]> Pileus Git - ~andy/linux/blob - drivers/block/rbd.c
6b872f2197746222be01d8d5be24996341918570
[~andy/linux] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401         __ATTR(add, S_IWUSR, NULL, rbd_add),
402         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403         __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407         .name           = "rbd",
408         .bus_attrs      = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416         .init_name =    "rbd",
417         .release =      rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423         struct va_format vaf;
424         va_list args;
425
426         va_start(args, fmt);
427         vaf.fmt = fmt;
428         vaf.va = &args;
429
430         if (!rbd_dev)
431                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432         else if (rbd_dev->disk)
433                 printk(KERN_WARNING "%s: %s: %pV\n",
434                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435         else if (rbd_dev->spec && rbd_dev->spec->image_name)
436                 printk(KERN_WARNING "%s: image %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_id)
439                 printk(KERN_WARNING "%s: id %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441         else    /* punt */
442                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443                         RBD_DRV_NAME, rbd_dev, &vaf);
444         va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)                                                \
449                 if (unlikely(!(expr))) {                                \
450                         printk(KERN_ERR "\nAssertion failure in %s() "  \
451                                                 "at line %d:\n\n"       \
452                                         "\trbd_assert(%s);\n\n",        \
453                                         __func__, __LINE__, #expr);     \
454                         BUG();                                          \
455                 }
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)      ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468                                         u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470                                 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472                 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478         bool removing = false;
479
480         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481                 return -EROFS;
482
483         spin_lock_irq(&rbd_dev->lock);
484         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485                 removing = true;
486         else
487                 rbd_dev->open_count++;
488         spin_unlock_irq(&rbd_dev->lock);
489         if (removing)
490                 return -ENOENT;
491
492         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493         (void) get_device(&rbd_dev->dev);
494         set_device_ro(bdev, rbd_dev->mapping.read_only);
495         mutex_unlock(&ctl_mutex);
496
497         return 0;
498 }
499
500 static int rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502         struct rbd_device *rbd_dev = disk->private_data;
503         unsigned long open_count_before;
504
505         spin_lock_irq(&rbd_dev->lock);
506         open_count_before = rbd_dev->open_count--;
507         spin_unlock_irq(&rbd_dev->lock);
508         rbd_assert(open_count_before > 0);
509
510         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511         put_device(&rbd_dev->dev);
512         mutex_unlock(&ctl_mutex);
513
514         return 0;
515 }
516
517 static const struct block_device_operations rbd_bd_ops = {
518         .owner                  = THIS_MODULE,
519         .open                   = rbd_open,
520         .release                = rbd_release,
521 };
522
523 /*
524  * Initialize an rbd client instance.
525  * We own *ceph_opts.
526  */
527 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
528 {
529         struct rbd_client *rbdc;
530         int ret = -ENOMEM;
531
532         dout("%s:\n", __func__);
533         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
534         if (!rbdc)
535                 goto out_opt;
536
537         kref_init(&rbdc->kref);
538         INIT_LIST_HEAD(&rbdc->node);
539
540         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
541
542         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
543         if (IS_ERR(rbdc->client))
544                 goto out_mutex;
545         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
546
547         ret = ceph_open_session(rbdc->client);
548         if (ret < 0)
549                 goto out_err;
550
551         spin_lock(&rbd_client_list_lock);
552         list_add_tail(&rbdc->node, &rbd_client_list);
553         spin_unlock(&rbd_client_list_lock);
554
555         mutex_unlock(&ctl_mutex);
556         dout("%s: rbdc %p\n", __func__, rbdc);
557
558         return rbdc;
559
560 out_err:
561         ceph_destroy_client(rbdc->client);
562 out_mutex:
563         mutex_unlock(&ctl_mutex);
564         kfree(rbdc);
565 out_opt:
566         if (ceph_opts)
567                 ceph_destroy_options(ceph_opts);
568         dout("%s: error %d\n", __func__, ret);
569
570         return ERR_PTR(ret);
571 }
572
573 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
574 {
575         kref_get(&rbdc->kref);
576
577         return rbdc;
578 }
579
580 /*
581  * Find a ceph client with specific addr and configuration.  If
582  * found, bump its reference count.
583  */
584 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
585 {
586         struct rbd_client *client_node;
587         bool found = false;
588
589         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
590                 return NULL;
591
592         spin_lock(&rbd_client_list_lock);
593         list_for_each_entry(client_node, &rbd_client_list, node) {
594                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
595                         __rbd_get_client(client_node);
596
597                         found = true;
598                         break;
599                 }
600         }
601         spin_unlock(&rbd_client_list_lock);
602
603         return found ? client_node : NULL;
604 }
605
606 /*
607  * mount options
608  */
609 enum {
610         Opt_last_int,
611         /* int args above */
612         Opt_last_string,
613         /* string args above */
614         Opt_read_only,
615         Opt_read_write,
616         /* Boolean args above */
617         Opt_last_bool,
618 };
619
620 static match_table_t rbd_opts_tokens = {
621         /* int args above */
622         /* string args above */
623         {Opt_read_only, "read_only"},
624         {Opt_read_only, "ro"},          /* Alternate spelling */
625         {Opt_read_write, "read_write"},
626         {Opt_read_write, "rw"},         /* Alternate spelling */
627         /* Boolean args above */
628         {-1, NULL}
629 };
630
631 struct rbd_options {
632         bool    read_only;
633 };
634
635 #define RBD_READ_ONLY_DEFAULT   false
636
637 static int parse_rbd_opts_token(char *c, void *private)
638 {
639         struct rbd_options *rbd_opts = private;
640         substring_t argstr[MAX_OPT_ARGS];
641         int token, intval, ret;
642
643         token = match_token(c, rbd_opts_tokens, argstr);
644         if (token < 0)
645                 return -EINVAL;
646
647         if (token < Opt_last_int) {
648                 ret = match_int(&argstr[0], &intval);
649                 if (ret < 0) {
650                         pr_err("bad mount option arg (not int) "
651                                "at '%s'\n", c);
652                         return ret;
653                 }
654                 dout("got int token %d val %d\n", token, intval);
655         } else if (token > Opt_last_int && token < Opt_last_string) {
656                 dout("got string token %d val %s\n", token,
657                      argstr[0].from);
658         } else if (token > Opt_last_string && token < Opt_last_bool) {
659                 dout("got Boolean token %d\n", token);
660         } else {
661                 dout("got token %d\n", token);
662         }
663
664         switch (token) {
665         case Opt_read_only:
666                 rbd_opts->read_only = true;
667                 break;
668         case Opt_read_write:
669                 rbd_opts->read_only = false;
670                 break;
671         default:
672                 rbd_assert(false);
673                 break;
674         }
675         return 0;
676 }
677
678 /*
679  * Get a ceph client with specific addr and configuration, if one does
680  * not exist create it.
681  */
682 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
683 {
684         struct rbd_client *rbdc;
685
686         rbdc = rbd_client_find(ceph_opts);
687         if (rbdc)       /* using an existing client */
688                 ceph_destroy_options(ceph_opts);
689         else
690                 rbdc = rbd_client_create(ceph_opts);
691
692         return rbdc;
693 }
694
695 /*
696  * Destroy ceph client
697  *
698  * Caller must hold rbd_client_list_lock.
699  */
700 static void rbd_client_release(struct kref *kref)
701 {
702         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
703
704         dout("%s: rbdc %p\n", __func__, rbdc);
705         spin_lock(&rbd_client_list_lock);
706         list_del(&rbdc->node);
707         spin_unlock(&rbd_client_list_lock);
708
709         ceph_destroy_client(rbdc->client);
710         kfree(rbdc);
711 }
712
713 /*
714  * Drop reference to ceph client node. If it's not referenced anymore, release
715  * it.
716  */
717 static void rbd_put_client(struct rbd_client *rbdc)
718 {
719         if (rbdc)
720                 kref_put(&rbdc->kref, rbd_client_release);
721 }
722
723 static bool rbd_image_format_valid(u32 image_format)
724 {
725         return image_format == 1 || image_format == 2;
726 }
727
728 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
729 {
730         size_t size;
731         u32 snap_count;
732
733         /* The header has to start with the magic rbd header text */
734         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
735                 return false;
736
737         /* The bio layer requires at least sector-sized I/O */
738
739         if (ondisk->options.order < SECTOR_SHIFT)
740                 return false;
741
742         /* If we use u64 in a few spots we may be able to loosen this */
743
744         if (ondisk->options.order > 8 * sizeof (int) - 1)
745                 return false;
746
747         /*
748          * The size of a snapshot header has to fit in a size_t, and
749          * that limits the number of snapshots.
750          */
751         snap_count = le32_to_cpu(ondisk->snap_count);
752         size = SIZE_MAX - sizeof (struct ceph_snap_context);
753         if (snap_count > size / sizeof (__le64))
754                 return false;
755
756         /*
757          * Not only that, but the size of the entire the snapshot
758          * header must also be representable in a size_t.
759          */
760         size -= snap_count * sizeof (__le64);
761         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
762                 return false;
763
764         return true;
765 }
766
767 /*
768  * Fill an rbd image header with information from the given format 1
769  * on-disk header.
770  */
771 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
772                                  struct rbd_image_header_ondisk *ondisk)
773 {
774         struct rbd_image_header *header = &rbd_dev->header;
775         bool first_time = header->object_prefix == NULL;
776         struct ceph_snap_context *snapc;
777         char *object_prefix = NULL;
778         char *snap_names = NULL;
779         u64 *snap_sizes = NULL;
780         u32 snap_count;
781         size_t size;
782         int ret = -ENOMEM;
783         u32 i;
784
785         /* Allocate this now to avoid having to handle failure below */
786
787         if (first_time) {
788                 size_t len;
789
790                 len = strnlen(ondisk->object_prefix,
791                                 sizeof (ondisk->object_prefix));
792                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
793                 if (!object_prefix)
794                         return -ENOMEM;
795                 memcpy(object_prefix, ondisk->object_prefix, len);
796                 object_prefix[len] = '\0';
797         }
798
799         /* Allocate the snapshot context and fill it in */
800
801         snap_count = le32_to_cpu(ondisk->snap_count);
802         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
803         if (!snapc)
804                 goto out_err;
805         snapc->seq = le64_to_cpu(ondisk->snap_seq);
806         if (snap_count) {
807                 struct rbd_image_snap_ondisk *snaps;
808                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
809
810                 /* We'll keep a copy of the snapshot names... */
811
812                 if (snap_names_len > (u64)SIZE_MAX)
813                         goto out_2big;
814                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
815                 if (!snap_names)
816                         goto out_err;
817
818                 /* ...as well as the array of their sizes. */
819
820                 size = snap_count * sizeof (*header->snap_sizes);
821                 snap_sizes = kmalloc(size, GFP_KERNEL);
822                 if (!snap_sizes)
823                         goto out_err;
824
825                 /*
826                  * Copy the names, and fill in each snapshot's id
827                  * and size.
828                  *
829                  * Note that rbd_dev_v1_header_info() guarantees the
830                  * ondisk buffer we're working with has
831                  * snap_names_len bytes beyond the end of the
832                  * snapshot id array, this memcpy() is safe.
833                  */
834                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
835                 snaps = ondisk->snaps;
836                 for (i = 0; i < snap_count; i++) {
837                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
838                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
839                 }
840         }
841
842         /* We won't fail any more, fill in the header */
843
844         down_write(&rbd_dev->header_rwsem);
845         if (first_time) {
846                 header->object_prefix = object_prefix;
847                 header->obj_order = ondisk->options.order;
848                 header->crypt_type = ondisk->options.crypt_type;
849                 header->comp_type = ondisk->options.comp_type;
850                 /* The rest aren't used for format 1 images */
851                 header->stripe_unit = 0;
852                 header->stripe_count = 0;
853                 header->features = 0;
854         } else {
855                 ceph_put_snap_context(header->snapc);
856                 kfree(header->snap_names);
857                 kfree(header->snap_sizes);
858         }
859
860         /* The remaining fields always get updated (when we refresh) */
861
862         header->image_size = le64_to_cpu(ondisk->image_size);
863         header->snapc = snapc;
864         header->snap_names = snap_names;
865         header->snap_sizes = snap_sizes;
866
867         /* Make sure mapping size is consistent with header info */
868
869         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
870                 if (rbd_dev->mapping.size != header->image_size)
871                         rbd_dev->mapping.size = header->image_size;
872
873         up_write(&rbd_dev->header_rwsem);
874
875         return 0;
876 out_2big:
877         ret = -EIO;
878 out_err:
879         kfree(snap_sizes);
880         kfree(snap_names);
881         ceph_put_snap_context(snapc);
882         kfree(object_prefix);
883
884         return ret;
885 }
886
887 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
888 {
889         const char *snap_name;
890
891         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
892
893         /* Skip over names until we find the one we are looking for */
894
895         snap_name = rbd_dev->header.snap_names;
896         while (which--)
897                 snap_name += strlen(snap_name) + 1;
898
899         return kstrdup(snap_name, GFP_KERNEL);
900 }
901
902 /*
903  * Snapshot id comparison function for use with qsort()/bsearch().
904  * Note that result is for snapshots in *descending* order.
905  */
906 static int snapid_compare_reverse(const void *s1, const void *s2)
907 {
908         u64 snap_id1 = *(u64 *)s1;
909         u64 snap_id2 = *(u64 *)s2;
910
911         if (snap_id1 < snap_id2)
912                 return 1;
913         return snap_id1 == snap_id2 ? 0 : -1;
914 }
915
916 /*
917  * Search a snapshot context to see if the given snapshot id is
918  * present.
919  *
920  * Returns the position of the snapshot id in the array if it's found,
921  * or BAD_SNAP_INDEX otherwise.
922  *
923  * Note: The snapshot array is in kept sorted (by the osd) in
924  * reverse order, highest snapshot id first.
925  */
926 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
927 {
928         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
929         u64 *found;
930
931         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
932                                 sizeof (snap_id), snapid_compare_reverse);
933
934         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
935 }
936
937 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
938                                         u64 snap_id)
939 {
940         u32 which;
941
942         which = rbd_dev_snap_index(rbd_dev, snap_id);
943         if (which == BAD_SNAP_INDEX)
944                 return NULL;
945
946         return _rbd_dev_v1_snap_name(rbd_dev, which);
947 }
948
949 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
950 {
951         if (snap_id == CEPH_NOSNAP)
952                 return RBD_SNAP_HEAD_NAME;
953
954         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
955         if (rbd_dev->image_format == 1)
956                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
957
958         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
959 }
960
961 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
962                                 u64 *snap_size)
963 {
964         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
965         if (snap_id == CEPH_NOSNAP) {
966                 *snap_size = rbd_dev->header.image_size;
967         } else if (rbd_dev->image_format == 1) {
968                 u32 which;
969
970                 which = rbd_dev_snap_index(rbd_dev, snap_id);
971                 if (which == BAD_SNAP_INDEX)
972                         return -ENOENT;
973
974                 *snap_size = rbd_dev->header.snap_sizes[which];
975         } else {
976                 u64 size = 0;
977                 int ret;
978
979                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
980                 if (ret)
981                         return ret;
982
983                 *snap_size = size;
984         }
985         return 0;
986 }
987
988 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
989                         u64 *snap_features)
990 {
991         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
992         if (snap_id == CEPH_NOSNAP) {
993                 *snap_features = rbd_dev->header.features;
994         } else if (rbd_dev->image_format == 1) {
995                 *snap_features = 0;     /* No features for format 1 */
996         } else {
997                 u64 features = 0;
998                 int ret;
999
1000                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1001                 if (ret)
1002                         return ret;
1003
1004                 *snap_features = features;
1005         }
1006         return 0;
1007 }
1008
1009 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1010 {
1011         u64 snap_id = rbd_dev->spec->snap_id;
1012         u64 size = 0;
1013         u64 features = 0;
1014         int ret;
1015
1016         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1017         if (ret)
1018                 return ret;
1019         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1020         if (ret)
1021                 return ret;
1022
1023         rbd_dev->mapping.size = size;
1024         rbd_dev->mapping.features = features;
1025
1026         return 0;
1027 }
1028
1029 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1030 {
1031         rbd_dev->mapping.size = 0;
1032         rbd_dev->mapping.features = 0;
1033 }
1034
1035 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1036 {
1037         char *name;
1038         u64 segment;
1039         int ret;
1040
1041         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1042         if (!name)
1043                 return NULL;
1044         segment = offset >> rbd_dev->header.obj_order;
1045         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
1046                         rbd_dev->header.object_prefix, segment);
1047         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1048                 pr_err("error formatting segment name for #%llu (%d)\n",
1049                         segment, ret);
1050                 kfree(name);
1051                 name = NULL;
1052         }
1053
1054         return name;
1055 }
1056
1057 static void rbd_segment_name_free(const char *name)
1058 {
1059         /* The explicit cast here is needed to drop the const qualifier */
1060
1061         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1062 }
1063
1064 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1065 {
1066         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1067
1068         return offset & (segment_size - 1);
1069 }
1070
1071 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1072                                 u64 offset, u64 length)
1073 {
1074         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1075
1076         offset &= segment_size - 1;
1077
1078         rbd_assert(length <= U64_MAX - offset);
1079         if (offset + length > segment_size)
1080                 length = segment_size - offset;
1081
1082         return length;
1083 }
1084
1085 /*
1086  * returns the size of an object in the image
1087  */
1088 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1089 {
1090         return 1 << header->obj_order;
1091 }
1092
1093 /*
1094  * bio helpers
1095  */
1096
1097 static void bio_chain_put(struct bio *chain)
1098 {
1099         struct bio *tmp;
1100
1101         while (chain) {
1102                 tmp = chain;
1103                 chain = chain->bi_next;
1104                 bio_put(tmp);
1105         }
1106 }
1107
1108 /*
1109  * zeros a bio chain, starting at specific offset
1110  */
1111 static void zero_bio_chain(struct bio *chain, int start_ofs)
1112 {
1113         struct bio_vec *bv;
1114         unsigned long flags;
1115         void *buf;
1116         int i;
1117         int pos = 0;
1118
1119         while (chain) {
1120                 bio_for_each_segment(bv, chain, i) {
1121                         if (pos + bv->bv_len > start_ofs) {
1122                                 int remainder = max(start_ofs - pos, 0);
1123                                 buf = bvec_kmap_irq(bv, &flags);
1124                                 memset(buf + remainder, 0,
1125                                        bv->bv_len - remainder);
1126                                 bvec_kunmap_irq(buf, &flags);
1127                         }
1128                         pos += bv->bv_len;
1129                 }
1130
1131                 chain = chain->bi_next;
1132         }
1133 }
1134
1135 /*
1136  * similar to zero_bio_chain(), zeros data defined by a page array,
1137  * starting at the given byte offset from the start of the array and
1138  * continuing up to the given end offset.  The pages array is
1139  * assumed to be big enough to hold all bytes up to the end.
1140  */
1141 static void zero_pages(struct page **pages, u64 offset, u64 end)
1142 {
1143         struct page **page = &pages[offset >> PAGE_SHIFT];
1144
1145         rbd_assert(end > offset);
1146         rbd_assert(end - offset <= (u64)SIZE_MAX);
1147         while (offset < end) {
1148                 size_t page_offset;
1149                 size_t length;
1150                 unsigned long flags;
1151                 void *kaddr;
1152
1153                 page_offset = (size_t)(offset & ~PAGE_MASK);
1154                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1155                 local_irq_save(flags);
1156                 kaddr = kmap_atomic(*page);
1157                 memset(kaddr + page_offset, 0, length);
1158                 kunmap_atomic(kaddr);
1159                 local_irq_restore(flags);
1160
1161                 offset += length;
1162                 page++;
1163         }
1164 }
1165
1166 /*
1167  * Clone a portion of a bio, starting at the given byte offset
1168  * and continuing for the number of bytes indicated.
1169  */
1170 static struct bio *bio_clone_range(struct bio *bio_src,
1171                                         unsigned int offset,
1172                                         unsigned int len,
1173                                         gfp_t gfpmask)
1174 {
1175         struct bio_vec *bv;
1176         unsigned int resid;
1177         unsigned short idx;
1178         unsigned int voff;
1179         unsigned short end_idx;
1180         unsigned short vcnt;
1181         struct bio *bio;
1182
1183         /* Handle the easy case for the caller */
1184
1185         if (!offset && len == bio_src->bi_size)
1186                 return bio_clone(bio_src, gfpmask);
1187
1188         if (WARN_ON_ONCE(!len))
1189                 return NULL;
1190         if (WARN_ON_ONCE(len > bio_src->bi_size))
1191                 return NULL;
1192         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1193                 return NULL;
1194
1195         /* Find first affected segment... */
1196
1197         resid = offset;
1198         __bio_for_each_segment(bv, bio_src, idx, 0) {
1199                 if (resid < bv->bv_len)
1200                         break;
1201                 resid -= bv->bv_len;
1202         }
1203         voff = resid;
1204
1205         /* ...and the last affected segment */
1206
1207         resid += len;
1208         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1209                 if (resid <= bv->bv_len)
1210                         break;
1211                 resid -= bv->bv_len;
1212         }
1213         vcnt = end_idx - idx + 1;
1214
1215         /* Build the clone */
1216
1217         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1218         if (!bio)
1219                 return NULL;    /* ENOMEM */
1220
1221         bio->bi_bdev = bio_src->bi_bdev;
1222         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1223         bio->bi_rw = bio_src->bi_rw;
1224         bio->bi_flags |= 1 << BIO_CLONED;
1225
1226         /*
1227          * Copy over our part of the bio_vec, then update the first
1228          * and last (or only) entries.
1229          */
1230         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1231                         vcnt * sizeof (struct bio_vec));
1232         bio->bi_io_vec[0].bv_offset += voff;
1233         if (vcnt > 1) {
1234                 bio->bi_io_vec[0].bv_len -= voff;
1235                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1236         } else {
1237                 bio->bi_io_vec[0].bv_len = len;
1238         }
1239
1240         bio->bi_vcnt = vcnt;
1241         bio->bi_size = len;
1242         bio->bi_idx = 0;
1243
1244         return bio;
1245 }
1246
1247 /*
1248  * Clone a portion of a bio chain, starting at the given byte offset
1249  * into the first bio in the source chain and continuing for the
1250  * number of bytes indicated.  The result is another bio chain of
1251  * exactly the given length, or a null pointer on error.
1252  *
1253  * The bio_src and offset parameters are both in-out.  On entry they
1254  * refer to the first source bio and the offset into that bio where
1255  * the start of data to be cloned is located.
1256  *
1257  * On return, bio_src is updated to refer to the bio in the source
1258  * chain that contains first un-cloned byte, and *offset will
1259  * contain the offset of that byte within that bio.
1260  */
1261 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1262                                         unsigned int *offset,
1263                                         unsigned int len,
1264                                         gfp_t gfpmask)
1265 {
1266         struct bio *bi = *bio_src;
1267         unsigned int off = *offset;
1268         struct bio *chain = NULL;
1269         struct bio **end;
1270
1271         /* Build up a chain of clone bios up to the limit */
1272
1273         if (!bi || off >= bi->bi_size || !len)
1274                 return NULL;            /* Nothing to clone */
1275
1276         end = &chain;
1277         while (len) {
1278                 unsigned int bi_size;
1279                 struct bio *bio;
1280
1281                 if (!bi) {
1282                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1283                         goto out_err;   /* EINVAL; ran out of bio's */
1284                 }
1285                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1286                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1287                 if (!bio)
1288                         goto out_err;   /* ENOMEM */
1289
1290                 *end = bio;
1291                 end = &bio->bi_next;
1292
1293                 off += bi_size;
1294                 if (off == bi->bi_size) {
1295                         bi = bi->bi_next;
1296                         off = 0;
1297                 }
1298                 len -= bi_size;
1299         }
1300         *bio_src = bi;
1301         *offset = off;
1302
1303         return chain;
1304 out_err:
1305         bio_chain_put(chain);
1306
1307         return NULL;
1308 }
1309
1310 /*
1311  * The default/initial value for all object request flags is 0.  For
1312  * each flag, once its value is set to 1 it is never reset to 0
1313  * again.
1314  */
1315 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1316 {
1317         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1318                 struct rbd_device *rbd_dev;
1319
1320                 rbd_dev = obj_request->img_request->rbd_dev;
1321                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1322                         obj_request);
1323         }
1324 }
1325
1326 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1327 {
1328         smp_mb();
1329         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1330 }
1331
1332 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1333 {
1334         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1335                 struct rbd_device *rbd_dev = NULL;
1336
1337                 if (obj_request_img_data_test(obj_request))
1338                         rbd_dev = obj_request->img_request->rbd_dev;
1339                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1340                         obj_request);
1341         }
1342 }
1343
1344 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1345 {
1346         smp_mb();
1347         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1348 }
1349
1350 /*
1351  * This sets the KNOWN flag after (possibly) setting the EXISTS
1352  * flag.  The latter is set based on the "exists" value provided.
1353  *
1354  * Note that for our purposes once an object exists it never goes
1355  * away again.  It's possible that the response from two existence
1356  * checks are separated by the creation of the target object, and
1357  * the first ("doesn't exist") response arrives *after* the second
1358  * ("does exist").  In that case we ignore the second one.
1359  */
1360 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1361                                 bool exists)
1362 {
1363         if (exists)
1364                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1365         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1366         smp_mb();
1367 }
1368
1369 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1370 {
1371         smp_mb();
1372         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1373 }
1374
1375 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1376 {
1377         smp_mb();
1378         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1379 }
1380
1381 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1382 {
1383         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1384                 atomic_read(&obj_request->kref.refcount));
1385         kref_get(&obj_request->kref);
1386 }
1387
1388 static void rbd_obj_request_destroy(struct kref *kref);
1389 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1390 {
1391         rbd_assert(obj_request != NULL);
1392         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1393                 atomic_read(&obj_request->kref.refcount));
1394         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1395 }
1396
1397 static bool img_request_child_test(struct rbd_img_request *img_request);
1398 static void rbd_parent_request_destroy(struct kref *kref);
1399 static void rbd_img_request_destroy(struct kref *kref);
1400 static void rbd_img_request_put(struct rbd_img_request *img_request)
1401 {
1402         rbd_assert(img_request != NULL);
1403         dout("%s: img %p (was %d)\n", __func__, img_request,
1404                 atomic_read(&img_request->kref.refcount));
1405         if (img_request_child_test(img_request))
1406                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1407         else
1408                 kref_put(&img_request->kref, rbd_img_request_destroy);
1409 }
1410
1411 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1412                                         struct rbd_obj_request *obj_request)
1413 {
1414         rbd_assert(obj_request->img_request == NULL);
1415
1416         /* Image request now owns object's original reference */
1417         obj_request->img_request = img_request;
1418         obj_request->which = img_request->obj_request_count;
1419         rbd_assert(!obj_request_img_data_test(obj_request));
1420         obj_request_img_data_set(obj_request);
1421         rbd_assert(obj_request->which != BAD_WHICH);
1422         img_request->obj_request_count++;
1423         list_add_tail(&obj_request->links, &img_request->obj_requests);
1424         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1425                 obj_request->which);
1426 }
1427
1428 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1429                                         struct rbd_obj_request *obj_request)
1430 {
1431         rbd_assert(obj_request->which != BAD_WHICH);
1432
1433         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1434                 obj_request->which);
1435         list_del(&obj_request->links);
1436         rbd_assert(img_request->obj_request_count > 0);
1437         img_request->obj_request_count--;
1438         rbd_assert(obj_request->which == img_request->obj_request_count);
1439         obj_request->which = BAD_WHICH;
1440         rbd_assert(obj_request_img_data_test(obj_request));
1441         rbd_assert(obj_request->img_request == img_request);
1442         obj_request->img_request = NULL;
1443         obj_request->callback = NULL;
1444         rbd_obj_request_put(obj_request);
1445 }
1446
1447 static bool obj_request_type_valid(enum obj_request_type type)
1448 {
1449         switch (type) {
1450         case OBJ_REQUEST_NODATA:
1451         case OBJ_REQUEST_BIO:
1452         case OBJ_REQUEST_PAGES:
1453                 return true;
1454         default:
1455                 return false;
1456         }
1457 }
1458
1459 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1460                                 struct rbd_obj_request *obj_request)
1461 {
1462         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1463
1464         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1465 }
1466
1467 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1468 {
1469
1470         dout("%s: img %p\n", __func__, img_request);
1471
1472         /*
1473          * If no error occurred, compute the aggregate transfer
1474          * count for the image request.  We could instead use
1475          * atomic64_cmpxchg() to update it as each object request
1476          * completes; not clear which way is better off hand.
1477          */
1478         if (!img_request->result) {
1479                 struct rbd_obj_request *obj_request;
1480                 u64 xferred = 0;
1481
1482                 for_each_obj_request(img_request, obj_request)
1483                         xferred += obj_request->xferred;
1484                 img_request->xferred = xferred;
1485         }
1486
1487         if (img_request->callback)
1488                 img_request->callback(img_request);
1489         else
1490                 rbd_img_request_put(img_request);
1491 }
1492
1493 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1494
1495 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1496 {
1497         dout("%s: obj %p\n", __func__, obj_request);
1498
1499         return wait_for_completion_interruptible(&obj_request->completion);
1500 }
1501
1502 /*
1503  * The default/initial value for all image request flags is 0.  Each
1504  * is conditionally set to 1 at image request initialization time
1505  * and currently never change thereafter.
1506  */
1507 static void img_request_write_set(struct rbd_img_request *img_request)
1508 {
1509         set_bit(IMG_REQ_WRITE, &img_request->flags);
1510         smp_mb();
1511 }
1512
1513 static bool img_request_write_test(struct rbd_img_request *img_request)
1514 {
1515         smp_mb();
1516         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1517 }
1518
1519 static void img_request_child_set(struct rbd_img_request *img_request)
1520 {
1521         set_bit(IMG_REQ_CHILD, &img_request->flags);
1522         smp_mb();
1523 }
1524
1525 static void img_request_child_clear(struct rbd_img_request *img_request)
1526 {
1527         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1528         smp_mb();
1529 }
1530
1531 static bool img_request_child_test(struct rbd_img_request *img_request)
1532 {
1533         smp_mb();
1534         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1535 }
1536
1537 static void img_request_layered_set(struct rbd_img_request *img_request)
1538 {
1539         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1540         smp_mb();
1541 }
1542
1543 static void img_request_layered_clear(struct rbd_img_request *img_request)
1544 {
1545         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1546         smp_mb();
1547 }
1548
1549 static bool img_request_layered_test(struct rbd_img_request *img_request)
1550 {
1551         smp_mb();
1552         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1553 }
1554
1555 static void
1556 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1557 {
1558         u64 xferred = obj_request->xferred;
1559         u64 length = obj_request->length;
1560
1561         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1562                 obj_request, obj_request->img_request, obj_request->result,
1563                 xferred, length);
1564         /*
1565          * ENOENT means a hole in the image.  We zero-fill the
1566          * entire length of the request.  A short read also implies
1567          * zero-fill to the end of the request.  Either way we
1568          * update the xferred count to indicate the whole request
1569          * was satisfied.
1570          */
1571         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1572         if (obj_request->result == -ENOENT) {
1573                 if (obj_request->type == OBJ_REQUEST_BIO)
1574                         zero_bio_chain(obj_request->bio_list, 0);
1575                 else
1576                         zero_pages(obj_request->pages, 0, length);
1577                 obj_request->result = 0;
1578                 obj_request->xferred = length;
1579         } else if (xferred < length && !obj_request->result) {
1580                 if (obj_request->type == OBJ_REQUEST_BIO)
1581                         zero_bio_chain(obj_request->bio_list, xferred);
1582                 else
1583                         zero_pages(obj_request->pages, xferred, length);
1584                 obj_request->xferred = length;
1585         }
1586         obj_request_done_set(obj_request);
1587 }
1588
1589 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1590 {
1591         dout("%s: obj %p cb %p\n", __func__, obj_request,
1592                 obj_request->callback);
1593         if (obj_request->callback)
1594                 obj_request->callback(obj_request);
1595         else
1596                 complete_all(&obj_request->completion);
1597 }
1598
1599 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1600 {
1601         dout("%s: obj %p\n", __func__, obj_request);
1602         obj_request_done_set(obj_request);
1603 }
1604
1605 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1606 {
1607         struct rbd_img_request *img_request = NULL;
1608         struct rbd_device *rbd_dev = NULL;
1609         bool layered = false;
1610
1611         if (obj_request_img_data_test(obj_request)) {
1612                 img_request = obj_request->img_request;
1613                 layered = img_request && img_request_layered_test(img_request);
1614                 rbd_dev = img_request->rbd_dev;
1615         }
1616
1617         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1618                 obj_request, img_request, obj_request->result,
1619                 obj_request->xferred, obj_request->length);
1620         if (layered && obj_request->result == -ENOENT &&
1621                         obj_request->img_offset < rbd_dev->parent_overlap)
1622                 rbd_img_parent_read(obj_request);
1623         else if (img_request)
1624                 rbd_img_obj_request_read_callback(obj_request);
1625         else
1626                 obj_request_done_set(obj_request);
1627 }
1628
1629 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1630 {
1631         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1632                 obj_request->result, obj_request->length);
1633         /*
1634          * There is no such thing as a successful short write.  Set
1635          * it to our originally-requested length.
1636          */
1637         obj_request->xferred = obj_request->length;
1638         obj_request_done_set(obj_request);
1639 }
1640
1641 /*
1642  * For a simple stat call there's nothing to do.  We'll do more if
1643  * this is part of a write sequence for a layered image.
1644  */
1645 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1646 {
1647         dout("%s: obj %p\n", __func__, obj_request);
1648         obj_request_done_set(obj_request);
1649 }
1650
1651 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1652                                 struct ceph_msg *msg)
1653 {
1654         struct rbd_obj_request *obj_request = osd_req->r_priv;
1655         u16 opcode;
1656
1657         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1658         rbd_assert(osd_req == obj_request->osd_req);
1659         if (obj_request_img_data_test(obj_request)) {
1660                 rbd_assert(obj_request->img_request);
1661                 rbd_assert(obj_request->which != BAD_WHICH);
1662         } else {
1663                 rbd_assert(obj_request->which == BAD_WHICH);
1664         }
1665
1666         if (osd_req->r_result < 0)
1667                 obj_request->result = osd_req->r_result;
1668
1669         BUG_ON(osd_req->r_num_ops > 2);
1670
1671         /*
1672          * We support a 64-bit length, but ultimately it has to be
1673          * passed to blk_end_request(), which takes an unsigned int.
1674          */
1675         obj_request->xferred = osd_req->r_reply_op_len[0];
1676         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1677         opcode = osd_req->r_ops[0].op;
1678         switch (opcode) {
1679         case CEPH_OSD_OP_READ:
1680                 rbd_osd_read_callback(obj_request);
1681                 break;
1682         case CEPH_OSD_OP_WRITE:
1683                 rbd_osd_write_callback(obj_request);
1684                 break;
1685         case CEPH_OSD_OP_STAT:
1686                 rbd_osd_stat_callback(obj_request);
1687                 break;
1688         case CEPH_OSD_OP_CALL:
1689         case CEPH_OSD_OP_NOTIFY_ACK:
1690         case CEPH_OSD_OP_WATCH:
1691                 rbd_osd_trivial_callback(obj_request);
1692                 break;
1693         default:
1694                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1695                         obj_request->object_name, (unsigned short) opcode);
1696                 break;
1697         }
1698
1699         if (obj_request_done_test(obj_request))
1700                 rbd_obj_request_complete(obj_request);
1701 }
1702
1703 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1704 {
1705         struct rbd_img_request *img_request = obj_request->img_request;
1706         struct ceph_osd_request *osd_req = obj_request->osd_req;
1707         u64 snap_id;
1708
1709         rbd_assert(osd_req != NULL);
1710
1711         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1712         ceph_osdc_build_request(osd_req, obj_request->offset,
1713                         NULL, snap_id, NULL);
1714 }
1715
1716 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1717 {
1718         struct rbd_img_request *img_request = obj_request->img_request;
1719         struct ceph_osd_request *osd_req = obj_request->osd_req;
1720         struct ceph_snap_context *snapc;
1721         struct timespec mtime = CURRENT_TIME;
1722
1723         rbd_assert(osd_req != NULL);
1724
1725         snapc = img_request ? img_request->snapc : NULL;
1726         ceph_osdc_build_request(osd_req, obj_request->offset,
1727                         snapc, CEPH_NOSNAP, &mtime);
1728 }
1729
1730 static struct ceph_osd_request *rbd_osd_req_create(
1731                                         struct rbd_device *rbd_dev,
1732                                         bool write_request,
1733                                         struct rbd_obj_request *obj_request)
1734 {
1735         struct ceph_snap_context *snapc = NULL;
1736         struct ceph_osd_client *osdc;
1737         struct ceph_osd_request *osd_req;
1738
1739         if (obj_request_img_data_test(obj_request)) {
1740                 struct rbd_img_request *img_request = obj_request->img_request;
1741
1742                 rbd_assert(write_request ==
1743                                 img_request_write_test(img_request));
1744                 if (write_request)
1745                         snapc = img_request->snapc;
1746         }
1747
1748         /* Allocate and initialize the request, for the single op */
1749
1750         osdc = &rbd_dev->rbd_client->client->osdc;
1751         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1752         if (!osd_req)
1753                 return NULL;    /* ENOMEM */
1754
1755         if (write_request)
1756                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1757         else
1758                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1759
1760         osd_req->r_callback = rbd_osd_req_callback;
1761         osd_req->r_priv = obj_request;
1762
1763         osd_req->r_oid_len = strlen(obj_request->object_name);
1764         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1765         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1766
1767         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1768
1769         return osd_req;
1770 }
1771
1772 /*
1773  * Create a copyup osd request based on the information in the
1774  * object request supplied.  A copyup request has two osd ops,
1775  * a copyup method call, and a "normal" write request.
1776  */
1777 static struct ceph_osd_request *
1778 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1779 {
1780         struct rbd_img_request *img_request;
1781         struct ceph_snap_context *snapc;
1782         struct rbd_device *rbd_dev;
1783         struct ceph_osd_client *osdc;
1784         struct ceph_osd_request *osd_req;
1785
1786         rbd_assert(obj_request_img_data_test(obj_request));
1787         img_request = obj_request->img_request;
1788         rbd_assert(img_request);
1789         rbd_assert(img_request_write_test(img_request));
1790
1791         /* Allocate and initialize the request, for the two ops */
1792
1793         snapc = img_request->snapc;
1794         rbd_dev = img_request->rbd_dev;
1795         osdc = &rbd_dev->rbd_client->client->osdc;
1796         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1797         if (!osd_req)
1798                 return NULL;    /* ENOMEM */
1799
1800         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1801         osd_req->r_callback = rbd_osd_req_callback;
1802         osd_req->r_priv = obj_request;
1803
1804         osd_req->r_oid_len = strlen(obj_request->object_name);
1805         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1806         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1807
1808         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1809
1810         return osd_req;
1811 }
1812
1813
1814 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1815 {
1816         ceph_osdc_put_request(osd_req);
1817 }
1818
1819 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1820
1821 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1822                                                 u64 offset, u64 length,
1823                                                 enum obj_request_type type)
1824 {
1825         struct rbd_obj_request *obj_request;
1826         size_t size;
1827         char *name;
1828
1829         rbd_assert(obj_request_type_valid(type));
1830
1831         size = strlen(object_name) + 1;
1832         name = kmalloc(size, GFP_KERNEL);
1833         if (!name)
1834                 return NULL;
1835
1836         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1837         if (!obj_request) {
1838                 kfree(name);
1839                 return NULL;
1840         }
1841
1842         obj_request->object_name = memcpy(name, object_name, size);
1843         obj_request->offset = offset;
1844         obj_request->length = length;
1845         obj_request->flags = 0;
1846         obj_request->which = BAD_WHICH;
1847         obj_request->type = type;
1848         INIT_LIST_HEAD(&obj_request->links);
1849         init_completion(&obj_request->completion);
1850         kref_init(&obj_request->kref);
1851
1852         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1853                 offset, length, (int)type, obj_request);
1854
1855         return obj_request;
1856 }
1857
1858 static void rbd_obj_request_destroy(struct kref *kref)
1859 {
1860         struct rbd_obj_request *obj_request;
1861
1862         obj_request = container_of(kref, struct rbd_obj_request, kref);
1863
1864         dout("%s: obj %p\n", __func__, obj_request);
1865
1866         rbd_assert(obj_request->img_request == NULL);
1867         rbd_assert(obj_request->which == BAD_WHICH);
1868
1869         if (obj_request->osd_req)
1870                 rbd_osd_req_destroy(obj_request->osd_req);
1871
1872         rbd_assert(obj_request_type_valid(obj_request->type));
1873         switch (obj_request->type) {
1874         case OBJ_REQUEST_NODATA:
1875                 break;          /* Nothing to do */
1876         case OBJ_REQUEST_BIO:
1877                 if (obj_request->bio_list)
1878                         bio_chain_put(obj_request->bio_list);
1879                 break;
1880         case OBJ_REQUEST_PAGES:
1881                 if (obj_request->pages)
1882                         ceph_release_page_vector(obj_request->pages,
1883                                                 obj_request->page_count);
1884                 break;
1885         }
1886
1887         kfree(obj_request->object_name);
1888         obj_request->object_name = NULL;
1889         kmem_cache_free(rbd_obj_request_cache, obj_request);
1890 }
1891
1892 /* It's OK to call this for a device with no parent */
1893
1894 static void rbd_spec_put(struct rbd_spec *spec);
1895 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1896 {
1897         rbd_dev_remove_parent(rbd_dev);
1898         rbd_spec_put(rbd_dev->parent_spec);
1899         rbd_dev->parent_spec = NULL;
1900         rbd_dev->parent_overlap = 0;
1901 }
1902
1903 /*
1904  * Parent image reference counting is used to determine when an
1905  * image's parent fields can be safely torn down--after there are no
1906  * more in-flight requests to the parent image.  When the last
1907  * reference is dropped, cleaning them up is safe.
1908  */
1909 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1910 {
1911         int counter;
1912
1913         if (!rbd_dev->parent_spec)
1914                 return;
1915
1916         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1917         if (counter > 0)
1918                 return;
1919
1920         /* Last reference; clean up parent data structures */
1921
1922         if (!counter)
1923                 rbd_dev_unparent(rbd_dev);
1924         else
1925                 rbd_warn(rbd_dev, "parent reference underflow\n");
1926 }
1927
1928 /*
1929  * If an image has a non-zero parent overlap, get a reference to its
1930  * parent.
1931  *
1932  * We must get the reference before checking for the overlap to
1933  * coordinate properly with zeroing the parent overlap in
1934  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1935  * drop it again if there is no overlap.
1936  *
1937  * Returns true if the rbd device has a parent with a non-zero
1938  * overlap and a reference for it was successfully taken, or
1939  * false otherwise.
1940  */
1941 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1942 {
1943         int counter;
1944
1945         if (!rbd_dev->parent_spec)
1946                 return false;
1947
1948         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1949         if (counter > 0 && rbd_dev->parent_overlap)
1950                 return true;
1951
1952         /* Image was flattened, but parent is not yet torn down */
1953
1954         if (counter < 0)
1955                 rbd_warn(rbd_dev, "parent reference overflow\n");
1956
1957         return false;
1958 }
1959
1960 /*
1961  * Caller is responsible for filling in the list of object requests
1962  * that comprises the image request, and the Linux request pointer
1963  * (if there is one).
1964  */
1965 static struct rbd_img_request *rbd_img_request_create(
1966                                         struct rbd_device *rbd_dev,
1967                                         u64 offset, u64 length,
1968                                         bool write_request)
1969 {
1970         struct rbd_img_request *img_request;
1971
1972         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1973         if (!img_request)
1974                 return NULL;
1975
1976         if (write_request) {
1977                 down_read(&rbd_dev->header_rwsem);
1978                 ceph_get_snap_context(rbd_dev->header.snapc);
1979                 up_read(&rbd_dev->header_rwsem);
1980         }
1981
1982         img_request->rq = NULL;
1983         img_request->rbd_dev = rbd_dev;
1984         img_request->offset = offset;
1985         img_request->length = length;
1986         img_request->flags = 0;
1987         if (write_request) {
1988                 img_request_write_set(img_request);
1989                 img_request->snapc = rbd_dev->header.snapc;
1990         } else {
1991                 img_request->snap_id = rbd_dev->spec->snap_id;
1992         }
1993         if (rbd_dev_parent_get(rbd_dev))
1994                 img_request_layered_set(img_request);
1995         spin_lock_init(&img_request->completion_lock);
1996         img_request->next_completion = 0;
1997         img_request->callback = NULL;
1998         img_request->result = 0;
1999         img_request->obj_request_count = 0;
2000         INIT_LIST_HEAD(&img_request->obj_requests);
2001         kref_init(&img_request->kref);
2002
2003         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2004                 write_request ? "write" : "read", offset, length,
2005                 img_request);
2006
2007         return img_request;
2008 }
2009
2010 static void rbd_img_request_destroy(struct kref *kref)
2011 {
2012         struct rbd_img_request *img_request;
2013         struct rbd_obj_request *obj_request;
2014         struct rbd_obj_request *next_obj_request;
2015
2016         img_request = container_of(kref, struct rbd_img_request, kref);
2017
2018         dout("%s: img %p\n", __func__, img_request);
2019
2020         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2021                 rbd_img_obj_request_del(img_request, obj_request);
2022         rbd_assert(img_request->obj_request_count == 0);
2023
2024         if (img_request_layered_test(img_request)) {
2025                 img_request_layered_clear(img_request);
2026                 rbd_dev_parent_put(img_request->rbd_dev);
2027         }
2028
2029         if (img_request_write_test(img_request))
2030                 ceph_put_snap_context(img_request->snapc);
2031
2032         kmem_cache_free(rbd_img_request_cache, img_request);
2033 }
2034
2035 static struct rbd_img_request *rbd_parent_request_create(
2036                                         struct rbd_obj_request *obj_request,
2037                                         u64 img_offset, u64 length)
2038 {
2039         struct rbd_img_request *parent_request;
2040         struct rbd_device *rbd_dev;
2041
2042         rbd_assert(obj_request->img_request);
2043         rbd_dev = obj_request->img_request->rbd_dev;
2044
2045         parent_request = rbd_img_request_create(rbd_dev->parent,
2046                                                 img_offset, length, false);
2047         if (!parent_request)
2048                 return NULL;
2049
2050         img_request_child_set(parent_request);
2051         rbd_obj_request_get(obj_request);
2052         parent_request->obj_request = obj_request;
2053
2054         return parent_request;
2055 }
2056
2057 static void rbd_parent_request_destroy(struct kref *kref)
2058 {
2059         struct rbd_img_request *parent_request;
2060         struct rbd_obj_request *orig_request;
2061
2062         parent_request = container_of(kref, struct rbd_img_request, kref);
2063         orig_request = parent_request->obj_request;
2064
2065         parent_request->obj_request = NULL;
2066         rbd_obj_request_put(orig_request);
2067         img_request_child_clear(parent_request);
2068
2069         rbd_img_request_destroy(kref);
2070 }
2071
2072 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2073 {
2074         struct rbd_img_request *img_request;
2075         unsigned int xferred;
2076         int result;
2077         bool more;
2078
2079         rbd_assert(obj_request_img_data_test(obj_request));
2080         img_request = obj_request->img_request;
2081
2082         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2083         xferred = (unsigned int)obj_request->xferred;
2084         result = obj_request->result;
2085         if (result) {
2086                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2087
2088                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2089                         img_request_write_test(img_request) ? "write" : "read",
2090                         obj_request->length, obj_request->img_offset,
2091                         obj_request->offset);
2092                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2093                         result, xferred);
2094                 if (!img_request->result)
2095                         img_request->result = result;
2096         }
2097
2098         /* Image object requests don't own their page array */
2099
2100         if (obj_request->type == OBJ_REQUEST_PAGES) {
2101                 obj_request->pages = NULL;
2102                 obj_request->page_count = 0;
2103         }
2104
2105         if (img_request_child_test(img_request)) {
2106                 rbd_assert(img_request->obj_request != NULL);
2107                 more = obj_request->which < img_request->obj_request_count - 1;
2108         } else {
2109                 rbd_assert(img_request->rq != NULL);
2110                 more = blk_end_request(img_request->rq, result, xferred);
2111         }
2112
2113         return more;
2114 }
2115
2116 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2117 {
2118         struct rbd_img_request *img_request;
2119         u32 which = obj_request->which;
2120         bool more = true;
2121
2122         rbd_assert(obj_request_img_data_test(obj_request));
2123         img_request = obj_request->img_request;
2124
2125         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2126         rbd_assert(img_request != NULL);
2127         rbd_assert(img_request->obj_request_count > 0);
2128         rbd_assert(which != BAD_WHICH);
2129         rbd_assert(which < img_request->obj_request_count);
2130         rbd_assert(which >= img_request->next_completion);
2131
2132         spin_lock_irq(&img_request->completion_lock);
2133         if (which != img_request->next_completion)
2134                 goto out;
2135
2136         for_each_obj_request_from(img_request, obj_request) {
2137                 rbd_assert(more);
2138                 rbd_assert(which < img_request->obj_request_count);
2139
2140                 if (!obj_request_done_test(obj_request))
2141                         break;
2142                 more = rbd_img_obj_end_request(obj_request);
2143                 which++;
2144         }
2145
2146         rbd_assert(more ^ (which == img_request->obj_request_count));
2147         img_request->next_completion = which;
2148 out:
2149         spin_unlock_irq(&img_request->completion_lock);
2150
2151         if (!more)
2152                 rbd_img_request_complete(img_request);
2153 }
2154
2155 /*
2156  * Split up an image request into one or more object requests, each
2157  * to a different object.  The "type" parameter indicates whether
2158  * "data_desc" is the pointer to the head of a list of bio
2159  * structures, or the base of a page array.  In either case this
2160  * function assumes data_desc describes memory sufficient to hold
2161  * all data described by the image request.
2162  */
2163 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2164                                         enum obj_request_type type,
2165                                         void *data_desc)
2166 {
2167         struct rbd_device *rbd_dev = img_request->rbd_dev;
2168         struct rbd_obj_request *obj_request = NULL;
2169         struct rbd_obj_request *next_obj_request;
2170         bool write_request = img_request_write_test(img_request);
2171         struct bio *bio_list;
2172         unsigned int bio_offset = 0;
2173         struct page **pages;
2174         u64 img_offset;
2175         u64 resid;
2176         u16 opcode;
2177
2178         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2179                 (int)type, data_desc);
2180
2181         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2182         img_offset = img_request->offset;
2183         resid = img_request->length;
2184         rbd_assert(resid > 0);
2185
2186         if (type == OBJ_REQUEST_BIO) {
2187                 bio_list = data_desc;
2188                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2189         } else {
2190                 rbd_assert(type == OBJ_REQUEST_PAGES);
2191                 pages = data_desc;
2192         }
2193
2194         while (resid) {
2195                 struct ceph_osd_request *osd_req;
2196                 const char *object_name;
2197                 u64 offset;
2198                 u64 length;
2199
2200                 object_name = rbd_segment_name(rbd_dev, img_offset);
2201                 if (!object_name)
2202                         goto out_unwind;
2203                 offset = rbd_segment_offset(rbd_dev, img_offset);
2204                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2205                 obj_request = rbd_obj_request_create(object_name,
2206                                                 offset, length, type);
2207                 /* object request has its own copy of the object name */
2208                 rbd_segment_name_free(object_name);
2209                 if (!obj_request)
2210                         goto out_unwind;
2211
2212                 if (type == OBJ_REQUEST_BIO) {
2213                         unsigned int clone_size;
2214
2215                         rbd_assert(length <= (u64)UINT_MAX);
2216                         clone_size = (unsigned int)length;
2217                         obj_request->bio_list =
2218                                         bio_chain_clone_range(&bio_list,
2219                                                                 &bio_offset,
2220                                                                 clone_size,
2221                                                                 GFP_ATOMIC);
2222                         if (!obj_request->bio_list)
2223                                 goto out_partial;
2224                 } else {
2225                         unsigned int page_count;
2226
2227                         obj_request->pages = pages;
2228                         page_count = (u32)calc_pages_for(offset, length);
2229                         obj_request->page_count = page_count;
2230                         if ((offset + length) & ~PAGE_MASK)
2231                                 page_count--;   /* more on last page */
2232                         pages += page_count;
2233                 }
2234
2235                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2236                                                 obj_request);
2237                 if (!osd_req)
2238                         goto out_partial;
2239                 obj_request->osd_req = osd_req;
2240                 obj_request->callback = rbd_img_obj_callback;
2241
2242                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2243                                                 0, 0);
2244                 if (type == OBJ_REQUEST_BIO)
2245                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2246                                         obj_request->bio_list, length);
2247                 else
2248                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2249                                         obj_request->pages, length,
2250                                         offset & ~PAGE_MASK, false, false);
2251
2252                 if (write_request)
2253                         rbd_osd_req_format_write(obj_request);
2254                 else
2255                         rbd_osd_req_format_read(obj_request);
2256
2257                 obj_request->img_offset = img_offset;
2258                 rbd_img_obj_request_add(img_request, obj_request);
2259
2260                 img_offset += length;
2261                 resid -= length;
2262         }
2263
2264         return 0;
2265
2266 out_partial:
2267         rbd_obj_request_put(obj_request);
2268 out_unwind:
2269         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2270                 rbd_obj_request_put(obj_request);
2271
2272         return -ENOMEM;
2273 }
2274
2275 static void
2276 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2277 {
2278         struct rbd_img_request *img_request;
2279         struct rbd_device *rbd_dev;
2280         struct page **pages;
2281         u32 page_count;
2282
2283         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2284         rbd_assert(obj_request_img_data_test(obj_request));
2285         img_request = obj_request->img_request;
2286         rbd_assert(img_request);
2287
2288         rbd_dev = img_request->rbd_dev;
2289         rbd_assert(rbd_dev);
2290
2291         pages = obj_request->copyup_pages;
2292         rbd_assert(pages != NULL);
2293         obj_request->copyup_pages = NULL;
2294         page_count = obj_request->copyup_page_count;
2295         rbd_assert(page_count);
2296         obj_request->copyup_page_count = 0;
2297         ceph_release_page_vector(pages, page_count);
2298
2299         /*
2300          * We want the transfer count to reflect the size of the
2301          * original write request.  There is no such thing as a
2302          * successful short write, so if the request was successful
2303          * we can just set it to the originally-requested length.
2304          */
2305         if (!obj_request->result)
2306                 obj_request->xferred = obj_request->length;
2307
2308         /* Finish up with the normal image object callback */
2309
2310         rbd_img_obj_callback(obj_request);
2311 }
2312
2313 static void
2314 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2315 {
2316         struct rbd_obj_request *orig_request;
2317         struct ceph_osd_request *osd_req;
2318         struct ceph_osd_client *osdc;
2319         struct rbd_device *rbd_dev;
2320         struct page **pages;
2321         u32 page_count;
2322         int img_result;
2323         u64 parent_length;
2324         u64 offset;
2325         u64 length;
2326
2327         rbd_assert(img_request_child_test(img_request));
2328
2329         /* First get what we need from the image request */
2330
2331         pages = img_request->copyup_pages;
2332         rbd_assert(pages != NULL);
2333         img_request->copyup_pages = NULL;
2334         page_count = img_request->copyup_page_count;
2335         rbd_assert(page_count);
2336         img_request->copyup_page_count = 0;
2337
2338         orig_request = img_request->obj_request;
2339         rbd_assert(orig_request != NULL);
2340         rbd_assert(obj_request_type_valid(orig_request->type));
2341         img_result = img_request->result;
2342         parent_length = img_request->length;
2343         rbd_assert(parent_length == img_request->xferred);
2344         rbd_img_request_put(img_request);
2345
2346         rbd_assert(orig_request->img_request);
2347         rbd_dev = orig_request->img_request->rbd_dev;
2348         rbd_assert(rbd_dev);
2349
2350         /*
2351          * If the overlap has become 0 (most likely because the
2352          * image has been flattened) we need to free the pages
2353          * and re-submit the original write request.
2354          */
2355         if (!rbd_dev->parent_overlap) {
2356                 struct ceph_osd_client *osdc;
2357
2358                 ceph_release_page_vector(pages, page_count);
2359                 osdc = &rbd_dev->rbd_client->client->osdc;
2360                 img_result = rbd_obj_request_submit(osdc, orig_request);
2361                 if (!img_result)
2362                         return;
2363         }
2364
2365         if (img_result)
2366                 goto out_err;
2367
2368         /*
2369          * The original osd request is of no use to use any more.
2370          * We need a new one that can hold the two ops in a copyup
2371          * request.  Allocate the new copyup osd request for the
2372          * original request, and release the old one.
2373          */
2374         img_result = -ENOMEM;
2375         osd_req = rbd_osd_req_create_copyup(orig_request);
2376         if (!osd_req)
2377                 goto out_err;
2378         rbd_osd_req_destroy(orig_request->osd_req);
2379         orig_request->osd_req = osd_req;
2380         orig_request->copyup_pages = pages;
2381         orig_request->copyup_page_count = page_count;
2382
2383         /* Initialize the copyup op */
2384
2385         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2386         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2387                                                 false, false);
2388
2389         /* Then the original write request op */
2390
2391         offset = orig_request->offset;
2392         length = orig_request->length;
2393         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2394                                         offset, length, 0, 0);
2395         if (orig_request->type == OBJ_REQUEST_BIO)
2396                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2397                                         orig_request->bio_list, length);
2398         else
2399                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2400                                         orig_request->pages, length,
2401                                         offset & ~PAGE_MASK, false, false);
2402
2403         rbd_osd_req_format_write(orig_request);
2404
2405         /* All set, send it off. */
2406
2407         orig_request->callback = rbd_img_obj_copyup_callback;
2408         osdc = &rbd_dev->rbd_client->client->osdc;
2409         img_result = rbd_obj_request_submit(osdc, orig_request);
2410         if (!img_result)
2411                 return;
2412 out_err:
2413         /* Record the error code and complete the request */
2414
2415         orig_request->result = img_result;
2416         orig_request->xferred = 0;
2417         obj_request_done_set(orig_request);
2418         rbd_obj_request_complete(orig_request);
2419 }
2420
2421 /*
2422  * Read from the parent image the range of data that covers the
2423  * entire target of the given object request.  This is used for
2424  * satisfying a layered image write request when the target of an
2425  * object request from the image request does not exist.
2426  *
2427  * A page array big enough to hold the returned data is allocated
2428  * and supplied to rbd_img_request_fill() as the "data descriptor."
2429  * When the read completes, this page array will be transferred to
2430  * the original object request for the copyup operation.
2431  *
2432  * If an error occurs, record it as the result of the original
2433  * object request and mark it done so it gets completed.
2434  */
2435 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2436 {
2437         struct rbd_img_request *img_request = NULL;
2438         struct rbd_img_request *parent_request = NULL;
2439         struct rbd_device *rbd_dev;
2440         u64 img_offset;
2441         u64 length;
2442         struct page **pages = NULL;
2443         u32 page_count;
2444         int result;
2445
2446         rbd_assert(obj_request_img_data_test(obj_request));
2447         rbd_assert(obj_request_type_valid(obj_request->type));
2448
2449         img_request = obj_request->img_request;
2450         rbd_assert(img_request != NULL);
2451         rbd_dev = img_request->rbd_dev;
2452         rbd_assert(rbd_dev->parent != NULL);
2453
2454         /*
2455          * Determine the byte range covered by the object in the
2456          * child image to which the original request was to be sent.
2457          */
2458         img_offset = obj_request->img_offset - obj_request->offset;
2459         length = (u64)1 << rbd_dev->header.obj_order;
2460
2461         /*
2462          * There is no defined parent data beyond the parent
2463          * overlap, so limit what we read at that boundary if
2464          * necessary.
2465          */
2466         if (img_offset + length > rbd_dev->parent_overlap) {
2467                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2468                 length = rbd_dev->parent_overlap - img_offset;
2469         }
2470
2471         /*
2472          * Allocate a page array big enough to receive the data read
2473          * from the parent.
2474          */
2475         page_count = (u32)calc_pages_for(0, length);
2476         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2477         if (IS_ERR(pages)) {
2478                 result = PTR_ERR(pages);
2479                 pages = NULL;
2480                 goto out_err;
2481         }
2482
2483         result = -ENOMEM;
2484         parent_request = rbd_parent_request_create(obj_request,
2485                                                 img_offset, length);
2486         if (!parent_request)
2487                 goto out_err;
2488
2489         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2490         if (result)
2491                 goto out_err;
2492         parent_request->copyup_pages = pages;
2493         parent_request->copyup_page_count = page_count;
2494
2495         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2496         result = rbd_img_request_submit(parent_request);
2497         if (!result)
2498                 return 0;
2499
2500         parent_request->copyup_pages = NULL;
2501         parent_request->copyup_page_count = 0;
2502         parent_request->obj_request = NULL;
2503         rbd_obj_request_put(obj_request);
2504 out_err:
2505         if (pages)
2506                 ceph_release_page_vector(pages, page_count);
2507         if (parent_request)
2508                 rbd_img_request_put(parent_request);
2509         obj_request->result = result;
2510         obj_request->xferred = 0;
2511         obj_request_done_set(obj_request);
2512
2513         return result;
2514 }
2515
2516 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2517 {
2518         struct rbd_obj_request *orig_request;
2519         struct rbd_device *rbd_dev;
2520         int result;
2521
2522         rbd_assert(!obj_request_img_data_test(obj_request));
2523
2524         /*
2525          * All we need from the object request is the original
2526          * request and the result of the STAT op.  Grab those, then
2527          * we're done with the request.
2528          */
2529         orig_request = obj_request->obj_request;
2530         obj_request->obj_request = NULL;
2531         rbd_assert(orig_request);
2532         rbd_assert(orig_request->img_request);
2533
2534         result = obj_request->result;
2535         obj_request->result = 0;
2536
2537         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2538                 obj_request, orig_request, result,
2539                 obj_request->xferred, obj_request->length);
2540         rbd_obj_request_put(obj_request);
2541
2542         /*
2543          * If the overlap has become 0 (most likely because the
2544          * image has been flattened) we need to free the pages
2545          * and re-submit the original write request.
2546          */
2547         rbd_dev = orig_request->img_request->rbd_dev;
2548         if (!rbd_dev->parent_overlap) {
2549                 struct ceph_osd_client *osdc;
2550
2551                 rbd_obj_request_put(orig_request);
2552                 osdc = &rbd_dev->rbd_client->client->osdc;
2553                 result = rbd_obj_request_submit(osdc, orig_request);
2554                 if (!result)
2555                         return;
2556         }
2557
2558         /*
2559          * Our only purpose here is to determine whether the object
2560          * exists, and we don't want to treat the non-existence as
2561          * an error.  If something else comes back, transfer the
2562          * error to the original request and complete it now.
2563          */
2564         if (!result) {
2565                 obj_request_existence_set(orig_request, true);
2566         } else if (result == -ENOENT) {
2567                 obj_request_existence_set(orig_request, false);
2568         } else if (result) {
2569                 orig_request->result = result;
2570                 goto out;
2571         }
2572
2573         /*
2574          * Resubmit the original request now that we have recorded
2575          * whether the target object exists.
2576          */
2577         orig_request->result = rbd_img_obj_request_submit(orig_request);
2578 out:
2579         if (orig_request->result)
2580                 rbd_obj_request_complete(orig_request);
2581         rbd_obj_request_put(orig_request);
2582 }
2583
2584 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2585 {
2586         struct rbd_obj_request *stat_request;
2587         struct rbd_device *rbd_dev;
2588         struct ceph_osd_client *osdc;
2589         struct page **pages = NULL;
2590         u32 page_count;
2591         size_t size;
2592         int ret;
2593
2594         /*
2595          * The response data for a STAT call consists of:
2596          *     le64 length;
2597          *     struct {
2598          *         le32 tv_sec;
2599          *         le32 tv_nsec;
2600          *     } mtime;
2601          */
2602         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2603         page_count = (u32)calc_pages_for(0, size);
2604         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2605         if (IS_ERR(pages))
2606                 return PTR_ERR(pages);
2607
2608         ret = -ENOMEM;
2609         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2610                                                         OBJ_REQUEST_PAGES);
2611         if (!stat_request)
2612                 goto out;
2613
2614         rbd_obj_request_get(obj_request);
2615         stat_request->obj_request = obj_request;
2616         stat_request->pages = pages;
2617         stat_request->page_count = page_count;
2618
2619         rbd_assert(obj_request->img_request);
2620         rbd_dev = obj_request->img_request->rbd_dev;
2621         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2622                                                 stat_request);
2623         if (!stat_request->osd_req)
2624                 goto out;
2625         stat_request->callback = rbd_img_obj_exists_callback;
2626
2627         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2628         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2629                                         false, false);
2630         rbd_osd_req_format_read(stat_request);
2631
2632         osdc = &rbd_dev->rbd_client->client->osdc;
2633         ret = rbd_obj_request_submit(osdc, stat_request);
2634 out:
2635         if (ret)
2636                 rbd_obj_request_put(obj_request);
2637
2638         return ret;
2639 }
2640
2641 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2642 {
2643         struct rbd_img_request *img_request;
2644         struct rbd_device *rbd_dev;
2645         bool known;
2646
2647         rbd_assert(obj_request_img_data_test(obj_request));
2648
2649         img_request = obj_request->img_request;
2650         rbd_assert(img_request);
2651         rbd_dev = img_request->rbd_dev;
2652
2653         /*
2654          * Only writes to layered images need special handling.
2655          * Reads and non-layered writes are simple object requests.
2656          * Layered writes that start beyond the end of the overlap
2657          * with the parent have no parent data, so they too are
2658          * simple object requests.  Finally, if the target object is
2659          * known to already exist, its parent data has already been
2660          * copied, so a write to the object can also be handled as a
2661          * simple object request.
2662          */
2663         if (!img_request_write_test(img_request) ||
2664                 !img_request_layered_test(img_request) ||
2665                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2666                 ((known = obj_request_known_test(obj_request)) &&
2667                         obj_request_exists_test(obj_request))) {
2668
2669                 struct rbd_device *rbd_dev;
2670                 struct ceph_osd_client *osdc;
2671
2672                 rbd_dev = obj_request->img_request->rbd_dev;
2673                 osdc = &rbd_dev->rbd_client->client->osdc;
2674
2675                 return rbd_obj_request_submit(osdc, obj_request);
2676         }
2677
2678         /*
2679          * It's a layered write.  The target object might exist but
2680          * we may not know that yet.  If we know it doesn't exist,
2681          * start by reading the data for the full target object from
2682          * the parent so we can use it for a copyup to the target.
2683          */
2684         if (known)
2685                 return rbd_img_obj_parent_read_full(obj_request);
2686
2687         /* We don't know whether the target exists.  Go find out. */
2688
2689         return rbd_img_obj_exists_submit(obj_request);
2690 }
2691
2692 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2693 {
2694         struct rbd_obj_request *obj_request;
2695         struct rbd_obj_request *next_obj_request;
2696
2697         dout("%s: img %p\n", __func__, img_request);
2698         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2699                 int ret;
2700
2701                 ret = rbd_img_obj_request_submit(obj_request);
2702                 if (ret)
2703                         return ret;
2704         }
2705
2706         return 0;
2707 }
2708
2709 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2710 {
2711         struct rbd_obj_request *obj_request;
2712         struct rbd_device *rbd_dev;
2713         u64 obj_end;
2714         u64 img_xferred;
2715         int img_result;
2716
2717         rbd_assert(img_request_child_test(img_request));
2718
2719         /* First get what we need from the image request and release it */
2720
2721         obj_request = img_request->obj_request;
2722         img_xferred = img_request->xferred;
2723         img_result = img_request->result;
2724         rbd_img_request_put(img_request);
2725
2726         /*
2727          * If the overlap has become 0 (most likely because the
2728          * image has been flattened) we need to re-submit the
2729          * original request.
2730          */
2731         rbd_assert(obj_request);
2732         rbd_assert(obj_request->img_request);
2733         rbd_dev = obj_request->img_request->rbd_dev;
2734         if (!rbd_dev->parent_overlap) {
2735                 struct ceph_osd_client *osdc;
2736
2737                 osdc = &rbd_dev->rbd_client->client->osdc;
2738                 img_result = rbd_obj_request_submit(osdc, obj_request);
2739                 if (!img_result)
2740                         return;
2741         }
2742
2743         obj_request->result = img_result;
2744         if (obj_request->result)
2745                 goto out;
2746
2747         /*
2748          * We need to zero anything beyond the parent overlap
2749          * boundary.  Since rbd_img_obj_request_read_callback()
2750          * will zero anything beyond the end of a short read, an
2751          * easy way to do this is to pretend the data from the
2752          * parent came up short--ending at the overlap boundary.
2753          */
2754         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2755         obj_end = obj_request->img_offset + obj_request->length;
2756         if (obj_end > rbd_dev->parent_overlap) {
2757                 u64 xferred = 0;
2758
2759                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2760                         xferred = rbd_dev->parent_overlap -
2761                                         obj_request->img_offset;
2762
2763                 obj_request->xferred = min(img_xferred, xferred);
2764         } else {
2765                 obj_request->xferred = img_xferred;
2766         }
2767 out:
2768         rbd_img_obj_request_read_callback(obj_request);
2769         rbd_obj_request_complete(obj_request);
2770 }
2771
2772 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2773 {
2774         struct rbd_img_request *img_request;
2775         int result;
2776
2777         rbd_assert(obj_request_img_data_test(obj_request));
2778         rbd_assert(obj_request->img_request != NULL);
2779         rbd_assert(obj_request->result == (s32) -ENOENT);
2780         rbd_assert(obj_request_type_valid(obj_request->type));
2781
2782         /* rbd_read_finish(obj_request, obj_request->length); */
2783         img_request = rbd_parent_request_create(obj_request,
2784                                                 obj_request->img_offset,
2785                                                 obj_request->length);
2786         result = -ENOMEM;
2787         if (!img_request)
2788                 goto out_err;
2789
2790         if (obj_request->type == OBJ_REQUEST_BIO)
2791                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2792                                                 obj_request->bio_list);
2793         else
2794                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2795                                                 obj_request->pages);
2796         if (result)
2797                 goto out_err;
2798
2799         img_request->callback = rbd_img_parent_read_callback;
2800         result = rbd_img_request_submit(img_request);
2801         if (result)
2802                 goto out_err;
2803
2804         return;
2805 out_err:
2806         if (img_request)
2807                 rbd_img_request_put(img_request);
2808         obj_request->result = result;
2809         obj_request->xferred = 0;
2810         obj_request_done_set(obj_request);
2811 }
2812
2813 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2814 {
2815         struct rbd_obj_request *obj_request;
2816         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2817         int ret;
2818
2819         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2820                                                         OBJ_REQUEST_NODATA);
2821         if (!obj_request)
2822                 return -ENOMEM;
2823
2824         ret = -ENOMEM;
2825         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2826         if (!obj_request->osd_req)
2827                 goto out;
2828         obj_request->callback = rbd_obj_request_put;
2829
2830         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2831                                         notify_id, 0, 0);
2832         rbd_osd_req_format_read(obj_request);
2833
2834         ret = rbd_obj_request_submit(osdc, obj_request);
2835 out:
2836         if (ret)
2837                 rbd_obj_request_put(obj_request);
2838
2839         return ret;
2840 }
2841
2842 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2843 {
2844         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2845         int ret;
2846
2847         if (!rbd_dev)
2848                 return;
2849
2850         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2851                 rbd_dev->header_name, (unsigned long long)notify_id,
2852                 (unsigned int)opcode);
2853         ret = rbd_dev_refresh(rbd_dev);
2854         if (ret)
2855                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2856
2857         rbd_obj_notify_ack(rbd_dev, notify_id);
2858 }
2859
2860 /*
2861  * Request sync osd watch/unwatch.  The value of "start" determines
2862  * whether a watch request is being initiated or torn down.
2863  */
2864 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2865 {
2866         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2867         struct rbd_obj_request *obj_request;
2868         int ret;
2869
2870         rbd_assert(start ^ !!rbd_dev->watch_event);
2871         rbd_assert(start ^ !!rbd_dev->watch_request);
2872
2873         if (start) {
2874                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2875                                                 &rbd_dev->watch_event);
2876                 if (ret < 0)
2877                         return ret;
2878                 rbd_assert(rbd_dev->watch_event != NULL);
2879         }
2880
2881         ret = -ENOMEM;
2882         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2883                                                         OBJ_REQUEST_NODATA);
2884         if (!obj_request)
2885                 goto out_cancel;
2886
2887         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2888         if (!obj_request->osd_req)
2889                 goto out_cancel;
2890
2891         if (start)
2892                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2893         else
2894                 ceph_osdc_unregister_linger_request(osdc,
2895                                         rbd_dev->watch_request->osd_req);
2896
2897         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2898                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2899         rbd_osd_req_format_write(obj_request);
2900
2901         ret = rbd_obj_request_submit(osdc, obj_request);
2902         if (ret)
2903                 goto out_cancel;
2904         ret = rbd_obj_request_wait(obj_request);
2905         if (ret)
2906                 goto out_cancel;
2907         ret = obj_request->result;
2908         if (ret)
2909                 goto out_cancel;
2910
2911         /*
2912          * A watch request is set to linger, so the underlying osd
2913          * request won't go away until we unregister it.  We retain
2914          * a pointer to the object request during that time (in
2915          * rbd_dev->watch_request), so we'll keep a reference to
2916          * it.  We'll drop that reference (below) after we've
2917          * unregistered it.
2918          */
2919         if (start) {
2920                 rbd_dev->watch_request = obj_request;
2921
2922                 return 0;
2923         }
2924
2925         /* We have successfully torn down the watch request */
2926
2927         rbd_obj_request_put(rbd_dev->watch_request);
2928         rbd_dev->watch_request = NULL;
2929 out_cancel:
2930         /* Cancel the event if we're tearing down, or on error */
2931         ceph_osdc_cancel_event(rbd_dev->watch_event);
2932         rbd_dev->watch_event = NULL;
2933         if (obj_request)
2934                 rbd_obj_request_put(obj_request);
2935
2936         return ret;
2937 }
2938
2939 /*
2940  * Synchronous osd object method call.  Returns the number of bytes
2941  * returned in the outbound buffer, or a negative error code.
2942  */
2943 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2944                              const char *object_name,
2945                              const char *class_name,
2946                              const char *method_name,
2947                              const void *outbound,
2948                              size_t outbound_size,
2949                              void *inbound,
2950                              size_t inbound_size)
2951 {
2952         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2953         struct rbd_obj_request *obj_request;
2954         struct page **pages;
2955         u32 page_count;
2956         int ret;
2957
2958         /*
2959          * Method calls are ultimately read operations.  The result
2960          * should placed into the inbound buffer provided.  They
2961          * also supply outbound data--parameters for the object
2962          * method.  Currently if this is present it will be a
2963          * snapshot id.
2964          */
2965         page_count = (u32)calc_pages_for(0, inbound_size);
2966         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2967         if (IS_ERR(pages))
2968                 return PTR_ERR(pages);
2969
2970         ret = -ENOMEM;
2971         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2972                                                         OBJ_REQUEST_PAGES);
2973         if (!obj_request)
2974                 goto out;
2975
2976         obj_request->pages = pages;
2977         obj_request->page_count = page_count;
2978
2979         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2980         if (!obj_request->osd_req)
2981                 goto out;
2982
2983         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2984                                         class_name, method_name);
2985         if (outbound_size) {
2986                 struct ceph_pagelist *pagelist;
2987
2988                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2989                 if (!pagelist)
2990                         goto out;
2991
2992                 ceph_pagelist_init(pagelist);
2993                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2994                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2995                                                 pagelist);
2996         }
2997         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2998                                         obj_request->pages, inbound_size,
2999                                         0, false, false);
3000         rbd_osd_req_format_read(obj_request);
3001
3002         ret = rbd_obj_request_submit(osdc, obj_request);
3003         if (ret)
3004                 goto out;
3005         ret = rbd_obj_request_wait(obj_request);
3006         if (ret)
3007                 goto out;
3008
3009         ret = obj_request->result;
3010         if (ret < 0)
3011                 goto out;
3012
3013         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3014         ret = (int)obj_request->xferred;
3015         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3016 out:
3017         if (obj_request)
3018                 rbd_obj_request_put(obj_request);
3019         else
3020                 ceph_release_page_vector(pages, page_count);
3021
3022         return ret;
3023 }
3024
3025 static void rbd_request_fn(struct request_queue *q)
3026                 __releases(q->queue_lock) __acquires(q->queue_lock)
3027 {
3028         struct rbd_device *rbd_dev = q->queuedata;
3029         bool read_only = rbd_dev->mapping.read_only;
3030         struct request *rq;
3031         int result;
3032
3033         while ((rq = blk_fetch_request(q))) {
3034                 bool write_request = rq_data_dir(rq) == WRITE;
3035                 struct rbd_img_request *img_request;
3036                 u64 offset;
3037                 u64 length;
3038
3039                 /* Ignore any non-FS requests that filter through. */
3040
3041                 if (rq->cmd_type != REQ_TYPE_FS) {
3042                         dout("%s: non-fs request type %d\n", __func__,
3043                                 (int) rq->cmd_type);
3044                         __blk_end_request_all(rq, 0);
3045                         continue;
3046                 }
3047
3048                 /* Ignore/skip any zero-length requests */
3049
3050                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3051                 length = (u64) blk_rq_bytes(rq);
3052
3053                 if (!length) {
3054                         dout("%s: zero-length request\n", __func__);
3055                         __blk_end_request_all(rq, 0);
3056                         continue;
3057                 }
3058
3059                 spin_unlock_irq(q->queue_lock);
3060
3061                 /* Disallow writes to a read-only device */
3062
3063                 if (write_request) {
3064                         result = -EROFS;
3065                         if (read_only)
3066                                 goto end_request;
3067                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3068                 }
3069
3070                 /*
3071                  * Quit early if the mapped snapshot no longer
3072                  * exists.  It's still possible the snapshot will
3073                  * have disappeared by the time our request arrives
3074                  * at the osd, but there's no sense in sending it if
3075                  * we already know.
3076                  */
3077                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3078                         dout("request for non-existent snapshot");
3079                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3080                         result = -ENXIO;
3081                         goto end_request;
3082                 }
3083
3084                 result = -EINVAL;
3085                 if (offset && length > U64_MAX - offset + 1) {
3086                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3087                                 offset, length);
3088                         goto end_request;       /* Shouldn't happen */
3089                 }
3090
3091                 result = -EIO;
3092                 if (offset + length > rbd_dev->mapping.size) {
3093                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3094                                 offset, length, rbd_dev->mapping.size);
3095                         goto end_request;
3096                 }
3097
3098                 result = -ENOMEM;
3099                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3100                                                         write_request);
3101                 if (!img_request)
3102                         goto end_request;
3103
3104                 img_request->rq = rq;
3105
3106                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3107                                                 rq->bio);
3108                 if (!result)
3109                         result = rbd_img_request_submit(img_request);
3110                 if (result)
3111                         rbd_img_request_put(img_request);
3112 end_request:
3113                 spin_lock_irq(q->queue_lock);
3114                 if (result < 0) {
3115                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3116                                 write_request ? "write" : "read",
3117                                 length, offset, result);
3118
3119                         __blk_end_request_all(rq, result);
3120                 }
3121         }
3122 }
3123
3124 /*
3125  * a queue callback. Makes sure that we don't create a bio that spans across
3126  * multiple osd objects. One exception would be with a single page bios,
3127  * which we handle later at bio_chain_clone_range()
3128  */
3129 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3130                           struct bio_vec *bvec)
3131 {
3132         struct rbd_device *rbd_dev = q->queuedata;
3133         sector_t sector_offset;
3134         sector_t sectors_per_obj;
3135         sector_t obj_sector_offset;
3136         int ret;
3137
3138         /*
3139          * Find how far into its rbd object the partition-relative
3140          * bio start sector is to offset relative to the enclosing
3141          * device.
3142          */
3143         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3144         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3145         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3146
3147         /*
3148          * Compute the number of bytes from that offset to the end
3149          * of the object.  Account for what's already used by the bio.
3150          */
3151         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3152         if (ret > bmd->bi_size)
3153                 ret -= bmd->bi_size;
3154         else
3155                 ret = 0;
3156
3157         /*
3158          * Don't send back more than was asked for.  And if the bio
3159          * was empty, let the whole thing through because:  "Note
3160          * that a block device *must* allow a single page to be
3161          * added to an empty bio."
3162          */
3163         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3164         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3165                 ret = (int) bvec->bv_len;
3166
3167         return ret;
3168 }
3169
3170 static void rbd_free_disk(struct rbd_device *rbd_dev)
3171 {
3172         struct gendisk *disk = rbd_dev->disk;
3173
3174         if (!disk)
3175                 return;
3176
3177         rbd_dev->disk = NULL;
3178         if (disk->flags & GENHD_FL_UP) {
3179                 del_gendisk(disk);
3180                 if (disk->queue)
3181                         blk_cleanup_queue(disk->queue);
3182         }
3183         put_disk(disk);
3184 }
3185
3186 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3187                                 const char *object_name,
3188                                 u64 offset, u64 length, void *buf)
3189
3190 {
3191         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3192         struct rbd_obj_request *obj_request;
3193         struct page **pages = NULL;
3194         u32 page_count;
3195         size_t size;
3196         int ret;
3197
3198         page_count = (u32) calc_pages_for(offset, length);
3199         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3200         if (IS_ERR(pages))
3201                 ret = PTR_ERR(pages);
3202
3203         ret = -ENOMEM;
3204         obj_request = rbd_obj_request_create(object_name, offset, length,
3205                                                         OBJ_REQUEST_PAGES);
3206         if (!obj_request)
3207                 goto out;
3208
3209         obj_request->pages = pages;
3210         obj_request->page_count = page_count;
3211
3212         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3213         if (!obj_request->osd_req)
3214                 goto out;
3215
3216         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3217                                         offset, length, 0, 0);
3218         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3219                                         obj_request->pages,
3220                                         obj_request->length,
3221                                         obj_request->offset & ~PAGE_MASK,
3222                                         false, false);
3223         rbd_osd_req_format_read(obj_request);
3224
3225         ret = rbd_obj_request_submit(osdc, obj_request);
3226         if (ret)
3227                 goto out;
3228         ret = rbd_obj_request_wait(obj_request);
3229         if (ret)
3230                 goto out;
3231
3232         ret = obj_request->result;
3233         if (ret < 0)
3234                 goto out;
3235
3236         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3237         size = (size_t) obj_request->xferred;
3238         ceph_copy_from_page_vector(pages, buf, 0, size);
3239         rbd_assert(size <= (size_t)INT_MAX);
3240         ret = (int)size;
3241 out:
3242         if (obj_request)
3243                 rbd_obj_request_put(obj_request);
3244         else
3245                 ceph_release_page_vector(pages, page_count);
3246
3247         return ret;
3248 }
3249
3250 /*
3251  * Read the complete header for the given rbd device.  On successful
3252  * return, the rbd_dev->header field will contain up-to-date
3253  * information about the image.
3254  */
3255 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3256 {
3257         struct rbd_image_header_ondisk *ondisk = NULL;
3258         u32 snap_count = 0;
3259         u64 names_size = 0;
3260         u32 want_count;
3261         int ret;
3262
3263         /*
3264          * The complete header will include an array of its 64-bit
3265          * snapshot ids, followed by the names of those snapshots as
3266          * a contiguous block of NUL-terminated strings.  Note that
3267          * the number of snapshots could change by the time we read
3268          * it in, in which case we re-read it.
3269          */
3270         do {
3271                 size_t size;
3272
3273                 kfree(ondisk);
3274
3275                 size = sizeof (*ondisk);
3276                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3277                 size += names_size;
3278                 ondisk = kmalloc(size, GFP_KERNEL);
3279                 if (!ondisk)
3280                         return -ENOMEM;
3281
3282                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3283                                        0, size, ondisk);
3284                 if (ret < 0)
3285                         goto out;
3286                 if ((size_t)ret < size) {
3287                         ret = -ENXIO;
3288                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3289                                 size, ret);
3290                         goto out;
3291                 }
3292                 if (!rbd_dev_ondisk_valid(ondisk)) {
3293                         ret = -ENXIO;
3294                         rbd_warn(rbd_dev, "invalid header");
3295                         goto out;
3296                 }
3297
3298                 names_size = le64_to_cpu(ondisk->snap_names_len);
3299                 want_count = snap_count;
3300                 snap_count = le32_to_cpu(ondisk->snap_count);
3301         } while (snap_count != want_count);
3302
3303         ret = rbd_header_from_disk(rbd_dev, ondisk);
3304 out:
3305         kfree(ondisk);
3306
3307         return ret;
3308 }
3309
3310 /*
3311  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3312  * has disappeared from the (just updated) snapshot context.
3313  */
3314 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3315 {
3316         u64 snap_id;
3317
3318         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3319                 return;
3320
3321         snap_id = rbd_dev->spec->snap_id;
3322         if (snap_id == CEPH_NOSNAP)
3323                 return;
3324
3325         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3326                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3327 }
3328
3329 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3330 {
3331         u64 mapping_size;
3332         int ret;
3333
3334         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3335         mapping_size = rbd_dev->mapping.size;
3336         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3337         if (rbd_dev->image_format == 1)
3338                 ret = rbd_dev_v1_header_info(rbd_dev);
3339         else
3340                 ret = rbd_dev_v2_header_info(rbd_dev);
3341
3342         /* If it's a mapped snapshot, validate its EXISTS flag */
3343
3344         rbd_exists_validate(rbd_dev);
3345         mutex_unlock(&ctl_mutex);
3346         if (mapping_size != rbd_dev->mapping.size) {
3347                 sector_t size;
3348
3349                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3350                 dout("setting size to %llu sectors", (unsigned long long)size);
3351                 set_capacity(rbd_dev->disk, size);
3352                 revalidate_disk(rbd_dev->disk);
3353         }
3354
3355         return ret;
3356 }
3357
3358 static int rbd_init_disk(struct rbd_device *rbd_dev)
3359 {
3360         struct gendisk *disk;
3361         struct request_queue *q;
3362         u64 segment_size;
3363
3364         /* create gendisk info */
3365         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3366         if (!disk)
3367                 return -ENOMEM;
3368
3369         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3370                  rbd_dev->dev_id);
3371         disk->major = rbd_dev->major;
3372         disk->first_minor = 0;
3373         disk->fops = &rbd_bd_ops;
3374         disk->private_data = rbd_dev;
3375
3376         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3377         if (!q)
3378                 goto out_disk;
3379
3380         /* We use the default size, but let's be explicit about it. */
3381         blk_queue_physical_block_size(q, SECTOR_SIZE);
3382
3383         /* set io sizes to object size */
3384         segment_size = rbd_obj_bytes(&rbd_dev->header);
3385         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3386         blk_queue_max_segment_size(q, segment_size);
3387         blk_queue_io_min(q, segment_size);
3388         blk_queue_io_opt(q, segment_size);
3389
3390         blk_queue_merge_bvec(q, rbd_merge_bvec);
3391         disk->queue = q;
3392
3393         q->queuedata = rbd_dev;
3394
3395         rbd_dev->disk = disk;
3396
3397         return 0;
3398 out_disk:
3399         put_disk(disk);
3400
3401         return -ENOMEM;
3402 }
3403
3404 /*
3405   sysfs
3406 */
3407
3408 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3409 {
3410         return container_of(dev, struct rbd_device, dev);
3411 }
3412
3413 static ssize_t rbd_size_show(struct device *dev,
3414                              struct device_attribute *attr, char *buf)
3415 {
3416         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3417
3418         return sprintf(buf, "%llu\n",
3419                 (unsigned long long)rbd_dev->mapping.size);
3420 }
3421
3422 /*
3423  * Note this shows the features for whatever's mapped, which is not
3424  * necessarily the base image.
3425  */
3426 static ssize_t rbd_features_show(struct device *dev,
3427                              struct device_attribute *attr, char *buf)
3428 {
3429         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3430
3431         return sprintf(buf, "0x%016llx\n",
3432                         (unsigned long long)rbd_dev->mapping.features);
3433 }
3434
3435 static ssize_t rbd_major_show(struct device *dev,
3436                               struct device_attribute *attr, char *buf)
3437 {
3438         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3439
3440         if (rbd_dev->major)
3441                 return sprintf(buf, "%d\n", rbd_dev->major);
3442
3443         return sprintf(buf, "(none)\n");
3444
3445 }
3446
3447 static ssize_t rbd_client_id_show(struct device *dev,
3448                                   struct device_attribute *attr, char *buf)
3449 {
3450         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3451
3452         return sprintf(buf, "client%lld\n",
3453                         ceph_client_id(rbd_dev->rbd_client->client));
3454 }
3455
3456 static ssize_t rbd_pool_show(struct device *dev,
3457                              struct device_attribute *attr, char *buf)
3458 {
3459         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3460
3461         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3462 }
3463
3464 static ssize_t rbd_pool_id_show(struct device *dev,
3465                              struct device_attribute *attr, char *buf)
3466 {
3467         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3468
3469         return sprintf(buf, "%llu\n",
3470                         (unsigned long long) rbd_dev->spec->pool_id);
3471 }
3472
3473 static ssize_t rbd_name_show(struct device *dev,
3474                              struct device_attribute *attr, char *buf)
3475 {
3476         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3477
3478         if (rbd_dev->spec->image_name)
3479                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3480
3481         return sprintf(buf, "(unknown)\n");
3482 }
3483
3484 static ssize_t rbd_image_id_show(struct device *dev,
3485                              struct device_attribute *attr, char *buf)
3486 {
3487         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3488
3489         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3490 }
3491
3492 /*
3493  * Shows the name of the currently-mapped snapshot (or
3494  * RBD_SNAP_HEAD_NAME for the base image).
3495  */
3496 static ssize_t rbd_snap_show(struct device *dev,
3497                              struct device_attribute *attr,
3498                              char *buf)
3499 {
3500         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3501
3502         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3503 }
3504
3505 /*
3506  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3507  * for the parent image.  If there is no parent, simply shows
3508  * "(no parent image)".
3509  */
3510 static ssize_t rbd_parent_show(struct device *dev,
3511                              struct device_attribute *attr,
3512                              char *buf)
3513 {
3514         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3515         struct rbd_spec *spec = rbd_dev->parent_spec;
3516         int count;
3517         char *bufp = buf;
3518
3519         if (!spec)
3520                 return sprintf(buf, "(no parent image)\n");
3521
3522         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3523                         (unsigned long long) spec->pool_id, spec->pool_name);
3524         if (count < 0)
3525                 return count;
3526         bufp += count;
3527
3528         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3529                         spec->image_name ? spec->image_name : "(unknown)");
3530         if (count < 0)
3531                 return count;
3532         bufp += count;
3533
3534         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3535                         (unsigned long long) spec->snap_id, spec->snap_name);
3536         if (count < 0)
3537                 return count;
3538         bufp += count;
3539
3540         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3541         if (count < 0)
3542                 return count;
3543         bufp += count;
3544
3545         return (ssize_t) (bufp - buf);
3546 }
3547
3548 static ssize_t rbd_image_refresh(struct device *dev,
3549                                  struct device_attribute *attr,
3550                                  const char *buf,
3551                                  size_t size)
3552 {
3553         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3554         int ret;
3555
3556         ret = rbd_dev_refresh(rbd_dev);
3557         if (ret)
3558                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3559
3560         return ret < 0 ? ret : size;
3561 }
3562
3563 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3564 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3565 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3566 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3567 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3568 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3569 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3570 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3571 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3572 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3573 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3574
3575 static struct attribute *rbd_attrs[] = {
3576         &dev_attr_size.attr,
3577         &dev_attr_features.attr,
3578         &dev_attr_major.attr,
3579         &dev_attr_client_id.attr,
3580         &dev_attr_pool.attr,
3581         &dev_attr_pool_id.attr,
3582         &dev_attr_name.attr,
3583         &dev_attr_image_id.attr,
3584         &dev_attr_current_snap.attr,
3585         &dev_attr_parent.attr,
3586         &dev_attr_refresh.attr,
3587         NULL
3588 };
3589
3590 static struct attribute_group rbd_attr_group = {
3591         .attrs = rbd_attrs,
3592 };
3593
3594 static const struct attribute_group *rbd_attr_groups[] = {
3595         &rbd_attr_group,
3596         NULL
3597 };
3598
3599 static void rbd_sysfs_dev_release(struct device *dev)
3600 {
3601 }
3602
3603 static struct device_type rbd_device_type = {
3604         .name           = "rbd",
3605         .groups         = rbd_attr_groups,
3606         .release        = rbd_sysfs_dev_release,
3607 };
3608
3609 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3610 {
3611         kref_get(&spec->kref);
3612
3613         return spec;
3614 }
3615
3616 static void rbd_spec_free(struct kref *kref);
3617 static void rbd_spec_put(struct rbd_spec *spec)
3618 {
3619         if (spec)
3620                 kref_put(&spec->kref, rbd_spec_free);
3621 }
3622
3623 static struct rbd_spec *rbd_spec_alloc(void)
3624 {
3625         struct rbd_spec *spec;
3626
3627         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3628         if (!spec)
3629                 return NULL;
3630         kref_init(&spec->kref);
3631
3632         return spec;
3633 }
3634
3635 static void rbd_spec_free(struct kref *kref)
3636 {
3637         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3638
3639         kfree(spec->pool_name);
3640         kfree(spec->image_id);
3641         kfree(spec->image_name);
3642         kfree(spec->snap_name);
3643         kfree(spec);
3644 }
3645
3646 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3647                                 struct rbd_spec *spec)
3648 {
3649         struct rbd_device *rbd_dev;
3650
3651         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3652         if (!rbd_dev)
3653                 return NULL;
3654
3655         spin_lock_init(&rbd_dev->lock);
3656         rbd_dev->flags = 0;
3657         atomic_set(&rbd_dev->parent_ref, 0);
3658         INIT_LIST_HEAD(&rbd_dev->node);
3659         init_rwsem(&rbd_dev->header_rwsem);
3660
3661         rbd_dev->spec = spec;
3662         rbd_dev->rbd_client = rbdc;
3663
3664         /* Initialize the layout used for all rbd requests */
3665
3666         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3667         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3668         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3669         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3670
3671         return rbd_dev;
3672 }
3673
3674 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3675 {
3676         rbd_put_client(rbd_dev->rbd_client);
3677         rbd_spec_put(rbd_dev->spec);
3678         kfree(rbd_dev);
3679 }
3680
3681 /*
3682  * Get the size and object order for an image snapshot, or if
3683  * snap_id is CEPH_NOSNAP, gets this information for the base
3684  * image.
3685  */
3686 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3687                                 u8 *order, u64 *snap_size)
3688 {
3689         __le64 snapid = cpu_to_le64(snap_id);
3690         int ret;
3691         struct {
3692                 u8 order;
3693                 __le64 size;
3694         } __attribute__ ((packed)) size_buf = { 0 };
3695
3696         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3697                                 "rbd", "get_size",
3698                                 &snapid, sizeof (snapid),
3699                                 &size_buf, sizeof (size_buf));
3700         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3701         if (ret < 0)
3702                 return ret;
3703         if (ret < sizeof (size_buf))
3704                 return -ERANGE;
3705
3706         if (order)
3707                 *order = size_buf.order;
3708         *snap_size = le64_to_cpu(size_buf.size);
3709
3710         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3711                 (unsigned long long)snap_id, (unsigned int)*order,
3712                 (unsigned long long)*snap_size);
3713
3714         return 0;
3715 }
3716
3717 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3718 {
3719         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3720                                         &rbd_dev->header.obj_order,
3721                                         &rbd_dev->header.image_size);
3722 }
3723
3724 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3725 {
3726         void *reply_buf;
3727         int ret;
3728         void *p;
3729
3730         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3731         if (!reply_buf)
3732                 return -ENOMEM;
3733
3734         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3735                                 "rbd", "get_object_prefix", NULL, 0,
3736                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3737         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3738         if (ret < 0)
3739                 goto out;
3740
3741         p = reply_buf;
3742         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3743                                                 p + ret, NULL, GFP_NOIO);
3744         ret = 0;
3745
3746         if (IS_ERR(rbd_dev->header.object_prefix)) {
3747                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3748                 rbd_dev->header.object_prefix = NULL;
3749         } else {
3750                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3751         }
3752 out:
3753         kfree(reply_buf);
3754
3755         return ret;
3756 }
3757
3758 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3759                 u64 *snap_features)
3760 {
3761         __le64 snapid = cpu_to_le64(snap_id);
3762         struct {
3763                 __le64 features;
3764                 __le64 incompat;
3765         } __attribute__ ((packed)) features_buf = { 0 };
3766         u64 incompat;
3767         int ret;
3768
3769         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3770                                 "rbd", "get_features",
3771                                 &snapid, sizeof (snapid),
3772                                 &features_buf, sizeof (features_buf));
3773         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3774         if (ret < 0)
3775                 return ret;
3776         if (ret < sizeof (features_buf))
3777                 return -ERANGE;
3778
3779         incompat = le64_to_cpu(features_buf.incompat);
3780         if (incompat & ~RBD_FEATURES_SUPPORTED)
3781                 return -ENXIO;
3782
3783         *snap_features = le64_to_cpu(features_buf.features);
3784
3785         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3786                 (unsigned long long)snap_id,
3787                 (unsigned long long)*snap_features,
3788                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3789
3790         return 0;
3791 }
3792
3793 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3794 {
3795         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3796                                                 &rbd_dev->header.features);
3797 }
3798
3799 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3800 {
3801         struct rbd_spec *parent_spec;
3802         size_t size;
3803         void *reply_buf = NULL;
3804         __le64 snapid;
3805         void *p;
3806         void *end;
3807         u64 pool_id;
3808         char *image_id;
3809         u64 overlap;
3810         int ret;
3811
3812         parent_spec = rbd_spec_alloc();
3813         if (!parent_spec)
3814                 return -ENOMEM;
3815
3816         size = sizeof (__le64) +                                /* pool_id */
3817                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3818                 sizeof (__le64) +                               /* snap_id */
3819                 sizeof (__le64);                                /* overlap */
3820         reply_buf = kmalloc(size, GFP_KERNEL);
3821         if (!reply_buf) {
3822                 ret = -ENOMEM;
3823                 goto out_err;
3824         }
3825
3826         snapid = cpu_to_le64(CEPH_NOSNAP);
3827         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3828                                 "rbd", "get_parent",
3829                                 &snapid, sizeof (snapid),
3830                                 reply_buf, size);
3831         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3832         if (ret < 0)
3833                 goto out_err;
3834
3835         p = reply_buf;
3836         end = reply_buf + ret;
3837         ret = -ERANGE;
3838         ceph_decode_64_safe(&p, end, pool_id, out_err);
3839         if (pool_id == CEPH_NOPOOL) {
3840                 /*
3841                  * Either the parent never existed, or we have
3842                  * record of it but the image got flattened so it no
3843                  * longer has a parent.  When the parent of a
3844                  * layered image disappears we immediately set the
3845                  * overlap to 0.  The effect of this is that all new
3846                  * requests will be treated as if the image had no
3847                  * parent.
3848                  */
3849                 if (rbd_dev->parent_overlap) {
3850                         rbd_dev->parent_overlap = 0;
3851                         smp_mb();
3852                         rbd_dev_parent_put(rbd_dev);
3853                         pr_info("%s: clone image has been flattened\n",
3854                                 rbd_dev->disk->disk_name);
3855                 }
3856
3857                 goto out;       /* No parent?  No problem. */
3858         }
3859
3860         /* The ceph file layout needs to fit pool id in 32 bits */
3861
3862         ret = -EIO;
3863         if (pool_id > (u64)U32_MAX) {
3864                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3865                         (unsigned long long)pool_id, U32_MAX);
3866                 goto out_err;
3867         }
3868         parent_spec->pool_id = pool_id;
3869
3870         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3871         if (IS_ERR(image_id)) {
3872                 ret = PTR_ERR(image_id);
3873                 goto out_err;
3874         }
3875         parent_spec->image_id = image_id;
3876         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3877         ceph_decode_64_safe(&p, end, overlap, out_err);
3878
3879         if (overlap) {
3880                 rbd_spec_put(rbd_dev->parent_spec);
3881                 rbd_dev->parent_spec = parent_spec;
3882                 parent_spec = NULL;     /* rbd_dev now owns this */
3883                 rbd_dev->parent_overlap = overlap;
3884         } else {
3885                 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3886         }
3887 out:
3888         ret = 0;
3889 out_err:
3890         kfree(reply_buf);
3891         rbd_spec_put(parent_spec);
3892
3893         return ret;
3894 }
3895
3896 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3897 {
3898         struct {
3899                 __le64 stripe_unit;
3900                 __le64 stripe_count;
3901         } __attribute__ ((packed)) striping_info_buf = { 0 };
3902         size_t size = sizeof (striping_info_buf);
3903         void *p;
3904         u64 obj_size;
3905         u64 stripe_unit;
3906         u64 stripe_count;
3907         int ret;
3908
3909         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3910                                 "rbd", "get_stripe_unit_count", NULL, 0,
3911                                 (char *)&striping_info_buf, size);
3912         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3913         if (ret < 0)
3914                 return ret;
3915         if (ret < size)
3916                 return -ERANGE;
3917
3918         /*
3919          * We don't actually support the "fancy striping" feature
3920          * (STRIPINGV2) yet, but if the striping sizes are the
3921          * defaults the behavior is the same as before.  So find
3922          * out, and only fail if the image has non-default values.
3923          */
3924         ret = -EINVAL;
3925         obj_size = (u64)1 << rbd_dev->header.obj_order;
3926         p = &striping_info_buf;
3927         stripe_unit = ceph_decode_64(&p);
3928         if (stripe_unit != obj_size) {
3929                 rbd_warn(rbd_dev, "unsupported stripe unit "
3930                                 "(got %llu want %llu)",
3931                                 stripe_unit, obj_size);
3932                 return -EINVAL;
3933         }
3934         stripe_count = ceph_decode_64(&p);
3935         if (stripe_count != 1) {
3936                 rbd_warn(rbd_dev, "unsupported stripe count "
3937                                 "(got %llu want 1)", stripe_count);
3938                 return -EINVAL;
3939         }
3940         rbd_dev->header.stripe_unit = stripe_unit;
3941         rbd_dev->header.stripe_count = stripe_count;
3942
3943         return 0;
3944 }
3945
3946 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3947 {
3948         size_t image_id_size;
3949         char *image_id;
3950         void *p;
3951         void *end;
3952         size_t size;
3953         void *reply_buf = NULL;
3954         size_t len = 0;
3955         char *image_name = NULL;
3956         int ret;
3957
3958         rbd_assert(!rbd_dev->spec->image_name);
3959
3960         len = strlen(rbd_dev->spec->image_id);
3961         image_id_size = sizeof (__le32) + len;
3962         image_id = kmalloc(image_id_size, GFP_KERNEL);
3963         if (!image_id)
3964                 return NULL;
3965
3966         p = image_id;
3967         end = image_id + image_id_size;
3968         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3969
3970         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3971         reply_buf = kmalloc(size, GFP_KERNEL);
3972         if (!reply_buf)
3973                 goto out;
3974
3975         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3976                                 "rbd", "dir_get_name",
3977                                 image_id, image_id_size,
3978                                 reply_buf, size);
3979         if (ret < 0)
3980                 goto out;
3981         p = reply_buf;
3982         end = reply_buf + ret;
3983
3984         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3985         if (IS_ERR(image_name))
3986                 image_name = NULL;
3987         else
3988                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3989 out:
3990         kfree(reply_buf);
3991         kfree(image_id);
3992
3993         return image_name;
3994 }
3995
3996 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3997 {
3998         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3999         const char *snap_name;
4000         u32 which = 0;
4001
4002         /* Skip over names until we find the one we are looking for */
4003
4004         snap_name = rbd_dev->header.snap_names;
4005         while (which < snapc->num_snaps) {
4006                 if (!strcmp(name, snap_name))
4007                         return snapc->snaps[which];
4008                 snap_name += strlen(snap_name) + 1;
4009                 which++;
4010         }
4011         return CEPH_NOSNAP;
4012 }
4013
4014 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4015 {
4016         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4017         u32 which;
4018         bool found = false;
4019         u64 snap_id;
4020
4021         for (which = 0; !found && which < snapc->num_snaps; which++) {
4022                 const char *snap_name;
4023
4024                 snap_id = snapc->snaps[which];
4025                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4026                 if (IS_ERR(snap_name))
4027                         break;
4028                 found = !strcmp(name, snap_name);
4029                 kfree(snap_name);
4030         }
4031         return found ? snap_id : CEPH_NOSNAP;
4032 }
4033
4034 /*
4035  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4036  * no snapshot by that name is found, or if an error occurs.
4037  */
4038 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4039 {
4040         if (rbd_dev->image_format == 1)
4041                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4042
4043         return rbd_v2_snap_id_by_name(rbd_dev, name);
4044 }
4045
4046 /*
4047  * When an rbd image has a parent image, it is identified by the
4048  * pool, image, and snapshot ids (not names).  This function fills
4049  * in the names for those ids.  (It's OK if we can't figure out the
4050  * name for an image id, but the pool and snapshot ids should always
4051  * exist and have names.)  All names in an rbd spec are dynamically
4052  * allocated.
4053  *
4054  * When an image being mapped (not a parent) is probed, we have the
4055  * pool name and pool id, image name and image id, and the snapshot
4056  * name.  The only thing we're missing is the snapshot id.
4057  */
4058 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4059 {
4060         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4061         struct rbd_spec *spec = rbd_dev->spec;
4062         const char *pool_name;
4063         const char *image_name;
4064         const char *snap_name;
4065         int ret;
4066
4067         /*
4068          * An image being mapped will have the pool name (etc.), but
4069          * we need to look up the snapshot id.
4070          */
4071         if (spec->pool_name) {
4072                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4073                         u64 snap_id;
4074
4075                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4076                         if (snap_id == CEPH_NOSNAP)
4077                                 return -ENOENT;
4078                         spec->snap_id = snap_id;
4079                 } else {
4080                         spec->snap_id = CEPH_NOSNAP;
4081                 }
4082
4083                 return 0;
4084         }
4085
4086         /* Get the pool name; we have to make our own copy of this */
4087
4088         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4089         if (!pool_name) {
4090                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4091                 return -EIO;
4092         }
4093         pool_name = kstrdup(pool_name, GFP_KERNEL);
4094         if (!pool_name)
4095                 return -ENOMEM;
4096
4097         /* Fetch the image name; tolerate failure here */
4098
4099         image_name = rbd_dev_image_name(rbd_dev);
4100         if (!image_name)
4101                 rbd_warn(rbd_dev, "unable to get image name");
4102
4103         /* Look up the snapshot name, and make a copy */
4104
4105         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4106         if (!snap_name) {
4107                 ret = -ENOMEM;
4108                 goto out_err;
4109         }
4110
4111         spec->pool_name = pool_name;
4112         spec->image_name = image_name;
4113         spec->snap_name = snap_name;
4114
4115         return 0;
4116 out_err:
4117         kfree(image_name);
4118         kfree(pool_name);
4119
4120         return ret;
4121 }
4122
4123 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4124 {
4125         size_t size;
4126         int ret;
4127         void *reply_buf;
4128         void *p;
4129         void *end;
4130         u64 seq;
4131         u32 snap_count;
4132         struct ceph_snap_context *snapc;
4133         u32 i;
4134
4135         /*
4136          * We'll need room for the seq value (maximum snapshot id),
4137          * snapshot count, and array of that many snapshot ids.
4138          * For now we have a fixed upper limit on the number we're
4139          * prepared to receive.
4140          */
4141         size = sizeof (__le64) + sizeof (__le32) +
4142                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4143         reply_buf = kzalloc(size, GFP_KERNEL);
4144         if (!reply_buf)
4145                 return -ENOMEM;
4146
4147         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4148                                 "rbd", "get_snapcontext", NULL, 0,
4149                                 reply_buf, size);
4150         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4151         if (ret < 0)
4152                 goto out;
4153
4154         p = reply_buf;
4155         end = reply_buf + ret;
4156         ret = -ERANGE;
4157         ceph_decode_64_safe(&p, end, seq, out);
4158         ceph_decode_32_safe(&p, end, snap_count, out);
4159
4160         /*
4161          * Make sure the reported number of snapshot ids wouldn't go
4162          * beyond the end of our buffer.  But before checking that,
4163          * make sure the computed size of the snapshot context we
4164          * allocate is representable in a size_t.
4165          */
4166         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4167                                  / sizeof (u64)) {
4168                 ret = -EINVAL;
4169                 goto out;
4170         }
4171         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4172                 goto out;
4173         ret = 0;
4174
4175         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4176         if (!snapc) {
4177                 ret = -ENOMEM;
4178                 goto out;
4179         }
4180         snapc->seq = seq;
4181         for (i = 0; i < snap_count; i++)
4182                 snapc->snaps[i] = ceph_decode_64(&p);
4183
4184         ceph_put_snap_context(rbd_dev->header.snapc);
4185         rbd_dev->header.snapc = snapc;
4186
4187         dout("  snap context seq = %llu, snap_count = %u\n",
4188                 (unsigned long long)seq, (unsigned int)snap_count);
4189 out:
4190         kfree(reply_buf);
4191
4192         return ret;
4193 }
4194
4195 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4196                                         u64 snap_id)
4197 {
4198         size_t size;
4199         void *reply_buf;
4200         __le64 snapid;
4201         int ret;
4202         void *p;
4203         void *end;
4204         char *snap_name;
4205
4206         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4207         reply_buf = kmalloc(size, GFP_KERNEL);
4208         if (!reply_buf)
4209                 return ERR_PTR(-ENOMEM);
4210
4211         snapid = cpu_to_le64(snap_id);
4212         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4213                                 "rbd", "get_snapshot_name",
4214                                 &snapid, sizeof (snapid),
4215                                 reply_buf, size);
4216         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4217         if (ret < 0) {
4218                 snap_name = ERR_PTR(ret);
4219                 goto out;
4220         }
4221
4222         p = reply_buf;
4223         end = reply_buf + ret;
4224         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4225         if (IS_ERR(snap_name))
4226                 goto out;
4227
4228         dout("  snap_id 0x%016llx snap_name = %s\n",
4229                 (unsigned long long)snap_id, snap_name);
4230 out:
4231         kfree(reply_buf);
4232
4233         return snap_name;
4234 }
4235
4236 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4237 {
4238         bool first_time = rbd_dev->header.object_prefix == NULL;
4239         int ret;
4240
4241         down_write(&rbd_dev->header_rwsem);
4242
4243         if (first_time) {
4244                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4245                 if (ret)
4246                         goto out;
4247         }
4248
4249         /*
4250          * If the image supports layering, get the parent info.  We
4251          * need to probe the first time regardless.  Thereafter we
4252          * only need to if there's a parent, to see if it has
4253          * disappeared due to the mapped image getting flattened.
4254          */
4255         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4256                         (first_time || rbd_dev->parent_spec)) {
4257                 bool warn;
4258
4259                 ret = rbd_dev_v2_parent_info(rbd_dev);
4260                 if (ret)
4261                         goto out;
4262
4263                 /*
4264                  * Print a warning if this is the initial probe and
4265                  * the image has a parent.  Don't print it if the
4266                  * image now being probed is itself a parent.  We
4267                  * can tell at this point because we won't know its
4268                  * pool name yet (just its pool id).
4269                  */
4270                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4271                 if (first_time && warn)
4272                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4273                                         "is EXPERIMENTAL!");
4274         }
4275
4276         ret = rbd_dev_v2_image_size(rbd_dev);
4277         if (ret)
4278                 goto out;
4279
4280         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4281                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4282                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4283
4284         ret = rbd_dev_v2_snap_context(rbd_dev);
4285         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4286 out:
4287         up_write(&rbd_dev->header_rwsem);
4288
4289         return ret;
4290 }
4291
4292 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4293 {
4294         struct device *dev;
4295         int ret;
4296
4297         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4298
4299         dev = &rbd_dev->dev;
4300         dev->bus = &rbd_bus_type;
4301         dev->type = &rbd_device_type;
4302         dev->parent = &rbd_root_dev;
4303         dev->release = rbd_dev_device_release;
4304         dev_set_name(dev, "%d", rbd_dev->dev_id);
4305         ret = device_register(dev);
4306
4307         mutex_unlock(&ctl_mutex);
4308
4309         return ret;
4310 }
4311
4312 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4313 {
4314         device_unregister(&rbd_dev->dev);
4315 }
4316
4317 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4318
4319 /*
4320  * Get a unique rbd identifier for the given new rbd_dev, and add
4321  * the rbd_dev to the global list.  The minimum rbd id is 1.
4322  */
4323 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4324 {
4325         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4326
4327         spin_lock(&rbd_dev_list_lock);
4328         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4329         spin_unlock(&rbd_dev_list_lock);
4330         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4331                 (unsigned long long) rbd_dev->dev_id);
4332 }
4333
4334 /*
4335  * Remove an rbd_dev from the global list, and record that its
4336  * identifier is no longer in use.
4337  */
4338 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4339 {
4340         struct list_head *tmp;
4341         int rbd_id = rbd_dev->dev_id;
4342         int max_id;
4343
4344         rbd_assert(rbd_id > 0);
4345
4346         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4347                 (unsigned long long) rbd_dev->dev_id);
4348         spin_lock(&rbd_dev_list_lock);
4349         list_del_init(&rbd_dev->node);
4350
4351         /*
4352          * If the id being "put" is not the current maximum, there
4353          * is nothing special we need to do.
4354          */
4355         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4356                 spin_unlock(&rbd_dev_list_lock);
4357                 return;
4358         }
4359
4360         /*
4361          * We need to update the current maximum id.  Search the
4362          * list to find out what it is.  We're more likely to find
4363          * the maximum at the end, so search the list backward.
4364          */
4365         max_id = 0;
4366         list_for_each_prev(tmp, &rbd_dev_list) {
4367                 struct rbd_device *rbd_dev;
4368
4369                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4370                 if (rbd_dev->dev_id > max_id)
4371                         max_id = rbd_dev->dev_id;
4372         }
4373         spin_unlock(&rbd_dev_list_lock);
4374
4375         /*
4376          * The max id could have been updated by rbd_dev_id_get(), in
4377          * which case it now accurately reflects the new maximum.
4378          * Be careful not to overwrite the maximum value in that
4379          * case.
4380          */
4381         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4382         dout("  max dev id has been reset\n");
4383 }
4384
4385 /*
4386  * Skips over white space at *buf, and updates *buf to point to the
4387  * first found non-space character (if any). Returns the length of
4388  * the token (string of non-white space characters) found.  Note
4389  * that *buf must be terminated with '\0'.
4390  */
4391 static inline size_t next_token(const char **buf)
4392 {
4393         /*
4394         * These are the characters that produce nonzero for
4395         * isspace() in the "C" and "POSIX" locales.
4396         */
4397         const char *spaces = " \f\n\r\t\v";
4398
4399         *buf += strspn(*buf, spaces);   /* Find start of token */
4400
4401         return strcspn(*buf, spaces);   /* Return token length */
4402 }
4403
4404 /*
4405  * Finds the next token in *buf, and if the provided token buffer is
4406  * big enough, copies the found token into it.  The result, if
4407  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4408  * must be terminated with '\0' on entry.
4409  *
4410  * Returns the length of the token found (not including the '\0').
4411  * Return value will be 0 if no token is found, and it will be >=
4412  * token_size if the token would not fit.
4413  *
4414  * The *buf pointer will be updated to point beyond the end of the
4415  * found token.  Note that this occurs even if the token buffer is
4416  * too small to hold it.
4417  */
4418 static inline size_t copy_token(const char **buf,
4419                                 char *token,
4420                                 size_t token_size)
4421 {
4422         size_t len;
4423
4424         len = next_token(buf);
4425         if (len < token_size) {
4426                 memcpy(token, *buf, len);
4427                 *(token + len) = '\0';
4428         }
4429         *buf += len;
4430
4431         return len;
4432 }
4433
4434 /*
4435  * Finds the next token in *buf, dynamically allocates a buffer big
4436  * enough to hold a copy of it, and copies the token into the new
4437  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4438  * that a duplicate buffer is created even for a zero-length token.
4439  *
4440  * Returns a pointer to the newly-allocated duplicate, or a null
4441  * pointer if memory for the duplicate was not available.  If
4442  * the lenp argument is a non-null pointer, the length of the token
4443  * (not including the '\0') is returned in *lenp.
4444  *
4445  * If successful, the *buf pointer will be updated to point beyond
4446  * the end of the found token.
4447  *
4448  * Note: uses GFP_KERNEL for allocation.
4449  */
4450 static inline char *dup_token(const char **buf, size_t *lenp)
4451 {
4452         char *dup;
4453         size_t len;
4454
4455         len = next_token(buf);
4456         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4457         if (!dup)
4458                 return NULL;
4459         *(dup + len) = '\0';
4460         *buf += len;
4461
4462         if (lenp)
4463                 *lenp = len;
4464
4465         return dup;
4466 }
4467
4468 /*
4469  * Parse the options provided for an "rbd add" (i.e., rbd image
4470  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4471  * and the data written is passed here via a NUL-terminated buffer.
4472  * Returns 0 if successful or an error code otherwise.
4473  *
4474  * The information extracted from these options is recorded in
4475  * the other parameters which return dynamically-allocated
4476  * structures:
4477  *  ceph_opts
4478  *      The address of a pointer that will refer to a ceph options
4479  *      structure.  Caller must release the returned pointer using
4480  *      ceph_destroy_options() when it is no longer needed.
4481  *  rbd_opts
4482  *      Address of an rbd options pointer.  Fully initialized by
4483  *      this function; caller must release with kfree().
4484  *  spec
4485  *      Address of an rbd image specification pointer.  Fully
4486  *      initialized by this function based on parsed options.
4487  *      Caller must release with rbd_spec_put().
4488  *
4489  * The options passed take this form:
4490  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4491  * where:
4492  *  <mon_addrs>
4493  *      A comma-separated list of one or more monitor addresses.
4494  *      A monitor address is an ip address, optionally followed
4495  *      by a port number (separated by a colon).
4496  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4497  *  <options>
4498  *      A comma-separated list of ceph and/or rbd options.
4499  *  <pool_name>
4500  *      The name of the rados pool containing the rbd image.
4501  *  <image_name>
4502  *      The name of the image in that pool to map.
4503  *  <snap_id>
4504  *      An optional snapshot id.  If provided, the mapping will
4505  *      present data from the image at the time that snapshot was
4506  *      created.  The image head is used if no snapshot id is
4507  *      provided.  Snapshot mappings are always read-only.
4508  */
4509 static int rbd_add_parse_args(const char *buf,
4510                                 struct ceph_options **ceph_opts,
4511                                 struct rbd_options **opts,
4512                                 struct rbd_spec **rbd_spec)
4513 {
4514         size_t len;
4515         char *options;
4516         const char *mon_addrs;
4517         char *snap_name;
4518         size_t mon_addrs_size;
4519         struct rbd_spec *spec = NULL;
4520         struct rbd_options *rbd_opts = NULL;
4521         struct ceph_options *copts;
4522         int ret;
4523
4524         /* The first four tokens are required */
4525
4526         len = next_token(&buf);
4527         if (!len) {
4528                 rbd_warn(NULL, "no monitor address(es) provided");
4529                 return -EINVAL;
4530         }
4531         mon_addrs = buf;
4532         mon_addrs_size = len + 1;
4533         buf += len;
4534
4535         ret = -EINVAL;
4536         options = dup_token(&buf, NULL);
4537         if (!options)
4538                 return -ENOMEM;
4539         if (!*options) {
4540                 rbd_warn(NULL, "no options provided");
4541                 goto out_err;
4542         }
4543
4544         spec = rbd_spec_alloc();
4545         if (!spec)
4546                 goto out_mem;
4547
4548         spec->pool_name = dup_token(&buf, NULL);
4549         if (!spec->pool_name)
4550                 goto out_mem;
4551         if (!*spec->pool_name) {
4552                 rbd_warn(NULL, "no pool name provided");
4553                 goto out_err;
4554         }
4555
4556         spec->image_name = dup_token(&buf, NULL);
4557         if (!spec->image_name)
4558                 goto out_mem;
4559         if (!*spec->image_name) {
4560                 rbd_warn(NULL, "no image name provided");
4561                 goto out_err;
4562         }
4563
4564         /*
4565          * Snapshot name is optional; default is to use "-"
4566          * (indicating the head/no snapshot).
4567          */
4568         len = next_token(&buf);
4569         if (!len) {
4570                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4571                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4572         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4573                 ret = -ENAMETOOLONG;
4574                 goto out_err;
4575         }
4576         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4577         if (!snap_name)
4578                 goto out_mem;
4579         *(snap_name + len) = '\0';
4580         spec->snap_name = snap_name;
4581
4582         /* Initialize all rbd options to the defaults */
4583
4584         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4585         if (!rbd_opts)
4586                 goto out_mem;
4587
4588         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4589
4590         copts = ceph_parse_options(options, mon_addrs,
4591                                         mon_addrs + mon_addrs_size - 1,
4592                                         parse_rbd_opts_token, rbd_opts);
4593         if (IS_ERR(copts)) {
4594                 ret = PTR_ERR(copts);
4595                 goto out_err;
4596         }
4597         kfree(options);
4598
4599         *ceph_opts = copts;
4600         *opts = rbd_opts;
4601         *rbd_spec = spec;
4602
4603         return 0;
4604 out_mem:
4605         ret = -ENOMEM;
4606 out_err:
4607         kfree(rbd_opts);
4608         rbd_spec_put(spec);
4609         kfree(options);
4610
4611         return ret;
4612 }
4613
4614 /*
4615  * An rbd format 2 image has a unique identifier, distinct from the
4616  * name given to it by the user.  Internally, that identifier is
4617  * what's used to specify the names of objects related to the image.
4618  *
4619  * A special "rbd id" object is used to map an rbd image name to its
4620  * id.  If that object doesn't exist, then there is no v2 rbd image
4621  * with the supplied name.
4622  *
4623  * This function will record the given rbd_dev's image_id field if
4624  * it can be determined, and in that case will return 0.  If any
4625  * errors occur a negative errno will be returned and the rbd_dev's
4626  * image_id field will be unchanged (and should be NULL).
4627  */
4628 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4629 {
4630         int ret;
4631         size_t size;
4632         char *object_name;
4633         void *response;
4634         char *image_id;
4635
4636         /*
4637          * When probing a parent image, the image id is already
4638          * known (and the image name likely is not).  There's no
4639          * need to fetch the image id again in this case.  We
4640          * do still need to set the image format though.
4641          */
4642         if (rbd_dev->spec->image_id) {
4643                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4644
4645                 return 0;
4646         }
4647
4648         /*
4649          * First, see if the format 2 image id file exists, and if
4650          * so, get the image's persistent id from it.
4651          */
4652         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4653         object_name = kmalloc(size, GFP_NOIO);
4654         if (!object_name)
4655                 return -ENOMEM;
4656         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4657         dout("rbd id object name is %s\n", object_name);
4658
4659         /* Response will be an encoded string, which includes a length */
4660
4661         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4662         response = kzalloc(size, GFP_NOIO);
4663         if (!response) {
4664                 ret = -ENOMEM;
4665                 goto out;
4666         }
4667
4668         /* If it doesn't exist we'll assume it's a format 1 image */
4669
4670         ret = rbd_obj_method_sync(rbd_dev, object_name,
4671                                 "rbd", "get_id", NULL, 0,
4672                                 response, RBD_IMAGE_ID_LEN_MAX);
4673         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4674         if (ret == -ENOENT) {
4675                 image_id = kstrdup("", GFP_KERNEL);
4676                 ret = image_id ? 0 : -ENOMEM;
4677                 if (!ret)
4678                         rbd_dev->image_format = 1;
4679         } else if (ret > sizeof (__le32)) {
4680                 void *p = response;
4681
4682                 image_id = ceph_extract_encoded_string(&p, p + ret,
4683                                                 NULL, GFP_NOIO);
4684                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4685                 if (!ret)
4686                         rbd_dev->image_format = 2;
4687         } else {
4688                 ret = -EINVAL;
4689         }
4690
4691         if (!ret) {
4692                 rbd_dev->spec->image_id = image_id;
4693                 dout("image_id is %s\n", image_id);
4694         }
4695 out:
4696         kfree(response);
4697         kfree(object_name);
4698
4699         return ret;
4700 }
4701
4702 /* Undo whatever state changes are made by v1 or v2 image probe */
4703
4704 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4705 {
4706         struct rbd_image_header *header;
4707
4708         /* Drop parent reference unless it's already been done (or none) */
4709
4710         if (rbd_dev->parent_overlap)
4711                 rbd_dev_parent_put(rbd_dev);
4712
4713         /* Free dynamic fields from the header, then zero it out */
4714
4715         header = &rbd_dev->header;
4716         ceph_put_snap_context(header->snapc);
4717         kfree(header->snap_sizes);
4718         kfree(header->snap_names);
4719         kfree(header->object_prefix);
4720         memset(header, 0, sizeof (*header));
4721 }
4722
4723 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4724 {
4725         int ret;
4726
4727         ret = rbd_dev_v2_object_prefix(rbd_dev);
4728         if (ret)
4729                 goto out_err;
4730
4731         /*
4732          * Get the and check features for the image.  Currently the
4733          * features are assumed to never change.
4734          */
4735         ret = rbd_dev_v2_features(rbd_dev);
4736         if (ret)
4737                 goto out_err;
4738
4739         /* If the image supports fancy striping, get its parameters */
4740
4741         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4742                 ret = rbd_dev_v2_striping_info(rbd_dev);
4743                 if (ret < 0)
4744                         goto out_err;
4745         }
4746         /* No support for crypto and compression type format 2 images */
4747
4748         return 0;
4749 out_err:
4750         rbd_dev->header.features = 0;
4751         kfree(rbd_dev->header.object_prefix);
4752         rbd_dev->header.object_prefix = NULL;
4753
4754         return ret;
4755 }
4756
4757 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4758 {
4759         struct rbd_device *parent = NULL;
4760         struct rbd_spec *parent_spec;
4761         struct rbd_client *rbdc;
4762         int ret;
4763
4764         if (!rbd_dev->parent_spec)
4765                 return 0;
4766         /*
4767          * We need to pass a reference to the client and the parent
4768          * spec when creating the parent rbd_dev.  Images related by
4769          * parent/child relationships always share both.
4770          */
4771         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4772         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4773
4774         ret = -ENOMEM;
4775         parent = rbd_dev_create(rbdc, parent_spec);
4776         if (!parent)
4777                 goto out_err;
4778
4779         ret = rbd_dev_image_probe(parent, false);
4780         if (ret < 0)
4781                 goto out_err;
4782         rbd_dev->parent = parent;
4783         atomic_set(&rbd_dev->parent_ref, 1);
4784
4785         return 0;
4786 out_err:
4787         if (parent) {
4788                 rbd_dev_unparent(rbd_dev);
4789                 kfree(rbd_dev->header_name);
4790                 rbd_dev_destroy(parent);
4791         } else {
4792                 rbd_put_client(rbdc);
4793                 rbd_spec_put(parent_spec);
4794         }
4795
4796         return ret;
4797 }
4798
4799 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4800 {
4801         int ret;
4802
4803         /* generate unique id: find highest unique id, add one */
4804         rbd_dev_id_get(rbd_dev);
4805
4806         /* Fill in the device name, now that we have its id. */
4807         BUILD_BUG_ON(DEV_NAME_LEN
4808                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4809         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4810
4811         /* Get our block major device number. */
4812
4813         ret = register_blkdev(0, rbd_dev->name);
4814         if (ret < 0)
4815                 goto err_out_id;
4816         rbd_dev->major = ret;
4817
4818         /* Set up the blkdev mapping. */
4819
4820         ret = rbd_init_disk(rbd_dev);
4821         if (ret)
4822                 goto err_out_blkdev;
4823
4824         ret = rbd_dev_mapping_set(rbd_dev);
4825         if (ret)
4826                 goto err_out_disk;
4827         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4828
4829         ret = rbd_bus_add_dev(rbd_dev);
4830         if (ret)
4831                 goto err_out_mapping;
4832
4833         /* Everything's ready.  Announce the disk to the world. */
4834
4835         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4836         add_disk(rbd_dev->disk);
4837
4838         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4839                 (unsigned long long) rbd_dev->mapping.size);
4840
4841         return ret;
4842
4843 err_out_mapping:
4844         rbd_dev_mapping_clear(rbd_dev);
4845 err_out_disk:
4846         rbd_free_disk(rbd_dev);
4847 err_out_blkdev:
4848         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4849 err_out_id:
4850         rbd_dev_id_put(rbd_dev);
4851         rbd_dev_mapping_clear(rbd_dev);
4852
4853         return ret;
4854 }
4855
4856 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4857 {
4858         struct rbd_spec *spec = rbd_dev->spec;
4859         size_t size;
4860
4861         /* Record the header object name for this rbd image. */
4862
4863         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4864
4865         if (rbd_dev->image_format == 1)
4866                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4867         else
4868                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4869
4870         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4871         if (!rbd_dev->header_name)
4872                 return -ENOMEM;
4873
4874         if (rbd_dev->image_format == 1)
4875                 sprintf(rbd_dev->header_name, "%s%s",
4876                         spec->image_name, RBD_SUFFIX);
4877         else
4878                 sprintf(rbd_dev->header_name, "%s%s",
4879                         RBD_HEADER_PREFIX, spec->image_id);
4880         return 0;
4881 }
4882
4883 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4884 {
4885         rbd_dev_unprobe(rbd_dev);
4886         kfree(rbd_dev->header_name);
4887         rbd_dev->header_name = NULL;
4888         rbd_dev->image_format = 0;
4889         kfree(rbd_dev->spec->image_id);
4890         rbd_dev->spec->image_id = NULL;
4891
4892         rbd_dev_destroy(rbd_dev);
4893 }
4894
4895 /*
4896  * Probe for the existence of the header object for the given rbd
4897  * device.  If this image is the one being mapped (i.e., not a
4898  * parent), initiate a watch on its header object before using that
4899  * object to get detailed information about the rbd image.
4900  */
4901 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4902 {
4903         int ret;
4904         int tmp;
4905
4906         /*
4907          * Get the id from the image id object.  If it's not a
4908          * format 2 image, we'll get ENOENT back, and we'll assume
4909          * it's a format 1 image.
4910          */
4911         ret = rbd_dev_image_id(rbd_dev);
4912         if (ret)
4913                 return ret;
4914         rbd_assert(rbd_dev->spec->image_id);
4915         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4916
4917         ret = rbd_dev_header_name(rbd_dev);
4918         if (ret)
4919                 goto err_out_format;
4920
4921         if (mapping) {
4922                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4923                 if (ret)
4924                         goto out_header_name;
4925         }
4926
4927         if (rbd_dev->image_format == 1)
4928                 ret = rbd_dev_v1_header_info(rbd_dev);
4929         else
4930                 ret = rbd_dev_v2_header_info(rbd_dev);
4931         if (ret)
4932                 goto err_out_watch;
4933
4934         ret = rbd_dev_spec_update(rbd_dev);
4935         if (ret)
4936                 goto err_out_probe;
4937
4938         ret = rbd_dev_probe_parent(rbd_dev);
4939         if (ret)
4940                 goto err_out_probe;
4941
4942         dout("discovered format %u image, header name is %s\n",
4943                 rbd_dev->image_format, rbd_dev->header_name);
4944
4945         return 0;
4946 err_out_probe:
4947         rbd_dev_unprobe(rbd_dev);
4948 err_out_watch:
4949         if (mapping) {
4950                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4951                 if (tmp)
4952                         rbd_warn(rbd_dev, "unable to tear down "
4953                                         "watch request (%d)\n", tmp);
4954         }
4955 out_header_name:
4956         kfree(rbd_dev->header_name);
4957         rbd_dev->header_name = NULL;
4958 err_out_format:
4959         rbd_dev->image_format = 0;
4960         kfree(rbd_dev->spec->image_id);
4961         rbd_dev->spec->image_id = NULL;
4962
4963         dout("probe failed, returning %d\n", ret);
4964
4965         return ret;
4966 }
4967
4968 static ssize_t rbd_add(struct bus_type *bus,
4969                        const char *buf,
4970                        size_t count)
4971 {
4972         struct rbd_device *rbd_dev = NULL;
4973         struct ceph_options *ceph_opts = NULL;
4974         struct rbd_options *rbd_opts = NULL;
4975         struct rbd_spec *spec = NULL;
4976         struct rbd_client *rbdc;
4977         struct ceph_osd_client *osdc;
4978         bool read_only;
4979         int rc = -ENOMEM;
4980
4981         if (!try_module_get(THIS_MODULE))
4982                 return -ENODEV;
4983
4984         /* parse add command */
4985         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4986         if (rc < 0)
4987                 goto err_out_module;
4988         read_only = rbd_opts->read_only;
4989         kfree(rbd_opts);
4990         rbd_opts = NULL;        /* done with this */
4991
4992         rbdc = rbd_get_client(ceph_opts);
4993         if (IS_ERR(rbdc)) {
4994                 rc = PTR_ERR(rbdc);
4995                 goto err_out_args;
4996         }
4997         ceph_opts = NULL;       /* rbd_dev client now owns this */
4998
4999         /* pick the pool */
5000         osdc = &rbdc->client->osdc;
5001         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5002         if (rc < 0)
5003                 goto err_out_client;
5004         spec->pool_id = (u64)rc;
5005
5006         /* The ceph file layout needs to fit pool id in 32 bits */
5007
5008         if (spec->pool_id > (u64)U32_MAX) {
5009                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5010                                 (unsigned long long)spec->pool_id, U32_MAX);
5011                 rc = -EIO;
5012                 goto err_out_client;
5013         }
5014
5015         rbd_dev = rbd_dev_create(rbdc, spec);
5016         if (!rbd_dev)
5017                 goto err_out_client;
5018         rbdc = NULL;            /* rbd_dev now owns this */
5019         spec = NULL;            /* rbd_dev now owns this */
5020
5021         rc = rbd_dev_image_probe(rbd_dev, true);
5022         if (rc < 0)
5023                 goto err_out_rbd_dev;
5024
5025         /* If we are mapping a snapshot it must be marked read-only */
5026
5027         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5028                 read_only = true;
5029         rbd_dev->mapping.read_only = read_only;
5030
5031         rc = rbd_dev_device_setup(rbd_dev);
5032         if (!rc)
5033                 return count;
5034
5035         rbd_dev_image_release(rbd_dev);
5036 err_out_rbd_dev:
5037         rbd_dev_destroy(rbd_dev);
5038 err_out_client:
5039         rbd_put_client(rbdc);
5040 err_out_args:
5041         if (ceph_opts)
5042                 ceph_destroy_options(ceph_opts);
5043         kfree(rbd_opts);
5044         rbd_spec_put(spec);
5045 err_out_module:
5046         module_put(THIS_MODULE);
5047
5048         dout("Error adding device %s\n", buf);
5049
5050         return (ssize_t)rc;
5051 }
5052
5053 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
5054 {
5055         struct list_head *tmp;
5056         struct rbd_device *rbd_dev;
5057
5058         spin_lock(&rbd_dev_list_lock);
5059         list_for_each(tmp, &rbd_dev_list) {
5060                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5061                 if (rbd_dev->dev_id == dev_id) {
5062                         spin_unlock(&rbd_dev_list_lock);
5063                         return rbd_dev;
5064                 }
5065         }
5066         spin_unlock(&rbd_dev_list_lock);
5067         return NULL;
5068 }
5069
5070 static void rbd_dev_device_release(struct device *dev)
5071 {
5072         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5073
5074         rbd_free_disk(rbd_dev);
5075         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5076         rbd_dev_mapping_clear(rbd_dev);
5077         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5078         rbd_dev->major = 0;
5079         rbd_dev_id_put(rbd_dev);
5080         rbd_dev_mapping_clear(rbd_dev);
5081 }
5082
5083 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5084 {
5085         while (rbd_dev->parent) {
5086                 struct rbd_device *first = rbd_dev;
5087                 struct rbd_device *second = first->parent;
5088                 struct rbd_device *third;
5089
5090                 /*
5091                  * Follow to the parent with no grandparent and
5092                  * remove it.
5093                  */
5094                 while (second && (third = second->parent)) {
5095                         first = second;
5096                         second = third;
5097                 }
5098                 rbd_assert(second);
5099                 rbd_dev_image_release(second);
5100                 first->parent = NULL;
5101                 first->parent_overlap = 0;
5102
5103                 rbd_assert(first->parent_spec);
5104                 rbd_spec_put(first->parent_spec);
5105                 first->parent_spec = NULL;
5106         }
5107 }
5108
5109 static ssize_t rbd_remove(struct bus_type *bus,
5110                           const char *buf,
5111                           size_t count)
5112 {
5113         struct rbd_device *rbd_dev = NULL;
5114         int target_id;
5115         unsigned long ul;
5116         int ret;
5117
5118         ret = strict_strtoul(buf, 10, &ul);
5119         if (ret)
5120                 return ret;
5121
5122         /* convert to int; abort if we lost anything in the conversion */
5123         target_id = (int) ul;
5124         if (target_id != ul)
5125                 return -EINVAL;
5126
5127         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5128
5129         rbd_dev = __rbd_get_dev(target_id);
5130         if (!rbd_dev) {
5131                 ret = -ENOENT;
5132                 goto done;
5133         }
5134
5135         spin_lock_irq(&rbd_dev->lock);
5136         if (rbd_dev->open_count)
5137                 ret = -EBUSY;
5138         else
5139                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5140         spin_unlock_irq(&rbd_dev->lock);
5141         if (ret < 0)
5142                 goto done;
5143         rbd_bus_del_dev(rbd_dev);
5144         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5145         if (ret)
5146                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5147         rbd_dev_image_release(rbd_dev);
5148         module_put(THIS_MODULE);
5149         ret = count;
5150 done:
5151         mutex_unlock(&ctl_mutex);
5152
5153         return ret;
5154 }
5155
5156 /*
5157  * create control files in sysfs
5158  * /sys/bus/rbd/...
5159  */
5160 static int rbd_sysfs_init(void)
5161 {
5162         int ret;
5163
5164         ret = device_register(&rbd_root_dev);
5165         if (ret < 0)
5166                 return ret;
5167
5168         ret = bus_register(&rbd_bus_type);
5169         if (ret < 0)
5170                 device_unregister(&rbd_root_dev);
5171
5172         return ret;
5173 }
5174
5175 static void rbd_sysfs_cleanup(void)
5176 {
5177         bus_unregister(&rbd_bus_type);
5178         device_unregister(&rbd_root_dev);
5179 }
5180
5181 static int rbd_slab_init(void)
5182 {
5183         rbd_assert(!rbd_img_request_cache);
5184         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5185                                         sizeof (struct rbd_img_request),
5186                                         __alignof__(struct rbd_img_request),
5187                                         0, NULL);
5188         if (!rbd_img_request_cache)
5189                 return -ENOMEM;
5190
5191         rbd_assert(!rbd_obj_request_cache);
5192         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5193                                         sizeof (struct rbd_obj_request),
5194                                         __alignof__(struct rbd_obj_request),
5195                                         0, NULL);
5196         if (!rbd_obj_request_cache)
5197                 goto out_err;
5198
5199         rbd_assert(!rbd_segment_name_cache);
5200         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5201                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5202         if (rbd_segment_name_cache)
5203                 return 0;
5204 out_err:
5205         if (rbd_obj_request_cache) {
5206                 kmem_cache_destroy(rbd_obj_request_cache);
5207                 rbd_obj_request_cache = NULL;
5208         }
5209
5210         kmem_cache_destroy(rbd_img_request_cache);
5211         rbd_img_request_cache = NULL;
5212
5213         return -ENOMEM;
5214 }
5215
5216 static void rbd_slab_exit(void)
5217 {
5218         rbd_assert(rbd_segment_name_cache);
5219         kmem_cache_destroy(rbd_segment_name_cache);
5220         rbd_segment_name_cache = NULL;
5221
5222         rbd_assert(rbd_obj_request_cache);
5223         kmem_cache_destroy(rbd_obj_request_cache);
5224         rbd_obj_request_cache = NULL;
5225
5226         rbd_assert(rbd_img_request_cache);
5227         kmem_cache_destroy(rbd_img_request_cache);
5228         rbd_img_request_cache = NULL;
5229 }
5230
5231 static int __init rbd_init(void)
5232 {
5233         int rc;
5234
5235         if (!libceph_compatible(NULL)) {
5236                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5237
5238                 return -EINVAL;
5239         }
5240         rc = rbd_slab_init();
5241         if (rc)
5242                 return rc;
5243         rc = rbd_sysfs_init();
5244         if (rc)
5245                 rbd_slab_exit();
5246         else
5247                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5248
5249         return rc;
5250 }
5251
5252 static void __exit rbd_exit(void)
5253 {
5254         rbd_sysfs_cleanup();
5255         rbd_slab_exit();
5256 }
5257
5258 module_init(rbd_init);
5259 module_exit(rbd_exit);
5260
5261 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5262 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5263 MODULE_DESCRIPTION("rados block device");
5264
5265 /* following authorship retained from original osdblk.c */
5266 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5267
5268 MODULE_LICENSE("GPL");