]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
9c094c67d7787268131c62642c38765f056bba5c
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 #define RBD_DRV_NAME "rbd"
59 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
60
61 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
62
63 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
64 #define RBD_MAX_SNAP_NAME_LEN   \
65                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
66
67 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
68
69 #define RBD_SNAP_HEAD_NAME      "-"
70
71 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
72
73 /* This allows a single page to hold an image name sent by OSD */
74 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
75 #define RBD_IMAGE_ID_LEN_MAX    64
76
77 #define RBD_OBJ_PREFIX_LEN_MAX  64
78
79 /* Feature bits */
80
81 #define RBD_FEATURE_LAYERING    (1<<0)
82 #define RBD_FEATURE_STRIPINGV2  (1<<1)
83 #define RBD_FEATURES_ALL \
84             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
85
86 /* Features supported by this (client software) implementation. */
87
88 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
89
90 /*
91  * An RBD device name will be "rbd#", where the "rbd" comes from
92  * RBD_DRV_NAME above, and # is a unique integer identifier.
93  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
94  * enough to hold all possible device names.
95  */
96 #define DEV_NAME_LEN            32
97 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
98
99 /*
100  * block device image metadata (in-memory version)
101  */
102 struct rbd_image_header {
103         /* These four fields never change for a given rbd image */
104         char *object_prefix;
105         u64 features;
106         __u8 obj_order;
107         __u8 crypt_type;
108         __u8 comp_type;
109
110         /* The remaining fields need to be updated occasionally */
111         u64 image_size;
112         struct ceph_snap_context *snapc;
113         char *snap_names;
114         u64 *snap_sizes;
115
116         u64 stripe_unit;
117         u64 stripe_count;
118 };
119
120 /*
121  * An rbd image specification.
122  *
123  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
124  * identify an image.  Each rbd_dev structure includes a pointer to
125  * an rbd_spec structure that encapsulates this identity.
126  *
127  * Each of the id's in an rbd_spec has an associated name.  For a
128  * user-mapped image, the names are supplied and the id's associated
129  * with them are looked up.  For a layered image, a parent image is
130  * defined by the tuple, and the names are looked up.
131  *
132  * An rbd_dev structure contains a parent_spec pointer which is
133  * non-null if the image it represents is a child in a layered
134  * image.  This pointer will refer to the rbd_spec structure used
135  * by the parent rbd_dev for its own identity (i.e., the structure
136  * is shared between the parent and child).
137  *
138  * Since these structures are populated once, during the discovery
139  * phase of image construction, they are effectively immutable so
140  * we make no effort to synchronize access to them.
141  *
142  * Note that code herein does not assume the image name is known (it
143  * could be a null pointer).
144  */
145 struct rbd_spec {
146         u64             pool_id;
147         const char      *pool_name;
148
149         const char      *image_id;
150         const char      *image_name;
151
152         u64             snap_id;
153         const char      *snap_name;
154
155         struct kref     kref;
156 };
157
158 /*
159  * an instance of the client.  multiple devices may share an rbd client.
160  */
161 struct rbd_client {
162         struct ceph_client      *client;
163         struct kref             kref;
164         struct list_head        node;
165 };
166
167 struct rbd_img_request;
168 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
169
170 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
171
172 struct rbd_obj_request;
173 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
174
175 enum obj_request_type {
176         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
177 };
178
179 enum obj_req_flags {
180         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
181         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
182         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
183         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
184 };
185
186 struct rbd_obj_request {
187         const char              *object_name;
188         u64                     offset;         /* object start byte */
189         u64                     length;         /* bytes from offset */
190         unsigned long           flags;
191
192         /*
193          * An object request associated with an image will have its
194          * img_data flag set; a standalone object request will not.
195          *
196          * A standalone object request will have which == BAD_WHICH
197          * and a null obj_request pointer.
198          *
199          * An object request initiated in support of a layered image
200          * object (to check for its existence before a write) will
201          * have which == BAD_WHICH and a non-null obj_request pointer.
202          *
203          * Finally, an object request for rbd image data will have
204          * which != BAD_WHICH, and will have a non-null img_request
205          * pointer.  The value of which will be in the range
206          * 0..(img_request->obj_request_count-1).
207          */
208         union {
209                 struct rbd_obj_request  *obj_request;   /* STAT op */
210                 struct {
211                         struct rbd_img_request  *img_request;
212                         u64                     img_offset;
213                         /* links for img_request->obj_requests list */
214                         struct list_head        links;
215                 };
216         };
217         u32                     which;          /* posn image request list */
218
219         enum obj_request_type   type;
220         union {
221                 struct bio      *bio_list;
222                 struct {
223                         struct page     **pages;
224                         u32             page_count;
225                 };
226         };
227         struct page             **copyup_pages;
228
229         struct ceph_osd_request *osd_req;
230
231         u64                     xferred;        /* bytes transferred */
232         int                     result;
233
234         rbd_obj_callback_t      callback;
235         struct completion       completion;
236
237         struct kref             kref;
238 };
239
240 enum img_req_flags {
241         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
242         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
243         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
244 };
245
246 struct rbd_img_request {
247         struct rbd_device       *rbd_dev;
248         u64                     offset; /* starting image byte offset */
249         u64                     length; /* byte count from offset */
250         unsigned long           flags;
251         union {
252                 u64                     snap_id;        /* for reads */
253                 struct ceph_snap_context *snapc;        /* for writes */
254         };
255         union {
256                 struct request          *rq;            /* block request */
257                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
258         };
259         struct page             **copyup_pages;
260         spinlock_t              completion_lock;/* protects next_completion */
261         u32                     next_completion;
262         rbd_img_callback_t      callback;
263         u64                     xferred;/* aggregate bytes transferred */
264         int                     result; /* first nonzero obj_request result */
265
266         u32                     obj_request_count;
267         struct list_head        obj_requests;   /* rbd_obj_request structs */
268
269         struct kref             kref;
270 };
271
272 #define for_each_obj_request(ireq, oreq) \
273         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
274 #define for_each_obj_request_from(ireq, oreq) \
275         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
276 #define for_each_obj_request_safe(ireq, oreq, n) \
277         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
278
279 struct rbd_mapping {
280         u64                     size;
281         u64                     features;
282         bool                    read_only;
283 };
284
285 /*
286  * a single device
287  */
288 struct rbd_device {
289         int                     dev_id;         /* blkdev unique id */
290
291         int                     major;          /* blkdev assigned major */
292         struct gendisk          *disk;          /* blkdev's gendisk and rq */
293
294         u32                     image_format;   /* Either 1 or 2 */
295         struct rbd_client       *rbd_client;
296
297         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
298
299         spinlock_t              lock;           /* queue, flags, open_count */
300
301         struct rbd_image_header header;
302         unsigned long           flags;          /* possibly lock protected */
303         struct rbd_spec         *spec;
304
305         char                    *header_name;
306
307         struct ceph_file_layout layout;
308
309         struct ceph_osd_event   *watch_event;
310         struct rbd_obj_request  *watch_request;
311
312         struct rbd_spec         *parent_spec;
313         u64                     parent_overlap;
314         struct rbd_device       *parent;
315
316         /* protects updating the header */
317         struct rw_semaphore     header_rwsem;
318
319         struct rbd_mapping      mapping;
320
321         struct list_head        node;
322
323         /* sysfs related */
324         struct device           dev;
325         unsigned long           open_count;     /* protected by lock */
326 };
327
328 /*
329  * Flag bits for rbd_dev->flags.  If atomicity is required,
330  * rbd_dev->lock is used to protect access.
331  *
332  * Currently, only the "removing" flag (which is coupled with the
333  * "open_count" field) requires atomic access.
334  */
335 enum rbd_dev_flags {
336         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
337         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
338 };
339
340 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
341
342 static LIST_HEAD(rbd_dev_list);    /* devices */
343 static DEFINE_SPINLOCK(rbd_dev_list_lock);
344
345 static LIST_HEAD(rbd_client_list);              /* clients */
346 static DEFINE_SPINLOCK(rbd_client_list_lock);
347
348 /* Slab caches for frequently-allocated structures */
349
350 static struct kmem_cache        *rbd_img_request_cache;
351 static struct kmem_cache        *rbd_obj_request_cache;
352 static struct kmem_cache        *rbd_segment_name_cache;
353
354 static int rbd_img_request_submit(struct rbd_img_request *img_request);
355
356 static void rbd_dev_device_release(struct device *dev);
357
358 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
359                        size_t count);
360 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
361                           size_t count);
362 static int rbd_dev_image_probe(struct rbd_device *rbd_dev);
363
364 static struct bus_attribute rbd_bus_attrs[] = {
365         __ATTR(add, S_IWUSR, NULL, rbd_add),
366         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
367         __ATTR_NULL
368 };
369
370 static struct bus_type rbd_bus_type = {
371         .name           = "rbd",
372         .bus_attrs      = rbd_bus_attrs,
373 };
374
375 static void rbd_root_dev_release(struct device *dev)
376 {
377 }
378
379 static struct device rbd_root_dev = {
380         .init_name =    "rbd",
381         .release =      rbd_root_dev_release,
382 };
383
384 static __printf(2, 3)
385 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
386 {
387         struct va_format vaf;
388         va_list args;
389
390         va_start(args, fmt);
391         vaf.fmt = fmt;
392         vaf.va = &args;
393
394         if (!rbd_dev)
395                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
396         else if (rbd_dev->disk)
397                 printk(KERN_WARNING "%s: %s: %pV\n",
398                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
399         else if (rbd_dev->spec && rbd_dev->spec->image_name)
400                 printk(KERN_WARNING "%s: image %s: %pV\n",
401                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
402         else if (rbd_dev->spec && rbd_dev->spec->image_id)
403                 printk(KERN_WARNING "%s: id %s: %pV\n",
404                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
405         else    /* punt */
406                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
407                         RBD_DRV_NAME, rbd_dev, &vaf);
408         va_end(args);
409 }
410
411 #ifdef RBD_DEBUG
412 #define rbd_assert(expr)                                                \
413                 if (unlikely(!(expr))) {                                \
414                         printk(KERN_ERR "\nAssertion failure in %s() "  \
415                                                 "at line %d:\n\n"       \
416                                         "\trbd_assert(%s);\n\n",        \
417                                         __func__, __LINE__, #expr);     \
418                         BUG();                                          \
419                 }
420 #else /* !RBD_DEBUG */
421 #  define rbd_assert(expr)      ((void) 0)
422 #endif /* !RBD_DEBUG */
423
424 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
425 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
426 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
427
428 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
429 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev);
430 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
431                                         u64 snap_id);
432 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
433                                 u8 *order, u64 *snap_size);
434 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
435                 u64 *snap_features);
436 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
437
438 static int rbd_open(struct block_device *bdev, fmode_t mode)
439 {
440         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
441         bool removing = false;
442
443         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
444                 return -EROFS;
445
446         spin_lock_irq(&rbd_dev->lock);
447         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
448                 removing = true;
449         else
450                 rbd_dev->open_count++;
451         spin_unlock_irq(&rbd_dev->lock);
452         if (removing)
453                 return -ENOENT;
454
455         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
456         (void) get_device(&rbd_dev->dev);
457         set_device_ro(bdev, rbd_dev->mapping.read_only);
458         mutex_unlock(&ctl_mutex);
459
460         return 0;
461 }
462
463 static int rbd_release(struct gendisk *disk, fmode_t mode)
464 {
465         struct rbd_device *rbd_dev = disk->private_data;
466         unsigned long open_count_before;
467
468         spin_lock_irq(&rbd_dev->lock);
469         open_count_before = rbd_dev->open_count--;
470         spin_unlock_irq(&rbd_dev->lock);
471         rbd_assert(open_count_before > 0);
472
473         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
474         put_device(&rbd_dev->dev);
475         mutex_unlock(&ctl_mutex);
476
477         return 0;
478 }
479
480 static const struct block_device_operations rbd_bd_ops = {
481         .owner                  = THIS_MODULE,
482         .open                   = rbd_open,
483         .release                = rbd_release,
484 };
485
486 /*
487  * Initialize an rbd client instance.
488  * We own *ceph_opts.
489  */
490 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
491 {
492         struct rbd_client *rbdc;
493         int ret = -ENOMEM;
494
495         dout("%s:\n", __func__);
496         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
497         if (!rbdc)
498                 goto out_opt;
499
500         kref_init(&rbdc->kref);
501         INIT_LIST_HEAD(&rbdc->node);
502
503         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
504
505         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
506         if (IS_ERR(rbdc->client))
507                 goto out_mutex;
508         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
509
510         ret = ceph_open_session(rbdc->client);
511         if (ret < 0)
512                 goto out_err;
513
514         spin_lock(&rbd_client_list_lock);
515         list_add_tail(&rbdc->node, &rbd_client_list);
516         spin_unlock(&rbd_client_list_lock);
517
518         mutex_unlock(&ctl_mutex);
519         dout("%s: rbdc %p\n", __func__, rbdc);
520
521         return rbdc;
522
523 out_err:
524         ceph_destroy_client(rbdc->client);
525 out_mutex:
526         mutex_unlock(&ctl_mutex);
527         kfree(rbdc);
528 out_opt:
529         if (ceph_opts)
530                 ceph_destroy_options(ceph_opts);
531         dout("%s: error %d\n", __func__, ret);
532
533         return ERR_PTR(ret);
534 }
535
536 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
537 {
538         kref_get(&rbdc->kref);
539
540         return rbdc;
541 }
542
543 /*
544  * Find a ceph client with specific addr and configuration.  If
545  * found, bump its reference count.
546  */
547 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
548 {
549         struct rbd_client *client_node;
550         bool found = false;
551
552         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
553                 return NULL;
554
555         spin_lock(&rbd_client_list_lock);
556         list_for_each_entry(client_node, &rbd_client_list, node) {
557                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
558                         __rbd_get_client(client_node);
559
560                         found = true;
561                         break;
562                 }
563         }
564         spin_unlock(&rbd_client_list_lock);
565
566         return found ? client_node : NULL;
567 }
568
569 /*
570  * mount options
571  */
572 enum {
573         Opt_last_int,
574         /* int args above */
575         Opt_last_string,
576         /* string args above */
577         Opt_read_only,
578         Opt_read_write,
579         /* Boolean args above */
580         Opt_last_bool,
581 };
582
583 static match_table_t rbd_opts_tokens = {
584         /* int args above */
585         /* string args above */
586         {Opt_read_only, "read_only"},
587         {Opt_read_only, "ro"},          /* Alternate spelling */
588         {Opt_read_write, "read_write"},
589         {Opt_read_write, "rw"},         /* Alternate spelling */
590         /* Boolean args above */
591         {-1, NULL}
592 };
593
594 struct rbd_options {
595         bool    read_only;
596 };
597
598 #define RBD_READ_ONLY_DEFAULT   false
599
600 static int parse_rbd_opts_token(char *c, void *private)
601 {
602         struct rbd_options *rbd_opts = private;
603         substring_t argstr[MAX_OPT_ARGS];
604         int token, intval, ret;
605
606         token = match_token(c, rbd_opts_tokens, argstr);
607         if (token < 0)
608                 return -EINVAL;
609
610         if (token < Opt_last_int) {
611                 ret = match_int(&argstr[0], &intval);
612                 if (ret < 0) {
613                         pr_err("bad mount option arg (not int) "
614                                "at '%s'\n", c);
615                         return ret;
616                 }
617                 dout("got int token %d val %d\n", token, intval);
618         } else if (token > Opt_last_int && token < Opt_last_string) {
619                 dout("got string token %d val %s\n", token,
620                      argstr[0].from);
621         } else if (token > Opt_last_string && token < Opt_last_bool) {
622                 dout("got Boolean token %d\n", token);
623         } else {
624                 dout("got token %d\n", token);
625         }
626
627         switch (token) {
628         case Opt_read_only:
629                 rbd_opts->read_only = true;
630                 break;
631         case Opt_read_write:
632                 rbd_opts->read_only = false;
633                 break;
634         default:
635                 rbd_assert(false);
636                 break;
637         }
638         return 0;
639 }
640
641 /*
642  * Get a ceph client with specific addr and configuration, if one does
643  * not exist create it.
644  */
645 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
646 {
647         struct rbd_client *rbdc;
648
649         rbdc = rbd_client_find(ceph_opts);
650         if (rbdc)       /* using an existing client */
651                 ceph_destroy_options(ceph_opts);
652         else
653                 rbdc = rbd_client_create(ceph_opts);
654
655         return rbdc;
656 }
657
658 /*
659  * Destroy ceph client
660  *
661  * Caller must hold rbd_client_list_lock.
662  */
663 static void rbd_client_release(struct kref *kref)
664 {
665         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
666
667         dout("%s: rbdc %p\n", __func__, rbdc);
668         spin_lock(&rbd_client_list_lock);
669         list_del(&rbdc->node);
670         spin_unlock(&rbd_client_list_lock);
671
672         ceph_destroy_client(rbdc->client);
673         kfree(rbdc);
674 }
675
676 /*
677  * Drop reference to ceph client node. If it's not referenced anymore, release
678  * it.
679  */
680 static void rbd_put_client(struct rbd_client *rbdc)
681 {
682         if (rbdc)
683                 kref_put(&rbdc->kref, rbd_client_release);
684 }
685
686 static bool rbd_image_format_valid(u32 image_format)
687 {
688         return image_format == 1 || image_format == 2;
689 }
690
691 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
692 {
693         size_t size;
694         u32 snap_count;
695
696         /* The header has to start with the magic rbd header text */
697         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
698                 return false;
699
700         /* The bio layer requires at least sector-sized I/O */
701
702         if (ondisk->options.order < SECTOR_SHIFT)
703                 return false;
704
705         /* If we use u64 in a few spots we may be able to loosen this */
706
707         if (ondisk->options.order > 8 * sizeof (int) - 1)
708                 return false;
709
710         /*
711          * The size of a snapshot header has to fit in a size_t, and
712          * that limits the number of snapshots.
713          */
714         snap_count = le32_to_cpu(ondisk->snap_count);
715         size = SIZE_MAX - sizeof (struct ceph_snap_context);
716         if (snap_count > size / sizeof (__le64))
717                 return false;
718
719         /*
720          * Not only that, but the size of the entire the snapshot
721          * header must also be representable in a size_t.
722          */
723         size -= snap_count * sizeof (__le64);
724         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
725                 return false;
726
727         return true;
728 }
729
730 /*
731  * Create a new header structure, translate header format from the on-disk
732  * header.
733  */
734 static int rbd_header_from_disk(struct rbd_image_header *header,
735                                  struct rbd_image_header_ondisk *ondisk)
736 {
737         u32 snap_count;
738         size_t len;
739         size_t size;
740         u32 i;
741
742         memset(header, 0, sizeof (*header));
743
744         snap_count = le32_to_cpu(ondisk->snap_count);
745
746         len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
747         header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
748         if (!header->object_prefix)
749                 return -ENOMEM;
750         memcpy(header->object_prefix, ondisk->object_prefix, len);
751         header->object_prefix[len] = '\0';
752
753         if (snap_count) {
754                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
755
756                 /* Save a copy of the snapshot names */
757
758                 if (snap_names_len > (u64) SIZE_MAX)
759                         return -EIO;
760                 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
761                 if (!header->snap_names)
762                         goto out_err;
763                 /*
764                  * Note that rbd_dev_v1_header_read() guarantees
765                  * the ondisk buffer we're working with has
766                  * snap_names_len bytes beyond the end of the
767                  * snapshot id array, this memcpy() is safe.
768                  */
769                 memcpy(header->snap_names, &ondisk->snaps[snap_count],
770                         snap_names_len);
771
772                 /* Record each snapshot's size */
773
774                 size = snap_count * sizeof (*header->snap_sizes);
775                 header->snap_sizes = kmalloc(size, GFP_KERNEL);
776                 if (!header->snap_sizes)
777                         goto out_err;
778                 for (i = 0; i < snap_count; i++)
779                         header->snap_sizes[i] =
780                                 le64_to_cpu(ondisk->snaps[i].image_size);
781         } else {
782                 header->snap_names = NULL;
783                 header->snap_sizes = NULL;
784         }
785
786         header->features = 0;   /* No features support in v1 images */
787         header->obj_order = ondisk->options.order;
788         header->crypt_type = ondisk->options.crypt_type;
789         header->comp_type = ondisk->options.comp_type;
790
791         /* Allocate and fill in the snapshot context */
792
793         header->image_size = le64_to_cpu(ondisk->image_size);
794
795         header->snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
796         if (!header->snapc)
797                 goto out_err;
798         header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
799         for (i = 0; i < snap_count; i++)
800                 header->snapc->snaps[i] = le64_to_cpu(ondisk->snaps[i].id);
801
802         return 0;
803
804 out_err:
805         kfree(header->snap_sizes);
806         header->snap_sizes = NULL;
807         kfree(header->snap_names);
808         header->snap_names = NULL;
809         kfree(header->object_prefix);
810         header->object_prefix = NULL;
811
812         return -ENOMEM;
813 }
814
815 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
816 {
817         const char *snap_name;
818
819         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
820
821         /* Skip over names until we find the one we are looking for */
822
823         snap_name = rbd_dev->header.snap_names;
824         while (which--)
825                 snap_name += strlen(snap_name) + 1;
826
827         return kstrdup(snap_name, GFP_KERNEL);
828 }
829
830 /*
831  * Snapshot id comparison function for use with qsort()/bsearch().
832  * Note that result is for snapshots in *descending* order.
833  */
834 static int snapid_compare_reverse(const void *s1, const void *s2)
835 {
836         u64 snap_id1 = *(u64 *)s1;
837         u64 snap_id2 = *(u64 *)s2;
838
839         if (snap_id1 < snap_id2)
840                 return 1;
841         return snap_id1 == snap_id2 ? 0 : -1;
842 }
843
844 /*
845  * Search a snapshot context to see if the given snapshot id is
846  * present.
847  *
848  * Returns the position of the snapshot id in the array if it's found,
849  * or BAD_SNAP_INDEX otherwise.
850  *
851  * Note: The snapshot array is in kept sorted (by the osd) in
852  * reverse order, highest snapshot id first.
853  */
854 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
855 {
856         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
857         u64 *found;
858
859         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
860                                 sizeof (snap_id), snapid_compare_reverse);
861
862         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
863 }
864
865 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
866                                         u64 snap_id)
867 {
868         u32 which;
869
870         which = rbd_dev_snap_index(rbd_dev, snap_id);
871         if (which == BAD_SNAP_INDEX)
872                 return NULL;
873
874         return _rbd_dev_v1_snap_name(rbd_dev, which);
875 }
876
877 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
878 {
879         if (snap_id == CEPH_NOSNAP)
880                 return RBD_SNAP_HEAD_NAME;
881
882         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
883         if (rbd_dev->image_format == 1)
884                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
885
886         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
887 }
888
889 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
890                                 u64 *snap_size)
891 {
892         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
893         if (snap_id == CEPH_NOSNAP) {
894                 *snap_size = rbd_dev->header.image_size;
895         } else if (rbd_dev->image_format == 1) {
896                 u32 which;
897
898                 which = rbd_dev_snap_index(rbd_dev, snap_id);
899                 if (which == BAD_SNAP_INDEX)
900                         return -ENOENT;
901
902                 *snap_size = rbd_dev->header.snap_sizes[which];
903         } else {
904                 u64 size = 0;
905                 int ret;
906
907                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
908                 if (ret)
909                         return ret;
910
911                 *snap_size = size;
912         }
913         return 0;
914 }
915
916 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
917                         u64 *snap_features)
918 {
919         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
920         if (snap_id == CEPH_NOSNAP) {
921                 *snap_features = rbd_dev->header.features;
922         } else if (rbd_dev->image_format == 1) {
923                 *snap_features = 0;     /* No features for format 1 */
924         } else {
925                 u64 features = 0;
926                 int ret;
927
928                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
929                 if (ret)
930                         return ret;
931
932                 *snap_features = features;
933         }
934         return 0;
935 }
936
937 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
938 {
939         const char *snap_name = rbd_dev->spec->snap_name;
940         u64 snap_id;
941         u64 size = 0;
942         u64 features = 0;
943         int ret;
944
945         if (strcmp(snap_name, RBD_SNAP_HEAD_NAME)) {
946                 snap_id = rbd_snap_id_by_name(rbd_dev, snap_name);
947                 if (snap_id == CEPH_NOSNAP)
948                         return -ENOENT;
949         } else {
950                 snap_id = CEPH_NOSNAP;
951         }
952
953         ret = rbd_snap_size(rbd_dev, snap_id, &size);
954         if (ret)
955                 return ret;
956         ret = rbd_snap_features(rbd_dev, snap_id, &features);
957         if (ret)
958                 return ret;
959
960         rbd_dev->mapping.size = size;
961         rbd_dev->mapping.features = features;
962
963         /* If we are mapping a snapshot it must be marked read-only */
964
965         if (snap_id != CEPH_NOSNAP)
966                 rbd_dev->mapping.read_only = true;
967
968         return 0;
969 }
970
971 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
972 {
973         rbd_dev->mapping.size = 0;
974         rbd_dev->mapping.features = 0;
975         rbd_dev->mapping.read_only = true;
976 }
977
978 static void rbd_dev_clear_mapping(struct rbd_device *rbd_dev)
979 {
980         rbd_dev->mapping.size = 0;
981         rbd_dev->mapping.features = 0;
982         rbd_dev->mapping.read_only = true;
983 }
984
985 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
986 {
987         char *name;
988         u64 segment;
989         int ret;
990
991         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
992         if (!name)
993                 return NULL;
994         segment = offset >> rbd_dev->header.obj_order;
995         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
996                         rbd_dev->header.object_prefix, segment);
997         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
998                 pr_err("error formatting segment name for #%llu (%d)\n",
999                         segment, ret);
1000                 kfree(name);
1001                 name = NULL;
1002         }
1003
1004         return name;
1005 }
1006
1007 static void rbd_segment_name_free(const char *name)
1008 {
1009         /* The explicit cast here is needed to drop the const qualifier */
1010
1011         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1012 }
1013
1014 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1015 {
1016         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1017
1018         return offset & (segment_size - 1);
1019 }
1020
1021 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1022                                 u64 offset, u64 length)
1023 {
1024         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1025
1026         offset &= segment_size - 1;
1027
1028         rbd_assert(length <= U64_MAX - offset);
1029         if (offset + length > segment_size)
1030                 length = segment_size - offset;
1031
1032         return length;
1033 }
1034
1035 /*
1036  * returns the size of an object in the image
1037  */
1038 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1039 {
1040         return 1 << header->obj_order;
1041 }
1042
1043 /*
1044  * bio helpers
1045  */
1046
1047 static void bio_chain_put(struct bio *chain)
1048 {
1049         struct bio *tmp;
1050
1051         while (chain) {
1052                 tmp = chain;
1053                 chain = chain->bi_next;
1054                 bio_put(tmp);
1055         }
1056 }
1057
1058 /*
1059  * zeros a bio chain, starting at specific offset
1060  */
1061 static void zero_bio_chain(struct bio *chain, int start_ofs)
1062 {
1063         struct bio_vec *bv;
1064         unsigned long flags;
1065         void *buf;
1066         int i;
1067         int pos = 0;
1068
1069         while (chain) {
1070                 bio_for_each_segment(bv, chain, i) {
1071                         if (pos + bv->bv_len > start_ofs) {
1072                                 int remainder = max(start_ofs - pos, 0);
1073                                 buf = bvec_kmap_irq(bv, &flags);
1074                                 memset(buf + remainder, 0,
1075                                        bv->bv_len - remainder);
1076                                 bvec_kunmap_irq(buf, &flags);
1077                         }
1078                         pos += bv->bv_len;
1079                 }
1080
1081                 chain = chain->bi_next;
1082         }
1083 }
1084
1085 /*
1086  * similar to zero_bio_chain(), zeros data defined by a page array,
1087  * starting at the given byte offset from the start of the array and
1088  * continuing up to the given end offset.  The pages array is
1089  * assumed to be big enough to hold all bytes up to the end.
1090  */
1091 static void zero_pages(struct page **pages, u64 offset, u64 end)
1092 {
1093         struct page **page = &pages[offset >> PAGE_SHIFT];
1094
1095         rbd_assert(end > offset);
1096         rbd_assert(end - offset <= (u64)SIZE_MAX);
1097         while (offset < end) {
1098                 size_t page_offset;
1099                 size_t length;
1100                 unsigned long flags;
1101                 void *kaddr;
1102
1103                 page_offset = (size_t)(offset & ~PAGE_MASK);
1104                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1105                 local_irq_save(flags);
1106                 kaddr = kmap_atomic(*page);
1107                 memset(kaddr + page_offset, 0, length);
1108                 kunmap_atomic(kaddr);
1109                 local_irq_restore(flags);
1110
1111                 offset += length;
1112                 page++;
1113         }
1114 }
1115
1116 /*
1117  * Clone a portion of a bio, starting at the given byte offset
1118  * and continuing for the number of bytes indicated.
1119  */
1120 static struct bio *bio_clone_range(struct bio *bio_src,
1121                                         unsigned int offset,
1122                                         unsigned int len,
1123                                         gfp_t gfpmask)
1124 {
1125         struct bio_vec *bv;
1126         unsigned int resid;
1127         unsigned short idx;
1128         unsigned int voff;
1129         unsigned short end_idx;
1130         unsigned short vcnt;
1131         struct bio *bio;
1132
1133         /* Handle the easy case for the caller */
1134
1135         if (!offset && len == bio_src->bi_size)
1136                 return bio_clone(bio_src, gfpmask);
1137
1138         if (WARN_ON_ONCE(!len))
1139                 return NULL;
1140         if (WARN_ON_ONCE(len > bio_src->bi_size))
1141                 return NULL;
1142         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1143                 return NULL;
1144
1145         /* Find first affected segment... */
1146
1147         resid = offset;
1148         __bio_for_each_segment(bv, bio_src, idx, 0) {
1149                 if (resid < bv->bv_len)
1150                         break;
1151                 resid -= bv->bv_len;
1152         }
1153         voff = resid;
1154
1155         /* ...and the last affected segment */
1156
1157         resid += len;
1158         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1159                 if (resid <= bv->bv_len)
1160                         break;
1161                 resid -= bv->bv_len;
1162         }
1163         vcnt = end_idx - idx + 1;
1164
1165         /* Build the clone */
1166
1167         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1168         if (!bio)
1169                 return NULL;    /* ENOMEM */
1170
1171         bio->bi_bdev = bio_src->bi_bdev;
1172         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1173         bio->bi_rw = bio_src->bi_rw;
1174         bio->bi_flags |= 1 << BIO_CLONED;
1175
1176         /*
1177          * Copy over our part of the bio_vec, then update the first
1178          * and last (or only) entries.
1179          */
1180         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1181                         vcnt * sizeof (struct bio_vec));
1182         bio->bi_io_vec[0].bv_offset += voff;
1183         if (vcnt > 1) {
1184                 bio->bi_io_vec[0].bv_len -= voff;
1185                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1186         } else {
1187                 bio->bi_io_vec[0].bv_len = len;
1188         }
1189
1190         bio->bi_vcnt = vcnt;
1191         bio->bi_size = len;
1192         bio->bi_idx = 0;
1193
1194         return bio;
1195 }
1196
1197 /*
1198  * Clone a portion of a bio chain, starting at the given byte offset
1199  * into the first bio in the source chain and continuing for the
1200  * number of bytes indicated.  The result is another bio chain of
1201  * exactly the given length, or a null pointer on error.
1202  *
1203  * The bio_src and offset parameters are both in-out.  On entry they
1204  * refer to the first source bio and the offset into that bio where
1205  * the start of data to be cloned is located.
1206  *
1207  * On return, bio_src is updated to refer to the bio in the source
1208  * chain that contains first un-cloned byte, and *offset will
1209  * contain the offset of that byte within that bio.
1210  */
1211 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1212                                         unsigned int *offset,
1213                                         unsigned int len,
1214                                         gfp_t gfpmask)
1215 {
1216         struct bio *bi = *bio_src;
1217         unsigned int off = *offset;
1218         struct bio *chain = NULL;
1219         struct bio **end;
1220
1221         /* Build up a chain of clone bios up to the limit */
1222
1223         if (!bi || off >= bi->bi_size || !len)
1224                 return NULL;            /* Nothing to clone */
1225
1226         end = &chain;
1227         while (len) {
1228                 unsigned int bi_size;
1229                 struct bio *bio;
1230
1231                 if (!bi) {
1232                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1233                         goto out_err;   /* EINVAL; ran out of bio's */
1234                 }
1235                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1236                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1237                 if (!bio)
1238                         goto out_err;   /* ENOMEM */
1239
1240                 *end = bio;
1241                 end = &bio->bi_next;
1242
1243                 off += bi_size;
1244                 if (off == bi->bi_size) {
1245                         bi = bi->bi_next;
1246                         off = 0;
1247                 }
1248                 len -= bi_size;
1249         }
1250         *bio_src = bi;
1251         *offset = off;
1252
1253         return chain;
1254 out_err:
1255         bio_chain_put(chain);
1256
1257         return NULL;
1258 }
1259
1260 /*
1261  * The default/initial value for all object request flags is 0.  For
1262  * each flag, once its value is set to 1 it is never reset to 0
1263  * again.
1264  */
1265 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1266 {
1267         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1268                 struct rbd_device *rbd_dev;
1269
1270                 rbd_dev = obj_request->img_request->rbd_dev;
1271                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1272                         obj_request);
1273         }
1274 }
1275
1276 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1277 {
1278         smp_mb();
1279         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1280 }
1281
1282 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1283 {
1284         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1285                 struct rbd_device *rbd_dev = NULL;
1286
1287                 if (obj_request_img_data_test(obj_request))
1288                         rbd_dev = obj_request->img_request->rbd_dev;
1289                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1290                         obj_request);
1291         }
1292 }
1293
1294 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1295 {
1296         smp_mb();
1297         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1298 }
1299
1300 /*
1301  * This sets the KNOWN flag after (possibly) setting the EXISTS
1302  * flag.  The latter is set based on the "exists" value provided.
1303  *
1304  * Note that for our purposes once an object exists it never goes
1305  * away again.  It's possible that the response from two existence
1306  * checks are separated by the creation of the target object, and
1307  * the first ("doesn't exist") response arrives *after* the second
1308  * ("does exist").  In that case we ignore the second one.
1309  */
1310 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1311                                 bool exists)
1312 {
1313         if (exists)
1314                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1315         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1316         smp_mb();
1317 }
1318
1319 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1320 {
1321         smp_mb();
1322         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1323 }
1324
1325 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1326 {
1327         smp_mb();
1328         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1329 }
1330
1331 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1332 {
1333         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1334                 atomic_read(&obj_request->kref.refcount));
1335         kref_get(&obj_request->kref);
1336 }
1337
1338 static void rbd_obj_request_destroy(struct kref *kref);
1339 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1340 {
1341         rbd_assert(obj_request != NULL);
1342         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1343                 atomic_read(&obj_request->kref.refcount));
1344         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1345 }
1346
1347 static void rbd_img_request_get(struct rbd_img_request *img_request)
1348 {
1349         dout("%s: img %p (was %d)\n", __func__, img_request,
1350                 atomic_read(&img_request->kref.refcount));
1351         kref_get(&img_request->kref);
1352 }
1353
1354 static void rbd_img_request_destroy(struct kref *kref);
1355 static void rbd_img_request_put(struct rbd_img_request *img_request)
1356 {
1357         rbd_assert(img_request != NULL);
1358         dout("%s: img %p (was %d)\n", __func__, img_request,
1359                 atomic_read(&img_request->kref.refcount));
1360         kref_put(&img_request->kref, rbd_img_request_destroy);
1361 }
1362
1363 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1364                                         struct rbd_obj_request *obj_request)
1365 {
1366         rbd_assert(obj_request->img_request == NULL);
1367
1368         /* Image request now owns object's original reference */
1369         obj_request->img_request = img_request;
1370         obj_request->which = img_request->obj_request_count;
1371         rbd_assert(!obj_request_img_data_test(obj_request));
1372         obj_request_img_data_set(obj_request);
1373         rbd_assert(obj_request->which != BAD_WHICH);
1374         img_request->obj_request_count++;
1375         list_add_tail(&obj_request->links, &img_request->obj_requests);
1376         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1377                 obj_request->which);
1378 }
1379
1380 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1381                                         struct rbd_obj_request *obj_request)
1382 {
1383         rbd_assert(obj_request->which != BAD_WHICH);
1384
1385         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1386                 obj_request->which);
1387         list_del(&obj_request->links);
1388         rbd_assert(img_request->obj_request_count > 0);
1389         img_request->obj_request_count--;
1390         rbd_assert(obj_request->which == img_request->obj_request_count);
1391         obj_request->which = BAD_WHICH;
1392         rbd_assert(obj_request_img_data_test(obj_request));
1393         rbd_assert(obj_request->img_request == img_request);
1394         obj_request->img_request = NULL;
1395         obj_request->callback = NULL;
1396         rbd_obj_request_put(obj_request);
1397 }
1398
1399 static bool obj_request_type_valid(enum obj_request_type type)
1400 {
1401         switch (type) {
1402         case OBJ_REQUEST_NODATA:
1403         case OBJ_REQUEST_BIO:
1404         case OBJ_REQUEST_PAGES:
1405                 return true;
1406         default:
1407                 return false;
1408         }
1409 }
1410
1411 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1412                                 struct rbd_obj_request *obj_request)
1413 {
1414         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1415
1416         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1417 }
1418
1419 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1420 {
1421
1422         dout("%s: img %p\n", __func__, img_request);
1423
1424         /*
1425          * If no error occurred, compute the aggregate transfer
1426          * count for the image request.  We could instead use
1427          * atomic64_cmpxchg() to update it as each object request
1428          * completes; not clear which way is better off hand.
1429          */
1430         if (!img_request->result) {
1431                 struct rbd_obj_request *obj_request;
1432                 u64 xferred = 0;
1433
1434                 for_each_obj_request(img_request, obj_request)
1435                         xferred += obj_request->xferred;
1436                 img_request->xferred = xferred;
1437         }
1438
1439         if (img_request->callback)
1440                 img_request->callback(img_request);
1441         else
1442                 rbd_img_request_put(img_request);
1443 }
1444
1445 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1446
1447 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1448 {
1449         dout("%s: obj %p\n", __func__, obj_request);
1450
1451         return wait_for_completion_interruptible(&obj_request->completion);
1452 }
1453
1454 /*
1455  * The default/initial value for all image request flags is 0.  Each
1456  * is conditionally set to 1 at image request initialization time
1457  * and currently never change thereafter.
1458  */
1459 static void img_request_write_set(struct rbd_img_request *img_request)
1460 {
1461         set_bit(IMG_REQ_WRITE, &img_request->flags);
1462         smp_mb();
1463 }
1464
1465 static bool img_request_write_test(struct rbd_img_request *img_request)
1466 {
1467         smp_mb();
1468         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1469 }
1470
1471 static void img_request_child_set(struct rbd_img_request *img_request)
1472 {
1473         set_bit(IMG_REQ_CHILD, &img_request->flags);
1474         smp_mb();
1475 }
1476
1477 static bool img_request_child_test(struct rbd_img_request *img_request)
1478 {
1479         smp_mb();
1480         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1481 }
1482
1483 static void img_request_layered_set(struct rbd_img_request *img_request)
1484 {
1485         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1486         smp_mb();
1487 }
1488
1489 static bool img_request_layered_test(struct rbd_img_request *img_request)
1490 {
1491         smp_mb();
1492         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1493 }
1494
1495 static void
1496 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1497 {
1498         u64 xferred = obj_request->xferred;
1499         u64 length = obj_request->length;
1500
1501         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1502                 obj_request, obj_request->img_request, obj_request->result,
1503                 xferred, length);
1504         /*
1505          * ENOENT means a hole in the image.  We zero-fill the
1506          * entire length of the request.  A short read also implies
1507          * zero-fill to the end of the request.  Either way we
1508          * update the xferred count to indicate the whole request
1509          * was satisfied.
1510          */
1511         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1512         if (obj_request->result == -ENOENT) {
1513                 if (obj_request->type == OBJ_REQUEST_BIO)
1514                         zero_bio_chain(obj_request->bio_list, 0);
1515                 else
1516                         zero_pages(obj_request->pages, 0, length);
1517                 obj_request->result = 0;
1518                 obj_request->xferred = length;
1519         } else if (xferred < length && !obj_request->result) {
1520                 if (obj_request->type == OBJ_REQUEST_BIO)
1521                         zero_bio_chain(obj_request->bio_list, xferred);
1522                 else
1523                         zero_pages(obj_request->pages, xferred, length);
1524                 obj_request->xferred = length;
1525         }
1526         obj_request_done_set(obj_request);
1527 }
1528
1529 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1530 {
1531         dout("%s: obj %p cb %p\n", __func__, obj_request,
1532                 obj_request->callback);
1533         if (obj_request->callback)
1534                 obj_request->callback(obj_request);
1535         else
1536                 complete_all(&obj_request->completion);
1537 }
1538
1539 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1540 {
1541         dout("%s: obj %p\n", __func__, obj_request);
1542         obj_request_done_set(obj_request);
1543 }
1544
1545 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1546 {
1547         struct rbd_img_request *img_request = NULL;
1548         struct rbd_device *rbd_dev = NULL;
1549         bool layered = false;
1550
1551         if (obj_request_img_data_test(obj_request)) {
1552                 img_request = obj_request->img_request;
1553                 layered = img_request && img_request_layered_test(img_request);
1554                 rbd_dev = img_request->rbd_dev;
1555         }
1556
1557         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1558                 obj_request, img_request, obj_request->result,
1559                 obj_request->xferred, obj_request->length);
1560         if (layered && obj_request->result == -ENOENT &&
1561                         obj_request->img_offset < rbd_dev->parent_overlap)
1562                 rbd_img_parent_read(obj_request);
1563         else if (img_request)
1564                 rbd_img_obj_request_read_callback(obj_request);
1565         else
1566                 obj_request_done_set(obj_request);
1567 }
1568
1569 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1570 {
1571         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1572                 obj_request->result, obj_request->length);
1573         /*
1574          * There is no such thing as a successful short write.  Set
1575          * it to our originally-requested length.
1576          */
1577         obj_request->xferred = obj_request->length;
1578         obj_request_done_set(obj_request);
1579 }
1580
1581 /*
1582  * For a simple stat call there's nothing to do.  We'll do more if
1583  * this is part of a write sequence for a layered image.
1584  */
1585 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1586 {
1587         dout("%s: obj %p\n", __func__, obj_request);
1588         obj_request_done_set(obj_request);
1589 }
1590
1591 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1592                                 struct ceph_msg *msg)
1593 {
1594         struct rbd_obj_request *obj_request = osd_req->r_priv;
1595         u16 opcode;
1596
1597         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1598         rbd_assert(osd_req == obj_request->osd_req);
1599         if (obj_request_img_data_test(obj_request)) {
1600                 rbd_assert(obj_request->img_request);
1601                 rbd_assert(obj_request->which != BAD_WHICH);
1602         } else {
1603                 rbd_assert(obj_request->which == BAD_WHICH);
1604         }
1605
1606         if (osd_req->r_result < 0)
1607                 obj_request->result = osd_req->r_result;
1608
1609         BUG_ON(osd_req->r_num_ops > 2);
1610
1611         /*
1612          * We support a 64-bit length, but ultimately it has to be
1613          * passed to blk_end_request(), which takes an unsigned int.
1614          */
1615         obj_request->xferred = osd_req->r_reply_op_len[0];
1616         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1617         opcode = osd_req->r_ops[0].op;
1618         switch (opcode) {
1619         case CEPH_OSD_OP_READ:
1620                 rbd_osd_read_callback(obj_request);
1621                 break;
1622         case CEPH_OSD_OP_WRITE:
1623                 rbd_osd_write_callback(obj_request);
1624                 break;
1625         case CEPH_OSD_OP_STAT:
1626                 rbd_osd_stat_callback(obj_request);
1627                 break;
1628         case CEPH_OSD_OP_CALL:
1629         case CEPH_OSD_OP_NOTIFY_ACK:
1630         case CEPH_OSD_OP_WATCH:
1631                 rbd_osd_trivial_callback(obj_request);
1632                 break;
1633         default:
1634                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1635                         obj_request->object_name, (unsigned short) opcode);
1636                 break;
1637         }
1638
1639         if (obj_request_done_test(obj_request))
1640                 rbd_obj_request_complete(obj_request);
1641 }
1642
1643 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1644 {
1645         struct rbd_img_request *img_request = obj_request->img_request;
1646         struct ceph_osd_request *osd_req = obj_request->osd_req;
1647         u64 snap_id;
1648
1649         rbd_assert(osd_req != NULL);
1650
1651         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1652         ceph_osdc_build_request(osd_req, obj_request->offset,
1653                         NULL, snap_id, NULL);
1654 }
1655
1656 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1657 {
1658         struct rbd_img_request *img_request = obj_request->img_request;
1659         struct ceph_osd_request *osd_req = obj_request->osd_req;
1660         struct ceph_snap_context *snapc;
1661         struct timespec mtime = CURRENT_TIME;
1662
1663         rbd_assert(osd_req != NULL);
1664
1665         snapc = img_request ? img_request->snapc : NULL;
1666         ceph_osdc_build_request(osd_req, obj_request->offset,
1667                         snapc, CEPH_NOSNAP, &mtime);
1668 }
1669
1670 static struct ceph_osd_request *rbd_osd_req_create(
1671                                         struct rbd_device *rbd_dev,
1672                                         bool write_request,
1673                                         struct rbd_obj_request *obj_request)
1674 {
1675         struct ceph_snap_context *snapc = NULL;
1676         struct ceph_osd_client *osdc;
1677         struct ceph_osd_request *osd_req;
1678
1679         if (obj_request_img_data_test(obj_request)) {
1680                 struct rbd_img_request *img_request = obj_request->img_request;
1681
1682                 rbd_assert(write_request ==
1683                                 img_request_write_test(img_request));
1684                 if (write_request)
1685                         snapc = img_request->snapc;
1686         }
1687
1688         /* Allocate and initialize the request, for the single op */
1689
1690         osdc = &rbd_dev->rbd_client->client->osdc;
1691         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1692         if (!osd_req)
1693                 return NULL;    /* ENOMEM */
1694
1695         if (write_request)
1696                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1697         else
1698                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1699
1700         osd_req->r_callback = rbd_osd_req_callback;
1701         osd_req->r_priv = obj_request;
1702
1703         osd_req->r_oid_len = strlen(obj_request->object_name);
1704         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1705         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1706
1707         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1708
1709         return osd_req;
1710 }
1711
1712 /*
1713  * Create a copyup osd request based on the information in the
1714  * object request supplied.  A copyup request has two osd ops,
1715  * a copyup method call, and a "normal" write request.
1716  */
1717 static struct ceph_osd_request *
1718 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1719 {
1720         struct rbd_img_request *img_request;
1721         struct ceph_snap_context *snapc;
1722         struct rbd_device *rbd_dev;
1723         struct ceph_osd_client *osdc;
1724         struct ceph_osd_request *osd_req;
1725
1726         rbd_assert(obj_request_img_data_test(obj_request));
1727         img_request = obj_request->img_request;
1728         rbd_assert(img_request);
1729         rbd_assert(img_request_write_test(img_request));
1730
1731         /* Allocate and initialize the request, for the two ops */
1732
1733         snapc = img_request->snapc;
1734         rbd_dev = img_request->rbd_dev;
1735         osdc = &rbd_dev->rbd_client->client->osdc;
1736         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1737         if (!osd_req)
1738                 return NULL;    /* ENOMEM */
1739
1740         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1741         osd_req->r_callback = rbd_osd_req_callback;
1742         osd_req->r_priv = obj_request;
1743
1744         osd_req->r_oid_len = strlen(obj_request->object_name);
1745         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1746         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1747
1748         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1749
1750         return osd_req;
1751 }
1752
1753
1754 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1755 {
1756         ceph_osdc_put_request(osd_req);
1757 }
1758
1759 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1760
1761 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1762                                                 u64 offset, u64 length,
1763                                                 enum obj_request_type type)
1764 {
1765         struct rbd_obj_request *obj_request;
1766         size_t size;
1767         char *name;
1768
1769         rbd_assert(obj_request_type_valid(type));
1770
1771         size = strlen(object_name) + 1;
1772         name = kmalloc(size, GFP_KERNEL);
1773         if (!name)
1774                 return NULL;
1775
1776         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1777         if (!obj_request) {
1778                 kfree(name);
1779                 return NULL;
1780         }
1781
1782         obj_request->object_name = memcpy(name, object_name, size);
1783         obj_request->offset = offset;
1784         obj_request->length = length;
1785         obj_request->flags = 0;
1786         obj_request->which = BAD_WHICH;
1787         obj_request->type = type;
1788         INIT_LIST_HEAD(&obj_request->links);
1789         init_completion(&obj_request->completion);
1790         kref_init(&obj_request->kref);
1791
1792         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1793                 offset, length, (int)type, obj_request);
1794
1795         return obj_request;
1796 }
1797
1798 static void rbd_obj_request_destroy(struct kref *kref)
1799 {
1800         struct rbd_obj_request *obj_request;
1801
1802         obj_request = container_of(kref, struct rbd_obj_request, kref);
1803
1804         dout("%s: obj %p\n", __func__, obj_request);
1805
1806         rbd_assert(obj_request->img_request == NULL);
1807         rbd_assert(obj_request->which == BAD_WHICH);
1808
1809         if (obj_request->osd_req)
1810                 rbd_osd_req_destroy(obj_request->osd_req);
1811
1812         rbd_assert(obj_request_type_valid(obj_request->type));
1813         switch (obj_request->type) {
1814         case OBJ_REQUEST_NODATA:
1815                 break;          /* Nothing to do */
1816         case OBJ_REQUEST_BIO:
1817                 if (obj_request->bio_list)
1818                         bio_chain_put(obj_request->bio_list);
1819                 break;
1820         case OBJ_REQUEST_PAGES:
1821                 if (obj_request->pages)
1822                         ceph_release_page_vector(obj_request->pages,
1823                                                 obj_request->page_count);
1824                 break;
1825         }
1826
1827         kfree(obj_request->object_name);
1828         obj_request->object_name = NULL;
1829         kmem_cache_free(rbd_obj_request_cache, obj_request);
1830 }
1831
1832 /*
1833  * Caller is responsible for filling in the list of object requests
1834  * that comprises the image request, and the Linux request pointer
1835  * (if there is one).
1836  */
1837 static struct rbd_img_request *rbd_img_request_create(
1838                                         struct rbd_device *rbd_dev,
1839                                         u64 offset, u64 length,
1840                                         bool write_request,
1841                                         bool child_request)
1842 {
1843         struct rbd_img_request *img_request;
1844
1845         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1846         if (!img_request)
1847                 return NULL;
1848
1849         if (write_request) {
1850                 down_read(&rbd_dev->header_rwsem);
1851                 ceph_get_snap_context(rbd_dev->header.snapc);
1852                 up_read(&rbd_dev->header_rwsem);
1853         }
1854
1855         img_request->rq = NULL;
1856         img_request->rbd_dev = rbd_dev;
1857         img_request->offset = offset;
1858         img_request->length = length;
1859         img_request->flags = 0;
1860         if (write_request) {
1861                 img_request_write_set(img_request);
1862                 img_request->snapc = rbd_dev->header.snapc;
1863         } else {
1864                 img_request->snap_id = rbd_dev->spec->snap_id;
1865         }
1866         if (child_request)
1867                 img_request_child_set(img_request);
1868         if (rbd_dev->parent_spec)
1869                 img_request_layered_set(img_request);
1870         spin_lock_init(&img_request->completion_lock);
1871         img_request->next_completion = 0;
1872         img_request->callback = NULL;
1873         img_request->result = 0;
1874         img_request->obj_request_count = 0;
1875         INIT_LIST_HEAD(&img_request->obj_requests);
1876         kref_init(&img_request->kref);
1877
1878         rbd_img_request_get(img_request);       /* Avoid a warning */
1879         rbd_img_request_put(img_request);       /* TEMPORARY */
1880
1881         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1882                 write_request ? "write" : "read", offset, length,
1883                 img_request);
1884
1885         return img_request;
1886 }
1887
1888 static void rbd_img_request_destroy(struct kref *kref)
1889 {
1890         struct rbd_img_request *img_request;
1891         struct rbd_obj_request *obj_request;
1892         struct rbd_obj_request *next_obj_request;
1893
1894         img_request = container_of(kref, struct rbd_img_request, kref);
1895
1896         dout("%s: img %p\n", __func__, img_request);
1897
1898         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1899                 rbd_img_obj_request_del(img_request, obj_request);
1900         rbd_assert(img_request->obj_request_count == 0);
1901
1902         if (img_request_write_test(img_request))
1903                 ceph_put_snap_context(img_request->snapc);
1904
1905         if (img_request_child_test(img_request))
1906                 rbd_obj_request_put(img_request->obj_request);
1907
1908         kmem_cache_free(rbd_img_request_cache, img_request);
1909 }
1910
1911 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
1912 {
1913         struct rbd_img_request *img_request;
1914         unsigned int xferred;
1915         int result;
1916         bool more;
1917
1918         rbd_assert(obj_request_img_data_test(obj_request));
1919         img_request = obj_request->img_request;
1920
1921         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
1922         xferred = (unsigned int)obj_request->xferred;
1923         result = obj_request->result;
1924         if (result) {
1925                 struct rbd_device *rbd_dev = img_request->rbd_dev;
1926
1927                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
1928                         img_request_write_test(img_request) ? "write" : "read",
1929                         obj_request->length, obj_request->img_offset,
1930                         obj_request->offset);
1931                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
1932                         result, xferred);
1933                 if (!img_request->result)
1934                         img_request->result = result;
1935         }
1936
1937         /* Image object requests don't own their page array */
1938
1939         if (obj_request->type == OBJ_REQUEST_PAGES) {
1940                 obj_request->pages = NULL;
1941                 obj_request->page_count = 0;
1942         }
1943
1944         if (img_request_child_test(img_request)) {
1945                 rbd_assert(img_request->obj_request != NULL);
1946                 more = obj_request->which < img_request->obj_request_count - 1;
1947         } else {
1948                 rbd_assert(img_request->rq != NULL);
1949                 more = blk_end_request(img_request->rq, result, xferred);
1950         }
1951
1952         return more;
1953 }
1954
1955 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1956 {
1957         struct rbd_img_request *img_request;
1958         u32 which = obj_request->which;
1959         bool more = true;
1960
1961         rbd_assert(obj_request_img_data_test(obj_request));
1962         img_request = obj_request->img_request;
1963
1964         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1965         rbd_assert(img_request != NULL);
1966         rbd_assert(img_request->obj_request_count > 0);
1967         rbd_assert(which != BAD_WHICH);
1968         rbd_assert(which < img_request->obj_request_count);
1969         rbd_assert(which >= img_request->next_completion);
1970
1971         spin_lock_irq(&img_request->completion_lock);
1972         if (which != img_request->next_completion)
1973                 goto out;
1974
1975         for_each_obj_request_from(img_request, obj_request) {
1976                 rbd_assert(more);
1977                 rbd_assert(which < img_request->obj_request_count);
1978
1979                 if (!obj_request_done_test(obj_request))
1980                         break;
1981                 more = rbd_img_obj_end_request(obj_request);
1982                 which++;
1983         }
1984
1985         rbd_assert(more ^ (which == img_request->obj_request_count));
1986         img_request->next_completion = which;
1987 out:
1988         spin_unlock_irq(&img_request->completion_lock);
1989
1990         if (!more)
1991                 rbd_img_request_complete(img_request);
1992 }
1993
1994 /*
1995  * Split up an image request into one or more object requests, each
1996  * to a different object.  The "type" parameter indicates whether
1997  * "data_desc" is the pointer to the head of a list of bio
1998  * structures, or the base of a page array.  In either case this
1999  * function assumes data_desc describes memory sufficient to hold
2000  * all data described by the image request.
2001  */
2002 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2003                                         enum obj_request_type type,
2004                                         void *data_desc)
2005 {
2006         struct rbd_device *rbd_dev = img_request->rbd_dev;
2007         struct rbd_obj_request *obj_request = NULL;
2008         struct rbd_obj_request *next_obj_request;
2009         bool write_request = img_request_write_test(img_request);
2010         struct bio *bio_list;
2011         unsigned int bio_offset = 0;
2012         struct page **pages;
2013         u64 img_offset;
2014         u64 resid;
2015         u16 opcode;
2016
2017         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2018                 (int)type, data_desc);
2019
2020         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2021         img_offset = img_request->offset;
2022         resid = img_request->length;
2023         rbd_assert(resid > 0);
2024
2025         if (type == OBJ_REQUEST_BIO) {
2026                 bio_list = data_desc;
2027                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2028         } else {
2029                 rbd_assert(type == OBJ_REQUEST_PAGES);
2030                 pages = data_desc;
2031         }
2032
2033         while (resid) {
2034                 struct ceph_osd_request *osd_req;
2035                 const char *object_name;
2036                 u64 offset;
2037                 u64 length;
2038
2039                 object_name = rbd_segment_name(rbd_dev, img_offset);
2040                 if (!object_name)
2041                         goto out_unwind;
2042                 offset = rbd_segment_offset(rbd_dev, img_offset);
2043                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2044                 obj_request = rbd_obj_request_create(object_name,
2045                                                 offset, length, type);
2046                 /* object request has its own copy of the object name */
2047                 rbd_segment_name_free(object_name);
2048                 if (!obj_request)
2049                         goto out_unwind;
2050
2051                 if (type == OBJ_REQUEST_BIO) {
2052                         unsigned int clone_size;
2053
2054                         rbd_assert(length <= (u64)UINT_MAX);
2055                         clone_size = (unsigned int)length;
2056                         obj_request->bio_list =
2057                                         bio_chain_clone_range(&bio_list,
2058                                                                 &bio_offset,
2059                                                                 clone_size,
2060                                                                 GFP_ATOMIC);
2061                         if (!obj_request->bio_list)
2062                                 goto out_partial;
2063                 } else {
2064                         unsigned int page_count;
2065
2066                         obj_request->pages = pages;
2067                         page_count = (u32)calc_pages_for(offset, length);
2068                         obj_request->page_count = page_count;
2069                         if ((offset + length) & ~PAGE_MASK)
2070                                 page_count--;   /* more on last page */
2071                         pages += page_count;
2072                 }
2073
2074                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2075                                                 obj_request);
2076                 if (!osd_req)
2077                         goto out_partial;
2078                 obj_request->osd_req = osd_req;
2079                 obj_request->callback = rbd_img_obj_callback;
2080
2081                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2082                                                 0, 0);
2083                 if (type == OBJ_REQUEST_BIO)
2084                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2085                                         obj_request->bio_list, length);
2086                 else
2087                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2088                                         obj_request->pages, length,
2089                                         offset & ~PAGE_MASK, false, false);
2090
2091                 if (write_request)
2092                         rbd_osd_req_format_write(obj_request);
2093                 else
2094                         rbd_osd_req_format_read(obj_request);
2095
2096                 obj_request->img_offset = img_offset;
2097                 rbd_img_obj_request_add(img_request, obj_request);
2098
2099                 img_offset += length;
2100                 resid -= length;
2101         }
2102
2103         return 0;
2104
2105 out_partial:
2106         rbd_obj_request_put(obj_request);
2107 out_unwind:
2108         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2109                 rbd_obj_request_put(obj_request);
2110
2111         return -ENOMEM;
2112 }
2113
2114 static void
2115 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2116 {
2117         struct rbd_img_request *img_request;
2118         struct rbd_device *rbd_dev;
2119         u64 length;
2120         u32 page_count;
2121
2122         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2123         rbd_assert(obj_request_img_data_test(obj_request));
2124         img_request = obj_request->img_request;
2125         rbd_assert(img_request);
2126
2127         rbd_dev = img_request->rbd_dev;
2128         rbd_assert(rbd_dev);
2129         length = (u64)1 << rbd_dev->header.obj_order;
2130         page_count = (u32)calc_pages_for(0, length);
2131
2132         rbd_assert(obj_request->copyup_pages);
2133         ceph_release_page_vector(obj_request->copyup_pages, page_count);
2134         obj_request->copyup_pages = NULL;
2135
2136         /*
2137          * We want the transfer count to reflect the size of the
2138          * original write request.  There is no such thing as a
2139          * successful short write, so if the request was successful
2140          * we can just set it to the originally-requested length.
2141          */
2142         if (!obj_request->result)
2143                 obj_request->xferred = obj_request->length;
2144
2145         /* Finish up with the normal image object callback */
2146
2147         rbd_img_obj_callback(obj_request);
2148 }
2149
2150 static void
2151 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2152 {
2153         struct rbd_obj_request *orig_request;
2154         struct ceph_osd_request *osd_req;
2155         struct ceph_osd_client *osdc;
2156         struct rbd_device *rbd_dev;
2157         struct page **pages;
2158         int result;
2159         u64 obj_size;
2160         u64 xferred;
2161
2162         rbd_assert(img_request_child_test(img_request));
2163
2164         /* First get what we need from the image request */
2165
2166         pages = img_request->copyup_pages;
2167         rbd_assert(pages != NULL);
2168         img_request->copyup_pages = NULL;
2169
2170         orig_request = img_request->obj_request;
2171         rbd_assert(orig_request != NULL);
2172         rbd_assert(orig_request->type == OBJ_REQUEST_BIO);
2173         result = img_request->result;
2174         obj_size = img_request->length;
2175         xferred = img_request->xferred;
2176
2177         rbd_dev = img_request->rbd_dev;
2178         rbd_assert(rbd_dev);
2179         rbd_assert(obj_size == (u64)1 << rbd_dev->header.obj_order);
2180
2181         rbd_img_request_put(img_request);
2182
2183         if (result)
2184                 goto out_err;
2185
2186         /* Allocate the new copyup osd request for the original request */
2187
2188         result = -ENOMEM;
2189         rbd_assert(!orig_request->osd_req);
2190         osd_req = rbd_osd_req_create_copyup(orig_request);
2191         if (!osd_req)
2192                 goto out_err;
2193         orig_request->osd_req = osd_req;
2194         orig_request->copyup_pages = pages;
2195
2196         /* Initialize the copyup op */
2197
2198         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2199         osd_req_op_cls_request_data_pages(osd_req, 0, pages, obj_size, 0,
2200                                                 false, false);
2201
2202         /* Then the original write request op */
2203
2204         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2205                                         orig_request->offset,
2206                                         orig_request->length, 0, 0);
2207         osd_req_op_extent_osd_data_bio(osd_req, 1, orig_request->bio_list,
2208                                         orig_request->length);
2209
2210         rbd_osd_req_format_write(orig_request);
2211
2212         /* All set, send it off. */
2213
2214         orig_request->callback = rbd_img_obj_copyup_callback;
2215         osdc = &rbd_dev->rbd_client->client->osdc;
2216         result = rbd_obj_request_submit(osdc, orig_request);
2217         if (!result)
2218                 return;
2219 out_err:
2220         /* Record the error code and complete the request */
2221
2222         orig_request->result = result;
2223         orig_request->xferred = 0;
2224         obj_request_done_set(orig_request);
2225         rbd_obj_request_complete(orig_request);
2226 }
2227
2228 /*
2229  * Read from the parent image the range of data that covers the
2230  * entire target of the given object request.  This is used for
2231  * satisfying a layered image write request when the target of an
2232  * object request from the image request does not exist.
2233  *
2234  * A page array big enough to hold the returned data is allocated
2235  * and supplied to rbd_img_request_fill() as the "data descriptor."
2236  * When the read completes, this page array will be transferred to
2237  * the original object request for the copyup operation.
2238  *
2239  * If an error occurs, record it as the result of the original
2240  * object request and mark it done so it gets completed.
2241  */
2242 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2243 {
2244         struct rbd_img_request *img_request = NULL;
2245         struct rbd_img_request *parent_request = NULL;
2246         struct rbd_device *rbd_dev;
2247         u64 img_offset;
2248         u64 length;
2249         struct page **pages = NULL;
2250         u32 page_count;
2251         int result;
2252
2253         rbd_assert(obj_request_img_data_test(obj_request));
2254         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2255
2256         img_request = obj_request->img_request;
2257         rbd_assert(img_request != NULL);
2258         rbd_dev = img_request->rbd_dev;
2259         rbd_assert(rbd_dev->parent != NULL);
2260
2261         /*
2262          * First things first.  The original osd request is of no
2263          * use to use any more, we'll need a new one that can hold
2264          * the two ops in a copyup request.  We'll get that later,
2265          * but for now we can release the old one.
2266          */
2267         rbd_osd_req_destroy(obj_request->osd_req);
2268         obj_request->osd_req = NULL;
2269
2270         /*
2271          * Determine the byte range covered by the object in the
2272          * child image to which the original request was to be sent.
2273          */
2274         img_offset = obj_request->img_offset - obj_request->offset;
2275         length = (u64)1 << rbd_dev->header.obj_order;
2276
2277         /*
2278          * There is no defined parent data beyond the parent
2279          * overlap, so limit what we read at that boundary if
2280          * necessary.
2281          */
2282         if (img_offset + length > rbd_dev->parent_overlap) {
2283                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2284                 length = rbd_dev->parent_overlap - img_offset;
2285         }
2286
2287         /*
2288          * Allocate a page array big enough to receive the data read
2289          * from the parent.
2290          */
2291         page_count = (u32)calc_pages_for(0, length);
2292         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2293         if (IS_ERR(pages)) {
2294                 result = PTR_ERR(pages);
2295                 pages = NULL;
2296                 goto out_err;
2297         }
2298
2299         result = -ENOMEM;
2300         parent_request = rbd_img_request_create(rbd_dev->parent,
2301                                                 img_offset, length,
2302                                                 false, true);
2303         if (!parent_request)
2304                 goto out_err;
2305         rbd_obj_request_get(obj_request);
2306         parent_request->obj_request = obj_request;
2307
2308         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2309         if (result)
2310                 goto out_err;
2311         parent_request->copyup_pages = pages;
2312
2313         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2314         result = rbd_img_request_submit(parent_request);
2315         if (!result)
2316                 return 0;
2317
2318         parent_request->copyup_pages = NULL;
2319         parent_request->obj_request = NULL;
2320         rbd_obj_request_put(obj_request);
2321 out_err:
2322         if (pages)
2323                 ceph_release_page_vector(pages, page_count);
2324         if (parent_request)
2325                 rbd_img_request_put(parent_request);
2326         obj_request->result = result;
2327         obj_request->xferred = 0;
2328         obj_request_done_set(obj_request);
2329
2330         return result;
2331 }
2332
2333 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2334 {
2335         struct rbd_obj_request *orig_request;
2336         int result;
2337
2338         rbd_assert(!obj_request_img_data_test(obj_request));
2339
2340         /*
2341          * All we need from the object request is the original
2342          * request and the result of the STAT op.  Grab those, then
2343          * we're done with the request.
2344          */
2345         orig_request = obj_request->obj_request;
2346         obj_request->obj_request = NULL;
2347         rbd_assert(orig_request);
2348         rbd_assert(orig_request->img_request);
2349
2350         result = obj_request->result;
2351         obj_request->result = 0;
2352
2353         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2354                 obj_request, orig_request, result,
2355                 obj_request->xferred, obj_request->length);
2356         rbd_obj_request_put(obj_request);
2357
2358         rbd_assert(orig_request);
2359         rbd_assert(orig_request->img_request);
2360
2361         /*
2362          * Our only purpose here is to determine whether the object
2363          * exists, and we don't want to treat the non-existence as
2364          * an error.  If something else comes back, transfer the
2365          * error to the original request and complete it now.
2366          */
2367         if (!result) {
2368                 obj_request_existence_set(orig_request, true);
2369         } else if (result == -ENOENT) {
2370                 obj_request_existence_set(orig_request, false);
2371         } else if (result) {
2372                 orig_request->result = result;
2373                 goto out;
2374         }
2375
2376         /*
2377          * Resubmit the original request now that we have recorded
2378          * whether the target object exists.
2379          */
2380         orig_request->result = rbd_img_obj_request_submit(orig_request);
2381 out:
2382         if (orig_request->result)
2383                 rbd_obj_request_complete(orig_request);
2384         rbd_obj_request_put(orig_request);
2385 }
2386
2387 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2388 {
2389         struct rbd_obj_request *stat_request;
2390         struct rbd_device *rbd_dev;
2391         struct ceph_osd_client *osdc;
2392         struct page **pages = NULL;
2393         u32 page_count;
2394         size_t size;
2395         int ret;
2396
2397         /*
2398          * The response data for a STAT call consists of:
2399          *     le64 length;
2400          *     struct {
2401          *         le32 tv_sec;
2402          *         le32 tv_nsec;
2403          *     } mtime;
2404          */
2405         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2406         page_count = (u32)calc_pages_for(0, size);
2407         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2408         if (IS_ERR(pages))
2409                 return PTR_ERR(pages);
2410
2411         ret = -ENOMEM;
2412         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2413                                                         OBJ_REQUEST_PAGES);
2414         if (!stat_request)
2415                 goto out;
2416
2417         rbd_obj_request_get(obj_request);
2418         stat_request->obj_request = obj_request;
2419         stat_request->pages = pages;
2420         stat_request->page_count = page_count;
2421
2422         rbd_assert(obj_request->img_request);
2423         rbd_dev = obj_request->img_request->rbd_dev;
2424         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2425                                                 stat_request);
2426         if (!stat_request->osd_req)
2427                 goto out;
2428         stat_request->callback = rbd_img_obj_exists_callback;
2429
2430         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2431         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2432                                         false, false);
2433         rbd_osd_req_format_read(stat_request);
2434
2435         osdc = &rbd_dev->rbd_client->client->osdc;
2436         ret = rbd_obj_request_submit(osdc, stat_request);
2437 out:
2438         if (ret)
2439                 rbd_obj_request_put(obj_request);
2440
2441         return ret;
2442 }
2443
2444 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2445 {
2446         struct rbd_img_request *img_request;
2447         struct rbd_device *rbd_dev;
2448         bool known;
2449
2450         rbd_assert(obj_request_img_data_test(obj_request));
2451
2452         img_request = obj_request->img_request;
2453         rbd_assert(img_request);
2454         rbd_dev = img_request->rbd_dev;
2455
2456         /*
2457          * Only writes to layered images need special handling.
2458          * Reads and non-layered writes are simple object requests.
2459          * Layered writes that start beyond the end of the overlap
2460          * with the parent have no parent data, so they too are
2461          * simple object requests.  Finally, if the target object is
2462          * known to already exist, its parent data has already been
2463          * copied, so a write to the object can also be handled as a
2464          * simple object request.
2465          */
2466         if (!img_request_write_test(img_request) ||
2467                 !img_request_layered_test(img_request) ||
2468                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2469                 ((known = obj_request_known_test(obj_request)) &&
2470                         obj_request_exists_test(obj_request))) {
2471
2472                 struct rbd_device *rbd_dev;
2473                 struct ceph_osd_client *osdc;
2474
2475                 rbd_dev = obj_request->img_request->rbd_dev;
2476                 osdc = &rbd_dev->rbd_client->client->osdc;
2477
2478                 return rbd_obj_request_submit(osdc, obj_request);
2479         }
2480
2481         /*
2482          * It's a layered write.  The target object might exist but
2483          * we may not know that yet.  If we know it doesn't exist,
2484          * start by reading the data for the full target object from
2485          * the parent so we can use it for a copyup to the target.
2486          */
2487         if (known)
2488                 return rbd_img_obj_parent_read_full(obj_request);
2489
2490         /* We don't know whether the target exists.  Go find out. */
2491
2492         return rbd_img_obj_exists_submit(obj_request);
2493 }
2494
2495 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2496 {
2497         struct rbd_obj_request *obj_request;
2498         struct rbd_obj_request *next_obj_request;
2499
2500         dout("%s: img %p\n", __func__, img_request);
2501         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2502                 int ret;
2503
2504                 ret = rbd_img_obj_request_submit(obj_request);
2505                 if (ret)
2506                         return ret;
2507         }
2508
2509         return 0;
2510 }
2511
2512 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2513 {
2514         struct rbd_obj_request *obj_request;
2515         struct rbd_device *rbd_dev;
2516         u64 obj_end;
2517
2518         rbd_assert(img_request_child_test(img_request));
2519
2520         obj_request = img_request->obj_request;
2521         rbd_assert(obj_request);
2522         rbd_assert(obj_request->img_request);
2523
2524         obj_request->result = img_request->result;
2525         if (obj_request->result)
2526                 goto out;
2527
2528         /*
2529          * We need to zero anything beyond the parent overlap
2530          * boundary.  Since rbd_img_obj_request_read_callback()
2531          * will zero anything beyond the end of a short read, an
2532          * easy way to do this is to pretend the data from the
2533          * parent came up short--ending at the overlap boundary.
2534          */
2535         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2536         obj_end = obj_request->img_offset + obj_request->length;
2537         rbd_dev = obj_request->img_request->rbd_dev;
2538         if (obj_end > rbd_dev->parent_overlap) {
2539                 u64 xferred = 0;
2540
2541                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2542                         xferred = rbd_dev->parent_overlap -
2543                                         obj_request->img_offset;
2544
2545                 obj_request->xferred = min(img_request->xferred, xferred);
2546         } else {
2547                 obj_request->xferred = img_request->xferred;
2548         }
2549 out:
2550         rbd_img_request_put(img_request);
2551         rbd_img_obj_request_read_callback(obj_request);
2552         rbd_obj_request_complete(obj_request);
2553 }
2554
2555 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2556 {
2557         struct rbd_device *rbd_dev;
2558         struct rbd_img_request *img_request;
2559         int result;
2560
2561         rbd_assert(obj_request_img_data_test(obj_request));
2562         rbd_assert(obj_request->img_request != NULL);
2563         rbd_assert(obj_request->result == (s32) -ENOENT);
2564         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2565
2566         rbd_dev = obj_request->img_request->rbd_dev;
2567         rbd_assert(rbd_dev->parent != NULL);
2568         /* rbd_read_finish(obj_request, obj_request->length); */
2569         img_request = rbd_img_request_create(rbd_dev->parent,
2570                                                 obj_request->img_offset,
2571                                                 obj_request->length,
2572                                                 false, true);
2573         result = -ENOMEM;
2574         if (!img_request)
2575                 goto out_err;
2576
2577         rbd_obj_request_get(obj_request);
2578         img_request->obj_request = obj_request;
2579
2580         result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2581                                         obj_request->bio_list);
2582         if (result)
2583                 goto out_err;
2584
2585         img_request->callback = rbd_img_parent_read_callback;
2586         result = rbd_img_request_submit(img_request);
2587         if (result)
2588                 goto out_err;
2589
2590         return;
2591 out_err:
2592         if (img_request)
2593                 rbd_img_request_put(img_request);
2594         obj_request->result = result;
2595         obj_request->xferred = 0;
2596         obj_request_done_set(obj_request);
2597 }
2598
2599 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2600 {
2601         struct rbd_obj_request *obj_request;
2602         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2603         int ret;
2604
2605         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2606                                                         OBJ_REQUEST_NODATA);
2607         if (!obj_request)
2608                 return -ENOMEM;
2609
2610         ret = -ENOMEM;
2611         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2612         if (!obj_request->osd_req)
2613                 goto out;
2614         obj_request->callback = rbd_obj_request_put;
2615
2616         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2617                                         notify_id, 0, 0);
2618         rbd_osd_req_format_read(obj_request);
2619
2620         ret = rbd_obj_request_submit(osdc, obj_request);
2621 out:
2622         if (ret)
2623                 rbd_obj_request_put(obj_request);
2624
2625         return ret;
2626 }
2627
2628 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2629 {
2630         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2631         int ret;
2632
2633         if (!rbd_dev)
2634                 return;
2635
2636         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2637                 rbd_dev->header_name, (unsigned long long)notify_id,
2638                 (unsigned int)opcode);
2639         ret = rbd_dev_refresh(rbd_dev);
2640         if (ret)
2641                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2642
2643         rbd_obj_notify_ack(rbd_dev, notify_id);
2644 }
2645
2646 /*
2647  * Request sync osd watch/unwatch.  The value of "start" determines
2648  * whether a watch request is being initiated or torn down.
2649  */
2650 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
2651 {
2652         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2653         struct rbd_obj_request *obj_request;
2654         int ret;
2655
2656         rbd_assert(start ^ !!rbd_dev->watch_event);
2657         rbd_assert(start ^ !!rbd_dev->watch_request);
2658
2659         if (start) {
2660                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2661                                                 &rbd_dev->watch_event);
2662                 if (ret < 0)
2663                         return ret;
2664                 rbd_assert(rbd_dev->watch_event != NULL);
2665         }
2666
2667         ret = -ENOMEM;
2668         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2669                                                         OBJ_REQUEST_NODATA);
2670         if (!obj_request)
2671                 goto out_cancel;
2672
2673         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2674         if (!obj_request->osd_req)
2675                 goto out_cancel;
2676
2677         if (start)
2678                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2679         else
2680                 ceph_osdc_unregister_linger_request(osdc,
2681                                         rbd_dev->watch_request->osd_req);
2682
2683         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2684                                 rbd_dev->watch_event->cookie, 0, start);
2685         rbd_osd_req_format_write(obj_request);
2686
2687         ret = rbd_obj_request_submit(osdc, obj_request);
2688         if (ret)
2689                 goto out_cancel;
2690         ret = rbd_obj_request_wait(obj_request);
2691         if (ret)
2692                 goto out_cancel;
2693         ret = obj_request->result;
2694         if (ret)
2695                 goto out_cancel;
2696
2697         /*
2698          * A watch request is set to linger, so the underlying osd
2699          * request won't go away until we unregister it.  We retain
2700          * a pointer to the object request during that time (in
2701          * rbd_dev->watch_request), so we'll keep a reference to
2702          * it.  We'll drop that reference (below) after we've
2703          * unregistered it.
2704          */
2705         if (start) {
2706                 rbd_dev->watch_request = obj_request;
2707
2708                 return 0;
2709         }
2710
2711         /* We have successfully torn down the watch request */
2712
2713         rbd_obj_request_put(rbd_dev->watch_request);
2714         rbd_dev->watch_request = NULL;
2715 out_cancel:
2716         /* Cancel the event if we're tearing down, or on error */
2717         ceph_osdc_cancel_event(rbd_dev->watch_event);
2718         rbd_dev->watch_event = NULL;
2719         if (obj_request)
2720                 rbd_obj_request_put(obj_request);
2721
2722         return ret;
2723 }
2724
2725 /*
2726  * Synchronous osd object method call.  Returns the number of bytes
2727  * returned in the outbound buffer, or a negative error code.
2728  */
2729 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2730                              const char *object_name,
2731                              const char *class_name,
2732                              const char *method_name,
2733                              const void *outbound,
2734                              size_t outbound_size,
2735                              void *inbound,
2736                              size_t inbound_size)
2737 {
2738         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2739         struct rbd_obj_request *obj_request;
2740         struct page **pages;
2741         u32 page_count;
2742         int ret;
2743
2744         /*
2745          * Method calls are ultimately read operations.  The result
2746          * should placed into the inbound buffer provided.  They
2747          * also supply outbound data--parameters for the object
2748          * method.  Currently if this is present it will be a
2749          * snapshot id.
2750          */
2751         page_count = (u32)calc_pages_for(0, inbound_size);
2752         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2753         if (IS_ERR(pages))
2754                 return PTR_ERR(pages);
2755
2756         ret = -ENOMEM;
2757         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2758                                                         OBJ_REQUEST_PAGES);
2759         if (!obj_request)
2760                 goto out;
2761
2762         obj_request->pages = pages;
2763         obj_request->page_count = page_count;
2764
2765         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2766         if (!obj_request->osd_req)
2767                 goto out;
2768
2769         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2770                                         class_name, method_name);
2771         if (outbound_size) {
2772                 struct ceph_pagelist *pagelist;
2773
2774                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2775                 if (!pagelist)
2776                         goto out;
2777
2778                 ceph_pagelist_init(pagelist);
2779                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2780                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2781                                                 pagelist);
2782         }
2783         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2784                                         obj_request->pages, inbound_size,
2785                                         0, false, false);
2786         rbd_osd_req_format_read(obj_request);
2787
2788         ret = rbd_obj_request_submit(osdc, obj_request);
2789         if (ret)
2790                 goto out;
2791         ret = rbd_obj_request_wait(obj_request);
2792         if (ret)
2793                 goto out;
2794
2795         ret = obj_request->result;
2796         if (ret < 0)
2797                 goto out;
2798
2799         rbd_assert(obj_request->xferred < (u64)INT_MAX);
2800         ret = (int)obj_request->xferred;
2801         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2802 out:
2803         if (obj_request)
2804                 rbd_obj_request_put(obj_request);
2805         else
2806                 ceph_release_page_vector(pages, page_count);
2807
2808         return ret;
2809 }
2810
2811 static void rbd_request_fn(struct request_queue *q)
2812                 __releases(q->queue_lock) __acquires(q->queue_lock)
2813 {
2814         struct rbd_device *rbd_dev = q->queuedata;
2815         bool read_only = rbd_dev->mapping.read_only;
2816         struct request *rq;
2817         int result;
2818
2819         while ((rq = blk_fetch_request(q))) {
2820                 bool write_request = rq_data_dir(rq) == WRITE;
2821                 struct rbd_img_request *img_request;
2822                 u64 offset;
2823                 u64 length;
2824
2825                 /* Ignore any non-FS requests that filter through. */
2826
2827                 if (rq->cmd_type != REQ_TYPE_FS) {
2828                         dout("%s: non-fs request type %d\n", __func__,
2829                                 (int) rq->cmd_type);
2830                         __blk_end_request_all(rq, 0);
2831                         continue;
2832                 }
2833
2834                 /* Ignore/skip any zero-length requests */
2835
2836                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2837                 length = (u64) blk_rq_bytes(rq);
2838
2839                 if (!length) {
2840                         dout("%s: zero-length request\n", __func__);
2841                         __blk_end_request_all(rq, 0);
2842                         continue;
2843                 }
2844
2845                 spin_unlock_irq(q->queue_lock);
2846
2847                 /* Disallow writes to a read-only device */
2848
2849                 if (write_request) {
2850                         result = -EROFS;
2851                         if (read_only)
2852                                 goto end_request;
2853                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2854                 }
2855
2856                 /*
2857                  * Quit early if the mapped snapshot no longer
2858                  * exists.  It's still possible the snapshot will
2859                  * have disappeared by the time our request arrives
2860                  * at the osd, but there's no sense in sending it if
2861                  * we already know.
2862                  */
2863                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2864                         dout("request for non-existent snapshot");
2865                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2866                         result = -ENXIO;
2867                         goto end_request;
2868                 }
2869
2870                 result = -EINVAL;
2871                 if (offset && length > U64_MAX - offset + 1) {
2872                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
2873                                 offset, length);
2874                         goto end_request;       /* Shouldn't happen */
2875                 }
2876
2877                 result = -EIO;
2878                 if (offset + length > rbd_dev->mapping.size) {
2879                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
2880                                 offset, length, rbd_dev->mapping.size);
2881                         goto end_request;
2882                 }
2883
2884                 result = -ENOMEM;
2885                 img_request = rbd_img_request_create(rbd_dev, offset, length,
2886                                                         write_request, false);
2887                 if (!img_request)
2888                         goto end_request;
2889
2890                 img_request->rq = rq;
2891
2892                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2893                                                 rq->bio);
2894                 if (!result)
2895                         result = rbd_img_request_submit(img_request);
2896                 if (result)
2897                         rbd_img_request_put(img_request);
2898 end_request:
2899                 spin_lock_irq(q->queue_lock);
2900                 if (result < 0) {
2901                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
2902                                 write_request ? "write" : "read",
2903                                 length, offset, result);
2904
2905                         __blk_end_request_all(rq, result);
2906                 }
2907         }
2908 }
2909
2910 /*
2911  * a queue callback. Makes sure that we don't create a bio that spans across
2912  * multiple osd objects. One exception would be with a single page bios,
2913  * which we handle later at bio_chain_clone_range()
2914  */
2915 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2916                           struct bio_vec *bvec)
2917 {
2918         struct rbd_device *rbd_dev = q->queuedata;
2919         sector_t sector_offset;
2920         sector_t sectors_per_obj;
2921         sector_t obj_sector_offset;
2922         int ret;
2923
2924         /*
2925          * Find how far into its rbd object the partition-relative
2926          * bio start sector is to offset relative to the enclosing
2927          * device.
2928          */
2929         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2930         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2931         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2932
2933         /*
2934          * Compute the number of bytes from that offset to the end
2935          * of the object.  Account for what's already used by the bio.
2936          */
2937         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2938         if (ret > bmd->bi_size)
2939                 ret -= bmd->bi_size;
2940         else
2941                 ret = 0;
2942
2943         /*
2944          * Don't send back more than was asked for.  And if the bio
2945          * was empty, let the whole thing through because:  "Note
2946          * that a block device *must* allow a single page to be
2947          * added to an empty bio."
2948          */
2949         rbd_assert(bvec->bv_len <= PAGE_SIZE);
2950         if (ret > (int) bvec->bv_len || !bmd->bi_size)
2951                 ret = (int) bvec->bv_len;
2952
2953         return ret;
2954 }
2955
2956 static void rbd_free_disk(struct rbd_device *rbd_dev)
2957 {
2958         struct gendisk *disk = rbd_dev->disk;
2959
2960         if (!disk)
2961                 return;
2962
2963         rbd_dev->disk = NULL;
2964         if (disk->flags & GENHD_FL_UP) {
2965                 del_gendisk(disk);
2966                 if (disk->queue)
2967                         blk_cleanup_queue(disk->queue);
2968         }
2969         put_disk(disk);
2970 }
2971
2972 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2973                                 const char *object_name,
2974                                 u64 offset, u64 length, void *buf)
2975
2976 {
2977         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2978         struct rbd_obj_request *obj_request;
2979         struct page **pages = NULL;
2980         u32 page_count;
2981         size_t size;
2982         int ret;
2983
2984         page_count = (u32) calc_pages_for(offset, length);
2985         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2986         if (IS_ERR(pages))
2987                 ret = PTR_ERR(pages);
2988
2989         ret = -ENOMEM;
2990         obj_request = rbd_obj_request_create(object_name, offset, length,
2991                                                         OBJ_REQUEST_PAGES);
2992         if (!obj_request)
2993                 goto out;
2994
2995         obj_request->pages = pages;
2996         obj_request->page_count = page_count;
2997
2998         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2999         if (!obj_request->osd_req)
3000                 goto out;
3001
3002         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3003                                         offset, length, 0, 0);
3004         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3005                                         obj_request->pages,
3006                                         obj_request->length,
3007                                         obj_request->offset & ~PAGE_MASK,
3008                                         false, false);
3009         rbd_osd_req_format_read(obj_request);
3010
3011         ret = rbd_obj_request_submit(osdc, obj_request);
3012         if (ret)
3013                 goto out;
3014         ret = rbd_obj_request_wait(obj_request);
3015         if (ret)
3016                 goto out;
3017
3018         ret = obj_request->result;
3019         if (ret < 0)
3020                 goto out;
3021
3022         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3023         size = (size_t) obj_request->xferred;
3024         ceph_copy_from_page_vector(pages, buf, 0, size);
3025         rbd_assert(size <= (size_t)INT_MAX);
3026         ret = (int)size;
3027 out:
3028         if (obj_request)
3029                 rbd_obj_request_put(obj_request);
3030         else
3031                 ceph_release_page_vector(pages, page_count);
3032
3033         return ret;
3034 }
3035
3036 /*
3037  * Read the complete header for the given rbd device.
3038  *
3039  * Returns a pointer to a dynamically-allocated buffer containing
3040  * the complete and validated header.  Caller can pass the address
3041  * of a variable that will be filled in with the version of the
3042  * header object at the time it was read.
3043  *
3044  * Returns a pointer-coded errno if a failure occurs.
3045  */
3046 static struct rbd_image_header_ondisk *
3047 rbd_dev_v1_header_read(struct rbd_device *rbd_dev)
3048 {
3049         struct rbd_image_header_ondisk *ondisk = NULL;
3050         u32 snap_count = 0;
3051         u64 names_size = 0;
3052         u32 want_count;
3053         int ret;
3054
3055         /*
3056          * The complete header will include an array of its 64-bit
3057          * snapshot ids, followed by the names of those snapshots as
3058          * a contiguous block of NUL-terminated strings.  Note that
3059          * the number of snapshots could change by the time we read
3060          * it in, in which case we re-read it.
3061          */
3062         do {
3063                 size_t size;
3064
3065                 kfree(ondisk);
3066
3067                 size = sizeof (*ondisk);
3068                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3069                 size += names_size;
3070                 ondisk = kmalloc(size, GFP_KERNEL);
3071                 if (!ondisk)
3072                         return ERR_PTR(-ENOMEM);
3073
3074                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3075                                        0, size, ondisk);
3076                 if (ret < 0)
3077                         goto out_err;
3078                 if ((size_t)ret < size) {
3079                         ret = -ENXIO;
3080                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3081                                 size, ret);
3082                         goto out_err;
3083                 }
3084                 if (!rbd_dev_ondisk_valid(ondisk)) {
3085                         ret = -ENXIO;
3086                         rbd_warn(rbd_dev, "invalid header");
3087                         goto out_err;
3088                 }
3089
3090                 names_size = le64_to_cpu(ondisk->snap_names_len);
3091                 want_count = snap_count;
3092                 snap_count = le32_to_cpu(ondisk->snap_count);
3093         } while (snap_count != want_count);
3094
3095         return ondisk;
3096
3097 out_err:
3098         kfree(ondisk);
3099
3100         return ERR_PTR(ret);
3101 }
3102
3103 /*
3104  * reload the ondisk the header
3105  */
3106 static int rbd_read_header(struct rbd_device *rbd_dev,
3107                            struct rbd_image_header *header)
3108 {
3109         struct rbd_image_header_ondisk *ondisk;
3110         int ret;
3111
3112         ondisk = rbd_dev_v1_header_read(rbd_dev);
3113         if (IS_ERR(ondisk))
3114                 return PTR_ERR(ondisk);
3115         ret = rbd_header_from_disk(header, ondisk);
3116         kfree(ondisk);
3117
3118         return ret;
3119 }
3120
3121 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
3122 {
3123         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
3124                 return;
3125
3126         if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3127                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3128 }
3129
3130 /*
3131  * only read the first part of the ondisk header, without the snaps info
3132  */
3133 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev)
3134 {
3135         int ret;
3136         struct rbd_image_header h;
3137
3138         ret = rbd_read_header(rbd_dev, &h);
3139         if (ret < 0)
3140                 return ret;
3141
3142         down_write(&rbd_dev->header_rwsem);
3143
3144         /* Update image size, and check for resize of mapped image */
3145         rbd_dev->header.image_size = h.image_size;
3146         rbd_update_mapping_size(rbd_dev);
3147
3148         /* rbd_dev->header.object_prefix shouldn't change */
3149         kfree(rbd_dev->header.snap_sizes);
3150         kfree(rbd_dev->header.snap_names);
3151         /* osd requests may still refer to snapc */
3152         ceph_put_snap_context(rbd_dev->header.snapc);
3153
3154         rbd_dev->header.image_size = h.image_size;
3155         rbd_dev->header.snapc = h.snapc;
3156         rbd_dev->header.snap_names = h.snap_names;
3157         rbd_dev->header.snap_sizes = h.snap_sizes;
3158         /* Free the extra copy of the object prefix */
3159         if (strcmp(rbd_dev->header.object_prefix, h.object_prefix))
3160                 rbd_warn(rbd_dev, "object prefix changed (ignoring)");
3161         kfree(h.object_prefix);
3162
3163         up_write(&rbd_dev->header_rwsem);
3164
3165         return ret;
3166 }
3167
3168 /*
3169  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3170  * has disappeared from the (just updated) snapshot context.
3171  */
3172 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3173 {
3174         u64 snap_id;
3175
3176         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3177                 return;
3178
3179         snap_id = rbd_dev->spec->snap_id;
3180         if (snap_id == CEPH_NOSNAP)
3181                 return;
3182
3183         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3184                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3185 }
3186
3187 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3188 {
3189         u64 mapping_size;
3190         int ret;
3191
3192         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3193         mapping_size = rbd_dev->mapping.size;
3194         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3195         if (rbd_dev->image_format == 1)
3196                 ret = rbd_dev_v1_refresh(rbd_dev);
3197         else
3198                 ret = rbd_dev_v2_refresh(rbd_dev);
3199
3200         /* If it's a mapped snapshot, validate its EXISTS flag */
3201
3202         rbd_exists_validate(rbd_dev);
3203         mutex_unlock(&ctl_mutex);
3204         if (mapping_size != rbd_dev->mapping.size) {
3205                 sector_t size;
3206
3207                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3208                 dout("setting size to %llu sectors", (unsigned long long)size);
3209                 set_capacity(rbd_dev->disk, size);
3210                 revalidate_disk(rbd_dev->disk);
3211         }
3212
3213         return ret;
3214 }
3215
3216 static int rbd_init_disk(struct rbd_device *rbd_dev)
3217 {
3218         struct gendisk *disk;
3219         struct request_queue *q;
3220         u64 segment_size;
3221
3222         /* create gendisk info */
3223         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3224         if (!disk)
3225                 return -ENOMEM;
3226
3227         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3228                  rbd_dev->dev_id);
3229         disk->major = rbd_dev->major;
3230         disk->first_minor = 0;
3231         disk->fops = &rbd_bd_ops;
3232         disk->private_data = rbd_dev;
3233
3234         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3235         if (!q)
3236                 goto out_disk;
3237
3238         /* We use the default size, but let's be explicit about it. */
3239         blk_queue_physical_block_size(q, SECTOR_SIZE);
3240
3241         /* set io sizes to object size */
3242         segment_size = rbd_obj_bytes(&rbd_dev->header);
3243         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3244         blk_queue_max_segment_size(q, segment_size);
3245         blk_queue_io_min(q, segment_size);
3246         blk_queue_io_opt(q, segment_size);
3247
3248         blk_queue_merge_bvec(q, rbd_merge_bvec);
3249         disk->queue = q;
3250
3251         q->queuedata = rbd_dev;
3252
3253         rbd_dev->disk = disk;
3254
3255         return 0;
3256 out_disk:
3257         put_disk(disk);
3258
3259         return -ENOMEM;
3260 }
3261
3262 /*
3263   sysfs
3264 */
3265
3266 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3267 {
3268         return container_of(dev, struct rbd_device, dev);
3269 }
3270
3271 static ssize_t rbd_size_show(struct device *dev,
3272                              struct device_attribute *attr, char *buf)
3273 {
3274         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3275
3276         return sprintf(buf, "%llu\n",
3277                 (unsigned long long)rbd_dev->mapping.size);
3278 }
3279
3280 /*
3281  * Note this shows the features for whatever's mapped, which is not
3282  * necessarily the base image.
3283  */
3284 static ssize_t rbd_features_show(struct device *dev,
3285                              struct device_attribute *attr, char *buf)
3286 {
3287         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3288
3289         return sprintf(buf, "0x%016llx\n",
3290                         (unsigned long long)rbd_dev->mapping.features);
3291 }
3292
3293 static ssize_t rbd_major_show(struct device *dev,
3294                               struct device_attribute *attr, char *buf)
3295 {
3296         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3297
3298         if (rbd_dev->major)
3299                 return sprintf(buf, "%d\n", rbd_dev->major);
3300
3301         return sprintf(buf, "(none)\n");
3302
3303 }
3304
3305 static ssize_t rbd_client_id_show(struct device *dev,
3306                                   struct device_attribute *attr, char *buf)
3307 {
3308         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3309
3310         return sprintf(buf, "client%lld\n",
3311                         ceph_client_id(rbd_dev->rbd_client->client));
3312 }
3313
3314 static ssize_t rbd_pool_show(struct device *dev,
3315                              struct device_attribute *attr, char *buf)
3316 {
3317         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3318
3319         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3320 }
3321
3322 static ssize_t rbd_pool_id_show(struct device *dev,
3323                              struct device_attribute *attr, char *buf)
3324 {
3325         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3326
3327         return sprintf(buf, "%llu\n",
3328                         (unsigned long long) rbd_dev->spec->pool_id);
3329 }
3330
3331 static ssize_t rbd_name_show(struct device *dev,
3332                              struct device_attribute *attr, char *buf)
3333 {
3334         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3335
3336         if (rbd_dev->spec->image_name)
3337                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3338
3339         return sprintf(buf, "(unknown)\n");
3340 }
3341
3342 static ssize_t rbd_image_id_show(struct device *dev,
3343                              struct device_attribute *attr, char *buf)
3344 {
3345         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3346
3347         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3348 }
3349
3350 /*
3351  * Shows the name of the currently-mapped snapshot (or
3352  * RBD_SNAP_HEAD_NAME for the base image).
3353  */
3354 static ssize_t rbd_snap_show(struct device *dev,
3355                              struct device_attribute *attr,
3356                              char *buf)
3357 {
3358         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3359
3360         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3361 }
3362
3363 /*
3364  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3365  * for the parent image.  If there is no parent, simply shows
3366  * "(no parent image)".
3367  */
3368 static ssize_t rbd_parent_show(struct device *dev,
3369                              struct device_attribute *attr,
3370                              char *buf)
3371 {
3372         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3373         struct rbd_spec *spec = rbd_dev->parent_spec;
3374         int count;
3375         char *bufp = buf;
3376
3377         if (!spec)
3378                 return sprintf(buf, "(no parent image)\n");
3379
3380         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3381                         (unsigned long long) spec->pool_id, spec->pool_name);
3382         if (count < 0)
3383                 return count;
3384         bufp += count;
3385
3386         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3387                         spec->image_name ? spec->image_name : "(unknown)");
3388         if (count < 0)
3389                 return count;
3390         bufp += count;
3391
3392         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3393                         (unsigned long long) spec->snap_id, spec->snap_name);
3394         if (count < 0)
3395                 return count;
3396         bufp += count;
3397
3398         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3399         if (count < 0)
3400                 return count;
3401         bufp += count;
3402
3403         return (ssize_t) (bufp - buf);
3404 }
3405
3406 static ssize_t rbd_image_refresh(struct device *dev,
3407                                  struct device_attribute *attr,
3408                                  const char *buf,
3409                                  size_t size)
3410 {
3411         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3412         int ret;
3413
3414         ret = rbd_dev_refresh(rbd_dev);
3415         if (ret)
3416                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3417
3418         return ret < 0 ? ret : size;
3419 }
3420
3421 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3422 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3423 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3424 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3425 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3426 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3427 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3428 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3429 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3430 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3431 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3432
3433 static struct attribute *rbd_attrs[] = {
3434         &dev_attr_size.attr,
3435         &dev_attr_features.attr,
3436         &dev_attr_major.attr,
3437         &dev_attr_client_id.attr,
3438         &dev_attr_pool.attr,
3439         &dev_attr_pool_id.attr,
3440         &dev_attr_name.attr,
3441         &dev_attr_image_id.attr,
3442         &dev_attr_current_snap.attr,
3443         &dev_attr_parent.attr,
3444         &dev_attr_refresh.attr,
3445         NULL
3446 };
3447
3448 static struct attribute_group rbd_attr_group = {
3449         .attrs = rbd_attrs,
3450 };
3451
3452 static const struct attribute_group *rbd_attr_groups[] = {
3453         &rbd_attr_group,
3454         NULL
3455 };
3456
3457 static void rbd_sysfs_dev_release(struct device *dev)
3458 {
3459 }
3460
3461 static struct device_type rbd_device_type = {
3462         .name           = "rbd",
3463         .groups         = rbd_attr_groups,
3464         .release        = rbd_sysfs_dev_release,
3465 };
3466
3467 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3468 {
3469         kref_get(&spec->kref);
3470
3471         return spec;
3472 }
3473
3474 static void rbd_spec_free(struct kref *kref);
3475 static void rbd_spec_put(struct rbd_spec *spec)
3476 {
3477         if (spec)
3478                 kref_put(&spec->kref, rbd_spec_free);
3479 }
3480
3481 static struct rbd_spec *rbd_spec_alloc(void)
3482 {
3483         struct rbd_spec *spec;
3484
3485         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3486         if (!spec)
3487                 return NULL;
3488         kref_init(&spec->kref);
3489
3490         return spec;
3491 }
3492
3493 static void rbd_spec_free(struct kref *kref)
3494 {
3495         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3496
3497         kfree(spec->pool_name);
3498         kfree(spec->image_id);
3499         kfree(spec->image_name);
3500         kfree(spec->snap_name);
3501         kfree(spec);
3502 }
3503
3504 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3505                                 struct rbd_spec *spec)
3506 {
3507         struct rbd_device *rbd_dev;
3508
3509         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3510         if (!rbd_dev)
3511                 return NULL;
3512
3513         spin_lock_init(&rbd_dev->lock);
3514         rbd_dev->flags = 0;
3515         INIT_LIST_HEAD(&rbd_dev->node);
3516         init_rwsem(&rbd_dev->header_rwsem);
3517
3518         rbd_dev->spec = spec;
3519         rbd_dev->rbd_client = rbdc;
3520
3521         /* Initialize the layout used for all rbd requests */
3522
3523         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3524         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3525         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3526         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3527
3528         return rbd_dev;
3529 }
3530
3531 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3532 {
3533         rbd_put_client(rbd_dev->rbd_client);
3534         rbd_spec_put(rbd_dev->spec);
3535         kfree(rbd_dev);
3536 }
3537
3538 /*
3539  * Get the size and object order for an image snapshot, or if
3540  * snap_id is CEPH_NOSNAP, gets this information for the base
3541  * image.
3542  */
3543 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3544                                 u8 *order, u64 *snap_size)
3545 {
3546         __le64 snapid = cpu_to_le64(snap_id);
3547         int ret;
3548         struct {
3549                 u8 order;
3550                 __le64 size;
3551         } __attribute__ ((packed)) size_buf = { 0 };
3552
3553         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3554                                 "rbd", "get_size",
3555                                 &snapid, sizeof (snapid),
3556                                 &size_buf, sizeof (size_buf));
3557         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3558         if (ret < 0)
3559                 return ret;
3560         if (ret < sizeof (size_buf))
3561                 return -ERANGE;
3562
3563         if (order)
3564                 *order = size_buf.order;
3565         *snap_size = le64_to_cpu(size_buf.size);
3566
3567         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3568                 (unsigned long long)snap_id, (unsigned int)*order,
3569                 (unsigned long long)*snap_size);
3570
3571         return 0;
3572 }
3573
3574 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3575 {
3576         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3577                                         &rbd_dev->header.obj_order,
3578                                         &rbd_dev->header.image_size);
3579 }
3580
3581 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3582 {
3583         void *reply_buf;
3584         int ret;
3585         void *p;
3586
3587         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3588         if (!reply_buf)
3589                 return -ENOMEM;
3590
3591         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3592                                 "rbd", "get_object_prefix", NULL, 0,
3593                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3594         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3595         if (ret < 0)
3596                 goto out;
3597
3598         p = reply_buf;
3599         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3600                                                 p + ret, NULL, GFP_NOIO);
3601         ret = 0;
3602
3603         if (IS_ERR(rbd_dev->header.object_prefix)) {
3604                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3605                 rbd_dev->header.object_prefix = NULL;
3606         } else {
3607                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3608         }
3609 out:
3610         kfree(reply_buf);
3611
3612         return ret;
3613 }
3614
3615 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3616                 u64 *snap_features)
3617 {
3618         __le64 snapid = cpu_to_le64(snap_id);
3619         struct {
3620                 __le64 features;
3621                 __le64 incompat;
3622         } __attribute__ ((packed)) features_buf = { 0 };
3623         u64 incompat;
3624         int ret;
3625
3626         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3627                                 "rbd", "get_features",
3628                                 &snapid, sizeof (snapid),
3629                                 &features_buf, sizeof (features_buf));
3630         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3631         if (ret < 0)
3632                 return ret;
3633         if (ret < sizeof (features_buf))
3634                 return -ERANGE;
3635
3636         incompat = le64_to_cpu(features_buf.incompat);
3637         if (incompat & ~RBD_FEATURES_SUPPORTED)
3638                 return -ENXIO;
3639
3640         *snap_features = le64_to_cpu(features_buf.features);
3641
3642         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3643                 (unsigned long long)snap_id,
3644                 (unsigned long long)*snap_features,
3645                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3646
3647         return 0;
3648 }
3649
3650 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3651 {
3652         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3653                                                 &rbd_dev->header.features);
3654 }
3655
3656 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3657 {
3658         struct rbd_spec *parent_spec;
3659         size_t size;
3660         void *reply_buf = NULL;
3661         __le64 snapid;
3662         void *p;
3663         void *end;
3664         char *image_id;
3665         u64 overlap;
3666         int ret;
3667
3668         parent_spec = rbd_spec_alloc();
3669         if (!parent_spec)
3670                 return -ENOMEM;
3671
3672         size = sizeof (__le64) +                                /* pool_id */
3673                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3674                 sizeof (__le64) +                               /* snap_id */
3675                 sizeof (__le64);                                /* overlap */
3676         reply_buf = kmalloc(size, GFP_KERNEL);
3677         if (!reply_buf) {
3678                 ret = -ENOMEM;
3679                 goto out_err;
3680         }
3681
3682         snapid = cpu_to_le64(CEPH_NOSNAP);
3683         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3684                                 "rbd", "get_parent",
3685                                 &snapid, sizeof (snapid),
3686                                 reply_buf, size);
3687         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3688         if (ret < 0)
3689                 goto out_err;
3690
3691         p = reply_buf;
3692         end = reply_buf + ret;
3693         ret = -ERANGE;
3694         ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
3695         if (parent_spec->pool_id == CEPH_NOPOOL)
3696                 goto out;       /* No parent?  No problem. */
3697
3698         /* The ceph file layout needs to fit pool id in 32 bits */
3699
3700         ret = -EIO;
3701         if (parent_spec->pool_id > (u64)U32_MAX) {
3702                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3703                         (unsigned long long)parent_spec->pool_id, U32_MAX);
3704                 goto out_err;
3705         }
3706
3707         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3708         if (IS_ERR(image_id)) {
3709                 ret = PTR_ERR(image_id);
3710                 goto out_err;
3711         }
3712         parent_spec->image_id = image_id;
3713         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3714         ceph_decode_64_safe(&p, end, overlap, out_err);
3715
3716         rbd_dev->parent_overlap = overlap;
3717         rbd_dev->parent_spec = parent_spec;
3718         parent_spec = NULL;     /* rbd_dev now owns this */
3719 out:
3720         ret = 0;
3721 out_err:
3722         kfree(reply_buf);
3723         rbd_spec_put(parent_spec);
3724
3725         return ret;
3726 }
3727
3728 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3729 {
3730         struct {
3731                 __le64 stripe_unit;
3732                 __le64 stripe_count;
3733         } __attribute__ ((packed)) striping_info_buf = { 0 };
3734         size_t size = sizeof (striping_info_buf);
3735         void *p;
3736         u64 obj_size;
3737         u64 stripe_unit;
3738         u64 stripe_count;
3739         int ret;
3740
3741         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3742                                 "rbd", "get_stripe_unit_count", NULL, 0,
3743                                 (char *)&striping_info_buf, size);
3744         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3745         if (ret < 0)
3746                 return ret;
3747         if (ret < size)
3748                 return -ERANGE;
3749
3750         /*
3751          * We don't actually support the "fancy striping" feature
3752          * (STRIPINGV2) yet, but if the striping sizes are the
3753          * defaults the behavior is the same as before.  So find
3754          * out, and only fail if the image has non-default values.
3755          */
3756         ret = -EINVAL;
3757         obj_size = (u64)1 << rbd_dev->header.obj_order;
3758         p = &striping_info_buf;
3759         stripe_unit = ceph_decode_64(&p);
3760         if (stripe_unit != obj_size) {
3761                 rbd_warn(rbd_dev, "unsupported stripe unit "
3762                                 "(got %llu want %llu)",
3763                                 stripe_unit, obj_size);
3764                 return -EINVAL;
3765         }
3766         stripe_count = ceph_decode_64(&p);
3767         if (stripe_count != 1) {
3768                 rbd_warn(rbd_dev, "unsupported stripe count "
3769                                 "(got %llu want 1)", stripe_count);
3770                 return -EINVAL;
3771         }
3772         rbd_dev->header.stripe_unit = stripe_unit;
3773         rbd_dev->header.stripe_count = stripe_count;
3774
3775         return 0;
3776 }
3777
3778 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3779 {
3780         size_t image_id_size;
3781         char *image_id;
3782         void *p;
3783         void *end;
3784         size_t size;
3785         void *reply_buf = NULL;
3786         size_t len = 0;
3787         char *image_name = NULL;
3788         int ret;
3789
3790         rbd_assert(!rbd_dev->spec->image_name);
3791
3792         len = strlen(rbd_dev->spec->image_id);
3793         image_id_size = sizeof (__le32) + len;
3794         image_id = kmalloc(image_id_size, GFP_KERNEL);
3795         if (!image_id)
3796                 return NULL;
3797
3798         p = image_id;
3799         end = image_id + image_id_size;
3800         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3801
3802         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3803         reply_buf = kmalloc(size, GFP_KERNEL);
3804         if (!reply_buf)
3805                 goto out;
3806
3807         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3808                                 "rbd", "dir_get_name",
3809                                 image_id, image_id_size,
3810                                 reply_buf, size);
3811         if (ret < 0)
3812                 goto out;
3813         p = reply_buf;
3814         end = reply_buf + ret;
3815
3816         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3817         if (IS_ERR(image_name))
3818                 image_name = NULL;
3819         else
3820                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3821 out:
3822         kfree(reply_buf);
3823         kfree(image_id);
3824
3825         return image_name;
3826 }
3827
3828 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3829 {
3830         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3831         const char *snap_name;
3832         u32 which = 0;
3833
3834         /* Skip over names until we find the one we are looking for */
3835
3836         snap_name = rbd_dev->header.snap_names;
3837         while (which < snapc->num_snaps) {
3838                 if (!strcmp(name, snap_name))
3839                         return snapc->snaps[which];
3840                 snap_name += strlen(snap_name) + 1;
3841                 which++;
3842         }
3843         return CEPH_NOSNAP;
3844 }
3845
3846 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3847 {
3848         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3849         u32 which;
3850         bool found = false;
3851         u64 snap_id;
3852
3853         for (which = 0; !found && which < snapc->num_snaps; which++) {
3854                 const char *snap_name;
3855
3856                 snap_id = snapc->snaps[which];
3857                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
3858                 if (IS_ERR(snap_name))
3859                         break;
3860                 found = !strcmp(name, snap_name);
3861                 kfree(snap_name);
3862         }
3863         return found ? snap_id : CEPH_NOSNAP;
3864 }
3865
3866 /*
3867  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
3868  * no snapshot by that name is found, or if an error occurs.
3869  */
3870 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3871 {
3872         if (rbd_dev->image_format == 1)
3873                 return rbd_v1_snap_id_by_name(rbd_dev, name);
3874
3875         return rbd_v2_snap_id_by_name(rbd_dev, name);
3876 }
3877
3878 /*
3879  * When an rbd image has a parent image, it is identified by the
3880  * pool, image, and snapshot ids (not names).  This function fills
3881  * in the names for those ids.  (It's OK if we can't figure out the
3882  * name for an image id, but the pool and snapshot ids should always
3883  * exist and have names.)  All names in an rbd spec are dynamically
3884  * allocated.
3885  *
3886  * When an image being mapped (not a parent) is probed, we have the
3887  * pool name and pool id, image name and image id, and the snapshot
3888  * name.  The only thing we're missing is the snapshot id.
3889  */
3890 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
3891 {
3892         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3893         struct rbd_spec *spec = rbd_dev->spec;
3894         const char *pool_name;
3895         const char *image_name;
3896         const char *snap_name;
3897         int ret;
3898
3899         /*
3900          * An image being mapped will have the pool name (etc.), but
3901          * we need to look up the snapshot id.
3902          */
3903         if (spec->pool_name) {
3904                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
3905                         u64 snap_id;
3906
3907                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
3908                         if (snap_id == CEPH_NOSNAP)
3909                                 return -ENOENT;
3910                         spec->snap_id = snap_id;
3911                 } else {
3912                         spec->snap_id = CEPH_NOSNAP;
3913                 }
3914
3915                 return 0;
3916         }
3917
3918         /* Get the pool name; we have to make our own copy of this */
3919
3920         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
3921         if (!pool_name) {
3922                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
3923                 return -EIO;
3924         }
3925         pool_name = kstrdup(pool_name, GFP_KERNEL);
3926         if (!pool_name)
3927                 return -ENOMEM;
3928
3929         /* Fetch the image name; tolerate failure here */
3930
3931         image_name = rbd_dev_image_name(rbd_dev);
3932         if (!image_name)
3933                 rbd_warn(rbd_dev, "unable to get image name");
3934
3935         /* Look up the snapshot name, and make a copy */
3936
3937         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
3938         if (!snap_name) {
3939                 ret = -ENOMEM;
3940                 goto out_err;
3941         }
3942
3943         spec->pool_name = pool_name;
3944         spec->image_name = image_name;
3945         spec->snap_name = snap_name;
3946
3947         return 0;
3948 out_err:
3949         kfree(image_name);
3950         kfree(pool_name);
3951
3952         return ret;
3953 }
3954
3955 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
3956 {
3957         size_t size;
3958         int ret;
3959         void *reply_buf;
3960         void *p;
3961         void *end;
3962         u64 seq;
3963         u32 snap_count;
3964         struct ceph_snap_context *snapc;
3965         u32 i;
3966
3967         /*
3968          * We'll need room for the seq value (maximum snapshot id),
3969          * snapshot count, and array of that many snapshot ids.
3970          * For now we have a fixed upper limit on the number we're
3971          * prepared to receive.
3972          */
3973         size = sizeof (__le64) + sizeof (__le32) +
3974                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
3975         reply_buf = kzalloc(size, GFP_KERNEL);
3976         if (!reply_buf)
3977                 return -ENOMEM;
3978
3979         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3980                                 "rbd", "get_snapcontext", NULL, 0,
3981                                 reply_buf, size);
3982         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3983         if (ret < 0)
3984                 goto out;
3985
3986         p = reply_buf;
3987         end = reply_buf + ret;
3988         ret = -ERANGE;
3989         ceph_decode_64_safe(&p, end, seq, out);
3990         ceph_decode_32_safe(&p, end, snap_count, out);
3991
3992         /*
3993          * Make sure the reported number of snapshot ids wouldn't go
3994          * beyond the end of our buffer.  But before checking that,
3995          * make sure the computed size of the snapshot context we
3996          * allocate is representable in a size_t.
3997          */
3998         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3999                                  / sizeof (u64)) {
4000                 ret = -EINVAL;
4001                 goto out;
4002         }
4003         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4004                 goto out;
4005         ret = 0;
4006
4007         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4008         if (!snapc) {
4009                 ret = -ENOMEM;
4010                 goto out;
4011         }
4012         snapc->seq = seq;
4013         for (i = 0; i < snap_count; i++)
4014                 snapc->snaps[i] = ceph_decode_64(&p);
4015
4016         ceph_put_snap_context(rbd_dev->header.snapc);
4017         rbd_dev->header.snapc = snapc;
4018
4019         dout("  snap context seq = %llu, snap_count = %u\n",
4020                 (unsigned long long)seq, (unsigned int)snap_count);
4021 out:
4022         kfree(reply_buf);
4023
4024         return ret;
4025 }
4026
4027 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4028                                         u64 snap_id)
4029 {
4030         size_t size;
4031         void *reply_buf;
4032         __le64 snapid;
4033         int ret;
4034         void *p;
4035         void *end;
4036         char *snap_name;
4037
4038         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4039         reply_buf = kmalloc(size, GFP_KERNEL);
4040         if (!reply_buf)
4041                 return ERR_PTR(-ENOMEM);
4042
4043         snapid = cpu_to_le64(snap_id);
4044         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4045                                 "rbd", "get_snapshot_name",
4046                                 &snapid, sizeof (snapid),
4047                                 reply_buf, size);
4048         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4049         if (ret < 0) {
4050                 snap_name = ERR_PTR(ret);
4051                 goto out;
4052         }
4053
4054         p = reply_buf;
4055         end = reply_buf + ret;
4056         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4057         if (IS_ERR(snap_name))
4058                 goto out;
4059
4060         dout("  snap_id 0x%016llx snap_name = %s\n",
4061                 (unsigned long long)snap_id, snap_name);
4062 out:
4063         kfree(reply_buf);
4064
4065         return snap_name;
4066 }
4067
4068 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev)
4069 {
4070         int ret;
4071
4072         down_write(&rbd_dev->header_rwsem);
4073
4074         ret = rbd_dev_v2_image_size(rbd_dev);
4075         if (ret)
4076                 goto out;
4077         rbd_update_mapping_size(rbd_dev);
4078
4079         ret = rbd_dev_v2_snap_context(rbd_dev);
4080         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4081         if (ret)
4082                 goto out;
4083 out:
4084         up_write(&rbd_dev->header_rwsem);
4085
4086         return ret;
4087 }
4088
4089 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4090 {
4091         struct device *dev;
4092         int ret;
4093
4094         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4095
4096         dev = &rbd_dev->dev;
4097         dev->bus = &rbd_bus_type;
4098         dev->type = &rbd_device_type;
4099         dev->parent = &rbd_root_dev;
4100         dev->release = rbd_dev_device_release;
4101         dev_set_name(dev, "%d", rbd_dev->dev_id);
4102         ret = device_register(dev);
4103
4104         mutex_unlock(&ctl_mutex);
4105
4106         return ret;
4107 }
4108
4109 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4110 {
4111         device_unregister(&rbd_dev->dev);
4112 }
4113
4114 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4115
4116 /*
4117  * Get a unique rbd identifier for the given new rbd_dev, and add
4118  * the rbd_dev to the global list.  The minimum rbd id is 1.
4119  */
4120 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4121 {
4122         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4123
4124         spin_lock(&rbd_dev_list_lock);
4125         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4126         spin_unlock(&rbd_dev_list_lock);
4127         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4128                 (unsigned long long) rbd_dev->dev_id);
4129 }
4130
4131 /*
4132  * Remove an rbd_dev from the global list, and record that its
4133  * identifier is no longer in use.
4134  */
4135 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4136 {
4137         struct list_head *tmp;
4138         int rbd_id = rbd_dev->dev_id;
4139         int max_id;
4140
4141         rbd_assert(rbd_id > 0);
4142
4143         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4144                 (unsigned long long) rbd_dev->dev_id);
4145         spin_lock(&rbd_dev_list_lock);
4146         list_del_init(&rbd_dev->node);
4147
4148         /*
4149          * If the id being "put" is not the current maximum, there
4150          * is nothing special we need to do.
4151          */
4152         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4153                 spin_unlock(&rbd_dev_list_lock);
4154                 return;
4155         }
4156
4157         /*
4158          * We need to update the current maximum id.  Search the
4159          * list to find out what it is.  We're more likely to find
4160          * the maximum at the end, so search the list backward.
4161          */
4162         max_id = 0;
4163         list_for_each_prev(tmp, &rbd_dev_list) {
4164                 struct rbd_device *rbd_dev;
4165
4166                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4167                 if (rbd_dev->dev_id > max_id)
4168                         max_id = rbd_dev->dev_id;
4169         }
4170         spin_unlock(&rbd_dev_list_lock);
4171
4172         /*
4173          * The max id could have been updated by rbd_dev_id_get(), in
4174          * which case it now accurately reflects the new maximum.
4175          * Be careful not to overwrite the maximum value in that
4176          * case.
4177          */
4178         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4179         dout("  max dev id has been reset\n");
4180 }
4181
4182 /*
4183  * Skips over white space at *buf, and updates *buf to point to the
4184  * first found non-space character (if any). Returns the length of
4185  * the token (string of non-white space characters) found.  Note
4186  * that *buf must be terminated with '\0'.
4187  */
4188 static inline size_t next_token(const char **buf)
4189 {
4190         /*
4191         * These are the characters that produce nonzero for
4192         * isspace() in the "C" and "POSIX" locales.
4193         */
4194         const char *spaces = " \f\n\r\t\v";
4195
4196         *buf += strspn(*buf, spaces);   /* Find start of token */
4197
4198         return strcspn(*buf, spaces);   /* Return token length */
4199 }
4200
4201 /*
4202  * Finds the next token in *buf, and if the provided token buffer is
4203  * big enough, copies the found token into it.  The result, if
4204  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4205  * must be terminated with '\0' on entry.
4206  *
4207  * Returns the length of the token found (not including the '\0').
4208  * Return value will be 0 if no token is found, and it will be >=
4209  * token_size if the token would not fit.
4210  *
4211  * The *buf pointer will be updated to point beyond the end of the
4212  * found token.  Note that this occurs even if the token buffer is
4213  * too small to hold it.
4214  */
4215 static inline size_t copy_token(const char **buf,
4216                                 char *token,
4217                                 size_t token_size)
4218 {
4219         size_t len;
4220
4221         len = next_token(buf);
4222         if (len < token_size) {
4223                 memcpy(token, *buf, len);
4224                 *(token + len) = '\0';
4225         }
4226         *buf += len;
4227
4228         return len;
4229 }
4230
4231 /*
4232  * Finds the next token in *buf, dynamically allocates a buffer big
4233  * enough to hold a copy of it, and copies the token into the new
4234  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4235  * that a duplicate buffer is created even for a zero-length token.
4236  *
4237  * Returns a pointer to the newly-allocated duplicate, or a null
4238  * pointer if memory for the duplicate was not available.  If
4239  * the lenp argument is a non-null pointer, the length of the token
4240  * (not including the '\0') is returned in *lenp.
4241  *
4242  * If successful, the *buf pointer will be updated to point beyond
4243  * the end of the found token.
4244  *
4245  * Note: uses GFP_KERNEL for allocation.
4246  */
4247 static inline char *dup_token(const char **buf, size_t *lenp)
4248 {
4249         char *dup;
4250         size_t len;
4251
4252         len = next_token(buf);
4253         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4254         if (!dup)
4255                 return NULL;
4256         *(dup + len) = '\0';
4257         *buf += len;
4258
4259         if (lenp)
4260                 *lenp = len;
4261
4262         return dup;
4263 }
4264
4265 /*
4266  * Parse the options provided for an "rbd add" (i.e., rbd image
4267  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4268  * and the data written is passed here via a NUL-terminated buffer.
4269  * Returns 0 if successful or an error code otherwise.
4270  *
4271  * The information extracted from these options is recorded in
4272  * the other parameters which return dynamically-allocated
4273  * structures:
4274  *  ceph_opts
4275  *      The address of a pointer that will refer to a ceph options
4276  *      structure.  Caller must release the returned pointer using
4277  *      ceph_destroy_options() when it is no longer needed.
4278  *  rbd_opts
4279  *      Address of an rbd options pointer.  Fully initialized by
4280  *      this function; caller must release with kfree().
4281  *  spec
4282  *      Address of an rbd image specification pointer.  Fully
4283  *      initialized by this function based on parsed options.
4284  *      Caller must release with rbd_spec_put().
4285  *
4286  * The options passed take this form:
4287  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4288  * where:
4289  *  <mon_addrs>
4290  *      A comma-separated list of one or more monitor addresses.
4291  *      A monitor address is an ip address, optionally followed
4292  *      by a port number (separated by a colon).
4293  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4294  *  <options>
4295  *      A comma-separated list of ceph and/or rbd options.
4296  *  <pool_name>
4297  *      The name of the rados pool containing the rbd image.
4298  *  <image_name>
4299  *      The name of the image in that pool to map.
4300  *  <snap_id>
4301  *      An optional snapshot id.  If provided, the mapping will
4302  *      present data from the image at the time that snapshot was
4303  *      created.  The image head is used if no snapshot id is
4304  *      provided.  Snapshot mappings are always read-only.
4305  */
4306 static int rbd_add_parse_args(const char *buf,
4307                                 struct ceph_options **ceph_opts,
4308                                 struct rbd_options **opts,
4309                                 struct rbd_spec **rbd_spec)
4310 {
4311         size_t len;
4312         char *options;
4313         const char *mon_addrs;
4314         char *snap_name;
4315         size_t mon_addrs_size;
4316         struct rbd_spec *spec = NULL;
4317         struct rbd_options *rbd_opts = NULL;
4318         struct ceph_options *copts;
4319         int ret;
4320
4321         /* The first four tokens are required */
4322
4323         len = next_token(&buf);
4324         if (!len) {
4325                 rbd_warn(NULL, "no monitor address(es) provided");
4326                 return -EINVAL;
4327         }
4328         mon_addrs = buf;
4329         mon_addrs_size = len + 1;
4330         buf += len;
4331
4332         ret = -EINVAL;
4333         options = dup_token(&buf, NULL);
4334         if (!options)
4335                 return -ENOMEM;
4336         if (!*options) {
4337                 rbd_warn(NULL, "no options provided");
4338                 goto out_err;
4339         }
4340
4341         spec = rbd_spec_alloc();
4342         if (!spec)
4343                 goto out_mem;
4344
4345         spec->pool_name = dup_token(&buf, NULL);
4346         if (!spec->pool_name)
4347                 goto out_mem;
4348         if (!*spec->pool_name) {
4349                 rbd_warn(NULL, "no pool name provided");
4350                 goto out_err;
4351         }
4352
4353         spec->image_name = dup_token(&buf, NULL);
4354         if (!spec->image_name)
4355                 goto out_mem;
4356         if (!*spec->image_name) {
4357                 rbd_warn(NULL, "no image name provided");
4358                 goto out_err;
4359         }
4360
4361         /*
4362          * Snapshot name is optional; default is to use "-"
4363          * (indicating the head/no snapshot).
4364          */
4365         len = next_token(&buf);
4366         if (!len) {
4367                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4368                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4369         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4370                 ret = -ENAMETOOLONG;
4371                 goto out_err;
4372         }
4373         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4374         if (!snap_name)
4375                 goto out_mem;
4376         *(snap_name + len) = '\0';
4377         spec->snap_name = snap_name;
4378
4379         /* Initialize all rbd options to the defaults */
4380
4381         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4382         if (!rbd_opts)
4383                 goto out_mem;
4384
4385         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4386
4387         copts = ceph_parse_options(options, mon_addrs,
4388                                         mon_addrs + mon_addrs_size - 1,
4389                                         parse_rbd_opts_token, rbd_opts);
4390         if (IS_ERR(copts)) {
4391                 ret = PTR_ERR(copts);
4392                 goto out_err;
4393         }
4394         kfree(options);
4395
4396         *ceph_opts = copts;
4397         *opts = rbd_opts;
4398         *rbd_spec = spec;
4399
4400         return 0;
4401 out_mem:
4402         ret = -ENOMEM;
4403 out_err:
4404         kfree(rbd_opts);
4405         rbd_spec_put(spec);
4406         kfree(options);
4407
4408         return ret;
4409 }
4410
4411 /*
4412  * An rbd format 2 image has a unique identifier, distinct from the
4413  * name given to it by the user.  Internally, that identifier is
4414  * what's used to specify the names of objects related to the image.
4415  *
4416  * A special "rbd id" object is used to map an rbd image name to its
4417  * id.  If that object doesn't exist, then there is no v2 rbd image
4418  * with the supplied name.
4419  *
4420  * This function will record the given rbd_dev's image_id field if
4421  * it can be determined, and in that case will return 0.  If any
4422  * errors occur a negative errno will be returned and the rbd_dev's
4423  * image_id field will be unchanged (and should be NULL).
4424  */
4425 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4426 {
4427         int ret;
4428         size_t size;
4429         char *object_name;
4430         void *response;
4431         char *image_id;
4432
4433         /*
4434          * When probing a parent image, the image id is already
4435          * known (and the image name likely is not).  There's no
4436          * need to fetch the image id again in this case.  We
4437          * do still need to set the image format though.
4438          */
4439         if (rbd_dev->spec->image_id) {
4440                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4441
4442                 return 0;
4443         }
4444
4445         /*
4446          * First, see if the format 2 image id file exists, and if
4447          * so, get the image's persistent id from it.
4448          */
4449         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4450         object_name = kmalloc(size, GFP_NOIO);
4451         if (!object_name)
4452                 return -ENOMEM;
4453         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4454         dout("rbd id object name is %s\n", object_name);
4455
4456         /* Response will be an encoded string, which includes a length */
4457
4458         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4459         response = kzalloc(size, GFP_NOIO);
4460         if (!response) {
4461                 ret = -ENOMEM;
4462                 goto out;
4463         }
4464
4465         /* If it doesn't exist we'll assume it's a format 1 image */
4466
4467         ret = rbd_obj_method_sync(rbd_dev, object_name,
4468                                 "rbd", "get_id", NULL, 0,
4469                                 response, RBD_IMAGE_ID_LEN_MAX);
4470         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4471         if (ret == -ENOENT) {
4472                 image_id = kstrdup("", GFP_KERNEL);
4473                 ret = image_id ? 0 : -ENOMEM;
4474                 if (!ret)
4475                         rbd_dev->image_format = 1;
4476         } else if (ret > sizeof (__le32)) {
4477                 void *p = response;
4478
4479                 image_id = ceph_extract_encoded_string(&p, p + ret,
4480                                                 NULL, GFP_NOIO);
4481                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4482                 if (!ret)
4483                         rbd_dev->image_format = 2;
4484         } else {
4485                 ret = -EINVAL;
4486         }
4487
4488         if (!ret) {
4489                 rbd_dev->spec->image_id = image_id;
4490                 dout("image_id is %s\n", image_id);
4491         }
4492 out:
4493         kfree(response);
4494         kfree(object_name);
4495
4496         return ret;
4497 }
4498
4499 /* Undo whatever state changes are made by v1 or v2 image probe */
4500
4501 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4502 {
4503         struct rbd_image_header *header;
4504
4505         rbd_dev_remove_parent(rbd_dev);
4506         rbd_spec_put(rbd_dev->parent_spec);
4507         rbd_dev->parent_spec = NULL;
4508         rbd_dev->parent_overlap = 0;
4509
4510         /* Free dynamic fields from the header, then zero it out */
4511
4512         header = &rbd_dev->header;
4513         ceph_put_snap_context(header->snapc);
4514         kfree(header->snap_sizes);
4515         kfree(header->snap_names);
4516         kfree(header->object_prefix);
4517         memset(header, 0, sizeof (*header));
4518 }
4519
4520 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
4521 {
4522         int ret;
4523
4524         /* Populate rbd image metadata */
4525
4526         ret = rbd_read_header(rbd_dev, &rbd_dev->header);
4527         if (ret < 0)
4528                 goto out_err;
4529
4530         /* Version 1 images have no parent (no layering) */
4531
4532         rbd_dev->parent_spec = NULL;
4533         rbd_dev->parent_overlap = 0;
4534
4535         dout("discovered version 1 image, header name is %s\n",
4536                 rbd_dev->header_name);
4537
4538         return 0;
4539
4540 out_err:
4541         kfree(rbd_dev->header_name);
4542         rbd_dev->header_name = NULL;
4543         kfree(rbd_dev->spec->image_id);
4544         rbd_dev->spec->image_id = NULL;
4545
4546         return ret;
4547 }
4548
4549 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
4550 {
4551         int ret;
4552
4553         ret = rbd_dev_v2_image_size(rbd_dev);
4554         if (ret)
4555                 goto out_err;
4556
4557         /* Get the object prefix (a.k.a. block_name) for the image */
4558
4559         ret = rbd_dev_v2_object_prefix(rbd_dev);
4560         if (ret)
4561                 goto out_err;
4562
4563         /* Get the and check features for the image */
4564
4565         ret = rbd_dev_v2_features(rbd_dev);
4566         if (ret)
4567                 goto out_err;
4568
4569         /* If the image supports layering, get the parent info */
4570
4571         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
4572                 ret = rbd_dev_v2_parent_info(rbd_dev);
4573                 if (ret)
4574                         goto out_err;
4575
4576                 /*
4577                  * Don't print a warning for parent images.  We can
4578                  * tell this point because we won't know its pool
4579                  * name yet (just its pool id).
4580                  */
4581                 if (rbd_dev->spec->pool_name)
4582                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4583                                         "is EXPERIMENTAL!");
4584         }
4585
4586         /* If the image supports fancy striping, get its parameters */
4587
4588         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4589                 ret = rbd_dev_v2_striping_info(rbd_dev);
4590                 if (ret < 0)
4591                         goto out_err;
4592         }
4593
4594         /* crypto and compression type aren't (yet) supported for v2 images */
4595
4596         rbd_dev->header.crypt_type = 0;
4597         rbd_dev->header.comp_type = 0;
4598
4599         /* Get the snapshot context, plus the header version */
4600
4601         ret = rbd_dev_v2_snap_context(rbd_dev);
4602         if (ret)
4603                 goto out_err;
4604
4605         dout("discovered version 2 image, header name is %s\n",
4606                 rbd_dev->header_name);
4607
4608         return 0;
4609 out_err:
4610         rbd_dev->parent_overlap = 0;
4611         rbd_spec_put(rbd_dev->parent_spec);
4612         rbd_dev->parent_spec = NULL;
4613         kfree(rbd_dev->header_name);
4614         rbd_dev->header_name = NULL;
4615         kfree(rbd_dev->header.object_prefix);
4616         rbd_dev->header.object_prefix = NULL;
4617
4618         return ret;
4619 }
4620
4621 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4622 {
4623         struct rbd_device *parent = NULL;
4624         struct rbd_spec *parent_spec;
4625         struct rbd_client *rbdc;
4626         int ret;
4627
4628         if (!rbd_dev->parent_spec)
4629                 return 0;
4630         /*
4631          * We need to pass a reference to the client and the parent
4632          * spec when creating the parent rbd_dev.  Images related by
4633          * parent/child relationships always share both.
4634          */
4635         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4636         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4637
4638         ret = -ENOMEM;
4639         parent = rbd_dev_create(rbdc, parent_spec);
4640         if (!parent)
4641                 goto out_err;
4642
4643         ret = rbd_dev_image_probe(parent);
4644         if (ret < 0)
4645                 goto out_err;
4646         rbd_dev->parent = parent;
4647
4648         return 0;
4649 out_err:
4650         if (parent) {
4651                 rbd_spec_put(rbd_dev->parent_spec);
4652                 kfree(rbd_dev->header_name);
4653                 rbd_dev_destroy(parent);
4654         } else {
4655                 rbd_put_client(rbdc);
4656                 rbd_spec_put(parent_spec);
4657         }
4658
4659         return ret;
4660 }
4661
4662 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4663 {
4664         int ret;
4665
4666         ret = rbd_dev_mapping_set(rbd_dev);
4667         if (ret)
4668                 return ret;
4669
4670         /* generate unique id: find highest unique id, add one */
4671         rbd_dev_id_get(rbd_dev);
4672
4673         /* Fill in the device name, now that we have its id. */
4674         BUILD_BUG_ON(DEV_NAME_LEN
4675                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4676         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4677
4678         /* Get our block major device number. */
4679
4680         ret = register_blkdev(0, rbd_dev->name);
4681         if (ret < 0)
4682                 goto err_out_id;
4683         rbd_dev->major = ret;
4684
4685         /* Set up the blkdev mapping. */
4686
4687         ret = rbd_init_disk(rbd_dev);
4688         if (ret)
4689                 goto err_out_blkdev;
4690
4691         ret = rbd_bus_add_dev(rbd_dev);
4692         if (ret)
4693                 goto err_out_disk;
4694
4695         /* Everything's ready.  Announce the disk to the world. */
4696
4697         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4698         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4699         add_disk(rbd_dev->disk);
4700
4701         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4702                 (unsigned long long) rbd_dev->mapping.size);
4703
4704         return ret;
4705
4706 err_out_disk:
4707         rbd_free_disk(rbd_dev);
4708 err_out_blkdev:
4709         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4710 err_out_id:
4711         rbd_dev_id_put(rbd_dev);
4712         rbd_dev_mapping_clear(rbd_dev);
4713
4714         return ret;
4715 }
4716
4717 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4718 {
4719         struct rbd_spec *spec = rbd_dev->spec;
4720         size_t size;
4721
4722         /* Record the header object name for this rbd image. */
4723
4724         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4725
4726         if (rbd_dev->image_format == 1)
4727                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4728         else
4729                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4730
4731         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4732         if (!rbd_dev->header_name)
4733                 return -ENOMEM;
4734
4735         if (rbd_dev->image_format == 1)
4736                 sprintf(rbd_dev->header_name, "%s%s",
4737                         spec->image_name, RBD_SUFFIX);
4738         else
4739                 sprintf(rbd_dev->header_name, "%s%s",
4740                         RBD_HEADER_PREFIX, spec->image_id);
4741         return 0;
4742 }
4743
4744 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4745 {
4746         int ret;
4747
4748         rbd_dev_unprobe(rbd_dev);
4749         ret = rbd_dev_header_watch_sync(rbd_dev, 0);
4750         if (ret)
4751                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
4752         kfree(rbd_dev->header_name);
4753         rbd_dev->header_name = NULL;
4754         rbd_dev->image_format = 0;
4755         kfree(rbd_dev->spec->image_id);
4756         rbd_dev->spec->image_id = NULL;
4757
4758         rbd_dev_destroy(rbd_dev);
4759 }
4760
4761 /*
4762  * Probe for the existence of the header object for the given rbd
4763  * device.  For format 2 images this includes determining the image
4764  * id.
4765  */
4766 static int rbd_dev_image_probe(struct rbd_device *rbd_dev)
4767 {
4768         int ret;
4769         int tmp;
4770
4771         /*
4772          * Get the id from the image id object.  If it's not a
4773          * format 2 image, we'll get ENOENT back, and we'll assume
4774          * it's a format 1 image.
4775          */
4776         ret = rbd_dev_image_id(rbd_dev);
4777         if (ret)
4778                 return ret;
4779         rbd_assert(rbd_dev->spec->image_id);
4780         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4781
4782         ret = rbd_dev_header_name(rbd_dev);
4783         if (ret)
4784                 goto err_out_format;
4785
4786         ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4787         if (ret)
4788                 goto out_header_name;
4789
4790         if (rbd_dev->image_format == 1)
4791                 ret = rbd_dev_v1_probe(rbd_dev);
4792         else
4793                 ret = rbd_dev_v2_probe(rbd_dev);
4794         if (ret)
4795                 goto err_out_watch;
4796
4797         ret = rbd_dev_spec_update(rbd_dev);
4798         if (ret)
4799                 goto err_out_probe;
4800
4801         ret = rbd_dev_probe_parent(rbd_dev);
4802         if (!ret)
4803                 return 0;
4804
4805 err_out_probe:
4806         rbd_dev_unprobe(rbd_dev);
4807 err_out_watch:
4808         tmp = rbd_dev_header_watch_sync(rbd_dev, 0);
4809         if (tmp)
4810                 rbd_warn(rbd_dev, "unable to tear down watch request\n");
4811 out_header_name:
4812         kfree(rbd_dev->header_name);
4813         rbd_dev->header_name = NULL;
4814 err_out_format:
4815         rbd_dev->image_format = 0;
4816         kfree(rbd_dev->spec->image_id);
4817         rbd_dev->spec->image_id = NULL;
4818
4819         dout("probe failed, returning %d\n", ret);
4820
4821         return ret;
4822 }
4823
4824 static ssize_t rbd_add(struct bus_type *bus,
4825                        const char *buf,
4826                        size_t count)
4827 {
4828         struct rbd_device *rbd_dev = NULL;
4829         struct ceph_options *ceph_opts = NULL;
4830         struct rbd_options *rbd_opts = NULL;
4831         struct rbd_spec *spec = NULL;
4832         struct rbd_client *rbdc;
4833         struct ceph_osd_client *osdc;
4834         int rc = -ENOMEM;
4835
4836         if (!try_module_get(THIS_MODULE))
4837                 return -ENODEV;
4838
4839         /* parse add command */
4840         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4841         if (rc < 0)
4842                 goto err_out_module;
4843
4844         rbdc = rbd_get_client(ceph_opts);
4845         if (IS_ERR(rbdc)) {
4846                 rc = PTR_ERR(rbdc);
4847                 goto err_out_args;
4848         }
4849         ceph_opts = NULL;       /* rbd_dev client now owns this */
4850
4851         /* pick the pool */
4852         osdc = &rbdc->client->osdc;
4853         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4854         if (rc < 0)
4855                 goto err_out_client;
4856         spec->pool_id = (u64)rc;
4857
4858         /* The ceph file layout needs to fit pool id in 32 bits */
4859
4860         if (spec->pool_id > (u64)U32_MAX) {
4861                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
4862                                 (unsigned long long)spec->pool_id, U32_MAX);
4863                 rc = -EIO;
4864                 goto err_out_client;
4865         }
4866
4867         rbd_dev = rbd_dev_create(rbdc, spec);
4868         if (!rbd_dev)
4869                 goto err_out_client;
4870         rbdc = NULL;            /* rbd_dev now owns this */
4871         spec = NULL;            /* rbd_dev now owns this */
4872
4873         rbd_dev->mapping.read_only = rbd_opts->read_only;
4874         kfree(rbd_opts);
4875         rbd_opts = NULL;        /* done with this */
4876
4877         rc = rbd_dev_image_probe(rbd_dev);
4878         if (rc < 0)
4879                 goto err_out_rbd_dev;
4880
4881         rc = rbd_dev_device_setup(rbd_dev);
4882         if (!rc)
4883                 return count;
4884
4885         rbd_dev_image_release(rbd_dev);
4886 err_out_rbd_dev:
4887         rbd_dev_destroy(rbd_dev);
4888 err_out_client:
4889         rbd_put_client(rbdc);
4890 err_out_args:
4891         if (ceph_opts)
4892                 ceph_destroy_options(ceph_opts);
4893         kfree(rbd_opts);
4894         rbd_spec_put(spec);
4895 err_out_module:
4896         module_put(THIS_MODULE);
4897
4898         dout("Error adding device %s\n", buf);
4899
4900         return (ssize_t)rc;
4901 }
4902
4903 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4904 {
4905         struct list_head *tmp;
4906         struct rbd_device *rbd_dev;
4907
4908         spin_lock(&rbd_dev_list_lock);
4909         list_for_each(tmp, &rbd_dev_list) {
4910                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4911                 if (rbd_dev->dev_id == dev_id) {
4912                         spin_unlock(&rbd_dev_list_lock);
4913                         return rbd_dev;
4914                 }
4915         }
4916         spin_unlock(&rbd_dev_list_lock);
4917         return NULL;
4918 }
4919
4920 static void rbd_dev_device_release(struct device *dev)
4921 {
4922         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4923
4924         rbd_free_disk(rbd_dev);
4925         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4926         rbd_dev_clear_mapping(rbd_dev);
4927         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4928         rbd_dev->major = 0;
4929         rbd_dev_id_put(rbd_dev);
4930         rbd_dev_mapping_clear(rbd_dev);
4931 }
4932
4933 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
4934 {
4935         while (rbd_dev->parent) {
4936                 struct rbd_device *first = rbd_dev;
4937                 struct rbd_device *second = first->parent;
4938                 struct rbd_device *third;
4939
4940                 /*
4941                  * Follow to the parent with no grandparent and
4942                  * remove it.
4943                  */
4944                 while (second && (third = second->parent)) {
4945                         first = second;
4946                         second = third;
4947                 }
4948                 rbd_assert(second);
4949                 rbd_dev_image_release(second);
4950                 first->parent = NULL;
4951                 first->parent_overlap = 0;
4952
4953                 rbd_assert(first->parent_spec);
4954                 rbd_spec_put(first->parent_spec);
4955                 first->parent_spec = NULL;
4956         }
4957 }
4958
4959 static ssize_t rbd_remove(struct bus_type *bus,
4960                           const char *buf,
4961                           size_t count)
4962 {
4963         struct rbd_device *rbd_dev = NULL;
4964         int target_id;
4965         unsigned long ul;
4966         int ret;
4967
4968         ret = strict_strtoul(buf, 10, &ul);
4969         if (ret)
4970                 return ret;
4971
4972         /* convert to int; abort if we lost anything in the conversion */
4973         target_id = (int) ul;
4974         if (target_id != ul)
4975                 return -EINVAL;
4976
4977         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4978
4979         rbd_dev = __rbd_get_dev(target_id);
4980         if (!rbd_dev) {
4981                 ret = -ENOENT;
4982                 goto done;
4983         }
4984
4985         spin_lock_irq(&rbd_dev->lock);
4986         if (rbd_dev->open_count)
4987                 ret = -EBUSY;
4988         else
4989                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4990         spin_unlock_irq(&rbd_dev->lock);
4991         if (ret < 0)
4992                 goto done;
4993         ret = count;
4994         rbd_bus_del_dev(rbd_dev);
4995         rbd_dev_image_release(rbd_dev);
4996         module_put(THIS_MODULE);
4997 done:
4998         mutex_unlock(&ctl_mutex);
4999
5000         return ret;
5001 }
5002
5003 /*
5004  * create control files in sysfs
5005  * /sys/bus/rbd/...
5006  */
5007 static int rbd_sysfs_init(void)
5008 {
5009         int ret;
5010
5011         ret = device_register(&rbd_root_dev);
5012         if (ret < 0)
5013                 return ret;
5014
5015         ret = bus_register(&rbd_bus_type);
5016         if (ret < 0)
5017                 device_unregister(&rbd_root_dev);
5018
5019         return ret;
5020 }
5021
5022 static void rbd_sysfs_cleanup(void)
5023 {
5024         bus_unregister(&rbd_bus_type);
5025         device_unregister(&rbd_root_dev);
5026 }
5027
5028 static int rbd_slab_init(void)
5029 {
5030         rbd_assert(!rbd_img_request_cache);
5031         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5032                                         sizeof (struct rbd_img_request),
5033                                         __alignof__(struct rbd_img_request),
5034                                         0, NULL);
5035         if (!rbd_img_request_cache)
5036                 return -ENOMEM;
5037
5038         rbd_assert(!rbd_obj_request_cache);
5039         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5040                                         sizeof (struct rbd_obj_request),
5041                                         __alignof__(struct rbd_obj_request),
5042                                         0, NULL);
5043         if (!rbd_obj_request_cache)
5044                 goto out_err;
5045
5046         rbd_assert(!rbd_segment_name_cache);
5047         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5048                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5049         if (rbd_segment_name_cache)
5050                 return 0;
5051 out_err:
5052         if (rbd_obj_request_cache) {
5053                 kmem_cache_destroy(rbd_obj_request_cache);
5054                 rbd_obj_request_cache = NULL;
5055         }
5056
5057         kmem_cache_destroy(rbd_img_request_cache);
5058         rbd_img_request_cache = NULL;
5059
5060         return -ENOMEM;
5061 }
5062
5063 static void rbd_slab_exit(void)
5064 {
5065         rbd_assert(rbd_segment_name_cache);
5066         kmem_cache_destroy(rbd_segment_name_cache);
5067         rbd_segment_name_cache = NULL;
5068
5069         rbd_assert(rbd_obj_request_cache);
5070         kmem_cache_destroy(rbd_obj_request_cache);
5071         rbd_obj_request_cache = NULL;
5072
5073         rbd_assert(rbd_img_request_cache);
5074         kmem_cache_destroy(rbd_img_request_cache);
5075         rbd_img_request_cache = NULL;
5076 }
5077
5078 static int __init rbd_init(void)
5079 {
5080         int rc;
5081
5082         if (!libceph_compatible(NULL)) {
5083                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5084
5085                 return -EINVAL;
5086         }
5087         rc = rbd_slab_init();
5088         if (rc)
5089                 return rc;
5090         rc = rbd_sysfs_init();
5091         if (rc)
5092                 rbd_slab_exit();
5093         else
5094                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5095
5096         return rc;
5097 }
5098
5099 static void __exit rbd_exit(void)
5100 {
5101         rbd_sysfs_cleanup();
5102         rbd_slab_exit();
5103 }
5104
5105 module_init(rbd_init);
5106 module_exit(rbd_exit);
5107
5108 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5109 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5110 MODULE_DESCRIPTION("rados block device");
5111
5112 /* following authorship retained from original osdblk.c */
5113 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5114
5115 MODULE_LICENSE("GPL");