]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
b365e0dfccb66f7c256a9d07d7fd976fba17ae95
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544         set_device_ro(bdev, rbd_dev->mapping.read_only);
545
546         return 0;
547 }
548
549 static void rbd_release(struct gendisk *disk, fmode_t mode)
550 {
551         struct rbd_device *rbd_dev = disk->private_data;
552         unsigned long open_count_before;
553
554         spin_lock_irq(&rbd_dev->lock);
555         open_count_before = rbd_dev->open_count--;
556         spin_unlock_irq(&rbd_dev->lock);
557         rbd_assert(open_count_before > 0);
558
559         put_device(&rbd_dev->dev);
560 }
561
562 static const struct block_device_operations rbd_bd_ops = {
563         .owner                  = THIS_MODULE,
564         .open                   = rbd_open,
565         .release                = rbd_release,
566 };
567
568 /*
569  * Initialize an rbd client instance.  Success or not, this function
570  * consumes ceph_opts.  Caller holds client_mutex.
571  */
572 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
573 {
574         struct rbd_client *rbdc;
575         int ret = -ENOMEM;
576
577         dout("%s:\n", __func__);
578         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
579         if (!rbdc)
580                 goto out_opt;
581
582         kref_init(&rbdc->kref);
583         INIT_LIST_HEAD(&rbdc->node);
584
585         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
586         if (IS_ERR(rbdc->client))
587                 goto out_rbdc;
588         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
589
590         ret = ceph_open_session(rbdc->client);
591         if (ret < 0)
592                 goto out_client;
593
594         spin_lock(&rbd_client_list_lock);
595         list_add_tail(&rbdc->node, &rbd_client_list);
596         spin_unlock(&rbd_client_list_lock);
597
598         dout("%s: rbdc %p\n", __func__, rbdc);
599
600         return rbdc;
601 out_client:
602         ceph_destroy_client(rbdc->client);
603 out_rbdc:
604         kfree(rbdc);
605 out_opt:
606         if (ceph_opts)
607                 ceph_destroy_options(ceph_opts);
608         dout("%s: error %d\n", __func__, ret);
609
610         return ERR_PTR(ret);
611 }
612
613 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
614 {
615         kref_get(&rbdc->kref);
616
617         return rbdc;
618 }
619
620 /*
621  * Find a ceph client with specific addr and configuration.  If
622  * found, bump its reference count.
623  */
624 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
625 {
626         struct rbd_client *client_node;
627         bool found = false;
628
629         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
630                 return NULL;
631
632         spin_lock(&rbd_client_list_lock);
633         list_for_each_entry(client_node, &rbd_client_list, node) {
634                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
635                         __rbd_get_client(client_node);
636
637                         found = true;
638                         break;
639                 }
640         }
641         spin_unlock(&rbd_client_list_lock);
642
643         return found ? client_node : NULL;
644 }
645
646 /*
647  * mount options
648  */
649 enum {
650         Opt_last_int,
651         /* int args above */
652         Opt_last_string,
653         /* string args above */
654         Opt_read_only,
655         Opt_read_write,
656         /* Boolean args above */
657         Opt_last_bool,
658 };
659
660 static match_table_t rbd_opts_tokens = {
661         /* int args above */
662         /* string args above */
663         {Opt_read_only, "read_only"},
664         {Opt_read_only, "ro"},          /* Alternate spelling */
665         {Opt_read_write, "read_write"},
666         {Opt_read_write, "rw"},         /* Alternate spelling */
667         /* Boolean args above */
668         {-1, NULL}
669 };
670
671 struct rbd_options {
672         bool    read_only;
673 };
674
675 #define RBD_READ_ONLY_DEFAULT   false
676
677 static int parse_rbd_opts_token(char *c, void *private)
678 {
679         struct rbd_options *rbd_opts = private;
680         substring_t argstr[MAX_OPT_ARGS];
681         int token, intval, ret;
682
683         token = match_token(c, rbd_opts_tokens, argstr);
684         if (token < 0)
685                 return -EINVAL;
686
687         if (token < Opt_last_int) {
688                 ret = match_int(&argstr[0], &intval);
689                 if (ret < 0) {
690                         pr_err("bad mount option arg (not int) "
691                                "at '%s'\n", c);
692                         return ret;
693                 }
694                 dout("got int token %d val %d\n", token, intval);
695         } else if (token > Opt_last_int && token < Opt_last_string) {
696                 dout("got string token %d val %s\n", token,
697                      argstr[0].from);
698         } else if (token > Opt_last_string && token < Opt_last_bool) {
699                 dout("got Boolean token %d\n", token);
700         } else {
701                 dout("got token %d\n", token);
702         }
703
704         switch (token) {
705         case Opt_read_only:
706                 rbd_opts->read_only = true;
707                 break;
708         case Opt_read_write:
709                 rbd_opts->read_only = false;
710                 break;
711         default:
712                 rbd_assert(false);
713                 break;
714         }
715         return 0;
716 }
717
718 /*
719  * Get a ceph client with specific addr and configuration, if one does
720  * not exist create it.  Either way, ceph_opts is consumed by this
721  * function.
722  */
723 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
724 {
725         struct rbd_client *rbdc;
726
727         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
728         rbdc = rbd_client_find(ceph_opts);
729         if (rbdc)       /* using an existing client */
730                 ceph_destroy_options(ceph_opts);
731         else
732                 rbdc = rbd_client_create(ceph_opts);
733         mutex_unlock(&client_mutex);
734
735         return rbdc;
736 }
737
738 /*
739  * Destroy ceph client
740  *
741  * Caller must hold rbd_client_list_lock.
742  */
743 static void rbd_client_release(struct kref *kref)
744 {
745         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
746
747         dout("%s: rbdc %p\n", __func__, rbdc);
748         spin_lock(&rbd_client_list_lock);
749         list_del(&rbdc->node);
750         spin_unlock(&rbd_client_list_lock);
751
752         ceph_destroy_client(rbdc->client);
753         kfree(rbdc);
754 }
755
756 /*
757  * Drop reference to ceph client node. If it's not referenced anymore, release
758  * it.
759  */
760 static void rbd_put_client(struct rbd_client *rbdc)
761 {
762         if (rbdc)
763                 kref_put(&rbdc->kref, rbd_client_release);
764 }
765
766 static bool rbd_image_format_valid(u32 image_format)
767 {
768         return image_format == 1 || image_format == 2;
769 }
770
771 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
772 {
773         size_t size;
774         u32 snap_count;
775
776         /* The header has to start with the magic rbd header text */
777         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
778                 return false;
779
780         /* The bio layer requires at least sector-sized I/O */
781
782         if (ondisk->options.order < SECTOR_SHIFT)
783                 return false;
784
785         /* If we use u64 in a few spots we may be able to loosen this */
786
787         if (ondisk->options.order > 8 * sizeof (int) - 1)
788                 return false;
789
790         /*
791          * The size of a snapshot header has to fit in a size_t, and
792          * that limits the number of snapshots.
793          */
794         snap_count = le32_to_cpu(ondisk->snap_count);
795         size = SIZE_MAX - sizeof (struct ceph_snap_context);
796         if (snap_count > size / sizeof (__le64))
797                 return false;
798
799         /*
800          * Not only that, but the size of the entire the snapshot
801          * header must also be representable in a size_t.
802          */
803         size -= snap_count * sizeof (__le64);
804         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
805                 return false;
806
807         return true;
808 }
809
810 /*
811  * Fill an rbd image header with information from the given format 1
812  * on-disk header.
813  */
814 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
815                                  struct rbd_image_header_ondisk *ondisk)
816 {
817         struct rbd_image_header *header = &rbd_dev->header;
818         bool first_time = header->object_prefix == NULL;
819         struct ceph_snap_context *snapc;
820         char *object_prefix = NULL;
821         char *snap_names = NULL;
822         u64 *snap_sizes = NULL;
823         u32 snap_count;
824         size_t size;
825         int ret = -ENOMEM;
826         u32 i;
827
828         /* Allocate this now to avoid having to handle failure below */
829
830         if (first_time) {
831                 size_t len;
832
833                 len = strnlen(ondisk->object_prefix,
834                                 sizeof (ondisk->object_prefix));
835                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
836                 if (!object_prefix)
837                         return -ENOMEM;
838                 memcpy(object_prefix, ondisk->object_prefix, len);
839                 object_prefix[len] = '\0';
840         }
841
842         /* Allocate the snapshot context and fill it in */
843
844         snap_count = le32_to_cpu(ondisk->snap_count);
845         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
846         if (!snapc)
847                 goto out_err;
848         snapc->seq = le64_to_cpu(ondisk->snap_seq);
849         if (snap_count) {
850                 struct rbd_image_snap_ondisk *snaps;
851                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
852
853                 /* We'll keep a copy of the snapshot names... */
854
855                 if (snap_names_len > (u64)SIZE_MAX)
856                         goto out_2big;
857                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
858                 if (!snap_names)
859                         goto out_err;
860
861                 /* ...as well as the array of their sizes. */
862
863                 size = snap_count * sizeof (*header->snap_sizes);
864                 snap_sizes = kmalloc(size, GFP_KERNEL);
865                 if (!snap_sizes)
866                         goto out_err;
867
868                 /*
869                  * Copy the names, and fill in each snapshot's id
870                  * and size.
871                  *
872                  * Note that rbd_dev_v1_header_info() guarantees the
873                  * ondisk buffer we're working with has
874                  * snap_names_len bytes beyond the end of the
875                  * snapshot id array, this memcpy() is safe.
876                  */
877                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
878                 snaps = ondisk->snaps;
879                 for (i = 0; i < snap_count; i++) {
880                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
881                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
882                 }
883         }
884
885         /* We won't fail any more, fill in the header */
886
887         if (first_time) {
888                 header->object_prefix = object_prefix;
889                 header->obj_order = ondisk->options.order;
890                 header->crypt_type = ondisk->options.crypt_type;
891                 header->comp_type = ondisk->options.comp_type;
892                 /* The rest aren't used for format 1 images */
893                 header->stripe_unit = 0;
894                 header->stripe_count = 0;
895                 header->features = 0;
896         } else {
897                 ceph_put_snap_context(header->snapc);
898                 kfree(header->snap_names);
899                 kfree(header->snap_sizes);
900         }
901
902         /* The remaining fields always get updated (when we refresh) */
903
904         header->image_size = le64_to_cpu(ondisk->image_size);
905         header->snapc = snapc;
906         header->snap_names = snap_names;
907         header->snap_sizes = snap_sizes;
908
909         /* Make sure mapping size is consistent with header info */
910
911         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
912                 if (rbd_dev->mapping.size != header->image_size)
913                         rbd_dev->mapping.size = header->image_size;
914
915         return 0;
916 out_2big:
917         ret = -EIO;
918 out_err:
919         kfree(snap_sizes);
920         kfree(snap_names);
921         ceph_put_snap_context(snapc);
922         kfree(object_prefix);
923
924         return ret;
925 }
926
927 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
928 {
929         const char *snap_name;
930
931         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
932
933         /* Skip over names until we find the one we are looking for */
934
935         snap_name = rbd_dev->header.snap_names;
936         while (which--)
937                 snap_name += strlen(snap_name) + 1;
938
939         return kstrdup(snap_name, GFP_KERNEL);
940 }
941
942 /*
943  * Snapshot id comparison function for use with qsort()/bsearch().
944  * Note that result is for snapshots in *descending* order.
945  */
946 static int snapid_compare_reverse(const void *s1, const void *s2)
947 {
948         u64 snap_id1 = *(u64 *)s1;
949         u64 snap_id2 = *(u64 *)s2;
950
951         if (snap_id1 < snap_id2)
952                 return 1;
953         return snap_id1 == snap_id2 ? 0 : -1;
954 }
955
956 /*
957  * Search a snapshot context to see if the given snapshot id is
958  * present.
959  *
960  * Returns the position of the snapshot id in the array if it's found,
961  * or BAD_SNAP_INDEX otherwise.
962  *
963  * Note: The snapshot array is in kept sorted (by the osd) in
964  * reverse order, highest snapshot id first.
965  */
966 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
967 {
968         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
969         u64 *found;
970
971         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
972                                 sizeof (snap_id), snapid_compare_reverse);
973
974         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
975 }
976
977 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
978                                         u64 snap_id)
979 {
980         u32 which;
981         const char *snap_name;
982
983         which = rbd_dev_snap_index(rbd_dev, snap_id);
984         if (which == BAD_SNAP_INDEX)
985                 return ERR_PTR(-ENOENT);
986
987         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
988         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
989 }
990
991 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
992 {
993         if (snap_id == CEPH_NOSNAP)
994                 return RBD_SNAP_HEAD_NAME;
995
996         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
997         if (rbd_dev->image_format == 1)
998                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
999
1000         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1001 }
1002
1003 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1004                                 u64 *snap_size)
1005 {
1006         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1007         if (snap_id == CEPH_NOSNAP) {
1008                 *snap_size = rbd_dev->header.image_size;
1009         } else if (rbd_dev->image_format == 1) {
1010                 u32 which;
1011
1012                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1013                 if (which == BAD_SNAP_INDEX)
1014                         return -ENOENT;
1015
1016                 *snap_size = rbd_dev->header.snap_sizes[which];
1017         } else {
1018                 u64 size = 0;
1019                 int ret;
1020
1021                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1022                 if (ret)
1023                         return ret;
1024
1025                 *snap_size = size;
1026         }
1027         return 0;
1028 }
1029
1030 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1031                         u64 *snap_features)
1032 {
1033         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1034         if (snap_id == CEPH_NOSNAP) {
1035                 *snap_features = rbd_dev->header.features;
1036         } else if (rbd_dev->image_format == 1) {
1037                 *snap_features = 0;     /* No features for format 1 */
1038         } else {
1039                 u64 features = 0;
1040                 int ret;
1041
1042                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1043                 if (ret)
1044                         return ret;
1045
1046                 *snap_features = features;
1047         }
1048         return 0;
1049 }
1050
1051 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1052 {
1053         u64 snap_id = rbd_dev->spec->snap_id;
1054         u64 size = 0;
1055         u64 features = 0;
1056         int ret;
1057
1058         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1059         if (ret)
1060                 return ret;
1061         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1062         if (ret)
1063                 return ret;
1064
1065         rbd_dev->mapping.size = size;
1066         rbd_dev->mapping.features = features;
1067
1068         return 0;
1069 }
1070
1071 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1072 {
1073         rbd_dev->mapping.size = 0;
1074         rbd_dev->mapping.features = 0;
1075 }
1076
1077 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1078 {
1079         char *name;
1080         u64 segment;
1081         int ret;
1082         char *name_format;
1083
1084         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1085         if (!name)
1086                 return NULL;
1087         segment = offset >> rbd_dev->header.obj_order;
1088         name_format = "%s.%012llx";
1089         if (rbd_dev->image_format == 2)
1090                 name_format = "%s.%016llx";
1091         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1092                         rbd_dev->header.object_prefix, segment);
1093         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1094                 pr_err("error formatting segment name for #%llu (%d)\n",
1095                         segment, ret);
1096                 kfree(name);
1097                 name = NULL;
1098         }
1099
1100         return name;
1101 }
1102
1103 static void rbd_segment_name_free(const char *name)
1104 {
1105         /* The explicit cast here is needed to drop the const qualifier */
1106
1107         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1108 }
1109
1110 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1111 {
1112         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1113
1114         return offset & (segment_size - 1);
1115 }
1116
1117 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1118                                 u64 offset, u64 length)
1119 {
1120         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1121
1122         offset &= segment_size - 1;
1123
1124         rbd_assert(length <= U64_MAX - offset);
1125         if (offset + length > segment_size)
1126                 length = segment_size - offset;
1127
1128         return length;
1129 }
1130
1131 /*
1132  * returns the size of an object in the image
1133  */
1134 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1135 {
1136         return 1 << header->obj_order;
1137 }
1138
1139 /*
1140  * bio helpers
1141  */
1142
1143 static void bio_chain_put(struct bio *chain)
1144 {
1145         struct bio *tmp;
1146
1147         while (chain) {
1148                 tmp = chain;
1149                 chain = chain->bi_next;
1150                 bio_put(tmp);
1151         }
1152 }
1153
1154 /*
1155  * zeros a bio chain, starting at specific offset
1156  */
1157 static void zero_bio_chain(struct bio *chain, int start_ofs)
1158 {
1159         struct bio_vec bv;
1160         struct bvec_iter iter;
1161         unsigned long flags;
1162         void *buf;
1163         int pos = 0;
1164
1165         while (chain) {
1166                 bio_for_each_segment(bv, chain, iter) {
1167                         if (pos + bv.bv_len > start_ofs) {
1168                                 int remainder = max(start_ofs - pos, 0);
1169                                 buf = bvec_kmap_irq(&bv, &flags);
1170                                 memset(buf + remainder, 0,
1171                                        bv.bv_len - remainder);
1172                                 flush_dcache_page(bv.bv_page);
1173                                 bvec_kunmap_irq(buf, &flags);
1174                         }
1175                         pos += bv.bv_len;
1176                 }
1177
1178                 chain = chain->bi_next;
1179         }
1180 }
1181
1182 /*
1183  * similar to zero_bio_chain(), zeros data defined by a page array,
1184  * starting at the given byte offset from the start of the array and
1185  * continuing up to the given end offset.  The pages array is
1186  * assumed to be big enough to hold all bytes up to the end.
1187  */
1188 static void zero_pages(struct page **pages, u64 offset, u64 end)
1189 {
1190         struct page **page = &pages[offset >> PAGE_SHIFT];
1191
1192         rbd_assert(end > offset);
1193         rbd_assert(end - offset <= (u64)SIZE_MAX);
1194         while (offset < end) {
1195                 size_t page_offset;
1196                 size_t length;
1197                 unsigned long flags;
1198                 void *kaddr;
1199
1200                 page_offset = offset & ~PAGE_MASK;
1201                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1202                 local_irq_save(flags);
1203                 kaddr = kmap_atomic(*page);
1204                 memset(kaddr + page_offset, 0, length);
1205                 flush_dcache_page(*page);
1206                 kunmap_atomic(kaddr);
1207                 local_irq_restore(flags);
1208
1209                 offset += length;
1210                 page++;
1211         }
1212 }
1213
1214 /*
1215  * Clone a portion of a bio, starting at the given byte offset
1216  * and continuing for the number of bytes indicated.
1217  */
1218 static struct bio *bio_clone_range(struct bio *bio_src,
1219                                         unsigned int offset,
1220                                         unsigned int len,
1221                                         gfp_t gfpmask)
1222 {
1223         struct bio *bio;
1224
1225         bio = bio_clone(bio_src, gfpmask);
1226         if (!bio)
1227                 return NULL;    /* ENOMEM */
1228
1229         bio_advance(bio, offset);
1230         bio->bi_iter.bi_size = len;
1231
1232         return bio;
1233 }
1234
1235 /*
1236  * Clone a portion of a bio chain, starting at the given byte offset
1237  * into the first bio in the source chain and continuing for the
1238  * number of bytes indicated.  The result is another bio chain of
1239  * exactly the given length, or a null pointer on error.
1240  *
1241  * The bio_src and offset parameters are both in-out.  On entry they
1242  * refer to the first source bio and the offset into that bio where
1243  * the start of data to be cloned is located.
1244  *
1245  * On return, bio_src is updated to refer to the bio in the source
1246  * chain that contains first un-cloned byte, and *offset will
1247  * contain the offset of that byte within that bio.
1248  */
1249 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1250                                         unsigned int *offset,
1251                                         unsigned int len,
1252                                         gfp_t gfpmask)
1253 {
1254         struct bio *bi = *bio_src;
1255         unsigned int off = *offset;
1256         struct bio *chain = NULL;
1257         struct bio **end;
1258
1259         /* Build up a chain of clone bios up to the limit */
1260
1261         if (!bi || off >= bi->bi_iter.bi_size || !len)
1262                 return NULL;            /* Nothing to clone */
1263
1264         end = &chain;
1265         while (len) {
1266                 unsigned int bi_size;
1267                 struct bio *bio;
1268
1269                 if (!bi) {
1270                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1271                         goto out_err;   /* EINVAL; ran out of bio's */
1272                 }
1273                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1274                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1275                 if (!bio)
1276                         goto out_err;   /* ENOMEM */
1277
1278                 *end = bio;
1279                 end = &bio->bi_next;
1280
1281                 off += bi_size;
1282                 if (off == bi->bi_iter.bi_size) {
1283                         bi = bi->bi_next;
1284                         off = 0;
1285                 }
1286                 len -= bi_size;
1287         }
1288         *bio_src = bi;
1289         *offset = off;
1290
1291         return chain;
1292 out_err:
1293         bio_chain_put(chain);
1294
1295         return NULL;
1296 }
1297
1298 /*
1299  * The default/initial value for all object request flags is 0.  For
1300  * each flag, once its value is set to 1 it is never reset to 0
1301  * again.
1302  */
1303 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1304 {
1305         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1306                 struct rbd_device *rbd_dev;
1307
1308                 rbd_dev = obj_request->img_request->rbd_dev;
1309                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1310                         obj_request);
1311         }
1312 }
1313
1314 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1315 {
1316         smp_mb();
1317         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1318 }
1319
1320 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1321 {
1322         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1323                 struct rbd_device *rbd_dev = NULL;
1324
1325                 if (obj_request_img_data_test(obj_request))
1326                         rbd_dev = obj_request->img_request->rbd_dev;
1327                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1328                         obj_request);
1329         }
1330 }
1331
1332 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1333 {
1334         smp_mb();
1335         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1336 }
1337
1338 /*
1339  * This sets the KNOWN flag after (possibly) setting the EXISTS
1340  * flag.  The latter is set based on the "exists" value provided.
1341  *
1342  * Note that for our purposes once an object exists it never goes
1343  * away again.  It's possible that the response from two existence
1344  * checks are separated by the creation of the target object, and
1345  * the first ("doesn't exist") response arrives *after* the second
1346  * ("does exist").  In that case we ignore the second one.
1347  */
1348 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1349                                 bool exists)
1350 {
1351         if (exists)
1352                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1353         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1354         smp_mb();
1355 }
1356
1357 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1358 {
1359         smp_mb();
1360         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1361 }
1362
1363 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1364 {
1365         smp_mb();
1366         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1367 }
1368
1369 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1370 {
1371         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1372                 atomic_read(&obj_request->kref.refcount));
1373         kref_get(&obj_request->kref);
1374 }
1375
1376 static void rbd_obj_request_destroy(struct kref *kref);
1377 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1378 {
1379         rbd_assert(obj_request != NULL);
1380         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1381                 atomic_read(&obj_request->kref.refcount));
1382         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1383 }
1384
1385 static bool img_request_child_test(struct rbd_img_request *img_request);
1386 static void rbd_parent_request_destroy(struct kref *kref);
1387 static void rbd_img_request_destroy(struct kref *kref);
1388 static void rbd_img_request_put(struct rbd_img_request *img_request)
1389 {
1390         rbd_assert(img_request != NULL);
1391         dout("%s: img %p (was %d)\n", __func__, img_request,
1392                 atomic_read(&img_request->kref.refcount));
1393         if (img_request_child_test(img_request))
1394                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1395         else
1396                 kref_put(&img_request->kref, rbd_img_request_destroy);
1397 }
1398
1399 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1400                                         struct rbd_obj_request *obj_request)
1401 {
1402         rbd_assert(obj_request->img_request == NULL);
1403
1404         /* Image request now owns object's original reference */
1405         obj_request->img_request = img_request;
1406         obj_request->which = img_request->obj_request_count;
1407         rbd_assert(!obj_request_img_data_test(obj_request));
1408         obj_request_img_data_set(obj_request);
1409         rbd_assert(obj_request->which != BAD_WHICH);
1410         img_request->obj_request_count++;
1411         list_add_tail(&obj_request->links, &img_request->obj_requests);
1412         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1413                 obj_request->which);
1414 }
1415
1416 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1417                                         struct rbd_obj_request *obj_request)
1418 {
1419         rbd_assert(obj_request->which != BAD_WHICH);
1420
1421         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1422                 obj_request->which);
1423         list_del(&obj_request->links);
1424         rbd_assert(img_request->obj_request_count > 0);
1425         img_request->obj_request_count--;
1426         rbd_assert(obj_request->which == img_request->obj_request_count);
1427         obj_request->which = BAD_WHICH;
1428         rbd_assert(obj_request_img_data_test(obj_request));
1429         rbd_assert(obj_request->img_request == img_request);
1430         obj_request->img_request = NULL;
1431         obj_request->callback = NULL;
1432         rbd_obj_request_put(obj_request);
1433 }
1434
1435 static bool obj_request_type_valid(enum obj_request_type type)
1436 {
1437         switch (type) {
1438         case OBJ_REQUEST_NODATA:
1439         case OBJ_REQUEST_BIO:
1440         case OBJ_REQUEST_PAGES:
1441                 return true;
1442         default:
1443                 return false;
1444         }
1445 }
1446
1447 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1448                                 struct rbd_obj_request *obj_request)
1449 {
1450         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1451
1452         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1453 }
1454
1455 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1456 {
1457
1458         dout("%s: img %p\n", __func__, img_request);
1459
1460         /*
1461          * If no error occurred, compute the aggregate transfer
1462          * count for the image request.  We could instead use
1463          * atomic64_cmpxchg() to update it as each object request
1464          * completes; not clear which way is better off hand.
1465          */
1466         if (!img_request->result) {
1467                 struct rbd_obj_request *obj_request;
1468                 u64 xferred = 0;
1469
1470                 for_each_obj_request(img_request, obj_request)
1471                         xferred += obj_request->xferred;
1472                 img_request->xferred = xferred;
1473         }
1474
1475         if (img_request->callback)
1476                 img_request->callback(img_request);
1477         else
1478                 rbd_img_request_put(img_request);
1479 }
1480
1481 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1482
1483 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1484 {
1485         dout("%s: obj %p\n", __func__, obj_request);
1486
1487         return wait_for_completion_interruptible(&obj_request->completion);
1488 }
1489
1490 /*
1491  * The default/initial value for all image request flags is 0.  Each
1492  * is conditionally set to 1 at image request initialization time
1493  * and currently never change thereafter.
1494  */
1495 static void img_request_write_set(struct rbd_img_request *img_request)
1496 {
1497         set_bit(IMG_REQ_WRITE, &img_request->flags);
1498         smp_mb();
1499 }
1500
1501 static bool img_request_write_test(struct rbd_img_request *img_request)
1502 {
1503         smp_mb();
1504         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1505 }
1506
1507 static void img_request_child_set(struct rbd_img_request *img_request)
1508 {
1509         set_bit(IMG_REQ_CHILD, &img_request->flags);
1510         smp_mb();
1511 }
1512
1513 static void img_request_child_clear(struct rbd_img_request *img_request)
1514 {
1515         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1516         smp_mb();
1517 }
1518
1519 static bool img_request_child_test(struct rbd_img_request *img_request)
1520 {
1521         smp_mb();
1522         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1523 }
1524
1525 static void img_request_layered_set(struct rbd_img_request *img_request)
1526 {
1527         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1528         smp_mb();
1529 }
1530
1531 static void img_request_layered_clear(struct rbd_img_request *img_request)
1532 {
1533         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1534         smp_mb();
1535 }
1536
1537 static bool img_request_layered_test(struct rbd_img_request *img_request)
1538 {
1539         smp_mb();
1540         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1541 }
1542
1543 static void
1544 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1545 {
1546         u64 xferred = obj_request->xferred;
1547         u64 length = obj_request->length;
1548
1549         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1550                 obj_request, obj_request->img_request, obj_request->result,
1551                 xferred, length);
1552         /*
1553          * ENOENT means a hole in the image.  We zero-fill the entire
1554          * length of the request.  A short read also implies zero-fill
1555          * to the end of the request.  An error requires the whole
1556          * length of the request to be reported finished with an error
1557          * to the block layer.  In each case we update the xferred
1558          * count to indicate the whole request was satisfied.
1559          */
1560         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1561         if (obj_request->result == -ENOENT) {
1562                 if (obj_request->type == OBJ_REQUEST_BIO)
1563                         zero_bio_chain(obj_request->bio_list, 0);
1564                 else
1565                         zero_pages(obj_request->pages, 0, length);
1566                 obj_request->result = 0;
1567         } else if (xferred < length && !obj_request->result) {
1568                 if (obj_request->type == OBJ_REQUEST_BIO)
1569                         zero_bio_chain(obj_request->bio_list, xferred);
1570                 else
1571                         zero_pages(obj_request->pages, xferred, length);
1572         }
1573         obj_request->xferred = length;
1574         obj_request_done_set(obj_request);
1575 }
1576
1577 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1578 {
1579         dout("%s: obj %p cb %p\n", __func__, obj_request,
1580                 obj_request->callback);
1581         if (obj_request->callback)
1582                 obj_request->callback(obj_request);
1583         else
1584                 complete_all(&obj_request->completion);
1585 }
1586
1587 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1588 {
1589         dout("%s: obj %p\n", __func__, obj_request);
1590         obj_request_done_set(obj_request);
1591 }
1592
1593 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1594 {
1595         struct rbd_img_request *img_request = NULL;
1596         struct rbd_device *rbd_dev = NULL;
1597         bool layered = false;
1598
1599         if (obj_request_img_data_test(obj_request)) {
1600                 img_request = obj_request->img_request;
1601                 layered = img_request && img_request_layered_test(img_request);
1602                 rbd_dev = img_request->rbd_dev;
1603         }
1604
1605         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1606                 obj_request, img_request, obj_request->result,
1607                 obj_request->xferred, obj_request->length);
1608         if (layered && obj_request->result == -ENOENT &&
1609                         obj_request->img_offset < rbd_dev->parent_overlap)
1610                 rbd_img_parent_read(obj_request);
1611         else if (img_request)
1612                 rbd_img_obj_request_read_callback(obj_request);
1613         else
1614                 obj_request_done_set(obj_request);
1615 }
1616
1617 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1618 {
1619         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1620                 obj_request->result, obj_request->length);
1621         /*
1622          * There is no such thing as a successful short write.  Set
1623          * it to our originally-requested length.
1624          */
1625         obj_request->xferred = obj_request->length;
1626         obj_request_done_set(obj_request);
1627 }
1628
1629 /*
1630  * For a simple stat call there's nothing to do.  We'll do more if
1631  * this is part of a write sequence for a layered image.
1632  */
1633 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1634 {
1635         dout("%s: obj %p\n", __func__, obj_request);
1636         obj_request_done_set(obj_request);
1637 }
1638
1639 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1640                                 struct ceph_msg *msg)
1641 {
1642         struct rbd_obj_request *obj_request = osd_req->r_priv;
1643         u16 opcode;
1644
1645         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1646         rbd_assert(osd_req == obj_request->osd_req);
1647         if (obj_request_img_data_test(obj_request)) {
1648                 rbd_assert(obj_request->img_request);
1649                 rbd_assert(obj_request->which != BAD_WHICH);
1650         } else {
1651                 rbd_assert(obj_request->which == BAD_WHICH);
1652         }
1653
1654         if (osd_req->r_result < 0)
1655                 obj_request->result = osd_req->r_result;
1656
1657         BUG_ON(osd_req->r_num_ops > 2);
1658
1659         /*
1660          * We support a 64-bit length, but ultimately it has to be
1661          * passed to blk_end_request(), which takes an unsigned int.
1662          */
1663         obj_request->xferred = osd_req->r_reply_op_len[0];
1664         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1665         opcode = osd_req->r_ops[0].op;
1666         switch (opcode) {
1667         case CEPH_OSD_OP_READ:
1668                 rbd_osd_read_callback(obj_request);
1669                 break;
1670         case CEPH_OSD_OP_WRITE:
1671                 rbd_osd_write_callback(obj_request);
1672                 break;
1673         case CEPH_OSD_OP_STAT:
1674                 rbd_osd_stat_callback(obj_request);
1675                 break;
1676         case CEPH_OSD_OP_CALL:
1677         case CEPH_OSD_OP_NOTIFY_ACK:
1678         case CEPH_OSD_OP_WATCH:
1679                 rbd_osd_trivial_callback(obj_request);
1680                 break;
1681         default:
1682                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1683                         obj_request->object_name, (unsigned short) opcode);
1684                 break;
1685         }
1686
1687         if (obj_request_done_test(obj_request))
1688                 rbd_obj_request_complete(obj_request);
1689 }
1690
1691 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1692 {
1693         struct rbd_img_request *img_request = obj_request->img_request;
1694         struct ceph_osd_request *osd_req = obj_request->osd_req;
1695         u64 snap_id;
1696
1697         rbd_assert(osd_req != NULL);
1698
1699         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1700         ceph_osdc_build_request(osd_req, obj_request->offset,
1701                         NULL, snap_id, NULL);
1702 }
1703
1704 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1705 {
1706         struct rbd_img_request *img_request = obj_request->img_request;
1707         struct ceph_osd_request *osd_req = obj_request->osd_req;
1708         struct ceph_snap_context *snapc;
1709         struct timespec mtime = CURRENT_TIME;
1710
1711         rbd_assert(osd_req != NULL);
1712
1713         snapc = img_request ? img_request->snapc : NULL;
1714         ceph_osdc_build_request(osd_req, obj_request->offset,
1715                         snapc, CEPH_NOSNAP, &mtime);
1716 }
1717
1718 static struct ceph_osd_request *rbd_osd_req_create(
1719                                         struct rbd_device *rbd_dev,
1720                                         bool write_request,
1721                                         struct rbd_obj_request *obj_request)
1722 {
1723         struct ceph_snap_context *snapc = NULL;
1724         struct ceph_osd_client *osdc;
1725         struct ceph_osd_request *osd_req;
1726
1727         if (obj_request_img_data_test(obj_request)) {
1728                 struct rbd_img_request *img_request = obj_request->img_request;
1729
1730                 rbd_assert(write_request ==
1731                                 img_request_write_test(img_request));
1732                 if (write_request)
1733                         snapc = img_request->snapc;
1734         }
1735
1736         /* Allocate and initialize the request, for the single op */
1737
1738         osdc = &rbd_dev->rbd_client->client->osdc;
1739         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1740         if (!osd_req)
1741                 return NULL;    /* ENOMEM */
1742
1743         if (write_request)
1744                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1745         else
1746                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1747
1748         osd_req->r_callback = rbd_osd_req_callback;
1749         osd_req->r_priv = obj_request;
1750
1751         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1752         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1753
1754         return osd_req;
1755 }
1756
1757 /*
1758  * Create a copyup osd request based on the information in the
1759  * object request supplied.  A copyup request has two osd ops,
1760  * a copyup method call, and a "normal" write request.
1761  */
1762 static struct ceph_osd_request *
1763 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1764 {
1765         struct rbd_img_request *img_request;
1766         struct ceph_snap_context *snapc;
1767         struct rbd_device *rbd_dev;
1768         struct ceph_osd_client *osdc;
1769         struct ceph_osd_request *osd_req;
1770
1771         rbd_assert(obj_request_img_data_test(obj_request));
1772         img_request = obj_request->img_request;
1773         rbd_assert(img_request);
1774         rbd_assert(img_request_write_test(img_request));
1775
1776         /* Allocate and initialize the request, for the two ops */
1777
1778         snapc = img_request->snapc;
1779         rbd_dev = img_request->rbd_dev;
1780         osdc = &rbd_dev->rbd_client->client->osdc;
1781         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1782         if (!osd_req)
1783                 return NULL;    /* ENOMEM */
1784
1785         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1786         osd_req->r_callback = rbd_osd_req_callback;
1787         osd_req->r_priv = obj_request;
1788
1789         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1790         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1791
1792         return osd_req;
1793 }
1794
1795
1796 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1797 {
1798         ceph_osdc_put_request(osd_req);
1799 }
1800
1801 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1802
1803 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1804                                                 u64 offset, u64 length,
1805                                                 enum obj_request_type type)
1806 {
1807         struct rbd_obj_request *obj_request;
1808         size_t size;
1809         char *name;
1810
1811         rbd_assert(obj_request_type_valid(type));
1812
1813         size = strlen(object_name) + 1;
1814         name = kmalloc(size, GFP_KERNEL);
1815         if (!name)
1816                 return NULL;
1817
1818         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1819         if (!obj_request) {
1820                 kfree(name);
1821                 return NULL;
1822         }
1823
1824         obj_request->object_name = memcpy(name, object_name, size);
1825         obj_request->offset = offset;
1826         obj_request->length = length;
1827         obj_request->flags = 0;
1828         obj_request->which = BAD_WHICH;
1829         obj_request->type = type;
1830         INIT_LIST_HEAD(&obj_request->links);
1831         init_completion(&obj_request->completion);
1832         kref_init(&obj_request->kref);
1833
1834         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1835                 offset, length, (int)type, obj_request);
1836
1837         return obj_request;
1838 }
1839
1840 static void rbd_obj_request_destroy(struct kref *kref)
1841 {
1842         struct rbd_obj_request *obj_request;
1843
1844         obj_request = container_of(kref, struct rbd_obj_request, kref);
1845
1846         dout("%s: obj %p\n", __func__, obj_request);
1847
1848         rbd_assert(obj_request->img_request == NULL);
1849         rbd_assert(obj_request->which == BAD_WHICH);
1850
1851         if (obj_request->osd_req)
1852                 rbd_osd_req_destroy(obj_request->osd_req);
1853
1854         rbd_assert(obj_request_type_valid(obj_request->type));
1855         switch (obj_request->type) {
1856         case OBJ_REQUEST_NODATA:
1857                 break;          /* Nothing to do */
1858         case OBJ_REQUEST_BIO:
1859                 if (obj_request->bio_list)
1860                         bio_chain_put(obj_request->bio_list);
1861                 break;
1862         case OBJ_REQUEST_PAGES:
1863                 if (obj_request->pages)
1864                         ceph_release_page_vector(obj_request->pages,
1865                                                 obj_request->page_count);
1866                 break;
1867         }
1868
1869         kfree(obj_request->object_name);
1870         obj_request->object_name = NULL;
1871         kmem_cache_free(rbd_obj_request_cache, obj_request);
1872 }
1873
1874 /* It's OK to call this for a device with no parent */
1875
1876 static void rbd_spec_put(struct rbd_spec *spec);
1877 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1878 {
1879         rbd_dev_remove_parent(rbd_dev);
1880         rbd_spec_put(rbd_dev->parent_spec);
1881         rbd_dev->parent_spec = NULL;
1882         rbd_dev->parent_overlap = 0;
1883 }
1884
1885 /*
1886  * Parent image reference counting is used to determine when an
1887  * image's parent fields can be safely torn down--after there are no
1888  * more in-flight requests to the parent image.  When the last
1889  * reference is dropped, cleaning them up is safe.
1890  */
1891 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1892 {
1893         int counter;
1894
1895         if (!rbd_dev->parent_spec)
1896                 return;
1897
1898         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1899         if (counter > 0)
1900                 return;
1901
1902         /* Last reference; clean up parent data structures */
1903
1904         if (!counter)
1905                 rbd_dev_unparent(rbd_dev);
1906         else
1907                 rbd_warn(rbd_dev, "parent reference underflow\n");
1908 }
1909
1910 /*
1911  * If an image has a non-zero parent overlap, get a reference to its
1912  * parent.
1913  *
1914  * We must get the reference before checking for the overlap to
1915  * coordinate properly with zeroing the parent overlap in
1916  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1917  * drop it again if there is no overlap.
1918  *
1919  * Returns true if the rbd device has a parent with a non-zero
1920  * overlap and a reference for it was successfully taken, or
1921  * false otherwise.
1922  */
1923 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1924 {
1925         int counter;
1926
1927         if (!rbd_dev->parent_spec)
1928                 return false;
1929
1930         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1931         if (counter > 0 && rbd_dev->parent_overlap)
1932                 return true;
1933
1934         /* Image was flattened, but parent is not yet torn down */
1935
1936         if (counter < 0)
1937                 rbd_warn(rbd_dev, "parent reference overflow\n");
1938
1939         return false;
1940 }
1941
1942 /*
1943  * Caller is responsible for filling in the list of object requests
1944  * that comprises the image request, and the Linux request pointer
1945  * (if there is one).
1946  */
1947 static struct rbd_img_request *rbd_img_request_create(
1948                                         struct rbd_device *rbd_dev,
1949                                         u64 offset, u64 length,
1950                                         bool write_request)
1951 {
1952         struct rbd_img_request *img_request;
1953
1954         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1955         if (!img_request)
1956                 return NULL;
1957
1958         if (write_request) {
1959                 down_read(&rbd_dev->header_rwsem);
1960                 ceph_get_snap_context(rbd_dev->header.snapc);
1961                 up_read(&rbd_dev->header_rwsem);
1962         }
1963
1964         img_request->rq = NULL;
1965         img_request->rbd_dev = rbd_dev;
1966         img_request->offset = offset;
1967         img_request->length = length;
1968         img_request->flags = 0;
1969         if (write_request) {
1970                 img_request_write_set(img_request);
1971                 img_request->snapc = rbd_dev->header.snapc;
1972         } else {
1973                 img_request->snap_id = rbd_dev->spec->snap_id;
1974         }
1975         if (rbd_dev_parent_get(rbd_dev))
1976                 img_request_layered_set(img_request);
1977         spin_lock_init(&img_request->completion_lock);
1978         img_request->next_completion = 0;
1979         img_request->callback = NULL;
1980         img_request->result = 0;
1981         img_request->obj_request_count = 0;
1982         INIT_LIST_HEAD(&img_request->obj_requests);
1983         kref_init(&img_request->kref);
1984
1985         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1986                 write_request ? "write" : "read", offset, length,
1987                 img_request);
1988
1989         return img_request;
1990 }
1991
1992 static void rbd_img_request_destroy(struct kref *kref)
1993 {
1994         struct rbd_img_request *img_request;
1995         struct rbd_obj_request *obj_request;
1996         struct rbd_obj_request *next_obj_request;
1997
1998         img_request = container_of(kref, struct rbd_img_request, kref);
1999
2000         dout("%s: img %p\n", __func__, img_request);
2001
2002         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2003                 rbd_img_obj_request_del(img_request, obj_request);
2004         rbd_assert(img_request->obj_request_count == 0);
2005
2006         if (img_request_layered_test(img_request)) {
2007                 img_request_layered_clear(img_request);
2008                 rbd_dev_parent_put(img_request->rbd_dev);
2009         }
2010
2011         if (img_request_write_test(img_request))
2012                 ceph_put_snap_context(img_request->snapc);
2013
2014         kmem_cache_free(rbd_img_request_cache, img_request);
2015 }
2016
2017 static struct rbd_img_request *rbd_parent_request_create(
2018                                         struct rbd_obj_request *obj_request,
2019                                         u64 img_offset, u64 length)
2020 {
2021         struct rbd_img_request *parent_request;
2022         struct rbd_device *rbd_dev;
2023
2024         rbd_assert(obj_request->img_request);
2025         rbd_dev = obj_request->img_request->rbd_dev;
2026
2027         parent_request = rbd_img_request_create(rbd_dev->parent,
2028                                                 img_offset, length, false);
2029         if (!parent_request)
2030                 return NULL;
2031
2032         img_request_child_set(parent_request);
2033         rbd_obj_request_get(obj_request);
2034         parent_request->obj_request = obj_request;
2035
2036         return parent_request;
2037 }
2038
2039 static void rbd_parent_request_destroy(struct kref *kref)
2040 {
2041         struct rbd_img_request *parent_request;
2042         struct rbd_obj_request *orig_request;
2043
2044         parent_request = container_of(kref, struct rbd_img_request, kref);
2045         orig_request = parent_request->obj_request;
2046
2047         parent_request->obj_request = NULL;
2048         rbd_obj_request_put(orig_request);
2049         img_request_child_clear(parent_request);
2050
2051         rbd_img_request_destroy(kref);
2052 }
2053
2054 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2055 {
2056         struct rbd_img_request *img_request;
2057         unsigned int xferred;
2058         int result;
2059         bool more;
2060
2061         rbd_assert(obj_request_img_data_test(obj_request));
2062         img_request = obj_request->img_request;
2063
2064         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2065         xferred = (unsigned int)obj_request->xferred;
2066         result = obj_request->result;
2067         if (result) {
2068                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2069
2070                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2071                         img_request_write_test(img_request) ? "write" : "read",
2072                         obj_request->length, obj_request->img_offset,
2073                         obj_request->offset);
2074                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2075                         result, xferred);
2076                 if (!img_request->result)
2077                         img_request->result = result;
2078         }
2079
2080         /* Image object requests don't own their page array */
2081
2082         if (obj_request->type == OBJ_REQUEST_PAGES) {
2083                 obj_request->pages = NULL;
2084                 obj_request->page_count = 0;
2085         }
2086
2087         if (img_request_child_test(img_request)) {
2088                 rbd_assert(img_request->obj_request != NULL);
2089                 more = obj_request->which < img_request->obj_request_count - 1;
2090         } else {
2091                 rbd_assert(img_request->rq != NULL);
2092                 more = blk_end_request(img_request->rq, result, xferred);
2093         }
2094
2095         return more;
2096 }
2097
2098 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2099 {
2100         struct rbd_img_request *img_request;
2101         u32 which = obj_request->which;
2102         bool more = true;
2103
2104         rbd_assert(obj_request_img_data_test(obj_request));
2105         img_request = obj_request->img_request;
2106
2107         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2108         rbd_assert(img_request != NULL);
2109         rbd_assert(img_request->obj_request_count > 0);
2110         rbd_assert(which != BAD_WHICH);
2111         rbd_assert(which < img_request->obj_request_count);
2112         rbd_assert(which >= img_request->next_completion);
2113
2114         spin_lock_irq(&img_request->completion_lock);
2115         if (which != img_request->next_completion)
2116                 goto out;
2117
2118         for_each_obj_request_from(img_request, obj_request) {
2119                 rbd_assert(more);
2120                 rbd_assert(which < img_request->obj_request_count);
2121
2122                 if (!obj_request_done_test(obj_request))
2123                         break;
2124                 more = rbd_img_obj_end_request(obj_request);
2125                 which++;
2126         }
2127
2128         rbd_assert(more ^ (which == img_request->obj_request_count));
2129         img_request->next_completion = which;
2130 out:
2131         spin_unlock_irq(&img_request->completion_lock);
2132
2133         if (!more)
2134                 rbd_img_request_complete(img_request);
2135 }
2136
2137 /*
2138  * Split up an image request into one or more object requests, each
2139  * to a different object.  The "type" parameter indicates whether
2140  * "data_desc" is the pointer to the head of a list of bio
2141  * structures, or the base of a page array.  In either case this
2142  * function assumes data_desc describes memory sufficient to hold
2143  * all data described by the image request.
2144  */
2145 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2146                                         enum obj_request_type type,
2147                                         void *data_desc)
2148 {
2149         struct rbd_device *rbd_dev = img_request->rbd_dev;
2150         struct rbd_obj_request *obj_request = NULL;
2151         struct rbd_obj_request *next_obj_request;
2152         bool write_request = img_request_write_test(img_request);
2153         struct bio *bio_list = NULL;
2154         unsigned int bio_offset = 0;
2155         struct page **pages = NULL;
2156         u64 img_offset;
2157         u64 resid;
2158         u16 opcode;
2159
2160         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2161                 (int)type, data_desc);
2162
2163         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2164         img_offset = img_request->offset;
2165         resid = img_request->length;
2166         rbd_assert(resid > 0);
2167
2168         if (type == OBJ_REQUEST_BIO) {
2169                 bio_list = data_desc;
2170                 rbd_assert(img_offset ==
2171                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2172         } else {
2173                 rbd_assert(type == OBJ_REQUEST_PAGES);
2174                 pages = data_desc;
2175         }
2176
2177         while (resid) {
2178                 struct ceph_osd_request *osd_req;
2179                 const char *object_name;
2180                 u64 offset;
2181                 u64 length;
2182
2183                 object_name = rbd_segment_name(rbd_dev, img_offset);
2184                 if (!object_name)
2185                         goto out_unwind;
2186                 offset = rbd_segment_offset(rbd_dev, img_offset);
2187                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2188                 obj_request = rbd_obj_request_create(object_name,
2189                                                 offset, length, type);
2190                 /* object request has its own copy of the object name */
2191                 rbd_segment_name_free(object_name);
2192                 if (!obj_request)
2193                         goto out_unwind;
2194                 /*
2195                  * set obj_request->img_request before creating the
2196                  * osd_request so that it gets the right snapc
2197                  */
2198                 rbd_img_obj_request_add(img_request, obj_request);
2199
2200                 if (type == OBJ_REQUEST_BIO) {
2201                         unsigned int clone_size;
2202
2203                         rbd_assert(length <= (u64)UINT_MAX);
2204                         clone_size = (unsigned int)length;
2205                         obj_request->bio_list =
2206                                         bio_chain_clone_range(&bio_list,
2207                                                                 &bio_offset,
2208                                                                 clone_size,
2209                                                                 GFP_ATOMIC);
2210                         if (!obj_request->bio_list)
2211                                 goto out_partial;
2212                 } else {
2213                         unsigned int page_count;
2214
2215                         obj_request->pages = pages;
2216                         page_count = (u32)calc_pages_for(offset, length);
2217                         obj_request->page_count = page_count;
2218                         if ((offset + length) & ~PAGE_MASK)
2219                                 page_count--;   /* more on last page */
2220                         pages += page_count;
2221                 }
2222
2223                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2224                                                 obj_request);
2225                 if (!osd_req)
2226                         goto out_partial;
2227                 obj_request->osd_req = osd_req;
2228                 obj_request->callback = rbd_img_obj_callback;
2229
2230                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2231                                                 0, 0);
2232                 if (type == OBJ_REQUEST_BIO)
2233                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2234                                         obj_request->bio_list, length);
2235                 else
2236                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2237                                         obj_request->pages, length,
2238                                         offset & ~PAGE_MASK, false, false);
2239
2240                 if (write_request)
2241                         rbd_osd_req_format_write(obj_request);
2242                 else
2243                         rbd_osd_req_format_read(obj_request);
2244
2245                 obj_request->img_offset = img_offset;
2246
2247                 img_offset += length;
2248                 resid -= length;
2249         }
2250
2251         return 0;
2252
2253 out_partial:
2254         rbd_obj_request_put(obj_request);
2255 out_unwind:
2256         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2257                 rbd_obj_request_put(obj_request);
2258
2259         return -ENOMEM;
2260 }
2261
2262 static void
2263 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2264 {
2265         struct rbd_img_request *img_request;
2266         struct rbd_device *rbd_dev;
2267         struct page **pages;
2268         u32 page_count;
2269
2270         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2271         rbd_assert(obj_request_img_data_test(obj_request));
2272         img_request = obj_request->img_request;
2273         rbd_assert(img_request);
2274
2275         rbd_dev = img_request->rbd_dev;
2276         rbd_assert(rbd_dev);
2277
2278         pages = obj_request->copyup_pages;
2279         rbd_assert(pages != NULL);
2280         obj_request->copyup_pages = NULL;
2281         page_count = obj_request->copyup_page_count;
2282         rbd_assert(page_count);
2283         obj_request->copyup_page_count = 0;
2284         ceph_release_page_vector(pages, page_count);
2285
2286         /*
2287          * We want the transfer count to reflect the size of the
2288          * original write request.  There is no such thing as a
2289          * successful short write, so if the request was successful
2290          * we can just set it to the originally-requested length.
2291          */
2292         if (!obj_request->result)
2293                 obj_request->xferred = obj_request->length;
2294
2295         /* Finish up with the normal image object callback */
2296
2297         rbd_img_obj_callback(obj_request);
2298 }
2299
2300 static void
2301 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2302 {
2303         struct rbd_obj_request *orig_request;
2304         struct ceph_osd_request *osd_req;
2305         struct ceph_osd_client *osdc;
2306         struct rbd_device *rbd_dev;
2307         struct page **pages;
2308         u32 page_count;
2309         int img_result;
2310         u64 parent_length;
2311         u64 offset;
2312         u64 length;
2313
2314         rbd_assert(img_request_child_test(img_request));
2315
2316         /* First get what we need from the image request */
2317
2318         pages = img_request->copyup_pages;
2319         rbd_assert(pages != NULL);
2320         img_request->copyup_pages = NULL;
2321         page_count = img_request->copyup_page_count;
2322         rbd_assert(page_count);
2323         img_request->copyup_page_count = 0;
2324
2325         orig_request = img_request->obj_request;
2326         rbd_assert(orig_request != NULL);
2327         rbd_assert(obj_request_type_valid(orig_request->type));
2328         img_result = img_request->result;
2329         parent_length = img_request->length;
2330         rbd_assert(parent_length == img_request->xferred);
2331         rbd_img_request_put(img_request);
2332
2333         rbd_assert(orig_request->img_request);
2334         rbd_dev = orig_request->img_request->rbd_dev;
2335         rbd_assert(rbd_dev);
2336
2337         /*
2338          * If the overlap has become 0 (most likely because the
2339          * image has been flattened) we need to free the pages
2340          * and re-submit the original write request.
2341          */
2342         if (!rbd_dev->parent_overlap) {
2343                 struct ceph_osd_client *osdc;
2344
2345                 ceph_release_page_vector(pages, page_count);
2346                 osdc = &rbd_dev->rbd_client->client->osdc;
2347                 img_result = rbd_obj_request_submit(osdc, orig_request);
2348                 if (!img_result)
2349                         return;
2350         }
2351
2352         if (img_result)
2353                 goto out_err;
2354
2355         /*
2356          * The original osd request is of no use to use any more.
2357          * We need a new one that can hold the two ops in a copyup
2358          * request.  Allocate the new copyup osd request for the
2359          * original request, and release the old one.
2360          */
2361         img_result = -ENOMEM;
2362         osd_req = rbd_osd_req_create_copyup(orig_request);
2363         if (!osd_req)
2364                 goto out_err;
2365         rbd_osd_req_destroy(orig_request->osd_req);
2366         orig_request->osd_req = osd_req;
2367         orig_request->copyup_pages = pages;
2368         orig_request->copyup_page_count = page_count;
2369
2370         /* Initialize the copyup op */
2371
2372         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2373         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2374                                                 false, false);
2375
2376         /* Then the original write request op */
2377
2378         offset = orig_request->offset;
2379         length = orig_request->length;
2380         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2381                                         offset, length, 0, 0);
2382         if (orig_request->type == OBJ_REQUEST_BIO)
2383                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2384                                         orig_request->bio_list, length);
2385         else
2386                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2387                                         orig_request->pages, length,
2388                                         offset & ~PAGE_MASK, false, false);
2389
2390         rbd_osd_req_format_write(orig_request);
2391
2392         /* All set, send it off. */
2393
2394         orig_request->callback = rbd_img_obj_copyup_callback;
2395         osdc = &rbd_dev->rbd_client->client->osdc;
2396         img_result = rbd_obj_request_submit(osdc, orig_request);
2397         if (!img_result)
2398                 return;
2399 out_err:
2400         /* Record the error code and complete the request */
2401
2402         orig_request->result = img_result;
2403         orig_request->xferred = 0;
2404         obj_request_done_set(orig_request);
2405         rbd_obj_request_complete(orig_request);
2406 }
2407
2408 /*
2409  * Read from the parent image the range of data that covers the
2410  * entire target of the given object request.  This is used for
2411  * satisfying a layered image write request when the target of an
2412  * object request from the image request does not exist.
2413  *
2414  * A page array big enough to hold the returned data is allocated
2415  * and supplied to rbd_img_request_fill() as the "data descriptor."
2416  * When the read completes, this page array will be transferred to
2417  * the original object request for the copyup operation.
2418  *
2419  * If an error occurs, record it as the result of the original
2420  * object request and mark it done so it gets completed.
2421  */
2422 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2423 {
2424         struct rbd_img_request *img_request = NULL;
2425         struct rbd_img_request *parent_request = NULL;
2426         struct rbd_device *rbd_dev;
2427         u64 img_offset;
2428         u64 length;
2429         struct page **pages = NULL;
2430         u32 page_count;
2431         int result;
2432
2433         rbd_assert(obj_request_img_data_test(obj_request));
2434         rbd_assert(obj_request_type_valid(obj_request->type));
2435
2436         img_request = obj_request->img_request;
2437         rbd_assert(img_request != NULL);
2438         rbd_dev = img_request->rbd_dev;
2439         rbd_assert(rbd_dev->parent != NULL);
2440
2441         /*
2442          * Determine the byte range covered by the object in the
2443          * child image to which the original request was to be sent.
2444          */
2445         img_offset = obj_request->img_offset - obj_request->offset;
2446         length = (u64)1 << rbd_dev->header.obj_order;
2447
2448         /*
2449          * There is no defined parent data beyond the parent
2450          * overlap, so limit what we read at that boundary if
2451          * necessary.
2452          */
2453         if (img_offset + length > rbd_dev->parent_overlap) {
2454                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2455                 length = rbd_dev->parent_overlap - img_offset;
2456         }
2457
2458         /*
2459          * Allocate a page array big enough to receive the data read
2460          * from the parent.
2461          */
2462         page_count = (u32)calc_pages_for(0, length);
2463         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2464         if (IS_ERR(pages)) {
2465                 result = PTR_ERR(pages);
2466                 pages = NULL;
2467                 goto out_err;
2468         }
2469
2470         result = -ENOMEM;
2471         parent_request = rbd_parent_request_create(obj_request,
2472                                                 img_offset, length);
2473         if (!parent_request)
2474                 goto out_err;
2475
2476         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2477         if (result)
2478                 goto out_err;
2479         parent_request->copyup_pages = pages;
2480         parent_request->copyup_page_count = page_count;
2481
2482         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2483         result = rbd_img_request_submit(parent_request);
2484         if (!result)
2485                 return 0;
2486
2487         parent_request->copyup_pages = NULL;
2488         parent_request->copyup_page_count = 0;
2489         parent_request->obj_request = NULL;
2490         rbd_obj_request_put(obj_request);
2491 out_err:
2492         if (pages)
2493                 ceph_release_page_vector(pages, page_count);
2494         if (parent_request)
2495                 rbd_img_request_put(parent_request);
2496         obj_request->result = result;
2497         obj_request->xferred = 0;
2498         obj_request_done_set(obj_request);
2499
2500         return result;
2501 }
2502
2503 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2504 {
2505         struct rbd_obj_request *orig_request;
2506         struct rbd_device *rbd_dev;
2507         int result;
2508
2509         rbd_assert(!obj_request_img_data_test(obj_request));
2510
2511         /*
2512          * All we need from the object request is the original
2513          * request and the result of the STAT op.  Grab those, then
2514          * we're done with the request.
2515          */
2516         orig_request = obj_request->obj_request;
2517         obj_request->obj_request = NULL;
2518         rbd_obj_request_put(orig_request);
2519         rbd_assert(orig_request);
2520         rbd_assert(orig_request->img_request);
2521
2522         result = obj_request->result;
2523         obj_request->result = 0;
2524
2525         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2526                 obj_request, orig_request, result,
2527                 obj_request->xferred, obj_request->length);
2528         rbd_obj_request_put(obj_request);
2529
2530         /*
2531          * If the overlap has become 0 (most likely because the
2532          * image has been flattened) we need to free the pages
2533          * and re-submit the original write request.
2534          */
2535         rbd_dev = orig_request->img_request->rbd_dev;
2536         if (!rbd_dev->parent_overlap) {
2537                 struct ceph_osd_client *osdc;
2538
2539                 osdc = &rbd_dev->rbd_client->client->osdc;
2540                 result = rbd_obj_request_submit(osdc, orig_request);
2541                 if (!result)
2542                         return;
2543         }
2544
2545         /*
2546          * Our only purpose here is to determine whether the object
2547          * exists, and we don't want to treat the non-existence as
2548          * an error.  If something else comes back, transfer the
2549          * error to the original request and complete it now.
2550          */
2551         if (!result) {
2552                 obj_request_existence_set(orig_request, true);
2553         } else if (result == -ENOENT) {
2554                 obj_request_existence_set(orig_request, false);
2555         } else if (result) {
2556                 orig_request->result = result;
2557                 goto out;
2558         }
2559
2560         /*
2561          * Resubmit the original request now that we have recorded
2562          * whether the target object exists.
2563          */
2564         orig_request->result = rbd_img_obj_request_submit(orig_request);
2565 out:
2566         if (orig_request->result)
2567                 rbd_obj_request_complete(orig_request);
2568 }
2569
2570 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2571 {
2572         struct rbd_obj_request *stat_request;
2573         struct rbd_device *rbd_dev;
2574         struct ceph_osd_client *osdc;
2575         struct page **pages = NULL;
2576         u32 page_count;
2577         size_t size;
2578         int ret;
2579
2580         /*
2581          * The response data for a STAT call consists of:
2582          *     le64 length;
2583          *     struct {
2584          *         le32 tv_sec;
2585          *         le32 tv_nsec;
2586          *     } mtime;
2587          */
2588         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2589         page_count = (u32)calc_pages_for(0, size);
2590         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2591         if (IS_ERR(pages))
2592                 return PTR_ERR(pages);
2593
2594         ret = -ENOMEM;
2595         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2596                                                         OBJ_REQUEST_PAGES);
2597         if (!stat_request)
2598                 goto out;
2599
2600         rbd_obj_request_get(obj_request);
2601         stat_request->obj_request = obj_request;
2602         stat_request->pages = pages;
2603         stat_request->page_count = page_count;
2604
2605         rbd_assert(obj_request->img_request);
2606         rbd_dev = obj_request->img_request->rbd_dev;
2607         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2608                                                 stat_request);
2609         if (!stat_request->osd_req)
2610                 goto out;
2611         stat_request->callback = rbd_img_obj_exists_callback;
2612
2613         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2614         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2615                                         false, false);
2616         rbd_osd_req_format_read(stat_request);
2617
2618         osdc = &rbd_dev->rbd_client->client->osdc;
2619         ret = rbd_obj_request_submit(osdc, stat_request);
2620 out:
2621         if (ret)
2622                 rbd_obj_request_put(obj_request);
2623
2624         return ret;
2625 }
2626
2627 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2628 {
2629         struct rbd_img_request *img_request;
2630         struct rbd_device *rbd_dev;
2631         bool known;
2632
2633         rbd_assert(obj_request_img_data_test(obj_request));
2634
2635         img_request = obj_request->img_request;
2636         rbd_assert(img_request);
2637         rbd_dev = img_request->rbd_dev;
2638
2639         /*
2640          * Only writes to layered images need special handling.
2641          * Reads and non-layered writes are simple object requests.
2642          * Layered writes that start beyond the end of the overlap
2643          * with the parent have no parent data, so they too are
2644          * simple object requests.  Finally, if the target object is
2645          * known to already exist, its parent data has already been
2646          * copied, so a write to the object can also be handled as a
2647          * simple object request.
2648          */
2649         if (!img_request_write_test(img_request) ||
2650                 !img_request_layered_test(img_request) ||
2651                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2652                 ((known = obj_request_known_test(obj_request)) &&
2653                         obj_request_exists_test(obj_request))) {
2654
2655                 struct rbd_device *rbd_dev;
2656                 struct ceph_osd_client *osdc;
2657
2658                 rbd_dev = obj_request->img_request->rbd_dev;
2659                 osdc = &rbd_dev->rbd_client->client->osdc;
2660
2661                 return rbd_obj_request_submit(osdc, obj_request);
2662         }
2663
2664         /*
2665          * It's a layered write.  The target object might exist but
2666          * we may not know that yet.  If we know it doesn't exist,
2667          * start by reading the data for the full target object from
2668          * the parent so we can use it for a copyup to the target.
2669          */
2670         if (known)
2671                 return rbd_img_obj_parent_read_full(obj_request);
2672
2673         /* We don't know whether the target exists.  Go find out. */
2674
2675         return rbd_img_obj_exists_submit(obj_request);
2676 }
2677
2678 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2679 {
2680         struct rbd_obj_request *obj_request;
2681         struct rbd_obj_request *next_obj_request;
2682
2683         dout("%s: img %p\n", __func__, img_request);
2684         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2685                 int ret;
2686
2687                 ret = rbd_img_obj_request_submit(obj_request);
2688                 if (ret)
2689                         return ret;
2690         }
2691
2692         return 0;
2693 }
2694
2695 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2696 {
2697         struct rbd_obj_request *obj_request;
2698         struct rbd_device *rbd_dev;
2699         u64 obj_end;
2700         u64 img_xferred;
2701         int img_result;
2702
2703         rbd_assert(img_request_child_test(img_request));
2704
2705         /* First get what we need from the image request and release it */
2706
2707         obj_request = img_request->obj_request;
2708         img_xferred = img_request->xferred;
2709         img_result = img_request->result;
2710         rbd_img_request_put(img_request);
2711
2712         /*
2713          * If the overlap has become 0 (most likely because the
2714          * image has been flattened) we need to re-submit the
2715          * original request.
2716          */
2717         rbd_assert(obj_request);
2718         rbd_assert(obj_request->img_request);
2719         rbd_dev = obj_request->img_request->rbd_dev;
2720         if (!rbd_dev->parent_overlap) {
2721                 struct ceph_osd_client *osdc;
2722
2723                 osdc = &rbd_dev->rbd_client->client->osdc;
2724                 img_result = rbd_obj_request_submit(osdc, obj_request);
2725                 if (!img_result)
2726                         return;
2727         }
2728
2729         obj_request->result = img_result;
2730         if (obj_request->result)
2731                 goto out;
2732
2733         /*
2734          * We need to zero anything beyond the parent overlap
2735          * boundary.  Since rbd_img_obj_request_read_callback()
2736          * will zero anything beyond the end of a short read, an
2737          * easy way to do this is to pretend the data from the
2738          * parent came up short--ending at the overlap boundary.
2739          */
2740         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2741         obj_end = obj_request->img_offset + obj_request->length;
2742         if (obj_end > rbd_dev->parent_overlap) {
2743                 u64 xferred = 0;
2744
2745                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2746                         xferred = rbd_dev->parent_overlap -
2747                                         obj_request->img_offset;
2748
2749                 obj_request->xferred = min(img_xferred, xferred);
2750         } else {
2751                 obj_request->xferred = img_xferred;
2752         }
2753 out:
2754         rbd_img_obj_request_read_callback(obj_request);
2755         rbd_obj_request_complete(obj_request);
2756 }
2757
2758 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2759 {
2760         struct rbd_img_request *img_request;
2761         int result;
2762
2763         rbd_assert(obj_request_img_data_test(obj_request));
2764         rbd_assert(obj_request->img_request != NULL);
2765         rbd_assert(obj_request->result == (s32) -ENOENT);
2766         rbd_assert(obj_request_type_valid(obj_request->type));
2767
2768         /* rbd_read_finish(obj_request, obj_request->length); */
2769         img_request = rbd_parent_request_create(obj_request,
2770                                                 obj_request->img_offset,
2771                                                 obj_request->length);
2772         result = -ENOMEM;
2773         if (!img_request)
2774                 goto out_err;
2775
2776         if (obj_request->type == OBJ_REQUEST_BIO)
2777                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2778                                                 obj_request->bio_list);
2779         else
2780                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2781                                                 obj_request->pages);
2782         if (result)
2783                 goto out_err;
2784
2785         img_request->callback = rbd_img_parent_read_callback;
2786         result = rbd_img_request_submit(img_request);
2787         if (result)
2788                 goto out_err;
2789
2790         return;
2791 out_err:
2792         if (img_request)
2793                 rbd_img_request_put(img_request);
2794         obj_request->result = result;
2795         obj_request->xferred = 0;
2796         obj_request_done_set(obj_request);
2797 }
2798
2799 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2800 {
2801         struct rbd_obj_request *obj_request;
2802         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2803         int ret;
2804
2805         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2806                                                         OBJ_REQUEST_NODATA);
2807         if (!obj_request)
2808                 return -ENOMEM;
2809
2810         ret = -ENOMEM;
2811         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2812         if (!obj_request->osd_req)
2813                 goto out;
2814
2815         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2816                                         notify_id, 0, 0);
2817         rbd_osd_req_format_read(obj_request);
2818
2819         ret = rbd_obj_request_submit(osdc, obj_request);
2820         if (ret)
2821                 goto out;
2822         ret = rbd_obj_request_wait(obj_request);
2823 out:
2824         rbd_obj_request_put(obj_request);
2825
2826         return ret;
2827 }
2828
2829 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2830 {
2831         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2832         int ret;
2833
2834         if (!rbd_dev)
2835                 return;
2836
2837         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2838                 rbd_dev->header_name, (unsigned long long)notify_id,
2839                 (unsigned int)opcode);
2840         ret = rbd_dev_refresh(rbd_dev);
2841         if (ret)
2842                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2843
2844         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2845 }
2846
2847 /*
2848  * Request sync osd watch/unwatch.  The value of "start" determines
2849  * whether a watch request is being initiated or torn down.
2850  */
2851 static int __rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2852 {
2853         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2854         struct rbd_obj_request *obj_request;
2855         int ret;
2856
2857         rbd_assert(start ^ !!rbd_dev->watch_event);
2858         rbd_assert(start ^ !!rbd_dev->watch_request);
2859
2860         if (start) {
2861                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2862                                                 &rbd_dev->watch_event);
2863                 if (ret < 0)
2864                         return ret;
2865                 rbd_assert(rbd_dev->watch_event != NULL);
2866         }
2867
2868         ret = -ENOMEM;
2869         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2870                                                         OBJ_REQUEST_NODATA);
2871         if (!obj_request)
2872                 goto out_cancel;
2873
2874         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2875         if (!obj_request->osd_req)
2876                 goto out_cancel;
2877
2878         if (start)
2879                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2880         else
2881                 ceph_osdc_unregister_linger_request(osdc,
2882                                         rbd_dev->watch_request->osd_req);
2883
2884         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2885                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2886         rbd_osd_req_format_write(obj_request);
2887
2888         ret = rbd_obj_request_submit(osdc, obj_request);
2889         if (ret)
2890                 goto out_cancel;
2891         ret = rbd_obj_request_wait(obj_request);
2892         if (ret)
2893                 goto out_cancel;
2894         ret = obj_request->result;
2895         if (ret)
2896                 goto out_cancel;
2897
2898         /*
2899          * A watch request is set to linger, so the underlying osd
2900          * request won't go away until we unregister it.  We retain
2901          * a pointer to the object request during that time (in
2902          * rbd_dev->watch_request), so we'll keep a reference to
2903          * it.  We'll drop that reference (below) after we've
2904          * unregistered it.
2905          */
2906         if (start) {
2907                 rbd_dev->watch_request = obj_request;
2908
2909                 return 0;
2910         }
2911
2912         /* We have successfully torn down the watch request */
2913
2914         rbd_obj_request_put(rbd_dev->watch_request);
2915         rbd_dev->watch_request = NULL;
2916 out_cancel:
2917         /* Cancel the event if we're tearing down, or on error */
2918         ceph_osdc_cancel_event(rbd_dev->watch_event);
2919         rbd_dev->watch_event = NULL;
2920         if (obj_request)
2921                 rbd_obj_request_put(obj_request);
2922
2923         return ret;
2924 }
2925
2926 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2927 {
2928         return __rbd_dev_header_watch_sync(rbd_dev, true);
2929 }
2930
2931 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
2932 {
2933         int ret;
2934
2935         ret = __rbd_dev_header_watch_sync(rbd_dev, false);
2936         if (ret) {
2937                 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
2938                          ret);
2939         }
2940 }
2941
2942 /*
2943  * Synchronous osd object method call.  Returns the number of bytes
2944  * returned in the outbound buffer, or a negative error code.
2945  */
2946 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2947                              const char *object_name,
2948                              const char *class_name,
2949                              const char *method_name,
2950                              const void *outbound,
2951                              size_t outbound_size,
2952                              void *inbound,
2953                              size_t inbound_size)
2954 {
2955         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2956         struct rbd_obj_request *obj_request;
2957         struct page **pages;
2958         u32 page_count;
2959         int ret;
2960
2961         /*
2962          * Method calls are ultimately read operations.  The result
2963          * should placed into the inbound buffer provided.  They
2964          * also supply outbound data--parameters for the object
2965          * method.  Currently if this is present it will be a
2966          * snapshot id.
2967          */
2968         page_count = (u32)calc_pages_for(0, inbound_size);
2969         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2970         if (IS_ERR(pages))
2971                 return PTR_ERR(pages);
2972
2973         ret = -ENOMEM;
2974         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2975                                                         OBJ_REQUEST_PAGES);
2976         if (!obj_request)
2977                 goto out;
2978
2979         obj_request->pages = pages;
2980         obj_request->page_count = page_count;
2981
2982         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2983         if (!obj_request->osd_req)
2984                 goto out;
2985
2986         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2987                                         class_name, method_name);
2988         if (outbound_size) {
2989                 struct ceph_pagelist *pagelist;
2990
2991                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2992                 if (!pagelist)
2993                         goto out;
2994
2995                 ceph_pagelist_init(pagelist);
2996                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2997                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2998                                                 pagelist);
2999         }
3000         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3001                                         obj_request->pages, inbound_size,
3002                                         0, false, false);
3003         rbd_osd_req_format_read(obj_request);
3004
3005         ret = rbd_obj_request_submit(osdc, obj_request);
3006         if (ret)
3007                 goto out;
3008         ret = rbd_obj_request_wait(obj_request);
3009         if (ret)
3010                 goto out;
3011
3012         ret = obj_request->result;
3013         if (ret < 0)
3014                 goto out;
3015
3016         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3017         ret = (int)obj_request->xferred;
3018         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3019 out:
3020         if (obj_request)
3021                 rbd_obj_request_put(obj_request);
3022         else
3023                 ceph_release_page_vector(pages, page_count);
3024
3025         return ret;
3026 }
3027
3028 static void rbd_request_fn(struct request_queue *q)
3029                 __releases(q->queue_lock) __acquires(q->queue_lock)
3030 {
3031         struct rbd_device *rbd_dev = q->queuedata;
3032         bool read_only = rbd_dev->mapping.read_only;
3033         struct request *rq;
3034         int result;
3035
3036         while ((rq = blk_fetch_request(q))) {
3037                 bool write_request = rq_data_dir(rq) == WRITE;
3038                 struct rbd_img_request *img_request;
3039                 u64 offset;
3040                 u64 length;
3041
3042                 /* Ignore any non-FS requests that filter through. */
3043
3044                 if (rq->cmd_type != REQ_TYPE_FS) {
3045                         dout("%s: non-fs request type %d\n", __func__,
3046                                 (int) rq->cmd_type);
3047                         __blk_end_request_all(rq, 0);
3048                         continue;
3049                 }
3050
3051                 /* Ignore/skip any zero-length requests */
3052
3053                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3054                 length = (u64) blk_rq_bytes(rq);
3055
3056                 if (!length) {
3057                         dout("%s: zero-length request\n", __func__);
3058                         __blk_end_request_all(rq, 0);
3059                         continue;
3060                 }
3061
3062                 spin_unlock_irq(q->queue_lock);
3063
3064                 /* Disallow writes to a read-only device */
3065
3066                 if (write_request) {
3067                         result = -EROFS;
3068                         if (read_only)
3069                                 goto end_request;
3070                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3071                 }
3072
3073                 /*
3074                  * Quit early if the mapped snapshot no longer
3075                  * exists.  It's still possible the snapshot will
3076                  * have disappeared by the time our request arrives
3077                  * at the osd, but there's no sense in sending it if
3078                  * we already know.
3079                  */
3080                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3081                         dout("request for non-existent snapshot");
3082                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3083                         result = -ENXIO;
3084                         goto end_request;
3085                 }
3086
3087                 result = -EINVAL;
3088                 if (offset && length > U64_MAX - offset + 1) {
3089                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3090                                 offset, length);
3091                         goto end_request;       /* Shouldn't happen */
3092                 }
3093
3094                 result = -EIO;
3095                 if (offset + length > rbd_dev->mapping.size) {
3096                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3097                                 offset, length, rbd_dev->mapping.size);
3098                         goto end_request;
3099                 }
3100
3101                 result = -ENOMEM;
3102                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3103                                                         write_request);
3104                 if (!img_request)
3105                         goto end_request;
3106
3107                 img_request->rq = rq;
3108
3109                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3110                                                 rq->bio);
3111                 if (!result)
3112                         result = rbd_img_request_submit(img_request);
3113                 if (result)
3114                         rbd_img_request_put(img_request);
3115 end_request:
3116                 spin_lock_irq(q->queue_lock);
3117                 if (result < 0) {
3118                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3119                                 write_request ? "write" : "read",
3120                                 length, offset, result);
3121
3122                         __blk_end_request_all(rq, result);
3123                 }
3124         }
3125 }
3126
3127 /*
3128  * a queue callback. Makes sure that we don't create a bio that spans across
3129  * multiple osd objects. One exception would be with a single page bios,
3130  * which we handle later at bio_chain_clone_range()
3131  */
3132 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3133                           struct bio_vec *bvec)
3134 {
3135         struct rbd_device *rbd_dev = q->queuedata;
3136         sector_t sector_offset;
3137         sector_t sectors_per_obj;
3138         sector_t obj_sector_offset;
3139         int ret;
3140
3141         /*
3142          * Find how far into its rbd object the partition-relative
3143          * bio start sector is to offset relative to the enclosing
3144          * device.
3145          */
3146         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3147         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3148         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3149
3150         /*
3151          * Compute the number of bytes from that offset to the end
3152          * of the object.  Account for what's already used by the bio.
3153          */
3154         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3155         if (ret > bmd->bi_size)
3156                 ret -= bmd->bi_size;
3157         else
3158                 ret = 0;
3159
3160         /*
3161          * Don't send back more than was asked for.  And if the bio
3162          * was empty, let the whole thing through because:  "Note
3163          * that a block device *must* allow a single page to be
3164          * added to an empty bio."
3165          */
3166         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3167         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3168                 ret = (int) bvec->bv_len;
3169
3170         return ret;
3171 }
3172
3173 static void rbd_free_disk(struct rbd_device *rbd_dev)
3174 {
3175         struct gendisk *disk = rbd_dev->disk;
3176
3177         if (!disk)
3178                 return;
3179
3180         rbd_dev->disk = NULL;
3181         if (disk->flags & GENHD_FL_UP) {
3182                 del_gendisk(disk);
3183                 if (disk->queue)
3184                         blk_cleanup_queue(disk->queue);
3185         }
3186         put_disk(disk);
3187 }
3188
3189 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3190                                 const char *object_name,
3191                                 u64 offset, u64 length, void *buf)
3192
3193 {
3194         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3195         struct rbd_obj_request *obj_request;
3196         struct page **pages = NULL;
3197         u32 page_count;
3198         size_t size;
3199         int ret;
3200
3201         page_count = (u32) calc_pages_for(offset, length);
3202         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3203         if (IS_ERR(pages))
3204                 ret = PTR_ERR(pages);
3205
3206         ret = -ENOMEM;
3207         obj_request = rbd_obj_request_create(object_name, offset, length,
3208                                                         OBJ_REQUEST_PAGES);
3209         if (!obj_request)
3210                 goto out;
3211
3212         obj_request->pages = pages;
3213         obj_request->page_count = page_count;
3214
3215         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3216         if (!obj_request->osd_req)
3217                 goto out;
3218
3219         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3220                                         offset, length, 0, 0);
3221         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3222                                         obj_request->pages,
3223                                         obj_request->length,
3224                                         obj_request->offset & ~PAGE_MASK,
3225                                         false, false);
3226         rbd_osd_req_format_read(obj_request);
3227
3228         ret = rbd_obj_request_submit(osdc, obj_request);
3229         if (ret)
3230                 goto out;
3231         ret = rbd_obj_request_wait(obj_request);
3232         if (ret)
3233                 goto out;
3234
3235         ret = obj_request->result;
3236         if (ret < 0)
3237                 goto out;
3238
3239         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3240         size = (size_t) obj_request->xferred;
3241         ceph_copy_from_page_vector(pages, buf, 0, size);
3242         rbd_assert(size <= (size_t)INT_MAX);
3243         ret = (int)size;
3244 out:
3245         if (obj_request)
3246                 rbd_obj_request_put(obj_request);
3247         else
3248                 ceph_release_page_vector(pages, page_count);
3249
3250         return ret;
3251 }
3252
3253 /*
3254  * Read the complete header for the given rbd device.  On successful
3255  * return, the rbd_dev->header field will contain up-to-date
3256  * information about the image.
3257  */
3258 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3259 {
3260         struct rbd_image_header_ondisk *ondisk = NULL;
3261         u32 snap_count = 0;
3262         u64 names_size = 0;
3263         u32 want_count;
3264         int ret;
3265
3266         /*
3267          * The complete header will include an array of its 64-bit
3268          * snapshot ids, followed by the names of those snapshots as
3269          * a contiguous block of NUL-terminated strings.  Note that
3270          * the number of snapshots could change by the time we read
3271          * it in, in which case we re-read it.
3272          */
3273         do {
3274                 size_t size;
3275
3276                 kfree(ondisk);
3277
3278                 size = sizeof (*ondisk);
3279                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3280                 size += names_size;
3281                 ondisk = kmalloc(size, GFP_KERNEL);
3282                 if (!ondisk)
3283                         return -ENOMEM;
3284
3285                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3286                                        0, size, ondisk);
3287                 if (ret < 0)
3288                         goto out;
3289                 if ((size_t)ret < size) {
3290                         ret = -ENXIO;
3291                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3292                                 size, ret);
3293                         goto out;
3294                 }
3295                 if (!rbd_dev_ondisk_valid(ondisk)) {
3296                         ret = -ENXIO;
3297                         rbd_warn(rbd_dev, "invalid header");
3298                         goto out;
3299                 }
3300
3301                 names_size = le64_to_cpu(ondisk->snap_names_len);
3302                 want_count = snap_count;
3303                 snap_count = le32_to_cpu(ondisk->snap_count);
3304         } while (snap_count != want_count);
3305
3306         ret = rbd_header_from_disk(rbd_dev, ondisk);
3307 out:
3308         kfree(ondisk);
3309
3310         return ret;
3311 }
3312
3313 /*
3314  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3315  * has disappeared from the (just updated) snapshot context.
3316  */
3317 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3318 {
3319         u64 snap_id;
3320
3321         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3322                 return;
3323
3324         snap_id = rbd_dev->spec->snap_id;
3325         if (snap_id == CEPH_NOSNAP)
3326                 return;
3327
3328         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3329                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3330 }
3331
3332 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3333 {
3334         sector_t size;
3335         bool removing;
3336
3337         /*
3338          * Don't hold the lock while doing disk operations,
3339          * or lock ordering will conflict with the bdev mutex via:
3340          * rbd_add() -> blkdev_get() -> rbd_open()
3341          */
3342         spin_lock_irq(&rbd_dev->lock);
3343         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3344         spin_unlock_irq(&rbd_dev->lock);
3345         /*
3346          * If the device is being removed, rbd_dev->disk has
3347          * been destroyed, so don't try to update its size
3348          */
3349         if (!removing) {
3350                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3351                 dout("setting size to %llu sectors", (unsigned long long)size);
3352                 set_capacity(rbd_dev->disk, size);
3353                 revalidate_disk(rbd_dev->disk);
3354         }
3355 }
3356
3357 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3358 {
3359         u64 mapping_size;
3360         int ret;
3361
3362         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3363         down_write(&rbd_dev->header_rwsem);
3364         mapping_size = rbd_dev->mapping.size;
3365         if (rbd_dev->image_format == 1)
3366                 ret = rbd_dev_v1_header_info(rbd_dev);
3367         else
3368                 ret = rbd_dev_v2_header_info(rbd_dev);
3369
3370         /* If it's a mapped snapshot, validate its EXISTS flag */
3371
3372         rbd_exists_validate(rbd_dev);
3373         up_write(&rbd_dev->header_rwsem);
3374
3375         if (mapping_size != rbd_dev->mapping.size) {
3376                 rbd_dev_update_size(rbd_dev);
3377         }
3378
3379         return ret;
3380 }
3381
3382 static int rbd_init_disk(struct rbd_device *rbd_dev)
3383 {
3384         struct gendisk *disk;
3385         struct request_queue *q;
3386         u64 segment_size;
3387
3388         /* create gendisk info */
3389         disk = alloc_disk(single_major ?
3390                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3391                           RBD_MINORS_PER_MAJOR);
3392         if (!disk)
3393                 return -ENOMEM;
3394
3395         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3396                  rbd_dev->dev_id);
3397         disk->major = rbd_dev->major;
3398         disk->first_minor = rbd_dev->minor;
3399         if (single_major)
3400                 disk->flags |= GENHD_FL_EXT_DEVT;
3401         disk->fops = &rbd_bd_ops;
3402         disk->private_data = rbd_dev;
3403
3404         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3405         if (!q)
3406                 goto out_disk;
3407
3408         /* We use the default size, but let's be explicit about it. */
3409         blk_queue_physical_block_size(q, SECTOR_SIZE);
3410
3411         /* set io sizes to object size */
3412         segment_size = rbd_obj_bytes(&rbd_dev->header);
3413         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3414         blk_queue_max_segment_size(q, segment_size);
3415         blk_queue_io_min(q, segment_size);
3416         blk_queue_io_opt(q, segment_size);
3417
3418         blk_queue_merge_bvec(q, rbd_merge_bvec);
3419         disk->queue = q;
3420
3421         q->queuedata = rbd_dev;
3422
3423         rbd_dev->disk = disk;
3424
3425         return 0;
3426 out_disk:
3427         put_disk(disk);
3428
3429         return -ENOMEM;
3430 }
3431
3432 /*
3433   sysfs
3434 */
3435
3436 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3437 {
3438         return container_of(dev, struct rbd_device, dev);
3439 }
3440
3441 static ssize_t rbd_size_show(struct device *dev,
3442                              struct device_attribute *attr, char *buf)
3443 {
3444         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3445
3446         return sprintf(buf, "%llu\n",
3447                 (unsigned long long)rbd_dev->mapping.size);
3448 }
3449
3450 /*
3451  * Note this shows the features for whatever's mapped, which is not
3452  * necessarily the base image.
3453  */
3454 static ssize_t rbd_features_show(struct device *dev,
3455                              struct device_attribute *attr, char *buf)
3456 {
3457         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3458
3459         return sprintf(buf, "0x%016llx\n",
3460                         (unsigned long long)rbd_dev->mapping.features);
3461 }
3462
3463 static ssize_t rbd_major_show(struct device *dev,
3464                               struct device_attribute *attr, char *buf)
3465 {
3466         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3467
3468         if (rbd_dev->major)
3469                 return sprintf(buf, "%d\n", rbd_dev->major);
3470
3471         return sprintf(buf, "(none)\n");
3472 }
3473
3474 static ssize_t rbd_minor_show(struct device *dev,
3475                               struct device_attribute *attr, char *buf)
3476 {
3477         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3478
3479         return sprintf(buf, "%d\n", rbd_dev->minor);
3480 }
3481
3482 static ssize_t rbd_client_id_show(struct device *dev,
3483                                   struct device_attribute *attr, char *buf)
3484 {
3485         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3486
3487         return sprintf(buf, "client%lld\n",
3488                         ceph_client_id(rbd_dev->rbd_client->client));
3489 }
3490
3491 static ssize_t rbd_pool_show(struct device *dev,
3492                              struct device_attribute *attr, char *buf)
3493 {
3494         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3495
3496         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3497 }
3498
3499 static ssize_t rbd_pool_id_show(struct device *dev,
3500                              struct device_attribute *attr, char *buf)
3501 {
3502         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3503
3504         return sprintf(buf, "%llu\n",
3505                         (unsigned long long) rbd_dev->spec->pool_id);
3506 }
3507
3508 static ssize_t rbd_name_show(struct device *dev,
3509                              struct device_attribute *attr, char *buf)
3510 {
3511         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3512
3513         if (rbd_dev->spec->image_name)
3514                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3515
3516         return sprintf(buf, "(unknown)\n");
3517 }
3518
3519 static ssize_t rbd_image_id_show(struct device *dev,
3520                              struct device_attribute *attr, char *buf)
3521 {
3522         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3523
3524         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3525 }
3526
3527 /*
3528  * Shows the name of the currently-mapped snapshot (or
3529  * RBD_SNAP_HEAD_NAME for the base image).
3530  */
3531 static ssize_t rbd_snap_show(struct device *dev,
3532                              struct device_attribute *attr,
3533                              char *buf)
3534 {
3535         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3536
3537         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3538 }
3539
3540 /*
3541  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3542  * for the parent image.  If there is no parent, simply shows
3543  * "(no parent image)".
3544  */
3545 static ssize_t rbd_parent_show(struct device *dev,
3546                              struct device_attribute *attr,
3547                              char *buf)
3548 {
3549         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3550         struct rbd_spec *spec = rbd_dev->parent_spec;
3551         int count;
3552         char *bufp = buf;
3553
3554         if (!spec)
3555                 return sprintf(buf, "(no parent image)\n");
3556
3557         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3558                         (unsigned long long) spec->pool_id, spec->pool_name);
3559         if (count < 0)
3560                 return count;
3561         bufp += count;
3562
3563         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3564                         spec->image_name ? spec->image_name : "(unknown)");
3565         if (count < 0)
3566                 return count;
3567         bufp += count;
3568
3569         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3570                         (unsigned long long) spec->snap_id, spec->snap_name);
3571         if (count < 0)
3572                 return count;
3573         bufp += count;
3574
3575         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3576         if (count < 0)
3577                 return count;
3578         bufp += count;
3579
3580         return (ssize_t) (bufp - buf);
3581 }
3582
3583 static ssize_t rbd_image_refresh(struct device *dev,
3584                                  struct device_attribute *attr,
3585                                  const char *buf,
3586                                  size_t size)
3587 {
3588         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3589         int ret;
3590
3591         ret = rbd_dev_refresh(rbd_dev);
3592         if (ret)
3593                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3594
3595         return ret < 0 ? ret : size;
3596 }
3597
3598 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3599 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3600 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3601 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3602 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3603 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3604 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3605 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3606 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3607 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3608 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3609 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3610
3611 static struct attribute *rbd_attrs[] = {
3612         &dev_attr_size.attr,
3613         &dev_attr_features.attr,
3614         &dev_attr_major.attr,
3615         &dev_attr_minor.attr,
3616         &dev_attr_client_id.attr,
3617         &dev_attr_pool.attr,
3618         &dev_attr_pool_id.attr,
3619         &dev_attr_name.attr,
3620         &dev_attr_image_id.attr,
3621         &dev_attr_current_snap.attr,
3622         &dev_attr_parent.attr,
3623         &dev_attr_refresh.attr,
3624         NULL
3625 };
3626
3627 static struct attribute_group rbd_attr_group = {
3628         .attrs = rbd_attrs,
3629 };
3630
3631 static const struct attribute_group *rbd_attr_groups[] = {
3632         &rbd_attr_group,
3633         NULL
3634 };
3635
3636 static void rbd_sysfs_dev_release(struct device *dev)
3637 {
3638 }
3639
3640 static struct device_type rbd_device_type = {
3641         .name           = "rbd",
3642         .groups         = rbd_attr_groups,
3643         .release        = rbd_sysfs_dev_release,
3644 };
3645
3646 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3647 {
3648         kref_get(&spec->kref);
3649
3650         return spec;
3651 }
3652
3653 static void rbd_spec_free(struct kref *kref);
3654 static void rbd_spec_put(struct rbd_spec *spec)
3655 {
3656         if (spec)
3657                 kref_put(&spec->kref, rbd_spec_free);
3658 }
3659
3660 static struct rbd_spec *rbd_spec_alloc(void)
3661 {
3662         struct rbd_spec *spec;
3663
3664         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3665         if (!spec)
3666                 return NULL;
3667         kref_init(&spec->kref);
3668
3669         return spec;
3670 }
3671
3672 static void rbd_spec_free(struct kref *kref)
3673 {
3674         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3675
3676         kfree(spec->pool_name);
3677         kfree(spec->image_id);
3678         kfree(spec->image_name);
3679         kfree(spec->snap_name);
3680         kfree(spec);
3681 }
3682
3683 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3684                                 struct rbd_spec *spec)
3685 {
3686         struct rbd_device *rbd_dev;
3687
3688         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3689         if (!rbd_dev)
3690                 return NULL;
3691
3692         spin_lock_init(&rbd_dev->lock);
3693         rbd_dev->flags = 0;
3694         atomic_set(&rbd_dev->parent_ref, 0);
3695         INIT_LIST_HEAD(&rbd_dev->node);
3696         init_rwsem(&rbd_dev->header_rwsem);
3697
3698         rbd_dev->spec = spec;
3699         rbd_dev->rbd_client = rbdc;
3700
3701         /* Initialize the layout used for all rbd requests */
3702
3703         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3704         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3705         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3706         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3707
3708         return rbd_dev;
3709 }
3710
3711 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3712 {
3713         rbd_put_client(rbd_dev->rbd_client);
3714         rbd_spec_put(rbd_dev->spec);
3715         kfree(rbd_dev);
3716 }
3717
3718 /*
3719  * Get the size and object order for an image snapshot, or if
3720  * snap_id is CEPH_NOSNAP, gets this information for the base
3721  * image.
3722  */
3723 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3724                                 u8 *order, u64 *snap_size)
3725 {
3726         __le64 snapid = cpu_to_le64(snap_id);
3727         int ret;
3728         struct {
3729                 u8 order;
3730                 __le64 size;
3731         } __attribute__ ((packed)) size_buf = { 0 };
3732
3733         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3734                                 "rbd", "get_size",
3735                                 &snapid, sizeof (snapid),
3736                                 &size_buf, sizeof (size_buf));
3737         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3738         if (ret < 0)
3739                 return ret;
3740         if (ret < sizeof (size_buf))
3741                 return -ERANGE;
3742
3743         if (order) {
3744                 *order = size_buf.order;
3745                 dout("  order %u", (unsigned int)*order);
3746         }
3747         *snap_size = le64_to_cpu(size_buf.size);
3748
3749         dout("  snap_id 0x%016llx snap_size = %llu\n",
3750                 (unsigned long long)snap_id,
3751                 (unsigned long long)*snap_size);
3752
3753         return 0;
3754 }
3755
3756 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3757 {
3758         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3759                                         &rbd_dev->header.obj_order,
3760                                         &rbd_dev->header.image_size);
3761 }
3762
3763 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3764 {
3765         void *reply_buf;
3766         int ret;
3767         void *p;
3768
3769         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3770         if (!reply_buf)
3771                 return -ENOMEM;
3772
3773         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3774                                 "rbd", "get_object_prefix", NULL, 0,
3775                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3776         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3777         if (ret < 0)
3778                 goto out;
3779
3780         p = reply_buf;
3781         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3782                                                 p + ret, NULL, GFP_NOIO);
3783         ret = 0;
3784
3785         if (IS_ERR(rbd_dev->header.object_prefix)) {
3786                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3787                 rbd_dev->header.object_prefix = NULL;
3788         } else {
3789                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3790         }
3791 out:
3792         kfree(reply_buf);
3793
3794         return ret;
3795 }
3796
3797 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3798                 u64 *snap_features)
3799 {
3800         __le64 snapid = cpu_to_le64(snap_id);
3801         struct {
3802                 __le64 features;
3803                 __le64 incompat;
3804         } __attribute__ ((packed)) features_buf = { 0 };
3805         u64 incompat;
3806         int ret;
3807
3808         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3809                                 "rbd", "get_features",
3810                                 &snapid, sizeof (snapid),
3811                                 &features_buf, sizeof (features_buf));
3812         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3813         if (ret < 0)
3814                 return ret;
3815         if (ret < sizeof (features_buf))
3816                 return -ERANGE;
3817
3818         incompat = le64_to_cpu(features_buf.incompat);
3819         if (incompat & ~RBD_FEATURES_SUPPORTED)
3820                 return -ENXIO;
3821
3822         *snap_features = le64_to_cpu(features_buf.features);
3823
3824         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3825                 (unsigned long long)snap_id,
3826                 (unsigned long long)*snap_features,
3827                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3828
3829         return 0;
3830 }
3831
3832 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3833 {
3834         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3835                                                 &rbd_dev->header.features);
3836 }
3837
3838 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3839 {
3840         struct rbd_spec *parent_spec;
3841         size_t size;
3842         void *reply_buf = NULL;
3843         __le64 snapid;
3844         void *p;
3845         void *end;
3846         u64 pool_id;
3847         char *image_id;
3848         u64 snap_id;
3849         u64 overlap;
3850         int ret;
3851
3852         parent_spec = rbd_spec_alloc();
3853         if (!parent_spec)
3854                 return -ENOMEM;
3855
3856         size = sizeof (__le64) +                                /* pool_id */
3857                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3858                 sizeof (__le64) +                               /* snap_id */
3859                 sizeof (__le64);                                /* overlap */
3860         reply_buf = kmalloc(size, GFP_KERNEL);
3861         if (!reply_buf) {
3862                 ret = -ENOMEM;
3863                 goto out_err;
3864         }
3865
3866         snapid = cpu_to_le64(CEPH_NOSNAP);
3867         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3868                                 "rbd", "get_parent",
3869                                 &snapid, sizeof (snapid),
3870                                 reply_buf, size);
3871         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3872         if (ret < 0)
3873                 goto out_err;
3874
3875         p = reply_buf;
3876         end = reply_buf + ret;
3877         ret = -ERANGE;
3878         ceph_decode_64_safe(&p, end, pool_id, out_err);
3879         if (pool_id == CEPH_NOPOOL) {
3880                 /*
3881                  * Either the parent never existed, or we have
3882                  * record of it but the image got flattened so it no
3883                  * longer has a parent.  When the parent of a
3884                  * layered image disappears we immediately set the
3885                  * overlap to 0.  The effect of this is that all new
3886                  * requests will be treated as if the image had no
3887                  * parent.
3888                  */
3889                 if (rbd_dev->parent_overlap) {
3890                         rbd_dev->parent_overlap = 0;
3891                         smp_mb();
3892                         rbd_dev_parent_put(rbd_dev);
3893                         pr_info("%s: clone image has been flattened\n",
3894                                 rbd_dev->disk->disk_name);
3895                 }
3896
3897                 goto out;       /* No parent?  No problem. */
3898         }
3899
3900         /* The ceph file layout needs to fit pool id in 32 bits */
3901
3902         ret = -EIO;
3903         if (pool_id > (u64)U32_MAX) {
3904                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3905                         (unsigned long long)pool_id, U32_MAX);
3906                 goto out_err;
3907         }
3908
3909         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3910         if (IS_ERR(image_id)) {
3911                 ret = PTR_ERR(image_id);
3912                 goto out_err;
3913         }
3914         ceph_decode_64_safe(&p, end, snap_id, out_err);
3915         ceph_decode_64_safe(&p, end, overlap, out_err);
3916
3917         /*
3918          * The parent won't change (except when the clone is
3919          * flattened, already handled that).  So we only need to
3920          * record the parent spec we have not already done so.
3921          */
3922         if (!rbd_dev->parent_spec) {
3923                 parent_spec->pool_id = pool_id;
3924                 parent_spec->image_id = image_id;
3925                 parent_spec->snap_id = snap_id;
3926                 rbd_dev->parent_spec = parent_spec;
3927                 parent_spec = NULL;     /* rbd_dev now owns this */
3928         }
3929
3930         /*
3931          * We always update the parent overlap.  If it's zero we
3932          * treat it specially.
3933          */
3934         rbd_dev->parent_overlap = overlap;
3935         smp_mb();
3936         if (!overlap) {
3937
3938                 /* A null parent_spec indicates it's the initial probe */
3939
3940                 if (parent_spec) {
3941                         /*
3942                          * The overlap has become zero, so the clone
3943                          * must have been resized down to 0 at some
3944                          * point.  Treat this the same as a flatten.
3945                          */
3946                         rbd_dev_parent_put(rbd_dev);
3947                         pr_info("%s: clone image now standalone\n",
3948                                 rbd_dev->disk->disk_name);
3949                 } else {
3950                         /*
3951                          * For the initial probe, if we find the
3952                          * overlap is zero we just pretend there was
3953                          * no parent image.
3954                          */
3955                         rbd_warn(rbd_dev, "ignoring parent of "
3956                                                 "clone with overlap 0\n");
3957                 }
3958         }
3959 out:
3960         ret = 0;
3961 out_err:
3962         kfree(reply_buf);
3963         rbd_spec_put(parent_spec);
3964
3965         return ret;
3966 }
3967
3968 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3969 {
3970         struct {
3971                 __le64 stripe_unit;
3972                 __le64 stripe_count;
3973         } __attribute__ ((packed)) striping_info_buf = { 0 };
3974         size_t size = sizeof (striping_info_buf);
3975         void *p;
3976         u64 obj_size;
3977         u64 stripe_unit;
3978         u64 stripe_count;
3979         int ret;
3980
3981         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3982                                 "rbd", "get_stripe_unit_count", NULL, 0,
3983                                 (char *)&striping_info_buf, size);
3984         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3985         if (ret < 0)
3986                 return ret;
3987         if (ret < size)
3988                 return -ERANGE;
3989
3990         /*
3991          * We don't actually support the "fancy striping" feature
3992          * (STRIPINGV2) yet, but if the striping sizes are the
3993          * defaults the behavior is the same as before.  So find
3994          * out, and only fail if the image has non-default values.
3995          */
3996         ret = -EINVAL;
3997         obj_size = (u64)1 << rbd_dev->header.obj_order;
3998         p = &striping_info_buf;
3999         stripe_unit = ceph_decode_64(&p);
4000         if (stripe_unit != obj_size) {
4001                 rbd_warn(rbd_dev, "unsupported stripe unit "
4002                                 "(got %llu want %llu)",
4003                                 stripe_unit, obj_size);
4004                 return -EINVAL;
4005         }
4006         stripe_count = ceph_decode_64(&p);
4007         if (stripe_count != 1) {
4008                 rbd_warn(rbd_dev, "unsupported stripe count "
4009                                 "(got %llu want 1)", stripe_count);
4010                 return -EINVAL;
4011         }
4012         rbd_dev->header.stripe_unit = stripe_unit;
4013         rbd_dev->header.stripe_count = stripe_count;
4014
4015         return 0;
4016 }
4017
4018 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4019 {
4020         size_t image_id_size;
4021         char *image_id;
4022         void *p;
4023         void *end;
4024         size_t size;
4025         void *reply_buf = NULL;
4026         size_t len = 0;
4027         char *image_name = NULL;
4028         int ret;
4029
4030         rbd_assert(!rbd_dev->spec->image_name);
4031
4032         len = strlen(rbd_dev->spec->image_id);
4033         image_id_size = sizeof (__le32) + len;
4034         image_id = kmalloc(image_id_size, GFP_KERNEL);
4035         if (!image_id)
4036                 return NULL;
4037
4038         p = image_id;
4039         end = image_id + image_id_size;
4040         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4041
4042         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4043         reply_buf = kmalloc(size, GFP_KERNEL);
4044         if (!reply_buf)
4045                 goto out;
4046
4047         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4048                                 "rbd", "dir_get_name",
4049                                 image_id, image_id_size,
4050                                 reply_buf, size);
4051         if (ret < 0)
4052                 goto out;
4053         p = reply_buf;
4054         end = reply_buf + ret;
4055
4056         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4057         if (IS_ERR(image_name))
4058                 image_name = NULL;
4059         else
4060                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4061 out:
4062         kfree(reply_buf);
4063         kfree(image_id);
4064
4065         return image_name;
4066 }
4067
4068 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4069 {
4070         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4071         const char *snap_name;
4072         u32 which = 0;
4073
4074         /* Skip over names until we find the one we are looking for */
4075
4076         snap_name = rbd_dev->header.snap_names;
4077         while (which < snapc->num_snaps) {
4078                 if (!strcmp(name, snap_name))
4079                         return snapc->snaps[which];
4080                 snap_name += strlen(snap_name) + 1;
4081                 which++;
4082         }
4083         return CEPH_NOSNAP;
4084 }
4085
4086 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4087 {
4088         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4089         u32 which;
4090         bool found = false;
4091         u64 snap_id;
4092
4093         for (which = 0; !found && which < snapc->num_snaps; which++) {
4094                 const char *snap_name;
4095
4096                 snap_id = snapc->snaps[which];
4097                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4098                 if (IS_ERR(snap_name)) {
4099                         /* ignore no-longer existing snapshots */
4100                         if (PTR_ERR(snap_name) == -ENOENT)
4101                                 continue;
4102                         else
4103                                 break;
4104                 }
4105                 found = !strcmp(name, snap_name);
4106                 kfree(snap_name);
4107         }
4108         return found ? snap_id : CEPH_NOSNAP;
4109 }
4110
4111 /*
4112  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4113  * no snapshot by that name is found, or if an error occurs.
4114  */
4115 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4116 {
4117         if (rbd_dev->image_format == 1)
4118                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4119
4120         return rbd_v2_snap_id_by_name(rbd_dev, name);
4121 }
4122
4123 /*
4124  * When an rbd image has a parent image, it is identified by the
4125  * pool, image, and snapshot ids (not names).  This function fills
4126  * in the names for those ids.  (It's OK if we can't figure out the
4127  * name for an image id, but the pool and snapshot ids should always
4128  * exist and have names.)  All names in an rbd spec are dynamically
4129  * allocated.
4130  *
4131  * When an image being mapped (not a parent) is probed, we have the
4132  * pool name and pool id, image name and image id, and the snapshot
4133  * name.  The only thing we're missing is the snapshot id.
4134  */
4135 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4136 {
4137         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4138         struct rbd_spec *spec = rbd_dev->spec;
4139         const char *pool_name;
4140         const char *image_name;
4141         const char *snap_name;
4142         int ret;
4143
4144         /*
4145          * An image being mapped will have the pool name (etc.), but
4146          * we need to look up the snapshot id.
4147          */
4148         if (spec->pool_name) {
4149                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4150                         u64 snap_id;
4151
4152                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4153                         if (snap_id == CEPH_NOSNAP)
4154                                 return -ENOENT;
4155                         spec->snap_id = snap_id;
4156                 } else {
4157                         spec->snap_id = CEPH_NOSNAP;
4158                 }
4159
4160                 return 0;
4161         }
4162
4163         /* Get the pool name; we have to make our own copy of this */
4164
4165         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4166         if (!pool_name) {
4167                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4168                 return -EIO;
4169         }
4170         pool_name = kstrdup(pool_name, GFP_KERNEL);
4171         if (!pool_name)
4172                 return -ENOMEM;
4173
4174         /* Fetch the image name; tolerate failure here */
4175
4176         image_name = rbd_dev_image_name(rbd_dev);
4177         if (!image_name)
4178                 rbd_warn(rbd_dev, "unable to get image name");
4179
4180         /* Look up the snapshot name, and make a copy */
4181
4182         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4183         if (IS_ERR(snap_name)) {
4184                 ret = PTR_ERR(snap_name);
4185                 goto out_err;
4186         }
4187
4188         spec->pool_name = pool_name;
4189         spec->image_name = image_name;
4190         spec->snap_name = snap_name;
4191
4192         return 0;
4193 out_err:
4194         kfree(image_name);
4195         kfree(pool_name);
4196
4197         return ret;
4198 }
4199
4200 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4201 {
4202         size_t size;
4203         int ret;
4204         void *reply_buf;
4205         void *p;
4206         void *end;
4207         u64 seq;
4208         u32 snap_count;
4209         struct ceph_snap_context *snapc;
4210         u32 i;
4211
4212         /*
4213          * We'll need room for the seq value (maximum snapshot id),
4214          * snapshot count, and array of that many snapshot ids.
4215          * For now we have a fixed upper limit on the number we're
4216          * prepared to receive.
4217          */
4218         size = sizeof (__le64) + sizeof (__le32) +
4219                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4220         reply_buf = kzalloc(size, GFP_KERNEL);
4221         if (!reply_buf)
4222                 return -ENOMEM;
4223
4224         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4225                                 "rbd", "get_snapcontext", NULL, 0,
4226                                 reply_buf, size);
4227         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4228         if (ret < 0)
4229                 goto out;
4230
4231         p = reply_buf;
4232         end = reply_buf + ret;
4233         ret = -ERANGE;
4234         ceph_decode_64_safe(&p, end, seq, out);
4235         ceph_decode_32_safe(&p, end, snap_count, out);
4236
4237         /*
4238          * Make sure the reported number of snapshot ids wouldn't go
4239          * beyond the end of our buffer.  But before checking that,
4240          * make sure the computed size of the snapshot context we
4241          * allocate is representable in a size_t.
4242          */
4243         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4244                                  / sizeof (u64)) {
4245                 ret = -EINVAL;
4246                 goto out;
4247         }
4248         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4249                 goto out;
4250         ret = 0;
4251
4252         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4253         if (!snapc) {
4254                 ret = -ENOMEM;
4255                 goto out;
4256         }
4257         snapc->seq = seq;
4258         for (i = 0; i < snap_count; i++)
4259                 snapc->snaps[i] = ceph_decode_64(&p);
4260
4261         ceph_put_snap_context(rbd_dev->header.snapc);
4262         rbd_dev->header.snapc = snapc;
4263
4264         dout("  snap context seq = %llu, snap_count = %u\n",
4265                 (unsigned long long)seq, (unsigned int)snap_count);
4266 out:
4267         kfree(reply_buf);
4268
4269         return ret;
4270 }
4271
4272 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4273                                         u64 snap_id)
4274 {
4275         size_t size;
4276         void *reply_buf;
4277         __le64 snapid;
4278         int ret;
4279         void *p;
4280         void *end;
4281         char *snap_name;
4282
4283         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4284         reply_buf = kmalloc(size, GFP_KERNEL);
4285         if (!reply_buf)
4286                 return ERR_PTR(-ENOMEM);
4287
4288         snapid = cpu_to_le64(snap_id);
4289         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4290                                 "rbd", "get_snapshot_name",
4291                                 &snapid, sizeof (snapid),
4292                                 reply_buf, size);
4293         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4294         if (ret < 0) {
4295                 snap_name = ERR_PTR(ret);
4296                 goto out;
4297         }
4298
4299         p = reply_buf;
4300         end = reply_buf + ret;
4301         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4302         if (IS_ERR(snap_name))
4303                 goto out;
4304
4305         dout("  snap_id 0x%016llx snap_name = %s\n",
4306                 (unsigned long long)snap_id, snap_name);
4307 out:
4308         kfree(reply_buf);
4309
4310         return snap_name;
4311 }
4312
4313 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4314 {
4315         bool first_time = rbd_dev->header.object_prefix == NULL;
4316         int ret;
4317
4318         ret = rbd_dev_v2_image_size(rbd_dev);
4319         if (ret)
4320                 return ret;
4321
4322         if (first_time) {
4323                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4324                 if (ret)
4325                         return ret;
4326         }
4327
4328         /*
4329          * If the image supports layering, get the parent info.  We
4330          * need to probe the first time regardless.  Thereafter we
4331          * only need to if there's a parent, to see if it has
4332          * disappeared due to the mapped image getting flattened.
4333          */
4334         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4335                         (first_time || rbd_dev->parent_spec)) {
4336                 bool warn;
4337
4338                 ret = rbd_dev_v2_parent_info(rbd_dev);
4339                 if (ret)
4340                         return ret;
4341
4342                 /*
4343                  * Print a warning if this is the initial probe and
4344                  * the image has a parent.  Don't print it if the
4345                  * image now being probed is itself a parent.  We
4346                  * can tell at this point because we won't know its
4347                  * pool name yet (just its pool id).
4348                  */
4349                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4350                 if (first_time && warn)
4351                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4352                                         "is EXPERIMENTAL!");
4353         }
4354
4355         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4356                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4357                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4358
4359         ret = rbd_dev_v2_snap_context(rbd_dev);
4360         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4361
4362         return ret;
4363 }
4364
4365 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4366 {
4367         struct device *dev;
4368         int ret;
4369
4370         dev = &rbd_dev->dev;
4371         dev->bus = &rbd_bus_type;
4372         dev->type = &rbd_device_type;
4373         dev->parent = &rbd_root_dev;
4374         dev->release = rbd_dev_device_release;
4375         dev_set_name(dev, "%d", rbd_dev->dev_id);
4376         ret = device_register(dev);
4377
4378         return ret;
4379 }
4380
4381 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4382 {
4383         device_unregister(&rbd_dev->dev);
4384 }
4385
4386 /*
4387  * Get a unique rbd identifier for the given new rbd_dev, and add
4388  * the rbd_dev to the global list.
4389  */
4390 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4391 {
4392         int new_dev_id;
4393
4394         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4395                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4396                                     GFP_KERNEL);
4397         if (new_dev_id < 0)
4398                 return new_dev_id;
4399
4400         rbd_dev->dev_id = new_dev_id;
4401
4402         spin_lock(&rbd_dev_list_lock);
4403         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4404         spin_unlock(&rbd_dev_list_lock);
4405
4406         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4407
4408         return 0;
4409 }
4410
4411 /*
4412  * Remove an rbd_dev from the global list, and record that its
4413  * identifier is no longer in use.
4414  */
4415 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4416 {
4417         spin_lock(&rbd_dev_list_lock);
4418         list_del_init(&rbd_dev->node);
4419         spin_unlock(&rbd_dev_list_lock);
4420
4421         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4422
4423         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4424 }
4425
4426 /*
4427  * Skips over white space at *buf, and updates *buf to point to the
4428  * first found non-space character (if any). Returns the length of
4429  * the token (string of non-white space characters) found.  Note
4430  * that *buf must be terminated with '\0'.
4431  */
4432 static inline size_t next_token(const char **buf)
4433 {
4434         /*
4435         * These are the characters that produce nonzero for
4436         * isspace() in the "C" and "POSIX" locales.
4437         */
4438         const char *spaces = " \f\n\r\t\v";
4439
4440         *buf += strspn(*buf, spaces);   /* Find start of token */
4441
4442         return strcspn(*buf, spaces);   /* Return token length */
4443 }
4444
4445 /*
4446  * Finds the next token in *buf, and if the provided token buffer is
4447  * big enough, copies the found token into it.  The result, if
4448  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4449  * must be terminated with '\0' on entry.
4450  *
4451  * Returns the length of the token found (not including the '\0').
4452  * Return value will be 0 if no token is found, and it will be >=
4453  * token_size if the token would not fit.
4454  *
4455  * The *buf pointer will be updated to point beyond the end of the
4456  * found token.  Note that this occurs even if the token buffer is
4457  * too small to hold it.
4458  */
4459 static inline size_t copy_token(const char **buf,
4460                                 char *token,
4461                                 size_t token_size)
4462 {
4463         size_t len;
4464
4465         len = next_token(buf);
4466         if (len < token_size) {
4467                 memcpy(token, *buf, len);
4468                 *(token + len) = '\0';
4469         }
4470         *buf += len;
4471
4472         return len;
4473 }
4474
4475 /*
4476  * Finds the next token in *buf, dynamically allocates a buffer big
4477  * enough to hold a copy of it, and copies the token into the new
4478  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4479  * that a duplicate buffer is created even for a zero-length token.
4480  *
4481  * Returns a pointer to the newly-allocated duplicate, or a null
4482  * pointer if memory for the duplicate was not available.  If
4483  * the lenp argument is a non-null pointer, the length of the token
4484  * (not including the '\0') is returned in *lenp.
4485  *
4486  * If successful, the *buf pointer will be updated to point beyond
4487  * the end of the found token.
4488  *
4489  * Note: uses GFP_KERNEL for allocation.
4490  */
4491 static inline char *dup_token(const char **buf, size_t *lenp)
4492 {
4493         char *dup;
4494         size_t len;
4495
4496         len = next_token(buf);
4497         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4498         if (!dup)
4499                 return NULL;
4500         *(dup + len) = '\0';
4501         *buf += len;
4502
4503         if (lenp)
4504                 *lenp = len;
4505
4506         return dup;
4507 }
4508
4509 /*
4510  * Parse the options provided for an "rbd add" (i.e., rbd image
4511  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4512  * and the data written is passed here via a NUL-terminated buffer.
4513  * Returns 0 if successful or an error code otherwise.
4514  *
4515  * The information extracted from these options is recorded in
4516  * the other parameters which return dynamically-allocated
4517  * structures:
4518  *  ceph_opts
4519  *      The address of a pointer that will refer to a ceph options
4520  *      structure.  Caller must release the returned pointer using
4521  *      ceph_destroy_options() when it is no longer needed.
4522  *  rbd_opts
4523  *      Address of an rbd options pointer.  Fully initialized by
4524  *      this function; caller must release with kfree().
4525  *  spec
4526  *      Address of an rbd image specification pointer.  Fully
4527  *      initialized by this function based on parsed options.
4528  *      Caller must release with rbd_spec_put().
4529  *
4530  * The options passed take this form:
4531  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4532  * where:
4533  *  <mon_addrs>
4534  *      A comma-separated list of one or more monitor addresses.
4535  *      A monitor address is an ip address, optionally followed
4536  *      by a port number (separated by a colon).
4537  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4538  *  <options>
4539  *      A comma-separated list of ceph and/or rbd options.
4540  *  <pool_name>
4541  *      The name of the rados pool containing the rbd image.
4542  *  <image_name>
4543  *      The name of the image in that pool to map.
4544  *  <snap_id>
4545  *      An optional snapshot id.  If provided, the mapping will
4546  *      present data from the image at the time that snapshot was
4547  *      created.  The image head is used if no snapshot id is
4548  *      provided.  Snapshot mappings are always read-only.
4549  */
4550 static int rbd_add_parse_args(const char *buf,
4551                                 struct ceph_options **ceph_opts,
4552                                 struct rbd_options **opts,
4553                                 struct rbd_spec **rbd_spec)
4554 {
4555         size_t len;
4556         char *options;
4557         const char *mon_addrs;
4558         char *snap_name;
4559         size_t mon_addrs_size;
4560         struct rbd_spec *spec = NULL;
4561         struct rbd_options *rbd_opts = NULL;
4562         struct ceph_options *copts;
4563         int ret;
4564
4565         /* The first four tokens are required */
4566
4567         len = next_token(&buf);
4568         if (!len) {
4569                 rbd_warn(NULL, "no monitor address(es) provided");
4570                 return -EINVAL;
4571         }
4572         mon_addrs = buf;
4573         mon_addrs_size = len + 1;
4574         buf += len;
4575
4576         ret = -EINVAL;
4577         options = dup_token(&buf, NULL);
4578         if (!options)
4579                 return -ENOMEM;
4580         if (!*options) {
4581                 rbd_warn(NULL, "no options provided");
4582                 goto out_err;
4583         }
4584
4585         spec = rbd_spec_alloc();
4586         if (!spec)
4587                 goto out_mem;
4588
4589         spec->pool_name = dup_token(&buf, NULL);
4590         if (!spec->pool_name)
4591                 goto out_mem;
4592         if (!*spec->pool_name) {
4593                 rbd_warn(NULL, "no pool name provided");
4594                 goto out_err;
4595         }
4596
4597         spec->image_name = dup_token(&buf, NULL);
4598         if (!spec->image_name)
4599                 goto out_mem;
4600         if (!*spec->image_name) {
4601                 rbd_warn(NULL, "no image name provided");
4602                 goto out_err;
4603         }
4604
4605         /*
4606          * Snapshot name is optional; default is to use "-"
4607          * (indicating the head/no snapshot).
4608          */
4609         len = next_token(&buf);
4610         if (!len) {
4611                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4612                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4613         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4614                 ret = -ENAMETOOLONG;
4615                 goto out_err;
4616         }
4617         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4618         if (!snap_name)
4619                 goto out_mem;
4620         *(snap_name + len) = '\0';
4621         spec->snap_name = snap_name;
4622
4623         /* Initialize all rbd options to the defaults */
4624
4625         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4626         if (!rbd_opts)
4627                 goto out_mem;
4628
4629         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4630
4631         copts = ceph_parse_options(options, mon_addrs,
4632                                         mon_addrs + mon_addrs_size - 1,
4633                                         parse_rbd_opts_token, rbd_opts);
4634         if (IS_ERR(copts)) {
4635                 ret = PTR_ERR(copts);
4636                 goto out_err;
4637         }
4638         kfree(options);
4639
4640         *ceph_opts = copts;
4641         *opts = rbd_opts;
4642         *rbd_spec = spec;
4643
4644         return 0;
4645 out_mem:
4646         ret = -ENOMEM;
4647 out_err:
4648         kfree(rbd_opts);
4649         rbd_spec_put(spec);
4650         kfree(options);
4651
4652         return ret;
4653 }
4654
4655 /*
4656  * An rbd format 2 image has a unique identifier, distinct from the
4657  * name given to it by the user.  Internally, that identifier is
4658  * what's used to specify the names of objects related to the image.
4659  *
4660  * A special "rbd id" object is used to map an rbd image name to its
4661  * id.  If that object doesn't exist, then there is no v2 rbd image
4662  * with the supplied name.
4663  *
4664  * This function will record the given rbd_dev's image_id field if
4665  * it can be determined, and in that case will return 0.  If any
4666  * errors occur a negative errno will be returned and the rbd_dev's
4667  * image_id field will be unchanged (and should be NULL).
4668  */
4669 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4670 {
4671         int ret;
4672         size_t size;
4673         char *object_name;
4674         void *response;
4675         char *image_id;
4676
4677         /*
4678          * When probing a parent image, the image id is already
4679          * known (and the image name likely is not).  There's no
4680          * need to fetch the image id again in this case.  We
4681          * do still need to set the image format though.
4682          */
4683         if (rbd_dev->spec->image_id) {
4684                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4685
4686                 return 0;
4687         }
4688
4689         /*
4690          * First, see if the format 2 image id file exists, and if
4691          * so, get the image's persistent id from it.
4692          */
4693         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4694         object_name = kmalloc(size, GFP_NOIO);
4695         if (!object_name)
4696                 return -ENOMEM;
4697         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4698         dout("rbd id object name is %s\n", object_name);
4699
4700         /* Response will be an encoded string, which includes a length */
4701
4702         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4703         response = kzalloc(size, GFP_NOIO);
4704         if (!response) {
4705                 ret = -ENOMEM;
4706                 goto out;
4707         }
4708
4709         /* If it doesn't exist we'll assume it's a format 1 image */
4710
4711         ret = rbd_obj_method_sync(rbd_dev, object_name,
4712                                 "rbd", "get_id", NULL, 0,
4713                                 response, RBD_IMAGE_ID_LEN_MAX);
4714         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4715         if (ret == -ENOENT) {
4716                 image_id = kstrdup("", GFP_KERNEL);
4717                 ret = image_id ? 0 : -ENOMEM;
4718                 if (!ret)
4719                         rbd_dev->image_format = 1;
4720         } else if (ret > sizeof (__le32)) {
4721                 void *p = response;
4722
4723                 image_id = ceph_extract_encoded_string(&p, p + ret,
4724                                                 NULL, GFP_NOIO);
4725                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4726                 if (!ret)
4727                         rbd_dev->image_format = 2;
4728         } else {
4729                 ret = -EINVAL;
4730         }
4731
4732         if (!ret) {
4733                 rbd_dev->spec->image_id = image_id;
4734                 dout("image_id is %s\n", image_id);
4735         }
4736 out:
4737         kfree(response);
4738         kfree(object_name);
4739
4740         return ret;
4741 }
4742
4743 /*
4744  * Undo whatever state changes are made by v1 or v2 header info
4745  * call.
4746  */
4747 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4748 {
4749         struct rbd_image_header *header;
4750
4751         /* Drop parent reference unless it's already been done (or none) */
4752
4753         if (rbd_dev->parent_overlap)
4754                 rbd_dev_parent_put(rbd_dev);
4755
4756         /* Free dynamic fields from the header, then zero it out */
4757
4758         header = &rbd_dev->header;
4759         ceph_put_snap_context(header->snapc);
4760         kfree(header->snap_sizes);
4761         kfree(header->snap_names);
4762         kfree(header->object_prefix);
4763         memset(header, 0, sizeof (*header));
4764 }
4765
4766 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4767 {
4768         int ret;
4769
4770         ret = rbd_dev_v2_object_prefix(rbd_dev);
4771         if (ret)
4772                 goto out_err;
4773
4774         /*
4775          * Get the and check features for the image.  Currently the
4776          * features are assumed to never change.
4777          */
4778         ret = rbd_dev_v2_features(rbd_dev);
4779         if (ret)
4780                 goto out_err;
4781
4782         /* If the image supports fancy striping, get its parameters */
4783
4784         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4785                 ret = rbd_dev_v2_striping_info(rbd_dev);
4786                 if (ret < 0)
4787                         goto out_err;
4788         }
4789         /* No support for crypto and compression type format 2 images */
4790
4791         return 0;
4792 out_err:
4793         rbd_dev->header.features = 0;
4794         kfree(rbd_dev->header.object_prefix);
4795         rbd_dev->header.object_prefix = NULL;
4796
4797         return ret;
4798 }
4799
4800 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4801 {
4802         struct rbd_device *parent = NULL;
4803         struct rbd_spec *parent_spec;
4804         struct rbd_client *rbdc;
4805         int ret;
4806
4807         if (!rbd_dev->parent_spec)
4808                 return 0;
4809         /*
4810          * We need to pass a reference to the client and the parent
4811          * spec when creating the parent rbd_dev.  Images related by
4812          * parent/child relationships always share both.
4813          */
4814         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4815         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4816
4817         ret = -ENOMEM;
4818         parent = rbd_dev_create(rbdc, parent_spec);
4819         if (!parent)
4820                 goto out_err;
4821
4822         ret = rbd_dev_image_probe(parent, false);
4823         if (ret < 0)
4824                 goto out_err;
4825         rbd_dev->parent = parent;
4826         atomic_set(&rbd_dev->parent_ref, 1);
4827
4828         return 0;
4829 out_err:
4830         if (parent) {
4831                 rbd_dev_unparent(rbd_dev);
4832                 kfree(rbd_dev->header_name);
4833                 rbd_dev_destroy(parent);
4834         } else {
4835                 rbd_put_client(rbdc);
4836                 rbd_spec_put(parent_spec);
4837         }
4838
4839         return ret;
4840 }
4841
4842 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4843 {
4844         int ret;
4845
4846         /* Get an id and fill in device name. */
4847
4848         ret = rbd_dev_id_get(rbd_dev);
4849         if (ret)
4850                 return ret;
4851
4852         BUILD_BUG_ON(DEV_NAME_LEN
4853                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4854         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4855
4856         /* Record our major and minor device numbers. */
4857
4858         if (!single_major) {
4859                 ret = register_blkdev(0, rbd_dev->name);
4860                 if (ret < 0)
4861                         goto err_out_id;
4862
4863                 rbd_dev->major = ret;
4864                 rbd_dev->minor = 0;
4865         } else {
4866                 rbd_dev->major = rbd_major;
4867                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
4868         }
4869
4870         /* Set up the blkdev mapping. */
4871
4872         ret = rbd_init_disk(rbd_dev);
4873         if (ret)
4874                 goto err_out_blkdev;
4875
4876         ret = rbd_dev_mapping_set(rbd_dev);
4877         if (ret)
4878                 goto err_out_disk;
4879         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4880
4881         ret = rbd_bus_add_dev(rbd_dev);
4882         if (ret)
4883                 goto err_out_mapping;
4884
4885         /* Everything's ready.  Announce the disk to the world. */
4886
4887         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4888         add_disk(rbd_dev->disk);
4889
4890         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4891                 (unsigned long long) rbd_dev->mapping.size);
4892
4893         return ret;
4894
4895 err_out_mapping:
4896         rbd_dev_mapping_clear(rbd_dev);
4897 err_out_disk:
4898         rbd_free_disk(rbd_dev);
4899 err_out_blkdev:
4900         if (!single_major)
4901                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4902 err_out_id:
4903         rbd_dev_id_put(rbd_dev);
4904         rbd_dev_mapping_clear(rbd_dev);
4905
4906         return ret;
4907 }
4908
4909 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4910 {
4911         struct rbd_spec *spec = rbd_dev->spec;
4912         size_t size;
4913
4914         /* Record the header object name for this rbd image. */
4915
4916         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4917
4918         if (rbd_dev->image_format == 1)
4919                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4920         else
4921                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4922
4923         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4924         if (!rbd_dev->header_name)
4925                 return -ENOMEM;
4926
4927         if (rbd_dev->image_format == 1)
4928                 sprintf(rbd_dev->header_name, "%s%s",
4929                         spec->image_name, RBD_SUFFIX);
4930         else
4931                 sprintf(rbd_dev->header_name, "%s%s",
4932                         RBD_HEADER_PREFIX, spec->image_id);
4933         return 0;
4934 }
4935
4936 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4937 {
4938         rbd_dev_unprobe(rbd_dev);
4939         kfree(rbd_dev->header_name);
4940         rbd_dev->header_name = NULL;
4941         rbd_dev->image_format = 0;
4942         kfree(rbd_dev->spec->image_id);
4943         rbd_dev->spec->image_id = NULL;
4944
4945         rbd_dev_destroy(rbd_dev);
4946 }
4947
4948 /*
4949  * Probe for the existence of the header object for the given rbd
4950  * device.  If this image is the one being mapped (i.e., not a
4951  * parent), initiate a watch on its header object before using that
4952  * object to get detailed information about the rbd image.
4953  */
4954 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4955 {
4956         int ret;
4957
4958         /*
4959          * Get the id from the image id object.  Unless there's an
4960          * error, rbd_dev->spec->image_id will be filled in with
4961          * a dynamically-allocated string, and rbd_dev->image_format
4962          * will be set to either 1 or 2.
4963          */
4964         ret = rbd_dev_image_id(rbd_dev);
4965         if (ret)
4966                 return ret;
4967         rbd_assert(rbd_dev->spec->image_id);
4968         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4969
4970         ret = rbd_dev_header_name(rbd_dev);
4971         if (ret)
4972                 goto err_out_format;
4973
4974         if (mapping) {
4975                 ret = rbd_dev_header_watch_sync(rbd_dev);
4976                 if (ret)
4977                         goto out_header_name;
4978         }
4979
4980         if (rbd_dev->image_format == 1)
4981                 ret = rbd_dev_v1_header_info(rbd_dev);
4982         else
4983                 ret = rbd_dev_v2_header_info(rbd_dev);
4984         if (ret)
4985                 goto err_out_watch;
4986
4987         ret = rbd_dev_spec_update(rbd_dev);
4988         if (ret)
4989                 goto err_out_probe;
4990
4991         ret = rbd_dev_probe_parent(rbd_dev);
4992         if (ret)
4993                 goto err_out_probe;
4994
4995         dout("discovered format %u image, header name is %s\n",
4996                 rbd_dev->image_format, rbd_dev->header_name);
4997
4998         return 0;
4999 err_out_probe:
5000         rbd_dev_unprobe(rbd_dev);
5001 err_out_watch:
5002         if (mapping)
5003                 rbd_dev_header_unwatch_sync(rbd_dev);
5004 out_header_name:
5005         kfree(rbd_dev->header_name);
5006         rbd_dev->header_name = NULL;
5007 err_out_format:
5008         rbd_dev->image_format = 0;
5009         kfree(rbd_dev->spec->image_id);
5010         rbd_dev->spec->image_id = NULL;
5011
5012         dout("probe failed, returning %d\n", ret);
5013
5014         return ret;
5015 }
5016
5017 static ssize_t do_rbd_add(struct bus_type *bus,
5018                           const char *buf,
5019                           size_t count)
5020 {
5021         struct rbd_device *rbd_dev = NULL;
5022         struct ceph_options *ceph_opts = NULL;
5023         struct rbd_options *rbd_opts = NULL;
5024         struct rbd_spec *spec = NULL;
5025         struct rbd_client *rbdc;
5026         struct ceph_osd_client *osdc;
5027         bool read_only;
5028         int rc = -ENOMEM;
5029
5030         if (!try_module_get(THIS_MODULE))
5031                 return -ENODEV;
5032
5033         /* parse add command */
5034         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5035         if (rc < 0)
5036                 goto err_out_module;
5037         read_only = rbd_opts->read_only;
5038         kfree(rbd_opts);
5039         rbd_opts = NULL;        /* done with this */
5040
5041         rbdc = rbd_get_client(ceph_opts);
5042         if (IS_ERR(rbdc)) {
5043                 rc = PTR_ERR(rbdc);
5044                 goto err_out_args;
5045         }
5046
5047         /* pick the pool */
5048         osdc = &rbdc->client->osdc;
5049         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5050         if (rc < 0)
5051                 goto err_out_client;
5052         spec->pool_id = (u64)rc;
5053
5054         /* The ceph file layout needs to fit pool id in 32 bits */
5055
5056         if (spec->pool_id > (u64)U32_MAX) {
5057                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5058                                 (unsigned long long)spec->pool_id, U32_MAX);
5059                 rc = -EIO;
5060                 goto err_out_client;
5061         }
5062
5063         rbd_dev = rbd_dev_create(rbdc, spec);
5064         if (!rbd_dev)
5065                 goto err_out_client;
5066         rbdc = NULL;            /* rbd_dev now owns this */
5067         spec = NULL;            /* rbd_dev now owns this */
5068
5069         rc = rbd_dev_image_probe(rbd_dev, true);
5070         if (rc < 0)
5071                 goto err_out_rbd_dev;
5072
5073         /* If we are mapping a snapshot it must be marked read-only */
5074
5075         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5076                 read_only = true;
5077         rbd_dev->mapping.read_only = read_only;
5078
5079         rc = rbd_dev_device_setup(rbd_dev);
5080         if (rc) {
5081                 /*
5082                  * rbd_dev_header_unwatch_sync() can't be moved into
5083                  * rbd_dev_image_release() without refactoring, see
5084                  * commit 1f3ef78861ac.
5085                  */
5086                 rbd_dev_header_unwatch_sync(rbd_dev);
5087                 rbd_dev_image_release(rbd_dev);
5088                 goto err_out_module;
5089         }
5090
5091         return count;
5092
5093 err_out_rbd_dev:
5094         rbd_dev_destroy(rbd_dev);
5095 err_out_client:
5096         rbd_put_client(rbdc);
5097 err_out_args:
5098         rbd_spec_put(spec);
5099 err_out_module:
5100         module_put(THIS_MODULE);
5101
5102         dout("Error adding device %s\n", buf);
5103
5104         return (ssize_t)rc;
5105 }
5106
5107 static ssize_t rbd_add(struct bus_type *bus,
5108                        const char *buf,
5109                        size_t count)
5110 {
5111         if (single_major)
5112                 return -EINVAL;
5113
5114         return do_rbd_add(bus, buf, count);
5115 }
5116
5117 static ssize_t rbd_add_single_major(struct bus_type *bus,
5118                                     const char *buf,
5119                                     size_t count)
5120 {
5121         return do_rbd_add(bus, buf, count);
5122 }
5123
5124 static void rbd_dev_device_release(struct device *dev)
5125 {
5126         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5127
5128         rbd_free_disk(rbd_dev);
5129         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5130         rbd_dev_mapping_clear(rbd_dev);
5131         if (!single_major)
5132                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5133         rbd_dev_id_put(rbd_dev);
5134         rbd_dev_mapping_clear(rbd_dev);
5135 }
5136
5137 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5138 {
5139         while (rbd_dev->parent) {
5140                 struct rbd_device *first = rbd_dev;
5141                 struct rbd_device *second = first->parent;
5142                 struct rbd_device *third;
5143
5144                 /*
5145                  * Follow to the parent with no grandparent and
5146                  * remove it.
5147                  */
5148                 while (second && (third = second->parent)) {
5149                         first = second;
5150                         second = third;
5151                 }
5152                 rbd_assert(second);
5153                 rbd_dev_image_release(second);
5154                 first->parent = NULL;
5155                 first->parent_overlap = 0;
5156
5157                 rbd_assert(first->parent_spec);
5158                 rbd_spec_put(first->parent_spec);
5159                 first->parent_spec = NULL;
5160         }
5161 }
5162
5163 static ssize_t do_rbd_remove(struct bus_type *bus,
5164                              const char *buf,
5165                              size_t count)
5166 {
5167         struct rbd_device *rbd_dev = NULL;
5168         struct list_head *tmp;
5169         int dev_id;
5170         unsigned long ul;
5171         bool already = false;
5172         int ret;
5173
5174         ret = kstrtoul(buf, 10, &ul);
5175         if (ret)
5176                 return ret;
5177
5178         /* convert to int; abort if we lost anything in the conversion */
5179         dev_id = (int)ul;
5180         if (dev_id != ul)
5181                 return -EINVAL;
5182
5183         ret = -ENOENT;
5184         spin_lock(&rbd_dev_list_lock);
5185         list_for_each(tmp, &rbd_dev_list) {
5186                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5187                 if (rbd_dev->dev_id == dev_id) {
5188                         ret = 0;
5189                         break;
5190                 }
5191         }
5192         if (!ret) {
5193                 spin_lock_irq(&rbd_dev->lock);
5194                 if (rbd_dev->open_count)
5195                         ret = -EBUSY;
5196                 else
5197                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5198                                                         &rbd_dev->flags);
5199                 spin_unlock_irq(&rbd_dev->lock);
5200         }
5201         spin_unlock(&rbd_dev_list_lock);
5202         if (ret < 0 || already)
5203                 return ret;
5204
5205         rbd_dev_header_unwatch_sync(rbd_dev);
5206         /*
5207          * flush remaining watch callbacks - these must be complete
5208          * before the osd_client is shutdown
5209          */
5210         dout("%s: flushing notifies", __func__);
5211         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5212
5213         /*
5214          * Don't free anything from rbd_dev->disk until after all
5215          * notifies are completely processed. Otherwise
5216          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5217          * in a potential use after free of rbd_dev->disk or rbd_dev.
5218          */
5219         rbd_bus_del_dev(rbd_dev);
5220         rbd_dev_image_release(rbd_dev);
5221         module_put(THIS_MODULE);
5222
5223         return count;
5224 }
5225
5226 static ssize_t rbd_remove(struct bus_type *bus,
5227                           const char *buf,
5228                           size_t count)
5229 {
5230         if (single_major)
5231                 return -EINVAL;
5232
5233         return do_rbd_remove(bus, buf, count);
5234 }
5235
5236 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5237                                        const char *buf,
5238                                        size_t count)
5239 {
5240         return do_rbd_remove(bus, buf, count);
5241 }
5242
5243 /*
5244  * create control files in sysfs
5245  * /sys/bus/rbd/...
5246  */
5247 static int rbd_sysfs_init(void)
5248 {
5249         int ret;
5250
5251         ret = device_register(&rbd_root_dev);
5252         if (ret < 0)
5253                 return ret;
5254
5255         ret = bus_register(&rbd_bus_type);
5256         if (ret < 0)
5257                 device_unregister(&rbd_root_dev);
5258
5259         return ret;
5260 }
5261
5262 static void rbd_sysfs_cleanup(void)
5263 {
5264         bus_unregister(&rbd_bus_type);
5265         device_unregister(&rbd_root_dev);
5266 }
5267
5268 static int rbd_slab_init(void)
5269 {
5270         rbd_assert(!rbd_img_request_cache);
5271         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5272                                         sizeof (struct rbd_img_request),
5273                                         __alignof__(struct rbd_img_request),
5274                                         0, NULL);
5275         if (!rbd_img_request_cache)
5276                 return -ENOMEM;
5277
5278         rbd_assert(!rbd_obj_request_cache);
5279         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5280                                         sizeof (struct rbd_obj_request),
5281                                         __alignof__(struct rbd_obj_request),
5282                                         0, NULL);
5283         if (!rbd_obj_request_cache)
5284                 goto out_err;
5285
5286         rbd_assert(!rbd_segment_name_cache);
5287         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5288                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5289         if (rbd_segment_name_cache)
5290                 return 0;
5291 out_err:
5292         if (rbd_obj_request_cache) {
5293                 kmem_cache_destroy(rbd_obj_request_cache);
5294                 rbd_obj_request_cache = NULL;
5295         }
5296
5297         kmem_cache_destroy(rbd_img_request_cache);
5298         rbd_img_request_cache = NULL;
5299
5300         return -ENOMEM;
5301 }
5302
5303 static void rbd_slab_exit(void)
5304 {
5305         rbd_assert(rbd_segment_name_cache);
5306         kmem_cache_destroy(rbd_segment_name_cache);
5307         rbd_segment_name_cache = NULL;
5308
5309         rbd_assert(rbd_obj_request_cache);
5310         kmem_cache_destroy(rbd_obj_request_cache);
5311         rbd_obj_request_cache = NULL;
5312
5313         rbd_assert(rbd_img_request_cache);
5314         kmem_cache_destroy(rbd_img_request_cache);
5315         rbd_img_request_cache = NULL;
5316 }
5317
5318 static int __init rbd_init(void)
5319 {
5320         int rc;
5321
5322         if (!libceph_compatible(NULL)) {
5323                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5324                 return -EINVAL;
5325         }
5326
5327         rc = rbd_slab_init();
5328         if (rc)
5329                 return rc;
5330
5331         if (single_major) {
5332                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5333                 if (rbd_major < 0) {
5334                         rc = rbd_major;
5335                         goto err_out_slab;
5336                 }
5337         }
5338
5339         rc = rbd_sysfs_init();
5340         if (rc)
5341                 goto err_out_blkdev;
5342
5343         if (single_major)
5344                 pr_info("loaded (major %d)\n", rbd_major);
5345         else
5346                 pr_info("loaded\n");
5347
5348         return 0;
5349
5350 err_out_blkdev:
5351         if (single_major)
5352                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5353 err_out_slab:
5354         rbd_slab_exit();
5355         return rc;
5356 }
5357
5358 static void __exit rbd_exit(void)
5359 {
5360         rbd_sysfs_cleanup();
5361         if (single_major)
5362                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5363         rbd_slab_exit();
5364 }
5365
5366 module_init(rbd_init);
5367 module_exit(rbd_exit);
5368
5369 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5370 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5371 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5372 /* following authorship retained from original osdblk.c */
5373 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5374
5375 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5376 MODULE_LICENSE("GPL");