 if (ret < 0)
4776                         goto out_err;
4777         }
4778         /* No support for crypto and compression type format 2 images */
4779
4780         return 0;
4781 out_err:
4782         rbd_dev->header.features = 0;
4783         kfree(rbd_dev->header.object_prefix);
4784         rbd_dev->header.object_prefix = NULL;
4785
4786         return ret;
4787 }
4788
4789 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4790 {
4791         struct rbd_device *parent = NULL;
4792         struct rbd_spec *parent_spec;
4793         struct rbd_client *rbdc;
4794         int ret;
4795
4796         if (!rbd_dev->parent_spec)
4797                 return 0;
4798         /*
4799          * We need to pass a reference to the client and the parent
4800          * spec when creating the parent rbd_dev.  Images related by
4801          * parent/child relationships always share both.
4802          */
4803         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4804         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4805
4806         ret = -ENOMEM;
4807         parent = rbd_dev_create(rbdc, parent_spec);
4808         if (!parent)
4809                 goto out_err;
4810
4811         ret = rbd_dev_image_probe(parent, false);
4812         if (ret < 0)
4813                 goto out_err;
4814         rbd_dev->parent = parent;
4815         atomic_set(&rbd_dev->parent_ref, 1);
4816
4817         return 0;
4818 out_err:
4819         if (parent) {
4820                 rbd_dev_unparent(rbd_dev);
4821                 kfree(rbd_dev->header_name);
4822                 rbd_dev_destroy(parent);
4823         } else {
4824                 rbd_put_client(rbdc);
4825                 rbd_spec_put(parent_spec);
4826         }
4827
4828         return ret;
4829 }
4830
4831 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4832 {
4833         int ret;
4834
4835         /* generate unique id: find highest unique id, add one */
4836         rbd_dev_id_get(rbd_dev);
4837
4838         /* Fill in the device name, now that we have its id. */
4839         BUILD_BUG_ON(DEV_NAME_LEN
4840                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4841         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4842
4843         /* Get our block major device number. */
4844
4845         ret = register_blkdev(0, rbd_dev->name);
4846         if (ret < 0)
4847                 goto err_out_id;
4848         rbd_dev->major = ret;
4849
4850         /* Set up the blkdev mapping. */
4851
4852         ret = rbd_init_disk(rbd_dev);
4853         if (ret)
4854                 goto err_out_blkdev;
4855
4856         ret = rbd_dev_mapping_set(rbd_dev);
4857         if (ret)
4858                 goto err_out_disk;
4859         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4860
4861         ret = rbd_bus_add_dev(rbd_dev);
4862         if (ret)
4863                 goto err_out_mapping;
4864
4865         /* Everything's ready.  Announce the disk to the world. */
4866
4867         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4868         add_disk(rbd_dev->disk);
4869
4870         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4871                 (unsigned long long) rbd_dev->mapping.size);
4872
4873         return ret;
4874
4875 err_out_mapping:
4876         rbd_dev_mapping_clear(rbd_dev);
4877 err_out_disk:
4878         rbd_free_disk(rbd_dev);
4879 err_out_blkdev:
4880         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4881 err_out_id:
4882         rbd_dev_id_put(rbd_dev);
4883         rbd_dev_mapping_clear(rbd_dev);
4884
4885         return ret;
4886 }
4887
4888 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4889 {
4890         struct rbd_spec *spec = rbd_dev->spec;
4891         size_t size;
4892
4893         /* Record the header object name for this rbd image. */
4894
4895         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4896
4897         if (rbd_dev->image_format == 1)
4898                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4899         else
4900                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4901
4902         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4903         if (!rbd_dev->header_name)
4904                 return -ENOMEM;
4905
4906         if (rbd_dev->image_format == 1)
4907                 sprintf(rbd_dev->header_name, "%s%s",
4908                         spec->image_name, RBD_SUFFIX);
4909         else
4910                 sprintf(rbd_dev->header_name, "%s%s",
4911                         RBD_HEADER_PREFIX, spec->image_id);
4912         return 0;
4913 }
4914
4915 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4916 {
4917         rbd_dev_unprobe(rbd_dev);
4918         kfree(rbd_dev->header_name);
4919         rbd_dev->header_name = NULL;
4920         rbd_dev->image_format = 0;
4921         kfree(rbd_dev->spec->image_id);
4922         rbd_dev->spec->image_id = NULL;
4923
4924         rbd_dev_destroy(rbd_dev);
4925 }
4926
4927 /*
4928  * Probe for the existence of the header object for the given rbd
4929  * device.  If this image is the one being mapped (i.e., not a
4930  * parent), initiate a watch on its header object before using that
4931  * object to get detailed information about the rbd image.
4932  */
4933 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4934 {
4935         int ret;
4936         int tmp;
4937
4938         /*
4939          * Get the id from the image id object.  Unless there's an
4940          * error, rbd_dev->spec->image_id will be filled in with
4941          * a dynamically-allocated string, and rbd_dev->image_format
4942          * will be set to either 1 or 2.
4943          */
4944         ret = rbd_dev_image_id(rbd_dev);
4945         if (ret)
4946                 return ret;
4947         rbd_assert(rbd_dev->spec->image_id);
4948         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4949
4950         ret = rbd_dev_header_name(rbd_dev);
4951         if (ret)
4952                 goto err_out_format;
4953
4954         if (mapping) {
4955                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4956                 if (ret)
4957                         goto out_header_name;
4958         }
4959
4960         if (rbd_dev->image_format == 1)
4961                 ret = rbd_dev_v1_header_info(rbd_dev);
4962         else
4963                 ret = rbd_dev_v2_header_info(rbd_dev);
4964         if (ret)
4965                 goto err_out_watch;
4966
4967         ret = rbd_dev_spec_update(rbd_dev);
4968         if (ret)
4969                 goto err_out_probe;
4970
4971         ret = rbd_dev_probe_parent(rbd_dev);
4972         if (ret)
4973                 goto err_out_probe;
4974
4975         dout("discovered format %u image, header name is %s\n",
4976                 rbd_dev->image_format, rbd_dev->header_name);
4977
4978         return 0;
4979 err_out_probe:
4980         rbd_dev_unprobe(rbd_dev);
4981 err_out_watch:
4982         if (mapping) {
4983                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4984                 if (tmp)
4985                         rbd_warn(rbd_dev, "unable to tear down "
4986                                         "watch request (%d)\n", tmp);
4987         }
4988 out_header_name:
4989         kfree(rbd_dev->header_name);
4990         rbd_dev->header_name = NULL;
4991 err_out_format:
4992         rbd_dev->image_format = 0;
4993         kfree(rbd_dev->spec->image_id);
4994         rbd_dev->spec->image_id = NULL;
4995
4996         dout("probe failed, returning %d\n", ret);
4997
4998         return ret;
4999 }
5000
5001 static ssize_t rbd_add(struct bus_type *bus,
5002                        const char *buf,
5003                        size_t count)
5004 {
5005         struct rbd_device *rbd_dev = NULL;
5006         struct ceph_options *ceph_opts = NULL;
5007         struct rbd_options *rbd_opts = NULL;
5008         struct rbd_spec *spec = NULL;
5009         struct rbd_client *rbdc;
5010         struct ceph_osd_client *osdc;
5011         bool read_only;
5012         int rc = -ENOMEM;
5013
5014         if (!try_module_get(THIS_MODULE))
5015                 return -ENODEV;
5016
5017         /* parse add command */
5018         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5019         if (rc < 0)
5020                 goto err_out_module;
5021         read_only = rbd_opts->read_only;
5022         kfree(rbd_opts);
5023         rbd_opts = NULL;        /* done with this */
5024
5025         rbdc = rbd_get_client(ceph_opts);
5026         if (IS_ERR(rbdc)) {
5027                 rc = PTR_ERR(rbdc);
5028                 goto err_out_args;
5029         }
5030
5031         /* pick the pool */
5032         osdc = &rbdc->client->osdc;
5033         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5034         if (rc < 0)
5035                 goto err_out_client;
5036         spec->pool_id = (u64)rc;
5037
5038         /* The ceph file layout needs to fit pool id in 32 bits */
5039
5040         if (spec->pool_id > (u64)U32_MAX) {
5041                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5042                                 (unsigned long long)spec->pool_id, U32_MAX);
5043                 rc = -EIO;
5044                 goto err_out_client;
5045         }
5046
5047         rbd_dev = rbd_dev_create(rbdc, spec);
5048         if (!rbd_dev)
5049                 goto err_out_client;
5050         rbdc = NULL;            /* rbd_dev now owns this */
5051         spec = NULL;            /* rbd_dev now owns this */
5052
5053         rc = rbd_dev_image_probe(rbd_dev, true);
5054         if (rc < 0)
5055                 goto err_out_rbd_dev;
5056
5057         /* If we are mapping a snapshot it must be marked read-only */
5058
5059         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5060                 read_only = true;
5061         rbd_dev->mapping.read_only = read_only;
5062
5063         rc = rbd_dev_device_setup(rbd_dev);
5064         if (rc) {
5065                 rbd_dev_image_release(rbd_dev);
5066                 goto err_out_module;
5067         }
5068
5069         return count;
5070
5071 err_out_rbd_dev:
5072         rbd_dev_destroy(rbd_dev);
5073 err_out_client:
5074         rbd_put_client(rbdc);
5075 err_out_args:
5076         rbd_spec_put(spec);
5077 err_out_module:
5078         module_put(THIS_MODULE);
5079
5080         dout("Error adding device %s\n", buf);
5081
5082         return (ssize_t)rc;
5083 }
5084
5085 static void rbd_dev_device_release(struct device *dev)
5086 {
5087         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5088
5089         rbd_free_disk(rbd_dev);
5090         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5091         rbd_dev_mapping_clear(rbd_dev);
5092         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5093         rbd_dev->major = 0;
5094         rbd_dev_id_put(rbd_dev);
5095         rbd_dev_mapping_clear(rbd_dev);
5096 }
5097
5098 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5099 {
5100         while (rbd_dev->parent) {
5101                 struct rbd_device *first = rbd_dev;
5102                 struct rbd_device *second = first->parent;
5103                 struct rbd_device *third;
5104
5105                 /*
5106                  * Follow to the parent with no grandparent and
5107                  * remove it.
5108                  */
5109                 while (second && (third = second->parent)) {
5110                         first = second;
5111                         second = third;
5112                 }
5113                 rbd_assert(second);
5114                 rbd_dev_image_release(second);
5115                 first->parent = NULL;
5116                 first->parent_overlap = 0;
5117
5118                 rbd_assert(first->parent_spec);
5119                 rbd_spec_put(first->parent_spec);
5120                 first->parent_spec = NULL;
5121         }
5122 }
5123
5124 static ssize_t rbd_remove(struct bus_type *bus,
5125                           const char *buf,
5126                           size_t count)
5127 {
5128         struct rbd_device *rbd_dev = NULL;
5129         struct list_head *tmp;
5130         int dev_id;
5131         unsigned long ul;
5132         bool already = false;
5133         int ret;
5134
5135         ret = strict_strtoul(buf, 10, &ul);
5136         if (ret)
5137                 return ret;
5138
5139         /* convert to int; abort if we lost anything in the conversion */
5140         dev_id = (int)ul;
5141         if (dev_id != ul)
5142                 return -EINVAL;
5143
5144         ret = -ENOENT;
5145         spin_lock(&rbd_dev_list_lock);
5146         list_for_each(tmp, &rbd_dev_list) {
5147                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5148                 if (rbd_dev->dev_id == dev_id) {
5149                         ret = 0;
5150                         break;
5151                 }
5152         }
5153         if (!ret) {
5154                 spin_lock_irq(&rbd_dev->lock);
5155                 if (rbd_dev->open_count)
5156                         ret = -EBUSY;
5157                 else
5158                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5159                                                         &rbd_dev->flags);
5160                 spin_unlock_irq(&rbd_dev->lock);
5161         }
5162         spin_unlock(&rbd_dev_list_lock);
5163         if (ret < 0 || already)
5164                 return ret;
5165
5166         rbd_bus_del_dev(rbd_dev);
5167         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5168         if (ret)
5169                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5170         rbd_dev_image_release(rbd_dev);
5171         module_put(THIS_MODULE);
5172
5173         return count;
5174 }
5175
5176 /*
5177  * create control files in sysfs
5178  * /sys/bus/rbd/...
5179  */
5180 static int rbd_sysfs_init(void)
5181 {
5182         int ret;
5183
5184         ret = device_register(&rbd_root_dev);
5185         if (ret < 0)
5186                 return ret;
5187
5188         ret = bus_register(&rbd_bus_type);
5189         if (ret < 0)
5190                 device_unregister(&rbd_root_dev);
5191
5192         return ret;
5193 }
5194
5195 static void rbd_sysfs_cleanup(void)
5196 {
5197         bus_unregister(&rbd_bus_type);
5198         device_unregister(&rbd_root_dev);
5199 }
5200
5201 static int rbd_slab_init(void)
5202 {
5203         rbd_assert(!rbd_img_request_cache);
5204         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5205                                         sizeof (struct rbd_img_request),
5206                                         __alignof__(struct rbd_img_request),
5207                                         0, NULL);
5208         if (!rbd_img_request_cache)
5209                 return -ENOMEM;
5210
5211         rbd_assert(!rbd_obj_request_cache);
5212         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5213                                         sizeof (struct rbd_obj_request),
5214                                         __alignof__(struct rbd_obj_request),
5215                                         0, NULL);
5216         if (!rbd_obj_request_cache)
5217                 goto out_err;
5218
5219         rbd_assert(!rbd_segment_name_cache);
5220         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5221                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5222         if (rbd_segment_name_cache)
5223                 return 0;
5224 out_err:
5225         if (rbd_obj_request_cache) {
5226                 kmem_cache_destroy(rbd_obj_request_cache);
5227                 rbd_obj_request_cache = NULL;
5228         }
5229
5230         kmem_cache_destroy(rbd_img_request_cache);
5231         rbd_img_request_cache = NULL;
5232
5233         return -ENOMEM;
5234 }
5235
5236 static void rbd_slab_exit(void)
5237 {
5238         rbd_assert(rbd_segment_name_cache);
5239         kmem_cache_destroy(rbd_segment_name_cache);
5240         rbd_segment_name_cache = NULL;
5241
5242         rbd_assert(rbd_obj_request_cache);
5243         kmem_cache_destroy(rbd_obj_request_cache);
5244         rbd_obj_request_cache = NULL;
5245
5246         rbd_assert(rbd_img_request_cache);
5247         kmem_cache_destroy(rbd_img_request_cache);
5248         rbd_img_request_cache = NULL;
5249 }
5250
5251 static int __init rbd_init(void)
5252 {
5253         int rc;
5254
5255         if (!libceph_compatible(NULL)) {
5256                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5257
5258                 return -EINVAL;
5259         }
5260         rc = rbd_slab_init();
5261         if (rc)
5262                 return rc;
5263         rc = rbd_sysfs_init();
5264         if (rc)
5265                 rbd_slab_exit();
5266         else
5267                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5268
5269         return rc;
5270 }
5271
5272 static void __exit rbd_exit(void)
5273 {
5274         rbd_sysfs_cleanup();
5275         rbd_slab_exit();
5276 }
5277
5278 module_init(rbd_init);
5279 module_exit(rbd_exit);
5280
5281 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5282 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5283 MODULE_DESCRIPTION("rados block device");
5284
5285 /* following authorship retained from original osdblk.c */
5286 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5287
5288 MODULE_LICENSE("GPL");